xref: /dflybsd-src/sys/vm/vm_page.c (revision 6fd42cc50e47866c551d4da5a6ec73cc6e1ef5d7)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 /*
67  * Resident memory management module.  The module manipulates 'VM pages'.
68  * A VM page is the core building block for memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
99 
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
102 
103 /*
104  * SET - Minimum required set associative size, must be a power of 2.  We
105  *	 want this to match or exceed the set-associativeness of the cpu.
106  *
107  * GRP - A larger set that allows bleed-over into the domains of other
108  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
109  *	 code to smooth things out a bit.
110  */
111 #define PQ_SET_ASSOC		16
112 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
113 
114 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
116 
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes);
123 
124 /*
125  * Array of tailq lists
126  */
127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
128 
129 static volatile int vm_pages_waiting;
130 static struct alist vm_contig_alist;
131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
133 
134 static u_long vm_dma_reserved = 0;
135 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
136 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
137 	    "Memory reserved for DMA");
138 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
139 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
140 
141 static int vm_contig_verbose = 0;
142 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
143 
144 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
145 	     vm_pindex_t, pindex);
146 
147 static void
148 vm_page_queue_init(void)
149 {
150 	int i;
151 
152 	for (i = 0; i < PQ_L2_SIZE; i++)
153 		vm_page_queues[PQ_FREE+i].cnt_offset =
154 			offsetof(struct vmstats, v_free_count);
155 	for (i = 0; i < PQ_L2_SIZE; i++)
156 		vm_page_queues[PQ_CACHE+i].cnt_offset =
157 			offsetof(struct vmstats, v_cache_count);
158 	for (i = 0; i < PQ_L2_SIZE; i++)
159 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
160 			offsetof(struct vmstats, v_inactive_count);
161 	for (i = 0; i < PQ_L2_SIZE; i++)
162 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
163 			offsetof(struct vmstats, v_active_count);
164 	for (i = 0; i < PQ_L2_SIZE; i++)
165 		vm_page_queues[PQ_HOLD+i].cnt_offset =
166 			offsetof(struct vmstats, v_active_count);
167 	/* PQ_NONE has no queue */
168 
169 	for (i = 0; i < PQ_COUNT; i++) {
170 		TAILQ_INIT(&vm_page_queues[i].pl);
171 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
172 	}
173 }
174 
175 /*
176  * note: place in initialized data section?  Is this necessary?
177  */
178 vm_pindex_t first_page = 0;
179 vm_pindex_t vm_page_array_size = 0;
180 vm_page_t vm_page_array = NULL;
181 vm_paddr_t vm_low_phys_reserved;
182 
183 /*
184  * (low level boot)
185  *
186  * Sets the page size, perhaps based upon the memory size.
187  * Must be called before any use of page-size dependent functions.
188  */
189 void
190 vm_set_page_size(void)
191 {
192 	if (vmstats.v_page_size == 0)
193 		vmstats.v_page_size = PAGE_SIZE;
194 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
195 		panic("vm_set_page_size: page size not a power of two");
196 }
197 
198 /*
199  * (low level boot)
200  *
201  * Add a new page to the freelist for use by the system.  New pages
202  * are added to both the head and tail of the associated free page
203  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
204  * requests pull 'recent' adds (higher physical addresses) first.
205  *
206  * Beware that the page zeroing daemon will also be running soon after
207  * boot, moving pages from the head to the tail of the PQ_FREE queues.
208  *
209  * Must be called in a critical section.
210  */
211 static void
212 vm_add_new_page(vm_paddr_t pa)
213 {
214 	struct vpgqueues *vpq;
215 	vm_page_t m;
216 
217 	m = PHYS_TO_VM_PAGE(pa);
218 	m->phys_addr = pa;
219 	m->flags = 0;
220 	m->pat_mode = PAT_WRITE_BACK;
221 	m->pc = (pa >> PAGE_SHIFT);
222 
223 	/*
224 	 * Twist for cpu localization in addition to page coloring, so
225 	 * different cpus selecting by m->queue get different page colors.
226 	 */
227 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
228 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
229 	m->pc &= PQ_L2_MASK;
230 
231 	/*
232 	 * Reserve a certain number of contiguous low memory pages for
233 	 * contigmalloc() to use.
234 	 */
235 	if (pa < vm_low_phys_reserved) {
236 		atomic_add_long(&vmstats.v_page_count, 1);
237 		atomic_add_long(&vmstats.v_dma_pages, 1);
238 		m->queue = PQ_NONE;
239 		m->wire_count = 1;
240 		atomic_add_long(&vmstats.v_wire_count, 1);
241 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
242 		return;
243 	}
244 
245 	/*
246 	 * General page
247 	 */
248 	m->queue = m->pc + PQ_FREE;
249 	KKASSERT(m->dirty == 0);
250 
251 	atomic_add_long(&vmstats.v_page_count, 1);
252 	atomic_add_long(&vmstats.v_free_count, 1);
253 	vpq = &vm_page_queues[m->queue];
254 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
255 	++vpq->lcnt;
256 }
257 
258 /*
259  * (low level boot)
260  *
261  * Initializes the resident memory module.
262  *
263  * Preallocates memory for critical VM structures and arrays prior to
264  * kernel_map becoming available.
265  *
266  * Memory is allocated from (virtual2_start, virtual2_end) if available,
267  * otherwise memory is allocated from (virtual_start, virtual_end).
268  *
269  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
270  * large enough to hold vm_page_array & other structures for machines with
271  * large amounts of ram, so we want to use virtual2* when available.
272  */
273 void
274 vm_page_startup(void)
275 {
276 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
277 	vm_offset_t mapped;
278 	vm_pindex_t npages;
279 	vm_paddr_t page_range;
280 	vm_paddr_t new_end;
281 	int i;
282 	vm_paddr_t pa;
283 	vm_paddr_t last_pa;
284 	vm_paddr_t end;
285 	vm_paddr_t biggestone, biggestsize;
286 	vm_paddr_t total;
287 	vm_page_t m;
288 
289 	total = 0;
290 	biggestsize = 0;
291 	biggestone = 0;
292 	vaddr = round_page(vaddr);
293 
294 	/*
295 	 * Make sure ranges are page-aligned.
296 	 */
297 	for (i = 0; phys_avail[i].phys_end; ++i) {
298 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
299 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
300 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
301 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
302 	}
303 
304 	/*
305 	 * Locate largest block
306 	 */
307 	for (i = 0; phys_avail[i].phys_end; ++i) {
308 		vm_paddr_t size = phys_avail[i].phys_end -
309 				  phys_avail[i].phys_beg;
310 
311 		if (size > biggestsize) {
312 			biggestone = i;
313 			biggestsize = size;
314 		}
315 		total += size;
316 	}
317 	--i;	/* adjust to last entry for use down below */
318 
319 	end = phys_avail[biggestone].phys_end;
320 	end = trunc_page(end);
321 
322 	/*
323 	 * Initialize the queue headers for the free queue, the active queue
324 	 * and the inactive queue.
325 	 */
326 	vm_page_queue_init();
327 
328 #if !defined(_KERNEL_VIRTUAL)
329 	/*
330 	 * VKERNELs don't support minidumps and as such don't need
331 	 * vm_page_dump
332 	 *
333 	 * Allocate a bitmap to indicate that a random physical page
334 	 * needs to be included in a minidump.
335 	 *
336 	 * The amd64 port needs this to indicate which direct map pages
337 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
338 	 *
339 	 * However, x86 still needs this workspace internally within the
340 	 * minidump code.  In theory, they are not needed on x86, but are
341 	 * included should the sf_buf code decide to use them.
342 	 */
343 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
344 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
345 	end -= vm_page_dump_size;
346 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
347 					VM_PROT_READ | VM_PROT_WRITE);
348 	bzero((void *)vm_page_dump, vm_page_dump_size);
349 #endif
350 	/*
351 	 * Compute the number of pages of memory that will be available for
352 	 * use (taking into account the overhead of a page structure per
353 	 * page).
354 	 */
355 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
356 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
357 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
358 
359 #ifndef _KERNEL_VIRTUAL
360 	/*
361 	 * (only applies to real kernels)
362 	 *
363 	 * Reserve a large amount of low memory for potential 32-bit DMA
364 	 * space allocations.  Once device initialization is complete we
365 	 * release most of it, but keep (vm_dma_reserved) memory reserved
366 	 * for later use.  Typically for X / graphics.  Through trial and
367 	 * error we find that GPUs usually requires ~60-100MB or so.
368 	 *
369 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
370 	 */
371 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
372 	if (vm_low_phys_reserved > total / 4)
373 		vm_low_phys_reserved = total / 4;
374 	if (vm_dma_reserved == 0) {
375 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
376 		if (vm_dma_reserved > total / 16)
377 			vm_dma_reserved = total / 16;
378 	}
379 #endif
380 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
381 		   ALIST_RECORDS_65536);
382 
383 	/*
384 	 * Initialize the mem entry structures now, and put them in the free
385 	 * queue.
386 	 */
387 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
388 		kprintf("initializing vm_page_array ");
389 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
390 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
391 	vm_page_array = (vm_page_t)mapped;
392 
393 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
394 	/*
395 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
396 	 * we have to manually add these pages to the minidump tracking so
397 	 * that they can be dumped, including the vm_page_array.
398 	 */
399 	for (pa = new_end;
400 	     pa < phys_avail[biggestone].phys_end;
401 	     pa += PAGE_SIZE) {
402 		dump_add_page(pa);
403 	}
404 #endif
405 
406 	/*
407 	 * Clear all of the page structures, run basic initialization so
408 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
409 	 * map.
410 	 */
411 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
412 	vm_page_array_size = page_range;
413 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
414 		kprintf("size = 0x%zx\n", vm_page_array_size);
415 
416 	m = &vm_page_array[0];
417 	pa = ptoa(first_page);
418 	for (i = 0; i < page_range; ++i) {
419 		spin_init(&m->spin, "vm_page");
420 		m->phys_addr = pa;
421 		pa += PAGE_SIZE;
422 		++m;
423 	}
424 
425 	/*
426 	 * Construct the free queue(s) in ascending order (by physical
427 	 * address) so that the first 16MB of physical memory is allocated
428 	 * last rather than first.  On large-memory machines, this avoids
429 	 * the exhaustion of low physical memory before isa_dma_init has run.
430 	 */
431 	vmstats.v_page_count = 0;
432 	vmstats.v_free_count = 0;
433 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
434 		pa = phys_avail[i].phys_beg;
435 		if (i == biggestone)
436 			last_pa = new_end;
437 		else
438 			last_pa = phys_avail[i].phys_end;
439 		while (pa < last_pa && npages-- > 0) {
440 			vm_add_new_page(pa);
441 			pa += PAGE_SIZE;
442 		}
443 	}
444 	if (virtual2_start)
445 		virtual2_start = vaddr;
446 	else
447 		virtual_start = vaddr;
448 	mycpu->gd_vmstats = vmstats;
449 }
450 
451 /*
452  * (called from early boot only)
453  *
454  * Reorganize VM pages based on numa data.  May be called as many times as
455  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
456  * to allow vm_page_alloc() to choose pages based on socket affinity.
457  *
458  * NOTE: This function is only called while we are still in UP mode, so
459  *	 we only need a critical section to protect the queues (which
460  *	 saves a lot of time, there are likely a ton of pages).
461  */
462 void
463 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
464 {
465 	vm_paddr_t scan_beg;
466 	vm_paddr_t scan_end;
467 	vm_paddr_t ran_end;
468 	struct vpgqueues *vpq;
469 	vm_page_t m;
470 	vm_page_t mend;
471 	int socket_mod;
472 	int socket_value;
473 	int i;
474 
475 	/*
476 	 * Check if no physical information, or there was only one socket
477 	 * (so don't waste time doing nothing!).
478 	 */
479 	if (cpu_topology_phys_ids <= 1 ||
480 	    cpu_topology_core_ids == 0) {
481 		return;
482 	}
483 
484 	/*
485 	 * Setup for our iteration.  Note that ACPI may iterate CPU
486 	 * sockets starting at 0 or 1 or some other number.  The
487 	 * cpu_topology code mod's it against the socket count.
488 	 */
489 	ran_end = ran_beg + bytes;
490 
491 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
492 	socket_value = (physid % cpu_topology_phys_ids) * socket_mod;
493 	mend = &vm_page_array[vm_page_array_size];
494 
495 	crit_enter();
496 
497 	/*
498 	 * Adjust cpu_topology's phys_mem parameter
499 	 */
500 	if (root_cpu_node)
501 		vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes);
502 
503 	/*
504 	 * Adjust vm_page->pc and requeue all affected pages.  The
505 	 * allocator will then be able to localize memory allocations
506 	 * to some degree.
507 	 */
508 	for (i = 0; phys_avail[i].phys_end; ++i) {
509 		scan_beg = phys_avail[i].phys_beg;
510 		scan_end = phys_avail[i].phys_end;
511 		if (scan_end <= ran_beg)
512 			continue;
513 		if (scan_beg >= ran_end)
514 			continue;
515 		if (scan_beg < ran_beg)
516 			scan_beg = ran_beg;
517 		if (scan_end > ran_end)
518 			scan_end = ran_end;
519 		if (atop(scan_end) > first_page + vm_page_array_size)
520 			scan_end = ptoa(first_page + vm_page_array_size);
521 
522 		m = PHYS_TO_VM_PAGE(scan_beg);
523 		while (scan_beg < scan_end) {
524 			KKASSERT(m < mend);
525 			if (m->queue != PQ_NONE) {
526 				vpq = &vm_page_queues[m->queue];
527 				TAILQ_REMOVE(&vpq->pl, m, pageq);
528 				--vpq->lcnt;
529 				/* queue doesn't change, no need to adj cnt */
530 				m->queue -= m->pc;
531 				m->pc %= socket_mod;
532 				m->pc += socket_value;
533 				m->pc &= PQ_L2_MASK;
534 				m->queue += m->pc;
535 				vpq = &vm_page_queues[m->queue];
536 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
537 				++vpq->lcnt;
538 				/* queue doesn't change, no need to adj cnt */
539 			} else {
540 				m->pc %= socket_mod;
541 				m->pc += socket_value;
542 				m->pc &= PQ_L2_MASK;
543 			}
544 			scan_beg += PAGE_SIZE;
545 			++m;
546 		}
547 	}
548 
549 	crit_exit();
550 }
551 
552 /*
553  * (called from early boot only)
554  *
555  * Don't allow the NUMA organization to leave vm_page_queues[] nodes
556  * completely empty for a logical cpu.  Doing so would force allocations
557  * on that cpu to always borrow from a nearby cpu, create unnecessary
558  * contention, and cause vm_page_alloc() to iterate more queues and run more
559  * slowly.
560  *
561  * This situation can occur when memory sticks are not entirely populated,
562  * populated at different densities, or in naturally assymetric systems
563  * such as the 2990WX.  There could very well be many vm_page_queues[]
564  * entries with *NO* pages assigned to them.
565  *
566  * Fixing this up ensures that each logical CPU has roughly the same
567  * sized memory pool, and more importantly ensures that logical CPUs
568  * do not wind up with an empty memory pool.
569  *
570  * At them moment we just iterate the other queues and borrow pages,
571  * moving them into the queues for cpus with severe deficits even though
572  * the memory might not be local to those cpus.  I am not doing this in
573  * a 'smart' way, its effectively UMA style (sorta, since its page-by-page
574  * whereas real UMA typically exchanges address bits 8-10 with high address
575  * bits).  But it works extremely well and gives us fairly good deterministic
576  * results on the cpu cores associated with these secondary nodes.
577  */
578 void
579 vm_numa_organize_finalize(void)
580 {
581 	struct vpgqueues *vpq;
582 	vm_page_t m;
583 	long lcnt_lo;
584 	long lcnt_hi;
585 	int iter;
586 	int i;
587 	int scale_lim;
588 
589 	crit_enter();
590 
591 	/*
592 	 * Machines might not use an exact power of 2 for phys_ids,
593 	 * core_ids, ht_ids, etc.  This can slightly reduce the actual
594 	 * range of indices in vm_page_queues[] that are nominally used.
595 	 */
596 	if (cpu_topology_ht_ids) {
597 		scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids;
598 		scale_lim = scale_lim / cpu_topology_core_ids;
599 		scale_lim = scale_lim / cpu_topology_ht_ids;
600 		scale_lim = scale_lim * cpu_topology_ht_ids;
601 		scale_lim = scale_lim * cpu_topology_core_ids;
602 		scale_lim = scale_lim * cpu_topology_phys_ids;
603 	} else {
604 		scale_lim = PQ_L2_SIZE;
605 	}
606 
607 	/*
608 	 * Calculate an average, set hysteresis for balancing from
609 	 * 10% below the average to the average.
610 	 */
611 	lcnt_hi = 0;
612 	for (i = 0; i < scale_lim; ++i) {
613 		lcnt_hi += vm_page_queues[i].lcnt;
614 	}
615 	lcnt_hi /= scale_lim;
616 	lcnt_lo = lcnt_hi - lcnt_hi / 10;
617 
618 	kprintf("vm_page: avg %ld pages per queue, %d queues\n",
619 		lcnt_hi, scale_lim);
620 
621 	iter = 0;
622 	for (i = 0; i < scale_lim; ++i) {
623 		vpq = &vm_page_queues[PQ_FREE + i];
624 		while (vpq->lcnt < lcnt_lo) {
625 			struct vpgqueues *vptmp;
626 
627 			iter = (iter + 1) & PQ_L2_MASK;
628 			vptmp = &vm_page_queues[PQ_FREE + iter];
629 			if (vptmp->lcnt < lcnt_hi)
630 				continue;
631 			m = TAILQ_FIRST(&vptmp->pl);
632 			KKASSERT(m->queue == PQ_FREE + iter);
633 			TAILQ_REMOVE(&vptmp->pl, m, pageq);
634 			--vptmp->lcnt;
635 			/* queue doesn't change, no need to adj cnt */
636 			m->queue -= m->pc;
637 			m->pc = i;
638 			m->queue += m->pc;
639 			TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
640 			++vpq->lcnt;
641 		}
642 	}
643 	crit_exit();
644 }
645 
646 static
647 void
648 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes)
649 {
650 	int cpuid;
651 	int i;
652 
653 	switch(cpup->type) {
654 	case PACKAGE_LEVEL:
655 		cpup->phys_mem += bytes;
656 		break;
657 	case CHIP_LEVEL:
658 		/*
659 		 * All members should have the same chipid, so we only need
660 		 * to pull out one member.
661 		 */
662 		if (CPUMASK_TESTNZERO(cpup->members)) {
663 			cpuid = BSFCPUMASK(cpup->members);
664 			if (physid ==
665 			    get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) {
666 				cpup->phys_mem += bytes;
667 			}
668 		}
669 		break;
670 	case CORE_LEVEL:
671 	case THREAD_LEVEL:
672 		/*
673 		 * Just inherit from the parent node
674 		 */
675 		cpup->phys_mem = cpup->parent_node->phys_mem;
676 		break;
677 	}
678 	for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i)
679 		vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes);
680 }
681 
682 /*
683  * We tended to reserve a ton of memory for contigmalloc().  Now that most
684  * drivers have initialized we want to return most the remaining free
685  * reserve back to the VM page queues so they can be used for normal
686  * allocations.
687  *
688  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
689  */
690 static void
691 vm_page_startup_finish(void *dummy __unused)
692 {
693 	alist_blk_t blk;
694 	alist_blk_t rblk;
695 	alist_blk_t count;
696 	alist_blk_t xcount;
697 	alist_blk_t bfree;
698 	vm_page_t m;
699 
700 	spin_lock(&vm_contig_spin);
701 	for (;;) {
702 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
703 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
704 			break;
705 		if (count == 0)
706 			break;
707 
708 		/*
709 		 * Figure out how much of the initial reserve we have to
710 		 * free in order to reach our target.
711 		 */
712 		bfree -= vm_dma_reserved / PAGE_SIZE;
713 		if (count > bfree) {
714 			blk += count - bfree;
715 			count = bfree;
716 		}
717 
718 		/*
719 		 * Calculate the nearest power of 2 <= count.
720 		 */
721 		for (xcount = 1; xcount <= count; xcount <<= 1)
722 			;
723 		xcount >>= 1;
724 		blk += count - xcount;
725 		count = xcount;
726 
727 		/*
728 		 * Allocate the pages from the alist, then free them to
729 		 * the normal VM page queues.
730 		 *
731 		 * Pages allocated from the alist are wired.  We have to
732 		 * busy, unwire, and free them.  We must also adjust
733 		 * vm_low_phys_reserved before freeing any pages to prevent
734 		 * confusion.
735 		 */
736 		rblk = alist_alloc(&vm_contig_alist, blk, count);
737 		if (rblk != blk) {
738 			kprintf("vm_page_startup_finish: Unable to return "
739 				"dma space @0x%08x/%d -> 0x%08x\n",
740 				blk, count, rblk);
741 			break;
742 		}
743 		atomic_add_long(&vmstats.v_dma_pages, -(long)count);
744 		spin_unlock(&vm_contig_spin);
745 
746 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
747 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
748 		while (count) {
749 			vm_page_busy_wait(m, FALSE, "cpgfr");
750 			vm_page_unwire(m, 0);
751 			vm_page_free(m);
752 			--count;
753 			++m;
754 		}
755 		spin_lock(&vm_contig_spin);
756 	}
757 	spin_unlock(&vm_contig_spin);
758 
759 	/*
760 	 * Print out how much DMA space drivers have already allocated and
761 	 * how much is left over.
762 	 */
763 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
764 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
765 		(PAGE_SIZE / 1024),
766 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
767 }
768 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
769 	vm_page_startup_finish, NULL);
770 
771 
772 /*
773  * Scan comparison function for Red-Black tree scans.  An inclusive
774  * (start,end) is expected.  Other fields are not used.
775  */
776 int
777 rb_vm_page_scancmp(struct vm_page *p, void *data)
778 {
779 	struct rb_vm_page_scan_info *info = data;
780 
781 	if (p->pindex < info->start_pindex)
782 		return(-1);
783 	if (p->pindex > info->end_pindex)
784 		return(1);
785 	return(0);
786 }
787 
788 int
789 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
790 {
791 	if (p1->pindex < p2->pindex)
792 		return(-1);
793 	if (p1->pindex > p2->pindex)
794 		return(1);
795 	return(0);
796 }
797 
798 void
799 vm_page_init(vm_page_t m)
800 {
801 	/* do nothing for now.  Called from pmap_page_init() */
802 }
803 
804 /*
805  * Each page queue has its own spin lock, which is fairly optimal for
806  * allocating and freeing pages at least.
807  *
808  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
809  * queue spinlock via this function.  Also note that m->queue cannot change
810  * unless both the page and queue are locked.
811  */
812 static __inline
813 void
814 _vm_page_queue_spin_lock(vm_page_t m)
815 {
816 	u_short queue;
817 
818 	queue = m->queue;
819 	if (queue != PQ_NONE) {
820 		spin_lock(&vm_page_queues[queue].spin);
821 		KKASSERT(queue == m->queue);
822 	}
823 }
824 
825 static __inline
826 void
827 _vm_page_queue_spin_unlock(vm_page_t m)
828 {
829 	u_short queue;
830 
831 	queue = m->queue;
832 	cpu_ccfence();
833 	if (queue != PQ_NONE)
834 		spin_unlock(&vm_page_queues[queue].spin);
835 }
836 
837 static __inline
838 void
839 _vm_page_queues_spin_lock(u_short queue)
840 {
841 	cpu_ccfence();
842 	if (queue != PQ_NONE)
843 		spin_lock(&vm_page_queues[queue].spin);
844 }
845 
846 
847 static __inline
848 void
849 _vm_page_queues_spin_unlock(u_short queue)
850 {
851 	cpu_ccfence();
852 	if (queue != PQ_NONE)
853 		spin_unlock(&vm_page_queues[queue].spin);
854 }
855 
856 void
857 vm_page_queue_spin_lock(vm_page_t m)
858 {
859 	_vm_page_queue_spin_lock(m);
860 }
861 
862 void
863 vm_page_queues_spin_lock(u_short queue)
864 {
865 	_vm_page_queues_spin_lock(queue);
866 }
867 
868 void
869 vm_page_queue_spin_unlock(vm_page_t m)
870 {
871 	_vm_page_queue_spin_unlock(m);
872 }
873 
874 void
875 vm_page_queues_spin_unlock(u_short queue)
876 {
877 	_vm_page_queues_spin_unlock(queue);
878 }
879 
880 /*
881  * This locks the specified vm_page and its queue in the proper order
882  * (page first, then queue).  The queue may change so the caller must
883  * recheck on return.
884  */
885 static __inline
886 void
887 _vm_page_and_queue_spin_lock(vm_page_t m)
888 {
889 	vm_page_spin_lock(m);
890 	_vm_page_queue_spin_lock(m);
891 }
892 
893 static __inline
894 void
895 _vm_page_and_queue_spin_unlock(vm_page_t m)
896 {
897 	_vm_page_queues_spin_unlock(m->queue);
898 	vm_page_spin_unlock(m);
899 }
900 
901 void
902 vm_page_and_queue_spin_unlock(vm_page_t m)
903 {
904 	_vm_page_and_queue_spin_unlock(m);
905 }
906 
907 void
908 vm_page_and_queue_spin_lock(vm_page_t m)
909 {
910 	_vm_page_and_queue_spin_lock(m);
911 }
912 
913 /*
914  * Helper function removes vm_page from its current queue.
915  * Returns the base queue the page used to be on.
916  *
917  * The vm_page and the queue must be spinlocked.
918  * This function will unlock the queue but leave the page spinlocked.
919  */
920 static __inline u_short
921 _vm_page_rem_queue_spinlocked(vm_page_t m)
922 {
923 	struct vpgqueues *pq;
924 	u_short queue;
925 	u_short oqueue;
926 	long *cnt;
927 
928 	queue = m->queue;
929 	if (queue != PQ_NONE) {
930 		pq = &vm_page_queues[queue];
931 		TAILQ_REMOVE(&pq->pl, m, pageq);
932 
933 		/*
934 		 * Adjust our pcpu stats.  In order for the nominal low-memory
935 		 * algorithms to work properly we don't let any pcpu stat get
936 		 * too negative before we force it to be rolled-up into the
937 		 * global stats.  Otherwise our pageout and vm_wait tests
938 		 * will fail badly.
939 		 *
940 		 * The idea here is to reduce unnecessary SMP cache
941 		 * mastership changes in the global vmstats, which can be
942 		 * particularly bad in multi-socket systems.
943 		 */
944 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
945 		atomic_add_long(cnt, -1);
946 		if (*cnt < -VMMETER_SLOP_COUNT) {
947 			u_long copy = atomic_swap_long(cnt, 0);
948 			cnt = (long *)((char *)&vmstats + pq->cnt_offset);
949 			atomic_add_long(cnt, copy);
950 			cnt = (long *)((char *)&mycpu->gd_vmstats +
951 				      pq->cnt_offset);
952 			atomic_add_long(cnt, copy);
953 		}
954 		pq->lcnt--;
955 		m->queue = PQ_NONE;
956 		oqueue = queue;
957 		queue -= m->pc;
958 		vm_page_queues_spin_unlock(oqueue);	/* intended */
959 	}
960 	return queue;
961 }
962 
963 /*
964  * Helper function places the vm_page on the specified queue.  Generally
965  * speaking only PQ_FREE pages are placed at the head, to allow them to
966  * be allocated sooner rather than later on the assumption that they
967  * are cache-hot.
968  *
969  * The vm_page must be spinlocked.
970  * This function will return with both the page and the queue locked.
971  */
972 static __inline void
973 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
974 {
975 	struct vpgqueues *pq;
976 	u_long *cnt;
977 
978 	KKASSERT(m->queue == PQ_NONE);
979 
980 	if (queue != PQ_NONE) {
981 		vm_page_queues_spin_lock(queue);
982 		pq = &vm_page_queues[queue];
983 		++pq->lcnt;
984 
985 		/*
986 		 * Adjust our pcpu stats.  If a system entity really needs
987 		 * to incorporate the count it will call vmstats_rollup()
988 		 * to roll it all up into the global vmstats strufture.
989 		 */
990 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
991 		atomic_add_long(cnt, 1);
992 
993 		/*
994 		 * PQ_FREE is always handled LIFO style to try to provide
995 		 * cache-hot pages to programs.
996 		 */
997 		m->queue = queue;
998 		if (queue - m->pc == PQ_FREE) {
999 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1000 		} else if (athead) {
1001 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1002 		} else {
1003 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1004 		}
1005 		/* leave the queue spinlocked */
1006 	}
1007 }
1008 
1009 /*
1010  * Wait until page is no longer BUSY.  If also_m_busy is TRUE we wait
1011  * until the page is no longer BUSY or SBUSY (busy_count field is 0).
1012  *
1013  * Returns TRUE if it had to sleep, FALSE if we did not.  Only one sleep
1014  * call will be made before returning.
1015  *
1016  * This function does NOT busy the page and on return the page is not
1017  * guaranteed to be available.
1018  */
1019 void
1020 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
1021 {
1022 	u_int32_t busy_count;
1023 
1024 	for (;;) {
1025 		busy_count = m->busy_count;
1026 		cpu_ccfence();
1027 
1028 		if ((busy_count & PBUSY_LOCKED) == 0 &&
1029 		    (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
1030 			break;
1031 		}
1032 		tsleep_interlock(m, 0);
1033 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1034 				      busy_count | PBUSY_WANTED)) {
1035 			atomic_set_int(&m->flags, PG_REFERENCED);
1036 			tsleep(m, PINTERLOCKED, msg, 0);
1037 			break;
1038 		}
1039 	}
1040 }
1041 
1042 /*
1043  * This calculates and returns a page color given an optional VM object and
1044  * either a pindex or an iterator.  We attempt to return a cpu-localized
1045  * pg_color that is still roughly 16-way set-associative.  The CPU topology
1046  * is used if it was probed.
1047  *
1048  * The caller may use the returned value to index into e.g. PQ_FREE when
1049  * allocating a page in order to nominally obtain pages that are hopefully
1050  * already localized to the requesting cpu.  This function is not able to
1051  * provide any sort of guarantee of this, but does its best to improve
1052  * hardware cache management performance.
1053  *
1054  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
1055  */
1056 u_short
1057 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
1058 {
1059 	u_short pg_color;
1060 	int object_pg_color;
1061 
1062 	/*
1063 	 * WARNING! cpu_topology_core_ids might not be a power of two.
1064 	 *	    We also shouldn't make assumptions about
1065 	 *	    cpu_topology_phys_ids either.
1066 	 *
1067 	 * WARNING! ncpus might not be known at this time (during early
1068 	 *	    boot), and might be set to 1.
1069 	 *
1070 	 * General format: [phys_id][core_id][cpuid][set-associativity]
1071 	 * (but uses modulo, so not necessarily precise bit masks)
1072 	 */
1073 	object_pg_color = object ? object->pg_color : 0;
1074 
1075 	if (cpu_topology_ht_ids) {
1076 		int phys_id;
1077 		int core_id;
1078 		int ht_id;
1079 		int physcale;
1080 		int grpscale;
1081 		int cpuscale;
1082 
1083 		/*
1084 		 * Translate cpuid to socket, core, and hyperthread id.
1085 		 */
1086 		phys_id = get_cpu_phys_id(cpuid);
1087 		core_id = get_cpu_core_id(cpuid);
1088 		ht_id = get_cpu_ht_id(cpuid);
1089 
1090 		/*
1091 		 * Calculate pg_color for our array index.
1092 		 *
1093 		 * physcale - socket multiplier.
1094 		 * grpscale - core multiplier (cores per socket)
1095 		 * cpu*	    - cpus per core
1096 		 *
1097 		 * WARNING! In early boot, ncpus has not yet been
1098 		 *	    initialized and may be set to (1).
1099 		 *
1100 		 * WARNING! physcale must match the organization that
1101 		 *	    vm_numa_organize() creates to ensure that
1102 		 *	    we properly localize allocations to the
1103 		 *	    requested cpuid.
1104 		 */
1105 		physcale = PQ_L2_SIZE / cpu_topology_phys_ids;
1106 		grpscale = physcale / cpu_topology_core_ids;
1107 		cpuscale = grpscale / cpu_topology_ht_ids;
1108 
1109 		pg_color = phys_id * physcale;
1110 		pg_color += core_id * grpscale;
1111 		pg_color += ht_id * cpuscale;
1112 		pg_color += (pindex + object_pg_color) % cpuscale;
1113 
1114 #if 0
1115 		if (grpsize >= 8) {
1116 			pg_color += (pindex + object_pg_color) % grpsize;
1117 		} else {
1118 			if (grpsize <= 2) {
1119 				grpsize = 8;
1120 			} else {
1121 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
1122 				grpsize += grpsize;
1123 				if (grpsize < 8)
1124 					grpsize += grpsize;
1125 			}
1126 			pg_color += (pindex + object_pg_color) % grpsize;
1127 		}
1128 #endif
1129 	} else {
1130 		/*
1131 		 * Unknown topology, distribute things evenly.
1132 		 *
1133 		 * WARNING! In early boot, ncpus has not yet been
1134 		 *	    initialized and may be set to (1).
1135 		 */
1136 		int cpuscale;
1137 
1138 		cpuscale = PQ_L2_SIZE / ncpus;
1139 
1140 		pg_color = cpuid * cpuscale;
1141 		pg_color += (pindex + object_pg_color) % cpuscale;
1142 	}
1143 	return (pg_color & PQ_L2_MASK);
1144 }
1145 
1146 /*
1147  * Wait until BUSY can be set, then set it.  If also_m_busy is TRUE we
1148  * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
1149  */
1150 void
1151 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1152 				     int also_m_busy, const char *msg
1153 				     VM_PAGE_DEBUG_ARGS)
1154 {
1155 	u_int32_t busy_count;
1156 
1157 	for (;;) {
1158 		busy_count = m->busy_count;
1159 		cpu_ccfence();
1160 		if (busy_count & PBUSY_LOCKED) {
1161 			tsleep_interlock(m, 0);
1162 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1163 					  busy_count | PBUSY_WANTED)) {
1164 				atomic_set_int(&m->flags, PG_REFERENCED);
1165 				tsleep(m, PINTERLOCKED, msg, 0);
1166 			}
1167 		} else if (also_m_busy && busy_count) {
1168 			tsleep_interlock(m, 0);
1169 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1170 					  busy_count | PBUSY_WANTED)) {
1171 				atomic_set_int(&m->flags, PG_REFERENCED);
1172 				tsleep(m, PINTERLOCKED, msg, 0);
1173 			}
1174 		} else {
1175 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1176 					      busy_count | PBUSY_LOCKED)) {
1177 #ifdef VM_PAGE_DEBUG
1178 				m->busy_func = func;
1179 				m->busy_line = lineno;
1180 #endif
1181 				break;
1182 			}
1183 		}
1184 	}
1185 }
1186 
1187 /*
1188  * Attempt to set BUSY.  If also_m_busy is TRUE we only succeed if
1189  * m->busy_count is also 0.
1190  *
1191  * Returns non-zero on failure.
1192  */
1193 int
1194 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1195 				    VM_PAGE_DEBUG_ARGS)
1196 {
1197 	u_int32_t busy_count;
1198 
1199 	for (;;) {
1200 		busy_count = m->busy_count;
1201 		cpu_ccfence();
1202 		if (busy_count & PBUSY_LOCKED)
1203 			return TRUE;
1204 		if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1205 			return TRUE;
1206 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1207 				      busy_count | PBUSY_LOCKED)) {
1208 #ifdef VM_PAGE_DEBUG
1209 				m->busy_func = func;
1210 				m->busy_line = lineno;
1211 #endif
1212 			return FALSE;
1213 		}
1214 	}
1215 }
1216 
1217 /*
1218  * Clear the BUSY flag and return non-zero to indicate to the caller
1219  * that a wakeup() should be performed.
1220  *
1221  * The vm_page must be spinlocked and will remain spinlocked on return.
1222  * The related queue must NOT be spinlocked (which could deadlock us).
1223  *
1224  * (inline version)
1225  */
1226 static __inline
1227 int
1228 _vm_page_wakeup(vm_page_t m)
1229 {
1230 	u_int32_t busy_count;
1231 
1232 	for (;;) {
1233 		busy_count = m->busy_count;
1234 		cpu_ccfence();
1235 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1236 				      busy_count &
1237 				      ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1238 			break;
1239 		}
1240 	}
1241 	return((int)(busy_count & PBUSY_WANTED));
1242 }
1243 
1244 /*
1245  * Clear the BUSY flag and wakeup anyone waiting for the page.  This
1246  * is typically the last call you make on a page before moving onto
1247  * other things.
1248  */
1249 void
1250 vm_page_wakeup(vm_page_t m)
1251 {
1252         KASSERT(m->busy_count & PBUSY_LOCKED,
1253 		("vm_page_wakeup: page not busy!!!"));
1254 	vm_page_spin_lock(m);
1255 	if (_vm_page_wakeup(m)) {
1256 		vm_page_spin_unlock(m);
1257 		wakeup(m);
1258 	} else {
1259 		vm_page_spin_unlock(m);
1260 	}
1261 }
1262 
1263 /*
1264  * Holding a page keeps it from being reused.  Other parts of the system
1265  * can still disassociate the page from its current object and free it, or
1266  * perform read or write I/O on it and/or otherwise manipulate the page,
1267  * but if the page is held the VM system will leave the page and its data
1268  * intact and not reuse the page for other purposes until the last hold
1269  * reference is released.  (see vm_page_wire() if you want to prevent the
1270  * page from being disassociated from its object too).
1271  *
1272  * The caller must still validate the contents of the page and, if necessary,
1273  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1274  * before manipulating the page.
1275  *
1276  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1277  */
1278 void
1279 vm_page_hold(vm_page_t m)
1280 {
1281 	vm_page_spin_lock(m);
1282 	atomic_add_int(&m->hold_count, 1);
1283 	if (m->queue - m->pc == PQ_FREE) {
1284 		_vm_page_queue_spin_lock(m);
1285 		_vm_page_rem_queue_spinlocked(m);
1286 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1287 		_vm_page_queue_spin_unlock(m);
1288 	}
1289 	vm_page_spin_unlock(m);
1290 }
1291 
1292 /*
1293  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1294  * it was freed while held and must be moved back to the FREE queue.
1295  */
1296 void
1297 vm_page_unhold(vm_page_t m)
1298 {
1299 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1300 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1301 		 m, m->hold_count, m->queue - m->pc));
1302 	vm_page_spin_lock(m);
1303 	atomic_add_int(&m->hold_count, -1);
1304 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1305 		_vm_page_queue_spin_lock(m);
1306 		_vm_page_rem_queue_spinlocked(m);
1307 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1308 		_vm_page_queue_spin_unlock(m);
1309 	}
1310 	vm_page_spin_unlock(m);
1311 }
1312 
1313 /*
1314  *	vm_page_getfake:
1315  *
1316  *	Create a fictitious page with the specified physical address and
1317  *	memory attribute.  The memory attribute is the only the machine-
1318  *	dependent aspect of a fictitious page that must be initialized.
1319  */
1320 
1321 void
1322 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1323 {
1324 
1325 	if ((m->flags & PG_FICTITIOUS) != 0) {
1326 		/*
1327 		 * The page's memattr might have changed since the
1328 		 * previous initialization.  Update the pmap to the
1329 		 * new memattr.
1330 		 */
1331 		goto memattr;
1332 	}
1333 	m->phys_addr = paddr;
1334 	m->queue = PQ_NONE;
1335 	/* Fictitious pages don't use "segind". */
1336 	/* Fictitious pages don't use "order" or "pool". */
1337 	m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1338 	m->busy_count = PBUSY_LOCKED;
1339 	m->wire_count = 1;
1340 	spin_init(&m->spin, "fake_page");
1341 	pmap_page_init(m);
1342 memattr:
1343 	pmap_page_set_memattr(m, memattr);
1344 }
1345 
1346 /*
1347  * Inserts the given vm_page into the object and object list.
1348  *
1349  * The pagetables are not updated but will presumably fault the page
1350  * in if necessary, or if a kernel page the caller will at some point
1351  * enter the page into the kernel's pmap.  We are not allowed to block
1352  * here so we *can't* do this anyway.
1353  *
1354  * This routine may not block.
1355  * This routine must be called with the vm_object held.
1356  * This routine must be called with a critical section held.
1357  *
1358  * This routine returns TRUE if the page was inserted into the object
1359  * successfully, and FALSE if the page already exists in the object.
1360  */
1361 int
1362 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1363 {
1364 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1365 	if (m->object != NULL)
1366 		panic("vm_page_insert: already inserted");
1367 
1368 	atomic_add_int(&object->generation, 1);
1369 
1370 	/*
1371 	 * Record the object/offset pair in this page and add the
1372 	 * pv_list_count of the page to the object.
1373 	 *
1374 	 * The vm_page spin lock is required for interactions with the pmap.
1375 	 */
1376 	vm_page_spin_lock(m);
1377 	m->object = object;
1378 	m->pindex = pindex;
1379 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1380 		m->object = NULL;
1381 		m->pindex = 0;
1382 		vm_page_spin_unlock(m);
1383 		return FALSE;
1384 	}
1385 	++object->resident_page_count;
1386 	++mycpu->gd_vmtotal.t_rm;
1387 	vm_page_spin_unlock(m);
1388 
1389 	/*
1390 	 * Since we are inserting a new and possibly dirty page,
1391 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1392 	 */
1393 	if ((m->valid & m->dirty) ||
1394 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1395 		vm_object_set_writeable_dirty(object);
1396 
1397 	/*
1398 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1399 	 */
1400 	swap_pager_page_inserted(m);
1401 	return TRUE;
1402 }
1403 
1404 /*
1405  * Removes the given vm_page_t from the (object,index) table
1406  *
1407  * The underlying pmap entry (if any) is NOT removed here.
1408  * This routine may not block.
1409  *
1410  * The page must be BUSY and will remain BUSY on return.
1411  * No other requirements.
1412  *
1413  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1414  *	 it busy.
1415  */
1416 void
1417 vm_page_remove(vm_page_t m)
1418 {
1419 	vm_object_t object;
1420 
1421 	if (m->object == NULL) {
1422 		return;
1423 	}
1424 
1425 	if ((m->busy_count & PBUSY_LOCKED) == 0)
1426 		panic("vm_page_remove: page not busy");
1427 
1428 	object = m->object;
1429 
1430 	vm_object_hold(object);
1431 
1432 	/*
1433 	 * Remove the page from the object and update the object.
1434 	 *
1435 	 * The vm_page spin lock is required for interactions with the pmap.
1436 	 */
1437 	vm_page_spin_lock(m);
1438 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1439 	--object->resident_page_count;
1440 	--mycpu->gd_vmtotal.t_rm;
1441 	m->object = NULL;
1442 	atomic_add_int(&object->generation, 1);
1443 	vm_page_spin_unlock(m);
1444 
1445 	vm_object_drop(object);
1446 }
1447 
1448 /*
1449  * Locate and return the page at (object, pindex), or NULL if the
1450  * page could not be found.
1451  *
1452  * The caller must hold the vm_object token.
1453  */
1454 vm_page_t
1455 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1456 {
1457 	vm_page_t m;
1458 
1459 	/*
1460 	 * Search the hash table for this object/offset pair
1461 	 */
1462 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1463 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1464 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1465 	return(m);
1466 }
1467 
1468 vm_page_t
1469 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1470 					    vm_pindex_t pindex,
1471 					    int also_m_busy, const char *msg
1472 					    VM_PAGE_DEBUG_ARGS)
1473 {
1474 	u_int32_t busy_count;
1475 	vm_page_t m;
1476 
1477 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1478 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1479 	while (m) {
1480 		KKASSERT(m->object == object && m->pindex == pindex);
1481 		busy_count = m->busy_count;
1482 		cpu_ccfence();
1483 		if (busy_count & PBUSY_LOCKED) {
1484 			tsleep_interlock(m, 0);
1485 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1486 					  busy_count | PBUSY_WANTED)) {
1487 				atomic_set_int(&m->flags, PG_REFERENCED);
1488 				tsleep(m, PINTERLOCKED, msg, 0);
1489 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1490 							      pindex);
1491 			}
1492 		} else if (also_m_busy && busy_count) {
1493 			tsleep_interlock(m, 0);
1494 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1495 					  busy_count | PBUSY_WANTED)) {
1496 				atomic_set_int(&m->flags, PG_REFERENCED);
1497 				tsleep(m, PINTERLOCKED, msg, 0);
1498 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1499 							      pindex);
1500 			}
1501 		} else if (atomic_cmpset_int(&m->busy_count, busy_count,
1502 					     busy_count | PBUSY_LOCKED)) {
1503 #ifdef VM_PAGE_DEBUG
1504 			m->busy_func = func;
1505 			m->busy_line = lineno;
1506 #endif
1507 			break;
1508 		}
1509 	}
1510 	return m;
1511 }
1512 
1513 /*
1514  * Attempt to lookup and busy a page.
1515  *
1516  * Returns NULL if the page could not be found
1517  *
1518  * Returns a vm_page and error == TRUE if the page exists but could not
1519  * be busied.
1520  *
1521  * Returns a vm_page and error == FALSE on success.
1522  */
1523 vm_page_t
1524 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1525 					   vm_pindex_t pindex,
1526 					   int also_m_busy, int *errorp
1527 					   VM_PAGE_DEBUG_ARGS)
1528 {
1529 	u_int32_t busy_count;
1530 	vm_page_t m;
1531 
1532 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1533 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1534 	*errorp = FALSE;
1535 	while (m) {
1536 		KKASSERT(m->object == object && m->pindex == pindex);
1537 		busy_count = m->busy_count;
1538 		cpu_ccfence();
1539 		if (busy_count & PBUSY_LOCKED) {
1540 			*errorp = TRUE;
1541 			break;
1542 		}
1543 		if (also_m_busy && busy_count) {
1544 			*errorp = TRUE;
1545 			break;
1546 		}
1547 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1548 				      busy_count | PBUSY_LOCKED)) {
1549 #ifdef VM_PAGE_DEBUG
1550 			m->busy_func = func;
1551 			m->busy_line = lineno;
1552 #endif
1553 			break;
1554 		}
1555 	}
1556 	return m;
1557 }
1558 
1559 /*
1560  * Returns a page that is only soft-busied for use by the caller in
1561  * a read-only fashion.  Returns NULL if the page could not be found,
1562  * the soft busy could not be obtained, or the page data is invalid.
1563  */
1564 vm_page_t
1565 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1566 			 int pgoff, int pgbytes)
1567 {
1568 	vm_page_t m;
1569 
1570 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1571 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1572 	if (m) {
1573 		if ((m->valid != VM_PAGE_BITS_ALL &&
1574 		     !vm_page_is_valid(m, pgoff, pgbytes)) ||
1575 		    (m->flags & PG_FICTITIOUS)) {
1576 			m = NULL;
1577 		} else if (vm_page_sbusy_try(m)) {
1578 			m = NULL;
1579 		} else if ((m->valid != VM_PAGE_BITS_ALL &&
1580 			    !vm_page_is_valid(m, pgoff, pgbytes)) ||
1581 			   (m->flags & PG_FICTITIOUS)) {
1582 			vm_page_sbusy_drop(m);
1583 			m = NULL;
1584 		}
1585 	}
1586 	return m;
1587 }
1588 
1589 /*
1590  * Caller must hold the related vm_object
1591  */
1592 vm_page_t
1593 vm_page_next(vm_page_t m)
1594 {
1595 	vm_page_t next;
1596 
1597 	next = vm_page_rb_tree_RB_NEXT(m);
1598 	if (next && next->pindex != m->pindex + 1)
1599 		next = NULL;
1600 	return (next);
1601 }
1602 
1603 /*
1604  * vm_page_rename()
1605  *
1606  * Move the given vm_page from its current object to the specified
1607  * target object/offset.  The page must be busy and will remain so
1608  * on return.
1609  *
1610  * new_object must be held.
1611  * This routine might block. XXX ?
1612  *
1613  * NOTE: Swap associated with the page must be invalidated by the move.  We
1614  *       have to do this for several reasons:  (1) we aren't freeing the
1615  *       page, (2) we are dirtying the page, (3) the VM system is probably
1616  *       moving the page from object A to B, and will then later move
1617  *       the backing store from A to B and we can't have a conflict.
1618  *
1619  * NOTE: We *always* dirty the page.  It is necessary both for the
1620  *       fact that we moved it, and because we may be invalidating
1621  *	 swap.  If the page is on the cache, we have to deactivate it
1622  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1623  *	 on the cache.
1624  */
1625 void
1626 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1627 {
1628 	KKASSERT(m->busy_count & PBUSY_LOCKED);
1629 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1630 	if (m->object) {
1631 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1632 		vm_page_remove(m);
1633 	}
1634 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1635 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1636 		      new_object, new_pindex);
1637 	}
1638 	if (m->queue - m->pc == PQ_CACHE)
1639 		vm_page_deactivate(m);
1640 	vm_page_dirty(m);
1641 }
1642 
1643 /*
1644  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1645  * is to remain BUSYied by the caller.
1646  *
1647  * This routine may not block.
1648  */
1649 void
1650 vm_page_unqueue_nowakeup(vm_page_t m)
1651 {
1652 	vm_page_and_queue_spin_lock(m);
1653 	(void)_vm_page_rem_queue_spinlocked(m);
1654 	vm_page_spin_unlock(m);
1655 }
1656 
1657 /*
1658  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1659  * if necessary.
1660  *
1661  * This routine may not block.
1662  */
1663 void
1664 vm_page_unqueue(vm_page_t m)
1665 {
1666 	u_short queue;
1667 
1668 	vm_page_and_queue_spin_lock(m);
1669 	queue = _vm_page_rem_queue_spinlocked(m);
1670 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1671 		vm_page_spin_unlock(m);
1672 		pagedaemon_wakeup();
1673 	} else {
1674 		vm_page_spin_unlock(m);
1675 	}
1676 }
1677 
1678 /*
1679  * vm_page_list_find()
1680  *
1681  * Find a page on the specified queue with color optimization.
1682  *
1683  * The page coloring optimization attempts to locate a page that does
1684  * not overload other nearby pages in the object in the cpu's L1 or L2
1685  * caches.  We need this optimization because cpu caches tend to be
1686  * physical caches, while object spaces tend to be virtual.
1687  *
1688  * The page coloring optimization also, very importantly, tries to localize
1689  * memory to cpus and physical sockets.
1690  *
1691  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1692  * and the algorithm is adjusted to localize allocations on a per-core basis.
1693  * This is done by 'twisting' the colors.
1694  *
1695  * The page is returned spinlocked and removed from its queue (it will
1696  * be on PQ_NONE), or NULL. The page is not BUSY'd.  The caller
1697  * is responsible for dealing with the busy-page case (usually by
1698  * deactivating the page and looping).
1699  *
1700  * NOTE:  This routine is carefully inlined.  A non-inlined version
1701  *	  is available for outside callers but the only critical path is
1702  *	  from within this source file.
1703  *
1704  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1705  *	  represent stable storage, allowing us to order our locks vm_page
1706  *	  first, then queue.
1707  */
1708 static __inline
1709 vm_page_t
1710 _vm_page_list_find(int basequeue, int index)
1711 {
1712 	vm_page_t m;
1713 
1714 	for (;;) {
1715 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1716 		if (m == NULL) {
1717 			m = _vm_page_list_find2(basequeue, index);
1718 			return(m);
1719 		}
1720 		vm_page_and_queue_spin_lock(m);
1721 		if (m->queue == basequeue + index) {
1722 			_vm_page_rem_queue_spinlocked(m);
1723 			/* vm_page_t spin held, no queue spin */
1724 			break;
1725 		}
1726 		vm_page_and_queue_spin_unlock(m);
1727 	}
1728 	return(m);
1729 }
1730 
1731 /*
1732  * If we could not find the page in the desired queue try to find it in
1733  * a nearby queue.
1734  */
1735 static vm_page_t
1736 _vm_page_list_find2(int basequeue, int index)
1737 {
1738 	struct vpgqueues *pq;
1739 	vm_page_t m = NULL;
1740 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1741 	int pqi;
1742 	int i;
1743 
1744 	index &= PQ_L2_MASK;
1745 	pq = &vm_page_queues[basequeue];
1746 
1747 	/*
1748 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1749 	 * else fails (PQ_L2_MASK which is 255).
1750 	 */
1751 	do {
1752 		pqmask = (pqmask << 1) | 1;
1753 		for (i = 0; i <= pqmask; ++i) {
1754 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1755 			m = TAILQ_FIRST(&pq[pqi].pl);
1756 			if (m) {
1757 				_vm_page_and_queue_spin_lock(m);
1758 				if (m->queue == basequeue + pqi) {
1759 					_vm_page_rem_queue_spinlocked(m);
1760 					return(m);
1761 				}
1762 				_vm_page_and_queue_spin_unlock(m);
1763 				--i;
1764 				continue;
1765 			}
1766 		}
1767 	} while (pqmask != PQ_L2_MASK);
1768 
1769 	return(m);
1770 }
1771 
1772 /*
1773  * Returns a vm_page candidate for allocation.  The page is not busied so
1774  * it can move around.  The caller must busy the page (and typically
1775  * deactivate it if it cannot be busied!)
1776  *
1777  * Returns a spinlocked vm_page that has been removed from its queue.
1778  */
1779 vm_page_t
1780 vm_page_list_find(int basequeue, int index)
1781 {
1782 	return(_vm_page_list_find(basequeue, index));
1783 }
1784 
1785 /*
1786  * Find a page on the cache queue with color optimization, remove it
1787  * from the queue, and busy it.  The returned page will not be spinlocked.
1788  *
1789  * A candidate failure will be deactivated.  Candidates can fail due to
1790  * being busied by someone else, in which case they will be deactivated.
1791  *
1792  * This routine may not block.
1793  *
1794  */
1795 static vm_page_t
1796 vm_page_select_cache(u_short pg_color)
1797 {
1798 	vm_page_t m;
1799 
1800 	for (;;) {
1801 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1802 		if (m == NULL)
1803 			break;
1804 		/*
1805 		 * (m) has been removed from its queue and spinlocked
1806 		 */
1807 		if (vm_page_busy_try(m, TRUE)) {
1808 			_vm_page_deactivate_locked(m, 0);
1809 			vm_page_spin_unlock(m);
1810 		} else {
1811 			/*
1812 			 * We successfully busied the page
1813 			 */
1814 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1815 			    m->hold_count == 0 &&
1816 			    m->wire_count == 0 &&
1817 			    (m->dirty & m->valid) == 0) {
1818 				vm_page_spin_unlock(m);
1819 				pagedaemon_wakeup();
1820 				return(m);
1821 			}
1822 
1823 			/*
1824 			 * The page cannot be recycled, deactivate it.
1825 			 */
1826 			_vm_page_deactivate_locked(m, 0);
1827 			if (_vm_page_wakeup(m)) {
1828 				vm_page_spin_unlock(m);
1829 				wakeup(m);
1830 			} else {
1831 				vm_page_spin_unlock(m);
1832 			}
1833 		}
1834 	}
1835 	return (m);
1836 }
1837 
1838 /*
1839  * Find a free page.  We attempt to inline the nominal case and fall back
1840  * to _vm_page_select_free() otherwise.  A busied page is removed from
1841  * the queue and returned.
1842  *
1843  * This routine may not block.
1844  */
1845 static __inline vm_page_t
1846 vm_page_select_free(u_short pg_color)
1847 {
1848 	vm_page_t m;
1849 
1850 	for (;;) {
1851 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1852 		if (m == NULL)
1853 			break;
1854 		if (vm_page_busy_try(m, TRUE)) {
1855 			/*
1856 			 * Various mechanisms such as a pmap_collect can
1857 			 * result in a busy page on the free queue.  We
1858 			 * have to move the page out of the way so we can
1859 			 * retry the allocation.  If the other thread is not
1860 			 * allocating the page then m->valid will remain 0 and
1861 			 * the pageout daemon will free the page later on.
1862 			 *
1863 			 * Since we could not busy the page, however, we
1864 			 * cannot make assumptions as to whether the page
1865 			 * will be allocated by the other thread or not,
1866 			 * so all we can do is deactivate it to move it out
1867 			 * of the way.  In particular, if the other thread
1868 			 * wires the page it may wind up on the inactive
1869 			 * queue and the pageout daemon will have to deal
1870 			 * with that case too.
1871 			 */
1872 			_vm_page_deactivate_locked(m, 0);
1873 			vm_page_spin_unlock(m);
1874 		} else {
1875 			/*
1876 			 * Theoretically if we are able to busy the page
1877 			 * atomic with the queue removal (using the vm_page
1878 			 * lock) nobody else should be able to mess with the
1879 			 * page before us.
1880 			 */
1881 			KKASSERT((m->flags & (PG_UNMANAGED |
1882 					      PG_NEED_COMMIT)) == 0);
1883 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1884 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1885 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1886 			KKASSERT(m->wire_count == 0);
1887 			vm_page_spin_unlock(m);
1888 			pagedaemon_wakeup();
1889 
1890 			/* return busied and removed page */
1891 			return(m);
1892 		}
1893 	}
1894 	return(m);
1895 }
1896 
1897 /*
1898  * vm_page_alloc()
1899  *
1900  * Allocate and return a memory cell associated with this VM object/offset
1901  * pair.  If object is NULL an unassociated page will be allocated.
1902  *
1903  * The returned page will be busied and removed from its queues.  This
1904  * routine can block and may return NULL if a race occurs and the page
1905  * is found to already exist at the specified (object, pindex).
1906  *
1907  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1908  *	VM_ALLOC_QUICK		like normal but cannot use cache
1909  *	VM_ALLOC_SYSTEM		greater free drain
1910  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1911  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1912  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1913  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1914  *				(see vm_page_grab())
1915  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1916  *
1917  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
1918  *
1919  * The object must be held if not NULL
1920  * This routine may not block
1921  *
1922  * Additional special handling is required when called from an interrupt
1923  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1924  * in this case.
1925  */
1926 vm_page_t
1927 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1928 {
1929 	globaldata_t gd;
1930 	vm_object_t obj;
1931 	vm_page_t m;
1932 	u_short pg_color;
1933 	int cpuid_local;
1934 
1935 #if 0
1936 	/*
1937 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1938 	 * and pre-zerod for us.
1939 	 */
1940 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1941 		crit_enter_gd(gd);
1942 		if (gd->gd_vmpg_count) {
1943 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1944 			crit_exit_gd(gd);
1945 			goto done;
1946                 }
1947 		crit_exit_gd(gd);
1948         }
1949 #endif
1950 	m = NULL;
1951 
1952 	/*
1953 	 * CPU LOCALIZATION
1954 	 *
1955 	 * CPU localization algorithm.  Break the page queues up by physical
1956 	 * id and core id (note that two cpu threads will have the same core
1957 	 * id, and core_id != gd_cpuid).
1958 	 *
1959 	 * This is nowhere near perfect, for example the last pindex in a
1960 	 * subgroup will overflow into the next cpu or package.  But this
1961 	 * should get us good page reuse locality in heavy mixed loads.
1962 	 *
1963 	 * (may be executed before the APs are started, so other GDs might
1964 	 *  not exist!)
1965 	 */
1966 	if (page_req & VM_ALLOC_CPU_SPEC)
1967 		cpuid_local = VM_ALLOC_GETCPU(page_req);
1968 	else
1969 		cpuid_local = mycpu->gd_cpuid;
1970 
1971 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1972 
1973 	KKASSERT(page_req &
1974 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1975 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1976 
1977 	/*
1978 	 * Certain system threads (pageout daemon, buf_daemon's) are
1979 	 * allowed to eat deeper into the free page list.
1980 	 */
1981 	if (curthread->td_flags & TDF_SYSTHREAD)
1982 		page_req |= VM_ALLOC_SYSTEM;
1983 
1984 	/*
1985 	 * Impose various limitations.  Note that the v_free_reserved test
1986 	 * must match the opposite of vm_page_count_target() to avoid
1987 	 * livelocks, be careful.
1988 	 */
1989 loop:
1990 	gd = mycpu;
1991 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1992 	    ((page_req & VM_ALLOC_INTERRUPT) &&
1993 	     gd->gd_vmstats.v_free_count > 0) ||
1994 	    ((page_req & VM_ALLOC_SYSTEM) &&
1995 	     gd->gd_vmstats.v_cache_count == 0 &&
1996 		gd->gd_vmstats.v_free_count >
1997 		gd->gd_vmstats.v_interrupt_free_min)
1998 	) {
1999 		/*
2000 		 * The free queue has sufficient free pages to take one out.
2001 		 */
2002 		m = vm_page_select_free(pg_color);
2003 	} else if (page_req & VM_ALLOC_NORMAL) {
2004 		/*
2005 		 * Allocatable from the cache (non-interrupt only).  On
2006 		 * success, we must free the page and try again, thus
2007 		 * ensuring that vmstats.v_*_free_min counters are replenished.
2008 		 */
2009 #ifdef INVARIANTS
2010 		if (curthread->td_preempted) {
2011 			kprintf("vm_page_alloc(): warning, attempt to allocate"
2012 				" cache page from preempting interrupt\n");
2013 			m = NULL;
2014 		} else {
2015 			m = vm_page_select_cache(pg_color);
2016 		}
2017 #else
2018 		m = vm_page_select_cache(pg_color);
2019 #endif
2020 		/*
2021 		 * On success move the page into the free queue and loop.
2022 		 *
2023 		 * Only do this if we can safely acquire the vm_object lock,
2024 		 * because this is effectively a random page and the caller
2025 		 * might be holding the lock shared, we don't want to
2026 		 * deadlock.
2027 		 */
2028 		if (m != NULL) {
2029 			KASSERT(m->dirty == 0,
2030 				("Found dirty cache page %p", m));
2031 			if ((obj = m->object) != NULL) {
2032 				if (vm_object_hold_try(obj)) {
2033 					vm_page_protect(m, VM_PROT_NONE);
2034 					vm_page_free(m);
2035 					/* m->object NULL here */
2036 					vm_object_drop(obj);
2037 				} else {
2038 					vm_page_deactivate(m);
2039 					vm_page_wakeup(m);
2040 				}
2041 			} else {
2042 				vm_page_protect(m, VM_PROT_NONE);
2043 				vm_page_free(m);
2044 			}
2045 			goto loop;
2046 		}
2047 
2048 		/*
2049 		 * On failure return NULL
2050 		 */
2051 		atomic_add_int(&vm_pageout_deficit, 1);
2052 		pagedaemon_wakeup();
2053 		return (NULL);
2054 	} else {
2055 		/*
2056 		 * No pages available, wakeup the pageout daemon and give up.
2057 		 */
2058 		atomic_add_int(&vm_pageout_deficit, 1);
2059 		pagedaemon_wakeup();
2060 		return (NULL);
2061 	}
2062 
2063 	/*
2064 	 * v_free_count can race so loop if we don't find the expected
2065 	 * page.
2066 	 */
2067 	if (m == NULL) {
2068 		vmstats_rollup();
2069 		goto loop;
2070 	}
2071 
2072 	/*
2073 	 * Good page found.  The page has already been busied for us and
2074 	 * removed from its queues.
2075 	 */
2076 	KASSERT(m->dirty == 0,
2077 		("vm_page_alloc: free/cache page %p was dirty", m));
2078 	KKASSERT(m->queue == PQ_NONE);
2079 
2080 #if 0
2081 done:
2082 #endif
2083 	/*
2084 	 * Initialize the structure, inheriting some flags but clearing
2085 	 * all the rest.  The page has already been busied for us.
2086 	 */
2087 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
2088 
2089 	KKASSERT(m->wire_count == 0);
2090 	KKASSERT((m->busy_count & PBUSY_MASK) == 0);
2091 	m->act_count = 0;
2092 	m->valid = 0;
2093 
2094 	/*
2095 	 * Caller must be holding the object lock (asserted by
2096 	 * vm_page_insert()).
2097 	 *
2098 	 * NOTE: Inserting a page here does not insert it into any pmaps
2099 	 *	 (which could cause us to block allocating memory).
2100 	 *
2101 	 * NOTE: If no object an unassociated page is allocated, m->pindex
2102 	 *	 can be used by the caller for any purpose.
2103 	 */
2104 	if (object) {
2105 		if (vm_page_insert(m, object, pindex) == FALSE) {
2106 			vm_page_free(m);
2107 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
2108 				panic("PAGE RACE %p[%ld]/%p",
2109 				      object, (long)pindex, m);
2110 			m = NULL;
2111 		}
2112 	} else {
2113 		m->pindex = pindex;
2114 	}
2115 
2116 	/*
2117 	 * Don't wakeup too often - wakeup the pageout daemon when
2118 	 * we would be nearly out of memory.
2119 	 */
2120 	pagedaemon_wakeup();
2121 
2122 	/*
2123 	 * A BUSY page is returned.
2124 	 */
2125 	return (m);
2126 }
2127 
2128 /*
2129  * Returns number of pages available in our DMA memory reserve
2130  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2131  */
2132 vm_size_t
2133 vm_contig_avail_pages(void)
2134 {
2135 	alist_blk_t blk;
2136 	alist_blk_t count;
2137 	alist_blk_t bfree;
2138 	spin_lock(&vm_contig_spin);
2139 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2140 	spin_unlock(&vm_contig_spin);
2141 
2142 	return bfree;
2143 }
2144 
2145 /*
2146  * Attempt to allocate contiguous physical memory with the specified
2147  * requirements.
2148  */
2149 vm_page_t
2150 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2151 		     unsigned long alignment, unsigned long boundary,
2152 		     unsigned long size, vm_memattr_t memattr)
2153 {
2154 	alist_blk_t blk;
2155 	vm_page_t m;
2156 	vm_pindex_t i;
2157 #if 0
2158 	static vm_pindex_t contig_rover;
2159 #endif
2160 
2161 	alignment >>= PAGE_SHIFT;
2162 	if (alignment == 0)
2163 		alignment = 1;
2164 	boundary >>= PAGE_SHIFT;
2165 	if (boundary == 0)
2166 		boundary = 1;
2167 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2168 
2169 #if 0
2170 	/*
2171 	 * Disabled temporarily until we find a solution for DRM (a flag
2172 	 * to always use the free space reserve, for performance).
2173 	 */
2174 	if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
2175 	    boundary <= PAGE_SIZE && size == 1 &&
2176 	    memattr == VM_MEMATTR_DEFAULT) {
2177 		/*
2178 		 * Any page will work, use vm_page_alloc()
2179 		 * (e.g. when used from kmem_alloc_attr())
2180 		 */
2181 		m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2182 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2183 				  VM_ALLOC_INTERRUPT);
2184 		m->valid = VM_PAGE_BITS_ALL;
2185 		vm_page_wire(m);
2186 		vm_page_wakeup(m);
2187 	} else
2188 #endif
2189 	{
2190 		/*
2191 		 * Use the low-memory dma reserve
2192 		 */
2193 		spin_lock(&vm_contig_spin);
2194 		blk = alist_alloc(&vm_contig_alist, 0, size);
2195 		if (blk == ALIST_BLOCK_NONE) {
2196 			spin_unlock(&vm_contig_spin);
2197 			if (bootverbose) {
2198 				kprintf("vm_page_alloc_contig: %ldk nospace\n",
2199 					(size << PAGE_SHIFT) / 1024);
2200 				print_backtrace(5);
2201 			}
2202 			return(NULL);
2203 		}
2204 		if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2205 			alist_free(&vm_contig_alist, blk, size);
2206 			spin_unlock(&vm_contig_spin);
2207 			if (bootverbose) {
2208 				kprintf("vm_page_alloc_contig: %ldk high "
2209 					"%016jx failed\n",
2210 					(size << PAGE_SHIFT) / 1024,
2211 					(intmax_t)high);
2212 			}
2213 			return(NULL);
2214 		}
2215 		spin_unlock(&vm_contig_spin);
2216 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2217 	}
2218 	if (vm_contig_verbose) {
2219 		kprintf("vm_page_alloc_contig: %016jx/%ldk "
2220 			"(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2221 			(intmax_t)m->phys_addr,
2222 			(size << PAGE_SHIFT) / 1024,
2223 			low, high, alignment, boundary, size, memattr);
2224 	}
2225 	if (memattr != VM_MEMATTR_DEFAULT) {
2226 		for (i = 0;i < size; i++)
2227 			pmap_page_set_memattr(&m[i], memattr);
2228 	}
2229 	return m;
2230 }
2231 
2232 /*
2233  * Free contiguously allocated pages.  The pages will be wired but not busy.
2234  * When freeing to the alist we leave them wired and not busy.
2235  */
2236 void
2237 vm_page_free_contig(vm_page_t m, unsigned long size)
2238 {
2239 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2240 	vm_pindex_t start = pa >> PAGE_SHIFT;
2241 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2242 
2243 	if (vm_contig_verbose) {
2244 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2245 			(intmax_t)pa, size / 1024);
2246 	}
2247 	if (pa < vm_low_phys_reserved) {
2248 		KKASSERT(pa + size <= vm_low_phys_reserved);
2249 		spin_lock(&vm_contig_spin);
2250 		alist_free(&vm_contig_alist, start, pages);
2251 		spin_unlock(&vm_contig_spin);
2252 	} else {
2253 		while (pages) {
2254 			vm_page_busy_wait(m, FALSE, "cpgfr");
2255 			vm_page_unwire(m, 0);
2256 			vm_page_free(m);
2257 			--pages;
2258 			++m;
2259 		}
2260 
2261 	}
2262 }
2263 
2264 
2265 /*
2266  * Wait for sufficient free memory for nominal heavy memory use kernel
2267  * operations.
2268  *
2269  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2270  *	     will trivially deadlock the system.
2271  */
2272 void
2273 vm_wait_nominal(void)
2274 {
2275 	while (vm_page_count_min(0))
2276 		vm_wait(0);
2277 }
2278 
2279 /*
2280  * Test if vm_wait_nominal() would block.
2281  */
2282 int
2283 vm_test_nominal(void)
2284 {
2285 	if (vm_page_count_min(0))
2286 		return(1);
2287 	return(0);
2288 }
2289 
2290 /*
2291  * Block until free pages are available for allocation, called in various
2292  * places before memory allocations.
2293  *
2294  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2295  * more generous then that.
2296  */
2297 void
2298 vm_wait(int timo)
2299 {
2300 	/*
2301 	 * never wait forever
2302 	 */
2303 	if (timo == 0)
2304 		timo = hz;
2305 	lwkt_gettoken(&vm_token);
2306 
2307 	if (curthread == pagethread ||
2308 	    curthread == emergpager) {
2309 		/*
2310 		 * The pageout daemon itself needs pages, this is bad.
2311 		 */
2312 		if (vm_page_count_min(0)) {
2313 			vm_pageout_pages_needed = 1;
2314 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2315 		}
2316 	} else {
2317 		/*
2318 		 * Wakeup the pageout daemon if necessary and wait.
2319 		 *
2320 		 * Do not wait indefinitely for the target to be reached,
2321 		 * as load might prevent it from being reached any time soon.
2322 		 * But wait a little to try to slow down page allocations
2323 		 * and to give more important threads (the pagedaemon)
2324 		 * allocation priority.
2325 		 */
2326 		if (vm_page_count_target()) {
2327 			if (vm_pages_needed == 0) {
2328 				vm_pages_needed = 1;
2329 				wakeup(&vm_pages_needed);
2330 			}
2331 			++vm_pages_waiting;	/* SMP race ok */
2332 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2333 		}
2334 	}
2335 	lwkt_reltoken(&vm_token);
2336 }
2337 
2338 /*
2339  * Block until free pages are available for allocation
2340  *
2341  * Called only from vm_fault so that processes page faulting can be
2342  * easily tracked.
2343  */
2344 void
2345 vm_wait_pfault(void)
2346 {
2347 	/*
2348 	 * Wakeup the pageout daemon if necessary and wait.
2349 	 *
2350 	 * Do not wait indefinitely for the target to be reached,
2351 	 * as load might prevent it from being reached any time soon.
2352 	 * But wait a little to try to slow down page allocations
2353 	 * and to give more important threads (the pagedaemon)
2354 	 * allocation priority.
2355 	 */
2356 	if (vm_page_count_min(0)) {
2357 		lwkt_gettoken(&vm_token);
2358 		while (vm_page_count_severe()) {
2359 			if (vm_page_count_target()) {
2360 				thread_t td;
2361 
2362 				if (vm_pages_needed == 0) {
2363 					vm_pages_needed = 1;
2364 					wakeup(&vm_pages_needed);
2365 				}
2366 				++vm_pages_waiting;	/* SMP race ok */
2367 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2368 
2369 				/*
2370 				 * Do not stay stuck in the loop if the system is trying
2371 				 * to kill the process.
2372 				 */
2373 				td = curthread;
2374 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2375 					break;
2376 			}
2377 		}
2378 		lwkt_reltoken(&vm_token);
2379 	}
2380 }
2381 
2382 /*
2383  * Put the specified page on the active list (if appropriate).  Ensure
2384  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2385  *
2386  * The caller should be holding the page busied ? XXX
2387  * This routine may not block.
2388  */
2389 void
2390 vm_page_activate(vm_page_t m)
2391 {
2392 	u_short oqueue;
2393 
2394 	vm_page_spin_lock(m);
2395 	if (m->queue - m->pc != PQ_ACTIVE) {
2396 		_vm_page_queue_spin_lock(m);
2397 		oqueue = _vm_page_rem_queue_spinlocked(m);
2398 		/* page is left spinlocked, queue is unlocked */
2399 
2400 		if (oqueue == PQ_CACHE)
2401 			mycpu->gd_cnt.v_reactivated++;
2402 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2403 			if (m->act_count < ACT_INIT)
2404 				m->act_count = ACT_INIT;
2405 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2406 		}
2407 		_vm_page_and_queue_spin_unlock(m);
2408 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2409 			pagedaemon_wakeup();
2410 	} else {
2411 		if (m->act_count < ACT_INIT)
2412 			m->act_count = ACT_INIT;
2413 		vm_page_spin_unlock(m);
2414 	}
2415 }
2416 
2417 /*
2418  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2419  * routine is called when a page has been added to the cache or free
2420  * queues.
2421  *
2422  * This routine may not block.
2423  */
2424 static __inline void
2425 vm_page_free_wakeup(void)
2426 {
2427 	globaldata_t gd = mycpu;
2428 
2429 	/*
2430 	 * If the pageout daemon itself needs pages, then tell it that
2431 	 * there are some free.
2432 	 */
2433 	if (vm_pageout_pages_needed &&
2434 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2435 	    gd->gd_vmstats.v_pageout_free_min
2436 	) {
2437 		vm_pageout_pages_needed = 0;
2438 		wakeup(&vm_pageout_pages_needed);
2439 	}
2440 
2441 	/*
2442 	 * Wakeup processes that are waiting on memory.
2443 	 *
2444 	 * Generally speaking we want to wakeup stuck processes as soon as
2445 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2446 	 * where we can do this.  Wait a bit longer to reduce degenerate
2447 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2448 	 * to make sure the min-check w/hysteresis does not exceed the
2449 	 * normal target.
2450 	 */
2451 	if (vm_pages_waiting) {
2452 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2453 		    !vm_page_count_target()) {
2454 			vm_pages_waiting = 0;
2455 			wakeup(&vmstats.v_free_count);
2456 			++mycpu->gd_cnt.v_ppwakeups;
2457 		}
2458 #if 0
2459 		if (!vm_page_count_target()) {
2460 			/*
2461 			 * Plenty of pages are free, wakeup everyone.
2462 			 */
2463 			vm_pages_waiting = 0;
2464 			wakeup(&vmstats.v_free_count);
2465 			++mycpu->gd_cnt.v_ppwakeups;
2466 		} else if (!vm_page_count_min(0)) {
2467 			/*
2468 			 * Some pages are free, wakeup someone.
2469 			 */
2470 			int wcount = vm_pages_waiting;
2471 			if (wcount > 0)
2472 				--wcount;
2473 			vm_pages_waiting = wcount;
2474 			wakeup_one(&vmstats.v_free_count);
2475 			++mycpu->gd_cnt.v_ppwakeups;
2476 		}
2477 #endif
2478 	}
2479 }
2480 
2481 /*
2482  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2483  * it from its VM object.
2484  *
2485  * The vm_page must be BUSY on entry.  BUSY will be released on
2486  * return (the page will have been freed).
2487  */
2488 void
2489 vm_page_free_toq(vm_page_t m)
2490 {
2491 	mycpu->gd_cnt.v_tfree++;
2492 	KKASSERT((m->flags & PG_MAPPED) == 0);
2493 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2494 
2495 	if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2496 		kprintf("vm_page_free: pindex(%lu), busy %08x, "
2497 			"hold(%d)\n",
2498 			(u_long)m->pindex, m->busy_count, m->hold_count);
2499 		if ((m->queue - m->pc) == PQ_FREE)
2500 			panic("vm_page_free: freeing free page");
2501 		else
2502 			panic("vm_page_free: freeing busy page");
2503 	}
2504 
2505 	/*
2506 	 * Remove from object, spinlock the page and its queues and
2507 	 * remove from any queue.  No queue spinlock will be held
2508 	 * after this section (because the page was removed from any
2509 	 * queue).
2510 	 */
2511 	vm_page_remove(m);
2512 	vm_page_and_queue_spin_lock(m);
2513 	_vm_page_rem_queue_spinlocked(m);
2514 
2515 	/*
2516 	 * No further management of fictitious pages occurs beyond object
2517 	 * and queue removal.
2518 	 */
2519 	if ((m->flags & PG_FICTITIOUS) != 0) {
2520 		vm_page_spin_unlock(m);
2521 		vm_page_wakeup(m);
2522 		return;
2523 	}
2524 
2525 	m->valid = 0;
2526 	vm_page_undirty(m);
2527 
2528 	if (m->wire_count != 0) {
2529 		if (m->wire_count > 1) {
2530 		    panic(
2531 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2532 			m->wire_count, (long)m->pindex);
2533 		}
2534 		panic("vm_page_free: freeing wired page");
2535 	}
2536 
2537 	/*
2538 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2539 	 * Clear the NEED_COMMIT flag
2540 	 */
2541 	if (m->flags & PG_UNMANAGED)
2542 		vm_page_flag_clear(m, PG_UNMANAGED);
2543 	if (m->flags & PG_NEED_COMMIT)
2544 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2545 
2546 	if (m->hold_count != 0) {
2547 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2548 	} else {
2549 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2550 	}
2551 
2552 	/*
2553 	 * This sequence allows us to clear BUSY while still holding
2554 	 * its spin lock, which reduces contention vs allocators.  We
2555 	 * must not leave the queue locked or _vm_page_wakeup() may
2556 	 * deadlock.
2557 	 */
2558 	_vm_page_queue_spin_unlock(m);
2559 	if (_vm_page_wakeup(m)) {
2560 		vm_page_spin_unlock(m);
2561 		wakeup(m);
2562 	} else {
2563 		vm_page_spin_unlock(m);
2564 	}
2565 	vm_page_free_wakeup();
2566 }
2567 
2568 /*
2569  * vm_page_unmanage()
2570  *
2571  * Prevent PV management from being done on the page.  The page is
2572  * removed from the paging queues as if it were wired, and as a
2573  * consequence of no longer being managed the pageout daemon will not
2574  * touch it (since there is no way to locate the pte mappings for the
2575  * page).  madvise() calls that mess with the pmap will also no longer
2576  * operate on the page.
2577  *
2578  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2579  * will clear the flag.
2580  *
2581  * This routine is used by OBJT_PHYS objects - objects using unswappable
2582  * physical memory as backing store rather then swap-backed memory and
2583  * will eventually be extended to support 4MB unmanaged physical
2584  * mappings.
2585  *
2586  * Caller must be holding the page busy.
2587  */
2588 void
2589 vm_page_unmanage(vm_page_t m)
2590 {
2591 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2592 	if ((m->flags & PG_UNMANAGED) == 0) {
2593 		if (m->wire_count == 0)
2594 			vm_page_unqueue(m);
2595 	}
2596 	vm_page_flag_set(m, PG_UNMANAGED);
2597 }
2598 
2599 /*
2600  * Mark this page as wired down by yet another map, removing it from
2601  * paging queues as necessary.
2602  *
2603  * Caller must be holding the page busy.
2604  */
2605 void
2606 vm_page_wire(vm_page_t m)
2607 {
2608 	/*
2609 	 * Only bump the wire statistics if the page is not already wired,
2610 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2611 	 * it is already off the queues).  Don't do anything with fictitious
2612 	 * pages because they are always wired.
2613 	 */
2614 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2615 	if ((m->flags & PG_FICTITIOUS) == 0) {
2616 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2617 			if ((m->flags & PG_UNMANAGED) == 0)
2618 				vm_page_unqueue(m);
2619 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2620 		}
2621 		KASSERT(m->wire_count != 0,
2622 			("vm_page_wire: wire_count overflow m=%p", m));
2623 	}
2624 }
2625 
2626 /*
2627  * Release one wiring of this page, potentially enabling it to be paged again.
2628  *
2629  * Many pages placed on the inactive queue should actually go
2630  * into the cache, but it is difficult to figure out which.  What
2631  * we do instead, if the inactive target is well met, is to put
2632  * clean pages at the head of the inactive queue instead of the tail.
2633  * This will cause them to be moved to the cache more quickly and
2634  * if not actively re-referenced, freed more quickly.  If we just
2635  * stick these pages at the end of the inactive queue, heavy filesystem
2636  * meta-data accesses can cause an unnecessary paging load on memory bound
2637  * processes.  This optimization causes one-time-use metadata to be
2638  * reused more quickly.
2639  *
2640  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2641  * the inactive queue.  This helps the pageout daemon determine memory
2642  * pressure and act on out-of-memory situations more quickly.
2643  *
2644  * BUT, if we are in a low-memory situation we have no choice but to
2645  * put clean pages on the cache queue.
2646  *
2647  * A number of routines use vm_page_unwire() to guarantee that the page
2648  * will go into either the inactive or active queues, and will NEVER
2649  * be placed in the cache - for example, just after dirtying a page.
2650  * dirty pages in the cache are not allowed.
2651  *
2652  * This routine may not block.
2653  */
2654 void
2655 vm_page_unwire(vm_page_t m, int activate)
2656 {
2657 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2658 	if (m->flags & PG_FICTITIOUS) {
2659 		/* do nothing */
2660 	} else if (m->wire_count <= 0) {
2661 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2662 	} else {
2663 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2664 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2665 			if (m->flags & PG_UNMANAGED) {
2666 				;
2667 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2668 				vm_page_spin_lock(m);
2669 				_vm_page_add_queue_spinlocked(m,
2670 							PQ_ACTIVE + m->pc, 0);
2671 				_vm_page_and_queue_spin_unlock(m);
2672 			} else {
2673 				vm_page_spin_lock(m);
2674 				vm_page_flag_clear(m, PG_WINATCFLS);
2675 				_vm_page_add_queue_spinlocked(m,
2676 							PQ_INACTIVE + m->pc, 0);
2677 				++vm_swapcache_inactive_heuristic;
2678 				_vm_page_and_queue_spin_unlock(m);
2679 			}
2680 		}
2681 	}
2682 }
2683 
2684 /*
2685  * Move the specified page to the inactive queue.  If the page has
2686  * any associated swap, the swap is deallocated.
2687  *
2688  * Normally athead is 0 resulting in LRU operation.  athead is set
2689  * to 1 if we want this page to be 'as if it were placed in the cache',
2690  * except without unmapping it from the process address space.
2691  *
2692  * vm_page's spinlock must be held on entry and will remain held on return.
2693  * This routine may not block.
2694  */
2695 static void
2696 _vm_page_deactivate_locked(vm_page_t m, int athead)
2697 {
2698 	u_short oqueue;
2699 
2700 	/*
2701 	 * Ignore if already inactive.
2702 	 */
2703 	if (m->queue - m->pc == PQ_INACTIVE)
2704 		return;
2705 	_vm_page_queue_spin_lock(m);
2706 	oqueue = _vm_page_rem_queue_spinlocked(m);
2707 
2708 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2709 		if (oqueue == PQ_CACHE)
2710 			mycpu->gd_cnt.v_reactivated++;
2711 		vm_page_flag_clear(m, PG_WINATCFLS);
2712 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2713 		if (athead == 0)
2714 			++vm_swapcache_inactive_heuristic;
2715 	}
2716 	/* NOTE: PQ_NONE if condition not taken */
2717 	_vm_page_queue_spin_unlock(m);
2718 	/* leaves vm_page spinlocked */
2719 }
2720 
2721 /*
2722  * Attempt to deactivate a page.
2723  *
2724  * No requirements.
2725  */
2726 void
2727 vm_page_deactivate(vm_page_t m)
2728 {
2729 	vm_page_spin_lock(m);
2730 	_vm_page_deactivate_locked(m, 0);
2731 	vm_page_spin_unlock(m);
2732 }
2733 
2734 void
2735 vm_page_deactivate_locked(vm_page_t m)
2736 {
2737 	_vm_page_deactivate_locked(m, 0);
2738 }
2739 
2740 /*
2741  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2742  *
2743  * This function returns non-zero if it successfully moved the page to
2744  * PQ_CACHE.
2745  *
2746  * This function unconditionally unbusies the page on return.
2747  */
2748 int
2749 vm_page_try_to_cache(vm_page_t m)
2750 {
2751 	vm_page_spin_lock(m);
2752 	if (m->dirty || m->hold_count || m->wire_count ||
2753 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2754 		if (_vm_page_wakeup(m)) {
2755 			vm_page_spin_unlock(m);
2756 			wakeup(m);
2757 		} else {
2758 			vm_page_spin_unlock(m);
2759 		}
2760 		return(0);
2761 	}
2762 	vm_page_spin_unlock(m);
2763 
2764 	/*
2765 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2766 	 * be moved to the cache.
2767 	 */
2768 	vm_page_test_dirty(m);
2769 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2770 		vm_page_wakeup(m);
2771 		return(0);
2772 	}
2773 	vm_page_cache(m);
2774 	return(1);
2775 }
2776 
2777 /*
2778  * Attempt to free the page.  If we cannot free it, we do nothing.
2779  * 1 is returned on success, 0 on failure.
2780  *
2781  * No requirements.
2782  */
2783 int
2784 vm_page_try_to_free(vm_page_t m)
2785 {
2786 	vm_page_spin_lock(m);
2787 	if (vm_page_busy_try(m, TRUE)) {
2788 		vm_page_spin_unlock(m);
2789 		return(0);
2790 	}
2791 
2792 	/*
2793 	 * The page can be in any state, including already being on the free
2794 	 * queue.  Check to see if it really can be freed.
2795 	 */
2796 	if (m->dirty ||				/* can't free if it is dirty */
2797 	    m->hold_count ||			/* or held (XXX may be wrong) */
2798 	    m->wire_count ||			/* or wired */
2799 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2800 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2801 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2802 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2803 		if (_vm_page_wakeup(m)) {
2804 			vm_page_spin_unlock(m);
2805 			wakeup(m);
2806 		} else {
2807 			vm_page_spin_unlock(m);
2808 		}
2809 		return(0);
2810 	}
2811 	vm_page_spin_unlock(m);
2812 
2813 	/*
2814 	 * We can probably free the page.
2815 	 *
2816 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2817 	 * not be freed by this function.    We have to re-test the
2818 	 * dirty bit after cleaning out the pmaps.
2819 	 */
2820 	vm_page_test_dirty(m);
2821 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2822 		vm_page_wakeup(m);
2823 		return(0);
2824 	}
2825 	vm_page_protect(m, VM_PROT_NONE);
2826 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2827 		vm_page_wakeup(m);
2828 		return(0);
2829 	}
2830 	vm_page_free(m);
2831 	return(1);
2832 }
2833 
2834 /*
2835  * vm_page_cache
2836  *
2837  * Put the specified page onto the page cache queue (if appropriate).
2838  *
2839  * The page must be busy, and this routine will release the busy and
2840  * possibly even free the page.
2841  */
2842 void
2843 vm_page_cache(vm_page_t m)
2844 {
2845 	/*
2846 	 * Not suitable for the cache
2847 	 */
2848 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2849 	    (m->busy_count & PBUSY_MASK) ||
2850 	    m->wire_count || m->hold_count) {
2851 		vm_page_wakeup(m);
2852 		return;
2853 	}
2854 
2855 	/*
2856 	 * Already in the cache (and thus not mapped)
2857 	 */
2858 	if ((m->queue - m->pc) == PQ_CACHE) {
2859 		KKASSERT((m->flags & PG_MAPPED) == 0);
2860 		vm_page_wakeup(m);
2861 		return;
2862 	}
2863 
2864 	/*
2865 	 * Caller is required to test m->dirty, but note that the act of
2866 	 * removing the page from its maps can cause it to become dirty
2867 	 * on an SMP system due to another cpu running in usermode.
2868 	 */
2869 	if (m->dirty) {
2870 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2871 			(long)m->pindex);
2872 	}
2873 
2874 	/*
2875 	 * Remove all pmaps and indicate that the page is not
2876 	 * writeable or mapped.  Our vm_page_protect() call may
2877 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2878 	 * everything.
2879 	 */
2880 	vm_page_protect(m, VM_PROT_NONE);
2881 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2882 	    (m->busy_count & PBUSY_MASK) ||
2883 	    m->wire_count || m->hold_count) {
2884 		vm_page_wakeup(m);
2885 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2886 		vm_page_deactivate(m);
2887 		vm_page_wakeup(m);
2888 	} else {
2889 		_vm_page_and_queue_spin_lock(m);
2890 		_vm_page_rem_queue_spinlocked(m);
2891 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2892 		_vm_page_queue_spin_unlock(m);
2893 		if (_vm_page_wakeup(m)) {
2894 			vm_page_spin_unlock(m);
2895 			wakeup(m);
2896 		} else {
2897 			vm_page_spin_unlock(m);
2898 		}
2899 		vm_page_free_wakeup();
2900 	}
2901 }
2902 
2903 /*
2904  * vm_page_dontneed()
2905  *
2906  * Cache, deactivate, or do nothing as appropriate.  This routine
2907  * is typically used by madvise() MADV_DONTNEED.
2908  *
2909  * Generally speaking we want to move the page into the cache so
2910  * it gets reused quickly.  However, this can result in a silly syndrome
2911  * due to the page recycling too quickly.  Small objects will not be
2912  * fully cached.  On the otherhand, if we move the page to the inactive
2913  * queue we wind up with a problem whereby very large objects
2914  * unnecessarily blow away our inactive and cache queues.
2915  *
2916  * The solution is to move the pages based on a fixed weighting.  We
2917  * either leave them alone, deactivate them, or move them to the cache,
2918  * where moving them to the cache has the highest weighting.
2919  * By forcing some pages into other queues we eventually force the
2920  * system to balance the queues, potentially recovering other unrelated
2921  * space from active.  The idea is to not force this to happen too
2922  * often.
2923  *
2924  * The page must be busied.
2925  */
2926 void
2927 vm_page_dontneed(vm_page_t m)
2928 {
2929 	static int dnweight;
2930 	int dnw;
2931 	int head;
2932 
2933 	dnw = ++dnweight;
2934 
2935 	/*
2936 	 * occassionally leave the page alone
2937 	 */
2938 	if ((dnw & 0x01F0) == 0 ||
2939 	    m->queue - m->pc == PQ_INACTIVE ||
2940 	    m->queue - m->pc == PQ_CACHE
2941 	) {
2942 		if (m->act_count >= ACT_INIT)
2943 			--m->act_count;
2944 		return;
2945 	}
2946 
2947 	/*
2948 	 * If vm_page_dontneed() is inactivating a page, it must clear
2949 	 * the referenced flag; otherwise the pagedaemon will see references
2950 	 * on the page in the inactive queue and reactivate it. Until the
2951 	 * page can move to the cache queue, madvise's job is not done.
2952 	 */
2953 	vm_page_flag_clear(m, PG_REFERENCED);
2954 	pmap_clear_reference(m);
2955 
2956 	if (m->dirty == 0)
2957 		vm_page_test_dirty(m);
2958 
2959 	if (m->dirty || (dnw & 0x0070) == 0) {
2960 		/*
2961 		 * Deactivate the page 3 times out of 32.
2962 		 */
2963 		head = 0;
2964 	} else {
2965 		/*
2966 		 * Cache the page 28 times out of every 32.  Note that
2967 		 * the page is deactivated instead of cached, but placed
2968 		 * at the head of the queue instead of the tail.
2969 		 */
2970 		head = 1;
2971 	}
2972 	vm_page_spin_lock(m);
2973 	_vm_page_deactivate_locked(m, head);
2974 	vm_page_spin_unlock(m);
2975 }
2976 
2977 /*
2978  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2979  * is almost like a hard BUSY except that it allows certain compatible
2980  * operations to occur on the page while it is busy.  For example, a page
2981  * undergoing a write can still be mapped read-only.
2982  *
2983  * We also use soft-busy to quickly pmap_enter shared read-only pages
2984  * without having to hold the page locked.
2985  *
2986  * The soft-busy count can be > 1 in situations where multiple threads
2987  * are pmap_enter()ing the same page simultaneously, or when two buffer
2988  * cache buffers overlap the same page.
2989  *
2990  * The caller must hold the page BUSY when making these two calls.
2991  */
2992 void
2993 vm_page_io_start(vm_page_t m)
2994 {
2995 	uint32_t ocount;
2996 
2997 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
2998 	KKASSERT(ocount & PBUSY_LOCKED);
2999 }
3000 
3001 void
3002 vm_page_io_finish(vm_page_t m)
3003 {
3004 	uint32_t ocount;
3005 
3006 	ocount = atomic_fetchadd_int(&m->busy_count, -1);
3007 	KKASSERT(ocount & PBUSY_MASK);
3008 #if 0
3009 	if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
3010 		wakeup(m);
3011 #endif
3012 }
3013 
3014 /*
3015  * Attempt to soft-busy a page.  The page must not be PBUSY_LOCKED.
3016  *
3017  * We can't use fetchadd here because we might race a hard-busy and the
3018  * page freeing code asserts on a non-zero soft-busy count (even if only
3019  * temporary).
3020  *
3021  * Returns 0 on success, non-zero on failure.
3022  */
3023 int
3024 vm_page_sbusy_try(vm_page_t m)
3025 {
3026 	uint32_t ocount;
3027 
3028 	for (;;) {
3029 		ocount = m->busy_count;
3030 		cpu_ccfence();
3031 		if (ocount & PBUSY_LOCKED)
3032 			return 1;
3033 		if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
3034 			break;
3035 	}
3036 	return 0;
3037 #if 0
3038 	if (m->busy_count & PBUSY_LOCKED)
3039 		return 1;
3040 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3041 	if (ocount & PBUSY_LOCKED) {
3042 		vm_page_sbusy_drop(m);
3043 		return 1;
3044 	}
3045 	return 0;
3046 #endif
3047 }
3048 
3049 /*
3050  * Indicate that a clean VM page requires a filesystem commit and cannot
3051  * be reused.  Used by tmpfs.
3052  */
3053 void
3054 vm_page_need_commit(vm_page_t m)
3055 {
3056 	vm_page_flag_set(m, PG_NEED_COMMIT);
3057 	vm_object_set_writeable_dirty(m->object);
3058 }
3059 
3060 void
3061 vm_page_clear_commit(vm_page_t m)
3062 {
3063 	vm_page_flag_clear(m, PG_NEED_COMMIT);
3064 }
3065 
3066 /*
3067  * Grab a page, blocking if it is busy and allocating a page if necessary.
3068  * A busy page is returned or NULL.  The page may or may not be valid and
3069  * might not be on a queue (the caller is responsible for the disposition of
3070  * the page).
3071  *
3072  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
3073  * page will be zero'd and marked valid.
3074  *
3075  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
3076  * valid even if it already exists.
3077  *
3078  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
3079  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
3080  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
3081  *
3082  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
3083  * always returned if we had blocked.
3084  *
3085  * This routine may not be called from an interrupt.
3086  *
3087  * No other requirements.
3088  */
3089 vm_page_t
3090 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3091 {
3092 	vm_page_t m;
3093 	int error;
3094 	int shared = 1;
3095 
3096 	KKASSERT(allocflags &
3097 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
3098 	vm_object_hold_shared(object);
3099 	for (;;) {
3100 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3101 		if (error) {
3102 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
3103 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
3104 				m = NULL;
3105 				break;
3106 			}
3107 			/* retry */
3108 		} else if (m == NULL) {
3109 			if (shared) {
3110 				vm_object_upgrade(object);
3111 				shared = 0;
3112 			}
3113 			if (allocflags & VM_ALLOC_RETRY)
3114 				allocflags |= VM_ALLOC_NULL_OK;
3115 			m = vm_page_alloc(object, pindex,
3116 					  allocflags & ~VM_ALLOC_RETRY);
3117 			if (m)
3118 				break;
3119 			vm_wait(0);
3120 			if ((allocflags & VM_ALLOC_RETRY) == 0)
3121 				goto failed;
3122 		} else {
3123 			/* m found */
3124 			break;
3125 		}
3126 	}
3127 
3128 	/*
3129 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
3130 	 *
3131 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
3132 	 * valid even if already valid.
3133 	 *
3134 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
3135 	 *	  removed the idle zeroing code.  These optimizations actually
3136 	 *	  slow things down on modern cpus because the zerod area is
3137 	 *	  likely uncached, placing a memory-access burden on the
3138 	 *	  accesors taking the fault.
3139 	 *
3140 	 *	  By always zeroing the page in-line with the fault, no
3141 	 *	  dynamic ram reads are needed and the caches are hot, ready
3142 	 *	  for userland to access the memory.
3143 	 */
3144 	if (m->valid == 0) {
3145 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
3146 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
3147 			m->valid = VM_PAGE_BITS_ALL;
3148 		}
3149 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
3150 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
3151 		m->valid = VM_PAGE_BITS_ALL;
3152 	}
3153 failed:
3154 	vm_object_drop(object);
3155 	return(m);
3156 }
3157 
3158 /*
3159  * Mapping function for valid bits or for dirty bits in
3160  * a page.  May not block.
3161  *
3162  * Inputs are required to range within a page.
3163  *
3164  * No requirements.
3165  * Non blocking.
3166  */
3167 int
3168 vm_page_bits(int base, int size)
3169 {
3170 	int first_bit;
3171 	int last_bit;
3172 
3173 	KASSERT(
3174 	    base + size <= PAGE_SIZE,
3175 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3176 	);
3177 
3178 	if (size == 0)		/* handle degenerate case */
3179 		return(0);
3180 
3181 	first_bit = base >> DEV_BSHIFT;
3182 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3183 
3184 	return ((2 << last_bit) - (1 << first_bit));
3185 }
3186 
3187 /*
3188  * Sets portions of a page valid and clean.  The arguments are expected
3189  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3190  * of any partial chunks touched by the range.  The invalid portion of
3191  * such chunks will be zero'd.
3192  *
3193  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3194  *	 align base to DEV_BSIZE so as not to mark clean a partially
3195  *	 truncated device block.  Otherwise the dirty page status might be
3196  *	 lost.
3197  *
3198  * This routine may not block.
3199  *
3200  * (base + size) must be less then or equal to PAGE_SIZE.
3201  */
3202 static void
3203 _vm_page_zero_valid(vm_page_t m, int base, int size)
3204 {
3205 	int frag;
3206 	int endoff;
3207 
3208 	if (size == 0)	/* handle degenerate case */
3209 		return;
3210 
3211 	/*
3212 	 * If the base is not DEV_BSIZE aligned and the valid
3213 	 * bit is clear, we have to zero out a portion of the
3214 	 * first block.
3215 	 */
3216 
3217 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3218 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3219 	) {
3220 		pmap_zero_page_area(
3221 		    VM_PAGE_TO_PHYS(m),
3222 		    frag,
3223 		    base - frag
3224 		);
3225 	}
3226 
3227 	/*
3228 	 * If the ending offset is not DEV_BSIZE aligned and the
3229 	 * valid bit is clear, we have to zero out a portion of
3230 	 * the last block.
3231 	 */
3232 
3233 	endoff = base + size;
3234 
3235 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3236 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3237 	) {
3238 		pmap_zero_page_area(
3239 		    VM_PAGE_TO_PHYS(m),
3240 		    endoff,
3241 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3242 		);
3243 	}
3244 }
3245 
3246 /*
3247  * Set valid, clear dirty bits.  If validating the entire
3248  * page we can safely clear the pmap modify bit.  We also
3249  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3250  * takes a write fault on a MAP_NOSYNC memory area the flag will
3251  * be set again.
3252  *
3253  * We set valid bits inclusive of any overlap, but we can only
3254  * clear dirty bits for DEV_BSIZE chunks that are fully within
3255  * the range.
3256  *
3257  * Page must be busied?
3258  * No other requirements.
3259  */
3260 void
3261 vm_page_set_valid(vm_page_t m, int base, int size)
3262 {
3263 	_vm_page_zero_valid(m, base, size);
3264 	m->valid |= vm_page_bits(base, size);
3265 }
3266 
3267 
3268 /*
3269  * Set valid bits and clear dirty bits.
3270  *
3271  * Page must be busied by caller.
3272  *
3273  * NOTE: This function does not clear the pmap modified bit.
3274  *	 Also note that e.g. NFS may use a byte-granular base
3275  *	 and size.
3276  *
3277  * No other requirements.
3278  */
3279 void
3280 vm_page_set_validclean(vm_page_t m, int base, int size)
3281 {
3282 	int pagebits;
3283 
3284 	_vm_page_zero_valid(m, base, size);
3285 	pagebits = vm_page_bits(base, size);
3286 	m->valid |= pagebits;
3287 	m->dirty &= ~pagebits;
3288 	if (base == 0 && size == PAGE_SIZE) {
3289 		/*pmap_clear_modify(m);*/
3290 		vm_page_flag_clear(m, PG_NOSYNC);
3291 	}
3292 }
3293 
3294 /*
3295  * Set valid & dirty.  Used by buwrite()
3296  *
3297  * Page must be busied by caller.
3298  */
3299 void
3300 vm_page_set_validdirty(vm_page_t m, int base, int size)
3301 {
3302 	int pagebits;
3303 
3304 	pagebits = vm_page_bits(base, size);
3305 	m->valid |= pagebits;
3306 	m->dirty |= pagebits;
3307 	if (m->object)
3308 	       vm_object_set_writeable_dirty(m->object);
3309 }
3310 
3311 /*
3312  * Clear dirty bits.
3313  *
3314  * NOTE: This function does not clear the pmap modified bit.
3315  *	 Also note that e.g. NFS may use a byte-granular base
3316  *	 and size.
3317  *
3318  * Page must be busied?
3319  * No other requirements.
3320  */
3321 void
3322 vm_page_clear_dirty(vm_page_t m, int base, int size)
3323 {
3324 	m->dirty &= ~vm_page_bits(base, size);
3325 	if (base == 0 && size == PAGE_SIZE) {
3326 		/*pmap_clear_modify(m);*/
3327 		vm_page_flag_clear(m, PG_NOSYNC);
3328 	}
3329 }
3330 
3331 /*
3332  * Make the page all-dirty.
3333  *
3334  * Also make sure the related object and vnode reflect the fact that the
3335  * object may now contain a dirty page.
3336  *
3337  * Page must be busied?
3338  * No other requirements.
3339  */
3340 void
3341 vm_page_dirty(vm_page_t m)
3342 {
3343 #ifdef INVARIANTS
3344         int pqtype = m->queue - m->pc;
3345 #endif
3346         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3347                 ("vm_page_dirty: page in free/cache queue!"));
3348 	if (m->dirty != VM_PAGE_BITS_ALL) {
3349 		m->dirty = VM_PAGE_BITS_ALL;
3350 		if (m->object)
3351 			vm_object_set_writeable_dirty(m->object);
3352 	}
3353 }
3354 
3355 /*
3356  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3357  * valid and dirty bits for the effected areas are cleared.
3358  *
3359  * Page must be busied?
3360  * Does not block.
3361  * No other requirements.
3362  */
3363 void
3364 vm_page_set_invalid(vm_page_t m, int base, int size)
3365 {
3366 	int bits;
3367 
3368 	bits = vm_page_bits(base, size);
3369 	m->valid &= ~bits;
3370 	m->dirty &= ~bits;
3371 	atomic_add_int(&m->object->generation, 1);
3372 }
3373 
3374 /*
3375  * The kernel assumes that the invalid portions of a page contain
3376  * garbage, but such pages can be mapped into memory by user code.
3377  * When this occurs, we must zero out the non-valid portions of the
3378  * page so user code sees what it expects.
3379  *
3380  * Pages are most often semi-valid when the end of a file is mapped
3381  * into memory and the file's size is not page aligned.
3382  *
3383  * Page must be busied?
3384  * No other requirements.
3385  */
3386 void
3387 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3388 {
3389 	int b;
3390 	int i;
3391 
3392 	/*
3393 	 * Scan the valid bits looking for invalid sections that
3394 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3395 	 * valid bit may be set ) have already been zerod by
3396 	 * vm_page_set_validclean().
3397 	 */
3398 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3399 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3400 		    (m->valid & (1 << i))
3401 		) {
3402 			if (i > b) {
3403 				pmap_zero_page_area(
3404 				    VM_PAGE_TO_PHYS(m),
3405 				    b << DEV_BSHIFT,
3406 				    (i - b) << DEV_BSHIFT
3407 				);
3408 			}
3409 			b = i + 1;
3410 		}
3411 	}
3412 
3413 	/*
3414 	 * setvalid is TRUE when we can safely set the zero'd areas
3415 	 * as being valid.  We can do this if there are no cache consistency
3416 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3417 	 */
3418 	if (setvalid)
3419 		m->valid = VM_PAGE_BITS_ALL;
3420 }
3421 
3422 /*
3423  * Is a (partial) page valid?  Note that the case where size == 0
3424  * will return FALSE in the degenerate case where the page is entirely
3425  * invalid, and TRUE otherwise.
3426  *
3427  * Does not block.
3428  * No other requirements.
3429  */
3430 int
3431 vm_page_is_valid(vm_page_t m, int base, int size)
3432 {
3433 	int bits = vm_page_bits(base, size);
3434 
3435 	if (m->valid && ((m->valid & bits) == bits))
3436 		return 1;
3437 	else
3438 		return 0;
3439 }
3440 
3441 /*
3442  * update dirty bits from pmap/mmu.  May not block.
3443  *
3444  * Caller must hold the page busy
3445  */
3446 void
3447 vm_page_test_dirty(vm_page_t m)
3448 {
3449 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3450 		vm_page_dirty(m);
3451 	}
3452 }
3453 
3454 #include "opt_ddb.h"
3455 #ifdef DDB
3456 #include <ddb/ddb.h>
3457 
3458 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3459 {
3460 	db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3461 	db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3462 	db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3463 	db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3464 	db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3465 	db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3466 	db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3467 	db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3468 	db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3469 	db_printf("vmstats.v_inactive_target: %ld\n",
3470 		  vmstats.v_inactive_target);
3471 }
3472 
3473 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3474 {
3475 	int i;
3476 	db_printf("PQ_FREE:");
3477 	for (i = 0; i < PQ_L2_SIZE; i++) {
3478 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3479 	}
3480 	db_printf("\n");
3481 
3482 	db_printf("PQ_CACHE:");
3483 	for(i = 0; i < PQ_L2_SIZE; i++) {
3484 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3485 	}
3486 	db_printf("\n");
3487 
3488 	db_printf("PQ_ACTIVE:");
3489 	for(i = 0; i < PQ_L2_SIZE; i++) {
3490 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3491 	}
3492 	db_printf("\n");
3493 
3494 	db_printf("PQ_INACTIVE:");
3495 	for(i = 0; i < PQ_L2_SIZE; i++) {
3496 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3497 	}
3498 	db_printf("\n");
3499 }
3500 #endif /* DDB */
3501