1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * This code is derived from software contributed to The DragonFly Project 10 * by Matthew Dillon <dillon@backplane.com> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 /* 67 * Resident memory management module. The module manipulates 'VM pages'. 68 * A VM page is the core building block for memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/vnode.h> 77 #include <sys/kernel.h> 78 #include <sys/alist.h> 79 #include <sys/sysctl.h> 80 #include <sys/cpu_topology.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <sys/lock.h> 85 #include <vm/vm_kern.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 95 #include <machine/inttypes.h> 96 #include <machine/md_var.h> 97 #include <machine/specialreg.h> 98 #include <machine/bus_dma.h> 99 100 #include <vm/vm_page2.h> 101 #include <sys/spinlock2.h> 102 103 /* 104 * SET - Minimum required set associative size, must be a power of 2. We 105 * want this to match or exceed the set-associativeness of the cpu. 106 * 107 * GRP - A larger set that allows bleed-over into the domains of other 108 * nearby cpus. Also must be a power of 2. Used by the page zeroing 109 * code to smooth things out a bit. 110 */ 111 #define PQ_SET_ASSOC 16 112 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1) 113 114 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2) 115 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1) 116 117 static void vm_page_queue_init(void); 118 static void vm_page_free_wakeup(void); 119 static vm_page_t vm_page_select_cache(u_short pg_color); 120 static vm_page_t _vm_page_list_find2(int basequeue, int index); 121 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes); 123 124 /* 125 * Array of tailq lists 126 */ 127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 128 129 static volatile int vm_pages_waiting; 130 static struct alist vm_contig_alist; 131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin"); 133 134 static u_long vm_dma_reserved = 0; 135 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 136 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 137 "Memory reserved for DMA"); 138 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 139 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 140 141 static int vm_contig_verbose = 0; 142 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 143 144 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 145 vm_pindex_t, pindex); 146 147 static void 148 vm_page_queue_init(void) 149 { 150 int i; 151 152 for (i = 0; i < PQ_L2_SIZE; i++) 153 vm_page_queues[PQ_FREE+i].cnt_offset = 154 offsetof(struct vmstats, v_free_count); 155 for (i = 0; i < PQ_L2_SIZE; i++) 156 vm_page_queues[PQ_CACHE+i].cnt_offset = 157 offsetof(struct vmstats, v_cache_count); 158 for (i = 0; i < PQ_L2_SIZE; i++) 159 vm_page_queues[PQ_INACTIVE+i].cnt_offset = 160 offsetof(struct vmstats, v_inactive_count); 161 for (i = 0; i < PQ_L2_SIZE; i++) 162 vm_page_queues[PQ_ACTIVE+i].cnt_offset = 163 offsetof(struct vmstats, v_active_count); 164 for (i = 0; i < PQ_L2_SIZE; i++) 165 vm_page_queues[PQ_HOLD+i].cnt_offset = 166 offsetof(struct vmstats, v_active_count); 167 /* PQ_NONE has no queue */ 168 169 for (i = 0; i < PQ_COUNT; i++) { 170 TAILQ_INIT(&vm_page_queues[i].pl); 171 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init"); 172 } 173 } 174 175 /* 176 * note: place in initialized data section? Is this necessary? 177 */ 178 vm_pindex_t first_page = 0; 179 vm_pindex_t vm_page_array_size = 0; 180 vm_page_t vm_page_array = NULL; 181 vm_paddr_t vm_low_phys_reserved; 182 183 /* 184 * (low level boot) 185 * 186 * Sets the page size, perhaps based upon the memory size. 187 * Must be called before any use of page-size dependent functions. 188 */ 189 void 190 vm_set_page_size(void) 191 { 192 if (vmstats.v_page_size == 0) 193 vmstats.v_page_size = PAGE_SIZE; 194 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 195 panic("vm_set_page_size: page size not a power of two"); 196 } 197 198 /* 199 * (low level boot) 200 * 201 * Add a new page to the freelist for use by the system. New pages 202 * are added to both the head and tail of the associated free page 203 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 204 * requests pull 'recent' adds (higher physical addresses) first. 205 * 206 * Beware that the page zeroing daemon will also be running soon after 207 * boot, moving pages from the head to the tail of the PQ_FREE queues. 208 * 209 * Must be called in a critical section. 210 */ 211 static void 212 vm_add_new_page(vm_paddr_t pa) 213 { 214 struct vpgqueues *vpq; 215 vm_page_t m; 216 217 m = PHYS_TO_VM_PAGE(pa); 218 m->phys_addr = pa; 219 m->flags = 0; 220 m->pat_mode = PAT_WRITE_BACK; 221 m->pc = (pa >> PAGE_SHIFT); 222 223 /* 224 * Twist for cpu localization in addition to page coloring, so 225 * different cpus selecting by m->queue get different page colors. 226 */ 227 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE); 228 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)); 229 m->pc &= PQ_L2_MASK; 230 231 /* 232 * Reserve a certain number of contiguous low memory pages for 233 * contigmalloc() to use. 234 */ 235 if (pa < vm_low_phys_reserved) { 236 atomic_add_long(&vmstats.v_page_count, 1); 237 atomic_add_long(&vmstats.v_dma_pages, 1); 238 m->queue = PQ_NONE; 239 m->wire_count = 1; 240 atomic_add_long(&vmstats.v_wire_count, 1); 241 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 242 return; 243 } 244 245 /* 246 * General page 247 */ 248 m->queue = m->pc + PQ_FREE; 249 KKASSERT(m->dirty == 0); 250 251 atomic_add_long(&vmstats.v_page_count, 1); 252 atomic_add_long(&vmstats.v_free_count, 1); 253 vpq = &vm_page_queues[m->queue]; 254 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 255 ++vpq->lcnt; 256 } 257 258 /* 259 * (low level boot) 260 * 261 * Initializes the resident memory module. 262 * 263 * Preallocates memory for critical VM structures and arrays prior to 264 * kernel_map becoming available. 265 * 266 * Memory is allocated from (virtual2_start, virtual2_end) if available, 267 * otherwise memory is allocated from (virtual_start, virtual_end). 268 * 269 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 270 * large enough to hold vm_page_array & other structures for machines with 271 * large amounts of ram, so we want to use virtual2* when available. 272 */ 273 void 274 vm_page_startup(void) 275 { 276 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 277 vm_offset_t mapped; 278 vm_pindex_t npages; 279 vm_paddr_t page_range; 280 vm_paddr_t new_end; 281 int i; 282 vm_paddr_t pa; 283 vm_paddr_t last_pa; 284 vm_paddr_t end; 285 vm_paddr_t biggestone, biggestsize; 286 vm_paddr_t total; 287 vm_page_t m; 288 289 total = 0; 290 biggestsize = 0; 291 biggestone = 0; 292 vaddr = round_page(vaddr); 293 294 /* 295 * Make sure ranges are page-aligned. 296 */ 297 for (i = 0; phys_avail[i].phys_end; ++i) { 298 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg); 299 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end); 300 if (phys_avail[i].phys_end < phys_avail[i].phys_beg) 301 phys_avail[i].phys_end = phys_avail[i].phys_beg; 302 } 303 304 /* 305 * Locate largest block 306 */ 307 for (i = 0; phys_avail[i].phys_end; ++i) { 308 vm_paddr_t size = phys_avail[i].phys_end - 309 phys_avail[i].phys_beg; 310 311 if (size > biggestsize) { 312 biggestone = i; 313 biggestsize = size; 314 } 315 total += size; 316 } 317 --i; /* adjust to last entry for use down below */ 318 319 end = phys_avail[biggestone].phys_end; 320 end = trunc_page(end); 321 322 /* 323 * Initialize the queue headers for the free queue, the active queue 324 * and the inactive queue. 325 */ 326 vm_page_queue_init(); 327 328 #if !defined(_KERNEL_VIRTUAL) 329 /* 330 * VKERNELs don't support minidumps and as such don't need 331 * vm_page_dump 332 * 333 * Allocate a bitmap to indicate that a random physical page 334 * needs to be included in a minidump. 335 * 336 * The amd64 port needs this to indicate which direct map pages 337 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 338 * 339 * However, x86 still needs this workspace internally within the 340 * minidump code. In theory, they are not needed on x86, but are 341 * included should the sf_buf code decide to use them. 342 */ 343 page_range = phys_avail[i].phys_end / PAGE_SIZE; 344 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 345 end -= vm_page_dump_size; 346 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 347 VM_PROT_READ | VM_PROT_WRITE); 348 bzero((void *)vm_page_dump, vm_page_dump_size); 349 #endif 350 /* 351 * Compute the number of pages of memory that will be available for 352 * use (taking into account the overhead of a page structure per 353 * page). 354 */ 355 first_page = phys_avail[0].phys_beg / PAGE_SIZE; 356 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page; 357 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 358 359 #ifndef _KERNEL_VIRTUAL 360 /* 361 * (only applies to real kernels) 362 * 363 * Reserve a large amount of low memory for potential 32-bit DMA 364 * space allocations. Once device initialization is complete we 365 * release most of it, but keep (vm_dma_reserved) memory reserved 366 * for later use. Typically for X / graphics. Through trial and 367 * error we find that GPUs usually requires ~60-100MB or so. 368 * 369 * By default, 128M is left in reserve on machines with 2G+ of ram. 370 */ 371 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 372 if (vm_low_phys_reserved > total / 4) 373 vm_low_phys_reserved = total / 4; 374 if (vm_dma_reserved == 0) { 375 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */ 376 if (vm_dma_reserved > total / 16) 377 vm_dma_reserved = total / 16; 378 } 379 #endif 380 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 381 ALIST_RECORDS_65536); 382 383 /* 384 * Initialize the mem entry structures now, and put them in the free 385 * queue. 386 */ 387 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024) 388 kprintf("initializing vm_page_array "); 389 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 390 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 391 vm_page_array = (vm_page_t)mapped; 392 393 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 394 /* 395 * since pmap_map on amd64 returns stuff out of a direct-map region, 396 * we have to manually add these pages to the minidump tracking so 397 * that they can be dumped, including the vm_page_array. 398 */ 399 for (pa = new_end; 400 pa < phys_avail[biggestone].phys_end; 401 pa += PAGE_SIZE) { 402 dump_add_page(pa); 403 } 404 #endif 405 406 /* 407 * Clear all of the page structures, run basic initialization so 408 * PHYS_TO_VM_PAGE() operates properly even on pages not in the 409 * map. 410 */ 411 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 412 vm_page_array_size = page_range; 413 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024) 414 kprintf("size = 0x%zx\n", vm_page_array_size); 415 416 m = &vm_page_array[0]; 417 pa = ptoa(first_page); 418 for (i = 0; i < page_range; ++i) { 419 spin_init(&m->spin, "vm_page"); 420 m->phys_addr = pa; 421 pa += PAGE_SIZE; 422 ++m; 423 } 424 425 /* 426 * Construct the free queue(s) in ascending order (by physical 427 * address) so that the first 16MB of physical memory is allocated 428 * last rather than first. On large-memory machines, this avoids 429 * the exhaustion of low physical memory before isa_dma_init has run. 430 */ 431 vmstats.v_page_count = 0; 432 vmstats.v_free_count = 0; 433 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) { 434 pa = phys_avail[i].phys_beg; 435 if (i == biggestone) 436 last_pa = new_end; 437 else 438 last_pa = phys_avail[i].phys_end; 439 while (pa < last_pa && npages-- > 0) { 440 vm_add_new_page(pa); 441 pa += PAGE_SIZE; 442 } 443 } 444 if (virtual2_start) 445 virtual2_start = vaddr; 446 else 447 virtual_start = vaddr; 448 mycpu->gd_vmstats = vmstats; 449 } 450 451 /* 452 * (called from early boot only) 453 * 454 * Reorganize VM pages based on numa data. May be called as many times as 455 * necessary. Will reorganize the vm_page_t page color and related queue(s) 456 * to allow vm_page_alloc() to choose pages based on socket affinity. 457 * 458 * NOTE: This function is only called while we are still in UP mode, so 459 * we only need a critical section to protect the queues (which 460 * saves a lot of time, there are likely a ton of pages). 461 */ 462 void 463 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid) 464 { 465 vm_paddr_t scan_beg; 466 vm_paddr_t scan_end; 467 vm_paddr_t ran_end; 468 struct vpgqueues *vpq; 469 vm_page_t m; 470 vm_page_t mend; 471 int socket_mod; 472 int socket_value; 473 int i; 474 475 /* 476 * Check if no physical information, or there was only one socket 477 * (so don't waste time doing nothing!). 478 */ 479 if (cpu_topology_phys_ids <= 1 || 480 cpu_topology_core_ids == 0) { 481 return; 482 } 483 484 /* 485 * Setup for our iteration. Note that ACPI may iterate CPU 486 * sockets starting at 0 or 1 or some other number. The 487 * cpu_topology code mod's it against the socket count. 488 */ 489 ran_end = ran_beg + bytes; 490 491 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids; 492 socket_value = (physid % cpu_topology_phys_ids) * socket_mod; 493 mend = &vm_page_array[vm_page_array_size]; 494 495 crit_enter(); 496 497 /* 498 * Adjust cpu_topology's phys_mem parameter 499 */ 500 if (root_cpu_node) 501 vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes); 502 503 /* 504 * Adjust vm_page->pc and requeue all affected pages. The 505 * allocator will then be able to localize memory allocations 506 * to some degree. 507 */ 508 for (i = 0; phys_avail[i].phys_end; ++i) { 509 scan_beg = phys_avail[i].phys_beg; 510 scan_end = phys_avail[i].phys_end; 511 if (scan_end <= ran_beg) 512 continue; 513 if (scan_beg >= ran_end) 514 continue; 515 if (scan_beg < ran_beg) 516 scan_beg = ran_beg; 517 if (scan_end > ran_end) 518 scan_end = ran_end; 519 if (atop(scan_end) > first_page + vm_page_array_size) 520 scan_end = ptoa(first_page + vm_page_array_size); 521 522 m = PHYS_TO_VM_PAGE(scan_beg); 523 while (scan_beg < scan_end) { 524 KKASSERT(m < mend); 525 if (m->queue != PQ_NONE) { 526 vpq = &vm_page_queues[m->queue]; 527 TAILQ_REMOVE(&vpq->pl, m, pageq); 528 --vpq->lcnt; 529 /* queue doesn't change, no need to adj cnt */ 530 m->queue -= m->pc; 531 m->pc %= socket_mod; 532 m->pc += socket_value; 533 m->pc &= PQ_L2_MASK; 534 m->queue += m->pc; 535 vpq = &vm_page_queues[m->queue]; 536 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 537 ++vpq->lcnt; 538 /* queue doesn't change, no need to adj cnt */ 539 } else { 540 m->pc %= socket_mod; 541 m->pc += socket_value; 542 m->pc &= PQ_L2_MASK; 543 } 544 scan_beg += PAGE_SIZE; 545 ++m; 546 } 547 } 548 549 crit_exit(); 550 } 551 552 /* 553 * (called from early boot only) 554 * 555 * Don't allow the NUMA organization to leave vm_page_queues[] nodes 556 * completely empty for a logical cpu. Doing so would force allocations 557 * on that cpu to always borrow from a nearby cpu, create unnecessary 558 * contention, and cause vm_page_alloc() to iterate more queues and run more 559 * slowly. 560 * 561 * This situation can occur when memory sticks are not entirely populated, 562 * populated at different densities, or in naturally assymetric systems 563 * such as the 2990WX. There could very well be many vm_page_queues[] 564 * entries with *NO* pages assigned to them. 565 * 566 * Fixing this up ensures that each logical CPU has roughly the same 567 * sized memory pool, and more importantly ensures that logical CPUs 568 * do not wind up with an empty memory pool. 569 * 570 * At them moment we just iterate the other queues and borrow pages, 571 * moving them into the queues for cpus with severe deficits even though 572 * the memory might not be local to those cpus. I am not doing this in 573 * a 'smart' way, its effectively UMA style (sorta, since its page-by-page 574 * whereas real UMA typically exchanges address bits 8-10 with high address 575 * bits). But it works extremely well and gives us fairly good deterministic 576 * results on the cpu cores associated with these secondary nodes. 577 */ 578 void 579 vm_numa_organize_finalize(void) 580 { 581 struct vpgqueues *vpq; 582 vm_page_t m; 583 long lcnt_lo; 584 long lcnt_hi; 585 int iter; 586 int i; 587 int scale_lim; 588 589 crit_enter(); 590 591 /* 592 * Machines might not use an exact power of 2 for phys_ids, 593 * core_ids, ht_ids, etc. This can slightly reduce the actual 594 * range of indices in vm_page_queues[] that are nominally used. 595 */ 596 if (cpu_topology_ht_ids) { 597 scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids; 598 scale_lim = scale_lim / cpu_topology_core_ids; 599 scale_lim = scale_lim / cpu_topology_ht_ids; 600 scale_lim = scale_lim * cpu_topology_ht_ids; 601 scale_lim = scale_lim * cpu_topology_core_ids; 602 scale_lim = scale_lim * cpu_topology_phys_ids; 603 } else { 604 scale_lim = PQ_L2_SIZE; 605 } 606 607 /* 608 * Calculate an average, set hysteresis for balancing from 609 * 10% below the average to the average. 610 */ 611 lcnt_hi = 0; 612 for (i = 0; i < scale_lim; ++i) { 613 lcnt_hi += vm_page_queues[i].lcnt; 614 } 615 lcnt_hi /= scale_lim; 616 lcnt_lo = lcnt_hi - lcnt_hi / 10; 617 618 kprintf("vm_page: avg %ld pages per queue, %d queues\n", 619 lcnt_hi, scale_lim); 620 621 iter = 0; 622 for (i = 0; i < scale_lim; ++i) { 623 vpq = &vm_page_queues[PQ_FREE + i]; 624 while (vpq->lcnt < lcnt_lo) { 625 struct vpgqueues *vptmp; 626 627 iter = (iter + 1) & PQ_L2_MASK; 628 vptmp = &vm_page_queues[PQ_FREE + iter]; 629 if (vptmp->lcnt < lcnt_hi) 630 continue; 631 m = TAILQ_FIRST(&vptmp->pl); 632 KKASSERT(m->queue == PQ_FREE + iter); 633 TAILQ_REMOVE(&vptmp->pl, m, pageq); 634 --vptmp->lcnt; 635 /* queue doesn't change, no need to adj cnt */ 636 m->queue -= m->pc; 637 m->pc = i; 638 m->queue += m->pc; 639 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 640 ++vpq->lcnt; 641 } 642 } 643 crit_exit(); 644 } 645 646 static 647 void 648 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes) 649 { 650 int cpuid; 651 int i; 652 653 switch(cpup->type) { 654 case PACKAGE_LEVEL: 655 cpup->phys_mem += bytes; 656 break; 657 case CHIP_LEVEL: 658 /* 659 * All members should have the same chipid, so we only need 660 * to pull out one member. 661 */ 662 if (CPUMASK_TESTNZERO(cpup->members)) { 663 cpuid = BSFCPUMASK(cpup->members); 664 if (physid == 665 get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) { 666 cpup->phys_mem += bytes; 667 } 668 } 669 break; 670 case CORE_LEVEL: 671 case THREAD_LEVEL: 672 /* 673 * Just inherit from the parent node 674 */ 675 cpup->phys_mem = cpup->parent_node->phys_mem; 676 break; 677 } 678 for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i) 679 vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes); 680 } 681 682 /* 683 * We tended to reserve a ton of memory for contigmalloc(). Now that most 684 * drivers have initialized we want to return most the remaining free 685 * reserve back to the VM page queues so they can be used for normal 686 * allocations. 687 * 688 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 689 */ 690 static void 691 vm_page_startup_finish(void *dummy __unused) 692 { 693 alist_blk_t blk; 694 alist_blk_t rblk; 695 alist_blk_t count; 696 alist_blk_t xcount; 697 alist_blk_t bfree; 698 vm_page_t m; 699 700 spin_lock(&vm_contig_spin); 701 for (;;) { 702 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 703 if (bfree <= vm_dma_reserved / PAGE_SIZE) 704 break; 705 if (count == 0) 706 break; 707 708 /* 709 * Figure out how much of the initial reserve we have to 710 * free in order to reach our target. 711 */ 712 bfree -= vm_dma_reserved / PAGE_SIZE; 713 if (count > bfree) { 714 blk += count - bfree; 715 count = bfree; 716 } 717 718 /* 719 * Calculate the nearest power of 2 <= count. 720 */ 721 for (xcount = 1; xcount <= count; xcount <<= 1) 722 ; 723 xcount >>= 1; 724 blk += count - xcount; 725 count = xcount; 726 727 /* 728 * Allocate the pages from the alist, then free them to 729 * the normal VM page queues. 730 * 731 * Pages allocated from the alist are wired. We have to 732 * busy, unwire, and free them. We must also adjust 733 * vm_low_phys_reserved before freeing any pages to prevent 734 * confusion. 735 */ 736 rblk = alist_alloc(&vm_contig_alist, blk, count); 737 if (rblk != blk) { 738 kprintf("vm_page_startup_finish: Unable to return " 739 "dma space @0x%08x/%d -> 0x%08x\n", 740 blk, count, rblk); 741 break; 742 } 743 atomic_add_long(&vmstats.v_dma_pages, -(long)count); 744 spin_unlock(&vm_contig_spin); 745 746 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 747 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 748 while (count) { 749 vm_page_busy_wait(m, FALSE, "cpgfr"); 750 vm_page_unwire(m, 0); 751 vm_page_free(m); 752 --count; 753 ++m; 754 } 755 spin_lock(&vm_contig_spin); 756 } 757 spin_unlock(&vm_contig_spin); 758 759 /* 760 * Print out how much DMA space drivers have already allocated and 761 * how much is left over. 762 */ 763 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 764 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 765 (PAGE_SIZE / 1024), 766 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 767 } 768 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 769 vm_page_startup_finish, NULL); 770 771 772 /* 773 * Scan comparison function for Red-Black tree scans. An inclusive 774 * (start,end) is expected. Other fields are not used. 775 */ 776 int 777 rb_vm_page_scancmp(struct vm_page *p, void *data) 778 { 779 struct rb_vm_page_scan_info *info = data; 780 781 if (p->pindex < info->start_pindex) 782 return(-1); 783 if (p->pindex > info->end_pindex) 784 return(1); 785 return(0); 786 } 787 788 int 789 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 790 { 791 if (p1->pindex < p2->pindex) 792 return(-1); 793 if (p1->pindex > p2->pindex) 794 return(1); 795 return(0); 796 } 797 798 void 799 vm_page_init(vm_page_t m) 800 { 801 /* do nothing for now. Called from pmap_page_init() */ 802 } 803 804 /* 805 * Each page queue has its own spin lock, which is fairly optimal for 806 * allocating and freeing pages at least. 807 * 808 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 809 * queue spinlock via this function. Also note that m->queue cannot change 810 * unless both the page and queue are locked. 811 */ 812 static __inline 813 void 814 _vm_page_queue_spin_lock(vm_page_t m) 815 { 816 u_short queue; 817 818 queue = m->queue; 819 if (queue != PQ_NONE) { 820 spin_lock(&vm_page_queues[queue].spin); 821 KKASSERT(queue == m->queue); 822 } 823 } 824 825 static __inline 826 void 827 _vm_page_queue_spin_unlock(vm_page_t m) 828 { 829 u_short queue; 830 831 queue = m->queue; 832 cpu_ccfence(); 833 if (queue != PQ_NONE) 834 spin_unlock(&vm_page_queues[queue].spin); 835 } 836 837 static __inline 838 void 839 _vm_page_queues_spin_lock(u_short queue) 840 { 841 cpu_ccfence(); 842 if (queue != PQ_NONE) 843 spin_lock(&vm_page_queues[queue].spin); 844 } 845 846 847 static __inline 848 void 849 _vm_page_queues_spin_unlock(u_short queue) 850 { 851 cpu_ccfence(); 852 if (queue != PQ_NONE) 853 spin_unlock(&vm_page_queues[queue].spin); 854 } 855 856 void 857 vm_page_queue_spin_lock(vm_page_t m) 858 { 859 _vm_page_queue_spin_lock(m); 860 } 861 862 void 863 vm_page_queues_spin_lock(u_short queue) 864 { 865 _vm_page_queues_spin_lock(queue); 866 } 867 868 void 869 vm_page_queue_spin_unlock(vm_page_t m) 870 { 871 _vm_page_queue_spin_unlock(m); 872 } 873 874 void 875 vm_page_queues_spin_unlock(u_short queue) 876 { 877 _vm_page_queues_spin_unlock(queue); 878 } 879 880 /* 881 * This locks the specified vm_page and its queue in the proper order 882 * (page first, then queue). The queue may change so the caller must 883 * recheck on return. 884 */ 885 static __inline 886 void 887 _vm_page_and_queue_spin_lock(vm_page_t m) 888 { 889 vm_page_spin_lock(m); 890 _vm_page_queue_spin_lock(m); 891 } 892 893 static __inline 894 void 895 _vm_page_and_queue_spin_unlock(vm_page_t m) 896 { 897 _vm_page_queues_spin_unlock(m->queue); 898 vm_page_spin_unlock(m); 899 } 900 901 void 902 vm_page_and_queue_spin_unlock(vm_page_t m) 903 { 904 _vm_page_and_queue_spin_unlock(m); 905 } 906 907 void 908 vm_page_and_queue_spin_lock(vm_page_t m) 909 { 910 _vm_page_and_queue_spin_lock(m); 911 } 912 913 /* 914 * Helper function removes vm_page from its current queue. 915 * Returns the base queue the page used to be on. 916 * 917 * The vm_page and the queue must be spinlocked. 918 * This function will unlock the queue but leave the page spinlocked. 919 */ 920 static __inline u_short 921 _vm_page_rem_queue_spinlocked(vm_page_t m) 922 { 923 struct vpgqueues *pq; 924 u_short queue; 925 u_short oqueue; 926 long *cnt; 927 928 queue = m->queue; 929 if (queue != PQ_NONE) { 930 pq = &vm_page_queues[queue]; 931 TAILQ_REMOVE(&pq->pl, m, pageq); 932 933 /* 934 * Adjust our pcpu stats. In order for the nominal low-memory 935 * algorithms to work properly we don't let any pcpu stat get 936 * too negative before we force it to be rolled-up into the 937 * global stats. Otherwise our pageout and vm_wait tests 938 * will fail badly. 939 * 940 * The idea here is to reduce unnecessary SMP cache 941 * mastership changes in the global vmstats, which can be 942 * particularly bad in multi-socket systems. 943 */ 944 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset); 945 atomic_add_long(cnt, -1); 946 if (*cnt < -VMMETER_SLOP_COUNT) { 947 u_long copy = atomic_swap_long(cnt, 0); 948 cnt = (long *)((char *)&vmstats + pq->cnt_offset); 949 atomic_add_long(cnt, copy); 950 cnt = (long *)((char *)&mycpu->gd_vmstats + 951 pq->cnt_offset); 952 atomic_add_long(cnt, copy); 953 } 954 pq->lcnt--; 955 m->queue = PQ_NONE; 956 oqueue = queue; 957 queue -= m->pc; 958 vm_page_queues_spin_unlock(oqueue); /* intended */ 959 } 960 return queue; 961 } 962 963 /* 964 * Helper function places the vm_page on the specified queue. Generally 965 * speaking only PQ_FREE pages are placed at the head, to allow them to 966 * be allocated sooner rather than later on the assumption that they 967 * are cache-hot. 968 * 969 * The vm_page must be spinlocked. 970 * This function will return with both the page and the queue locked. 971 */ 972 static __inline void 973 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 974 { 975 struct vpgqueues *pq; 976 u_long *cnt; 977 978 KKASSERT(m->queue == PQ_NONE); 979 980 if (queue != PQ_NONE) { 981 vm_page_queues_spin_lock(queue); 982 pq = &vm_page_queues[queue]; 983 ++pq->lcnt; 984 985 /* 986 * Adjust our pcpu stats. If a system entity really needs 987 * to incorporate the count it will call vmstats_rollup() 988 * to roll it all up into the global vmstats strufture. 989 */ 990 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset); 991 atomic_add_long(cnt, 1); 992 993 /* 994 * PQ_FREE is always handled LIFO style to try to provide 995 * cache-hot pages to programs. 996 */ 997 m->queue = queue; 998 if (queue - m->pc == PQ_FREE) { 999 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1000 } else if (athead) { 1001 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1002 } else { 1003 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1004 } 1005 /* leave the queue spinlocked */ 1006 } 1007 } 1008 1009 /* 1010 * Wait until page is no longer BUSY. If also_m_busy is TRUE we wait 1011 * until the page is no longer BUSY or SBUSY (busy_count field is 0). 1012 * 1013 * Returns TRUE if it had to sleep, FALSE if we did not. Only one sleep 1014 * call will be made before returning. 1015 * 1016 * This function does NOT busy the page and on return the page is not 1017 * guaranteed to be available. 1018 */ 1019 void 1020 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 1021 { 1022 u_int32_t busy_count; 1023 1024 for (;;) { 1025 busy_count = m->busy_count; 1026 cpu_ccfence(); 1027 1028 if ((busy_count & PBUSY_LOCKED) == 0 && 1029 (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) { 1030 break; 1031 } 1032 tsleep_interlock(m, 0); 1033 if (atomic_cmpset_int(&m->busy_count, busy_count, 1034 busy_count | PBUSY_WANTED)) { 1035 atomic_set_int(&m->flags, PG_REFERENCED); 1036 tsleep(m, PINTERLOCKED, msg, 0); 1037 break; 1038 } 1039 } 1040 } 1041 1042 /* 1043 * This calculates and returns a page color given an optional VM object and 1044 * either a pindex or an iterator. We attempt to return a cpu-localized 1045 * pg_color that is still roughly 16-way set-associative. The CPU topology 1046 * is used if it was probed. 1047 * 1048 * The caller may use the returned value to index into e.g. PQ_FREE when 1049 * allocating a page in order to nominally obtain pages that are hopefully 1050 * already localized to the requesting cpu. This function is not able to 1051 * provide any sort of guarantee of this, but does its best to improve 1052 * hardware cache management performance. 1053 * 1054 * WARNING! The caller must mask the returned value with PQ_L2_MASK. 1055 */ 1056 u_short 1057 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex) 1058 { 1059 u_short pg_color; 1060 int object_pg_color; 1061 1062 /* 1063 * WARNING! cpu_topology_core_ids might not be a power of two. 1064 * We also shouldn't make assumptions about 1065 * cpu_topology_phys_ids either. 1066 * 1067 * WARNING! ncpus might not be known at this time (during early 1068 * boot), and might be set to 1. 1069 * 1070 * General format: [phys_id][core_id][cpuid][set-associativity] 1071 * (but uses modulo, so not necessarily precise bit masks) 1072 */ 1073 object_pg_color = object ? object->pg_color : 0; 1074 1075 if (cpu_topology_ht_ids) { 1076 int phys_id; 1077 int core_id; 1078 int ht_id; 1079 int physcale; 1080 int grpscale; 1081 int cpuscale; 1082 1083 /* 1084 * Translate cpuid to socket, core, and hyperthread id. 1085 */ 1086 phys_id = get_cpu_phys_id(cpuid); 1087 core_id = get_cpu_core_id(cpuid); 1088 ht_id = get_cpu_ht_id(cpuid); 1089 1090 /* 1091 * Calculate pg_color for our array index. 1092 * 1093 * physcale - socket multiplier. 1094 * grpscale - core multiplier (cores per socket) 1095 * cpu* - cpus per core 1096 * 1097 * WARNING! In early boot, ncpus has not yet been 1098 * initialized and may be set to (1). 1099 * 1100 * WARNING! physcale must match the organization that 1101 * vm_numa_organize() creates to ensure that 1102 * we properly localize allocations to the 1103 * requested cpuid. 1104 */ 1105 physcale = PQ_L2_SIZE / cpu_topology_phys_ids; 1106 grpscale = physcale / cpu_topology_core_ids; 1107 cpuscale = grpscale / cpu_topology_ht_ids; 1108 1109 pg_color = phys_id * physcale; 1110 pg_color += core_id * grpscale; 1111 pg_color += ht_id * cpuscale; 1112 pg_color += (pindex + object_pg_color) % cpuscale; 1113 1114 #if 0 1115 if (grpsize >= 8) { 1116 pg_color += (pindex + object_pg_color) % grpsize; 1117 } else { 1118 if (grpsize <= 2) { 1119 grpsize = 8; 1120 } else { 1121 /* 3->9, 4->8, 5->10, 6->12, 7->14 */ 1122 grpsize += grpsize; 1123 if (grpsize < 8) 1124 grpsize += grpsize; 1125 } 1126 pg_color += (pindex + object_pg_color) % grpsize; 1127 } 1128 #endif 1129 } else { 1130 /* 1131 * Unknown topology, distribute things evenly. 1132 * 1133 * WARNING! In early boot, ncpus has not yet been 1134 * initialized and may be set to (1). 1135 */ 1136 int cpuscale; 1137 1138 cpuscale = PQ_L2_SIZE / ncpus; 1139 1140 pg_color = cpuid * cpuscale; 1141 pg_color += (pindex + object_pg_color) % cpuscale; 1142 } 1143 return (pg_color & PQ_L2_MASK); 1144 } 1145 1146 /* 1147 * Wait until BUSY can be set, then set it. If also_m_busy is TRUE we 1148 * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED. 1149 */ 1150 void 1151 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 1152 int also_m_busy, const char *msg 1153 VM_PAGE_DEBUG_ARGS) 1154 { 1155 u_int32_t busy_count; 1156 1157 for (;;) { 1158 busy_count = m->busy_count; 1159 cpu_ccfence(); 1160 if (busy_count & PBUSY_LOCKED) { 1161 tsleep_interlock(m, 0); 1162 if (atomic_cmpset_int(&m->busy_count, busy_count, 1163 busy_count | PBUSY_WANTED)) { 1164 atomic_set_int(&m->flags, PG_REFERENCED); 1165 tsleep(m, PINTERLOCKED, msg, 0); 1166 } 1167 } else if (also_m_busy && busy_count) { 1168 tsleep_interlock(m, 0); 1169 if (atomic_cmpset_int(&m->busy_count, busy_count, 1170 busy_count | PBUSY_WANTED)) { 1171 atomic_set_int(&m->flags, PG_REFERENCED); 1172 tsleep(m, PINTERLOCKED, msg, 0); 1173 } 1174 } else { 1175 if (atomic_cmpset_int(&m->busy_count, busy_count, 1176 busy_count | PBUSY_LOCKED)) { 1177 #ifdef VM_PAGE_DEBUG 1178 m->busy_func = func; 1179 m->busy_line = lineno; 1180 #endif 1181 break; 1182 } 1183 } 1184 } 1185 } 1186 1187 /* 1188 * Attempt to set BUSY. If also_m_busy is TRUE we only succeed if 1189 * m->busy_count is also 0. 1190 * 1191 * Returns non-zero on failure. 1192 */ 1193 int 1194 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 1195 VM_PAGE_DEBUG_ARGS) 1196 { 1197 u_int32_t busy_count; 1198 1199 for (;;) { 1200 busy_count = m->busy_count; 1201 cpu_ccfence(); 1202 if (busy_count & PBUSY_LOCKED) 1203 return TRUE; 1204 if (also_m_busy && (busy_count & PBUSY_MASK) != 0) 1205 return TRUE; 1206 if (atomic_cmpset_int(&m->busy_count, busy_count, 1207 busy_count | PBUSY_LOCKED)) { 1208 #ifdef VM_PAGE_DEBUG 1209 m->busy_func = func; 1210 m->busy_line = lineno; 1211 #endif 1212 return FALSE; 1213 } 1214 } 1215 } 1216 1217 /* 1218 * Clear the BUSY flag and return non-zero to indicate to the caller 1219 * that a wakeup() should be performed. 1220 * 1221 * The vm_page must be spinlocked and will remain spinlocked on return. 1222 * The related queue must NOT be spinlocked (which could deadlock us). 1223 * 1224 * (inline version) 1225 */ 1226 static __inline 1227 int 1228 _vm_page_wakeup(vm_page_t m) 1229 { 1230 u_int32_t busy_count; 1231 1232 for (;;) { 1233 busy_count = m->busy_count; 1234 cpu_ccfence(); 1235 if (atomic_cmpset_int(&m->busy_count, busy_count, 1236 busy_count & 1237 ~(PBUSY_LOCKED | PBUSY_WANTED))) { 1238 break; 1239 } 1240 } 1241 return((int)(busy_count & PBUSY_WANTED)); 1242 } 1243 1244 /* 1245 * Clear the BUSY flag and wakeup anyone waiting for the page. This 1246 * is typically the last call you make on a page before moving onto 1247 * other things. 1248 */ 1249 void 1250 vm_page_wakeup(vm_page_t m) 1251 { 1252 KASSERT(m->busy_count & PBUSY_LOCKED, 1253 ("vm_page_wakeup: page not busy!!!")); 1254 vm_page_spin_lock(m); 1255 if (_vm_page_wakeup(m)) { 1256 vm_page_spin_unlock(m); 1257 wakeup(m); 1258 } else { 1259 vm_page_spin_unlock(m); 1260 } 1261 } 1262 1263 /* 1264 * Holding a page keeps it from being reused. Other parts of the system 1265 * can still disassociate the page from its current object and free it, or 1266 * perform read or write I/O on it and/or otherwise manipulate the page, 1267 * but if the page is held the VM system will leave the page and its data 1268 * intact and not reuse the page for other purposes until the last hold 1269 * reference is released. (see vm_page_wire() if you want to prevent the 1270 * page from being disassociated from its object too). 1271 * 1272 * The caller must still validate the contents of the page and, if necessary, 1273 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 1274 * before manipulating the page. 1275 * 1276 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 1277 */ 1278 void 1279 vm_page_hold(vm_page_t m) 1280 { 1281 vm_page_spin_lock(m); 1282 atomic_add_int(&m->hold_count, 1); 1283 if (m->queue - m->pc == PQ_FREE) { 1284 _vm_page_queue_spin_lock(m); 1285 _vm_page_rem_queue_spinlocked(m); 1286 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 1287 _vm_page_queue_spin_unlock(m); 1288 } 1289 vm_page_spin_unlock(m); 1290 } 1291 1292 /* 1293 * The opposite of vm_page_hold(). If the page is on the HOLD queue 1294 * it was freed while held and must be moved back to the FREE queue. 1295 */ 1296 void 1297 vm_page_unhold(vm_page_t m) 1298 { 1299 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE, 1300 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)", 1301 m, m->hold_count, m->queue - m->pc)); 1302 vm_page_spin_lock(m); 1303 atomic_add_int(&m->hold_count, -1); 1304 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 1305 _vm_page_queue_spin_lock(m); 1306 _vm_page_rem_queue_spinlocked(m); 1307 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1); 1308 _vm_page_queue_spin_unlock(m); 1309 } 1310 vm_page_spin_unlock(m); 1311 } 1312 1313 /* 1314 * vm_page_getfake: 1315 * 1316 * Create a fictitious page with the specified physical address and 1317 * memory attribute. The memory attribute is the only the machine- 1318 * dependent aspect of a fictitious page that must be initialized. 1319 */ 1320 1321 void 1322 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1323 { 1324 1325 if ((m->flags & PG_FICTITIOUS) != 0) { 1326 /* 1327 * The page's memattr might have changed since the 1328 * previous initialization. Update the pmap to the 1329 * new memattr. 1330 */ 1331 goto memattr; 1332 } 1333 m->phys_addr = paddr; 1334 m->queue = PQ_NONE; 1335 /* Fictitious pages don't use "segind". */ 1336 /* Fictitious pages don't use "order" or "pool". */ 1337 m->flags = PG_FICTITIOUS | PG_UNMANAGED; 1338 m->busy_count = PBUSY_LOCKED; 1339 m->wire_count = 1; 1340 spin_init(&m->spin, "fake_page"); 1341 pmap_page_init(m); 1342 memattr: 1343 pmap_page_set_memattr(m, memattr); 1344 } 1345 1346 /* 1347 * Inserts the given vm_page into the object and object list. 1348 * 1349 * The pagetables are not updated but will presumably fault the page 1350 * in if necessary, or if a kernel page the caller will at some point 1351 * enter the page into the kernel's pmap. We are not allowed to block 1352 * here so we *can't* do this anyway. 1353 * 1354 * This routine may not block. 1355 * This routine must be called with the vm_object held. 1356 * This routine must be called with a critical section held. 1357 * 1358 * This routine returns TRUE if the page was inserted into the object 1359 * successfully, and FALSE if the page already exists in the object. 1360 */ 1361 int 1362 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1363 { 1364 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 1365 if (m->object != NULL) 1366 panic("vm_page_insert: already inserted"); 1367 1368 atomic_add_int(&object->generation, 1); 1369 1370 /* 1371 * Record the object/offset pair in this page and add the 1372 * pv_list_count of the page to the object. 1373 * 1374 * The vm_page spin lock is required for interactions with the pmap. 1375 */ 1376 vm_page_spin_lock(m); 1377 m->object = object; 1378 m->pindex = pindex; 1379 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 1380 m->object = NULL; 1381 m->pindex = 0; 1382 vm_page_spin_unlock(m); 1383 return FALSE; 1384 } 1385 ++object->resident_page_count; 1386 ++mycpu->gd_vmtotal.t_rm; 1387 vm_page_spin_unlock(m); 1388 1389 /* 1390 * Since we are inserting a new and possibly dirty page, 1391 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 1392 */ 1393 if ((m->valid & m->dirty) || 1394 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 1395 vm_object_set_writeable_dirty(object); 1396 1397 /* 1398 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 1399 */ 1400 swap_pager_page_inserted(m); 1401 return TRUE; 1402 } 1403 1404 /* 1405 * Removes the given vm_page_t from the (object,index) table 1406 * 1407 * The underlying pmap entry (if any) is NOT removed here. 1408 * This routine may not block. 1409 * 1410 * The page must be BUSY and will remain BUSY on return. 1411 * No other requirements. 1412 * 1413 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 1414 * it busy. 1415 */ 1416 void 1417 vm_page_remove(vm_page_t m) 1418 { 1419 vm_object_t object; 1420 1421 if (m->object == NULL) { 1422 return; 1423 } 1424 1425 if ((m->busy_count & PBUSY_LOCKED) == 0) 1426 panic("vm_page_remove: page not busy"); 1427 1428 object = m->object; 1429 1430 vm_object_hold(object); 1431 1432 /* 1433 * Remove the page from the object and update the object. 1434 * 1435 * The vm_page spin lock is required for interactions with the pmap. 1436 */ 1437 vm_page_spin_lock(m); 1438 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 1439 --object->resident_page_count; 1440 --mycpu->gd_vmtotal.t_rm; 1441 m->object = NULL; 1442 atomic_add_int(&object->generation, 1); 1443 vm_page_spin_unlock(m); 1444 1445 vm_object_drop(object); 1446 } 1447 1448 /* 1449 * Locate and return the page at (object, pindex), or NULL if the 1450 * page could not be found. 1451 * 1452 * The caller must hold the vm_object token. 1453 */ 1454 vm_page_t 1455 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1456 { 1457 vm_page_t m; 1458 1459 /* 1460 * Search the hash table for this object/offset pair 1461 */ 1462 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1463 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1464 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1465 return(m); 1466 } 1467 1468 vm_page_t 1469 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1470 vm_pindex_t pindex, 1471 int also_m_busy, const char *msg 1472 VM_PAGE_DEBUG_ARGS) 1473 { 1474 u_int32_t busy_count; 1475 vm_page_t m; 1476 1477 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1478 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1479 while (m) { 1480 KKASSERT(m->object == object && m->pindex == pindex); 1481 busy_count = m->busy_count; 1482 cpu_ccfence(); 1483 if (busy_count & PBUSY_LOCKED) { 1484 tsleep_interlock(m, 0); 1485 if (atomic_cmpset_int(&m->busy_count, busy_count, 1486 busy_count | PBUSY_WANTED)) { 1487 atomic_set_int(&m->flags, PG_REFERENCED); 1488 tsleep(m, PINTERLOCKED, msg, 0); 1489 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1490 pindex); 1491 } 1492 } else if (also_m_busy && busy_count) { 1493 tsleep_interlock(m, 0); 1494 if (atomic_cmpset_int(&m->busy_count, busy_count, 1495 busy_count | PBUSY_WANTED)) { 1496 atomic_set_int(&m->flags, PG_REFERENCED); 1497 tsleep(m, PINTERLOCKED, msg, 0); 1498 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1499 pindex); 1500 } 1501 } else if (atomic_cmpset_int(&m->busy_count, busy_count, 1502 busy_count | PBUSY_LOCKED)) { 1503 #ifdef VM_PAGE_DEBUG 1504 m->busy_func = func; 1505 m->busy_line = lineno; 1506 #endif 1507 break; 1508 } 1509 } 1510 return m; 1511 } 1512 1513 /* 1514 * Attempt to lookup and busy a page. 1515 * 1516 * Returns NULL if the page could not be found 1517 * 1518 * Returns a vm_page and error == TRUE if the page exists but could not 1519 * be busied. 1520 * 1521 * Returns a vm_page and error == FALSE on success. 1522 */ 1523 vm_page_t 1524 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1525 vm_pindex_t pindex, 1526 int also_m_busy, int *errorp 1527 VM_PAGE_DEBUG_ARGS) 1528 { 1529 u_int32_t busy_count; 1530 vm_page_t m; 1531 1532 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1533 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1534 *errorp = FALSE; 1535 while (m) { 1536 KKASSERT(m->object == object && m->pindex == pindex); 1537 busy_count = m->busy_count; 1538 cpu_ccfence(); 1539 if (busy_count & PBUSY_LOCKED) { 1540 *errorp = TRUE; 1541 break; 1542 } 1543 if (also_m_busy && busy_count) { 1544 *errorp = TRUE; 1545 break; 1546 } 1547 if (atomic_cmpset_int(&m->busy_count, busy_count, 1548 busy_count | PBUSY_LOCKED)) { 1549 #ifdef VM_PAGE_DEBUG 1550 m->busy_func = func; 1551 m->busy_line = lineno; 1552 #endif 1553 break; 1554 } 1555 } 1556 return m; 1557 } 1558 1559 /* 1560 * Returns a page that is only soft-busied for use by the caller in 1561 * a read-only fashion. Returns NULL if the page could not be found, 1562 * the soft busy could not be obtained, or the page data is invalid. 1563 */ 1564 vm_page_t 1565 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex, 1566 int pgoff, int pgbytes) 1567 { 1568 vm_page_t m; 1569 1570 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1571 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1572 if (m) { 1573 if ((m->valid != VM_PAGE_BITS_ALL && 1574 !vm_page_is_valid(m, pgoff, pgbytes)) || 1575 (m->flags & PG_FICTITIOUS)) { 1576 m = NULL; 1577 } else if (vm_page_sbusy_try(m)) { 1578 m = NULL; 1579 } else if ((m->valid != VM_PAGE_BITS_ALL && 1580 !vm_page_is_valid(m, pgoff, pgbytes)) || 1581 (m->flags & PG_FICTITIOUS)) { 1582 vm_page_sbusy_drop(m); 1583 m = NULL; 1584 } 1585 } 1586 return m; 1587 } 1588 1589 /* 1590 * Caller must hold the related vm_object 1591 */ 1592 vm_page_t 1593 vm_page_next(vm_page_t m) 1594 { 1595 vm_page_t next; 1596 1597 next = vm_page_rb_tree_RB_NEXT(m); 1598 if (next && next->pindex != m->pindex + 1) 1599 next = NULL; 1600 return (next); 1601 } 1602 1603 /* 1604 * vm_page_rename() 1605 * 1606 * Move the given vm_page from its current object to the specified 1607 * target object/offset. The page must be busy and will remain so 1608 * on return. 1609 * 1610 * new_object must be held. 1611 * This routine might block. XXX ? 1612 * 1613 * NOTE: Swap associated with the page must be invalidated by the move. We 1614 * have to do this for several reasons: (1) we aren't freeing the 1615 * page, (2) we are dirtying the page, (3) the VM system is probably 1616 * moving the page from object A to B, and will then later move 1617 * the backing store from A to B and we can't have a conflict. 1618 * 1619 * NOTE: We *always* dirty the page. It is necessary both for the 1620 * fact that we moved it, and because we may be invalidating 1621 * swap. If the page is on the cache, we have to deactivate it 1622 * or vm_page_dirty() will panic. Dirty pages are not allowed 1623 * on the cache. 1624 */ 1625 void 1626 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1627 { 1628 KKASSERT(m->busy_count & PBUSY_LOCKED); 1629 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1630 if (m->object) { 1631 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1632 vm_page_remove(m); 1633 } 1634 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1635 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1636 new_object, new_pindex); 1637 } 1638 if (m->queue - m->pc == PQ_CACHE) 1639 vm_page_deactivate(m); 1640 vm_page_dirty(m); 1641 } 1642 1643 /* 1644 * vm_page_unqueue() without any wakeup. This routine is used when a page 1645 * is to remain BUSYied by the caller. 1646 * 1647 * This routine may not block. 1648 */ 1649 void 1650 vm_page_unqueue_nowakeup(vm_page_t m) 1651 { 1652 vm_page_and_queue_spin_lock(m); 1653 (void)_vm_page_rem_queue_spinlocked(m); 1654 vm_page_spin_unlock(m); 1655 } 1656 1657 /* 1658 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1659 * if necessary. 1660 * 1661 * This routine may not block. 1662 */ 1663 void 1664 vm_page_unqueue(vm_page_t m) 1665 { 1666 u_short queue; 1667 1668 vm_page_and_queue_spin_lock(m); 1669 queue = _vm_page_rem_queue_spinlocked(m); 1670 if (queue == PQ_FREE || queue == PQ_CACHE) { 1671 vm_page_spin_unlock(m); 1672 pagedaemon_wakeup(); 1673 } else { 1674 vm_page_spin_unlock(m); 1675 } 1676 } 1677 1678 /* 1679 * vm_page_list_find() 1680 * 1681 * Find a page on the specified queue with color optimization. 1682 * 1683 * The page coloring optimization attempts to locate a page that does 1684 * not overload other nearby pages in the object in the cpu's L1 or L2 1685 * caches. We need this optimization because cpu caches tend to be 1686 * physical caches, while object spaces tend to be virtual. 1687 * 1688 * The page coloring optimization also, very importantly, tries to localize 1689 * memory to cpus and physical sockets. 1690 * 1691 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1692 * and the algorithm is adjusted to localize allocations on a per-core basis. 1693 * This is done by 'twisting' the colors. 1694 * 1695 * The page is returned spinlocked and removed from its queue (it will 1696 * be on PQ_NONE), or NULL. The page is not BUSY'd. The caller 1697 * is responsible for dealing with the busy-page case (usually by 1698 * deactivating the page and looping). 1699 * 1700 * NOTE: This routine is carefully inlined. A non-inlined version 1701 * is available for outside callers but the only critical path is 1702 * from within this source file. 1703 * 1704 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1705 * represent stable storage, allowing us to order our locks vm_page 1706 * first, then queue. 1707 */ 1708 static __inline 1709 vm_page_t 1710 _vm_page_list_find(int basequeue, int index) 1711 { 1712 vm_page_t m; 1713 1714 for (;;) { 1715 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1716 if (m == NULL) { 1717 m = _vm_page_list_find2(basequeue, index); 1718 return(m); 1719 } 1720 vm_page_and_queue_spin_lock(m); 1721 if (m->queue == basequeue + index) { 1722 _vm_page_rem_queue_spinlocked(m); 1723 /* vm_page_t spin held, no queue spin */ 1724 break; 1725 } 1726 vm_page_and_queue_spin_unlock(m); 1727 } 1728 return(m); 1729 } 1730 1731 /* 1732 * If we could not find the page in the desired queue try to find it in 1733 * a nearby queue. 1734 */ 1735 static vm_page_t 1736 _vm_page_list_find2(int basequeue, int index) 1737 { 1738 struct vpgqueues *pq; 1739 vm_page_t m = NULL; 1740 int pqmask = PQ_SET_ASSOC_MASK >> 1; 1741 int pqi; 1742 int i; 1743 1744 index &= PQ_L2_MASK; 1745 pq = &vm_page_queues[basequeue]; 1746 1747 /* 1748 * Run local sets of 16, 32, 64, 128, and the whole queue if all 1749 * else fails (PQ_L2_MASK which is 255). 1750 */ 1751 do { 1752 pqmask = (pqmask << 1) | 1; 1753 for (i = 0; i <= pqmask; ++i) { 1754 pqi = (index & ~pqmask) | ((index + i) & pqmask); 1755 m = TAILQ_FIRST(&pq[pqi].pl); 1756 if (m) { 1757 _vm_page_and_queue_spin_lock(m); 1758 if (m->queue == basequeue + pqi) { 1759 _vm_page_rem_queue_spinlocked(m); 1760 return(m); 1761 } 1762 _vm_page_and_queue_spin_unlock(m); 1763 --i; 1764 continue; 1765 } 1766 } 1767 } while (pqmask != PQ_L2_MASK); 1768 1769 return(m); 1770 } 1771 1772 /* 1773 * Returns a vm_page candidate for allocation. The page is not busied so 1774 * it can move around. The caller must busy the page (and typically 1775 * deactivate it if it cannot be busied!) 1776 * 1777 * Returns a spinlocked vm_page that has been removed from its queue. 1778 */ 1779 vm_page_t 1780 vm_page_list_find(int basequeue, int index) 1781 { 1782 return(_vm_page_list_find(basequeue, index)); 1783 } 1784 1785 /* 1786 * Find a page on the cache queue with color optimization, remove it 1787 * from the queue, and busy it. The returned page will not be spinlocked. 1788 * 1789 * A candidate failure will be deactivated. Candidates can fail due to 1790 * being busied by someone else, in which case they will be deactivated. 1791 * 1792 * This routine may not block. 1793 * 1794 */ 1795 static vm_page_t 1796 vm_page_select_cache(u_short pg_color) 1797 { 1798 vm_page_t m; 1799 1800 for (;;) { 1801 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK); 1802 if (m == NULL) 1803 break; 1804 /* 1805 * (m) has been removed from its queue and spinlocked 1806 */ 1807 if (vm_page_busy_try(m, TRUE)) { 1808 _vm_page_deactivate_locked(m, 0); 1809 vm_page_spin_unlock(m); 1810 } else { 1811 /* 1812 * We successfully busied the page 1813 */ 1814 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1815 m->hold_count == 0 && 1816 m->wire_count == 0 && 1817 (m->dirty & m->valid) == 0) { 1818 vm_page_spin_unlock(m); 1819 pagedaemon_wakeup(); 1820 return(m); 1821 } 1822 1823 /* 1824 * The page cannot be recycled, deactivate it. 1825 */ 1826 _vm_page_deactivate_locked(m, 0); 1827 if (_vm_page_wakeup(m)) { 1828 vm_page_spin_unlock(m); 1829 wakeup(m); 1830 } else { 1831 vm_page_spin_unlock(m); 1832 } 1833 } 1834 } 1835 return (m); 1836 } 1837 1838 /* 1839 * Find a free page. We attempt to inline the nominal case and fall back 1840 * to _vm_page_select_free() otherwise. A busied page is removed from 1841 * the queue and returned. 1842 * 1843 * This routine may not block. 1844 */ 1845 static __inline vm_page_t 1846 vm_page_select_free(u_short pg_color) 1847 { 1848 vm_page_t m; 1849 1850 for (;;) { 1851 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK); 1852 if (m == NULL) 1853 break; 1854 if (vm_page_busy_try(m, TRUE)) { 1855 /* 1856 * Various mechanisms such as a pmap_collect can 1857 * result in a busy page on the free queue. We 1858 * have to move the page out of the way so we can 1859 * retry the allocation. If the other thread is not 1860 * allocating the page then m->valid will remain 0 and 1861 * the pageout daemon will free the page later on. 1862 * 1863 * Since we could not busy the page, however, we 1864 * cannot make assumptions as to whether the page 1865 * will be allocated by the other thread or not, 1866 * so all we can do is deactivate it to move it out 1867 * of the way. In particular, if the other thread 1868 * wires the page it may wind up on the inactive 1869 * queue and the pageout daemon will have to deal 1870 * with that case too. 1871 */ 1872 _vm_page_deactivate_locked(m, 0); 1873 vm_page_spin_unlock(m); 1874 } else { 1875 /* 1876 * Theoretically if we are able to busy the page 1877 * atomic with the queue removal (using the vm_page 1878 * lock) nobody else should be able to mess with the 1879 * page before us. 1880 */ 1881 KKASSERT((m->flags & (PG_UNMANAGED | 1882 PG_NEED_COMMIT)) == 0); 1883 KASSERT(m->hold_count == 0, ("m->hold_count is not zero " 1884 "pg %p q=%d flags=%08x hold=%d wire=%d", 1885 m, m->queue, m->flags, m->hold_count, m->wire_count)); 1886 KKASSERT(m->wire_count == 0); 1887 vm_page_spin_unlock(m); 1888 pagedaemon_wakeup(); 1889 1890 /* return busied and removed page */ 1891 return(m); 1892 } 1893 } 1894 return(m); 1895 } 1896 1897 /* 1898 * vm_page_alloc() 1899 * 1900 * Allocate and return a memory cell associated with this VM object/offset 1901 * pair. If object is NULL an unassociated page will be allocated. 1902 * 1903 * The returned page will be busied and removed from its queues. This 1904 * routine can block and may return NULL if a race occurs and the page 1905 * is found to already exist at the specified (object, pindex). 1906 * 1907 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1908 * VM_ALLOC_QUICK like normal but cannot use cache 1909 * VM_ALLOC_SYSTEM greater free drain 1910 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1911 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1912 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1913 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1914 * (see vm_page_grab()) 1915 * VM_ALLOC_USE_GD ok to use per-gd cache 1916 * 1917 * VM_ALLOC_CPU(n) allocate using specified cpu localization 1918 * 1919 * The object must be held if not NULL 1920 * This routine may not block 1921 * 1922 * Additional special handling is required when called from an interrupt 1923 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1924 * in this case. 1925 */ 1926 vm_page_t 1927 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1928 { 1929 globaldata_t gd; 1930 vm_object_t obj; 1931 vm_page_t m; 1932 u_short pg_color; 1933 int cpuid_local; 1934 1935 #if 0 1936 /* 1937 * Special per-cpu free VM page cache. The pages are pre-busied 1938 * and pre-zerod for us. 1939 */ 1940 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1941 crit_enter_gd(gd); 1942 if (gd->gd_vmpg_count) { 1943 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1944 crit_exit_gd(gd); 1945 goto done; 1946 } 1947 crit_exit_gd(gd); 1948 } 1949 #endif 1950 m = NULL; 1951 1952 /* 1953 * CPU LOCALIZATION 1954 * 1955 * CPU localization algorithm. Break the page queues up by physical 1956 * id and core id (note that two cpu threads will have the same core 1957 * id, and core_id != gd_cpuid). 1958 * 1959 * This is nowhere near perfect, for example the last pindex in a 1960 * subgroup will overflow into the next cpu or package. But this 1961 * should get us good page reuse locality in heavy mixed loads. 1962 * 1963 * (may be executed before the APs are started, so other GDs might 1964 * not exist!) 1965 */ 1966 if (page_req & VM_ALLOC_CPU_SPEC) 1967 cpuid_local = VM_ALLOC_GETCPU(page_req); 1968 else 1969 cpuid_local = mycpu->gd_cpuid; 1970 1971 pg_color = vm_get_pg_color(cpuid_local, object, pindex); 1972 1973 KKASSERT(page_req & 1974 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1975 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1976 1977 /* 1978 * Certain system threads (pageout daemon, buf_daemon's) are 1979 * allowed to eat deeper into the free page list. 1980 */ 1981 if (curthread->td_flags & TDF_SYSTHREAD) 1982 page_req |= VM_ALLOC_SYSTEM; 1983 1984 /* 1985 * Impose various limitations. Note that the v_free_reserved test 1986 * must match the opposite of vm_page_count_target() to avoid 1987 * livelocks, be careful. 1988 */ 1989 loop: 1990 gd = mycpu; 1991 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved || 1992 ((page_req & VM_ALLOC_INTERRUPT) && 1993 gd->gd_vmstats.v_free_count > 0) || 1994 ((page_req & VM_ALLOC_SYSTEM) && 1995 gd->gd_vmstats.v_cache_count == 0 && 1996 gd->gd_vmstats.v_free_count > 1997 gd->gd_vmstats.v_interrupt_free_min) 1998 ) { 1999 /* 2000 * The free queue has sufficient free pages to take one out. 2001 */ 2002 m = vm_page_select_free(pg_color); 2003 } else if (page_req & VM_ALLOC_NORMAL) { 2004 /* 2005 * Allocatable from the cache (non-interrupt only). On 2006 * success, we must free the page and try again, thus 2007 * ensuring that vmstats.v_*_free_min counters are replenished. 2008 */ 2009 #ifdef INVARIANTS 2010 if (curthread->td_preempted) { 2011 kprintf("vm_page_alloc(): warning, attempt to allocate" 2012 " cache page from preempting interrupt\n"); 2013 m = NULL; 2014 } else { 2015 m = vm_page_select_cache(pg_color); 2016 } 2017 #else 2018 m = vm_page_select_cache(pg_color); 2019 #endif 2020 /* 2021 * On success move the page into the free queue and loop. 2022 * 2023 * Only do this if we can safely acquire the vm_object lock, 2024 * because this is effectively a random page and the caller 2025 * might be holding the lock shared, we don't want to 2026 * deadlock. 2027 */ 2028 if (m != NULL) { 2029 KASSERT(m->dirty == 0, 2030 ("Found dirty cache page %p", m)); 2031 if ((obj = m->object) != NULL) { 2032 if (vm_object_hold_try(obj)) { 2033 vm_page_protect(m, VM_PROT_NONE); 2034 vm_page_free(m); 2035 /* m->object NULL here */ 2036 vm_object_drop(obj); 2037 } else { 2038 vm_page_deactivate(m); 2039 vm_page_wakeup(m); 2040 } 2041 } else { 2042 vm_page_protect(m, VM_PROT_NONE); 2043 vm_page_free(m); 2044 } 2045 goto loop; 2046 } 2047 2048 /* 2049 * On failure return NULL 2050 */ 2051 atomic_add_int(&vm_pageout_deficit, 1); 2052 pagedaemon_wakeup(); 2053 return (NULL); 2054 } else { 2055 /* 2056 * No pages available, wakeup the pageout daemon and give up. 2057 */ 2058 atomic_add_int(&vm_pageout_deficit, 1); 2059 pagedaemon_wakeup(); 2060 return (NULL); 2061 } 2062 2063 /* 2064 * v_free_count can race so loop if we don't find the expected 2065 * page. 2066 */ 2067 if (m == NULL) { 2068 vmstats_rollup(); 2069 goto loop; 2070 } 2071 2072 /* 2073 * Good page found. The page has already been busied for us and 2074 * removed from its queues. 2075 */ 2076 KASSERT(m->dirty == 0, 2077 ("vm_page_alloc: free/cache page %p was dirty", m)); 2078 KKASSERT(m->queue == PQ_NONE); 2079 2080 #if 0 2081 done: 2082 #endif 2083 /* 2084 * Initialize the structure, inheriting some flags but clearing 2085 * all the rest. The page has already been busied for us. 2086 */ 2087 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK); 2088 2089 KKASSERT(m->wire_count == 0); 2090 KKASSERT((m->busy_count & PBUSY_MASK) == 0); 2091 m->act_count = 0; 2092 m->valid = 0; 2093 2094 /* 2095 * Caller must be holding the object lock (asserted by 2096 * vm_page_insert()). 2097 * 2098 * NOTE: Inserting a page here does not insert it into any pmaps 2099 * (which could cause us to block allocating memory). 2100 * 2101 * NOTE: If no object an unassociated page is allocated, m->pindex 2102 * can be used by the caller for any purpose. 2103 */ 2104 if (object) { 2105 if (vm_page_insert(m, object, pindex) == FALSE) { 2106 vm_page_free(m); 2107 if ((page_req & VM_ALLOC_NULL_OK) == 0) 2108 panic("PAGE RACE %p[%ld]/%p", 2109 object, (long)pindex, m); 2110 m = NULL; 2111 } 2112 } else { 2113 m->pindex = pindex; 2114 } 2115 2116 /* 2117 * Don't wakeup too often - wakeup the pageout daemon when 2118 * we would be nearly out of memory. 2119 */ 2120 pagedaemon_wakeup(); 2121 2122 /* 2123 * A BUSY page is returned. 2124 */ 2125 return (m); 2126 } 2127 2128 /* 2129 * Returns number of pages available in our DMA memory reserve 2130 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf) 2131 */ 2132 vm_size_t 2133 vm_contig_avail_pages(void) 2134 { 2135 alist_blk_t blk; 2136 alist_blk_t count; 2137 alist_blk_t bfree; 2138 spin_lock(&vm_contig_spin); 2139 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 2140 spin_unlock(&vm_contig_spin); 2141 2142 return bfree; 2143 } 2144 2145 /* 2146 * Attempt to allocate contiguous physical memory with the specified 2147 * requirements. 2148 */ 2149 vm_page_t 2150 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 2151 unsigned long alignment, unsigned long boundary, 2152 unsigned long size, vm_memattr_t memattr) 2153 { 2154 alist_blk_t blk; 2155 vm_page_t m; 2156 vm_pindex_t i; 2157 #if 0 2158 static vm_pindex_t contig_rover; 2159 #endif 2160 2161 alignment >>= PAGE_SHIFT; 2162 if (alignment == 0) 2163 alignment = 1; 2164 boundary >>= PAGE_SHIFT; 2165 if (boundary == 0) 2166 boundary = 1; 2167 size = (size + PAGE_MASK) >> PAGE_SHIFT; 2168 2169 #if 0 2170 /* 2171 * Disabled temporarily until we find a solution for DRM (a flag 2172 * to always use the free space reserve, for performance). 2173 */ 2174 if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE && 2175 boundary <= PAGE_SIZE && size == 1 && 2176 memattr == VM_MEMATTR_DEFAULT) { 2177 /* 2178 * Any page will work, use vm_page_alloc() 2179 * (e.g. when used from kmem_alloc_attr()) 2180 */ 2181 m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF, 2182 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 2183 VM_ALLOC_INTERRUPT); 2184 m->valid = VM_PAGE_BITS_ALL; 2185 vm_page_wire(m); 2186 vm_page_wakeup(m); 2187 } else 2188 #endif 2189 { 2190 /* 2191 * Use the low-memory dma reserve 2192 */ 2193 spin_lock(&vm_contig_spin); 2194 blk = alist_alloc(&vm_contig_alist, 0, size); 2195 if (blk == ALIST_BLOCK_NONE) { 2196 spin_unlock(&vm_contig_spin); 2197 if (bootverbose) { 2198 kprintf("vm_page_alloc_contig: %ldk nospace\n", 2199 (size << PAGE_SHIFT) / 1024); 2200 print_backtrace(5); 2201 } 2202 return(NULL); 2203 } 2204 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 2205 alist_free(&vm_contig_alist, blk, size); 2206 spin_unlock(&vm_contig_spin); 2207 if (bootverbose) { 2208 kprintf("vm_page_alloc_contig: %ldk high " 2209 "%016jx failed\n", 2210 (size << PAGE_SHIFT) / 1024, 2211 (intmax_t)high); 2212 } 2213 return(NULL); 2214 } 2215 spin_unlock(&vm_contig_spin); 2216 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 2217 } 2218 if (vm_contig_verbose) { 2219 kprintf("vm_page_alloc_contig: %016jx/%ldk " 2220 "(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n", 2221 (intmax_t)m->phys_addr, 2222 (size << PAGE_SHIFT) / 1024, 2223 low, high, alignment, boundary, size, memattr); 2224 } 2225 if (memattr != VM_MEMATTR_DEFAULT) { 2226 for (i = 0;i < size; i++) 2227 pmap_page_set_memattr(&m[i], memattr); 2228 } 2229 return m; 2230 } 2231 2232 /* 2233 * Free contiguously allocated pages. The pages will be wired but not busy. 2234 * When freeing to the alist we leave them wired and not busy. 2235 */ 2236 void 2237 vm_page_free_contig(vm_page_t m, unsigned long size) 2238 { 2239 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 2240 vm_pindex_t start = pa >> PAGE_SHIFT; 2241 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 2242 2243 if (vm_contig_verbose) { 2244 kprintf("vm_page_free_contig: %016jx/%ldk\n", 2245 (intmax_t)pa, size / 1024); 2246 } 2247 if (pa < vm_low_phys_reserved) { 2248 KKASSERT(pa + size <= vm_low_phys_reserved); 2249 spin_lock(&vm_contig_spin); 2250 alist_free(&vm_contig_alist, start, pages); 2251 spin_unlock(&vm_contig_spin); 2252 } else { 2253 while (pages) { 2254 vm_page_busy_wait(m, FALSE, "cpgfr"); 2255 vm_page_unwire(m, 0); 2256 vm_page_free(m); 2257 --pages; 2258 ++m; 2259 } 2260 2261 } 2262 } 2263 2264 2265 /* 2266 * Wait for sufficient free memory for nominal heavy memory use kernel 2267 * operations. 2268 * 2269 * WARNING! Be sure never to call this in any vm_pageout code path, which 2270 * will trivially deadlock the system. 2271 */ 2272 void 2273 vm_wait_nominal(void) 2274 { 2275 while (vm_page_count_min(0)) 2276 vm_wait(0); 2277 } 2278 2279 /* 2280 * Test if vm_wait_nominal() would block. 2281 */ 2282 int 2283 vm_test_nominal(void) 2284 { 2285 if (vm_page_count_min(0)) 2286 return(1); 2287 return(0); 2288 } 2289 2290 /* 2291 * Block until free pages are available for allocation, called in various 2292 * places before memory allocations. 2293 * 2294 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 2295 * more generous then that. 2296 */ 2297 void 2298 vm_wait(int timo) 2299 { 2300 /* 2301 * never wait forever 2302 */ 2303 if (timo == 0) 2304 timo = hz; 2305 lwkt_gettoken(&vm_token); 2306 2307 if (curthread == pagethread || 2308 curthread == emergpager) { 2309 /* 2310 * The pageout daemon itself needs pages, this is bad. 2311 */ 2312 if (vm_page_count_min(0)) { 2313 vm_pageout_pages_needed = 1; 2314 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 2315 } 2316 } else { 2317 /* 2318 * Wakeup the pageout daemon if necessary and wait. 2319 * 2320 * Do not wait indefinitely for the target to be reached, 2321 * as load might prevent it from being reached any time soon. 2322 * But wait a little to try to slow down page allocations 2323 * and to give more important threads (the pagedaemon) 2324 * allocation priority. 2325 */ 2326 if (vm_page_count_target()) { 2327 if (vm_pages_needed == 0) { 2328 vm_pages_needed = 1; 2329 wakeup(&vm_pages_needed); 2330 } 2331 ++vm_pages_waiting; /* SMP race ok */ 2332 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 2333 } 2334 } 2335 lwkt_reltoken(&vm_token); 2336 } 2337 2338 /* 2339 * Block until free pages are available for allocation 2340 * 2341 * Called only from vm_fault so that processes page faulting can be 2342 * easily tracked. 2343 */ 2344 void 2345 vm_wait_pfault(void) 2346 { 2347 /* 2348 * Wakeup the pageout daemon if necessary and wait. 2349 * 2350 * Do not wait indefinitely for the target to be reached, 2351 * as load might prevent it from being reached any time soon. 2352 * But wait a little to try to slow down page allocations 2353 * and to give more important threads (the pagedaemon) 2354 * allocation priority. 2355 */ 2356 if (vm_page_count_min(0)) { 2357 lwkt_gettoken(&vm_token); 2358 while (vm_page_count_severe()) { 2359 if (vm_page_count_target()) { 2360 thread_t td; 2361 2362 if (vm_pages_needed == 0) { 2363 vm_pages_needed = 1; 2364 wakeup(&vm_pages_needed); 2365 } 2366 ++vm_pages_waiting; /* SMP race ok */ 2367 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 2368 2369 /* 2370 * Do not stay stuck in the loop if the system is trying 2371 * to kill the process. 2372 */ 2373 td = curthread; 2374 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL)) 2375 break; 2376 } 2377 } 2378 lwkt_reltoken(&vm_token); 2379 } 2380 } 2381 2382 /* 2383 * Put the specified page on the active list (if appropriate). Ensure 2384 * that act_count is at least ACT_INIT but do not otherwise mess with it. 2385 * 2386 * The caller should be holding the page busied ? XXX 2387 * This routine may not block. 2388 */ 2389 void 2390 vm_page_activate(vm_page_t m) 2391 { 2392 u_short oqueue; 2393 2394 vm_page_spin_lock(m); 2395 if (m->queue - m->pc != PQ_ACTIVE) { 2396 _vm_page_queue_spin_lock(m); 2397 oqueue = _vm_page_rem_queue_spinlocked(m); 2398 /* page is left spinlocked, queue is unlocked */ 2399 2400 if (oqueue == PQ_CACHE) 2401 mycpu->gd_cnt.v_reactivated++; 2402 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2403 if (m->act_count < ACT_INIT) 2404 m->act_count = ACT_INIT; 2405 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 2406 } 2407 _vm_page_and_queue_spin_unlock(m); 2408 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 2409 pagedaemon_wakeup(); 2410 } else { 2411 if (m->act_count < ACT_INIT) 2412 m->act_count = ACT_INIT; 2413 vm_page_spin_unlock(m); 2414 } 2415 } 2416 2417 /* 2418 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2419 * routine is called when a page has been added to the cache or free 2420 * queues. 2421 * 2422 * This routine may not block. 2423 */ 2424 static __inline void 2425 vm_page_free_wakeup(void) 2426 { 2427 globaldata_t gd = mycpu; 2428 2429 /* 2430 * If the pageout daemon itself needs pages, then tell it that 2431 * there are some free. 2432 */ 2433 if (vm_pageout_pages_needed && 2434 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >= 2435 gd->gd_vmstats.v_pageout_free_min 2436 ) { 2437 vm_pageout_pages_needed = 0; 2438 wakeup(&vm_pageout_pages_needed); 2439 } 2440 2441 /* 2442 * Wakeup processes that are waiting on memory. 2443 * 2444 * Generally speaking we want to wakeup stuck processes as soon as 2445 * possible. !vm_page_count_min(0) is the absolute minimum point 2446 * where we can do this. Wait a bit longer to reduce degenerate 2447 * re-blocking (vm_page_free_hysteresis). The target check is just 2448 * to make sure the min-check w/hysteresis does not exceed the 2449 * normal target. 2450 */ 2451 if (vm_pages_waiting) { 2452 if (!vm_page_count_min(vm_page_free_hysteresis) || 2453 !vm_page_count_target()) { 2454 vm_pages_waiting = 0; 2455 wakeup(&vmstats.v_free_count); 2456 ++mycpu->gd_cnt.v_ppwakeups; 2457 } 2458 #if 0 2459 if (!vm_page_count_target()) { 2460 /* 2461 * Plenty of pages are free, wakeup everyone. 2462 */ 2463 vm_pages_waiting = 0; 2464 wakeup(&vmstats.v_free_count); 2465 ++mycpu->gd_cnt.v_ppwakeups; 2466 } else if (!vm_page_count_min(0)) { 2467 /* 2468 * Some pages are free, wakeup someone. 2469 */ 2470 int wcount = vm_pages_waiting; 2471 if (wcount > 0) 2472 --wcount; 2473 vm_pages_waiting = wcount; 2474 wakeup_one(&vmstats.v_free_count); 2475 ++mycpu->gd_cnt.v_ppwakeups; 2476 } 2477 #endif 2478 } 2479 } 2480 2481 /* 2482 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 2483 * it from its VM object. 2484 * 2485 * The vm_page must be BUSY on entry. BUSY will be released on 2486 * return (the page will have been freed). 2487 */ 2488 void 2489 vm_page_free_toq(vm_page_t m) 2490 { 2491 mycpu->gd_cnt.v_tfree++; 2492 KKASSERT((m->flags & PG_MAPPED) == 0); 2493 KKASSERT(m->busy_count & PBUSY_LOCKED); 2494 2495 if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) { 2496 kprintf("vm_page_free: pindex(%lu), busy %08x, " 2497 "hold(%d)\n", 2498 (u_long)m->pindex, m->busy_count, m->hold_count); 2499 if ((m->queue - m->pc) == PQ_FREE) 2500 panic("vm_page_free: freeing free page"); 2501 else 2502 panic("vm_page_free: freeing busy page"); 2503 } 2504 2505 /* 2506 * Remove from object, spinlock the page and its queues and 2507 * remove from any queue. No queue spinlock will be held 2508 * after this section (because the page was removed from any 2509 * queue). 2510 */ 2511 vm_page_remove(m); 2512 vm_page_and_queue_spin_lock(m); 2513 _vm_page_rem_queue_spinlocked(m); 2514 2515 /* 2516 * No further management of fictitious pages occurs beyond object 2517 * and queue removal. 2518 */ 2519 if ((m->flags & PG_FICTITIOUS) != 0) { 2520 vm_page_spin_unlock(m); 2521 vm_page_wakeup(m); 2522 return; 2523 } 2524 2525 m->valid = 0; 2526 vm_page_undirty(m); 2527 2528 if (m->wire_count != 0) { 2529 if (m->wire_count > 1) { 2530 panic( 2531 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2532 m->wire_count, (long)m->pindex); 2533 } 2534 panic("vm_page_free: freeing wired page"); 2535 } 2536 2537 /* 2538 * Clear the UNMANAGED flag when freeing an unmanaged page. 2539 * Clear the NEED_COMMIT flag 2540 */ 2541 if (m->flags & PG_UNMANAGED) 2542 vm_page_flag_clear(m, PG_UNMANAGED); 2543 if (m->flags & PG_NEED_COMMIT) 2544 vm_page_flag_clear(m, PG_NEED_COMMIT); 2545 2546 if (m->hold_count != 0) { 2547 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2548 } else { 2549 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1); 2550 } 2551 2552 /* 2553 * This sequence allows us to clear BUSY while still holding 2554 * its spin lock, which reduces contention vs allocators. We 2555 * must not leave the queue locked or _vm_page_wakeup() may 2556 * deadlock. 2557 */ 2558 _vm_page_queue_spin_unlock(m); 2559 if (_vm_page_wakeup(m)) { 2560 vm_page_spin_unlock(m); 2561 wakeup(m); 2562 } else { 2563 vm_page_spin_unlock(m); 2564 } 2565 vm_page_free_wakeup(); 2566 } 2567 2568 /* 2569 * vm_page_unmanage() 2570 * 2571 * Prevent PV management from being done on the page. The page is 2572 * removed from the paging queues as if it were wired, and as a 2573 * consequence of no longer being managed the pageout daemon will not 2574 * touch it (since there is no way to locate the pte mappings for the 2575 * page). madvise() calls that mess with the pmap will also no longer 2576 * operate on the page. 2577 * 2578 * Beyond that the page is still reasonably 'normal'. Freeing the page 2579 * will clear the flag. 2580 * 2581 * This routine is used by OBJT_PHYS objects - objects using unswappable 2582 * physical memory as backing store rather then swap-backed memory and 2583 * will eventually be extended to support 4MB unmanaged physical 2584 * mappings. 2585 * 2586 * Caller must be holding the page busy. 2587 */ 2588 void 2589 vm_page_unmanage(vm_page_t m) 2590 { 2591 KKASSERT(m->busy_count & PBUSY_LOCKED); 2592 if ((m->flags & PG_UNMANAGED) == 0) { 2593 if (m->wire_count == 0) 2594 vm_page_unqueue(m); 2595 } 2596 vm_page_flag_set(m, PG_UNMANAGED); 2597 } 2598 2599 /* 2600 * Mark this page as wired down by yet another map, removing it from 2601 * paging queues as necessary. 2602 * 2603 * Caller must be holding the page busy. 2604 */ 2605 void 2606 vm_page_wire(vm_page_t m) 2607 { 2608 /* 2609 * Only bump the wire statistics if the page is not already wired, 2610 * and only unqueue the page if it is on some queue (if it is unmanaged 2611 * it is already off the queues). Don't do anything with fictitious 2612 * pages because they are always wired. 2613 */ 2614 KKASSERT(m->busy_count & PBUSY_LOCKED); 2615 if ((m->flags & PG_FICTITIOUS) == 0) { 2616 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2617 if ((m->flags & PG_UNMANAGED) == 0) 2618 vm_page_unqueue(m); 2619 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1); 2620 } 2621 KASSERT(m->wire_count != 0, 2622 ("vm_page_wire: wire_count overflow m=%p", m)); 2623 } 2624 } 2625 2626 /* 2627 * Release one wiring of this page, potentially enabling it to be paged again. 2628 * 2629 * Many pages placed on the inactive queue should actually go 2630 * into the cache, but it is difficult to figure out which. What 2631 * we do instead, if the inactive target is well met, is to put 2632 * clean pages at the head of the inactive queue instead of the tail. 2633 * This will cause them to be moved to the cache more quickly and 2634 * if not actively re-referenced, freed more quickly. If we just 2635 * stick these pages at the end of the inactive queue, heavy filesystem 2636 * meta-data accesses can cause an unnecessary paging load on memory bound 2637 * processes. This optimization causes one-time-use metadata to be 2638 * reused more quickly. 2639 * 2640 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2641 * the inactive queue. This helps the pageout daemon determine memory 2642 * pressure and act on out-of-memory situations more quickly. 2643 * 2644 * BUT, if we are in a low-memory situation we have no choice but to 2645 * put clean pages on the cache queue. 2646 * 2647 * A number of routines use vm_page_unwire() to guarantee that the page 2648 * will go into either the inactive or active queues, and will NEVER 2649 * be placed in the cache - for example, just after dirtying a page. 2650 * dirty pages in the cache are not allowed. 2651 * 2652 * This routine may not block. 2653 */ 2654 void 2655 vm_page_unwire(vm_page_t m, int activate) 2656 { 2657 KKASSERT(m->busy_count & PBUSY_LOCKED); 2658 if (m->flags & PG_FICTITIOUS) { 2659 /* do nothing */ 2660 } else if (m->wire_count <= 0) { 2661 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2662 } else { 2663 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2664 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1); 2665 if (m->flags & PG_UNMANAGED) { 2666 ; 2667 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2668 vm_page_spin_lock(m); 2669 _vm_page_add_queue_spinlocked(m, 2670 PQ_ACTIVE + m->pc, 0); 2671 _vm_page_and_queue_spin_unlock(m); 2672 } else { 2673 vm_page_spin_lock(m); 2674 vm_page_flag_clear(m, PG_WINATCFLS); 2675 _vm_page_add_queue_spinlocked(m, 2676 PQ_INACTIVE + m->pc, 0); 2677 ++vm_swapcache_inactive_heuristic; 2678 _vm_page_and_queue_spin_unlock(m); 2679 } 2680 } 2681 } 2682 } 2683 2684 /* 2685 * Move the specified page to the inactive queue. If the page has 2686 * any associated swap, the swap is deallocated. 2687 * 2688 * Normally athead is 0 resulting in LRU operation. athead is set 2689 * to 1 if we want this page to be 'as if it were placed in the cache', 2690 * except without unmapping it from the process address space. 2691 * 2692 * vm_page's spinlock must be held on entry and will remain held on return. 2693 * This routine may not block. 2694 */ 2695 static void 2696 _vm_page_deactivate_locked(vm_page_t m, int athead) 2697 { 2698 u_short oqueue; 2699 2700 /* 2701 * Ignore if already inactive. 2702 */ 2703 if (m->queue - m->pc == PQ_INACTIVE) 2704 return; 2705 _vm_page_queue_spin_lock(m); 2706 oqueue = _vm_page_rem_queue_spinlocked(m); 2707 2708 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2709 if (oqueue == PQ_CACHE) 2710 mycpu->gd_cnt.v_reactivated++; 2711 vm_page_flag_clear(m, PG_WINATCFLS); 2712 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2713 if (athead == 0) 2714 ++vm_swapcache_inactive_heuristic; 2715 } 2716 /* NOTE: PQ_NONE if condition not taken */ 2717 _vm_page_queue_spin_unlock(m); 2718 /* leaves vm_page spinlocked */ 2719 } 2720 2721 /* 2722 * Attempt to deactivate a page. 2723 * 2724 * No requirements. 2725 */ 2726 void 2727 vm_page_deactivate(vm_page_t m) 2728 { 2729 vm_page_spin_lock(m); 2730 _vm_page_deactivate_locked(m, 0); 2731 vm_page_spin_unlock(m); 2732 } 2733 2734 void 2735 vm_page_deactivate_locked(vm_page_t m) 2736 { 2737 _vm_page_deactivate_locked(m, 0); 2738 } 2739 2740 /* 2741 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it. 2742 * 2743 * This function returns non-zero if it successfully moved the page to 2744 * PQ_CACHE. 2745 * 2746 * This function unconditionally unbusies the page on return. 2747 */ 2748 int 2749 vm_page_try_to_cache(vm_page_t m) 2750 { 2751 vm_page_spin_lock(m); 2752 if (m->dirty || m->hold_count || m->wire_count || 2753 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2754 if (_vm_page_wakeup(m)) { 2755 vm_page_spin_unlock(m); 2756 wakeup(m); 2757 } else { 2758 vm_page_spin_unlock(m); 2759 } 2760 return(0); 2761 } 2762 vm_page_spin_unlock(m); 2763 2764 /* 2765 * Page busied by us and no longer spinlocked. Dirty pages cannot 2766 * be moved to the cache. 2767 */ 2768 vm_page_test_dirty(m); 2769 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2770 vm_page_wakeup(m); 2771 return(0); 2772 } 2773 vm_page_cache(m); 2774 return(1); 2775 } 2776 2777 /* 2778 * Attempt to free the page. If we cannot free it, we do nothing. 2779 * 1 is returned on success, 0 on failure. 2780 * 2781 * No requirements. 2782 */ 2783 int 2784 vm_page_try_to_free(vm_page_t m) 2785 { 2786 vm_page_spin_lock(m); 2787 if (vm_page_busy_try(m, TRUE)) { 2788 vm_page_spin_unlock(m); 2789 return(0); 2790 } 2791 2792 /* 2793 * The page can be in any state, including already being on the free 2794 * queue. Check to see if it really can be freed. 2795 */ 2796 if (m->dirty || /* can't free if it is dirty */ 2797 m->hold_count || /* or held (XXX may be wrong) */ 2798 m->wire_count || /* or wired */ 2799 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2800 PG_NEED_COMMIT)) || /* or needs a commit */ 2801 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2802 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2803 if (_vm_page_wakeup(m)) { 2804 vm_page_spin_unlock(m); 2805 wakeup(m); 2806 } else { 2807 vm_page_spin_unlock(m); 2808 } 2809 return(0); 2810 } 2811 vm_page_spin_unlock(m); 2812 2813 /* 2814 * We can probably free the page. 2815 * 2816 * Page busied by us and no longer spinlocked. Dirty pages will 2817 * not be freed by this function. We have to re-test the 2818 * dirty bit after cleaning out the pmaps. 2819 */ 2820 vm_page_test_dirty(m); 2821 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2822 vm_page_wakeup(m); 2823 return(0); 2824 } 2825 vm_page_protect(m, VM_PROT_NONE); 2826 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2827 vm_page_wakeup(m); 2828 return(0); 2829 } 2830 vm_page_free(m); 2831 return(1); 2832 } 2833 2834 /* 2835 * vm_page_cache 2836 * 2837 * Put the specified page onto the page cache queue (if appropriate). 2838 * 2839 * The page must be busy, and this routine will release the busy and 2840 * possibly even free the page. 2841 */ 2842 void 2843 vm_page_cache(vm_page_t m) 2844 { 2845 /* 2846 * Not suitable for the cache 2847 */ 2848 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2849 (m->busy_count & PBUSY_MASK) || 2850 m->wire_count || m->hold_count) { 2851 vm_page_wakeup(m); 2852 return; 2853 } 2854 2855 /* 2856 * Already in the cache (and thus not mapped) 2857 */ 2858 if ((m->queue - m->pc) == PQ_CACHE) { 2859 KKASSERT((m->flags & PG_MAPPED) == 0); 2860 vm_page_wakeup(m); 2861 return; 2862 } 2863 2864 /* 2865 * Caller is required to test m->dirty, but note that the act of 2866 * removing the page from its maps can cause it to become dirty 2867 * on an SMP system due to another cpu running in usermode. 2868 */ 2869 if (m->dirty) { 2870 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2871 (long)m->pindex); 2872 } 2873 2874 /* 2875 * Remove all pmaps and indicate that the page is not 2876 * writeable or mapped. Our vm_page_protect() call may 2877 * have blocked (especially w/ VM_PROT_NONE), so recheck 2878 * everything. 2879 */ 2880 vm_page_protect(m, VM_PROT_NONE); 2881 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2882 (m->busy_count & PBUSY_MASK) || 2883 m->wire_count || m->hold_count) { 2884 vm_page_wakeup(m); 2885 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2886 vm_page_deactivate(m); 2887 vm_page_wakeup(m); 2888 } else { 2889 _vm_page_and_queue_spin_lock(m); 2890 _vm_page_rem_queue_spinlocked(m); 2891 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2892 _vm_page_queue_spin_unlock(m); 2893 if (_vm_page_wakeup(m)) { 2894 vm_page_spin_unlock(m); 2895 wakeup(m); 2896 } else { 2897 vm_page_spin_unlock(m); 2898 } 2899 vm_page_free_wakeup(); 2900 } 2901 } 2902 2903 /* 2904 * vm_page_dontneed() 2905 * 2906 * Cache, deactivate, or do nothing as appropriate. This routine 2907 * is typically used by madvise() MADV_DONTNEED. 2908 * 2909 * Generally speaking we want to move the page into the cache so 2910 * it gets reused quickly. However, this can result in a silly syndrome 2911 * due to the page recycling too quickly. Small objects will not be 2912 * fully cached. On the otherhand, if we move the page to the inactive 2913 * queue we wind up with a problem whereby very large objects 2914 * unnecessarily blow away our inactive and cache queues. 2915 * 2916 * The solution is to move the pages based on a fixed weighting. We 2917 * either leave them alone, deactivate them, or move them to the cache, 2918 * where moving them to the cache has the highest weighting. 2919 * By forcing some pages into other queues we eventually force the 2920 * system to balance the queues, potentially recovering other unrelated 2921 * space from active. The idea is to not force this to happen too 2922 * often. 2923 * 2924 * The page must be busied. 2925 */ 2926 void 2927 vm_page_dontneed(vm_page_t m) 2928 { 2929 static int dnweight; 2930 int dnw; 2931 int head; 2932 2933 dnw = ++dnweight; 2934 2935 /* 2936 * occassionally leave the page alone 2937 */ 2938 if ((dnw & 0x01F0) == 0 || 2939 m->queue - m->pc == PQ_INACTIVE || 2940 m->queue - m->pc == PQ_CACHE 2941 ) { 2942 if (m->act_count >= ACT_INIT) 2943 --m->act_count; 2944 return; 2945 } 2946 2947 /* 2948 * If vm_page_dontneed() is inactivating a page, it must clear 2949 * the referenced flag; otherwise the pagedaemon will see references 2950 * on the page in the inactive queue and reactivate it. Until the 2951 * page can move to the cache queue, madvise's job is not done. 2952 */ 2953 vm_page_flag_clear(m, PG_REFERENCED); 2954 pmap_clear_reference(m); 2955 2956 if (m->dirty == 0) 2957 vm_page_test_dirty(m); 2958 2959 if (m->dirty || (dnw & 0x0070) == 0) { 2960 /* 2961 * Deactivate the page 3 times out of 32. 2962 */ 2963 head = 0; 2964 } else { 2965 /* 2966 * Cache the page 28 times out of every 32. Note that 2967 * the page is deactivated instead of cached, but placed 2968 * at the head of the queue instead of the tail. 2969 */ 2970 head = 1; 2971 } 2972 vm_page_spin_lock(m); 2973 _vm_page_deactivate_locked(m, head); 2974 vm_page_spin_unlock(m); 2975 } 2976 2977 /* 2978 * These routines manipulate the 'soft busy' count for a page. A soft busy 2979 * is almost like a hard BUSY except that it allows certain compatible 2980 * operations to occur on the page while it is busy. For example, a page 2981 * undergoing a write can still be mapped read-only. 2982 * 2983 * We also use soft-busy to quickly pmap_enter shared read-only pages 2984 * without having to hold the page locked. 2985 * 2986 * The soft-busy count can be > 1 in situations where multiple threads 2987 * are pmap_enter()ing the same page simultaneously, or when two buffer 2988 * cache buffers overlap the same page. 2989 * 2990 * The caller must hold the page BUSY when making these two calls. 2991 */ 2992 void 2993 vm_page_io_start(vm_page_t m) 2994 { 2995 uint32_t ocount; 2996 2997 ocount = atomic_fetchadd_int(&m->busy_count, 1); 2998 KKASSERT(ocount & PBUSY_LOCKED); 2999 } 3000 3001 void 3002 vm_page_io_finish(vm_page_t m) 3003 { 3004 uint32_t ocount; 3005 3006 ocount = atomic_fetchadd_int(&m->busy_count, -1); 3007 KKASSERT(ocount & PBUSY_MASK); 3008 #if 0 3009 if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0) 3010 wakeup(m); 3011 #endif 3012 } 3013 3014 /* 3015 * Attempt to soft-busy a page. The page must not be PBUSY_LOCKED. 3016 * 3017 * We can't use fetchadd here because we might race a hard-busy and the 3018 * page freeing code asserts on a non-zero soft-busy count (even if only 3019 * temporary). 3020 * 3021 * Returns 0 on success, non-zero on failure. 3022 */ 3023 int 3024 vm_page_sbusy_try(vm_page_t m) 3025 { 3026 uint32_t ocount; 3027 3028 for (;;) { 3029 ocount = m->busy_count; 3030 cpu_ccfence(); 3031 if (ocount & PBUSY_LOCKED) 3032 return 1; 3033 if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1)) 3034 break; 3035 } 3036 return 0; 3037 #if 0 3038 if (m->busy_count & PBUSY_LOCKED) 3039 return 1; 3040 ocount = atomic_fetchadd_int(&m->busy_count, 1); 3041 if (ocount & PBUSY_LOCKED) { 3042 vm_page_sbusy_drop(m); 3043 return 1; 3044 } 3045 return 0; 3046 #endif 3047 } 3048 3049 /* 3050 * Indicate that a clean VM page requires a filesystem commit and cannot 3051 * be reused. Used by tmpfs. 3052 */ 3053 void 3054 vm_page_need_commit(vm_page_t m) 3055 { 3056 vm_page_flag_set(m, PG_NEED_COMMIT); 3057 vm_object_set_writeable_dirty(m->object); 3058 } 3059 3060 void 3061 vm_page_clear_commit(vm_page_t m) 3062 { 3063 vm_page_flag_clear(m, PG_NEED_COMMIT); 3064 } 3065 3066 /* 3067 * Grab a page, blocking if it is busy and allocating a page if necessary. 3068 * A busy page is returned or NULL. The page may or may not be valid and 3069 * might not be on a queue (the caller is responsible for the disposition of 3070 * the page). 3071 * 3072 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 3073 * page will be zero'd and marked valid. 3074 * 3075 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 3076 * valid even if it already exists. 3077 * 3078 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 3079 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 3080 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 3081 * 3082 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 3083 * always returned if we had blocked. 3084 * 3085 * This routine may not be called from an interrupt. 3086 * 3087 * No other requirements. 3088 */ 3089 vm_page_t 3090 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3091 { 3092 vm_page_t m; 3093 int error; 3094 int shared = 1; 3095 3096 KKASSERT(allocflags & 3097 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 3098 vm_object_hold_shared(object); 3099 for (;;) { 3100 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 3101 if (error) { 3102 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 3103 if ((allocflags & VM_ALLOC_RETRY) == 0) { 3104 m = NULL; 3105 break; 3106 } 3107 /* retry */ 3108 } else if (m == NULL) { 3109 if (shared) { 3110 vm_object_upgrade(object); 3111 shared = 0; 3112 } 3113 if (allocflags & VM_ALLOC_RETRY) 3114 allocflags |= VM_ALLOC_NULL_OK; 3115 m = vm_page_alloc(object, pindex, 3116 allocflags & ~VM_ALLOC_RETRY); 3117 if (m) 3118 break; 3119 vm_wait(0); 3120 if ((allocflags & VM_ALLOC_RETRY) == 0) 3121 goto failed; 3122 } else { 3123 /* m found */ 3124 break; 3125 } 3126 } 3127 3128 /* 3129 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 3130 * 3131 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 3132 * valid even if already valid. 3133 * 3134 * NOTE! We have removed all of the PG_ZERO optimizations and also 3135 * removed the idle zeroing code. These optimizations actually 3136 * slow things down on modern cpus because the zerod area is 3137 * likely uncached, placing a memory-access burden on the 3138 * accesors taking the fault. 3139 * 3140 * By always zeroing the page in-line with the fault, no 3141 * dynamic ram reads are needed and the caches are hot, ready 3142 * for userland to access the memory. 3143 */ 3144 if (m->valid == 0) { 3145 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 3146 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 3147 m->valid = VM_PAGE_BITS_ALL; 3148 } 3149 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 3150 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 3151 m->valid = VM_PAGE_BITS_ALL; 3152 } 3153 failed: 3154 vm_object_drop(object); 3155 return(m); 3156 } 3157 3158 /* 3159 * Mapping function for valid bits or for dirty bits in 3160 * a page. May not block. 3161 * 3162 * Inputs are required to range within a page. 3163 * 3164 * No requirements. 3165 * Non blocking. 3166 */ 3167 int 3168 vm_page_bits(int base, int size) 3169 { 3170 int first_bit; 3171 int last_bit; 3172 3173 KASSERT( 3174 base + size <= PAGE_SIZE, 3175 ("vm_page_bits: illegal base/size %d/%d", base, size) 3176 ); 3177 3178 if (size == 0) /* handle degenerate case */ 3179 return(0); 3180 3181 first_bit = base >> DEV_BSHIFT; 3182 last_bit = (base + size - 1) >> DEV_BSHIFT; 3183 3184 return ((2 << last_bit) - (1 << first_bit)); 3185 } 3186 3187 /* 3188 * Sets portions of a page valid and clean. The arguments are expected 3189 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3190 * of any partial chunks touched by the range. The invalid portion of 3191 * such chunks will be zero'd. 3192 * 3193 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 3194 * align base to DEV_BSIZE so as not to mark clean a partially 3195 * truncated device block. Otherwise the dirty page status might be 3196 * lost. 3197 * 3198 * This routine may not block. 3199 * 3200 * (base + size) must be less then or equal to PAGE_SIZE. 3201 */ 3202 static void 3203 _vm_page_zero_valid(vm_page_t m, int base, int size) 3204 { 3205 int frag; 3206 int endoff; 3207 3208 if (size == 0) /* handle degenerate case */ 3209 return; 3210 3211 /* 3212 * If the base is not DEV_BSIZE aligned and the valid 3213 * bit is clear, we have to zero out a portion of the 3214 * first block. 3215 */ 3216 3217 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 3218 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 3219 ) { 3220 pmap_zero_page_area( 3221 VM_PAGE_TO_PHYS(m), 3222 frag, 3223 base - frag 3224 ); 3225 } 3226 3227 /* 3228 * If the ending offset is not DEV_BSIZE aligned and the 3229 * valid bit is clear, we have to zero out a portion of 3230 * the last block. 3231 */ 3232 3233 endoff = base + size; 3234 3235 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 3236 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 3237 ) { 3238 pmap_zero_page_area( 3239 VM_PAGE_TO_PHYS(m), 3240 endoff, 3241 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 3242 ); 3243 } 3244 } 3245 3246 /* 3247 * Set valid, clear dirty bits. If validating the entire 3248 * page we can safely clear the pmap modify bit. We also 3249 * use this opportunity to clear the PG_NOSYNC flag. If a process 3250 * takes a write fault on a MAP_NOSYNC memory area the flag will 3251 * be set again. 3252 * 3253 * We set valid bits inclusive of any overlap, but we can only 3254 * clear dirty bits for DEV_BSIZE chunks that are fully within 3255 * the range. 3256 * 3257 * Page must be busied? 3258 * No other requirements. 3259 */ 3260 void 3261 vm_page_set_valid(vm_page_t m, int base, int size) 3262 { 3263 _vm_page_zero_valid(m, base, size); 3264 m->valid |= vm_page_bits(base, size); 3265 } 3266 3267 3268 /* 3269 * Set valid bits and clear dirty bits. 3270 * 3271 * Page must be busied by caller. 3272 * 3273 * NOTE: This function does not clear the pmap modified bit. 3274 * Also note that e.g. NFS may use a byte-granular base 3275 * and size. 3276 * 3277 * No other requirements. 3278 */ 3279 void 3280 vm_page_set_validclean(vm_page_t m, int base, int size) 3281 { 3282 int pagebits; 3283 3284 _vm_page_zero_valid(m, base, size); 3285 pagebits = vm_page_bits(base, size); 3286 m->valid |= pagebits; 3287 m->dirty &= ~pagebits; 3288 if (base == 0 && size == PAGE_SIZE) { 3289 /*pmap_clear_modify(m);*/ 3290 vm_page_flag_clear(m, PG_NOSYNC); 3291 } 3292 } 3293 3294 /* 3295 * Set valid & dirty. Used by buwrite() 3296 * 3297 * Page must be busied by caller. 3298 */ 3299 void 3300 vm_page_set_validdirty(vm_page_t m, int base, int size) 3301 { 3302 int pagebits; 3303 3304 pagebits = vm_page_bits(base, size); 3305 m->valid |= pagebits; 3306 m->dirty |= pagebits; 3307 if (m->object) 3308 vm_object_set_writeable_dirty(m->object); 3309 } 3310 3311 /* 3312 * Clear dirty bits. 3313 * 3314 * NOTE: This function does not clear the pmap modified bit. 3315 * Also note that e.g. NFS may use a byte-granular base 3316 * and size. 3317 * 3318 * Page must be busied? 3319 * No other requirements. 3320 */ 3321 void 3322 vm_page_clear_dirty(vm_page_t m, int base, int size) 3323 { 3324 m->dirty &= ~vm_page_bits(base, size); 3325 if (base == 0 && size == PAGE_SIZE) { 3326 /*pmap_clear_modify(m);*/ 3327 vm_page_flag_clear(m, PG_NOSYNC); 3328 } 3329 } 3330 3331 /* 3332 * Make the page all-dirty. 3333 * 3334 * Also make sure the related object and vnode reflect the fact that the 3335 * object may now contain a dirty page. 3336 * 3337 * Page must be busied? 3338 * No other requirements. 3339 */ 3340 void 3341 vm_page_dirty(vm_page_t m) 3342 { 3343 #ifdef INVARIANTS 3344 int pqtype = m->queue - m->pc; 3345 #endif 3346 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 3347 ("vm_page_dirty: page in free/cache queue!")); 3348 if (m->dirty != VM_PAGE_BITS_ALL) { 3349 m->dirty = VM_PAGE_BITS_ALL; 3350 if (m->object) 3351 vm_object_set_writeable_dirty(m->object); 3352 } 3353 } 3354 3355 /* 3356 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3357 * valid and dirty bits for the effected areas are cleared. 3358 * 3359 * Page must be busied? 3360 * Does not block. 3361 * No other requirements. 3362 */ 3363 void 3364 vm_page_set_invalid(vm_page_t m, int base, int size) 3365 { 3366 int bits; 3367 3368 bits = vm_page_bits(base, size); 3369 m->valid &= ~bits; 3370 m->dirty &= ~bits; 3371 atomic_add_int(&m->object->generation, 1); 3372 } 3373 3374 /* 3375 * The kernel assumes that the invalid portions of a page contain 3376 * garbage, but such pages can be mapped into memory by user code. 3377 * When this occurs, we must zero out the non-valid portions of the 3378 * page so user code sees what it expects. 3379 * 3380 * Pages are most often semi-valid when the end of a file is mapped 3381 * into memory and the file's size is not page aligned. 3382 * 3383 * Page must be busied? 3384 * No other requirements. 3385 */ 3386 void 3387 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3388 { 3389 int b; 3390 int i; 3391 3392 /* 3393 * Scan the valid bits looking for invalid sections that 3394 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3395 * valid bit may be set ) have already been zerod by 3396 * vm_page_set_validclean(). 3397 */ 3398 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3399 if (i == (PAGE_SIZE / DEV_BSIZE) || 3400 (m->valid & (1 << i)) 3401 ) { 3402 if (i > b) { 3403 pmap_zero_page_area( 3404 VM_PAGE_TO_PHYS(m), 3405 b << DEV_BSHIFT, 3406 (i - b) << DEV_BSHIFT 3407 ); 3408 } 3409 b = i + 1; 3410 } 3411 } 3412 3413 /* 3414 * setvalid is TRUE when we can safely set the zero'd areas 3415 * as being valid. We can do this if there are no cache consistency 3416 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3417 */ 3418 if (setvalid) 3419 m->valid = VM_PAGE_BITS_ALL; 3420 } 3421 3422 /* 3423 * Is a (partial) page valid? Note that the case where size == 0 3424 * will return FALSE in the degenerate case where the page is entirely 3425 * invalid, and TRUE otherwise. 3426 * 3427 * Does not block. 3428 * No other requirements. 3429 */ 3430 int 3431 vm_page_is_valid(vm_page_t m, int base, int size) 3432 { 3433 int bits = vm_page_bits(base, size); 3434 3435 if (m->valid && ((m->valid & bits) == bits)) 3436 return 1; 3437 else 3438 return 0; 3439 } 3440 3441 /* 3442 * update dirty bits from pmap/mmu. May not block. 3443 * 3444 * Caller must hold the page busy 3445 */ 3446 void 3447 vm_page_test_dirty(vm_page_t m) 3448 { 3449 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 3450 vm_page_dirty(m); 3451 } 3452 } 3453 3454 #include "opt_ddb.h" 3455 #ifdef DDB 3456 #include <ddb/ddb.h> 3457 3458 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3459 { 3460 db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count); 3461 db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count); 3462 db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count); 3463 db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count); 3464 db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count); 3465 db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved); 3466 db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min); 3467 db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target); 3468 db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min); 3469 db_printf("vmstats.v_inactive_target: %ld\n", 3470 vmstats.v_inactive_target); 3471 } 3472 3473 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3474 { 3475 int i; 3476 db_printf("PQ_FREE:"); 3477 for (i = 0; i < PQ_L2_SIZE; i++) { 3478 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3479 } 3480 db_printf("\n"); 3481 3482 db_printf("PQ_CACHE:"); 3483 for(i = 0; i < PQ_L2_SIZE; i++) { 3484 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3485 } 3486 db_printf("\n"); 3487 3488 db_printf("PQ_ACTIVE:"); 3489 for(i = 0; i < PQ_L2_SIZE; i++) { 3490 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3491 } 3492 db_printf("\n"); 3493 3494 db_printf("PQ_INACTIVE:"); 3495 for(i = 0; i < PQ_L2_SIZE; i++) { 3496 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3497 } 3498 db_printf("\n"); 3499 } 3500 #endif /* DDB */ 3501