xref: /dflybsd-src/sys/vm/vm_page.c (revision 70e491c09b1cb18f96facdbc91052080f2a455c3)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
39  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
41  */
42 
43 /*
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 /*
70  * Resident memory management module.  The module manipulates 'VM pages'.
71  * A VM page is the core building block for memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <sys/lock.h>
84 #include <vm/vm_kern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 
94 #include <machine/md_var.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/mplock2.h>
98 
99 static void vm_page_queue_init(void);
100 static void vm_page_free_wakeup(void);
101 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
102 static vm_page_t _vm_page_list_find2(int basequeue, int index);
103 
104 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
105 
106 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
107 
108 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
109 	     vm_pindex_t, pindex);
110 
111 static void
112 vm_page_queue_init(void)
113 {
114 	int i;
115 
116 	for (i = 0; i < PQ_L2_SIZE; i++)
117 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
118 	for (i = 0; i < PQ_L2_SIZE; i++)
119 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
120 
121 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
122 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
123 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
124 	/* PQ_NONE has no queue */
125 
126 	for (i = 0; i < PQ_COUNT; i++)
127 		TAILQ_INIT(&vm_page_queues[i].pl);
128 }
129 
130 /*
131  * note: place in initialized data section?  Is this necessary?
132  */
133 long first_page = 0;
134 int vm_page_array_size = 0;
135 int vm_page_zero_count = 0;
136 vm_page_t vm_page_array = 0;
137 
138 /*
139  * (low level boot)
140  *
141  * Sets the page size, perhaps based upon the memory size.
142  * Must be called before any use of page-size dependent functions.
143  */
144 void
145 vm_set_page_size(void)
146 {
147 	if (vmstats.v_page_size == 0)
148 		vmstats.v_page_size = PAGE_SIZE;
149 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
150 		panic("vm_set_page_size: page size not a power of two");
151 }
152 
153 /*
154  * (low level boot)
155  *
156  * Add a new page to the freelist for use by the system.  New pages
157  * are added to both the head and tail of the associated free page
158  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
159  * requests pull 'recent' adds (higher physical addresses) first.
160  *
161  * Must be called in a critical section.
162  */
163 vm_page_t
164 vm_add_new_page(vm_paddr_t pa)
165 {
166 	struct vpgqueues *vpq;
167 	vm_page_t m;
168 
169 	++vmstats.v_page_count;
170 	++vmstats.v_free_count;
171 	m = PHYS_TO_VM_PAGE(pa);
172 	m->phys_addr = pa;
173 	m->flags = 0;
174 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
175 	m->queue = m->pc + PQ_FREE;
176 	KKASSERT(m->dirty == 0);
177 
178 	vpq = &vm_page_queues[m->queue];
179 	if (vpq->flipflop)
180 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
181 	else
182 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
183 	vpq->flipflop = 1 - vpq->flipflop;
184 
185 	vm_page_queues[m->queue].lcnt++;
186 	return (m);
187 }
188 
189 /*
190  * (low level boot)
191  *
192  * Initializes the resident memory module.
193  *
194  * Allocates memory for the page cells, and for the object/offset-to-page
195  * hash table headers.  Each page cell is initialized and placed on the
196  * free list.
197  *
198  * starta/enda represents the range of physical memory addresses available
199  * for use (skipping memory already used by the kernel), subject to
200  * phys_avail[].  Note that phys_avail[] has already mapped out memory
201  * already in use by the kernel.
202  */
203 vm_offset_t
204 vm_page_startup(vm_offset_t vaddr)
205 {
206 	vm_offset_t mapped;
207 	vm_size_t npages;
208 	vm_paddr_t page_range;
209 	vm_paddr_t new_end;
210 	int i;
211 	vm_paddr_t pa;
212 	int nblocks;
213 	vm_paddr_t last_pa;
214 	vm_paddr_t end;
215 	vm_paddr_t biggestone, biggestsize;
216 	vm_paddr_t total;
217 
218 	total = 0;
219 	biggestsize = 0;
220 	biggestone = 0;
221 	nblocks = 0;
222 	vaddr = round_page(vaddr);
223 
224 	for (i = 0; phys_avail[i + 1]; i += 2) {
225 		phys_avail[i] = round_page64(phys_avail[i]);
226 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
227 	}
228 
229 	for (i = 0; phys_avail[i + 1]; i += 2) {
230 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
231 
232 		if (size > biggestsize) {
233 			biggestone = i;
234 			biggestsize = size;
235 		}
236 		++nblocks;
237 		total += size;
238 	}
239 
240 	end = phys_avail[biggestone+1];
241 	end = trunc_page(end);
242 
243 	/*
244 	 * Initialize the queue headers for the free queue, the active queue
245 	 * and the inactive queue.
246 	 */
247 
248 	vm_page_queue_init();
249 
250 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
251 #if !defined(_KERNEL_VIRTUAL)
252 	/*
253 	 * Allocate a bitmap to indicate that a random physical page
254 	 * needs to be included in a minidump.
255 	 *
256 	 * The amd64 port needs this to indicate which direct map pages
257 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
258 	 *
259 	 * However, i386 still needs this workspace internally within the
260 	 * minidump code.  In theory, they are not needed on i386, but are
261 	 * included should the sf_buf code decide to use them.
262 	 */
263 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
264 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
265 	end -= vm_page_dump_size;
266 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
267 	    VM_PROT_READ | VM_PROT_WRITE);
268 	bzero((void *)vm_page_dump, vm_page_dump_size);
269 #endif
270 
271 	/*
272 	 * Compute the number of pages of memory that will be available for
273 	 * use (taking into account the overhead of a page structure per
274 	 * page).
275 	 */
276 	first_page = phys_avail[0] / PAGE_SIZE;
277 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
278 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
279 
280 	/*
281 	 * Initialize the mem entry structures now, and put them in the free
282 	 * queue.
283 	 */
284 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
285 	mapped = pmap_map(&vaddr, new_end, end,
286 	    VM_PROT_READ | VM_PROT_WRITE);
287 	vm_page_array = (vm_page_t)mapped;
288 
289 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
290 	/*
291 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
292 	 * we have to manually add these pages to the minidump tracking so
293 	 * that they can be dumped, including the vm_page_array.
294 	 */
295 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
296 		dump_add_page(pa);
297 #endif
298 
299 	/*
300 	 * Clear all of the page structures
301 	 */
302 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
303 	vm_page_array_size = page_range;
304 
305 	/*
306 	 * Construct the free queue(s) in ascending order (by physical
307 	 * address) so that the first 16MB of physical memory is allocated
308 	 * last rather than first.  On large-memory machines, this avoids
309 	 * the exhaustion of low physical memory before isa_dmainit has run.
310 	 */
311 	vmstats.v_page_count = 0;
312 	vmstats.v_free_count = 0;
313 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
314 		pa = phys_avail[i];
315 		if (i == biggestone)
316 			last_pa = new_end;
317 		else
318 			last_pa = phys_avail[i + 1];
319 		while (pa < last_pa && npages-- > 0) {
320 			vm_add_new_page(pa);
321 			pa += PAGE_SIZE;
322 		}
323 	}
324 	return (vaddr);
325 }
326 
327 /*
328  * Scan comparison function for Red-Black tree scans.  An inclusive
329  * (start,end) is expected.  Other fields are not used.
330  */
331 int
332 rb_vm_page_scancmp(struct vm_page *p, void *data)
333 {
334 	struct rb_vm_page_scan_info *info = data;
335 
336 	if (p->pindex < info->start_pindex)
337 		return(-1);
338 	if (p->pindex > info->end_pindex)
339 		return(1);
340 	return(0);
341 }
342 
343 int
344 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
345 {
346 	if (p1->pindex < p2->pindex)
347 		return(-1);
348 	if (p1->pindex > p2->pindex)
349 		return(1);
350 	return(0);
351 }
352 
353 /*
354  * The opposite of vm_page_hold().  A page can be freed while being held,
355  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
356  * in this case to actually free it once the hold count drops to 0.
357  *
358  * This routine must be called at splvm().
359  */
360 void
361 vm_page_unhold(vm_page_t mem)
362 {
363 	--mem->hold_count;
364 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
365 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
366 		vm_page_busy(mem);
367 		vm_page_free_toq(mem);
368 	}
369 }
370 
371 /*
372  * Inserts the given mem entry into the object and object list.
373  *
374  * The pagetables are not updated but will presumably fault the page
375  * in if necessary, or if a kernel page the caller will at some point
376  * enter the page into the kernel's pmap.  We are not allowed to block
377  * here so we *can't* do this anyway.
378  *
379  * This routine may not block.
380  * This routine must be called with a critical section held.
381  */
382 void
383 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
384 {
385 	ASSERT_IN_CRIT_SECTION();
386 	if (m->object != NULL)
387 		panic("vm_page_insert: already inserted");
388 
389 	/*
390 	 * Record the object/offset pair in this page
391 	 */
392 	m->object = object;
393 	m->pindex = pindex;
394 
395 	/*
396 	 * Insert it into the object.
397 	 */
398 	ASSERT_MP_LOCK_HELD(curthread);
399 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
400 	object->generation++;
401 
402 	/*
403 	 * show that the object has one more resident page.
404 	 */
405 	object->resident_page_count++;
406 
407 	/*
408 	 * Since we are inserting a new and possibly dirty page,
409 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
410 	 */
411 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
412 		vm_object_set_writeable_dirty(object);
413 
414 	/*
415 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
416 	 */
417 	swap_pager_page_inserted(m);
418 }
419 
420 /*
421  * Removes the given vm_page_t from the global (object,index) hash table
422  * and from the object's memq.
423  *
424  * The underlying pmap entry (if any) is NOT removed here.
425  * This routine may not block.
426  *
427  * The page must be BUSY and will remain BUSY on return.
428  * No other requirements.
429  *
430  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
431  *	 it busy.
432  */
433 void
434 vm_page_remove(vm_page_t m)
435 {
436 	vm_object_t object;
437 
438 	crit_enter();
439 	lwkt_gettoken(&vm_token);
440 	if (m->object == NULL) {
441 		lwkt_reltoken(&vm_token);
442 		crit_exit();
443 		return;
444 	}
445 
446 	if ((m->flags & PG_BUSY) == 0)
447 		panic("vm_page_remove: page not busy");
448 
449 	object = m->object;
450 
451 	/*
452 	 * Remove the page from the object and update the object.
453 	 */
454 	ASSERT_MP_LOCK_HELD(curthread);
455 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
456 	object->resident_page_count--;
457 	object->generation++;
458 	m->object = NULL;
459 
460 	lwkt_reltoken(&vm_token);
461 	crit_exit();
462 }
463 
464 /*
465  * Locate and return the page at (object, pindex), or NULL if the
466  * page could not be found.
467  *
468  * This routine will operate properly without spl protection, but
469  * the returned page could be in flux if it is busy.  Because an
470  * interrupt can race a caller's busy check (unbusying and freeing the
471  * page we return before the caller is able to check the busy bit),
472  * the caller should generally call this routine with a critical
473  * section held.
474  *
475  * Callers may call this routine without spl protection if they know
476  * 'for sure' that the page will not be ripped out from under them
477  * by an interrupt.
478  */
479 vm_page_t
480 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
481 {
482 	vm_page_t m;
483 
484 	/*
485 	 * Search the hash table for this object/offset pair
486 	 */
487 	ASSERT_MP_LOCK_HELD(curthread);
488 	crit_enter();
489 	lwkt_gettoken(&vm_token);
490 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
491 	lwkt_reltoken(&vm_token);
492 	crit_exit();
493 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
494 	return(m);
495 }
496 
497 /*
498  * vm_page_rename()
499  *
500  * Move the given memory entry from its current object to the specified
501  * target object/offset.
502  *
503  * The object must be locked.
504  * This routine may not block.
505  *
506  * Note: This routine will raise itself to splvm(), the caller need not.
507  *
508  * Note: Swap associated with the page must be invalidated by the move.  We
509  *       have to do this for several reasons:  (1) we aren't freeing the
510  *       page, (2) we are dirtying the page, (3) the VM system is probably
511  *       moving the page from object A to B, and will then later move
512  *       the backing store from A to B and we can't have a conflict.
513  *
514  * Note: We *always* dirty the page.  It is necessary both for the
515  *       fact that we moved it, and because we may be invalidating
516  *	 swap.  If the page is on the cache, we have to deactivate it
517  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
518  *	 on the cache.
519  */
520 void
521 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
522 {
523 	crit_enter();
524 	lwkt_gettoken(&vm_token);
525 	vm_page_remove(m);
526 	vm_page_insert(m, new_object, new_pindex);
527 	if (m->queue - m->pc == PQ_CACHE)
528 		vm_page_deactivate(m);
529 	vm_page_dirty(m);
530 	vm_page_wakeup(m);
531 	lwkt_reltoken(&vm_token);
532 	crit_exit();
533 }
534 
535 /*
536  * vm_page_unqueue() without any wakeup.  This routine is used when a page
537  * is being moved between queues or otherwise is to remain BUSYied by the
538  * caller.
539  *
540  * This routine must be called at splhigh().
541  * This routine may not block.
542  */
543 void
544 vm_page_unqueue_nowakeup(vm_page_t m)
545 {
546 	int queue = m->queue;
547 	struct vpgqueues *pq;
548 
549 	if (queue != PQ_NONE) {
550 		pq = &vm_page_queues[queue];
551 		m->queue = PQ_NONE;
552 		TAILQ_REMOVE(&pq->pl, m, pageq);
553 		(*pq->cnt)--;
554 		pq->lcnt--;
555 	}
556 }
557 
558 /*
559  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
560  * if necessary.
561  *
562  * This routine must be called at splhigh().
563  * This routine may not block.
564  */
565 void
566 vm_page_unqueue(vm_page_t m)
567 {
568 	int queue = m->queue;
569 	struct vpgqueues *pq;
570 
571 	if (queue != PQ_NONE) {
572 		m->queue = PQ_NONE;
573 		pq = &vm_page_queues[queue];
574 		TAILQ_REMOVE(&pq->pl, m, pageq);
575 		(*pq->cnt)--;
576 		pq->lcnt--;
577 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
578 			pagedaemon_wakeup();
579 	}
580 }
581 
582 /*
583  * vm_page_list_find()
584  *
585  * Find a page on the specified queue with color optimization.
586  *
587  * The page coloring optimization attempts to locate a page that does
588  * not overload other nearby pages in the object in the cpu's L1 or L2
589  * caches.  We need this optimization because cpu caches tend to be
590  * physical caches, while object spaces tend to be virtual.
591  *
592  * This routine must be called at splvm().
593  * This routine may not block.
594  *
595  * Note that this routine is carefully inlined.  A non-inlined version
596  * is available for outside callers but the only critical path is
597  * from within this source file.
598  */
599 static __inline
600 vm_page_t
601 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
602 {
603 	vm_page_t m;
604 
605 	if (prefer_zero)
606 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
607 	else
608 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
609 	if (m == NULL)
610 		m = _vm_page_list_find2(basequeue, index);
611 	return(m);
612 }
613 
614 static vm_page_t
615 _vm_page_list_find2(int basequeue, int index)
616 {
617 	int i;
618 	vm_page_t m = NULL;
619 	struct vpgqueues *pq;
620 
621 	pq = &vm_page_queues[basequeue];
622 
623 	/*
624 	 * Note that for the first loop, index+i and index-i wind up at the
625 	 * same place.  Even though this is not totally optimal, we've already
626 	 * blown it by missing the cache case so we do not care.
627 	 */
628 
629 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
630 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
631 			break;
632 
633 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
634 			break;
635 	}
636 	return(m);
637 }
638 
639 vm_page_t
640 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
641 {
642 	return(_vm_page_list_find(basequeue, index, prefer_zero));
643 }
644 
645 /*
646  * Find a page on the cache queue with color optimization.  As pages
647  * might be found, but not applicable, they are deactivated.  This
648  * keeps us from using potentially busy cached pages.
649  *
650  * This routine must be called with a critical section held.
651  * This routine may not block.
652  */
653 vm_page_t
654 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
655 {
656 	vm_page_t m;
657 
658 	while (TRUE) {
659 		m = _vm_page_list_find(
660 		    PQ_CACHE,
661 		    (pindex + object->pg_color) & PQ_L2_MASK,
662 		    FALSE
663 		);
664 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
665 			       m->hold_count || m->wire_count)) {
666 			vm_page_deactivate(m);
667 			continue;
668 		}
669 		return m;
670 	}
671 	/* not reached */
672 }
673 
674 /*
675  * Find a free or zero page, with specified preference.  We attempt to
676  * inline the nominal case and fall back to _vm_page_select_free()
677  * otherwise.
678  *
679  * This routine must be called with a critical section held.
680  * This routine may not block.
681  */
682 static __inline vm_page_t
683 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
684 {
685 	vm_page_t m;
686 
687 	m = _vm_page_list_find(
688 		PQ_FREE,
689 		(pindex + object->pg_color) & PQ_L2_MASK,
690 		prefer_zero
691 	);
692 	return(m);
693 }
694 
695 /*
696  * vm_page_alloc()
697  *
698  * Allocate and return a memory cell associated with this VM object/offset
699  * pair.
700  *
701  *	page_req classes:
702  *
703  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
704  *	VM_ALLOC_QUICK		like normal but cannot use cache
705  *	VM_ALLOC_SYSTEM		greater free drain
706  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
707  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
708  *
709  * The object must be locked.
710  * This routine may not block.
711  * The returned page will be marked PG_BUSY
712  *
713  * Additional special handling is required when called from an interrupt
714  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
715  * in this case.
716  */
717 vm_page_t
718 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
719 {
720 	vm_page_t m = NULL;
721 
722 	crit_enter();
723 	lwkt_gettoken(&vm_token);
724 
725 	KKASSERT(object != NULL);
726 	KASSERT(!vm_page_lookup(object, pindex),
727 		("vm_page_alloc: page already allocated"));
728 	KKASSERT(page_req &
729 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
730 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
731 
732 	/*
733 	 * Certain system threads (pageout daemon, buf_daemon's) are
734 	 * allowed to eat deeper into the free page list.
735 	 */
736 	if (curthread->td_flags & TDF_SYSTHREAD)
737 		page_req |= VM_ALLOC_SYSTEM;
738 
739 loop:
740 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
741 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
742 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
743 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
744 	) {
745 		/*
746 		 * The free queue has sufficient free pages to take one out.
747 		 */
748 		if (page_req & VM_ALLOC_ZERO)
749 			m = vm_page_select_free(object, pindex, TRUE);
750 		else
751 			m = vm_page_select_free(object, pindex, FALSE);
752 	} else if (page_req & VM_ALLOC_NORMAL) {
753 		/*
754 		 * Allocatable from the cache (non-interrupt only).  On
755 		 * success, we must free the page and try again, thus
756 		 * ensuring that vmstats.v_*_free_min counters are replenished.
757 		 */
758 #ifdef INVARIANTS
759 		if (curthread->td_preempted) {
760 			kprintf("vm_page_alloc(): warning, attempt to allocate"
761 				" cache page from preempting interrupt\n");
762 			m = NULL;
763 		} else {
764 			m = vm_page_select_cache(object, pindex);
765 		}
766 #else
767 		m = vm_page_select_cache(object, pindex);
768 #endif
769 		/*
770 		 * On success move the page into the free queue and loop.
771 		 */
772 		if (m != NULL) {
773 			KASSERT(m->dirty == 0,
774 			    ("Found dirty cache page %p", m));
775 			vm_page_busy(m);
776 			vm_page_protect(m, VM_PROT_NONE);
777 			vm_page_free(m);
778 			goto loop;
779 		}
780 
781 		/*
782 		 * On failure return NULL
783 		 */
784 		lwkt_reltoken(&vm_token);
785 		crit_exit();
786 #if defined(DIAGNOSTIC)
787 		if (vmstats.v_cache_count > 0)
788 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
789 #endif
790 		vm_pageout_deficit++;
791 		pagedaemon_wakeup();
792 		return (NULL);
793 	} else {
794 		/*
795 		 * No pages available, wakeup the pageout daemon and give up.
796 		 */
797 		lwkt_reltoken(&vm_token);
798 		crit_exit();
799 		vm_pageout_deficit++;
800 		pagedaemon_wakeup();
801 		return (NULL);
802 	}
803 
804 	/*
805 	 * Good page found.  The page has not yet been busied.  We are in
806 	 * a critical section.
807 	 */
808 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
809 	KASSERT(m->dirty == 0,
810 		("vm_page_alloc: free/cache page %p was dirty", m));
811 
812 	/*
813 	 * Remove from free queue
814 	 */
815 	vm_page_unqueue_nowakeup(m);
816 
817 	/*
818 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
819 	 * the page PG_BUSY
820 	 */
821 	if (m->flags & PG_ZERO) {
822 		vm_page_zero_count--;
823 		m->flags = PG_ZERO | PG_BUSY;
824 	} else {
825 		m->flags = PG_BUSY;
826 	}
827 	m->wire_count = 0;
828 	m->hold_count = 0;
829 	m->act_count = 0;
830 	m->busy = 0;
831 	m->valid = 0;
832 
833 	/*
834 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
835 	 * inserting a page here does not insert it into the pmap (which
836 	 * could cause us to block allocating memory).  We cannot block
837 	 * anywhere.
838 	 */
839 	vm_page_insert(m, object, pindex);
840 
841 	/*
842 	 * Don't wakeup too often - wakeup the pageout daemon when
843 	 * we would be nearly out of memory.
844 	 */
845 	pagedaemon_wakeup();
846 
847 	lwkt_reltoken(&vm_token);
848 	crit_exit();
849 
850 	/*
851 	 * A PG_BUSY page is returned.
852 	 */
853 	return (m);
854 }
855 
856 /*
857  * Wait for sufficient free memory for nominal heavy memory use kernel
858  * operations.
859  */
860 void
861 vm_wait_nominal(void)
862 {
863 	while (vm_page_count_min(0))
864 		vm_wait(0);
865 }
866 
867 /*
868  * Test if vm_wait_nominal() would block.
869  */
870 int
871 vm_test_nominal(void)
872 {
873 	if (vm_page_count_min(0))
874 		return(1);
875 	return(0);
876 }
877 
878 /*
879  * Block until free pages are available for allocation, called in various
880  * places before memory allocations.
881  */
882 void
883 vm_wait(int timo)
884 {
885 	crit_enter();
886 	lwkt_gettoken(&vm_token);
887 	if (curthread == pagethread) {
888 		vm_pageout_pages_needed = 1;
889 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
890 	} else {
891 		if (vm_pages_needed == 0) {
892 			vm_pages_needed = 1;
893 			wakeup(&vm_pages_needed);
894 		}
895 		tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
896 	}
897 	lwkt_reltoken(&vm_token);
898 	crit_exit();
899 }
900 
901 /*
902  * Block until free pages are available for allocation
903  *
904  * Called only in vm_fault so that processes page faulting can be
905  * easily tracked.
906  */
907 void
908 vm_waitpfault(void)
909 {
910 	crit_enter();
911 	lwkt_gettoken(&vm_token);
912 	if (vm_pages_needed == 0) {
913 		vm_pages_needed = 1;
914 		wakeup(&vm_pages_needed);
915 	}
916 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
917 	lwkt_reltoken(&vm_token);
918 	crit_exit();
919 }
920 
921 /*
922  * Put the specified page on the active list (if appropriate).  Ensure
923  * that act_count is at least ACT_INIT but do not otherwise mess with it.
924  *
925  * The page queues must be locked.
926  * This routine may not block.
927  */
928 void
929 vm_page_activate(vm_page_t m)
930 {
931 	crit_enter();
932 	lwkt_gettoken(&vm_token);
933 	if (m->queue != PQ_ACTIVE) {
934 		if ((m->queue - m->pc) == PQ_CACHE)
935 			mycpu->gd_cnt.v_reactivated++;
936 
937 		vm_page_unqueue(m);
938 
939 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
940 			m->queue = PQ_ACTIVE;
941 			vm_page_queues[PQ_ACTIVE].lcnt++;
942 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
943 					    m, pageq);
944 			if (m->act_count < ACT_INIT)
945 				m->act_count = ACT_INIT;
946 			vmstats.v_active_count++;
947 		}
948 	} else {
949 		if (m->act_count < ACT_INIT)
950 			m->act_count = ACT_INIT;
951 	}
952 	lwkt_reltoken(&vm_token);
953 	crit_exit();
954 }
955 
956 /*
957  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
958  * routine is called when a page has been added to the cache or free
959  * queues.
960  *
961  * This routine may not block.
962  * This routine must be called at splvm()
963  */
964 static __inline void
965 vm_page_free_wakeup(void)
966 {
967 	/*
968 	 * if pageout daemon needs pages, then tell it that there are
969 	 * some free.
970 	 */
971 	if (vm_pageout_pages_needed &&
972 	    vmstats.v_cache_count + vmstats.v_free_count >=
973 	    vmstats.v_pageout_free_min
974 	) {
975 		wakeup(&vm_pageout_pages_needed);
976 		vm_pageout_pages_needed = 0;
977 	}
978 
979 	/*
980 	 * wakeup processes that are waiting on memory if we hit a
981 	 * high water mark. And wakeup scheduler process if we have
982 	 * lots of memory. this process will swapin processes.
983 	 */
984 	if (vm_pages_needed && !vm_page_count_min(0)) {
985 		vm_pages_needed = 0;
986 		wakeup(&vmstats.v_free_count);
987 	}
988 }
989 
990 /*
991  *	vm_page_free_toq:
992  *
993  *	Returns the given page to the PQ_FREE list, disassociating it with
994  *	any VM object.
995  *
996  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
997  *	return (the page will have been freed).  No particular spl is required
998  *	on entry.
999  *
1000  *	This routine may not block.
1001  */
1002 void
1003 vm_page_free_toq(vm_page_t m)
1004 {
1005 	struct vpgqueues *pq;
1006 
1007 	crit_enter();
1008 	lwkt_gettoken(&vm_token);
1009 	mycpu->gd_cnt.v_tfree++;
1010 
1011 	KKASSERT((m->flags & PG_MAPPED) == 0);
1012 
1013 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1014 		kprintf(
1015 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1016 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1017 		    m->hold_count);
1018 		if ((m->queue - m->pc) == PQ_FREE)
1019 			panic("vm_page_free: freeing free page");
1020 		else
1021 			panic("vm_page_free: freeing busy page");
1022 	}
1023 
1024 	/*
1025 	 * unqueue, then remove page.  Note that we cannot destroy
1026 	 * the page here because we do not want to call the pager's
1027 	 * callback routine until after we've put the page on the
1028 	 * appropriate free queue.
1029 	 */
1030 	vm_page_unqueue_nowakeup(m);
1031 	vm_page_remove(m);
1032 
1033 	/*
1034 	 * No further management of fictitious pages occurs beyond object
1035 	 * and queue removal.
1036 	 */
1037 	if ((m->flags & PG_FICTITIOUS) != 0) {
1038 		vm_page_wakeup(m);
1039 		lwkt_reltoken(&vm_token);
1040 		crit_exit();
1041 		return;
1042 	}
1043 
1044 	m->valid = 0;
1045 	vm_page_undirty(m);
1046 
1047 	if (m->wire_count != 0) {
1048 		if (m->wire_count > 1) {
1049 		    panic(
1050 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1051 			m->wire_count, (long)m->pindex);
1052 		}
1053 		panic("vm_page_free: freeing wired page");
1054 	}
1055 
1056 	/*
1057 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1058 	 */
1059 	if (m->flags & PG_UNMANAGED) {
1060 	    m->flags &= ~PG_UNMANAGED;
1061 	}
1062 
1063 	if (m->hold_count != 0) {
1064 		m->flags &= ~PG_ZERO;
1065 		m->queue = PQ_HOLD;
1066 	} else {
1067 		m->queue = PQ_FREE + m->pc;
1068 	}
1069 	pq = &vm_page_queues[m->queue];
1070 	pq->lcnt++;
1071 	++(*pq->cnt);
1072 
1073 	/*
1074 	 * Put zero'd pages on the end ( where we look for zero'd pages
1075 	 * first ) and non-zerod pages at the head.
1076 	 */
1077 	if (m->flags & PG_ZERO) {
1078 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1079 		++vm_page_zero_count;
1080 	} else {
1081 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1082 	}
1083 	vm_page_wakeup(m);
1084 	vm_page_free_wakeup();
1085 	lwkt_reltoken(&vm_token);
1086 	crit_exit();
1087 }
1088 
1089 /*
1090  * vm_page_free_fromq_fast()
1091  *
1092  * Remove a non-zero page from one of the free queues; the page is removed for
1093  * zeroing, so do not issue a wakeup.
1094  *
1095  * MPUNSAFE
1096  */
1097 vm_page_t
1098 vm_page_free_fromq_fast(void)
1099 {
1100 	static int qi;
1101 	vm_page_t m;
1102 	int i;
1103 
1104 	crit_enter();
1105 	lwkt_gettoken(&vm_token);
1106 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1107 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1108 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1109 		if (m && (m->flags & PG_ZERO) == 0) {
1110 			vm_page_unqueue_nowakeup(m);
1111 			vm_page_busy(m);
1112 			break;
1113 		}
1114 		m = NULL;
1115 	}
1116 	lwkt_reltoken(&vm_token);
1117 	crit_exit();
1118 	return (m);
1119 }
1120 
1121 /*
1122  * vm_page_unmanage()
1123  *
1124  * Prevent PV management from being done on the page.  The page is
1125  * removed from the paging queues as if it were wired, and as a
1126  * consequence of no longer being managed the pageout daemon will not
1127  * touch it (since there is no way to locate the pte mappings for the
1128  * page).  madvise() calls that mess with the pmap will also no longer
1129  * operate on the page.
1130  *
1131  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1132  * will clear the flag.
1133  *
1134  * This routine is used by OBJT_PHYS objects - objects using unswappable
1135  * physical memory as backing store rather then swap-backed memory and
1136  * will eventually be extended to support 4MB unmanaged physical
1137  * mappings.
1138  *
1139  * Must be called with a critical section held.
1140  */
1141 void
1142 vm_page_unmanage(vm_page_t m)
1143 {
1144 	ASSERT_IN_CRIT_SECTION();
1145 	if ((m->flags & PG_UNMANAGED) == 0) {
1146 		if (m->wire_count == 0)
1147 			vm_page_unqueue(m);
1148 	}
1149 	vm_page_flag_set(m, PG_UNMANAGED);
1150 }
1151 
1152 /*
1153  * Mark this page as wired down by yet another map, removing it from
1154  * paging queues as necessary.
1155  *
1156  * The page queues must be locked.
1157  * This routine may not block.
1158  */
1159 void
1160 vm_page_wire(vm_page_t m)
1161 {
1162 	/*
1163 	 * Only bump the wire statistics if the page is not already wired,
1164 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1165 	 * it is already off the queues).  Don't do anything with fictitious
1166 	 * pages because they are always wired.
1167 	 */
1168 	crit_enter();
1169 	lwkt_gettoken(&vm_token);
1170 	if ((m->flags & PG_FICTITIOUS) == 0) {
1171 		if (m->wire_count == 0) {
1172 			if ((m->flags & PG_UNMANAGED) == 0)
1173 				vm_page_unqueue(m);
1174 			vmstats.v_wire_count++;
1175 		}
1176 		m->wire_count++;
1177 		KASSERT(m->wire_count != 0,
1178 			("vm_page_wire: wire_count overflow m=%p", m));
1179 	}
1180 	lwkt_reltoken(&vm_token);
1181 	crit_exit();
1182 }
1183 
1184 /*
1185  * Release one wiring of this page, potentially enabling it to be paged again.
1186  *
1187  * Many pages placed on the inactive queue should actually go
1188  * into the cache, but it is difficult to figure out which.  What
1189  * we do instead, if the inactive target is well met, is to put
1190  * clean pages at the head of the inactive queue instead of the tail.
1191  * This will cause them to be moved to the cache more quickly and
1192  * if not actively re-referenced, freed more quickly.  If we just
1193  * stick these pages at the end of the inactive queue, heavy filesystem
1194  * meta-data accesses can cause an unnecessary paging load on memory bound
1195  * processes.  This optimization causes one-time-use metadata to be
1196  * reused more quickly.
1197  *
1198  * BUT, if we are in a low-memory situation we have no choice but to
1199  * put clean pages on the cache queue.
1200  *
1201  * A number of routines use vm_page_unwire() to guarantee that the page
1202  * will go into either the inactive or active queues, and will NEVER
1203  * be placed in the cache - for example, just after dirtying a page.
1204  * dirty pages in the cache are not allowed.
1205  *
1206  * The page queues must be locked.
1207  * This routine may not block.
1208  */
1209 void
1210 vm_page_unwire(vm_page_t m, int activate)
1211 {
1212 	crit_enter();
1213 	lwkt_gettoken(&vm_token);
1214 	if (m->flags & PG_FICTITIOUS) {
1215 		/* do nothing */
1216 	} else if (m->wire_count <= 0) {
1217 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1218 	} else {
1219 		if (--m->wire_count == 0) {
1220 			--vmstats.v_wire_count;
1221 			if (m->flags & PG_UNMANAGED) {
1222 				;
1223 			} else if (activate) {
1224 				TAILQ_INSERT_TAIL(
1225 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1226 				m->queue = PQ_ACTIVE;
1227 				vm_page_queues[PQ_ACTIVE].lcnt++;
1228 				vmstats.v_active_count++;
1229 			} else {
1230 				vm_page_flag_clear(m, PG_WINATCFLS);
1231 				TAILQ_INSERT_TAIL(
1232 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1233 				m->queue = PQ_INACTIVE;
1234 				vm_page_queues[PQ_INACTIVE].lcnt++;
1235 				vmstats.v_inactive_count++;
1236 				++vm_swapcache_inactive_heuristic;
1237 			}
1238 		}
1239 	}
1240 	lwkt_reltoken(&vm_token);
1241 	crit_exit();
1242 }
1243 
1244 
1245 /*
1246  * Move the specified page to the inactive queue.  If the page has
1247  * any associated swap, the swap is deallocated.
1248  *
1249  * Normally athead is 0 resulting in LRU operation.  athead is set
1250  * to 1 if we want this page to be 'as if it were placed in the cache',
1251  * except without unmapping it from the process address space.
1252  *
1253  * This routine may not block.
1254  */
1255 static __inline void
1256 _vm_page_deactivate(vm_page_t m, int athead)
1257 {
1258 	/*
1259 	 * Ignore if already inactive.
1260 	 */
1261 	if (m->queue == PQ_INACTIVE)
1262 		return;
1263 
1264 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1265 		if ((m->queue - m->pc) == PQ_CACHE)
1266 			mycpu->gd_cnt.v_reactivated++;
1267 		vm_page_flag_clear(m, PG_WINATCFLS);
1268 		vm_page_unqueue(m);
1269 		if (athead) {
1270 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1271 					  m, pageq);
1272 		} else {
1273 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1274 					  m, pageq);
1275 			++vm_swapcache_inactive_heuristic;
1276 		}
1277 		m->queue = PQ_INACTIVE;
1278 		vm_page_queues[PQ_INACTIVE].lcnt++;
1279 		vmstats.v_inactive_count++;
1280 	}
1281 }
1282 
1283 void
1284 vm_page_deactivate(vm_page_t m)
1285 {
1286     crit_enter();
1287     lwkt_gettoken(&vm_token);
1288     _vm_page_deactivate(m, 0);
1289     lwkt_reltoken(&vm_token);
1290     crit_exit();
1291 }
1292 
1293 /*
1294  * vm_page_try_to_cache:
1295  *
1296  * Returns 0 on failure, 1 on success
1297  */
1298 int
1299 vm_page_try_to_cache(vm_page_t m)
1300 {
1301 	crit_enter();
1302 	lwkt_gettoken(&vm_token);
1303 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1304 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1305 		lwkt_reltoken(&vm_token);
1306 		crit_exit();
1307 		return(0);
1308 	}
1309 	vm_page_test_dirty(m);
1310 	if (m->dirty) {
1311 		lwkt_reltoken(&vm_token);
1312 		crit_exit();
1313 		return(0);
1314 	}
1315 	vm_page_cache(m);
1316 	lwkt_reltoken(&vm_token);
1317 	crit_exit();
1318 	return(1);
1319 }
1320 
1321 /*
1322  * Attempt to free the page.  If we cannot free it, we do nothing.
1323  * 1 is returned on success, 0 on failure.
1324  */
1325 int
1326 vm_page_try_to_free(vm_page_t m)
1327 {
1328 	crit_enter();
1329 	lwkt_gettoken(&vm_token);
1330 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1331 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1332 		lwkt_reltoken(&vm_token);
1333 		crit_exit();
1334 		return(0);
1335 	}
1336 	vm_page_test_dirty(m);
1337 	if (m->dirty) {
1338 		lwkt_reltoken(&vm_token);
1339 		crit_exit();
1340 		return(0);
1341 	}
1342 	vm_page_busy(m);
1343 	vm_page_protect(m, VM_PROT_NONE);
1344 	vm_page_free(m);
1345 	lwkt_reltoken(&vm_token);
1346 	crit_exit();
1347 	return(1);
1348 }
1349 
1350 /*
1351  * vm_page_cache
1352  *
1353  * Put the specified page onto the page cache queue (if appropriate).
1354  *
1355  * This routine may not block.
1356  */
1357 void
1358 vm_page_cache(vm_page_t m)
1359 {
1360 	ASSERT_IN_CRIT_SECTION();
1361 
1362 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1363 			m->wire_count || m->hold_count) {
1364 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1365 		return;
1366 	}
1367 
1368 	/*
1369 	 * Already in the cache (and thus not mapped)
1370 	 */
1371 	if ((m->queue - m->pc) == PQ_CACHE) {
1372 		KKASSERT((m->flags & PG_MAPPED) == 0);
1373 		return;
1374 	}
1375 
1376 	/*
1377 	 * Caller is required to test m->dirty, but note that the act of
1378 	 * removing the page from its maps can cause it to become dirty
1379 	 * on an SMP system due to another cpu running in usermode.
1380 	 */
1381 	if (m->dirty) {
1382 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1383 			(long)m->pindex);
1384 	}
1385 
1386 	/*
1387 	 * Remove all pmaps and indicate that the page is not
1388 	 * writeable or mapped.  Our vm_page_protect() call may
1389 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1390 	 * everything.
1391 	 */
1392 	vm_page_busy(m);
1393 	vm_page_protect(m, VM_PROT_NONE);
1394 	vm_page_wakeup(m);
1395 	if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1396 			m->wire_count || m->hold_count) {
1397 		/* do nothing */
1398 	} else if (m->dirty) {
1399 		vm_page_deactivate(m);
1400 	} else {
1401 		vm_page_unqueue_nowakeup(m);
1402 		m->queue = PQ_CACHE + m->pc;
1403 		vm_page_queues[m->queue].lcnt++;
1404 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1405 		vmstats.v_cache_count++;
1406 		vm_page_free_wakeup();
1407 	}
1408 }
1409 
1410 /*
1411  * vm_page_dontneed()
1412  *
1413  * Cache, deactivate, or do nothing as appropriate.  This routine
1414  * is typically used by madvise() MADV_DONTNEED.
1415  *
1416  * Generally speaking we want to move the page into the cache so
1417  * it gets reused quickly.  However, this can result in a silly syndrome
1418  * due to the page recycling too quickly.  Small objects will not be
1419  * fully cached.  On the otherhand, if we move the page to the inactive
1420  * queue we wind up with a problem whereby very large objects
1421  * unnecessarily blow away our inactive and cache queues.
1422  *
1423  * The solution is to move the pages based on a fixed weighting.  We
1424  * either leave them alone, deactivate them, or move them to the cache,
1425  * where moving them to the cache has the highest weighting.
1426  * By forcing some pages into other queues we eventually force the
1427  * system to balance the queues, potentially recovering other unrelated
1428  * space from active.  The idea is to not force this to happen too
1429  * often.
1430  */
1431 void
1432 vm_page_dontneed(vm_page_t m)
1433 {
1434 	static int dnweight;
1435 	int dnw;
1436 	int head;
1437 
1438 	dnw = ++dnweight;
1439 
1440 	/*
1441 	 * occassionally leave the page alone
1442 	 */
1443 	crit_enter();
1444 	lwkt_gettoken(&vm_token);
1445 	if ((dnw & 0x01F0) == 0 ||
1446 	    m->queue == PQ_INACTIVE ||
1447 	    m->queue - m->pc == PQ_CACHE
1448 	) {
1449 		if (m->act_count >= ACT_INIT)
1450 			--m->act_count;
1451 		lwkt_reltoken(&vm_token);
1452 		crit_exit();
1453 		return;
1454 	}
1455 
1456 	if (m->dirty == 0)
1457 		vm_page_test_dirty(m);
1458 
1459 	if (m->dirty || (dnw & 0x0070) == 0) {
1460 		/*
1461 		 * Deactivate the page 3 times out of 32.
1462 		 */
1463 		head = 0;
1464 	} else {
1465 		/*
1466 		 * Cache the page 28 times out of every 32.  Note that
1467 		 * the page is deactivated instead of cached, but placed
1468 		 * at the head of the queue instead of the tail.
1469 		 */
1470 		head = 1;
1471 	}
1472 	_vm_page_deactivate(m, head);
1473 	lwkt_reltoken(&vm_token);
1474 	crit_exit();
1475 }
1476 
1477 /*
1478  * Grab a page, blocking if it is busy and allocating a page if necessary.
1479  * A busy page is returned or NULL.
1480  *
1481  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1482  * If VM_ALLOC_RETRY is not specified
1483  *
1484  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1485  * always returned if we had blocked.
1486  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1487  * This routine may not be called from an interrupt.
1488  * The returned page may not be entirely valid.
1489  *
1490  * This routine may be called from mainline code without spl protection and
1491  * be guarenteed a busied page associated with the object at the specified
1492  * index.
1493  */
1494 vm_page_t
1495 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1496 {
1497 	vm_page_t m;
1498 	int generation;
1499 
1500 	KKASSERT(allocflags &
1501 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1502 	crit_enter();
1503 	lwkt_gettoken(&vm_token);
1504 retrylookup:
1505 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1506 		if (m->busy || (m->flags & PG_BUSY)) {
1507 			generation = object->generation;
1508 
1509 			while ((object->generation == generation) &&
1510 					(m->busy || (m->flags & PG_BUSY))) {
1511 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1512 				tsleep(m, 0, "pgrbwt", 0);
1513 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1514 					m = NULL;
1515 					goto done;
1516 				}
1517 			}
1518 			goto retrylookup;
1519 		} else {
1520 			vm_page_busy(m);
1521 			goto done;
1522 		}
1523 	}
1524 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1525 	if (m == NULL) {
1526 		vm_wait(0);
1527 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1528 			goto done;
1529 		goto retrylookup;
1530 	}
1531 done:
1532 	lwkt_reltoken(&vm_token);
1533 	crit_exit();
1534 	return(m);
1535 }
1536 
1537 /*
1538  * Mapping function for valid bits or for dirty bits in
1539  * a page.  May not block.
1540  *
1541  * Inputs are required to range within a page.
1542  */
1543 __inline int
1544 vm_page_bits(int base, int size)
1545 {
1546 	int first_bit;
1547 	int last_bit;
1548 
1549 	KASSERT(
1550 	    base + size <= PAGE_SIZE,
1551 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1552 	);
1553 
1554 	if (size == 0)		/* handle degenerate case */
1555 		return(0);
1556 
1557 	first_bit = base >> DEV_BSHIFT;
1558 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1559 
1560 	return ((2 << last_bit) - (1 << first_bit));
1561 }
1562 
1563 /*
1564  * Sets portions of a page valid and clean.  The arguments are expected
1565  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1566  * of any partial chunks touched by the range.  The invalid portion of
1567  * such chunks will be zero'd.
1568  *
1569  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1570  *	 align base to DEV_BSIZE so as not to mark clean a partially
1571  *	 truncated device block.  Otherwise the dirty page status might be
1572  *	 lost.
1573  *
1574  * This routine may not block.
1575  *
1576  * (base + size) must be less then or equal to PAGE_SIZE.
1577  */
1578 static void
1579 _vm_page_zero_valid(vm_page_t m, int base, int size)
1580 {
1581 	int frag;
1582 	int endoff;
1583 
1584 	if (size == 0)	/* handle degenerate case */
1585 		return;
1586 
1587 	/*
1588 	 * If the base is not DEV_BSIZE aligned and the valid
1589 	 * bit is clear, we have to zero out a portion of the
1590 	 * first block.
1591 	 */
1592 
1593 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1594 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1595 	) {
1596 		pmap_zero_page_area(
1597 		    VM_PAGE_TO_PHYS(m),
1598 		    frag,
1599 		    base - frag
1600 		);
1601 	}
1602 
1603 	/*
1604 	 * If the ending offset is not DEV_BSIZE aligned and the
1605 	 * valid bit is clear, we have to zero out a portion of
1606 	 * the last block.
1607 	 */
1608 
1609 	endoff = base + size;
1610 
1611 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1612 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1613 	) {
1614 		pmap_zero_page_area(
1615 		    VM_PAGE_TO_PHYS(m),
1616 		    endoff,
1617 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1618 		);
1619 	}
1620 }
1621 
1622 /*
1623  * Set valid, clear dirty bits.  If validating the entire
1624  * page we can safely clear the pmap modify bit.  We also
1625  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1626  * takes a write fault on a MAP_NOSYNC memory area the flag will
1627  * be set again.
1628  *
1629  * We set valid bits inclusive of any overlap, but we can only
1630  * clear dirty bits for DEV_BSIZE chunks that are fully within
1631  * the range.
1632  */
1633 void
1634 vm_page_set_valid(vm_page_t m, int base, int size)
1635 {
1636 	_vm_page_zero_valid(m, base, size);
1637 	m->valid |= vm_page_bits(base, size);
1638 }
1639 
1640 
1641 /*
1642  * Set valid bits and clear dirty bits.
1643  *
1644  * NOTE: This function does not clear the pmap modified bit.
1645  *	 Also note that e.g. NFS may use a byte-granular base
1646  *	 and size.
1647  */
1648 void
1649 vm_page_set_validclean(vm_page_t m, int base, int size)
1650 {
1651 	int pagebits;
1652 
1653 	_vm_page_zero_valid(m, base, size);
1654 	pagebits = vm_page_bits(base, size);
1655 	m->valid |= pagebits;
1656 	m->dirty &= ~pagebits;
1657 	if (base == 0 && size == PAGE_SIZE) {
1658 		/*pmap_clear_modify(m);*/
1659 		vm_page_flag_clear(m, PG_NOSYNC);
1660 	}
1661 }
1662 
1663 /*
1664  * Set valid & dirty.  Used by buwrite()
1665  */
1666 void
1667 vm_page_set_validdirty(vm_page_t m, int base, int size)
1668 {
1669 	int pagebits;
1670 
1671 	pagebits = vm_page_bits(base, size);
1672 	m->valid |= pagebits;
1673 	m->dirty |= pagebits;
1674 	if (m->object)
1675 		vm_object_set_writeable_dirty(m->object);
1676 }
1677 
1678 /*
1679  * Clear dirty bits.
1680  *
1681  * NOTE: This function does not clear the pmap modified bit.
1682  *	 Also note that e.g. NFS may use a byte-granular base
1683  *	 and size.
1684  */
1685 void
1686 vm_page_clear_dirty(vm_page_t m, int base, int size)
1687 {
1688 	m->dirty &= ~vm_page_bits(base, size);
1689 	if (base == 0 && size == PAGE_SIZE) {
1690 		/*pmap_clear_modify(m);*/
1691 		vm_page_flag_clear(m, PG_NOSYNC);
1692 	}
1693 }
1694 
1695 /*
1696  * Make the page all-dirty.
1697  *
1698  * Also make sure the related object and vnode reflect the fact that the
1699  * object may now contain a dirty page.
1700  */
1701 void
1702 vm_page_dirty(vm_page_t m)
1703 {
1704 #ifdef INVARIANTS
1705         int pqtype = m->queue - m->pc;
1706 #endif
1707         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1708                 ("vm_page_dirty: page in free/cache queue!"));
1709 	if (m->dirty != VM_PAGE_BITS_ALL) {
1710 		m->dirty = VM_PAGE_BITS_ALL;
1711 		if (m->object)
1712 			vm_object_set_writeable_dirty(m->object);
1713 	}
1714 }
1715 
1716 /*
1717  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1718  * valid and dirty bits for the effected areas are cleared.
1719  *
1720  * May not block.
1721  */
1722 void
1723 vm_page_set_invalid(vm_page_t m, int base, int size)
1724 {
1725 	int bits;
1726 
1727 	bits = vm_page_bits(base, size);
1728 	m->valid &= ~bits;
1729 	m->dirty &= ~bits;
1730 	m->object->generation++;
1731 }
1732 
1733 /*
1734  * The kernel assumes that the invalid portions of a page contain
1735  * garbage, but such pages can be mapped into memory by user code.
1736  * When this occurs, we must zero out the non-valid portions of the
1737  * page so user code sees what it expects.
1738  *
1739  * Pages are most often semi-valid when the end of a file is mapped
1740  * into memory and the file's size is not page aligned.
1741  */
1742 void
1743 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1744 {
1745 	int b;
1746 	int i;
1747 
1748 	/*
1749 	 * Scan the valid bits looking for invalid sections that
1750 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1751 	 * valid bit may be set ) have already been zerod by
1752 	 * vm_page_set_validclean().
1753 	 */
1754 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1755 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1756 		    (m->valid & (1 << i))
1757 		) {
1758 			if (i > b) {
1759 				pmap_zero_page_area(
1760 				    VM_PAGE_TO_PHYS(m),
1761 				    b << DEV_BSHIFT,
1762 				    (i - b) << DEV_BSHIFT
1763 				);
1764 			}
1765 			b = i + 1;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * setvalid is TRUE when we can safely set the zero'd areas
1771 	 * as being valid.  We can do this if there are no cache consistency
1772 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1773 	 */
1774 	if (setvalid)
1775 		m->valid = VM_PAGE_BITS_ALL;
1776 }
1777 
1778 /*
1779  * Is a (partial) page valid?  Note that the case where size == 0
1780  * will return FALSE in the degenerate case where the page is entirely
1781  * invalid, and TRUE otherwise.
1782  *
1783  * May not block.
1784  */
1785 int
1786 vm_page_is_valid(vm_page_t m, int base, int size)
1787 {
1788 	int bits = vm_page_bits(base, size);
1789 
1790 	if (m->valid && ((m->valid & bits) == bits))
1791 		return 1;
1792 	else
1793 		return 0;
1794 }
1795 
1796 /*
1797  * update dirty bits from pmap/mmu.  May not block.
1798  */
1799 void
1800 vm_page_test_dirty(vm_page_t m)
1801 {
1802 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1803 		vm_page_dirty(m);
1804 	}
1805 }
1806 
1807 /*
1808  * Issue an event on a VM page.  Corresponding action structures are
1809  * removed from the page's list and called.
1810  */
1811 void
1812 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1813 {
1814 	struct vm_page_action *scan, *next;
1815 
1816 	LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1817 		if (scan->event == event) {
1818 			scan->event = VMEVENT_NONE;
1819 			LIST_REMOVE(scan, entry);
1820 			scan->func(m, scan);
1821 		}
1822 	}
1823 }
1824 
1825 
1826 #include "opt_ddb.h"
1827 #ifdef DDB
1828 #include <sys/kernel.h>
1829 
1830 #include <ddb/ddb.h>
1831 
1832 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1833 {
1834 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1835 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1836 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1837 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1838 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1839 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1840 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1841 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1842 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1843 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1844 }
1845 
1846 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1847 {
1848 	int i;
1849 	db_printf("PQ_FREE:");
1850 	for(i=0;i<PQ_L2_SIZE;i++) {
1851 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1852 	}
1853 	db_printf("\n");
1854 
1855 	db_printf("PQ_CACHE:");
1856 	for(i=0;i<PQ_L2_SIZE;i++) {
1857 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1858 	}
1859 	db_printf("\n");
1860 
1861 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1862 		vm_page_queues[PQ_ACTIVE].lcnt,
1863 		vm_page_queues[PQ_INACTIVE].lcnt);
1864 }
1865 #endif /* DDB */
1866