xref: /dflybsd-src/sys/vm/vm_page.c (revision 530e94fc9e8b4693c7e841a45371bdb6e76ee4cd)
1 /*
2  * Copyright (c) 2003-2019 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1991 Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 /*
67  * Resident memory management module.  The module manipulates 'VM pages'.
68  * A VM page is the core building block for memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
99 
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
102 
103 /*
104  * SET - Minimum required set associative size, must be a power of 2.  We
105  *	 want this to match or exceed the set-associativeness of the cpu.
106  *
107  * GRP - A larger set that allows bleed-over into the domains of other
108  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
109  *	 code to smooth things out a bit.
110  */
111 #define PQ_SET_ASSOC		16
112 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
113 
114 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
116 
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes);
123 
124 /*
125  * Array of tailq lists
126  */
127 struct vpgqueues vm_page_queues[PQ_COUNT];
128 
129 static volatile int vm_pages_waiting;
130 static struct alist vm_contig_alist;
131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
133 
134 static struct vm_page **vm_page_hash;
135 
136 static u_long vm_dma_reserved = 0;
137 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
138 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
139 	    "Memory reserved for DMA");
140 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
141 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
142 
143 static int vm_contig_verbose = 0;
144 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
145 
146 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
147 	     vm_pindex_t, pindex);
148 
149 static void
150 vm_page_queue_init(void)
151 {
152 	int i;
153 
154 	for (i = 0; i < PQ_L2_SIZE; i++)
155 		vm_page_queues[PQ_FREE+i].cnt_offset =
156 			offsetof(struct vmstats, v_free_count);
157 	for (i = 0; i < PQ_L2_SIZE; i++)
158 		vm_page_queues[PQ_CACHE+i].cnt_offset =
159 			offsetof(struct vmstats, v_cache_count);
160 	for (i = 0; i < PQ_L2_SIZE; i++)
161 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
162 			offsetof(struct vmstats, v_inactive_count);
163 	for (i = 0; i < PQ_L2_SIZE; i++)
164 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
165 			offsetof(struct vmstats, v_active_count);
166 	for (i = 0; i < PQ_L2_SIZE; i++)
167 		vm_page_queues[PQ_HOLD+i].cnt_offset =
168 			offsetof(struct vmstats, v_active_count);
169 	/* PQ_NONE has no queue */
170 
171 	for (i = 0; i < PQ_COUNT; i++) {
172 		TAILQ_INIT(&vm_page_queues[i].pl);
173 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
174 	}
175 }
176 
177 /*
178  * note: place in initialized data section?  Is this necessary?
179  */
180 vm_pindex_t first_page = 0;
181 vm_pindex_t vm_page_array_size = 0;
182 vm_page_t vm_page_array = NULL;
183 vm_paddr_t vm_low_phys_reserved;
184 
185 /*
186  * (low level boot)
187  *
188  * Sets the page size, perhaps based upon the memory size.
189  * Must be called before any use of page-size dependent functions.
190  */
191 void
192 vm_set_page_size(void)
193 {
194 	if (vmstats.v_page_size == 0)
195 		vmstats.v_page_size = PAGE_SIZE;
196 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
197 		panic("vm_set_page_size: page size not a power of two");
198 }
199 
200 /*
201  * (low level boot)
202  *
203  * Add a new page to the freelist for use by the system.  New pages
204  * are added to both the head and tail of the associated free page
205  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
206  * requests pull 'recent' adds (higher physical addresses) first.
207  *
208  * Beware that the page zeroing daemon will also be running soon after
209  * boot, moving pages from the head to the tail of the PQ_FREE queues.
210  *
211  * Must be called in a critical section.
212  */
213 static void
214 vm_add_new_page(vm_paddr_t pa)
215 {
216 	struct vpgqueues *vpq;
217 	vm_page_t m;
218 
219 	m = PHYS_TO_VM_PAGE(pa);
220 	m->phys_addr = pa;
221 	m->flags = 0;
222 	m->pat_mode = PAT_WRITE_BACK;
223 	m->pc = (pa >> PAGE_SHIFT);
224 
225 	/*
226 	 * Twist for cpu localization in addition to page coloring, so
227 	 * different cpus selecting by m->queue get different page colors.
228 	 */
229 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
230 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
231 	m->pc &= PQ_L2_MASK;
232 
233 	/*
234 	 * Reserve a certain number of contiguous low memory pages for
235 	 * contigmalloc() to use.
236 	 */
237 	if (pa < vm_low_phys_reserved) {
238 		atomic_add_long(&vmstats.v_page_count, 1);
239 		atomic_add_long(&vmstats.v_dma_pages, 1);
240 		m->queue = PQ_NONE;
241 		m->wire_count = 1;
242 		atomic_add_long(&vmstats.v_wire_count, 1);
243 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
244 		return;
245 	}
246 
247 	/*
248 	 * General page
249 	 */
250 	m->queue = m->pc + PQ_FREE;
251 	KKASSERT(m->dirty == 0);
252 
253 	atomic_add_long(&vmstats.v_page_count, 1);
254 	atomic_add_long(&vmstats.v_free_count, 1);
255 	vpq = &vm_page_queues[m->queue];
256 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
257 	++vpq->lcnt;
258 }
259 
260 /*
261  * (low level boot)
262  *
263  * Initializes the resident memory module.
264  *
265  * Preallocates memory for critical VM structures and arrays prior to
266  * kernel_map becoming available.
267  *
268  * Memory is allocated from (virtual2_start, virtual2_end) if available,
269  * otherwise memory is allocated from (virtual_start, virtual_end).
270  *
271  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
272  * large enough to hold vm_page_array & other structures for machines with
273  * large amounts of ram, so we want to use virtual2* when available.
274  */
275 void
276 vm_page_startup(void)
277 {
278 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
279 	vm_offset_t mapped;
280 	vm_pindex_t npages;
281 	vm_paddr_t page_range;
282 	vm_paddr_t new_end;
283 	int i;
284 	vm_paddr_t pa;
285 	vm_paddr_t last_pa;
286 	vm_paddr_t end;
287 	vm_paddr_t biggestone, biggestsize;
288 	vm_paddr_t total;
289 	vm_page_t m;
290 
291 	total = 0;
292 	biggestsize = 0;
293 	biggestone = 0;
294 	vaddr = round_page(vaddr);
295 
296 	/*
297 	 * Make sure ranges are page-aligned.
298 	 */
299 	for (i = 0; phys_avail[i].phys_end; ++i) {
300 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
301 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
302 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
303 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
304 	}
305 
306 	/*
307 	 * Locate largest block
308 	 */
309 	for (i = 0; phys_avail[i].phys_end; ++i) {
310 		vm_paddr_t size = phys_avail[i].phys_end -
311 				  phys_avail[i].phys_beg;
312 
313 		if (size > biggestsize) {
314 			biggestone = i;
315 			biggestsize = size;
316 		}
317 		total += size;
318 	}
319 	--i;	/* adjust to last entry for use down below */
320 
321 	end = phys_avail[biggestone].phys_end;
322 	end = trunc_page(end);
323 
324 	/*
325 	 * Initialize the queue headers for the free queue, the active queue
326 	 * and the inactive queue.
327 	 */
328 	vm_page_queue_init();
329 
330 #if !defined(_KERNEL_VIRTUAL)
331 	/*
332 	 * VKERNELs don't support minidumps and as such don't need
333 	 * vm_page_dump
334 	 *
335 	 * Allocate a bitmap to indicate that a random physical page
336 	 * needs to be included in a minidump.
337 	 *
338 	 * The amd64 port needs this to indicate which direct map pages
339 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
340 	 *
341 	 * However, x86 still needs this workspace internally within the
342 	 * minidump code.  In theory, they are not needed on x86, but are
343 	 * included should the sf_buf code decide to use them.
344 	 */
345 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
346 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
347 	end -= vm_page_dump_size;
348 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
349 					VM_PROT_READ | VM_PROT_WRITE);
350 	bzero((void *)vm_page_dump, vm_page_dump_size);
351 #endif
352 	/*
353 	 * Compute the number of pages of memory that will be available for
354 	 * use (taking into account the overhead of a page structure per
355 	 * page).
356 	 */
357 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
358 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
359 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
360 
361 #ifndef _KERNEL_VIRTUAL
362 	/*
363 	 * (only applies to real kernels)
364 	 *
365 	 * Reserve a large amount of low memory for potential 32-bit DMA
366 	 * space allocations.  Once device initialization is complete we
367 	 * release most of it, but keep (vm_dma_reserved) memory reserved
368 	 * for later use.  Typically for X / graphics.  Through trial and
369 	 * error we find that GPUs usually requires ~60-100MB or so.
370 	 *
371 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
372 	 */
373 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
374 	if (vm_low_phys_reserved > total / 4)
375 		vm_low_phys_reserved = total / 4;
376 	if (vm_dma_reserved == 0) {
377 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
378 		if (vm_dma_reserved > total / 16)
379 			vm_dma_reserved = total / 16;
380 	}
381 #endif
382 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
383 		   ALIST_RECORDS_65536);
384 
385 	/*
386 	 * Initialize the mem entry structures now, and put them in the free
387 	 * queue.
388 	 */
389 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
390 		kprintf("initializing vm_page_array ");
391 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
392 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
393 	vm_page_array = (vm_page_t)mapped;
394 
395 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
396 	/*
397 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
398 	 * we have to manually add these pages to the minidump tracking so
399 	 * that they can be dumped, including the vm_page_array.
400 	 */
401 	for (pa = new_end;
402 	     pa < phys_avail[biggestone].phys_end;
403 	     pa += PAGE_SIZE) {
404 		dump_add_page(pa);
405 	}
406 #endif
407 
408 	/*
409 	 * Clear all of the page structures, run basic initialization so
410 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
411 	 * map.
412 	 */
413 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
414 	vm_page_array_size = page_range;
415 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
416 		kprintf("size = 0x%zx\n", vm_page_array_size);
417 
418 	m = &vm_page_array[0];
419 	pa = ptoa(first_page);
420 	for (i = 0; i < page_range; ++i) {
421 		spin_init(&m->spin, "vm_page");
422 		m->phys_addr = pa;
423 		pa += PAGE_SIZE;
424 		++m;
425 	}
426 
427 	/*
428 	 * Construct the free queue(s) in ascending order (by physical
429 	 * address) so that the first 16MB of physical memory is allocated
430 	 * last rather than first.  On large-memory machines, this avoids
431 	 * the exhaustion of low physical memory before isa_dma_init has run.
432 	 */
433 	vmstats.v_page_count = 0;
434 	vmstats.v_free_count = 0;
435 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
436 		pa = phys_avail[i].phys_beg;
437 		if (i == biggestone)
438 			last_pa = new_end;
439 		else
440 			last_pa = phys_avail[i].phys_end;
441 		while (pa < last_pa && npages-- > 0) {
442 			vm_add_new_page(pa);
443 			pa += PAGE_SIZE;
444 		}
445 	}
446 	if (virtual2_start)
447 		virtual2_start = vaddr;
448 	else
449 		virtual_start = vaddr;
450 	mycpu->gd_vmstats = vmstats;
451 }
452 
453 /*
454  * (called from early boot only)
455  *
456  * Reorganize VM pages based on numa data.  May be called as many times as
457  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
458  * to allow vm_page_alloc() to choose pages based on socket affinity.
459  *
460  * NOTE: This function is only called while we are still in UP mode, so
461  *	 we only need a critical section to protect the queues (which
462  *	 saves a lot of time, there are likely a ton of pages).
463  */
464 void
465 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
466 {
467 	vm_paddr_t scan_beg;
468 	vm_paddr_t scan_end;
469 	vm_paddr_t ran_end;
470 	struct vpgqueues *vpq;
471 	vm_page_t m;
472 	vm_page_t mend;
473 	int socket_mod;
474 	int socket_value;
475 	int i;
476 
477 	/*
478 	 * Check if no physical information, or there was only one socket
479 	 * (so don't waste time doing nothing!).
480 	 */
481 	if (cpu_topology_phys_ids <= 1 ||
482 	    cpu_topology_core_ids == 0) {
483 		return;
484 	}
485 
486 	/*
487 	 * Setup for our iteration.  Note that ACPI may iterate CPU
488 	 * sockets starting at 0 or 1 or some other number.  The
489 	 * cpu_topology code mod's it against the socket count.
490 	 */
491 	ran_end = ran_beg + bytes;
492 
493 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
494 	socket_value = (physid % cpu_topology_phys_ids) * socket_mod;
495 	mend = &vm_page_array[vm_page_array_size];
496 
497 	crit_enter();
498 
499 	/*
500 	 * Adjust cpu_topology's phys_mem parameter
501 	 */
502 	if (root_cpu_node)
503 		vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes);
504 
505 	/*
506 	 * Adjust vm_page->pc and requeue all affected pages.  The
507 	 * allocator will then be able to localize memory allocations
508 	 * to some degree.
509 	 */
510 	for (i = 0; phys_avail[i].phys_end; ++i) {
511 		scan_beg = phys_avail[i].phys_beg;
512 		scan_end = phys_avail[i].phys_end;
513 		if (scan_end <= ran_beg)
514 			continue;
515 		if (scan_beg >= ran_end)
516 			continue;
517 		if (scan_beg < ran_beg)
518 			scan_beg = ran_beg;
519 		if (scan_end > ran_end)
520 			scan_end = ran_end;
521 		if (atop(scan_end) > first_page + vm_page_array_size)
522 			scan_end = ptoa(first_page + vm_page_array_size);
523 
524 		m = PHYS_TO_VM_PAGE(scan_beg);
525 		while (scan_beg < scan_end) {
526 			KKASSERT(m < mend);
527 			if (m->queue != PQ_NONE) {
528 				vpq = &vm_page_queues[m->queue];
529 				TAILQ_REMOVE(&vpq->pl, m, pageq);
530 				--vpq->lcnt;
531 				/* queue doesn't change, no need to adj cnt */
532 				m->queue -= m->pc;
533 				m->pc %= socket_mod;
534 				m->pc += socket_value;
535 				m->pc &= PQ_L2_MASK;
536 				m->queue += m->pc;
537 				vpq = &vm_page_queues[m->queue];
538 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
539 				++vpq->lcnt;
540 				/* queue doesn't change, no need to adj cnt */
541 			} else {
542 				m->pc %= socket_mod;
543 				m->pc += socket_value;
544 				m->pc &= PQ_L2_MASK;
545 			}
546 			scan_beg += PAGE_SIZE;
547 			++m;
548 		}
549 	}
550 
551 	crit_exit();
552 }
553 
554 /*
555  * (called from early boot only)
556  *
557  * Don't allow the NUMA organization to leave vm_page_queues[] nodes
558  * completely empty for a logical cpu.  Doing so would force allocations
559  * on that cpu to always borrow from a nearby cpu, create unnecessary
560  * contention, and cause vm_page_alloc() to iterate more queues and run more
561  * slowly.
562  *
563  * This situation can occur when memory sticks are not entirely populated,
564  * populated at different densities, or in naturally assymetric systems
565  * such as the 2990WX.  There could very well be many vm_page_queues[]
566  * entries with *NO* pages assigned to them.
567  *
568  * Fixing this up ensures that each logical CPU has roughly the same
569  * sized memory pool, and more importantly ensures that logical CPUs
570  * do not wind up with an empty memory pool.
571  *
572  * At them moment we just iterate the other queues and borrow pages,
573  * moving them into the queues for cpus with severe deficits even though
574  * the memory might not be local to those cpus.  I am not doing this in
575  * a 'smart' way, its effectively UMA style (sorta, since its page-by-page
576  * whereas real UMA typically exchanges address bits 8-10 with high address
577  * bits).  But it works extremely well and gives us fairly good deterministic
578  * results on the cpu cores associated with these secondary nodes.
579  */
580 void
581 vm_numa_organize_finalize(void)
582 {
583 	struct vpgqueues *vpq;
584 	vm_page_t m;
585 	long lcnt_lo;
586 	long lcnt_hi;
587 	int iter;
588 	int i;
589 	int scale_lim;
590 
591 	crit_enter();
592 
593 	/*
594 	 * Machines might not use an exact power of 2 for phys_ids,
595 	 * core_ids, ht_ids, etc.  This can slightly reduce the actual
596 	 * range of indices in vm_page_queues[] that are nominally used.
597 	 */
598 	if (cpu_topology_ht_ids) {
599 		scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids;
600 		scale_lim = scale_lim / cpu_topology_core_ids;
601 		scale_lim = scale_lim / cpu_topology_ht_ids;
602 		scale_lim = scale_lim * cpu_topology_ht_ids;
603 		scale_lim = scale_lim * cpu_topology_core_ids;
604 		scale_lim = scale_lim * cpu_topology_phys_ids;
605 	} else {
606 		scale_lim = PQ_L2_SIZE;
607 	}
608 
609 	/*
610 	 * Calculate an average, set hysteresis for balancing from
611 	 * 10% below the average to the average.
612 	 */
613 	lcnt_hi = 0;
614 	for (i = 0; i < scale_lim; ++i) {
615 		lcnt_hi += vm_page_queues[i].lcnt;
616 	}
617 	lcnt_hi /= scale_lim;
618 	lcnt_lo = lcnt_hi - lcnt_hi / 10;
619 
620 	kprintf("vm_page: avg %ld pages per queue, %d queues\n",
621 		lcnt_hi, scale_lim);
622 
623 	iter = 0;
624 	for (i = 0; i < scale_lim; ++i) {
625 		vpq = &vm_page_queues[PQ_FREE + i];
626 		while (vpq->lcnt < lcnt_lo) {
627 			struct vpgqueues *vptmp;
628 
629 			iter = (iter + 1) & PQ_L2_MASK;
630 			vptmp = &vm_page_queues[PQ_FREE + iter];
631 			if (vptmp->lcnt < lcnt_hi)
632 				continue;
633 			m = TAILQ_FIRST(&vptmp->pl);
634 			KKASSERT(m->queue == PQ_FREE + iter);
635 			TAILQ_REMOVE(&vptmp->pl, m, pageq);
636 			--vptmp->lcnt;
637 			/* queue doesn't change, no need to adj cnt */
638 			m->queue -= m->pc;
639 			m->pc = i;
640 			m->queue += m->pc;
641 			TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
642 			++vpq->lcnt;
643 		}
644 	}
645 	crit_exit();
646 }
647 
648 static
649 void
650 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes)
651 {
652 	int cpuid;
653 	int i;
654 
655 	switch(cpup->type) {
656 	case PACKAGE_LEVEL:
657 		cpup->phys_mem += bytes;
658 		break;
659 	case CHIP_LEVEL:
660 		/*
661 		 * All members should have the same chipid, so we only need
662 		 * to pull out one member.
663 		 */
664 		if (CPUMASK_TESTNZERO(cpup->members)) {
665 			cpuid = BSFCPUMASK(cpup->members);
666 			if (physid ==
667 			    get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) {
668 				cpup->phys_mem += bytes;
669 			}
670 		}
671 		break;
672 	case CORE_LEVEL:
673 	case THREAD_LEVEL:
674 		/*
675 		 * Just inherit from the parent node
676 		 */
677 		cpup->phys_mem = cpup->parent_node->phys_mem;
678 		break;
679 	}
680 	for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i)
681 		vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes);
682 }
683 
684 /*
685  * We tended to reserve a ton of memory for contigmalloc().  Now that most
686  * drivers have initialized we want to return most the remaining free
687  * reserve back to the VM page queues so they can be used for normal
688  * allocations.
689  *
690  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
691  */
692 static void
693 vm_page_startup_finish(void *dummy __unused)
694 {
695 	alist_blk_t blk;
696 	alist_blk_t rblk;
697 	alist_blk_t count;
698 	alist_blk_t xcount;
699 	alist_blk_t bfree;
700 	vm_page_t m;
701 	vm_page_t *mp;
702 
703 	spin_lock(&vm_contig_spin);
704 	for (;;) {
705 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
706 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
707 			break;
708 		if (count == 0)
709 			break;
710 
711 		/*
712 		 * Figure out how much of the initial reserve we have to
713 		 * free in order to reach our target.
714 		 */
715 		bfree -= vm_dma_reserved / PAGE_SIZE;
716 		if (count > bfree) {
717 			blk += count - bfree;
718 			count = bfree;
719 		}
720 
721 		/*
722 		 * Calculate the nearest power of 2 <= count.
723 		 */
724 		for (xcount = 1; xcount <= count; xcount <<= 1)
725 			;
726 		xcount >>= 1;
727 		blk += count - xcount;
728 		count = xcount;
729 
730 		/*
731 		 * Allocate the pages from the alist, then free them to
732 		 * the normal VM page queues.
733 		 *
734 		 * Pages allocated from the alist are wired.  We have to
735 		 * busy, unwire, and free them.  We must also adjust
736 		 * vm_low_phys_reserved before freeing any pages to prevent
737 		 * confusion.
738 		 */
739 		rblk = alist_alloc(&vm_contig_alist, blk, count);
740 		if (rblk != blk) {
741 			kprintf("vm_page_startup_finish: Unable to return "
742 				"dma space @0x%08x/%d -> 0x%08x\n",
743 				blk, count, rblk);
744 			break;
745 		}
746 		atomic_add_long(&vmstats.v_dma_pages, -(long)count);
747 		spin_unlock(&vm_contig_spin);
748 
749 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
750 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
751 		while (count) {
752 			vm_page_busy_wait(m, FALSE, "cpgfr");
753 			vm_page_unwire(m, 0);
754 			vm_page_free(m);
755 			--count;
756 			++m;
757 		}
758 		spin_lock(&vm_contig_spin);
759 	}
760 	spin_unlock(&vm_contig_spin);
761 
762 	/*
763 	 * Print out how much DMA space drivers have already allocated and
764 	 * how much is left over.
765 	 */
766 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
767 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
768 		(PAGE_SIZE / 1024),
769 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
770 
771 	/*
772 	 * hash table for vm_page_lookup_quick()
773 	 */
774 	mp = (void *)kmem_alloc3(&kernel_map,
775 				 vm_page_array_size * sizeof(vm_page_t),
776 				 VM_SUBSYS_VMPGHASH, KM_CPU(0));
777 	bzero(mp, vm_page_array_size * sizeof(vm_page_t));
778 	cpu_sfence();
779 	vm_page_hash = mp;
780 }
781 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
782 	vm_page_startup_finish, NULL);
783 
784 
785 /*
786  * Scan comparison function for Red-Black tree scans.  An inclusive
787  * (start,end) is expected.  Other fields are not used.
788  */
789 int
790 rb_vm_page_scancmp(struct vm_page *p, void *data)
791 {
792 	struct rb_vm_page_scan_info *info = data;
793 
794 	if (p->pindex < info->start_pindex)
795 		return(-1);
796 	if (p->pindex > info->end_pindex)
797 		return(1);
798 	return(0);
799 }
800 
801 int
802 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
803 {
804 	if (p1->pindex < p2->pindex)
805 		return(-1);
806 	if (p1->pindex > p2->pindex)
807 		return(1);
808 	return(0);
809 }
810 
811 void
812 vm_page_init(vm_page_t m)
813 {
814 	/* do nothing for now.  Called from pmap_page_init() */
815 }
816 
817 /*
818  * Each page queue has its own spin lock, which is fairly optimal for
819  * allocating and freeing pages at least.
820  *
821  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
822  * queue spinlock via this function.  Also note that m->queue cannot change
823  * unless both the page and queue are locked.
824  */
825 static __inline
826 void
827 _vm_page_queue_spin_lock(vm_page_t m)
828 {
829 	u_short queue;
830 
831 	queue = m->queue;
832 	if (queue != PQ_NONE) {
833 		spin_lock(&vm_page_queues[queue].spin);
834 		KKASSERT(queue == m->queue);
835 	}
836 }
837 
838 static __inline
839 void
840 _vm_page_queue_spin_unlock(vm_page_t m)
841 {
842 	u_short queue;
843 
844 	queue = m->queue;
845 	cpu_ccfence();
846 	if (queue != PQ_NONE)
847 		spin_unlock(&vm_page_queues[queue].spin);
848 }
849 
850 static __inline
851 void
852 _vm_page_queues_spin_lock(u_short queue)
853 {
854 	cpu_ccfence();
855 	if (queue != PQ_NONE)
856 		spin_lock(&vm_page_queues[queue].spin);
857 }
858 
859 
860 static __inline
861 void
862 _vm_page_queues_spin_unlock(u_short queue)
863 {
864 	cpu_ccfence();
865 	if (queue != PQ_NONE)
866 		spin_unlock(&vm_page_queues[queue].spin);
867 }
868 
869 void
870 vm_page_queue_spin_lock(vm_page_t m)
871 {
872 	_vm_page_queue_spin_lock(m);
873 }
874 
875 void
876 vm_page_queues_spin_lock(u_short queue)
877 {
878 	_vm_page_queues_spin_lock(queue);
879 }
880 
881 void
882 vm_page_queue_spin_unlock(vm_page_t m)
883 {
884 	_vm_page_queue_spin_unlock(m);
885 }
886 
887 void
888 vm_page_queues_spin_unlock(u_short queue)
889 {
890 	_vm_page_queues_spin_unlock(queue);
891 }
892 
893 /*
894  * This locks the specified vm_page and its queue in the proper order
895  * (page first, then queue).  The queue may change so the caller must
896  * recheck on return.
897  */
898 static __inline
899 void
900 _vm_page_and_queue_spin_lock(vm_page_t m)
901 {
902 	vm_page_spin_lock(m);
903 	_vm_page_queue_spin_lock(m);
904 }
905 
906 static __inline
907 void
908 _vm_page_and_queue_spin_unlock(vm_page_t m)
909 {
910 	_vm_page_queues_spin_unlock(m->queue);
911 	vm_page_spin_unlock(m);
912 }
913 
914 void
915 vm_page_and_queue_spin_unlock(vm_page_t m)
916 {
917 	_vm_page_and_queue_spin_unlock(m);
918 }
919 
920 void
921 vm_page_and_queue_spin_lock(vm_page_t m)
922 {
923 	_vm_page_and_queue_spin_lock(m);
924 }
925 
926 /*
927  * Helper function removes vm_page from its current queue.
928  * Returns the base queue the page used to be on.
929  *
930  * The vm_page and the queue must be spinlocked.
931  * This function will unlock the queue but leave the page spinlocked.
932  */
933 static __inline u_short
934 _vm_page_rem_queue_spinlocked(vm_page_t m)
935 {
936 	struct vpgqueues *pq;
937 	u_short queue;
938 	u_short oqueue;
939 	long *cnt;
940 
941 	queue = m->queue;
942 	if (queue != PQ_NONE) {
943 		pq = &vm_page_queues[queue];
944 		TAILQ_REMOVE(&pq->pl, m, pageq);
945 
946 		/*
947 		 * Adjust our pcpu stats.  In order for the nominal low-memory
948 		 * algorithms to work properly we don't let any pcpu stat get
949 		 * too negative before we force it to be rolled-up into the
950 		 * global stats.  Otherwise our pageout and vm_wait tests
951 		 * will fail badly.
952 		 *
953 		 * The idea here is to reduce unnecessary SMP cache
954 		 * mastership changes in the global vmstats, which can be
955 		 * particularly bad in multi-socket systems.
956 		 */
957 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
958 		atomic_add_long(cnt, -1);
959 		if (*cnt < -VMMETER_SLOP_COUNT) {
960 			u_long copy = atomic_swap_long(cnt, 0);
961 			cnt = (long *)((char *)&vmstats + pq->cnt_offset);
962 			atomic_add_long(cnt, copy);
963 			cnt = (long *)((char *)&mycpu->gd_vmstats +
964 				      pq->cnt_offset);
965 			atomic_add_long(cnt, copy);
966 		}
967 		pq->lcnt--;
968 		m->queue = PQ_NONE;
969 		oqueue = queue;
970 		queue -= m->pc;
971 		vm_page_queues_spin_unlock(oqueue);	/* intended */
972 	}
973 	return queue;
974 }
975 
976 /*
977  * Helper function places the vm_page on the specified queue.  Generally
978  * speaking only PQ_FREE pages are placed at the head, to allow them to
979  * be allocated sooner rather than later on the assumption that they
980  * are cache-hot.
981  *
982  * The vm_page must be spinlocked.
983  * The vm_page must NOT be FICTITIOUS (that would be a disaster)
984  * This function will return with both the page and the queue locked.
985  */
986 static __inline void
987 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
988 {
989 	struct vpgqueues *pq;
990 	u_long *cnt;
991 
992 	KKASSERT(m->queue == PQ_NONE && (m->flags & PG_FICTITIOUS) == 0);
993 
994 	if (queue != PQ_NONE) {
995 		vm_page_queues_spin_lock(queue);
996 		pq = &vm_page_queues[queue];
997 		++pq->lcnt;
998 
999 		/*
1000 		 * Adjust our pcpu stats.  If a system entity really needs
1001 		 * to incorporate the count it will call vmstats_rollup()
1002 		 * to roll it all up into the global vmstats strufture.
1003 		 */
1004 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
1005 		atomic_add_long(cnt, 1);
1006 
1007 		/*
1008 		 * PQ_FREE is always handled LIFO style to try to provide
1009 		 * cache-hot pages to programs.
1010 		 */
1011 		m->queue = queue;
1012 		if (queue - m->pc == PQ_FREE) {
1013 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1014 		} else if (athead) {
1015 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1016 		} else {
1017 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1018 		}
1019 		/* leave the queue spinlocked */
1020 	}
1021 }
1022 
1023 /*
1024  * Wait until page is no longer BUSY.  If also_m_busy is TRUE we wait
1025  * until the page is no longer BUSY or SBUSY (busy_count field is 0).
1026  *
1027  * Returns TRUE if it had to sleep, FALSE if we did not.  Only one sleep
1028  * call will be made before returning.
1029  *
1030  * This function does NOT busy the page and on return the page is not
1031  * guaranteed to be available.
1032  */
1033 void
1034 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
1035 {
1036 	u_int32_t busy_count;
1037 
1038 	for (;;) {
1039 		busy_count = m->busy_count;
1040 		cpu_ccfence();
1041 
1042 		if ((busy_count & PBUSY_LOCKED) == 0 &&
1043 		    (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
1044 			break;
1045 		}
1046 		tsleep_interlock(m, 0);
1047 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1048 				      busy_count | PBUSY_WANTED)) {
1049 			atomic_set_int(&m->flags, PG_REFERENCED);
1050 			tsleep(m, PINTERLOCKED, msg, 0);
1051 			break;
1052 		}
1053 	}
1054 }
1055 
1056 /*
1057  * This calculates and returns a page color given an optional VM object and
1058  * either a pindex or an iterator.  We attempt to return a cpu-localized
1059  * pg_color that is still roughly 16-way set-associative.  The CPU topology
1060  * is used if it was probed.
1061  *
1062  * The caller may use the returned value to index into e.g. PQ_FREE when
1063  * allocating a page in order to nominally obtain pages that are hopefully
1064  * already localized to the requesting cpu.  This function is not able to
1065  * provide any sort of guarantee of this, but does its best to improve
1066  * hardware cache management performance.
1067  *
1068  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
1069  */
1070 u_short
1071 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
1072 {
1073 	u_short pg_color;
1074 	int object_pg_color;
1075 
1076 	/*
1077 	 * WARNING! cpu_topology_core_ids might not be a power of two.
1078 	 *	    We also shouldn't make assumptions about
1079 	 *	    cpu_topology_phys_ids either.
1080 	 *
1081 	 * WARNING! ncpus might not be known at this time (during early
1082 	 *	    boot), and might be set to 1.
1083 	 *
1084 	 * General format: [phys_id][core_id][cpuid][set-associativity]
1085 	 * (but uses modulo, so not necessarily precise bit masks)
1086 	 */
1087 	object_pg_color = object ? object->pg_color : 0;
1088 
1089 	if (cpu_topology_ht_ids) {
1090 		int phys_id;
1091 		int core_id;
1092 		int ht_id;
1093 		int physcale;
1094 		int grpscale;
1095 		int cpuscale;
1096 
1097 		/*
1098 		 * Translate cpuid to socket, core, and hyperthread id.
1099 		 */
1100 		phys_id = get_cpu_phys_id(cpuid);
1101 		core_id = get_cpu_core_id(cpuid);
1102 		ht_id = get_cpu_ht_id(cpuid);
1103 
1104 		/*
1105 		 * Calculate pg_color for our array index.
1106 		 *
1107 		 * physcale - socket multiplier.
1108 		 * grpscale - core multiplier (cores per socket)
1109 		 * cpu*	    - cpus per core
1110 		 *
1111 		 * WARNING! In early boot, ncpus has not yet been
1112 		 *	    initialized and may be set to (1).
1113 		 *
1114 		 * WARNING! physcale must match the organization that
1115 		 *	    vm_numa_organize() creates to ensure that
1116 		 *	    we properly localize allocations to the
1117 		 *	    requested cpuid.
1118 		 */
1119 		physcale = PQ_L2_SIZE / cpu_topology_phys_ids;
1120 		grpscale = physcale / cpu_topology_core_ids;
1121 		cpuscale = grpscale / cpu_topology_ht_ids;
1122 
1123 		pg_color = phys_id * physcale;
1124 		pg_color += core_id * grpscale;
1125 		pg_color += ht_id * cpuscale;
1126 		pg_color += (pindex + object_pg_color) % cpuscale;
1127 
1128 #if 0
1129 		if (grpsize >= 8) {
1130 			pg_color += (pindex + object_pg_color) % grpsize;
1131 		} else {
1132 			if (grpsize <= 2) {
1133 				grpsize = 8;
1134 			} else {
1135 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
1136 				grpsize += grpsize;
1137 				if (grpsize < 8)
1138 					grpsize += grpsize;
1139 			}
1140 			pg_color += (pindex + object_pg_color) % grpsize;
1141 		}
1142 #endif
1143 	} else {
1144 		/*
1145 		 * Unknown topology, distribute things evenly.
1146 		 *
1147 		 * WARNING! In early boot, ncpus has not yet been
1148 		 *	    initialized and may be set to (1).
1149 		 */
1150 		int cpuscale;
1151 
1152 		cpuscale = PQ_L2_SIZE / ncpus;
1153 
1154 		pg_color = cpuid * cpuscale;
1155 		pg_color += (pindex + object_pg_color) % cpuscale;
1156 	}
1157 	return (pg_color & PQ_L2_MASK);
1158 }
1159 
1160 /*
1161  * Wait until BUSY can be set, then set it.  If also_m_busy is TRUE we
1162  * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
1163  */
1164 void
1165 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1166 				     int also_m_busy, const char *msg
1167 				     VM_PAGE_DEBUG_ARGS)
1168 {
1169 	u_int32_t busy_count;
1170 
1171 	for (;;) {
1172 		busy_count = m->busy_count;
1173 		cpu_ccfence();
1174 		if (busy_count & PBUSY_LOCKED) {
1175 			tsleep_interlock(m, 0);
1176 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1177 					  busy_count | PBUSY_WANTED)) {
1178 				atomic_set_int(&m->flags, PG_REFERENCED);
1179 				tsleep(m, PINTERLOCKED, msg, 0);
1180 			}
1181 		} else if (also_m_busy && busy_count) {
1182 			tsleep_interlock(m, 0);
1183 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1184 					  busy_count | PBUSY_WANTED)) {
1185 				atomic_set_int(&m->flags, PG_REFERENCED);
1186 				tsleep(m, PINTERLOCKED, msg, 0);
1187 			}
1188 		} else {
1189 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1190 					      busy_count | PBUSY_LOCKED)) {
1191 #ifdef VM_PAGE_DEBUG
1192 				m->busy_func = func;
1193 				m->busy_line = lineno;
1194 #endif
1195 				break;
1196 			}
1197 		}
1198 	}
1199 }
1200 
1201 /*
1202  * Attempt to set BUSY.  If also_m_busy is TRUE we only succeed if
1203  * m->busy_count is also 0.
1204  *
1205  * Returns non-zero on failure.
1206  */
1207 int
1208 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1209 				    VM_PAGE_DEBUG_ARGS)
1210 {
1211 	u_int32_t busy_count;
1212 
1213 	for (;;) {
1214 		busy_count = m->busy_count;
1215 		cpu_ccfence();
1216 		if (busy_count & PBUSY_LOCKED)
1217 			return TRUE;
1218 		if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1219 			return TRUE;
1220 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1221 				      busy_count | PBUSY_LOCKED)) {
1222 #ifdef VM_PAGE_DEBUG
1223 				m->busy_func = func;
1224 				m->busy_line = lineno;
1225 #endif
1226 			return FALSE;
1227 		}
1228 	}
1229 }
1230 
1231 /*
1232  * Clear the BUSY flag and return non-zero to indicate to the caller
1233  * that a wakeup() should be performed.
1234  *
1235  * (inline version)
1236  */
1237 static __inline
1238 int
1239 _vm_page_wakeup(vm_page_t m)
1240 {
1241 	u_int32_t busy_count;
1242 
1243 	busy_count = m->busy_count;
1244 	cpu_ccfence();
1245 	for (;;) {
1246 		if (atomic_fcmpset_int(&m->busy_count, &busy_count,
1247 				      busy_count &
1248 				      ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1249 			return((int)(busy_count & PBUSY_WANTED));
1250 		}
1251 	}
1252 	/* not reached */
1253 }
1254 
1255 /*
1256  * Clear the BUSY flag and wakeup anyone waiting for the page.  This
1257  * is typically the last call you make on a page before moving onto
1258  * other things.
1259  */
1260 void
1261 vm_page_wakeup(vm_page_t m)
1262 {
1263         KASSERT(m->busy_count & PBUSY_LOCKED,
1264 		("vm_page_wakeup: page not busy!!!"));
1265 	if (_vm_page_wakeup(m))
1266 		wakeup(m);
1267 }
1268 
1269 /*
1270  * Hold a page, preventing reuse.  This is typically only called on pages
1271  * in a known state (either held busy, special, or interlocked in some
1272  * manner).  Holding a page does not ensure that it remains valid, it only
1273  * prevents reuse.  The page must not already be on the FREE queue or in
1274  * any danger of being moved to the FREE queue concurrent with this call.
1275  *
1276  * Other parts of the system can still disassociate the page from its object
1277  * and attempt to free it, or perform read or write I/O on it and/or otherwise
1278  * manipulate the page, but if the page is held the VM system will leave the
1279  * page and its data intact and not cycle it through the FREE queue until
1280  * the last hold has been released.
1281  *
1282  * (see vm_page_wire() if you want to prevent the page from being
1283  *  disassociated from its object too).
1284  */
1285 void
1286 vm_page_hold(vm_page_t m)
1287 {
1288 	atomic_add_int(&m->hold_count, 1);
1289 	KKASSERT(m->queue - m->pc != PQ_FREE);
1290 #if 0
1291 	vm_page_spin_lock(m);
1292 	atomic_add_int(&m->hold_count, 1);
1293 	if (m->queue - m->pc == PQ_FREE) {
1294 		_vm_page_queue_spin_lock(m);
1295 		_vm_page_rem_queue_spinlocked(m);
1296 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1297 		_vm_page_queue_spin_unlock(m);
1298 	}
1299 	vm_page_spin_unlock(m);
1300 #endif
1301 }
1302 
1303 /*
1304  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1305  * it was freed while held and must be moved back to the FREE queue.
1306  *
1307  * To avoid racing against vm_page_free*() we must re-test conditions
1308  * after obtaining the spin-lock.  The initial test can also race a
1309  * vm_page_free*() that is in the middle of moving a page to PQ_HOLD,
1310  * leaving the page on PQ_HOLD with hold_count == 0.  Rather than
1311  * throw a spin-lock in the critical path, we rely on the pageout
1312  * daemon to clean-up these loose ends.
1313  *
1314  * More critically, the 'easy movement' between queues without busying
1315  * a vm_page is only allowed for PQ_FREE<->PQ_HOLD.
1316  */
1317 void
1318 vm_page_unhold(vm_page_t m)
1319 {
1320 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1321 		("vm_page_unhold: pg %p illegal hold_count (%d) or "
1322 		 "on FREE queue (%d)",
1323 		 m, m->hold_count, m->queue - m->pc));
1324 
1325 	if (atomic_fetchadd_int(&m->hold_count, -1) == 1 &&
1326 	    m->queue - m->pc == PQ_HOLD) {
1327 		vm_page_spin_lock(m);
1328 		if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1329 			_vm_page_queue_spin_lock(m);
1330 			_vm_page_rem_queue_spinlocked(m);
1331 			_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1332 			_vm_page_queue_spin_unlock(m);
1333 		}
1334 		vm_page_spin_unlock(m);
1335 	}
1336 }
1337 
1338 /*
1339  * Create a fictitious page with the specified physical address and
1340  * memory attribute.  The memory attribute is the only the machine-
1341  * dependent aspect of a fictitious page that must be initialized.
1342  */
1343 void
1344 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1345 {
1346 	if ((m->flags & PG_FICTITIOUS) != 0) {
1347 		/*
1348 		 * The page's memattr might have changed since the
1349 		 * previous initialization.  Update the pmap to the
1350 		 * new memattr.
1351 		 */
1352 		goto memattr;
1353 	}
1354 	m->phys_addr = paddr;
1355 	m->queue = PQ_NONE;
1356 	/* Fictitious pages don't use "segind". */
1357 	/* Fictitious pages don't use "order" or "pool". */
1358 	m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1359 	m->busy_count = PBUSY_LOCKED;
1360 	m->wire_count = 1;
1361 	spin_init(&m->spin, "fake_page");
1362 	pmap_page_init(m);
1363 memattr:
1364 	pmap_page_set_memattr(m, memattr);
1365 }
1366 
1367 /*
1368  * Inserts the given vm_page into the object and object list.
1369  *
1370  * The pagetables are not updated but will presumably fault the page
1371  * in if necessary, or if a kernel page the caller will at some point
1372  * enter the page into the kernel's pmap.  We are not allowed to block
1373  * here so we *can't* do this anyway.
1374  *
1375  * This routine may not block.
1376  * This routine must be called with the vm_object held.
1377  * This routine must be called with a critical section held.
1378  *
1379  * This routine returns TRUE if the page was inserted into the object
1380  * successfully, and FALSE if the page already exists in the object.
1381  */
1382 int
1383 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1384 {
1385 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1386 	if (m->object != NULL)
1387 		panic("vm_page_insert: already inserted");
1388 
1389 	atomic_add_int(&object->generation, 1);
1390 
1391 	/*
1392 	 * Associate the VM page with an (object, offset).
1393 	 *
1394 	 * The vm_page spin lock is required for interactions with the pmap.
1395 	 */
1396 	vm_page_spin_lock(m);
1397 	m->object = object;
1398 	m->pindex = pindex;
1399 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1400 		m->object = NULL;
1401 		m->pindex = 0;
1402 		vm_page_spin_unlock(m);
1403 		return FALSE;
1404 	}
1405 	++object->resident_page_count;
1406 	++mycpu->gd_vmtotal.t_rm;
1407 	vm_page_spin_unlock(m);
1408 
1409 	/*
1410 	 * Since we are inserting a new and possibly dirty page,
1411 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1412 	 */
1413 	if ((m->valid & m->dirty) ||
1414 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1415 		vm_object_set_writeable_dirty(object);
1416 
1417 	/*
1418 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1419 	 */
1420 	swap_pager_page_inserted(m);
1421 	return TRUE;
1422 }
1423 
1424 /*
1425  * Removes the given vm_page_t from the (object,index) table
1426  *
1427  * The page must be BUSY and will remain BUSY on return.
1428  * No other requirements.
1429  *
1430  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1431  *	 it busy.
1432  *
1433  * NOTE: Caller is responsible for any pmap disposition prior to the
1434  *	 rename (as the pmap code will not be able to find the entries
1435  *	 once the object has been disassociated).  The caller may choose
1436  *	 to leave the pmap association intact if this routine is being
1437  *	 called as part of a rename between shadowed objects.
1438  *
1439  * This routine may not block.
1440  */
1441 void
1442 vm_page_remove(vm_page_t m)
1443 {
1444 	vm_object_t object;
1445 
1446 	if (m->object == NULL) {
1447 		return;
1448 	}
1449 
1450 	if ((m->busy_count & PBUSY_LOCKED) == 0)
1451 		panic("vm_page_remove: page not busy");
1452 
1453 	object = m->object;
1454 
1455 	vm_object_hold(object);
1456 
1457 	/*
1458 	 * Remove the page from the object and update the object.
1459 	 *
1460 	 * The vm_page spin lock is required for interactions with the pmap.
1461 	 */
1462 	vm_page_spin_lock(m);
1463 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1464 	--object->resident_page_count;
1465 	--mycpu->gd_vmtotal.t_rm;
1466 	m->object = NULL;
1467 	atomic_add_int(&object->generation, 1);
1468 	vm_page_spin_unlock(m);
1469 
1470 	vm_object_drop(object);
1471 }
1472 
1473 /*
1474  * Calculate the hash position for the vm_page hash heuristic.
1475  */
1476 static __inline
1477 struct vm_page **
1478 vm_page_hash_hash(vm_object_t object, vm_pindex_t pindex)
1479 {
1480 	size_t hi;
1481 
1482 	hi = (uintptr_t)object % (uintptr_t)vm_page_array_size + pindex;
1483 	hi %= vm_page_array_size;
1484 	return (&vm_page_hash[hi]);
1485 }
1486 
1487 /*
1488  * Heuristical page lookup that does not require any locks.  Returns
1489  * a soft-busied page on success, NULL on failure.
1490  *
1491  * Caller must lookup the page the slow way if NULL is returned.
1492  */
1493 vm_page_t
1494 vm_page_hash_get(vm_object_t object, vm_pindex_t pindex)
1495 {
1496 	struct vm_page **mp;
1497 	vm_page_t m;
1498 
1499 	if (vm_page_hash == NULL)
1500 		return NULL;
1501 	mp = vm_page_hash_hash(object, pindex);
1502 	m = *mp;
1503 	cpu_ccfence();
1504 	if (m == NULL)
1505 		return NULL;
1506 	if (m->object != object || m->pindex != pindex)
1507 		return NULL;
1508 	if (vm_page_sbusy_try(m))
1509 		return NULL;
1510 	if (m->object != object || m->pindex != pindex) {
1511 		vm_page_wakeup(m);
1512 		return NULL;
1513 	}
1514 	return m;
1515 }
1516 
1517 /*
1518  * Enter page onto vm_page_hash[].  This is a heuristic, SMP collisions
1519  * are allowed.
1520  */
1521 static __inline
1522 void
1523 vm_page_hash_enter(vm_page_t m)
1524 {
1525 	struct vm_page **mp;
1526 
1527 	if (vm_page_hash &&
1528 	    m > &vm_page_array[0] &&
1529 	    m < &vm_page_array[vm_page_array_size]) {
1530 		mp = vm_page_hash_hash(m->object, m->pindex);
1531 		if (*mp != m)
1532 			*mp = m;
1533 	}
1534 }
1535 
1536 /*
1537  * Locate and return the page at (object, pindex), or NULL if the
1538  * page could not be found.
1539  *
1540  * The caller must hold the vm_object token.
1541  */
1542 vm_page_t
1543 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1544 {
1545 	vm_page_t m;
1546 
1547 	/*
1548 	 * Search the hash table for this object/offset pair
1549 	 */
1550 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1551 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1552 	if (m) {
1553 		KKASSERT(m->object == object && m->pindex == pindex);
1554 		vm_page_hash_enter(m);
1555 	}
1556 	return(m);
1557 }
1558 
1559 vm_page_t
1560 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1561 					    vm_pindex_t pindex,
1562 					    int also_m_busy, const char *msg
1563 					    VM_PAGE_DEBUG_ARGS)
1564 {
1565 	u_int32_t busy_count;
1566 	vm_page_t m;
1567 
1568 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1569 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1570 	while (m) {
1571 		KKASSERT(m->object == object && m->pindex == pindex);
1572 		busy_count = m->busy_count;
1573 		cpu_ccfence();
1574 		if (busy_count & PBUSY_LOCKED) {
1575 			tsleep_interlock(m, 0);
1576 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1577 					  busy_count | PBUSY_WANTED)) {
1578 				atomic_set_int(&m->flags, PG_REFERENCED);
1579 				tsleep(m, PINTERLOCKED, msg, 0);
1580 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1581 							      pindex);
1582 			}
1583 		} else if (also_m_busy && busy_count) {
1584 			tsleep_interlock(m, 0);
1585 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1586 					  busy_count | PBUSY_WANTED)) {
1587 				atomic_set_int(&m->flags, PG_REFERENCED);
1588 				tsleep(m, PINTERLOCKED, msg, 0);
1589 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1590 							      pindex);
1591 			}
1592 		} else if (atomic_cmpset_int(&m->busy_count, busy_count,
1593 					     busy_count | PBUSY_LOCKED)) {
1594 #ifdef VM_PAGE_DEBUG
1595 			m->busy_func = func;
1596 			m->busy_line = lineno;
1597 #endif
1598 			vm_page_hash_enter(m);
1599 			break;
1600 		}
1601 	}
1602 	return m;
1603 }
1604 
1605 /*
1606  * Attempt to lookup and busy a page.
1607  *
1608  * Returns NULL if the page could not be found
1609  *
1610  * Returns a vm_page and error == TRUE if the page exists but could not
1611  * be busied.
1612  *
1613  * Returns a vm_page and error == FALSE on success.
1614  */
1615 vm_page_t
1616 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1617 					   vm_pindex_t pindex,
1618 					   int also_m_busy, int *errorp
1619 					   VM_PAGE_DEBUG_ARGS)
1620 {
1621 	u_int32_t busy_count;
1622 	vm_page_t m;
1623 
1624 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1625 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1626 	*errorp = FALSE;
1627 	while (m) {
1628 		KKASSERT(m->object == object && m->pindex == pindex);
1629 		busy_count = m->busy_count;
1630 		cpu_ccfence();
1631 		if (busy_count & PBUSY_LOCKED) {
1632 			*errorp = TRUE;
1633 			break;
1634 		}
1635 		if (also_m_busy && busy_count) {
1636 			*errorp = TRUE;
1637 			break;
1638 		}
1639 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1640 				      busy_count | PBUSY_LOCKED)) {
1641 #ifdef VM_PAGE_DEBUG
1642 			m->busy_func = func;
1643 			m->busy_line = lineno;
1644 #endif
1645 			vm_page_hash_enter(m);
1646 			break;
1647 		}
1648 	}
1649 	return m;
1650 }
1651 
1652 /*
1653  * Returns a page that is only soft-busied for use by the caller in
1654  * a read-only fashion.  Returns NULL if the page could not be found,
1655  * the soft busy could not be obtained, or the page data is invalid.
1656  */
1657 vm_page_t
1658 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1659 			 int pgoff, int pgbytes)
1660 {
1661 	vm_page_t m;
1662 
1663 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1664 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1665 	if (m) {
1666 		if ((m->valid != VM_PAGE_BITS_ALL &&
1667 		     !vm_page_is_valid(m, pgoff, pgbytes)) ||
1668 		    (m->flags & PG_FICTITIOUS)) {
1669 			m = NULL;
1670 		} else if (vm_page_sbusy_try(m)) {
1671 			m = NULL;
1672 		} else if ((m->valid != VM_PAGE_BITS_ALL &&
1673 			    !vm_page_is_valid(m, pgoff, pgbytes)) ||
1674 			   (m->flags & PG_FICTITIOUS)) {
1675 			vm_page_sbusy_drop(m);
1676 			m = NULL;
1677 		} else {
1678 			vm_page_hash_enter(m);
1679 		}
1680 	}
1681 	return m;
1682 }
1683 
1684 /*
1685  * Caller must hold the related vm_object
1686  */
1687 vm_page_t
1688 vm_page_next(vm_page_t m)
1689 {
1690 	vm_page_t next;
1691 
1692 	next = vm_page_rb_tree_RB_NEXT(m);
1693 	if (next && next->pindex != m->pindex + 1)
1694 		next = NULL;
1695 	return (next);
1696 }
1697 
1698 /*
1699  * vm_page_rename()
1700  *
1701  * Move the given vm_page from its current object to the specified
1702  * target object/offset.  The page must be busy and will remain so
1703  * on return.
1704  *
1705  * new_object must be held.
1706  * This routine might block. XXX ?
1707  *
1708  * NOTE: Swap associated with the page must be invalidated by the move.  We
1709  *       have to do this for several reasons:  (1) we aren't freeing the
1710  *       page, (2) we are dirtying the page, (3) the VM system is probably
1711  *       moving the page from object A to B, and will then later move
1712  *       the backing store from A to B and we can't have a conflict.
1713  *
1714  * NOTE: We *always* dirty the page.  It is necessary both for the
1715  *       fact that we moved it, and because we may be invalidating
1716  *	 swap.  If the page is on the cache, we have to deactivate it
1717  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1718  *	 on the cache.
1719  *
1720  * NOTE: Caller is responsible for any pmap disposition prior to the
1721  *	 rename (as the pmap code will not be able to find the entries
1722  *	 once the object has been disassociated or changed).  Nominally
1723  *	 the caller is moving a page between shadowed objects and so the
1724  *	 pmap association is retained without having to remove the page
1725  *	 from it.
1726  */
1727 void
1728 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1729 {
1730 	KKASSERT(m->busy_count & PBUSY_LOCKED);
1731 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1732 	if (m->object) {
1733 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1734 		vm_page_remove(m);
1735 	}
1736 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1737 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1738 		      new_object, new_pindex);
1739 	}
1740 	if (m->queue - m->pc == PQ_CACHE)
1741 		vm_page_deactivate(m);
1742 	vm_page_dirty(m);
1743 }
1744 
1745 /*
1746  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1747  * is to remain BUSYied by the caller.
1748  *
1749  * This routine may not block.
1750  */
1751 void
1752 vm_page_unqueue_nowakeup(vm_page_t m)
1753 {
1754 	vm_page_and_queue_spin_lock(m);
1755 	(void)_vm_page_rem_queue_spinlocked(m);
1756 	vm_page_spin_unlock(m);
1757 }
1758 
1759 /*
1760  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1761  * if necessary.
1762  *
1763  * This routine may not block.
1764  */
1765 void
1766 vm_page_unqueue(vm_page_t m)
1767 {
1768 	u_short queue;
1769 
1770 	vm_page_and_queue_spin_lock(m);
1771 	queue = _vm_page_rem_queue_spinlocked(m);
1772 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1773 		vm_page_spin_unlock(m);
1774 		pagedaemon_wakeup();
1775 	} else {
1776 		vm_page_spin_unlock(m);
1777 	}
1778 }
1779 
1780 /*
1781  * vm_page_list_find()
1782  *
1783  * Find a page on the specified queue with color optimization.
1784  *
1785  * The page coloring optimization attempts to locate a page that does
1786  * not overload other nearby pages in the object in the cpu's L1 or L2
1787  * caches.  We need this optimization because cpu caches tend to be
1788  * physical caches, while object spaces tend to be virtual.
1789  *
1790  * The page coloring optimization also, very importantly, tries to localize
1791  * memory to cpus and physical sockets.
1792  *
1793  * Each PQ_FREE and PQ_CACHE color queue has its own spinlock and the
1794  * algorithm is adjusted to localize allocations on a per-core basis.
1795  * This is done by 'twisting' the colors.
1796  *
1797  * The page is returned spinlocked and removed from its queue (it will
1798  * be on PQ_NONE), or NULL. The page is not BUSY'd.  The caller
1799  * is responsible for dealing with the busy-page case (usually by
1800  * deactivating the page and looping).
1801  *
1802  * NOTE:  This routine is carefully inlined.  A non-inlined version
1803  *	  is available for outside callers but the only critical path is
1804  *	  from within this source file.
1805  *
1806  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1807  *	  represent stable storage, allowing us to order our locks vm_page
1808  *	  first, then queue.
1809  */
1810 static __inline
1811 vm_page_t
1812 _vm_page_list_find(int basequeue, int index)
1813 {
1814 	struct vpgqueues *pq;
1815 	vm_page_t m;
1816 
1817 	index &= PQ_L2_MASK;
1818 	pq = &vm_page_queues[basequeue + index];
1819 
1820 	/*
1821 	 * Try this cpu's colored queue first.  Test for a page unlocked,
1822 	 * then lock the queue and locate a page.  Note that the lock order
1823 	 * is reversed, but we do not want to dwadle on the page spinlock
1824 	 * anyway as it is held significantly longer than the queue spinlock.
1825 	 */
1826 	if (TAILQ_FIRST(&pq->pl)) {
1827 		spin_lock(&pq->spin);
1828 		TAILQ_FOREACH(m, &pq->pl, pageq) {
1829 			if (spin_trylock(&m->spin) == 0)
1830 				continue;
1831 			KKASSERT(m->queue == basequeue + index);
1832 			_vm_page_rem_queue_spinlocked(m);
1833 			return(m);
1834 		}
1835 		spin_unlock(&pq->spin);
1836 	}
1837 
1838 	/*
1839 	 * If we are unable to get a page, do a more involved NUMA-aware
1840 	 * search.
1841 	 */
1842 	m = _vm_page_list_find2(basequeue, index);
1843 	return(m);
1844 }
1845 
1846 /*
1847  * If we could not find the page in the desired queue try to find it in
1848  * a nearby (NUMA-aware) queue.
1849  */
1850 static vm_page_t
1851 _vm_page_list_find2(int basequeue, int index)
1852 {
1853 	struct vpgqueues *pq;
1854 	vm_page_t m = NULL;
1855 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1856 	int pqi;
1857 	int i;
1858 
1859 	index &= PQ_L2_MASK;
1860 	pq = &vm_page_queues[basequeue];
1861 
1862 	/*
1863 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1864 	 * else fails (PQ_L2_MASK which is 255).
1865 	 *
1866 	 * Test each queue unlocked first, then lock the queue and locate
1867 	 * a page.  Note that the lock order is reversed, but we do not want
1868 	 * to dwadle on the page spinlock anyway as it is held significantly
1869 	 * longer than the queue spinlock.
1870 	 */
1871 	do {
1872 		pqmask = (pqmask << 1) | 1;
1873 		for (i = 0; i <= pqmask; ++i) {
1874 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1875 			if (TAILQ_FIRST(&pq[pqi].pl)) {
1876 				spin_lock(&pq[pqi].spin);
1877 				TAILQ_FOREACH(m, &pq[pqi].pl, pageq) {
1878 					if (spin_trylock(&m->spin) == 0)
1879 						continue;
1880 					KKASSERT(m->queue == basequeue + pqi);
1881 					_vm_page_rem_queue_spinlocked(m);
1882 					return(m);
1883 				}
1884 				spin_unlock(&pq[pqi].spin);
1885 			}
1886 		}
1887 	} while (pqmask != PQ_L2_MASK);
1888 
1889 	return(m);
1890 }
1891 
1892 /*
1893  * Returns a vm_page candidate for allocation.  The page is not busied so
1894  * it can move around.  The caller must busy the page (and typically
1895  * deactivate it if it cannot be busied!)
1896  *
1897  * Returns a spinlocked vm_page that has been removed from its queue.
1898  */
1899 vm_page_t
1900 vm_page_list_find(int basequeue, int index)
1901 {
1902 	return(_vm_page_list_find(basequeue, index));
1903 }
1904 
1905 /*
1906  * Find a page on the cache queue with color optimization, remove it
1907  * from the queue, and busy it.  The returned page will not be spinlocked.
1908  *
1909  * A candidate failure will be deactivated.  Candidates can fail due to
1910  * being busied by someone else, in which case they will be deactivated.
1911  *
1912  * This routine may not block.
1913  *
1914  */
1915 static vm_page_t
1916 vm_page_select_cache(u_short pg_color)
1917 {
1918 	vm_page_t m;
1919 
1920 	for (;;) {
1921 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1922 		if (m == NULL)
1923 			break;
1924 		/*
1925 		 * (m) has been removed from its queue and spinlocked
1926 		 */
1927 		if (vm_page_busy_try(m, TRUE)) {
1928 			_vm_page_deactivate_locked(m, 0);
1929 			vm_page_spin_unlock(m);
1930 		} else {
1931 			/*
1932 			 * We successfully busied the page
1933 			 */
1934 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1935 			    m->hold_count == 0 &&
1936 			    m->wire_count == 0 &&
1937 			    (m->dirty & m->valid) == 0) {
1938 				vm_page_spin_unlock(m);
1939 				pagedaemon_wakeup();
1940 				return(m);
1941 			}
1942 
1943 			/*
1944 			 * The page cannot be recycled, deactivate it.
1945 			 */
1946 			_vm_page_deactivate_locked(m, 0);
1947 			if (_vm_page_wakeup(m)) {
1948 				vm_page_spin_unlock(m);
1949 				wakeup(m);
1950 			} else {
1951 				vm_page_spin_unlock(m);
1952 			}
1953 		}
1954 	}
1955 	return (m);
1956 }
1957 
1958 /*
1959  * Find a free page.  We attempt to inline the nominal case and fall back
1960  * to _vm_page_select_free() otherwise.  A busied page is removed from
1961  * the queue and returned.
1962  *
1963  * This routine may not block.
1964  */
1965 static __inline vm_page_t
1966 vm_page_select_free(u_short pg_color)
1967 {
1968 	vm_page_t m;
1969 
1970 	for (;;) {
1971 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1972 		if (m == NULL)
1973 			break;
1974 		if (vm_page_busy_try(m, TRUE)) {
1975 			/*
1976 			 * Various mechanisms such as a pmap_collect can
1977 			 * result in a busy page on the free queue.  We
1978 			 * have to move the page out of the way so we can
1979 			 * retry the allocation.  If the other thread is not
1980 			 * allocating the page then m->valid will remain 0 and
1981 			 * the pageout daemon will free the page later on.
1982 			 *
1983 			 * Since we could not busy the page, however, we
1984 			 * cannot make assumptions as to whether the page
1985 			 * will be allocated by the other thread or not,
1986 			 * so all we can do is deactivate it to move it out
1987 			 * of the way.  In particular, if the other thread
1988 			 * wires the page it may wind up on the inactive
1989 			 * queue and the pageout daemon will have to deal
1990 			 * with that case too.
1991 			 */
1992 			_vm_page_deactivate_locked(m, 0);
1993 			vm_page_spin_unlock(m);
1994 		} else {
1995 			/*
1996 			 * Theoretically if we are able to busy the page
1997 			 * atomic with the queue removal (using the vm_page
1998 			 * lock) nobody else should have been able to mess
1999 			 * with the page before us.
2000 			 *
2001 			 * Assert the page state.  Note that even though
2002 			 * wiring doesn't adjust queues, a page on the free
2003 			 * queue should never be wired at this point.
2004 			 */
2005 			KKASSERT((m->flags & (PG_UNMANAGED |
2006 					      PG_NEED_COMMIT)) == 0);
2007 			KASSERT(m->hold_count == 0,
2008 				("m->hold_count is not zero "
2009 				 "pg %p q=%d flags=%08x hold=%d wire=%d",
2010 				 m, m->queue, m->flags,
2011 				 m->hold_count, m->wire_count));
2012 			KKASSERT(m->wire_count == 0);
2013 			vm_page_spin_unlock(m);
2014 			pagedaemon_wakeup();
2015 
2016 			/* return busied and removed page */
2017 			return(m);
2018 		}
2019 	}
2020 	return(m);
2021 }
2022 
2023 /*
2024  * vm_page_alloc()
2025  *
2026  * Allocate and return a memory cell associated with this VM object/offset
2027  * pair.  If object is NULL an unassociated page will be allocated.
2028  *
2029  * The returned page will be busied and removed from its queues.  This
2030  * routine can block and may return NULL if a race occurs and the page
2031  * is found to already exist at the specified (object, pindex).
2032  *
2033  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
2034  *	VM_ALLOC_QUICK		like normal but cannot use cache
2035  *	VM_ALLOC_SYSTEM		greater free drain
2036  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
2037  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
2038  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
2039  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
2040  *				(see vm_page_grab())
2041  *	VM_ALLOC_USE_GD		ok to use per-gd cache
2042  *
2043  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
2044  *
2045  * The object must be held if not NULL
2046  * This routine may not block
2047  *
2048  * Additional special handling is required when called from an interrupt
2049  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
2050  * in this case.
2051  */
2052 vm_page_t
2053 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
2054 {
2055 	globaldata_t gd;
2056 	vm_object_t obj;
2057 	vm_page_t m;
2058 	u_short pg_color;
2059 	int cpuid_local;
2060 
2061 #if 0
2062 	/*
2063 	 * Special per-cpu free VM page cache.  The pages are pre-busied
2064 	 * and pre-zerod for us.
2065 	 */
2066 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
2067 		crit_enter_gd(gd);
2068 		if (gd->gd_vmpg_count) {
2069 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
2070 			crit_exit_gd(gd);
2071 			goto done;
2072                 }
2073 		crit_exit_gd(gd);
2074         }
2075 #endif
2076 	m = NULL;
2077 
2078 	/*
2079 	 * CPU LOCALIZATION
2080 	 *
2081 	 * CPU localization algorithm.  Break the page queues up by physical
2082 	 * id and core id (note that two cpu threads will have the same core
2083 	 * id, and core_id != gd_cpuid).
2084 	 *
2085 	 * This is nowhere near perfect, for example the last pindex in a
2086 	 * subgroup will overflow into the next cpu or package.  But this
2087 	 * should get us good page reuse locality in heavy mixed loads.
2088 	 *
2089 	 * (may be executed before the APs are started, so other GDs might
2090 	 *  not exist!)
2091 	 */
2092 	if (page_req & VM_ALLOC_CPU_SPEC)
2093 		cpuid_local = VM_ALLOC_GETCPU(page_req);
2094 	else
2095 		cpuid_local = mycpu->gd_cpuid;
2096 
2097 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
2098 
2099 	KKASSERT(page_req &
2100 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
2101 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2102 
2103 	/*
2104 	 * Certain system threads (pageout daemon, buf_daemon's) are
2105 	 * allowed to eat deeper into the free page list.
2106 	 */
2107 	if (curthread->td_flags & TDF_SYSTHREAD)
2108 		page_req |= VM_ALLOC_SYSTEM;
2109 
2110 	/*
2111 	 * Impose various limitations.  Note that the v_free_reserved test
2112 	 * must match the opposite of vm_page_count_target() to avoid
2113 	 * livelocks, be careful.
2114 	 */
2115 loop:
2116 	gd = mycpu;
2117 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
2118 	    ((page_req & VM_ALLOC_INTERRUPT) &&
2119 	     gd->gd_vmstats.v_free_count > 0) ||
2120 	    ((page_req & VM_ALLOC_SYSTEM) &&
2121 	     gd->gd_vmstats.v_cache_count == 0 &&
2122 		gd->gd_vmstats.v_free_count >
2123 		gd->gd_vmstats.v_interrupt_free_min)
2124 	) {
2125 		/*
2126 		 * The free queue has sufficient free pages to take one out.
2127 		 */
2128 		m = vm_page_select_free(pg_color);
2129 	} else if (page_req & VM_ALLOC_NORMAL) {
2130 		/*
2131 		 * Allocatable from the cache (non-interrupt only).  On
2132 		 * success, we must free the page and try again, thus
2133 		 * ensuring that vmstats.v_*_free_min counters are replenished.
2134 		 */
2135 #ifdef INVARIANTS
2136 		if (curthread->td_preempted) {
2137 			kprintf("vm_page_alloc(): warning, attempt to allocate"
2138 				" cache page from preempting interrupt\n");
2139 			m = NULL;
2140 		} else {
2141 			m = vm_page_select_cache(pg_color);
2142 		}
2143 #else
2144 		m = vm_page_select_cache(pg_color);
2145 #endif
2146 		/*
2147 		 * On success move the page into the free queue and loop.
2148 		 *
2149 		 * Only do this if we can safely acquire the vm_object lock,
2150 		 * because this is effectively a random page and the caller
2151 		 * might be holding the lock shared, we don't want to
2152 		 * deadlock.
2153 		 */
2154 		if (m != NULL) {
2155 			KASSERT(m->dirty == 0,
2156 				("Found dirty cache page %p", m));
2157 			if ((obj = m->object) != NULL) {
2158 				if (vm_object_hold_try(obj)) {
2159 					vm_page_protect(m, VM_PROT_NONE);
2160 					vm_page_free(m);
2161 					/* m->object NULL here */
2162 					vm_object_drop(obj);
2163 				} else {
2164 					vm_page_deactivate(m);
2165 					vm_page_wakeup(m);
2166 				}
2167 			} else {
2168 				vm_page_protect(m, VM_PROT_NONE);
2169 				vm_page_free(m);
2170 			}
2171 			goto loop;
2172 		}
2173 
2174 		/*
2175 		 * On failure return NULL
2176 		 */
2177 		atomic_add_int(&vm_pageout_deficit, 1);
2178 		pagedaemon_wakeup();
2179 		return (NULL);
2180 	} else {
2181 		/*
2182 		 * No pages available, wakeup the pageout daemon and give up.
2183 		 */
2184 		atomic_add_int(&vm_pageout_deficit, 1);
2185 		pagedaemon_wakeup();
2186 		return (NULL);
2187 	}
2188 
2189 	/*
2190 	 * v_free_count can race so loop if we don't find the expected
2191 	 * page.
2192 	 */
2193 	if (m == NULL) {
2194 		vmstats_rollup();
2195 		goto loop;
2196 	}
2197 
2198 	/*
2199 	 * Good page found.  The page has already been busied for us and
2200 	 * removed from its queues.
2201 	 */
2202 	KASSERT(m->dirty == 0,
2203 		("vm_page_alloc: free/cache page %p was dirty", m));
2204 	KKASSERT(m->queue == PQ_NONE);
2205 
2206 #if 0
2207 done:
2208 #endif
2209 	/*
2210 	 * Initialize the structure, inheriting some flags but clearing
2211 	 * all the rest.  The page has already been busied for us.
2212 	 */
2213 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
2214 
2215 	KKASSERT(m->wire_count == 0);
2216 	KKASSERT((m->busy_count & PBUSY_MASK) == 0);
2217 	m->act_count = 0;
2218 	m->valid = 0;
2219 
2220 	/*
2221 	 * Caller must be holding the object lock (asserted by
2222 	 * vm_page_insert()).
2223 	 *
2224 	 * NOTE: Inserting a page here does not insert it into any pmaps
2225 	 *	 (which could cause us to block allocating memory).
2226 	 *
2227 	 * NOTE: If no object an unassociated page is allocated, m->pindex
2228 	 *	 can be used by the caller for any purpose.
2229 	 */
2230 	if (object) {
2231 		if (vm_page_insert(m, object, pindex) == FALSE) {
2232 			vm_page_free(m);
2233 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
2234 				panic("PAGE RACE %p[%ld]/%p",
2235 				      object, (long)pindex, m);
2236 			m = NULL;
2237 		}
2238 	} else {
2239 		m->pindex = pindex;
2240 	}
2241 
2242 	/*
2243 	 * Don't wakeup too often - wakeup the pageout daemon when
2244 	 * we would be nearly out of memory.
2245 	 */
2246 	pagedaemon_wakeup();
2247 
2248 	/*
2249 	 * A BUSY page is returned.
2250 	 */
2251 	return (m);
2252 }
2253 
2254 /*
2255  * Returns number of pages available in our DMA memory reserve
2256  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2257  */
2258 vm_size_t
2259 vm_contig_avail_pages(void)
2260 {
2261 	alist_blk_t blk;
2262 	alist_blk_t count;
2263 	alist_blk_t bfree;
2264 	spin_lock(&vm_contig_spin);
2265 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2266 	spin_unlock(&vm_contig_spin);
2267 
2268 	return bfree;
2269 }
2270 
2271 /*
2272  * Attempt to allocate contiguous physical memory with the specified
2273  * requirements.
2274  */
2275 vm_page_t
2276 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2277 		     unsigned long alignment, unsigned long boundary,
2278 		     unsigned long size, vm_memattr_t memattr)
2279 {
2280 	alist_blk_t blk;
2281 	vm_page_t m;
2282 	vm_pindex_t i;
2283 #if 0
2284 	static vm_pindex_t contig_rover;
2285 #endif
2286 
2287 	alignment >>= PAGE_SHIFT;
2288 	if (alignment == 0)
2289 		alignment = 1;
2290 	boundary >>= PAGE_SHIFT;
2291 	if (boundary == 0)
2292 		boundary = 1;
2293 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2294 
2295 #if 0
2296 	/*
2297 	 * Disabled temporarily until we find a solution for DRM (a flag
2298 	 * to always use the free space reserve, for performance).
2299 	 */
2300 	if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
2301 	    boundary <= PAGE_SIZE && size == 1 &&
2302 	    memattr == VM_MEMATTR_DEFAULT) {
2303 		/*
2304 		 * Any page will work, use vm_page_alloc()
2305 		 * (e.g. when used from kmem_alloc_attr())
2306 		 */
2307 		m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2308 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2309 				  VM_ALLOC_INTERRUPT);
2310 		m->valid = VM_PAGE_BITS_ALL;
2311 		vm_page_wire(m);
2312 		vm_page_wakeup(m);
2313 	} else
2314 #endif
2315 	{
2316 		/*
2317 		 * Use the low-memory dma reserve
2318 		 */
2319 		spin_lock(&vm_contig_spin);
2320 		blk = alist_alloc(&vm_contig_alist, 0, size);
2321 		if (blk == ALIST_BLOCK_NONE) {
2322 			spin_unlock(&vm_contig_spin);
2323 			if (bootverbose) {
2324 				kprintf("vm_page_alloc_contig: %ldk nospace\n",
2325 					(size << PAGE_SHIFT) / 1024);
2326 				print_backtrace(5);
2327 			}
2328 			return(NULL);
2329 		}
2330 		if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2331 			alist_free(&vm_contig_alist, blk, size);
2332 			spin_unlock(&vm_contig_spin);
2333 			if (bootverbose) {
2334 				kprintf("vm_page_alloc_contig: %ldk high "
2335 					"%016jx failed\n",
2336 					(size << PAGE_SHIFT) / 1024,
2337 					(intmax_t)high);
2338 			}
2339 			return(NULL);
2340 		}
2341 		spin_unlock(&vm_contig_spin);
2342 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2343 	}
2344 	if (vm_contig_verbose) {
2345 		kprintf("vm_page_alloc_contig: %016jx/%ldk "
2346 			"(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2347 			(intmax_t)m->phys_addr,
2348 			(size << PAGE_SHIFT) / 1024,
2349 			low, high, alignment, boundary, size, memattr);
2350 	}
2351 	if (memattr != VM_MEMATTR_DEFAULT) {
2352 		for (i = 0;i < size; i++)
2353 			pmap_page_set_memattr(&m[i], memattr);
2354 	}
2355 	return m;
2356 }
2357 
2358 /*
2359  * Free contiguously allocated pages.  The pages will be wired but not busy.
2360  * When freeing to the alist we leave them wired and not busy.
2361  */
2362 void
2363 vm_page_free_contig(vm_page_t m, unsigned long size)
2364 {
2365 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2366 	vm_pindex_t start = pa >> PAGE_SHIFT;
2367 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2368 
2369 	if (vm_contig_verbose) {
2370 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2371 			(intmax_t)pa, size / 1024);
2372 	}
2373 	if (pa < vm_low_phys_reserved) {
2374 		KKASSERT(pa + size <= vm_low_phys_reserved);
2375 		spin_lock(&vm_contig_spin);
2376 		alist_free(&vm_contig_alist, start, pages);
2377 		spin_unlock(&vm_contig_spin);
2378 	} else {
2379 		while (pages) {
2380 			vm_page_busy_wait(m, FALSE, "cpgfr");
2381 			vm_page_unwire(m, 0);
2382 			vm_page_free(m);
2383 			--pages;
2384 			++m;
2385 		}
2386 
2387 	}
2388 }
2389 
2390 
2391 /*
2392  * Wait for sufficient free memory for nominal heavy memory use kernel
2393  * operations.
2394  *
2395  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2396  *	     will trivially deadlock the system.
2397  */
2398 void
2399 vm_wait_nominal(void)
2400 {
2401 	while (vm_page_count_min(0))
2402 		vm_wait(0);
2403 }
2404 
2405 /*
2406  * Test if vm_wait_nominal() would block.
2407  */
2408 int
2409 vm_test_nominal(void)
2410 {
2411 	if (vm_page_count_min(0))
2412 		return(1);
2413 	return(0);
2414 }
2415 
2416 /*
2417  * Block until free pages are available for allocation, called in various
2418  * places before memory allocations.
2419  *
2420  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2421  * more generous then that.
2422  */
2423 void
2424 vm_wait(int timo)
2425 {
2426 	/*
2427 	 * never wait forever
2428 	 */
2429 	if (timo == 0)
2430 		timo = hz;
2431 	lwkt_gettoken(&vm_token);
2432 
2433 	if (curthread == pagethread ||
2434 	    curthread == emergpager) {
2435 		/*
2436 		 * The pageout daemon itself needs pages, this is bad.
2437 		 */
2438 		if (vm_page_count_min(0)) {
2439 			vm_pageout_pages_needed = 1;
2440 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2441 		}
2442 	} else {
2443 		/*
2444 		 * Wakeup the pageout daemon if necessary and wait.
2445 		 *
2446 		 * Do not wait indefinitely for the target to be reached,
2447 		 * as load might prevent it from being reached any time soon.
2448 		 * But wait a little to try to slow down page allocations
2449 		 * and to give more important threads (the pagedaemon)
2450 		 * allocation priority.
2451 		 */
2452 		if (vm_page_count_target()) {
2453 			if (vm_pages_needed == 0) {
2454 				vm_pages_needed = 1;
2455 				wakeup(&vm_pages_needed);
2456 			}
2457 			++vm_pages_waiting;	/* SMP race ok */
2458 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2459 		}
2460 	}
2461 	lwkt_reltoken(&vm_token);
2462 }
2463 
2464 /*
2465  * Block until free pages are available for allocation
2466  *
2467  * Called only from vm_fault so that processes page faulting can be
2468  * easily tracked.
2469  */
2470 void
2471 vm_wait_pfault(void)
2472 {
2473 	/*
2474 	 * Wakeup the pageout daemon if necessary and wait.
2475 	 *
2476 	 * Do not wait indefinitely for the target to be reached,
2477 	 * as load might prevent it from being reached any time soon.
2478 	 * But wait a little to try to slow down page allocations
2479 	 * and to give more important threads (the pagedaemon)
2480 	 * allocation priority.
2481 	 */
2482 	if (vm_page_count_min(0)) {
2483 		lwkt_gettoken(&vm_token);
2484 		while (vm_page_count_severe()) {
2485 			if (vm_page_count_target()) {
2486 				thread_t td;
2487 
2488 				if (vm_pages_needed == 0) {
2489 					vm_pages_needed = 1;
2490 					wakeup(&vm_pages_needed);
2491 				}
2492 				++vm_pages_waiting;	/* SMP race ok */
2493 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2494 
2495 				/*
2496 				 * Do not stay stuck in the loop if the system is trying
2497 				 * to kill the process.
2498 				 */
2499 				td = curthread;
2500 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2501 					break;
2502 			}
2503 		}
2504 		lwkt_reltoken(&vm_token);
2505 	}
2506 }
2507 
2508 /*
2509  * Put the specified page on the active list (if appropriate).  Ensure
2510  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2511  *
2512  * The caller should be holding the page busied ? XXX
2513  * This routine may not block.
2514  */
2515 void
2516 vm_page_activate(vm_page_t m)
2517 {
2518 	u_short oqueue;
2519 
2520 	vm_page_spin_lock(m);
2521 	if (m->queue - m->pc != PQ_ACTIVE && !(m->flags & PG_FICTITIOUS)) {
2522 		_vm_page_queue_spin_lock(m);
2523 		oqueue = _vm_page_rem_queue_spinlocked(m);
2524 		/* page is left spinlocked, queue is unlocked */
2525 
2526 		if (oqueue == PQ_CACHE)
2527 			mycpu->gd_cnt.v_reactivated++;
2528 		if ((m->flags & PG_UNMANAGED) == 0) {
2529 			if (m->act_count < ACT_INIT)
2530 				m->act_count = ACT_INIT;
2531 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2532 		}
2533 		_vm_page_and_queue_spin_unlock(m);
2534 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2535 			pagedaemon_wakeup();
2536 	} else {
2537 		if (m->act_count < ACT_INIT)
2538 			m->act_count = ACT_INIT;
2539 		vm_page_spin_unlock(m);
2540 	}
2541 }
2542 
2543 /*
2544  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2545  * routine is called when a page has been added to the cache or free
2546  * queues.
2547  *
2548  * This routine may not block.
2549  */
2550 static __inline void
2551 vm_page_free_wakeup(void)
2552 {
2553 	globaldata_t gd = mycpu;
2554 
2555 	/*
2556 	 * If the pageout daemon itself needs pages, then tell it that
2557 	 * there are some free.
2558 	 */
2559 	if (vm_pageout_pages_needed &&
2560 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2561 	    gd->gd_vmstats.v_pageout_free_min
2562 	) {
2563 		vm_pageout_pages_needed = 0;
2564 		wakeup(&vm_pageout_pages_needed);
2565 	}
2566 
2567 	/*
2568 	 * Wakeup processes that are waiting on memory.
2569 	 *
2570 	 * Generally speaking we want to wakeup stuck processes as soon as
2571 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2572 	 * where we can do this.  Wait a bit longer to reduce degenerate
2573 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2574 	 * to make sure the min-check w/hysteresis does not exceed the
2575 	 * normal target.
2576 	 */
2577 	if (vm_pages_waiting) {
2578 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2579 		    !vm_page_count_target()) {
2580 			vm_pages_waiting = 0;
2581 			wakeup(&vmstats.v_free_count);
2582 			++mycpu->gd_cnt.v_ppwakeups;
2583 		}
2584 #if 0
2585 		if (!vm_page_count_target()) {
2586 			/*
2587 			 * Plenty of pages are free, wakeup everyone.
2588 			 */
2589 			vm_pages_waiting = 0;
2590 			wakeup(&vmstats.v_free_count);
2591 			++mycpu->gd_cnt.v_ppwakeups;
2592 		} else if (!vm_page_count_min(0)) {
2593 			/*
2594 			 * Some pages are free, wakeup someone.
2595 			 */
2596 			int wcount = vm_pages_waiting;
2597 			if (wcount > 0)
2598 				--wcount;
2599 			vm_pages_waiting = wcount;
2600 			wakeup_one(&vmstats.v_free_count);
2601 			++mycpu->gd_cnt.v_ppwakeups;
2602 		}
2603 #endif
2604 	}
2605 }
2606 
2607 /*
2608  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2609  * it from its VM object.
2610  *
2611  * The vm_page must be BUSY on entry.  BUSY will be released on
2612  * return (the page will have been freed).
2613  */
2614 void
2615 vm_page_free_toq(vm_page_t m)
2616 {
2617 	mycpu->gd_cnt.v_tfree++;
2618 	KKASSERT((m->flags & PG_MAPPED) == 0);
2619 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2620 
2621 	if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2622 		kprintf("vm_page_free: pindex(%lu), busy %08x, "
2623 			"hold(%d)\n",
2624 			(u_long)m->pindex, m->busy_count, m->hold_count);
2625 		if ((m->queue - m->pc) == PQ_FREE)
2626 			panic("vm_page_free: freeing free page");
2627 		else
2628 			panic("vm_page_free: freeing busy page");
2629 	}
2630 
2631 	/*
2632 	 * Remove from object, spinlock the page and its queues and
2633 	 * remove from any queue.  No queue spinlock will be held
2634 	 * after this section (because the page was removed from any
2635 	 * queue).
2636 	 */
2637 	vm_page_remove(m);
2638 
2639 	/*
2640 	 * No further management of fictitious pages occurs beyond object
2641 	 * and queue removal.
2642 	 */
2643 	if ((m->flags & PG_FICTITIOUS) != 0) {
2644 		KKASSERT(m->queue == PQ_NONE);
2645 		vm_page_wakeup(m);
2646 		return;
2647 	}
2648 	vm_page_and_queue_spin_lock(m);
2649 	_vm_page_rem_queue_spinlocked(m);
2650 
2651 	m->valid = 0;
2652 	vm_page_undirty(m);
2653 
2654 	if (m->wire_count != 0) {
2655 		if (m->wire_count > 1) {
2656 		    panic(
2657 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2658 			m->wire_count, (long)m->pindex);
2659 		}
2660 		panic("vm_page_free: freeing wired page");
2661 	}
2662 
2663 	/*
2664 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2665 	 * Clear the NEED_COMMIT flag
2666 	 */
2667 	if (m->flags & PG_UNMANAGED)
2668 		vm_page_flag_clear(m, PG_UNMANAGED);
2669 	if (m->flags & PG_NEED_COMMIT)
2670 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2671 
2672 	if (m->hold_count != 0) {
2673 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2674 	} else {
2675 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2676 	}
2677 
2678 	/*
2679 	 * This sequence allows us to clear BUSY while still holding
2680 	 * its spin lock, which reduces contention vs allocators.  We
2681 	 * must not leave the queue locked or _vm_page_wakeup() may
2682 	 * deadlock.
2683 	 */
2684 	_vm_page_queue_spin_unlock(m);
2685 	if (_vm_page_wakeup(m)) {
2686 		vm_page_spin_unlock(m);
2687 		wakeup(m);
2688 	} else {
2689 		vm_page_spin_unlock(m);
2690 	}
2691 	vm_page_free_wakeup();
2692 }
2693 
2694 /*
2695  * vm_page_unmanage()
2696  *
2697  * Prevent PV management from being done on the page.  The page is
2698  * also removed from the paging queues, and as a consequence of no longer
2699  * being managed the pageout daemon will not touch it (since there is no
2700  * way to locate the pte mappings for the page).  madvise() calls that
2701  * mess with the pmap will also no longer operate on the page.
2702  *
2703  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2704  * will clear the flag.
2705  *
2706  * This routine is used by OBJT_PHYS objects - objects using unswappable
2707  * physical memory as backing store rather then swap-backed memory and
2708  * will eventually be extended to support 4MB unmanaged physical
2709  * mappings.
2710  *
2711  * Caller must be holding the page busy.
2712  */
2713 void
2714 vm_page_unmanage(vm_page_t m)
2715 {
2716 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2717 	if ((m->flags & PG_UNMANAGED) == 0) {
2718 		vm_page_unqueue(m);
2719 	}
2720 	vm_page_flag_set(m, PG_UNMANAGED);
2721 }
2722 
2723 /*
2724  * Mark this page as wired down by yet another map.  We do not adjust the
2725  * queue the page is on, it will be checked for wiring as-needed.
2726  *
2727  * Caller must be holding the page busy.
2728  */
2729 void
2730 vm_page_wire(vm_page_t m)
2731 {
2732 	/*
2733 	 * Only bump the wire statistics if the page is not already wired,
2734 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2735 	 * it is already off the queues).  Don't do anything with fictitious
2736 	 * pages because they are always wired.
2737 	 */
2738 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2739 	if ((m->flags & PG_FICTITIOUS) == 0) {
2740 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2741 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2742 		}
2743 		KASSERT(m->wire_count != 0,
2744 			("vm_page_wire: wire_count overflow m=%p", m));
2745 	}
2746 }
2747 
2748 /*
2749  * Release one wiring of this page, potentially enabling it to be paged again.
2750  *
2751  * Note that wired pages are no longer unconditionally removed from the
2752  * paging queues, so the page may already be on a queue.  Move the page
2753  * to the desired queue if necessary.
2754  *
2755  * Many pages placed on the inactive queue should actually go
2756  * into the cache, but it is difficult to figure out which.  What
2757  * we do instead, if the inactive target is well met, is to put
2758  * clean pages at the head of the inactive queue instead of the tail.
2759  * This will cause them to be moved to the cache more quickly and
2760  * if not actively re-referenced, freed more quickly.  If we just
2761  * stick these pages at the end of the inactive queue, heavy filesystem
2762  * meta-data accesses can cause an unnecessary paging load on memory bound
2763  * processes.  This optimization causes one-time-use metadata to be
2764  * reused more quickly.
2765  *
2766  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2767  * the inactive queue.  This helps the pageout daemon determine memory
2768  * pressure and act on out-of-memory situations more quickly.
2769  *
2770  * BUT, if we are in a low-memory situation we have no choice but to
2771  * put clean pages on the cache queue.
2772  *
2773  * A number of routines use vm_page_unwire() to guarantee that the page
2774  * will go into either the inactive or active queues, and will NEVER
2775  * be placed in the cache - for example, just after dirtying a page.
2776  * dirty pages in the cache are not allowed.
2777  *
2778  * This routine may not block.
2779  */
2780 void
2781 vm_page_unwire(vm_page_t m, int activate)
2782 {
2783 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2784 	if (m->flags & PG_FICTITIOUS) {
2785 		/* do nothing */
2786 	} else if ((int)m->wire_count <= 0) {
2787 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2788 	} else {
2789 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2790 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2791 			if (m->flags & PG_UNMANAGED) {
2792 				;
2793 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2794 				vm_page_activate(m);
2795 #if 0
2796 				vm_page_spin_lock(m);
2797 				_vm_page_add_queue_spinlocked(m,
2798 							PQ_ACTIVE + m->pc, 0);
2799 				_vm_page_and_queue_spin_unlock(m);
2800 #endif
2801 			} else {
2802 				vm_page_deactivate(m);
2803 #if 0
2804 				vm_page_spin_lock(m);
2805 				vm_page_flag_clear(m, PG_WINATCFLS);
2806 				_vm_page_add_queue_spinlocked(m,
2807 							PQ_INACTIVE + m->pc, 0);
2808 				_vm_page_and_queue_spin_unlock(m);
2809 #endif
2810 			}
2811 		}
2812 	}
2813 }
2814 
2815 /*
2816  * Move the specified page to the inactive queue.
2817  *
2818  * Normally athead is 0 resulting in LRU operation.  athead is set
2819  * to 1 if we want this page to be 'as if it were placed in the cache',
2820  * except without unmapping it from the process address space.
2821  *
2822  * vm_page's spinlock must be held on entry and will remain held on return.
2823  * This routine may not block.  The caller does not have to hold the page
2824  * busied but should have some sort of interlock on its validity.
2825  */
2826 static void
2827 _vm_page_deactivate_locked(vm_page_t m, int athead)
2828 {
2829 	u_short oqueue;
2830 
2831 	/*
2832 	 * Ignore if already inactive.
2833 	 */
2834 	if (m->queue - m->pc == PQ_INACTIVE || (m->flags & PG_FICTITIOUS))
2835 		return;
2836 	_vm_page_queue_spin_lock(m);
2837 	oqueue = _vm_page_rem_queue_spinlocked(m);
2838 
2839 	if ((m->flags & PG_UNMANAGED) == 0) {
2840 		if (oqueue == PQ_CACHE)
2841 			mycpu->gd_cnt.v_reactivated++;
2842 		vm_page_flag_clear(m, PG_WINATCFLS);
2843 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2844 		if (athead == 0) {
2845 			atomic_add_long(
2846 				&vm_page_queues[PQ_INACTIVE + m->pc].adds, 1);
2847 		}
2848 	}
2849 	/* NOTE: PQ_NONE if condition not taken */
2850 	_vm_page_queue_spin_unlock(m);
2851 	/* leaves vm_page spinlocked */
2852 }
2853 
2854 /*
2855  * Attempt to deactivate a page.
2856  *
2857  * No requirements.
2858  */
2859 void
2860 vm_page_deactivate(vm_page_t m)
2861 {
2862 	vm_page_spin_lock(m);
2863 	_vm_page_deactivate_locked(m, 0);
2864 	vm_page_spin_unlock(m);
2865 }
2866 
2867 void
2868 vm_page_deactivate_locked(vm_page_t m)
2869 {
2870 	_vm_page_deactivate_locked(m, 0);
2871 }
2872 
2873 /*
2874  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2875  *
2876  * This function returns non-zero if it successfully moved the page to
2877  * PQ_CACHE.
2878  *
2879  * This function unconditionally unbusies the page on return.
2880  */
2881 int
2882 vm_page_try_to_cache(vm_page_t m)
2883 {
2884 	/*
2885 	 * Shortcut if we obviously cannot move the page, or if the
2886 	 * page is already on the cache queue, or it is ficitious.
2887 	 */
2888 	if (m->dirty || m->hold_count || m->wire_count ||
2889 	    m->queue - m->pc == PQ_CACHE ||
2890 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT | PG_FICTITIOUS))) {
2891 		vm_page_wakeup(m);
2892 		return(0);
2893 	}
2894 
2895 	/*
2896 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2897 	 * be moved to the cache.
2898 	 */
2899 	vm_page_test_dirty(m);
2900 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2901 		vm_page_wakeup(m);
2902 		return(0);
2903 	}
2904 	vm_page_cache(m);
2905 	return(1);
2906 }
2907 
2908 /*
2909  * Attempt to free the page.  If we cannot free it, we do nothing.
2910  * 1 is returned on success, 0 on failure.
2911  *
2912  * Caller provides an unlocked/non-busied page.
2913  * No requirements.
2914  */
2915 int
2916 vm_page_try_to_free(vm_page_t m)
2917 {
2918 	if (vm_page_busy_try(m, TRUE))
2919 		return(0);
2920 
2921 	/*
2922 	 * The page can be in any state, including already being on the free
2923 	 * queue.  Check to see if it really can be freed.
2924 	 */
2925 	if (m->dirty ||				/* can't free if it is dirty */
2926 	    m->hold_count ||			/* or held (XXX may be wrong) */
2927 	    m->wire_count ||			/* or wired */
2928 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2929 			 PG_NEED_COMMIT |	/* or needs a commit */
2930 			 PG_FICTITIOUS)) ||	/* or is fictitious */
2931 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2932 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2933 		vm_page_wakeup(m);
2934 		return(0);
2935 	}
2936 
2937 	/*
2938 	 * We can probably free the page.
2939 	 *
2940 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2941 	 * not be freed by this function.    We have to re-test the
2942 	 * dirty bit after cleaning out the pmaps.
2943 	 */
2944 	vm_page_test_dirty(m);
2945 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2946 		vm_page_wakeup(m);
2947 		return(0);
2948 	}
2949 	vm_page_protect(m, VM_PROT_NONE);
2950 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2951 		vm_page_wakeup(m);
2952 		return(0);
2953 	}
2954 	vm_page_free(m);
2955 	return(1);
2956 }
2957 
2958 /*
2959  * vm_page_cache
2960  *
2961  * Put the specified page onto the page cache queue (if appropriate).
2962  *
2963  * The page must be busy, and this routine will release the busy and
2964  * possibly even free the page.
2965  */
2966 void
2967 vm_page_cache(vm_page_t m)
2968 {
2969 	/*
2970 	 * Not suitable for the cache
2971 	 */
2972 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT | PG_FICTITIOUS)) ||
2973 	    (m->busy_count & PBUSY_MASK) ||
2974 	    m->wire_count || m->hold_count) {
2975 		vm_page_wakeup(m);
2976 		return;
2977 	}
2978 
2979 	/*
2980 	 * Already in the cache (and thus not mapped)
2981 	 */
2982 	if ((m->queue - m->pc) == PQ_CACHE) {
2983 		KKASSERT((m->flags & PG_MAPPED) == 0);
2984 		vm_page_wakeup(m);
2985 		return;
2986 	}
2987 
2988 	/*
2989 	 * Caller is required to test m->dirty, but note that the act of
2990 	 * removing the page from its maps can cause it to become dirty
2991 	 * on an SMP system due to another cpu running in usermode.
2992 	 */
2993 	if (m->dirty) {
2994 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2995 			(long)m->pindex);
2996 	}
2997 
2998 	/*
2999 	 * Remove all pmaps and indicate that the page is not
3000 	 * writeable or mapped.  Our vm_page_protect() call may
3001 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
3002 	 * everything.
3003 	 */
3004 	vm_page_protect(m, VM_PROT_NONE);
3005 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
3006 	    (m->busy_count & PBUSY_MASK) ||
3007 	    m->wire_count || m->hold_count) {
3008 		vm_page_wakeup(m);
3009 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
3010 		vm_page_deactivate(m);
3011 		vm_page_wakeup(m);
3012 	} else {
3013 		_vm_page_and_queue_spin_lock(m);
3014 		_vm_page_rem_queue_spinlocked(m);
3015 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
3016 		_vm_page_and_queue_spin_unlock(m);
3017 		vm_page_wakeup(m);
3018 		vm_page_free_wakeup();
3019 	}
3020 }
3021 
3022 /*
3023  * vm_page_dontneed()
3024  *
3025  * Cache, deactivate, or do nothing as appropriate.  This routine
3026  * is typically used by madvise() MADV_DONTNEED.
3027  *
3028  * Generally speaking we want to move the page into the cache so
3029  * it gets reused quickly.  However, this can result in a silly syndrome
3030  * due to the page recycling too quickly.  Small objects will not be
3031  * fully cached.  On the otherhand, if we move the page to the inactive
3032  * queue we wind up with a problem whereby very large objects
3033  * unnecessarily blow away our inactive and cache queues.
3034  *
3035  * The solution is to move the pages based on a fixed weighting.  We
3036  * either leave them alone, deactivate them, or move them to the cache,
3037  * where moving them to the cache has the highest weighting.
3038  * By forcing some pages into other queues we eventually force the
3039  * system to balance the queues, potentially recovering other unrelated
3040  * space from active.  The idea is to not force this to happen too
3041  * often.
3042  *
3043  * The page must be busied.
3044  */
3045 void
3046 vm_page_dontneed(vm_page_t m)
3047 {
3048 	static int dnweight;
3049 	int dnw;
3050 	int head;
3051 
3052 	dnw = ++dnweight;
3053 
3054 	/*
3055 	 * occassionally leave the page alone
3056 	 */
3057 	if ((dnw & 0x01F0) == 0 ||
3058 	    m->queue - m->pc == PQ_INACTIVE ||
3059 	    m->queue - m->pc == PQ_CACHE
3060 	) {
3061 		if (m->act_count >= ACT_INIT)
3062 			--m->act_count;
3063 		return;
3064 	}
3065 
3066 	/*
3067 	 * If vm_page_dontneed() is inactivating a page, it must clear
3068 	 * the referenced flag; otherwise the pagedaemon will see references
3069 	 * on the page in the inactive queue and reactivate it. Until the
3070 	 * page can move to the cache queue, madvise's job is not done.
3071 	 */
3072 	vm_page_flag_clear(m, PG_REFERENCED);
3073 	pmap_clear_reference(m);
3074 
3075 	if (m->dirty == 0)
3076 		vm_page_test_dirty(m);
3077 
3078 	if (m->dirty || (dnw & 0x0070) == 0) {
3079 		/*
3080 		 * Deactivate the page 3 times out of 32.
3081 		 */
3082 		head = 0;
3083 	} else {
3084 		/*
3085 		 * Cache the page 28 times out of every 32.  Note that
3086 		 * the page is deactivated instead of cached, but placed
3087 		 * at the head of the queue instead of the tail.
3088 		 */
3089 		head = 1;
3090 	}
3091 	vm_page_spin_lock(m);
3092 	_vm_page_deactivate_locked(m, head);
3093 	vm_page_spin_unlock(m);
3094 }
3095 
3096 /*
3097  * These routines manipulate the 'soft busy' count for a page.  A soft busy
3098  * is almost like a hard BUSY except that it allows certain compatible
3099  * operations to occur on the page while it is busy.  For example, a page
3100  * undergoing a write can still be mapped read-only.
3101  *
3102  * We also use soft-busy to quickly pmap_enter shared read-only pages
3103  * without having to hold the page locked.
3104  *
3105  * The soft-busy count can be > 1 in situations where multiple threads
3106  * are pmap_enter()ing the same page simultaneously, or when two buffer
3107  * cache buffers overlap the same page.
3108  *
3109  * The caller must hold the page BUSY when making these two calls.
3110  */
3111 void
3112 vm_page_io_start(vm_page_t m)
3113 {
3114 	uint32_t ocount;
3115 
3116 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3117 	KKASSERT(ocount & PBUSY_LOCKED);
3118 }
3119 
3120 void
3121 vm_page_io_finish(vm_page_t m)
3122 {
3123 	uint32_t ocount;
3124 
3125 	ocount = atomic_fetchadd_int(&m->busy_count, -1);
3126 	KKASSERT(ocount & PBUSY_MASK);
3127 #if 0
3128 	if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
3129 		wakeup(m);
3130 #endif
3131 }
3132 
3133 /*
3134  * Attempt to soft-busy a page.  The page must not be PBUSY_LOCKED.
3135  *
3136  * We can't use fetchadd here because we might race a hard-busy and the
3137  * page freeing code asserts on a non-zero soft-busy count (even if only
3138  * temporary).
3139  *
3140  * Returns 0 on success, non-zero on failure.
3141  */
3142 int
3143 vm_page_sbusy_try(vm_page_t m)
3144 {
3145 	uint32_t ocount;
3146 
3147 	for (;;) {
3148 		ocount = m->busy_count;
3149 		cpu_ccfence();
3150 		if (ocount & PBUSY_LOCKED)
3151 			return 1;
3152 		if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
3153 			break;
3154 	}
3155 	return 0;
3156 #if 0
3157 	if (m->busy_count & PBUSY_LOCKED)
3158 		return 1;
3159 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3160 	if (ocount & PBUSY_LOCKED) {
3161 		vm_page_sbusy_drop(m);
3162 		return 1;
3163 	}
3164 	return 0;
3165 #endif
3166 }
3167 
3168 /*
3169  * Indicate that a clean VM page requires a filesystem commit and cannot
3170  * be reused.  Used by tmpfs.
3171  */
3172 void
3173 vm_page_need_commit(vm_page_t m)
3174 {
3175 	vm_page_flag_set(m, PG_NEED_COMMIT);
3176 	vm_object_set_writeable_dirty(m->object);
3177 }
3178 
3179 void
3180 vm_page_clear_commit(vm_page_t m)
3181 {
3182 	vm_page_flag_clear(m, PG_NEED_COMMIT);
3183 }
3184 
3185 /*
3186  * Grab a page, blocking if it is busy and allocating a page if necessary.
3187  * A busy page is returned or NULL.  The page may or may not be valid and
3188  * might not be on a queue (the caller is responsible for the disposition of
3189  * the page).
3190  *
3191  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
3192  * page will be zero'd and marked valid.
3193  *
3194  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
3195  * valid even if it already exists.
3196  *
3197  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
3198  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
3199  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
3200  *
3201  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
3202  * always returned if we had blocked.
3203  *
3204  * This routine may not be called from an interrupt.
3205  *
3206  * No other requirements.
3207  */
3208 vm_page_t
3209 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3210 {
3211 	vm_page_t m;
3212 	int error;
3213 	int shared = 1;
3214 
3215 	KKASSERT(allocflags &
3216 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
3217 	vm_object_hold_shared(object);
3218 	for (;;) {
3219 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3220 		if (error) {
3221 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
3222 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
3223 				m = NULL;
3224 				break;
3225 			}
3226 			/* retry */
3227 		} else if (m == NULL) {
3228 			if (shared) {
3229 				vm_object_upgrade(object);
3230 				shared = 0;
3231 			}
3232 			if (allocflags & VM_ALLOC_RETRY)
3233 				allocflags |= VM_ALLOC_NULL_OK;
3234 			m = vm_page_alloc(object, pindex,
3235 					  allocflags & ~VM_ALLOC_RETRY);
3236 			if (m)
3237 				break;
3238 			vm_wait(0);
3239 			if ((allocflags & VM_ALLOC_RETRY) == 0)
3240 				goto failed;
3241 		} else {
3242 			/* m found */
3243 			break;
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
3249 	 *
3250 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
3251 	 * valid even if already valid.
3252 	 *
3253 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
3254 	 *	  removed the idle zeroing code.  These optimizations actually
3255 	 *	  slow things down on modern cpus because the zerod area is
3256 	 *	  likely uncached, placing a memory-access burden on the
3257 	 *	  accesors taking the fault.
3258 	 *
3259 	 *	  By always zeroing the page in-line with the fault, no
3260 	 *	  dynamic ram reads are needed and the caches are hot, ready
3261 	 *	  for userland to access the memory.
3262 	 */
3263 	if (m->valid == 0) {
3264 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
3265 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
3266 			m->valid = VM_PAGE_BITS_ALL;
3267 		}
3268 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
3269 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
3270 		m->valid = VM_PAGE_BITS_ALL;
3271 	}
3272 failed:
3273 	vm_object_drop(object);
3274 	return(m);
3275 }
3276 
3277 /*
3278  * Mapping function for valid bits or for dirty bits in
3279  * a page.  May not block.
3280  *
3281  * Inputs are required to range within a page.
3282  *
3283  * No requirements.
3284  * Non blocking.
3285  */
3286 int
3287 vm_page_bits(int base, int size)
3288 {
3289 	int first_bit;
3290 	int last_bit;
3291 
3292 	KASSERT(
3293 	    base + size <= PAGE_SIZE,
3294 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3295 	);
3296 
3297 	if (size == 0)		/* handle degenerate case */
3298 		return(0);
3299 
3300 	first_bit = base >> DEV_BSHIFT;
3301 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3302 
3303 	return ((2 << last_bit) - (1 << first_bit));
3304 }
3305 
3306 /*
3307  * Sets portions of a page valid and clean.  The arguments are expected
3308  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3309  * of any partial chunks touched by the range.  The invalid portion of
3310  * such chunks will be zero'd.
3311  *
3312  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3313  *	 align base to DEV_BSIZE so as not to mark clean a partially
3314  *	 truncated device block.  Otherwise the dirty page status might be
3315  *	 lost.
3316  *
3317  * This routine may not block.
3318  *
3319  * (base + size) must be less then or equal to PAGE_SIZE.
3320  */
3321 static void
3322 _vm_page_zero_valid(vm_page_t m, int base, int size)
3323 {
3324 	int frag;
3325 	int endoff;
3326 
3327 	if (size == 0)	/* handle degenerate case */
3328 		return;
3329 
3330 	/*
3331 	 * If the base is not DEV_BSIZE aligned and the valid
3332 	 * bit is clear, we have to zero out a portion of the
3333 	 * first block.
3334 	 */
3335 
3336 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3337 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3338 	) {
3339 		pmap_zero_page_area(
3340 		    VM_PAGE_TO_PHYS(m),
3341 		    frag,
3342 		    base - frag
3343 		);
3344 	}
3345 
3346 	/*
3347 	 * If the ending offset is not DEV_BSIZE aligned and the
3348 	 * valid bit is clear, we have to zero out a portion of
3349 	 * the last block.
3350 	 */
3351 
3352 	endoff = base + size;
3353 
3354 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3355 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3356 	) {
3357 		pmap_zero_page_area(
3358 		    VM_PAGE_TO_PHYS(m),
3359 		    endoff,
3360 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3361 		);
3362 	}
3363 }
3364 
3365 /*
3366  * Set valid, clear dirty bits.  If validating the entire
3367  * page we can safely clear the pmap modify bit.  We also
3368  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3369  * takes a write fault on a MAP_NOSYNC memory area the flag will
3370  * be set again.
3371  *
3372  * We set valid bits inclusive of any overlap, but we can only
3373  * clear dirty bits for DEV_BSIZE chunks that are fully within
3374  * the range.
3375  *
3376  * Page must be busied?
3377  * No other requirements.
3378  */
3379 void
3380 vm_page_set_valid(vm_page_t m, int base, int size)
3381 {
3382 	_vm_page_zero_valid(m, base, size);
3383 	m->valid |= vm_page_bits(base, size);
3384 }
3385 
3386 
3387 /*
3388  * Set valid bits and clear dirty bits.
3389  *
3390  * Page must be busied by caller.
3391  *
3392  * NOTE: This function does not clear the pmap modified bit.
3393  *	 Also note that e.g. NFS may use a byte-granular base
3394  *	 and size.
3395  *
3396  * No other requirements.
3397  */
3398 void
3399 vm_page_set_validclean(vm_page_t m, int base, int size)
3400 {
3401 	int pagebits;
3402 
3403 	_vm_page_zero_valid(m, base, size);
3404 	pagebits = vm_page_bits(base, size);
3405 	m->valid |= pagebits;
3406 	m->dirty &= ~pagebits;
3407 	if (base == 0 && size == PAGE_SIZE) {
3408 		/*pmap_clear_modify(m);*/
3409 		vm_page_flag_clear(m, PG_NOSYNC);
3410 	}
3411 }
3412 
3413 /*
3414  * Set valid & dirty.  Used by buwrite()
3415  *
3416  * Page must be busied by caller.
3417  */
3418 void
3419 vm_page_set_validdirty(vm_page_t m, int base, int size)
3420 {
3421 	int pagebits;
3422 
3423 	pagebits = vm_page_bits(base, size);
3424 	m->valid |= pagebits;
3425 	m->dirty |= pagebits;
3426 	if (m->object)
3427 	       vm_object_set_writeable_dirty(m->object);
3428 }
3429 
3430 /*
3431  * Clear dirty bits.
3432  *
3433  * NOTE: This function does not clear the pmap modified bit.
3434  *	 Also note that e.g. NFS may use a byte-granular base
3435  *	 and size.
3436  *
3437  * Page must be busied?
3438  * No other requirements.
3439  */
3440 void
3441 vm_page_clear_dirty(vm_page_t m, int base, int size)
3442 {
3443 	m->dirty &= ~vm_page_bits(base, size);
3444 	if (base == 0 && size == PAGE_SIZE) {
3445 		/*pmap_clear_modify(m);*/
3446 		vm_page_flag_clear(m, PG_NOSYNC);
3447 	}
3448 }
3449 
3450 /*
3451  * Make the page all-dirty.
3452  *
3453  * Also make sure the related object and vnode reflect the fact that the
3454  * object may now contain a dirty page.
3455  *
3456  * Page must be busied?
3457  * No other requirements.
3458  */
3459 void
3460 vm_page_dirty(vm_page_t m)
3461 {
3462 #ifdef INVARIANTS
3463         int pqtype = m->queue - m->pc;
3464 #endif
3465         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3466                 ("vm_page_dirty: page in free/cache queue!"));
3467 	if (m->dirty != VM_PAGE_BITS_ALL) {
3468 		m->dirty = VM_PAGE_BITS_ALL;
3469 		if (m->object)
3470 			vm_object_set_writeable_dirty(m->object);
3471 	}
3472 }
3473 
3474 /*
3475  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3476  * valid and dirty bits for the effected areas are cleared.
3477  *
3478  * Page must be busied?
3479  * Does not block.
3480  * No other requirements.
3481  */
3482 void
3483 vm_page_set_invalid(vm_page_t m, int base, int size)
3484 {
3485 	int bits;
3486 
3487 	bits = vm_page_bits(base, size);
3488 	m->valid &= ~bits;
3489 	m->dirty &= ~bits;
3490 	atomic_add_int(&m->object->generation, 1);
3491 }
3492 
3493 /*
3494  * The kernel assumes that the invalid portions of a page contain
3495  * garbage, but such pages can be mapped into memory by user code.
3496  * When this occurs, we must zero out the non-valid portions of the
3497  * page so user code sees what it expects.
3498  *
3499  * Pages are most often semi-valid when the end of a file is mapped
3500  * into memory and the file's size is not page aligned.
3501  *
3502  * Page must be busied?
3503  * No other requirements.
3504  */
3505 void
3506 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3507 {
3508 	int b;
3509 	int i;
3510 
3511 	/*
3512 	 * Scan the valid bits looking for invalid sections that
3513 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3514 	 * valid bit may be set ) have already been zerod by
3515 	 * vm_page_set_validclean().
3516 	 */
3517 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3518 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3519 		    (m->valid & (1 << i))
3520 		) {
3521 			if (i > b) {
3522 				pmap_zero_page_area(
3523 				    VM_PAGE_TO_PHYS(m),
3524 				    b << DEV_BSHIFT,
3525 				    (i - b) << DEV_BSHIFT
3526 				);
3527 			}
3528 			b = i + 1;
3529 		}
3530 	}
3531 
3532 	/*
3533 	 * setvalid is TRUE when we can safely set the zero'd areas
3534 	 * as being valid.  We can do this if there are no cache consistency
3535 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3536 	 */
3537 	if (setvalid)
3538 		m->valid = VM_PAGE_BITS_ALL;
3539 }
3540 
3541 /*
3542  * Is a (partial) page valid?  Note that the case where size == 0
3543  * will return FALSE in the degenerate case where the page is entirely
3544  * invalid, and TRUE otherwise.
3545  *
3546  * Does not block.
3547  * No other requirements.
3548  */
3549 int
3550 vm_page_is_valid(vm_page_t m, int base, int size)
3551 {
3552 	int bits = vm_page_bits(base, size);
3553 
3554 	if (m->valid && ((m->valid & bits) == bits))
3555 		return 1;
3556 	else
3557 		return 0;
3558 }
3559 
3560 /*
3561  * update dirty bits from pmap/mmu.  May not block.
3562  *
3563  * Caller must hold the page busy
3564  */
3565 void
3566 vm_page_test_dirty(vm_page_t m)
3567 {
3568 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3569 		vm_page_dirty(m);
3570 	}
3571 }
3572 
3573 #include "opt_ddb.h"
3574 #ifdef DDB
3575 #include <ddb/ddb.h>
3576 
3577 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3578 {
3579 	db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3580 	db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3581 	db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3582 	db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3583 	db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3584 	db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3585 	db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3586 	db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3587 	db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3588 	db_printf("vmstats.v_inactive_target: %ld\n",
3589 		  vmstats.v_inactive_target);
3590 }
3591 
3592 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3593 {
3594 	int i;
3595 	db_printf("PQ_FREE:");
3596 	for (i = 0; i < PQ_L2_SIZE; i++) {
3597 		db_printf(" %ld", vm_page_queues[PQ_FREE + i].lcnt);
3598 	}
3599 	db_printf("\n");
3600 
3601 	db_printf("PQ_CACHE:");
3602 	for(i = 0; i < PQ_L2_SIZE; i++) {
3603 		db_printf(" %ld", vm_page_queues[PQ_CACHE + i].lcnt);
3604 	}
3605 	db_printf("\n");
3606 
3607 	db_printf("PQ_ACTIVE:");
3608 	for(i = 0; i < PQ_L2_SIZE; i++) {
3609 		db_printf(" %ld", vm_page_queues[PQ_ACTIVE + i].lcnt);
3610 	}
3611 	db_printf("\n");
3612 
3613 	db_printf("PQ_INACTIVE:");
3614 	for(i = 0; i < PQ_L2_SIZE; i++) {
3615 		db_printf(" %ld", vm_page_queues[PQ_INACTIVE + i].lcnt);
3616 	}
3617 	db_printf("\n");
3618 }
3619 #endif /* DDB */
3620