1 /* 2 * Copyright (c) 2003-2019 The DragonFly Project. All rights reserved. 3 * Copyright (c) 1991 Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * This code is derived from software contributed to The DragonFly Project 10 * by Matthew Dillon <dillon@backplane.com> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 /* 67 * Resident memory management module. The module manipulates 'VM pages'. 68 * A VM page is the core building block for memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/vnode.h> 77 #include <sys/kernel.h> 78 #include <sys/alist.h> 79 #include <sys/sysctl.h> 80 #include <sys/cpu_topology.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <sys/lock.h> 85 #include <vm/vm_kern.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 95 #include <machine/inttypes.h> 96 #include <machine/md_var.h> 97 #include <machine/specialreg.h> 98 #include <machine/bus_dma.h> 99 100 #include <vm/vm_page2.h> 101 #include <sys/spinlock2.h> 102 103 /* 104 * SET - Minimum required set associative size, must be a power of 2. We 105 * want this to match or exceed the set-associativeness of the cpu. 106 * 107 * GRP - A larger set that allows bleed-over into the domains of other 108 * nearby cpus. Also must be a power of 2. Used by the page zeroing 109 * code to smooth things out a bit. 110 */ 111 #define PQ_SET_ASSOC 16 112 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1) 113 114 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2) 115 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1) 116 117 static void vm_page_queue_init(void); 118 static void vm_page_free_wakeup(void); 119 static vm_page_t vm_page_select_cache(u_short pg_color); 120 static vm_page_t _vm_page_list_find2(int basequeue, int index); 121 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes); 123 124 /* 125 * Array of tailq lists 126 */ 127 struct vpgqueues vm_page_queues[PQ_COUNT]; 128 129 static volatile int vm_pages_waiting; 130 static struct alist vm_contig_alist; 131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin"); 133 134 static struct vm_page **vm_page_hash; 135 136 static u_long vm_dma_reserved = 0; 137 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 138 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 139 "Memory reserved for DMA"); 140 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 141 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 142 143 static int vm_contig_verbose = 0; 144 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 145 146 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 147 vm_pindex_t, pindex); 148 149 static void 150 vm_page_queue_init(void) 151 { 152 int i; 153 154 for (i = 0; i < PQ_L2_SIZE; i++) 155 vm_page_queues[PQ_FREE+i].cnt_offset = 156 offsetof(struct vmstats, v_free_count); 157 for (i = 0; i < PQ_L2_SIZE; i++) 158 vm_page_queues[PQ_CACHE+i].cnt_offset = 159 offsetof(struct vmstats, v_cache_count); 160 for (i = 0; i < PQ_L2_SIZE; i++) 161 vm_page_queues[PQ_INACTIVE+i].cnt_offset = 162 offsetof(struct vmstats, v_inactive_count); 163 for (i = 0; i < PQ_L2_SIZE; i++) 164 vm_page_queues[PQ_ACTIVE+i].cnt_offset = 165 offsetof(struct vmstats, v_active_count); 166 for (i = 0; i < PQ_L2_SIZE; i++) 167 vm_page_queues[PQ_HOLD+i].cnt_offset = 168 offsetof(struct vmstats, v_active_count); 169 /* PQ_NONE has no queue */ 170 171 for (i = 0; i < PQ_COUNT; i++) { 172 TAILQ_INIT(&vm_page_queues[i].pl); 173 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init"); 174 } 175 } 176 177 /* 178 * note: place in initialized data section? Is this necessary? 179 */ 180 vm_pindex_t first_page = 0; 181 vm_pindex_t vm_page_array_size = 0; 182 vm_page_t vm_page_array = NULL; 183 vm_paddr_t vm_low_phys_reserved; 184 185 /* 186 * (low level boot) 187 * 188 * Sets the page size, perhaps based upon the memory size. 189 * Must be called before any use of page-size dependent functions. 190 */ 191 void 192 vm_set_page_size(void) 193 { 194 if (vmstats.v_page_size == 0) 195 vmstats.v_page_size = PAGE_SIZE; 196 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 197 panic("vm_set_page_size: page size not a power of two"); 198 } 199 200 /* 201 * (low level boot) 202 * 203 * Add a new page to the freelist for use by the system. New pages 204 * are added to both the head and tail of the associated free page 205 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 206 * requests pull 'recent' adds (higher physical addresses) first. 207 * 208 * Beware that the page zeroing daemon will also be running soon after 209 * boot, moving pages from the head to the tail of the PQ_FREE queues. 210 * 211 * Must be called in a critical section. 212 */ 213 static void 214 vm_add_new_page(vm_paddr_t pa) 215 { 216 struct vpgqueues *vpq; 217 vm_page_t m; 218 219 m = PHYS_TO_VM_PAGE(pa); 220 m->phys_addr = pa; 221 m->flags = 0; 222 m->pat_mode = PAT_WRITE_BACK; 223 m->pc = (pa >> PAGE_SHIFT); 224 225 /* 226 * Twist for cpu localization in addition to page coloring, so 227 * different cpus selecting by m->queue get different page colors. 228 */ 229 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE); 230 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)); 231 m->pc &= PQ_L2_MASK; 232 233 /* 234 * Reserve a certain number of contiguous low memory pages for 235 * contigmalloc() to use. 236 */ 237 if (pa < vm_low_phys_reserved) { 238 atomic_add_long(&vmstats.v_page_count, 1); 239 atomic_add_long(&vmstats.v_dma_pages, 1); 240 m->queue = PQ_NONE; 241 m->wire_count = 1; 242 atomic_add_long(&vmstats.v_wire_count, 1); 243 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 244 return; 245 } 246 247 /* 248 * General page 249 */ 250 m->queue = m->pc + PQ_FREE; 251 KKASSERT(m->dirty == 0); 252 253 atomic_add_long(&vmstats.v_page_count, 1); 254 atomic_add_long(&vmstats.v_free_count, 1); 255 vpq = &vm_page_queues[m->queue]; 256 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 257 ++vpq->lcnt; 258 } 259 260 /* 261 * (low level boot) 262 * 263 * Initializes the resident memory module. 264 * 265 * Preallocates memory for critical VM structures and arrays prior to 266 * kernel_map becoming available. 267 * 268 * Memory is allocated from (virtual2_start, virtual2_end) if available, 269 * otherwise memory is allocated from (virtual_start, virtual_end). 270 * 271 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 272 * large enough to hold vm_page_array & other structures for machines with 273 * large amounts of ram, so we want to use virtual2* when available. 274 */ 275 void 276 vm_page_startup(void) 277 { 278 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 279 vm_offset_t mapped; 280 vm_pindex_t npages; 281 vm_paddr_t page_range; 282 vm_paddr_t new_end; 283 int i; 284 vm_paddr_t pa; 285 vm_paddr_t last_pa; 286 vm_paddr_t end; 287 vm_paddr_t biggestone, biggestsize; 288 vm_paddr_t total; 289 vm_page_t m; 290 291 total = 0; 292 biggestsize = 0; 293 biggestone = 0; 294 vaddr = round_page(vaddr); 295 296 /* 297 * Make sure ranges are page-aligned. 298 */ 299 for (i = 0; phys_avail[i].phys_end; ++i) { 300 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg); 301 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end); 302 if (phys_avail[i].phys_end < phys_avail[i].phys_beg) 303 phys_avail[i].phys_end = phys_avail[i].phys_beg; 304 } 305 306 /* 307 * Locate largest block 308 */ 309 for (i = 0; phys_avail[i].phys_end; ++i) { 310 vm_paddr_t size = phys_avail[i].phys_end - 311 phys_avail[i].phys_beg; 312 313 if (size > biggestsize) { 314 biggestone = i; 315 biggestsize = size; 316 } 317 total += size; 318 } 319 --i; /* adjust to last entry for use down below */ 320 321 end = phys_avail[biggestone].phys_end; 322 end = trunc_page(end); 323 324 /* 325 * Initialize the queue headers for the free queue, the active queue 326 * and the inactive queue. 327 */ 328 vm_page_queue_init(); 329 330 #if !defined(_KERNEL_VIRTUAL) 331 /* 332 * VKERNELs don't support minidumps and as such don't need 333 * vm_page_dump 334 * 335 * Allocate a bitmap to indicate that a random physical page 336 * needs to be included in a minidump. 337 * 338 * The amd64 port needs this to indicate which direct map pages 339 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 340 * 341 * However, x86 still needs this workspace internally within the 342 * minidump code. In theory, they are not needed on x86, but are 343 * included should the sf_buf code decide to use them. 344 */ 345 page_range = phys_avail[i].phys_end / PAGE_SIZE; 346 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 347 end -= vm_page_dump_size; 348 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 349 VM_PROT_READ | VM_PROT_WRITE); 350 bzero((void *)vm_page_dump, vm_page_dump_size); 351 #endif 352 /* 353 * Compute the number of pages of memory that will be available for 354 * use (taking into account the overhead of a page structure per 355 * page). 356 */ 357 first_page = phys_avail[0].phys_beg / PAGE_SIZE; 358 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page; 359 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 360 361 #ifndef _KERNEL_VIRTUAL 362 /* 363 * (only applies to real kernels) 364 * 365 * Reserve a large amount of low memory for potential 32-bit DMA 366 * space allocations. Once device initialization is complete we 367 * release most of it, but keep (vm_dma_reserved) memory reserved 368 * for later use. Typically for X / graphics. Through trial and 369 * error we find that GPUs usually requires ~60-100MB or so. 370 * 371 * By default, 128M is left in reserve on machines with 2G+ of ram. 372 */ 373 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 374 if (vm_low_phys_reserved > total / 4) 375 vm_low_phys_reserved = total / 4; 376 if (vm_dma_reserved == 0) { 377 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */ 378 if (vm_dma_reserved > total / 16) 379 vm_dma_reserved = total / 16; 380 } 381 #endif 382 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 383 ALIST_RECORDS_65536); 384 385 /* 386 * Initialize the mem entry structures now, and put them in the free 387 * queue. 388 */ 389 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024) 390 kprintf("initializing vm_page_array "); 391 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 392 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 393 vm_page_array = (vm_page_t)mapped; 394 395 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 396 /* 397 * since pmap_map on amd64 returns stuff out of a direct-map region, 398 * we have to manually add these pages to the minidump tracking so 399 * that they can be dumped, including the vm_page_array. 400 */ 401 for (pa = new_end; 402 pa < phys_avail[biggestone].phys_end; 403 pa += PAGE_SIZE) { 404 dump_add_page(pa); 405 } 406 #endif 407 408 /* 409 * Clear all of the page structures, run basic initialization so 410 * PHYS_TO_VM_PAGE() operates properly even on pages not in the 411 * map. 412 */ 413 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 414 vm_page_array_size = page_range; 415 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024) 416 kprintf("size = 0x%zx\n", vm_page_array_size); 417 418 m = &vm_page_array[0]; 419 pa = ptoa(first_page); 420 for (i = 0; i < page_range; ++i) { 421 spin_init(&m->spin, "vm_page"); 422 m->phys_addr = pa; 423 pa += PAGE_SIZE; 424 ++m; 425 } 426 427 /* 428 * Construct the free queue(s) in ascending order (by physical 429 * address) so that the first 16MB of physical memory is allocated 430 * last rather than first. On large-memory machines, this avoids 431 * the exhaustion of low physical memory before isa_dma_init has run. 432 */ 433 vmstats.v_page_count = 0; 434 vmstats.v_free_count = 0; 435 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) { 436 pa = phys_avail[i].phys_beg; 437 if (i == biggestone) 438 last_pa = new_end; 439 else 440 last_pa = phys_avail[i].phys_end; 441 while (pa < last_pa && npages-- > 0) { 442 vm_add_new_page(pa); 443 pa += PAGE_SIZE; 444 } 445 } 446 if (virtual2_start) 447 virtual2_start = vaddr; 448 else 449 virtual_start = vaddr; 450 mycpu->gd_vmstats = vmstats; 451 } 452 453 /* 454 * (called from early boot only) 455 * 456 * Reorganize VM pages based on numa data. May be called as many times as 457 * necessary. Will reorganize the vm_page_t page color and related queue(s) 458 * to allow vm_page_alloc() to choose pages based on socket affinity. 459 * 460 * NOTE: This function is only called while we are still in UP mode, so 461 * we only need a critical section to protect the queues (which 462 * saves a lot of time, there are likely a ton of pages). 463 */ 464 void 465 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid) 466 { 467 vm_paddr_t scan_beg; 468 vm_paddr_t scan_end; 469 vm_paddr_t ran_end; 470 struct vpgqueues *vpq; 471 vm_page_t m; 472 vm_page_t mend; 473 int socket_mod; 474 int socket_value; 475 int i; 476 477 /* 478 * Check if no physical information, or there was only one socket 479 * (so don't waste time doing nothing!). 480 */ 481 if (cpu_topology_phys_ids <= 1 || 482 cpu_topology_core_ids == 0) { 483 return; 484 } 485 486 /* 487 * Setup for our iteration. Note that ACPI may iterate CPU 488 * sockets starting at 0 or 1 or some other number. The 489 * cpu_topology code mod's it against the socket count. 490 */ 491 ran_end = ran_beg + bytes; 492 493 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids; 494 socket_value = (physid % cpu_topology_phys_ids) * socket_mod; 495 mend = &vm_page_array[vm_page_array_size]; 496 497 crit_enter(); 498 499 /* 500 * Adjust cpu_topology's phys_mem parameter 501 */ 502 if (root_cpu_node) 503 vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes); 504 505 /* 506 * Adjust vm_page->pc and requeue all affected pages. The 507 * allocator will then be able to localize memory allocations 508 * to some degree. 509 */ 510 for (i = 0; phys_avail[i].phys_end; ++i) { 511 scan_beg = phys_avail[i].phys_beg; 512 scan_end = phys_avail[i].phys_end; 513 if (scan_end <= ran_beg) 514 continue; 515 if (scan_beg >= ran_end) 516 continue; 517 if (scan_beg < ran_beg) 518 scan_beg = ran_beg; 519 if (scan_end > ran_end) 520 scan_end = ran_end; 521 if (atop(scan_end) > first_page + vm_page_array_size) 522 scan_end = ptoa(first_page + vm_page_array_size); 523 524 m = PHYS_TO_VM_PAGE(scan_beg); 525 while (scan_beg < scan_end) { 526 KKASSERT(m < mend); 527 if (m->queue != PQ_NONE) { 528 vpq = &vm_page_queues[m->queue]; 529 TAILQ_REMOVE(&vpq->pl, m, pageq); 530 --vpq->lcnt; 531 /* queue doesn't change, no need to adj cnt */ 532 m->queue -= m->pc; 533 m->pc %= socket_mod; 534 m->pc += socket_value; 535 m->pc &= PQ_L2_MASK; 536 m->queue += m->pc; 537 vpq = &vm_page_queues[m->queue]; 538 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 539 ++vpq->lcnt; 540 /* queue doesn't change, no need to adj cnt */ 541 } else { 542 m->pc %= socket_mod; 543 m->pc += socket_value; 544 m->pc &= PQ_L2_MASK; 545 } 546 scan_beg += PAGE_SIZE; 547 ++m; 548 } 549 } 550 551 crit_exit(); 552 } 553 554 /* 555 * (called from early boot only) 556 * 557 * Don't allow the NUMA organization to leave vm_page_queues[] nodes 558 * completely empty for a logical cpu. Doing so would force allocations 559 * on that cpu to always borrow from a nearby cpu, create unnecessary 560 * contention, and cause vm_page_alloc() to iterate more queues and run more 561 * slowly. 562 * 563 * This situation can occur when memory sticks are not entirely populated, 564 * populated at different densities, or in naturally assymetric systems 565 * such as the 2990WX. There could very well be many vm_page_queues[] 566 * entries with *NO* pages assigned to them. 567 * 568 * Fixing this up ensures that each logical CPU has roughly the same 569 * sized memory pool, and more importantly ensures that logical CPUs 570 * do not wind up with an empty memory pool. 571 * 572 * At them moment we just iterate the other queues and borrow pages, 573 * moving them into the queues for cpus with severe deficits even though 574 * the memory might not be local to those cpus. I am not doing this in 575 * a 'smart' way, its effectively UMA style (sorta, since its page-by-page 576 * whereas real UMA typically exchanges address bits 8-10 with high address 577 * bits). But it works extremely well and gives us fairly good deterministic 578 * results on the cpu cores associated with these secondary nodes. 579 */ 580 void 581 vm_numa_organize_finalize(void) 582 { 583 struct vpgqueues *vpq; 584 vm_page_t m; 585 long lcnt_lo; 586 long lcnt_hi; 587 int iter; 588 int i; 589 int scale_lim; 590 591 crit_enter(); 592 593 /* 594 * Machines might not use an exact power of 2 for phys_ids, 595 * core_ids, ht_ids, etc. This can slightly reduce the actual 596 * range of indices in vm_page_queues[] that are nominally used. 597 */ 598 if (cpu_topology_ht_ids) { 599 scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids; 600 scale_lim = scale_lim / cpu_topology_core_ids; 601 scale_lim = scale_lim / cpu_topology_ht_ids; 602 scale_lim = scale_lim * cpu_topology_ht_ids; 603 scale_lim = scale_lim * cpu_topology_core_ids; 604 scale_lim = scale_lim * cpu_topology_phys_ids; 605 } else { 606 scale_lim = PQ_L2_SIZE; 607 } 608 609 /* 610 * Calculate an average, set hysteresis for balancing from 611 * 10% below the average to the average. 612 */ 613 lcnt_hi = 0; 614 for (i = 0; i < scale_lim; ++i) { 615 lcnt_hi += vm_page_queues[i].lcnt; 616 } 617 lcnt_hi /= scale_lim; 618 lcnt_lo = lcnt_hi - lcnt_hi / 10; 619 620 kprintf("vm_page: avg %ld pages per queue, %d queues\n", 621 lcnt_hi, scale_lim); 622 623 iter = 0; 624 for (i = 0; i < scale_lim; ++i) { 625 vpq = &vm_page_queues[PQ_FREE + i]; 626 while (vpq->lcnt < lcnt_lo) { 627 struct vpgqueues *vptmp; 628 629 iter = (iter + 1) & PQ_L2_MASK; 630 vptmp = &vm_page_queues[PQ_FREE + iter]; 631 if (vptmp->lcnt < lcnt_hi) 632 continue; 633 m = TAILQ_FIRST(&vptmp->pl); 634 KKASSERT(m->queue == PQ_FREE + iter); 635 TAILQ_REMOVE(&vptmp->pl, m, pageq); 636 --vptmp->lcnt; 637 /* queue doesn't change, no need to adj cnt */ 638 m->queue -= m->pc; 639 m->pc = i; 640 m->queue += m->pc; 641 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 642 ++vpq->lcnt; 643 } 644 } 645 crit_exit(); 646 } 647 648 static 649 void 650 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes) 651 { 652 int cpuid; 653 int i; 654 655 switch(cpup->type) { 656 case PACKAGE_LEVEL: 657 cpup->phys_mem += bytes; 658 break; 659 case CHIP_LEVEL: 660 /* 661 * All members should have the same chipid, so we only need 662 * to pull out one member. 663 */ 664 if (CPUMASK_TESTNZERO(cpup->members)) { 665 cpuid = BSFCPUMASK(cpup->members); 666 if (physid == 667 get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) { 668 cpup->phys_mem += bytes; 669 } 670 } 671 break; 672 case CORE_LEVEL: 673 case THREAD_LEVEL: 674 /* 675 * Just inherit from the parent node 676 */ 677 cpup->phys_mem = cpup->parent_node->phys_mem; 678 break; 679 } 680 for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i) 681 vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes); 682 } 683 684 /* 685 * We tended to reserve a ton of memory for contigmalloc(). Now that most 686 * drivers have initialized we want to return most the remaining free 687 * reserve back to the VM page queues so they can be used for normal 688 * allocations. 689 * 690 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 691 */ 692 static void 693 vm_page_startup_finish(void *dummy __unused) 694 { 695 alist_blk_t blk; 696 alist_blk_t rblk; 697 alist_blk_t count; 698 alist_blk_t xcount; 699 alist_blk_t bfree; 700 vm_page_t m; 701 vm_page_t *mp; 702 703 spin_lock(&vm_contig_spin); 704 for (;;) { 705 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 706 if (bfree <= vm_dma_reserved / PAGE_SIZE) 707 break; 708 if (count == 0) 709 break; 710 711 /* 712 * Figure out how much of the initial reserve we have to 713 * free in order to reach our target. 714 */ 715 bfree -= vm_dma_reserved / PAGE_SIZE; 716 if (count > bfree) { 717 blk += count - bfree; 718 count = bfree; 719 } 720 721 /* 722 * Calculate the nearest power of 2 <= count. 723 */ 724 for (xcount = 1; xcount <= count; xcount <<= 1) 725 ; 726 xcount >>= 1; 727 blk += count - xcount; 728 count = xcount; 729 730 /* 731 * Allocate the pages from the alist, then free them to 732 * the normal VM page queues. 733 * 734 * Pages allocated from the alist are wired. We have to 735 * busy, unwire, and free them. We must also adjust 736 * vm_low_phys_reserved before freeing any pages to prevent 737 * confusion. 738 */ 739 rblk = alist_alloc(&vm_contig_alist, blk, count); 740 if (rblk != blk) { 741 kprintf("vm_page_startup_finish: Unable to return " 742 "dma space @0x%08x/%d -> 0x%08x\n", 743 blk, count, rblk); 744 break; 745 } 746 atomic_add_long(&vmstats.v_dma_pages, -(long)count); 747 spin_unlock(&vm_contig_spin); 748 749 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 750 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 751 while (count) { 752 vm_page_busy_wait(m, FALSE, "cpgfr"); 753 vm_page_unwire(m, 0); 754 vm_page_free(m); 755 --count; 756 ++m; 757 } 758 spin_lock(&vm_contig_spin); 759 } 760 spin_unlock(&vm_contig_spin); 761 762 /* 763 * Print out how much DMA space drivers have already allocated and 764 * how much is left over. 765 */ 766 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 767 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 768 (PAGE_SIZE / 1024), 769 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 770 771 /* 772 * hash table for vm_page_lookup_quick() 773 */ 774 mp = (void *)kmem_alloc3(&kernel_map, 775 vm_page_array_size * sizeof(vm_page_t), 776 VM_SUBSYS_VMPGHASH, KM_CPU(0)); 777 bzero(mp, vm_page_array_size * sizeof(vm_page_t)); 778 cpu_sfence(); 779 vm_page_hash = mp; 780 } 781 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 782 vm_page_startup_finish, NULL); 783 784 785 /* 786 * Scan comparison function for Red-Black tree scans. An inclusive 787 * (start,end) is expected. Other fields are not used. 788 */ 789 int 790 rb_vm_page_scancmp(struct vm_page *p, void *data) 791 { 792 struct rb_vm_page_scan_info *info = data; 793 794 if (p->pindex < info->start_pindex) 795 return(-1); 796 if (p->pindex > info->end_pindex) 797 return(1); 798 return(0); 799 } 800 801 int 802 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 803 { 804 if (p1->pindex < p2->pindex) 805 return(-1); 806 if (p1->pindex > p2->pindex) 807 return(1); 808 return(0); 809 } 810 811 void 812 vm_page_init(vm_page_t m) 813 { 814 /* do nothing for now. Called from pmap_page_init() */ 815 } 816 817 /* 818 * Each page queue has its own spin lock, which is fairly optimal for 819 * allocating and freeing pages at least. 820 * 821 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 822 * queue spinlock via this function. Also note that m->queue cannot change 823 * unless both the page and queue are locked. 824 */ 825 static __inline 826 void 827 _vm_page_queue_spin_lock(vm_page_t m) 828 { 829 u_short queue; 830 831 queue = m->queue; 832 if (queue != PQ_NONE) { 833 spin_lock(&vm_page_queues[queue].spin); 834 KKASSERT(queue == m->queue); 835 } 836 } 837 838 static __inline 839 void 840 _vm_page_queue_spin_unlock(vm_page_t m) 841 { 842 u_short queue; 843 844 queue = m->queue; 845 cpu_ccfence(); 846 if (queue != PQ_NONE) 847 spin_unlock(&vm_page_queues[queue].spin); 848 } 849 850 static __inline 851 void 852 _vm_page_queues_spin_lock(u_short queue) 853 { 854 cpu_ccfence(); 855 if (queue != PQ_NONE) 856 spin_lock(&vm_page_queues[queue].spin); 857 } 858 859 860 static __inline 861 void 862 _vm_page_queues_spin_unlock(u_short queue) 863 { 864 cpu_ccfence(); 865 if (queue != PQ_NONE) 866 spin_unlock(&vm_page_queues[queue].spin); 867 } 868 869 void 870 vm_page_queue_spin_lock(vm_page_t m) 871 { 872 _vm_page_queue_spin_lock(m); 873 } 874 875 void 876 vm_page_queues_spin_lock(u_short queue) 877 { 878 _vm_page_queues_spin_lock(queue); 879 } 880 881 void 882 vm_page_queue_spin_unlock(vm_page_t m) 883 { 884 _vm_page_queue_spin_unlock(m); 885 } 886 887 void 888 vm_page_queues_spin_unlock(u_short queue) 889 { 890 _vm_page_queues_spin_unlock(queue); 891 } 892 893 /* 894 * This locks the specified vm_page and its queue in the proper order 895 * (page first, then queue). The queue may change so the caller must 896 * recheck on return. 897 */ 898 static __inline 899 void 900 _vm_page_and_queue_spin_lock(vm_page_t m) 901 { 902 vm_page_spin_lock(m); 903 _vm_page_queue_spin_lock(m); 904 } 905 906 static __inline 907 void 908 _vm_page_and_queue_spin_unlock(vm_page_t m) 909 { 910 _vm_page_queues_spin_unlock(m->queue); 911 vm_page_spin_unlock(m); 912 } 913 914 void 915 vm_page_and_queue_spin_unlock(vm_page_t m) 916 { 917 _vm_page_and_queue_spin_unlock(m); 918 } 919 920 void 921 vm_page_and_queue_spin_lock(vm_page_t m) 922 { 923 _vm_page_and_queue_spin_lock(m); 924 } 925 926 /* 927 * Helper function removes vm_page from its current queue. 928 * Returns the base queue the page used to be on. 929 * 930 * The vm_page and the queue must be spinlocked. 931 * This function will unlock the queue but leave the page spinlocked. 932 */ 933 static __inline u_short 934 _vm_page_rem_queue_spinlocked(vm_page_t m) 935 { 936 struct vpgqueues *pq; 937 u_short queue; 938 u_short oqueue; 939 long *cnt; 940 941 queue = m->queue; 942 if (queue != PQ_NONE) { 943 pq = &vm_page_queues[queue]; 944 TAILQ_REMOVE(&pq->pl, m, pageq); 945 946 /* 947 * Adjust our pcpu stats. In order for the nominal low-memory 948 * algorithms to work properly we don't let any pcpu stat get 949 * too negative before we force it to be rolled-up into the 950 * global stats. Otherwise our pageout and vm_wait tests 951 * will fail badly. 952 * 953 * The idea here is to reduce unnecessary SMP cache 954 * mastership changes in the global vmstats, which can be 955 * particularly bad in multi-socket systems. 956 */ 957 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset); 958 atomic_add_long(cnt, -1); 959 if (*cnt < -VMMETER_SLOP_COUNT) { 960 u_long copy = atomic_swap_long(cnt, 0); 961 cnt = (long *)((char *)&vmstats + pq->cnt_offset); 962 atomic_add_long(cnt, copy); 963 cnt = (long *)((char *)&mycpu->gd_vmstats + 964 pq->cnt_offset); 965 atomic_add_long(cnt, copy); 966 } 967 pq->lcnt--; 968 m->queue = PQ_NONE; 969 oqueue = queue; 970 queue -= m->pc; 971 vm_page_queues_spin_unlock(oqueue); /* intended */ 972 } 973 return queue; 974 } 975 976 /* 977 * Helper function places the vm_page on the specified queue. Generally 978 * speaking only PQ_FREE pages are placed at the head, to allow them to 979 * be allocated sooner rather than later on the assumption that they 980 * are cache-hot. 981 * 982 * The vm_page must be spinlocked. 983 * The vm_page must NOT be FICTITIOUS (that would be a disaster) 984 * This function will return with both the page and the queue locked. 985 */ 986 static __inline void 987 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 988 { 989 struct vpgqueues *pq; 990 u_long *cnt; 991 992 KKASSERT(m->queue == PQ_NONE && (m->flags & PG_FICTITIOUS) == 0); 993 994 if (queue != PQ_NONE) { 995 vm_page_queues_spin_lock(queue); 996 pq = &vm_page_queues[queue]; 997 ++pq->lcnt; 998 999 /* 1000 * Adjust our pcpu stats. If a system entity really needs 1001 * to incorporate the count it will call vmstats_rollup() 1002 * to roll it all up into the global vmstats strufture. 1003 */ 1004 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset); 1005 atomic_add_long(cnt, 1); 1006 1007 /* 1008 * PQ_FREE is always handled LIFO style to try to provide 1009 * cache-hot pages to programs. 1010 */ 1011 m->queue = queue; 1012 if (queue - m->pc == PQ_FREE) { 1013 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1014 } else if (athead) { 1015 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1016 } else { 1017 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1018 } 1019 /* leave the queue spinlocked */ 1020 } 1021 } 1022 1023 /* 1024 * Wait until page is no longer BUSY. If also_m_busy is TRUE we wait 1025 * until the page is no longer BUSY or SBUSY (busy_count field is 0). 1026 * 1027 * Returns TRUE if it had to sleep, FALSE if we did not. Only one sleep 1028 * call will be made before returning. 1029 * 1030 * This function does NOT busy the page and on return the page is not 1031 * guaranteed to be available. 1032 */ 1033 void 1034 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 1035 { 1036 u_int32_t busy_count; 1037 1038 for (;;) { 1039 busy_count = m->busy_count; 1040 cpu_ccfence(); 1041 1042 if ((busy_count & PBUSY_LOCKED) == 0 && 1043 (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) { 1044 break; 1045 } 1046 tsleep_interlock(m, 0); 1047 if (atomic_cmpset_int(&m->busy_count, busy_count, 1048 busy_count | PBUSY_WANTED)) { 1049 atomic_set_int(&m->flags, PG_REFERENCED); 1050 tsleep(m, PINTERLOCKED, msg, 0); 1051 break; 1052 } 1053 } 1054 } 1055 1056 /* 1057 * This calculates and returns a page color given an optional VM object and 1058 * either a pindex or an iterator. We attempt to return a cpu-localized 1059 * pg_color that is still roughly 16-way set-associative. The CPU topology 1060 * is used if it was probed. 1061 * 1062 * The caller may use the returned value to index into e.g. PQ_FREE when 1063 * allocating a page in order to nominally obtain pages that are hopefully 1064 * already localized to the requesting cpu. This function is not able to 1065 * provide any sort of guarantee of this, but does its best to improve 1066 * hardware cache management performance. 1067 * 1068 * WARNING! The caller must mask the returned value with PQ_L2_MASK. 1069 */ 1070 u_short 1071 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex) 1072 { 1073 u_short pg_color; 1074 int object_pg_color; 1075 1076 /* 1077 * WARNING! cpu_topology_core_ids might not be a power of two. 1078 * We also shouldn't make assumptions about 1079 * cpu_topology_phys_ids either. 1080 * 1081 * WARNING! ncpus might not be known at this time (during early 1082 * boot), and might be set to 1. 1083 * 1084 * General format: [phys_id][core_id][cpuid][set-associativity] 1085 * (but uses modulo, so not necessarily precise bit masks) 1086 */ 1087 object_pg_color = object ? object->pg_color : 0; 1088 1089 if (cpu_topology_ht_ids) { 1090 int phys_id; 1091 int core_id; 1092 int ht_id; 1093 int physcale; 1094 int grpscale; 1095 int cpuscale; 1096 1097 /* 1098 * Translate cpuid to socket, core, and hyperthread id. 1099 */ 1100 phys_id = get_cpu_phys_id(cpuid); 1101 core_id = get_cpu_core_id(cpuid); 1102 ht_id = get_cpu_ht_id(cpuid); 1103 1104 /* 1105 * Calculate pg_color for our array index. 1106 * 1107 * physcale - socket multiplier. 1108 * grpscale - core multiplier (cores per socket) 1109 * cpu* - cpus per core 1110 * 1111 * WARNING! In early boot, ncpus has not yet been 1112 * initialized and may be set to (1). 1113 * 1114 * WARNING! physcale must match the organization that 1115 * vm_numa_organize() creates to ensure that 1116 * we properly localize allocations to the 1117 * requested cpuid. 1118 */ 1119 physcale = PQ_L2_SIZE / cpu_topology_phys_ids; 1120 grpscale = physcale / cpu_topology_core_ids; 1121 cpuscale = grpscale / cpu_topology_ht_ids; 1122 1123 pg_color = phys_id * physcale; 1124 pg_color += core_id * grpscale; 1125 pg_color += ht_id * cpuscale; 1126 pg_color += (pindex + object_pg_color) % cpuscale; 1127 1128 #if 0 1129 if (grpsize >= 8) { 1130 pg_color += (pindex + object_pg_color) % grpsize; 1131 } else { 1132 if (grpsize <= 2) { 1133 grpsize = 8; 1134 } else { 1135 /* 3->9, 4->8, 5->10, 6->12, 7->14 */ 1136 grpsize += grpsize; 1137 if (grpsize < 8) 1138 grpsize += grpsize; 1139 } 1140 pg_color += (pindex + object_pg_color) % grpsize; 1141 } 1142 #endif 1143 } else { 1144 /* 1145 * Unknown topology, distribute things evenly. 1146 * 1147 * WARNING! In early boot, ncpus has not yet been 1148 * initialized and may be set to (1). 1149 */ 1150 int cpuscale; 1151 1152 cpuscale = PQ_L2_SIZE / ncpus; 1153 1154 pg_color = cpuid * cpuscale; 1155 pg_color += (pindex + object_pg_color) % cpuscale; 1156 } 1157 return (pg_color & PQ_L2_MASK); 1158 } 1159 1160 /* 1161 * Wait until BUSY can be set, then set it. If also_m_busy is TRUE we 1162 * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED. 1163 */ 1164 void 1165 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 1166 int also_m_busy, const char *msg 1167 VM_PAGE_DEBUG_ARGS) 1168 { 1169 u_int32_t busy_count; 1170 1171 for (;;) { 1172 busy_count = m->busy_count; 1173 cpu_ccfence(); 1174 if (busy_count & PBUSY_LOCKED) { 1175 tsleep_interlock(m, 0); 1176 if (atomic_cmpset_int(&m->busy_count, busy_count, 1177 busy_count | PBUSY_WANTED)) { 1178 atomic_set_int(&m->flags, PG_REFERENCED); 1179 tsleep(m, PINTERLOCKED, msg, 0); 1180 } 1181 } else if (also_m_busy && busy_count) { 1182 tsleep_interlock(m, 0); 1183 if (atomic_cmpset_int(&m->busy_count, busy_count, 1184 busy_count | PBUSY_WANTED)) { 1185 atomic_set_int(&m->flags, PG_REFERENCED); 1186 tsleep(m, PINTERLOCKED, msg, 0); 1187 } 1188 } else { 1189 if (atomic_cmpset_int(&m->busy_count, busy_count, 1190 busy_count | PBUSY_LOCKED)) { 1191 #ifdef VM_PAGE_DEBUG 1192 m->busy_func = func; 1193 m->busy_line = lineno; 1194 #endif 1195 break; 1196 } 1197 } 1198 } 1199 } 1200 1201 /* 1202 * Attempt to set BUSY. If also_m_busy is TRUE we only succeed if 1203 * m->busy_count is also 0. 1204 * 1205 * Returns non-zero on failure. 1206 */ 1207 int 1208 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 1209 VM_PAGE_DEBUG_ARGS) 1210 { 1211 u_int32_t busy_count; 1212 1213 for (;;) { 1214 busy_count = m->busy_count; 1215 cpu_ccfence(); 1216 if (busy_count & PBUSY_LOCKED) 1217 return TRUE; 1218 if (also_m_busy && (busy_count & PBUSY_MASK) != 0) 1219 return TRUE; 1220 if (atomic_cmpset_int(&m->busy_count, busy_count, 1221 busy_count | PBUSY_LOCKED)) { 1222 #ifdef VM_PAGE_DEBUG 1223 m->busy_func = func; 1224 m->busy_line = lineno; 1225 #endif 1226 return FALSE; 1227 } 1228 } 1229 } 1230 1231 /* 1232 * Clear the BUSY flag and return non-zero to indicate to the caller 1233 * that a wakeup() should be performed. 1234 * 1235 * (inline version) 1236 */ 1237 static __inline 1238 int 1239 _vm_page_wakeup(vm_page_t m) 1240 { 1241 u_int32_t busy_count; 1242 1243 busy_count = m->busy_count; 1244 cpu_ccfence(); 1245 for (;;) { 1246 if (atomic_fcmpset_int(&m->busy_count, &busy_count, 1247 busy_count & 1248 ~(PBUSY_LOCKED | PBUSY_WANTED))) { 1249 return((int)(busy_count & PBUSY_WANTED)); 1250 } 1251 } 1252 /* not reached */ 1253 } 1254 1255 /* 1256 * Clear the BUSY flag and wakeup anyone waiting for the page. This 1257 * is typically the last call you make on a page before moving onto 1258 * other things. 1259 */ 1260 void 1261 vm_page_wakeup(vm_page_t m) 1262 { 1263 KASSERT(m->busy_count & PBUSY_LOCKED, 1264 ("vm_page_wakeup: page not busy!!!")); 1265 if (_vm_page_wakeup(m)) 1266 wakeup(m); 1267 } 1268 1269 /* 1270 * Hold a page, preventing reuse. This is typically only called on pages 1271 * in a known state (either held busy, special, or interlocked in some 1272 * manner). Holding a page does not ensure that it remains valid, it only 1273 * prevents reuse. The page must not already be on the FREE queue or in 1274 * any danger of being moved to the FREE queue concurrent with this call. 1275 * 1276 * Other parts of the system can still disassociate the page from its object 1277 * and attempt to free it, or perform read or write I/O on it and/or otherwise 1278 * manipulate the page, but if the page is held the VM system will leave the 1279 * page and its data intact and not cycle it through the FREE queue until 1280 * the last hold has been released. 1281 * 1282 * (see vm_page_wire() if you want to prevent the page from being 1283 * disassociated from its object too). 1284 */ 1285 void 1286 vm_page_hold(vm_page_t m) 1287 { 1288 atomic_add_int(&m->hold_count, 1); 1289 KKASSERT(m->queue - m->pc != PQ_FREE); 1290 #if 0 1291 vm_page_spin_lock(m); 1292 atomic_add_int(&m->hold_count, 1); 1293 if (m->queue - m->pc == PQ_FREE) { 1294 _vm_page_queue_spin_lock(m); 1295 _vm_page_rem_queue_spinlocked(m); 1296 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 1297 _vm_page_queue_spin_unlock(m); 1298 } 1299 vm_page_spin_unlock(m); 1300 #endif 1301 } 1302 1303 /* 1304 * The opposite of vm_page_hold(). If the page is on the HOLD queue 1305 * it was freed while held and must be moved back to the FREE queue. 1306 * 1307 * To avoid racing against vm_page_free*() we must re-test conditions 1308 * after obtaining the spin-lock. The initial test can also race a 1309 * vm_page_free*() that is in the middle of moving a page to PQ_HOLD, 1310 * leaving the page on PQ_HOLD with hold_count == 0. Rather than 1311 * throw a spin-lock in the critical path, we rely on the pageout 1312 * daemon to clean-up these loose ends. 1313 * 1314 * More critically, the 'easy movement' between queues without busying 1315 * a vm_page is only allowed for PQ_FREE<->PQ_HOLD. 1316 */ 1317 void 1318 vm_page_unhold(vm_page_t m) 1319 { 1320 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE, 1321 ("vm_page_unhold: pg %p illegal hold_count (%d) or " 1322 "on FREE queue (%d)", 1323 m, m->hold_count, m->queue - m->pc)); 1324 1325 if (atomic_fetchadd_int(&m->hold_count, -1) == 1 && 1326 m->queue - m->pc == PQ_HOLD) { 1327 vm_page_spin_lock(m); 1328 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 1329 _vm_page_queue_spin_lock(m); 1330 _vm_page_rem_queue_spinlocked(m); 1331 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1); 1332 _vm_page_queue_spin_unlock(m); 1333 } 1334 vm_page_spin_unlock(m); 1335 } 1336 } 1337 1338 /* 1339 * Create a fictitious page with the specified physical address and 1340 * memory attribute. The memory attribute is the only the machine- 1341 * dependent aspect of a fictitious page that must be initialized. 1342 */ 1343 void 1344 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1345 { 1346 if ((m->flags & PG_FICTITIOUS) != 0) { 1347 /* 1348 * The page's memattr might have changed since the 1349 * previous initialization. Update the pmap to the 1350 * new memattr. 1351 */ 1352 goto memattr; 1353 } 1354 m->phys_addr = paddr; 1355 m->queue = PQ_NONE; 1356 /* Fictitious pages don't use "segind". */ 1357 /* Fictitious pages don't use "order" or "pool". */ 1358 m->flags = PG_FICTITIOUS | PG_UNMANAGED; 1359 m->busy_count = PBUSY_LOCKED; 1360 m->wire_count = 1; 1361 spin_init(&m->spin, "fake_page"); 1362 pmap_page_init(m); 1363 memattr: 1364 pmap_page_set_memattr(m, memattr); 1365 } 1366 1367 /* 1368 * Inserts the given vm_page into the object and object list. 1369 * 1370 * The pagetables are not updated but will presumably fault the page 1371 * in if necessary, or if a kernel page the caller will at some point 1372 * enter the page into the kernel's pmap. We are not allowed to block 1373 * here so we *can't* do this anyway. 1374 * 1375 * This routine may not block. 1376 * This routine must be called with the vm_object held. 1377 * This routine must be called with a critical section held. 1378 * 1379 * This routine returns TRUE if the page was inserted into the object 1380 * successfully, and FALSE if the page already exists in the object. 1381 */ 1382 int 1383 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1384 { 1385 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 1386 if (m->object != NULL) 1387 panic("vm_page_insert: already inserted"); 1388 1389 atomic_add_int(&object->generation, 1); 1390 1391 /* 1392 * Associate the VM page with an (object, offset). 1393 * 1394 * The vm_page spin lock is required for interactions with the pmap. 1395 */ 1396 vm_page_spin_lock(m); 1397 m->object = object; 1398 m->pindex = pindex; 1399 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 1400 m->object = NULL; 1401 m->pindex = 0; 1402 vm_page_spin_unlock(m); 1403 return FALSE; 1404 } 1405 ++object->resident_page_count; 1406 ++mycpu->gd_vmtotal.t_rm; 1407 vm_page_spin_unlock(m); 1408 1409 /* 1410 * Since we are inserting a new and possibly dirty page, 1411 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 1412 */ 1413 if ((m->valid & m->dirty) || 1414 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 1415 vm_object_set_writeable_dirty(object); 1416 1417 /* 1418 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 1419 */ 1420 swap_pager_page_inserted(m); 1421 return TRUE; 1422 } 1423 1424 /* 1425 * Removes the given vm_page_t from the (object,index) table 1426 * 1427 * The page must be BUSY and will remain BUSY on return. 1428 * No other requirements. 1429 * 1430 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 1431 * it busy. 1432 * 1433 * NOTE: Caller is responsible for any pmap disposition prior to the 1434 * rename (as the pmap code will not be able to find the entries 1435 * once the object has been disassociated). The caller may choose 1436 * to leave the pmap association intact if this routine is being 1437 * called as part of a rename between shadowed objects. 1438 * 1439 * This routine may not block. 1440 */ 1441 void 1442 vm_page_remove(vm_page_t m) 1443 { 1444 vm_object_t object; 1445 1446 if (m->object == NULL) { 1447 return; 1448 } 1449 1450 if ((m->busy_count & PBUSY_LOCKED) == 0) 1451 panic("vm_page_remove: page not busy"); 1452 1453 object = m->object; 1454 1455 vm_object_hold(object); 1456 1457 /* 1458 * Remove the page from the object and update the object. 1459 * 1460 * The vm_page spin lock is required for interactions with the pmap. 1461 */ 1462 vm_page_spin_lock(m); 1463 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 1464 --object->resident_page_count; 1465 --mycpu->gd_vmtotal.t_rm; 1466 m->object = NULL; 1467 atomic_add_int(&object->generation, 1); 1468 vm_page_spin_unlock(m); 1469 1470 vm_object_drop(object); 1471 } 1472 1473 /* 1474 * Calculate the hash position for the vm_page hash heuristic. 1475 */ 1476 static __inline 1477 struct vm_page ** 1478 vm_page_hash_hash(vm_object_t object, vm_pindex_t pindex) 1479 { 1480 size_t hi; 1481 1482 hi = (uintptr_t)object % (uintptr_t)vm_page_array_size + pindex; 1483 hi %= vm_page_array_size; 1484 return (&vm_page_hash[hi]); 1485 } 1486 1487 /* 1488 * Heuristical page lookup that does not require any locks. Returns 1489 * a soft-busied page on success, NULL on failure. 1490 * 1491 * Caller must lookup the page the slow way if NULL is returned. 1492 */ 1493 vm_page_t 1494 vm_page_hash_get(vm_object_t object, vm_pindex_t pindex) 1495 { 1496 struct vm_page **mp; 1497 vm_page_t m; 1498 1499 if (vm_page_hash == NULL) 1500 return NULL; 1501 mp = vm_page_hash_hash(object, pindex); 1502 m = *mp; 1503 cpu_ccfence(); 1504 if (m == NULL) 1505 return NULL; 1506 if (m->object != object || m->pindex != pindex) 1507 return NULL; 1508 if (vm_page_sbusy_try(m)) 1509 return NULL; 1510 if (m->object != object || m->pindex != pindex) { 1511 vm_page_wakeup(m); 1512 return NULL; 1513 } 1514 return m; 1515 } 1516 1517 /* 1518 * Enter page onto vm_page_hash[]. This is a heuristic, SMP collisions 1519 * are allowed. 1520 */ 1521 static __inline 1522 void 1523 vm_page_hash_enter(vm_page_t m) 1524 { 1525 struct vm_page **mp; 1526 1527 if (vm_page_hash && 1528 m > &vm_page_array[0] && 1529 m < &vm_page_array[vm_page_array_size]) { 1530 mp = vm_page_hash_hash(m->object, m->pindex); 1531 if (*mp != m) 1532 *mp = m; 1533 } 1534 } 1535 1536 /* 1537 * Locate and return the page at (object, pindex), or NULL if the 1538 * page could not be found. 1539 * 1540 * The caller must hold the vm_object token. 1541 */ 1542 vm_page_t 1543 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1544 { 1545 vm_page_t m; 1546 1547 /* 1548 * Search the hash table for this object/offset pair 1549 */ 1550 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1551 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1552 if (m) { 1553 KKASSERT(m->object == object && m->pindex == pindex); 1554 vm_page_hash_enter(m); 1555 } 1556 return(m); 1557 } 1558 1559 vm_page_t 1560 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1561 vm_pindex_t pindex, 1562 int also_m_busy, const char *msg 1563 VM_PAGE_DEBUG_ARGS) 1564 { 1565 u_int32_t busy_count; 1566 vm_page_t m; 1567 1568 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1569 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1570 while (m) { 1571 KKASSERT(m->object == object && m->pindex == pindex); 1572 busy_count = m->busy_count; 1573 cpu_ccfence(); 1574 if (busy_count & PBUSY_LOCKED) { 1575 tsleep_interlock(m, 0); 1576 if (atomic_cmpset_int(&m->busy_count, busy_count, 1577 busy_count | PBUSY_WANTED)) { 1578 atomic_set_int(&m->flags, PG_REFERENCED); 1579 tsleep(m, PINTERLOCKED, msg, 0); 1580 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1581 pindex); 1582 } 1583 } else if (also_m_busy && busy_count) { 1584 tsleep_interlock(m, 0); 1585 if (atomic_cmpset_int(&m->busy_count, busy_count, 1586 busy_count | PBUSY_WANTED)) { 1587 atomic_set_int(&m->flags, PG_REFERENCED); 1588 tsleep(m, PINTERLOCKED, msg, 0); 1589 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1590 pindex); 1591 } 1592 } else if (atomic_cmpset_int(&m->busy_count, busy_count, 1593 busy_count | PBUSY_LOCKED)) { 1594 #ifdef VM_PAGE_DEBUG 1595 m->busy_func = func; 1596 m->busy_line = lineno; 1597 #endif 1598 vm_page_hash_enter(m); 1599 break; 1600 } 1601 } 1602 return m; 1603 } 1604 1605 /* 1606 * Attempt to lookup and busy a page. 1607 * 1608 * Returns NULL if the page could not be found 1609 * 1610 * Returns a vm_page and error == TRUE if the page exists but could not 1611 * be busied. 1612 * 1613 * Returns a vm_page and error == FALSE on success. 1614 */ 1615 vm_page_t 1616 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1617 vm_pindex_t pindex, 1618 int also_m_busy, int *errorp 1619 VM_PAGE_DEBUG_ARGS) 1620 { 1621 u_int32_t busy_count; 1622 vm_page_t m; 1623 1624 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1625 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1626 *errorp = FALSE; 1627 while (m) { 1628 KKASSERT(m->object == object && m->pindex == pindex); 1629 busy_count = m->busy_count; 1630 cpu_ccfence(); 1631 if (busy_count & PBUSY_LOCKED) { 1632 *errorp = TRUE; 1633 break; 1634 } 1635 if (also_m_busy && busy_count) { 1636 *errorp = TRUE; 1637 break; 1638 } 1639 if (atomic_cmpset_int(&m->busy_count, busy_count, 1640 busy_count | PBUSY_LOCKED)) { 1641 #ifdef VM_PAGE_DEBUG 1642 m->busy_func = func; 1643 m->busy_line = lineno; 1644 #endif 1645 vm_page_hash_enter(m); 1646 break; 1647 } 1648 } 1649 return m; 1650 } 1651 1652 /* 1653 * Returns a page that is only soft-busied for use by the caller in 1654 * a read-only fashion. Returns NULL if the page could not be found, 1655 * the soft busy could not be obtained, or the page data is invalid. 1656 */ 1657 vm_page_t 1658 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex, 1659 int pgoff, int pgbytes) 1660 { 1661 vm_page_t m; 1662 1663 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1664 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1665 if (m) { 1666 if ((m->valid != VM_PAGE_BITS_ALL && 1667 !vm_page_is_valid(m, pgoff, pgbytes)) || 1668 (m->flags & PG_FICTITIOUS)) { 1669 m = NULL; 1670 } else if (vm_page_sbusy_try(m)) { 1671 m = NULL; 1672 } else if ((m->valid != VM_PAGE_BITS_ALL && 1673 !vm_page_is_valid(m, pgoff, pgbytes)) || 1674 (m->flags & PG_FICTITIOUS)) { 1675 vm_page_sbusy_drop(m); 1676 m = NULL; 1677 } else { 1678 vm_page_hash_enter(m); 1679 } 1680 } 1681 return m; 1682 } 1683 1684 /* 1685 * Caller must hold the related vm_object 1686 */ 1687 vm_page_t 1688 vm_page_next(vm_page_t m) 1689 { 1690 vm_page_t next; 1691 1692 next = vm_page_rb_tree_RB_NEXT(m); 1693 if (next && next->pindex != m->pindex + 1) 1694 next = NULL; 1695 return (next); 1696 } 1697 1698 /* 1699 * vm_page_rename() 1700 * 1701 * Move the given vm_page from its current object to the specified 1702 * target object/offset. The page must be busy and will remain so 1703 * on return. 1704 * 1705 * new_object must be held. 1706 * This routine might block. XXX ? 1707 * 1708 * NOTE: Swap associated with the page must be invalidated by the move. We 1709 * have to do this for several reasons: (1) we aren't freeing the 1710 * page, (2) we are dirtying the page, (3) the VM system is probably 1711 * moving the page from object A to B, and will then later move 1712 * the backing store from A to B and we can't have a conflict. 1713 * 1714 * NOTE: We *always* dirty the page. It is necessary both for the 1715 * fact that we moved it, and because we may be invalidating 1716 * swap. If the page is on the cache, we have to deactivate it 1717 * or vm_page_dirty() will panic. Dirty pages are not allowed 1718 * on the cache. 1719 * 1720 * NOTE: Caller is responsible for any pmap disposition prior to the 1721 * rename (as the pmap code will not be able to find the entries 1722 * once the object has been disassociated or changed). Nominally 1723 * the caller is moving a page between shadowed objects and so the 1724 * pmap association is retained without having to remove the page 1725 * from it. 1726 */ 1727 void 1728 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1729 { 1730 KKASSERT(m->busy_count & PBUSY_LOCKED); 1731 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1732 if (m->object) { 1733 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1734 vm_page_remove(m); 1735 } 1736 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1737 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1738 new_object, new_pindex); 1739 } 1740 if (m->queue - m->pc == PQ_CACHE) 1741 vm_page_deactivate(m); 1742 vm_page_dirty(m); 1743 } 1744 1745 /* 1746 * vm_page_unqueue() without any wakeup. This routine is used when a page 1747 * is to remain BUSYied by the caller. 1748 * 1749 * This routine may not block. 1750 */ 1751 void 1752 vm_page_unqueue_nowakeup(vm_page_t m) 1753 { 1754 vm_page_and_queue_spin_lock(m); 1755 (void)_vm_page_rem_queue_spinlocked(m); 1756 vm_page_spin_unlock(m); 1757 } 1758 1759 /* 1760 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1761 * if necessary. 1762 * 1763 * This routine may not block. 1764 */ 1765 void 1766 vm_page_unqueue(vm_page_t m) 1767 { 1768 u_short queue; 1769 1770 vm_page_and_queue_spin_lock(m); 1771 queue = _vm_page_rem_queue_spinlocked(m); 1772 if (queue == PQ_FREE || queue == PQ_CACHE) { 1773 vm_page_spin_unlock(m); 1774 pagedaemon_wakeup(); 1775 } else { 1776 vm_page_spin_unlock(m); 1777 } 1778 } 1779 1780 /* 1781 * vm_page_list_find() 1782 * 1783 * Find a page on the specified queue with color optimization. 1784 * 1785 * The page coloring optimization attempts to locate a page that does 1786 * not overload other nearby pages in the object in the cpu's L1 or L2 1787 * caches. We need this optimization because cpu caches tend to be 1788 * physical caches, while object spaces tend to be virtual. 1789 * 1790 * The page coloring optimization also, very importantly, tries to localize 1791 * memory to cpus and physical sockets. 1792 * 1793 * Each PQ_FREE and PQ_CACHE color queue has its own spinlock and the 1794 * algorithm is adjusted to localize allocations on a per-core basis. 1795 * This is done by 'twisting' the colors. 1796 * 1797 * The page is returned spinlocked and removed from its queue (it will 1798 * be on PQ_NONE), or NULL. The page is not BUSY'd. The caller 1799 * is responsible for dealing with the busy-page case (usually by 1800 * deactivating the page and looping). 1801 * 1802 * NOTE: This routine is carefully inlined. A non-inlined version 1803 * is available for outside callers but the only critical path is 1804 * from within this source file. 1805 * 1806 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1807 * represent stable storage, allowing us to order our locks vm_page 1808 * first, then queue. 1809 */ 1810 static __inline 1811 vm_page_t 1812 _vm_page_list_find(int basequeue, int index) 1813 { 1814 struct vpgqueues *pq; 1815 vm_page_t m; 1816 1817 index &= PQ_L2_MASK; 1818 pq = &vm_page_queues[basequeue + index]; 1819 1820 /* 1821 * Try this cpu's colored queue first. Test for a page unlocked, 1822 * then lock the queue and locate a page. Note that the lock order 1823 * is reversed, but we do not want to dwadle on the page spinlock 1824 * anyway as it is held significantly longer than the queue spinlock. 1825 */ 1826 if (TAILQ_FIRST(&pq->pl)) { 1827 spin_lock(&pq->spin); 1828 TAILQ_FOREACH(m, &pq->pl, pageq) { 1829 if (spin_trylock(&m->spin) == 0) 1830 continue; 1831 KKASSERT(m->queue == basequeue + index); 1832 _vm_page_rem_queue_spinlocked(m); 1833 return(m); 1834 } 1835 spin_unlock(&pq->spin); 1836 } 1837 1838 /* 1839 * If we are unable to get a page, do a more involved NUMA-aware 1840 * search. 1841 */ 1842 m = _vm_page_list_find2(basequeue, index); 1843 return(m); 1844 } 1845 1846 /* 1847 * If we could not find the page in the desired queue try to find it in 1848 * a nearby (NUMA-aware) queue. 1849 */ 1850 static vm_page_t 1851 _vm_page_list_find2(int basequeue, int index) 1852 { 1853 struct vpgqueues *pq; 1854 vm_page_t m = NULL; 1855 int pqmask = PQ_SET_ASSOC_MASK >> 1; 1856 int pqi; 1857 int i; 1858 1859 index &= PQ_L2_MASK; 1860 pq = &vm_page_queues[basequeue]; 1861 1862 /* 1863 * Run local sets of 16, 32, 64, 128, and the whole queue if all 1864 * else fails (PQ_L2_MASK which is 255). 1865 * 1866 * Test each queue unlocked first, then lock the queue and locate 1867 * a page. Note that the lock order is reversed, but we do not want 1868 * to dwadle on the page spinlock anyway as it is held significantly 1869 * longer than the queue spinlock. 1870 */ 1871 do { 1872 pqmask = (pqmask << 1) | 1; 1873 for (i = 0; i <= pqmask; ++i) { 1874 pqi = (index & ~pqmask) | ((index + i) & pqmask); 1875 if (TAILQ_FIRST(&pq[pqi].pl)) { 1876 spin_lock(&pq[pqi].spin); 1877 TAILQ_FOREACH(m, &pq[pqi].pl, pageq) { 1878 if (spin_trylock(&m->spin) == 0) 1879 continue; 1880 KKASSERT(m->queue == basequeue + pqi); 1881 _vm_page_rem_queue_spinlocked(m); 1882 return(m); 1883 } 1884 spin_unlock(&pq[pqi].spin); 1885 } 1886 } 1887 } while (pqmask != PQ_L2_MASK); 1888 1889 return(m); 1890 } 1891 1892 /* 1893 * Returns a vm_page candidate for allocation. The page is not busied so 1894 * it can move around. The caller must busy the page (and typically 1895 * deactivate it if it cannot be busied!) 1896 * 1897 * Returns a spinlocked vm_page that has been removed from its queue. 1898 */ 1899 vm_page_t 1900 vm_page_list_find(int basequeue, int index) 1901 { 1902 return(_vm_page_list_find(basequeue, index)); 1903 } 1904 1905 /* 1906 * Find a page on the cache queue with color optimization, remove it 1907 * from the queue, and busy it. The returned page will not be spinlocked. 1908 * 1909 * A candidate failure will be deactivated. Candidates can fail due to 1910 * being busied by someone else, in which case they will be deactivated. 1911 * 1912 * This routine may not block. 1913 * 1914 */ 1915 static vm_page_t 1916 vm_page_select_cache(u_short pg_color) 1917 { 1918 vm_page_t m; 1919 1920 for (;;) { 1921 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK); 1922 if (m == NULL) 1923 break; 1924 /* 1925 * (m) has been removed from its queue and spinlocked 1926 */ 1927 if (vm_page_busy_try(m, TRUE)) { 1928 _vm_page_deactivate_locked(m, 0); 1929 vm_page_spin_unlock(m); 1930 } else { 1931 /* 1932 * We successfully busied the page 1933 */ 1934 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1935 m->hold_count == 0 && 1936 m->wire_count == 0 && 1937 (m->dirty & m->valid) == 0) { 1938 vm_page_spin_unlock(m); 1939 pagedaemon_wakeup(); 1940 return(m); 1941 } 1942 1943 /* 1944 * The page cannot be recycled, deactivate it. 1945 */ 1946 _vm_page_deactivate_locked(m, 0); 1947 if (_vm_page_wakeup(m)) { 1948 vm_page_spin_unlock(m); 1949 wakeup(m); 1950 } else { 1951 vm_page_spin_unlock(m); 1952 } 1953 } 1954 } 1955 return (m); 1956 } 1957 1958 /* 1959 * Find a free page. We attempt to inline the nominal case and fall back 1960 * to _vm_page_select_free() otherwise. A busied page is removed from 1961 * the queue and returned. 1962 * 1963 * This routine may not block. 1964 */ 1965 static __inline vm_page_t 1966 vm_page_select_free(u_short pg_color) 1967 { 1968 vm_page_t m; 1969 1970 for (;;) { 1971 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK); 1972 if (m == NULL) 1973 break; 1974 if (vm_page_busy_try(m, TRUE)) { 1975 /* 1976 * Various mechanisms such as a pmap_collect can 1977 * result in a busy page on the free queue. We 1978 * have to move the page out of the way so we can 1979 * retry the allocation. If the other thread is not 1980 * allocating the page then m->valid will remain 0 and 1981 * the pageout daemon will free the page later on. 1982 * 1983 * Since we could not busy the page, however, we 1984 * cannot make assumptions as to whether the page 1985 * will be allocated by the other thread or not, 1986 * so all we can do is deactivate it to move it out 1987 * of the way. In particular, if the other thread 1988 * wires the page it may wind up on the inactive 1989 * queue and the pageout daemon will have to deal 1990 * with that case too. 1991 */ 1992 _vm_page_deactivate_locked(m, 0); 1993 vm_page_spin_unlock(m); 1994 } else { 1995 /* 1996 * Theoretically if we are able to busy the page 1997 * atomic with the queue removal (using the vm_page 1998 * lock) nobody else should have been able to mess 1999 * with the page before us. 2000 * 2001 * Assert the page state. Note that even though 2002 * wiring doesn't adjust queues, a page on the free 2003 * queue should never be wired at this point. 2004 */ 2005 KKASSERT((m->flags & (PG_UNMANAGED | 2006 PG_NEED_COMMIT)) == 0); 2007 KASSERT(m->hold_count == 0, 2008 ("m->hold_count is not zero " 2009 "pg %p q=%d flags=%08x hold=%d wire=%d", 2010 m, m->queue, m->flags, 2011 m->hold_count, m->wire_count)); 2012 KKASSERT(m->wire_count == 0); 2013 vm_page_spin_unlock(m); 2014 pagedaemon_wakeup(); 2015 2016 /* return busied and removed page */ 2017 return(m); 2018 } 2019 } 2020 return(m); 2021 } 2022 2023 /* 2024 * vm_page_alloc() 2025 * 2026 * Allocate and return a memory cell associated with this VM object/offset 2027 * pair. If object is NULL an unassociated page will be allocated. 2028 * 2029 * The returned page will be busied and removed from its queues. This 2030 * routine can block and may return NULL if a race occurs and the page 2031 * is found to already exist at the specified (object, pindex). 2032 * 2033 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 2034 * VM_ALLOC_QUICK like normal but cannot use cache 2035 * VM_ALLOC_SYSTEM greater free drain 2036 * VM_ALLOC_INTERRUPT allow free list to be completely drained 2037 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 2038 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 2039 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 2040 * (see vm_page_grab()) 2041 * VM_ALLOC_USE_GD ok to use per-gd cache 2042 * 2043 * VM_ALLOC_CPU(n) allocate using specified cpu localization 2044 * 2045 * The object must be held if not NULL 2046 * This routine may not block 2047 * 2048 * Additional special handling is required when called from an interrupt 2049 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 2050 * in this case. 2051 */ 2052 vm_page_t 2053 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 2054 { 2055 globaldata_t gd; 2056 vm_object_t obj; 2057 vm_page_t m; 2058 u_short pg_color; 2059 int cpuid_local; 2060 2061 #if 0 2062 /* 2063 * Special per-cpu free VM page cache. The pages are pre-busied 2064 * and pre-zerod for us. 2065 */ 2066 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 2067 crit_enter_gd(gd); 2068 if (gd->gd_vmpg_count) { 2069 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 2070 crit_exit_gd(gd); 2071 goto done; 2072 } 2073 crit_exit_gd(gd); 2074 } 2075 #endif 2076 m = NULL; 2077 2078 /* 2079 * CPU LOCALIZATION 2080 * 2081 * CPU localization algorithm. Break the page queues up by physical 2082 * id and core id (note that two cpu threads will have the same core 2083 * id, and core_id != gd_cpuid). 2084 * 2085 * This is nowhere near perfect, for example the last pindex in a 2086 * subgroup will overflow into the next cpu or package. But this 2087 * should get us good page reuse locality in heavy mixed loads. 2088 * 2089 * (may be executed before the APs are started, so other GDs might 2090 * not exist!) 2091 */ 2092 if (page_req & VM_ALLOC_CPU_SPEC) 2093 cpuid_local = VM_ALLOC_GETCPU(page_req); 2094 else 2095 cpuid_local = mycpu->gd_cpuid; 2096 2097 pg_color = vm_get_pg_color(cpuid_local, object, pindex); 2098 2099 KKASSERT(page_req & 2100 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 2101 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2102 2103 /* 2104 * Certain system threads (pageout daemon, buf_daemon's) are 2105 * allowed to eat deeper into the free page list. 2106 */ 2107 if (curthread->td_flags & TDF_SYSTHREAD) 2108 page_req |= VM_ALLOC_SYSTEM; 2109 2110 /* 2111 * Impose various limitations. Note that the v_free_reserved test 2112 * must match the opposite of vm_page_count_target() to avoid 2113 * livelocks, be careful. 2114 */ 2115 loop: 2116 gd = mycpu; 2117 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved || 2118 ((page_req & VM_ALLOC_INTERRUPT) && 2119 gd->gd_vmstats.v_free_count > 0) || 2120 ((page_req & VM_ALLOC_SYSTEM) && 2121 gd->gd_vmstats.v_cache_count == 0 && 2122 gd->gd_vmstats.v_free_count > 2123 gd->gd_vmstats.v_interrupt_free_min) 2124 ) { 2125 /* 2126 * The free queue has sufficient free pages to take one out. 2127 */ 2128 m = vm_page_select_free(pg_color); 2129 } else if (page_req & VM_ALLOC_NORMAL) { 2130 /* 2131 * Allocatable from the cache (non-interrupt only). On 2132 * success, we must free the page and try again, thus 2133 * ensuring that vmstats.v_*_free_min counters are replenished. 2134 */ 2135 #ifdef INVARIANTS 2136 if (curthread->td_preempted) { 2137 kprintf("vm_page_alloc(): warning, attempt to allocate" 2138 " cache page from preempting interrupt\n"); 2139 m = NULL; 2140 } else { 2141 m = vm_page_select_cache(pg_color); 2142 } 2143 #else 2144 m = vm_page_select_cache(pg_color); 2145 #endif 2146 /* 2147 * On success move the page into the free queue and loop. 2148 * 2149 * Only do this if we can safely acquire the vm_object lock, 2150 * because this is effectively a random page and the caller 2151 * might be holding the lock shared, we don't want to 2152 * deadlock. 2153 */ 2154 if (m != NULL) { 2155 KASSERT(m->dirty == 0, 2156 ("Found dirty cache page %p", m)); 2157 if ((obj = m->object) != NULL) { 2158 if (vm_object_hold_try(obj)) { 2159 vm_page_protect(m, VM_PROT_NONE); 2160 vm_page_free(m); 2161 /* m->object NULL here */ 2162 vm_object_drop(obj); 2163 } else { 2164 vm_page_deactivate(m); 2165 vm_page_wakeup(m); 2166 } 2167 } else { 2168 vm_page_protect(m, VM_PROT_NONE); 2169 vm_page_free(m); 2170 } 2171 goto loop; 2172 } 2173 2174 /* 2175 * On failure return NULL 2176 */ 2177 atomic_add_int(&vm_pageout_deficit, 1); 2178 pagedaemon_wakeup(); 2179 return (NULL); 2180 } else { 2181 /* 2182 * No pages available, wakeup the pageout daemon and give up. 2183 */ 2184 atomic_add_int(&vm_pageout_deficit, 1); 2185 pagedaemon_wakeup(); 2186 return (NULL); 2187 } 2188 2189 /* 2190 * v_free_count can race so loop if we don't find the expected 2191 * page. 2192 */ 2193 if (m == NULL) { 2194 vmstats_rollup(); 2195 goto loop; 2196 } 2197 2198 /* 2199 * Good page found. The page has already been busied for us and 2200 * removed from its queues. 2201 */ 2202 KASSERT(m->dirty == 0, 2203 ("vm_page_alloc: free/cache page %p was dirty", m)); 2204 KKASSERT(m->queue == PQ_NONE); 2205 2206 #if 0 2207 done: 2208 #endif 2209 /* 2210 * Initialize the structure, inheriting some flags but clearing 2211 * all the rest. The page has already been busied for us. 2212 */ 2213 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK); 2214 2215 KKASSERT(m->wire_count == 0); 2216 KKASSERT((m->busy_count & PBUSY_MASK) == 0); 2217 m->act_count = 0; 2218 m->valid = 0; 2219 2220 /* 2221 * Caller must be holding the object lock (asserted by 2222 * vm_page_insert()). 2223 * 2224 * NOTE: Inserting a page here does not insert it into any pmaps 2225 * (which could cause us to block allocating memory). 2226 * 2227 * NOTE: If no object an unassociated page is allocated, m->pindex 2228 * can be used by the caller for any purpose. 2229 */ 2230 if (object) { 2231 if (vm_page_insert(m, object, pindex) == FALSE) { 2232 vm_page_free(m); 2233 if ((page_req & VM_ALLOC_NULL_OK) == 0) 2234 panic("PAGE RACE %p[%ld]/%p", 2235 object, (long)pindex, m); 2236 m = NULL; 2237 } 2238 } else { 2239 m->pindex = pindex; 2240 } 2241 2242 /* 2243 * Don't wakeup too often - wakeup the pageout daemon when 2244 * we would be nearly out of memory. 2245 */ 2246 pagedaemon_wakeup(); 2247 2248 /* 2249 * A BUSY page is returned. 2250 */ 2251 return (m); 2252 } 2253 2254 /* 2255 * Returns number of pages available in our DMA memory reserve 2256 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf) 2257 */ 2258 vm_size_t 2259 vm_contig_avail_pages(void) 2260 { 2261 alist_blk_t blk; 2262 alist_blk_t count; 2263 alist_blk_t bfree; 2264 spin_lock(&vm_contig_spin); 2265 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 2266 spin_unlock(&vm_contig_spin); 2267 2268 return bfree; 2269 } 2270 2271 /* 2272 * Attempt to allocate contiguous physical memory with the specified 2273 * requirements. 2274 */ 2275 vm_page_t 2276 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 2277 unsigned long alignment, unsigned long boundary, 2278 unsigned long size, vm_memattr_t memattr) 2279 { 2280 alist_blk_t blk; 2281 vm_page_t m; 2282 vm_pindex_t i; 2283 #if 0 2284 static vm_pindex_t contig_rover; 2285 #endif 2286 2287 alignment >>= PAGE_SHIFT; 2288 if (alignment == 0) 2289 alignment = 1; 2290 boundary >>= PAGE_SHIFT; 2291 if (boundary == 0) 2292 boundary = 1; 2293 size = (size + PAGE_MASK) >> PAGE_SHIFT; 2294 2295 #if 0 2296 /* 2297 * Disabled temporarily until we find a solution for DRM (a flag 2298 * to always use the free space reserve, for performance). 2299 */ 2300 if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE && 2301 boundary <= PAGE_SIZE && size == 1 && 2302 memattr == VM_MEMATTR_DEFAULT) { 2303 /* 2304 * Any page will work, use vm_page_alloc() 2305 * (e.g. when used from kmem_alloc_attr()) 2306 */ 2307 m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF, 2308 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 2309 VM_ALLOC_INTERRUPT); 2310 m->valid = VM_PAGE_BITS_ALL; 2311 vm_page_wire(m); 2312 vm_page_wakeup(m); 2313 } else 2314 #endif 2315 { 2316 /* 2317 * Use the low-memory dma reserve 2318 */ 2319 spin_lock(&vm_contig_spin); 2320 blk = alist_alloc(&vm_contig_alist, 0, size); 2321 if (blk == ALIST_BLOCK_NONE) { 2322 spin_unlock(&vm_contig_spin); 2323 if (bootverbose) { 2324 kprintf("vm_page_alloc_contig: %ldk nospace\n", 2325 (size << PAGE_SHIFT) / 1024); 2326 print_backtrace(5); 2327 } 2328 return(NULL); 2329 } 2330 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 2331 alist_free(&vm_contig_alist, blk, size); 2332 spin_unlock(&vm_contig_spin); 2333 if (bootverbose) { 2334 kprintf("vm_page_alloc_contig: %ldk high " 2335 "%016jx failed\n", 2336 (size << PAGE_SHIFT) / 1024, 2337 (intmax_t)high); 2338 } 2339 return(NULL); 2340 } 2341 spin_unlock(&vm_contig_spin); 2342 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 2343 } 2344 if (vm_contig_verbose) { 2345 kprintf("vm_page_alloc_contig: %016jx/%ldk " 2346 "(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n", 2347 (intmax_t)m->phys_addr, 2348 (size << PAGE_SHIFT) / 1024, 2349 low, high, alignment, boundary, size, memattr); 2350 } 2351 if (memattr != VM_MEMATTR_DEFAULT) { 2352 for (i = 0;i < size; i++) 2353 pmap_page_set_memattr(&m[i], memattr); 2354 } 2355 return m; 2356 } 2357 2358 /* 2359 * Free contiguously allocated pages. The pages will be wired but not busy. 2360 * When freeing to the alist we leave them wired and not busy. 2361 */ 2362 void 2363 vm_page_free_contig(vm_page_t m, unsigned long size) 2364 { 2365 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 2366 vm_pindex_t start = pa >> PAGE_SHIFT; 2367 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 2368 2369 if (vm_contig_verbose) { 2370 kprintf("vm_page_free_contig: %016jx/%ldk\n", 2371 (intmax_t)pa, size / 1024); 2372 } 2373 if (pa < vm_low_phys_reserved) { 2374 KKASSERT(pa + size <= vm_low_phys_reserved); 2375 spin_lock(&vm_contig_spin); 2376 alist_free(&vm_contig_alist, start, pages); 2377 spin_unlock(&vm_contig_spin); 2378 } else { 2379 while (pages) { 2380 vm_page_busy_wait(m, FALSE, "cpgfr"); 2381 vm_page_unwire(m, 0); 2382 vm_page_free(m); 2383 --pages; 2384 ++m; 2385 } 2386 2387 } 2388 } 2389 2390 2391 /* 2392 * Wait for sufficient free memory for nominal heavy memory use kernel 2393 * operations. 2394 * 2395 * WARNING! Be sure never to call this in any vm_pageout code path, which 2396 * will trivially deadlock the system. 2397 */ 2398 void 2399 vm_wait_nominal(void) 2400 { 2401 while (vm_page_count_min(0)) 2402 vm_wait(0); 2403 } 2404 2405 /* 2406 * Test if vm_wait_nominal() would block. 2407 */ 2408 int 2409 vm_test_nominal(void) 2410 { 2411 if (vm_page_count_min(0)) 2412 return(1); 2413 return(0); 2414 } 2415 2416 /* 2417 * Block until free pages are available for allocation, called in various 2418 * places before memory allocations. 2419 * 2420 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 2421 * more generous then that. 2422 */ 2423 void 2424 vm_wait(int timo) 2425 { 2426 /* 2427 * never wait forever 2428 */ 2429 if (timo == 0) 2430 timo = hz; 2431 lwkt_gettoken(&vm_token); 2432 2433 if (curthread == pagethread || 2434 curthread == emergpager) { 2435 /* 2436 * The pageout daemon itself needs pages, this is bad. 2437 */ 2438 if (vm_page_count_min(0)) { 2439 vm_pageout_pages_needed = 1; 2440 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 2441 } 2442 } else { 2443 /* 2444 * Wakeup the pageout daemon if necessary and wait. 2445 * 2446 * Do not wait indefinitely for the target to be reached, 2447 * as load might prevent it from being reached any time soon. 2448 * But wait a little to try to slow down page allocations 2449 * and to give more important threads (the pagedaemon) 2450 * allocation priority. 2451 */ 2452 if (vm_page_count_target()) { 2453 if (vm_pages_needed == 0) { 2454 vm_pages_needed = 1; 2455 wakeup(&vm_pages_needed); 2456 } 2457 ++vm_pages_waiting; /* SMP race ok */ 2458 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 2459 } 2460 } 2461 lwkt_reltoken(&vm_token); 2462 } 2463 2464 /* 2465 * Block until free pages are available for allocation 2466 * 2467 * Called only from vm_fault so that processes page faulting can be 2468 * easily tracked. 2469 */ 2470 void 2471 vm_wait_pfault(void) 2472 { 2473 /* 2474 * Wakeup the pageout daemon if necessary and wait. 2475 * 2476 * Do not wait indefinitely for the target to be reached, 2477 * as load might prevent it from being reached any time soon. 2478 * But wait a little to try to slow down page allocations 2479 * and to give more important threads (the pagedaemon) 2480 * allocation priority. 2481 */ 2482 if (vm_page_count_min(0)) { 2483 lwkt_gettoken(&vm_token); 2484 while (vm_page_count_severe()) { 2485 if (vm_page_count_target()) { 2486 thread_t td; 2487 2488 if (vm_pages_needed == 0) { 2489 vm_pages_needed = 1; 2490 wakeup(&vm_pages_needed); 2491 } 2492 ++vm_pages_waiting; /* SMP race ok */ 2493 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 2494 2495 /* 2496 * Do not stay stuck in the loop if the system is trying 2497 * to kill the process. 2498 */ 2499 td = curthread; 2500 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL)) 2501 break; 2502 } 2503 } 2504 lwkt_reltoken(&vm_token); 2505 } 2506 } 2507 2508 /* 2509 * Put the specified page on the active list (if appropriate). Ensure 2510 * that act_count is at least ACT_INIT but do not otherwise mess with it. 2511 * 2512 * The caller should be holding the page busied ? XXX 2513 * This routine may not block. 2514 */ 2515 void 2516 vm_page_activate(vm_page_t m) 2517 { 2518 u_short oqueue; 2519 2520 vm_page_spin_lock(m); 2521 if (m->queue - m->pc != PQ_ACTIVE && !(m->flags & PG_FICTITIOUS)) { 2522 _vm_page_queue_spin_lock(m); 2523 oqueue = _vm_page_rem_queue_spinlocked(m); 2524 /* page is left spinlocked, queue is unlocked */ 2525 2526 if (oqueue == PQ_CACHE) 2527 mycpu->gd_cnt.v_reactivated++; 2528 if ((m->flags & PG_UNMANAGED) == 0) { 2529 if (m->act_count < ACT_INIT) 2530 m->act_count = ACT_INIT; 2531 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 2532 } 2533 _vm_page_and_queue_spin_unlock(m); 2534 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 2535 pagedaemon_wakeup(); 2536 } else { 2537 if (m->act_count < ACT_INIT) 2538 m->act_count = ACT_INIT; 2539 vm_page_spin_unlock(m); 2540 } 2541 } 2542 2543 /* 2544 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2545 * routine is called when a page has been added to the cache or free 2546 * queues. 2547 * 2548 * This routine may not block. 2549 */ 2550 static __inline void 2551 vm_page_free_wakeup(void) 2552 { 2553 globaldata_t gd = mycpu; 2554 2555 /* 2556 * If the pageout daemon itself needs pages, then tell it that 2557 * there are some free. 2558 */ 2559 if (vm_pageout_pages_needed && 2560 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >= 2561 gd->gd_vmstats.v_pageout_free_min 2562 ) { 2563 vm_pageout_pages_needed = 0; 2564 wakeup(&vm_pageout_pages_needed); 2565 } 2566 2567 /* 2568 * Wakeup processes that are waiting on memory. 2569 * 2570 * Generally speaking we want to wakeup stuck processes as soon as 2571 * possible. !vm_page_count_min(0) is the absolute minimum point 2572 * where we can do this. Wait a bit longer to reduce degenerate 2573 * re-blocking (vm_page_free_hysteresis). The target check is just 2574 * to make sure the min-check w/hysteresis does not exceed the 2575 * normal target. 2576 */ 2577 if (vm_pages_waiting) { 2578 if (!vm_page_count_min(vm_page_free_hysteresis) || 2579 !vm_page_count_target()) { 2580 vm_pages_waiting = 0; 2581 wakeup(&vmstats.v_free_count); 2582 ++mycpu->gd_cnt.v_ppwakeups; 2583 } 2584 #if 0 2585 if (!vm_page_count_target()) { 2586 /* 2587 * Plenty of pages are free, wakeup everyone. 2588 */ 2589 vm_pages_waiting = 0; 2590 wakeup(&vmstats.v_free_count); 2591 ++mycpu->gd_cnt.v_ppwakeups; 2592 } else if (!vm_page_count_min(0)) { 2593 /* 2594 * Some pages are free, wakeup someone. 2595 */ 2596 int wcount = vm_pages_waiting; 2597 if (wcount > 0) 2598 --wcount; 2599 vm_pages_waiting = wcount; 2600 wakeup_one(&vmstats.v_free_count); 2601 ++mycpu->gd_cnt.v_ppwakeups; 2602 } 2603 #endif 2604 } 2605 } 2606 2607 /* 2608 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 2609 * it from its VM object. 2610 * 2611 * The vm_page must be BUSY on entry. BUSY will be released on 2612 * return (the page will have been freed). 2613 */ 2614 void 2615 vm_page_free_toq(vm_page_t m) 2616 { 2617 mycpu->gd_cnt.v_tfree++; 2618 KKASSERT((m->flags & PG_MAPPED) == 0); 2619 KKASSERT(m->busy_count & PBUSY_LOCKED); 2620 2621 if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) { 2622 kprintf("vm_page_free: pindex(%lu), busy %08x, " 2623 "hold(%d)\n", 2624 (u_long)m->pindex, m->busy_count, m->hold_count); 2625 if ((m->queue - m->pc) == PQ_FREE) 2626 panic("vm_page_free: freeing free page"); 2627 else 2628 panic("vm_page_free: freeing busy page"); 2629 } 2630 2631 /* 2632 * Remove from object, spinlock the page and its queues and 2633 * remove from any queue. No queue spinlock will be held 2634 * after this section (because the page was removed from any 2635 * queue). 2636 */ 2637 vm_page_remove(m); 2638 2639 /* 2640 * No further management of fictitious pages occurs beyond object 2641 * and queue removal. 2642 */ 2643 if ((m->flags & PG_FICTITIOUS) != 0) { 2644 KKASSERT(m->queue == PQ_NONE); 2645 vm_page_wakeup(m); 2646 return; 2647 } 2648 vm_page_and_queue_spin_lock(m); 2649 _vm_page_rem_queue_spinlocked(m); 2650 2651 m->valid = 0; 2652 vm_page_undirty(m); 2653 2654 if (m->wire_count != 0) { 2655 if (m->wire_count > 1) { 2656 panic( 2657 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2658 m->wire_count, (long)m->pindex); 2659 } 2660 panic("vm_page_free: freeing wired page"); 2661 } 2662 2663 /* 2664 * Clear the UNMANAGED flag when freeing an unmanaged page. 2665 * Clear the NEED_COMMIT flag 2666 */ 2667 if (m->flags & PG_UNMANAGED) 2668 vm_page_flag_clear(m, PG_UNMANAGED); 2669 if (m->flags & PG_NEED_COMMIT) 2670 vm_page_flag_clear(m, PG_NEED_COMMIT); 2671 2672 if (m->hold_count != 0) { 2673 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2674 } else { 2675 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1); 2676 } 2677 2678 /* 2679 * This sequence allows us to clear BUSY while still holding 2680 * its spin lock, which reduces contention vs allocators. We 2681 * must not leave the queue locked or _vm_page_wakeup() may 2682 * deadlock. 2683 */ 2684 _vm_page_queue_spin_unlock(m); 2685 if (_vm_page_wakeup(m)) { 2686 vm_page_spin_unlock(m); 2687 wakeup(m); 2688 } else { 2689 vm_page_spin_unlock(m); 2690 } 2691 vm_page_free_wakeup(); 2692 } 2693 2694 /* 2695 * vm_page_unmanage() 2696 * 2697 * Prevent PV management from being done on the page. The page is 2698 * also removed from the paging queues, and as a consequence of no longer 2699 * being managed the pageout daemon will not touch it (since there is no 2700 * way to locate the pte mappings for the page). madvise() calls that 2701 * mess with the pmap will also no longer operate on the page. 2702 * 2703 * Beyond that the page is still reasonably 'normal'. Freeing the page 2704 * will clear the flag. 2705 * 2706 * This routine is used by OBJT_PHYS objects - objects using unswappable 2707 * physical memory as backing store rather then swap-backed memory and 2708 * will eventually be extended to support 4MB unmanaged physical 2709 * mappings. 2710 * 2711 * Caller must be holding the page busy. 2712 */ 2713 void 2714 vm_page_unmanage(vm_page_t m) 2715 { 2716 KKASSERT(m->busy_count & PBUSY_LOCKED); 2717 if ((m->flags & PG_UNMANAGED) == 0) { 2718 vm_page_unqueue(m); 2719 } 2720 vm_page_flag_set(m, PG_UNMANAGED); 2721 } 2722 2723 /* 2724 * Mark this page as wired down by yet another map. We do not adjust the 2725 * queue the page is on, it will be checked for wiring as-needed. 2726 * 2727 * Caller must be holding the page busy. 2728 */ 2729 void 2730 vm_page_wire(vm_page_t m) 2731 { 2732 /* 2733 * Only bump the wire statistics if the page is not already wired, 2734 * and only unqueue the page if it is on some queue (if it is unmanaged 2735 * it is already off the queues). Don't do anything with fictitious 2736 * pages because they are always wired. 2737 */ 2738 KKASSERT(m->busy_count & PBUSY_LOCKED); 2739 if ((m->flags & PG_FICTITIOUS) == 0) { 2740 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2741 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1); 2742 } 2743 KASSERT(m->wire_count != 0, 2744 ("vm_page_wire: wire_count overflow m=%p", m)); 2745 } 2746 } 2747 2748 /* 2749 * Release one wiring of this page, potentially enabling it to be paged again. 2750 * 2751 * Note that wired pages are no longer unconditionally removed from the 2752 * paging queues, so the page may already be on a queue. Move the page 2753 * to the desired queue if necessary. 2754 * 2755 * Many pages placed on the inactive queue should actually go 2756 * into the cache, but it is difficult to figure out which. What 2757 * we do instead, if the inactive target is well met, is to put 2758 * clean pages at the head of the inactive queue instead of the tail. 2759 * This will cause them to be moved to the cache more quickly and 2760 * if not actively re-referenced, freed more quickly. If we just 2761 * stick these pages at the end of the inactive queue, heavy filesystem 2762 * meta-data accesses can cause an unnecessary paging load on memory bound 2763 * processes. This optimization causes one-time-use metadata to be 2764 * reused more quickly. 2765 * 2766 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2767 * the inactive queue. This helps the pageout daemon determine memory 2768 * pressure and act on out-of-memory situations more quickly. 2769 * 2770 * BUT, if we are in a low-memory situation we have no choice but to 2771 * put clean pages on the cache queue. 2772 * 2773 * A number of routines use vm_page_unwire() to guarantee that the page 2774 * will go into either the inactive or active queues, and will NEVER 2775 * be placed in the cache - for example, just after dirtying a page. 2776 * dirty pages in the cache are not allowed. 2777 * 2778 * This routine may not block. 2779 */ 2780 void 2781 vm_page_unwire(vm_page_t m, int activate) 2782 { 2783 KKASSERT(m->busy_count & PBUSY_LOCKED); 2784 if (m->flags & PG_FICTITIOUS) { 2785 /* do nothing */ 2786 } else if ((int)m->wire_count <= 0) { 2787 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2788 } else { 2789 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2790 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1); 2791 if (m->flags & PG_UNMANAGED) { 2792 ; 2793 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2794 vm_page_activate(m); 2795 #if 0 2796 vm_page_spin_lock(m); 2797 _vm_page_add_queue_spinlocked(m, 2798 PQ_ACTIVE + m->pc, 0); 2799 _vm_page_and_queue_spin_unlock(m); 2800 #endif 2801 } else { 2802 vm_page_deactivate(m); 2803 #if 0 2804 vm_page_spin_lock(m); 2805 vm_page_flag_clear(m, PG_WINATCFLS); 2806 _vm_page_add_queue_spinlocked(m, 2807 PQ_INACTIVE + m->pc, 0); 2808 _vm_page_and_queue_spin_unlock(m); 2809 #endif 2810 } 2811 } 2812 } 2813 } 2814 2815 /* 2816 * Move the specified page to the inactive queue. 2817 * 2818 * Normally athead is 0 resulting in LRU operation. athead is set 2819 * to 1 if we want this page to be 'as if it were placed in the cache', 2820 * except without unmapping it from the process address space. 2821 * 2822 * vm_page's spinlock must be held on entry and will remain held on return. 2823 * This routine may not block. The caller does not have to hold the page 2824 * busied but should have some sort of interlock on its validity. 2825 */ 2826 static void 2827 _vm_page_deactivate_locked(vm_page_t m, int athead) 2828 { 2829 u_short oqueue; 2830 2831 /* 2832 * Ignore if already inactive. 2833 */ 2834 if (m->queue - m->pc == PQ_INACTIVE || (m->flags & PG_FICTITIOUS)) 2835 return; 2836 _vm_page_queue_spin_lock(m); 2837 oqueue = _vm_page_rem_queue_spinlocked(m); 2838 2839 if ((m->flags & PG_UNMANAGED) == 0) { 2840 if (oqueue == PQ_CACHE) 2841 mycpu->gd_cnt.v_reactivated++; 2842 vm_page_flag_clear(m, PG_WINATCFLS); 2843 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2844 if (athead == 0) { 2845 atomic_add_long( 2846 &vm_page_queues[PQ_INACTIVE + m->pc].adds, 1); 2847 } 2848 } 2849 /* NOTE: PQ_NONE if condition not taken */ 2850 _vm_page_queue_spin_unlock(m); 2851 /* leaves vm_page spinlocked */ 2852 } 2853 2854 /* 2855 * Attempt to deactivate a page. 2856 * 2857 * No requirements. 2858 */ 2859 void 2860 vm_page_deactivate(vm_page_t m) 2861 { 2862 vm_page_spin_lock(m); 2863 _vm_page_deactivate_locked(m, 0); 2864 vm_page_spin_unlock(m); 2865 } 2866 2867 void 2868 vm_page_deactivate_locked(vm_page_t m) 2869 { 2870 _vm_page_deactivate_locked(m, 0); 2871 } 2872 2873 /* 2874 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it. 2875 * 2876 * This function returns non-zero if it successfully moved the page to 2877 * PQ_CACHE. 2878 * 2879 * This function unconditionally unbusies the page on return. 2880 */ 2881 int 2882 vm_page_try_to_cache(vm_page_t m) 2883 { 2884 /* 2885 * Shortcut if we obviously cannot move the page, or if the 2886 * page is already on the cache queue, or it is ficitious. 2887 */ 2888 if (m->dirty || m->hold_count || m->wire_count || 2889 m->queue - m->pc == PQ_CACHE || 2890 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT | PG_FICTITIOUS))) { 2891 vm_page_wakeup(m); 2892 return(0); 2893 } 2894 2895 /* 2896 * Page busied by us and no longer spinlocked. Dirty pages cannot 2897 * be moved to the cache. 2898 */ 2899 vm_page_test_dirty(m); 2900 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2901 vm_page_wakeup(m); 2902 return(0); 2903 } 2904 vm_page_cache(m); 2905 return(1); 2906 } 2907 2908 /* 2909 * Attempt to free the page. If we cannot free it, we do nothing. 2910 * 1 is returned on success, 0 on failure. 2911 * 2912 * Caller provides an unlocked/non-busied page. 2913 * No requirements. 2914 */ 2915 int 2916 vm_page_try_to_free(vm_page_t m) 2917 { 2918 if (vm_page_busy_try(m, TRUE)) 2919 return(0); 2920 2921 /* 2922 * The page can be in any state, including already being on the free 2923 * queue. Check to see if it really can be freed. 2924 */ 2925 if (m->dirty || /* can't free if it is dirty */ 2926 m->hold_count || /* or held (XXX may be wrong) */ 2927 m->wire_count || /* or wired */ 2928 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2929 PG_NEED_COMMIT | /* or needs a commit */ 2930 PG_FICTITIOUS)) || /* or is fictitious */ 2931 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2932 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2933 vm_page_wakeup(m); 2934 return(0); 2935 } 2936 2937 /* 2938 * We can probably free the page. 2939 * 2940 * Page busied by us and no longer spinlocked. Dirty pages will 2941 * not be freed by this function. We have to re-test the 2942 * dirty bit after cleaning out the pmaps. 2943 */ 2944 vm_page_test_dirty(m); 2945 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2946 vm_page_wakeup(m); 2947 return(0); 2948 } 2949 vm_page_protect(m, VM_PROT_NONE); 2950 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2951 vm_page_wakeup(m); 2952 return(0); 2953 } 2954 vm_page_free(m); 2955 return(1); 2956 } 2957 2958 /* 2959 * vm_page_cache 2960 * 2961 * Put the specified page onto the page cache queue (if appropriate). 2962 * 2963 * The page must be busy, and this routine will release the busy and 2964 * possibly even free the page. 2965 */ 2966 void 2967 vm_page_cache(vm_page_t m) 2968 { 2969 /* 2970 * Not suitable for the cache 2971 */ 2972 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT | PG_FICTITIOUS)) || 2973 (m->busy_count & PBUSY_MASK) || 2974 m->wire_count || m->hold_count) { 2975 vm_page_wakeup(m); 2976 return; 2977 } 2978 2979 /* 2980 * Already in the cache (and thus not mapped) 2981 */ 2982 if ((m->queue - m->pc) == PQ_CACHE) { 2983 KKASSERT((m->flags & PG_MAPPED) == 0); 2984 vm_page_wakeup(m); 2985 return; 2986 } 2987 2988 /* 2989 * Caller is required to test m->dirty, but note that the act of 2990 * removing the page from its maps can cause it to become dirty 2991 * on an SMP system due to another cpu running in usermode. 2992 */ 2993 if (m->dirty) { 2994 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2995 (long)m->pindex); 2996 } 2997 2998 /* 2999 * Remove all pmaps and indicate that the page is not 3000 * writeable or mapped. Our vm_page_protect() call may 3001 * have blocked (especially w/ VM_PROT_NONE), so recheck 3002 * everything. 3003 */ 3004 vm_page_protect(m, VM_PROT_NONE); 3005 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 3006 (m->busy_count & PBUSY_MASK) || 3007 m->wire_count || m->hold_count) { 3008 vm_page_wakeup(m); 3009 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 3010 vm_page_deactivate(m); 3011 vm_page_wakeup(m); 3012 } else { 3013 _vm_page_and_queue_spin_lock(m); 3014 _vm_page_rem_queue_spinlocked(m); 3015 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 3016 _vm_page_and_queue_spin_unlock(m); 3017 vm_page_wakeup(m); 3018 vm_page_free_wakeup(); 3019 } 3020 } 3021 3022 /* 3023 * vm_page_dontneed() 3024 * 3025 * Cache, deactivate, or do nothing as appropriate. This routine 3026 * is typically used by madvise() MADV_DONTNEED. 3027 * 3028 * Generally speaking we want to move the page into the cache so 3029 * it gets reused quickly. However, this can result in a silly syndrome 3030 * due to the page recycling too quickly. Small objects will not be 3031 * fully cached. On the otherhand, if we move the page to the inactive 3032 * queue we wind up with a problem whereby very large objects 3033 * unnecessarily blow away our inactive and cache queues. 3034 * 3035 * The solution is to move the pages based on a fixed weighting. We 3036 * either leave them alone, deactivate them, or move them to the cache, 3037 * where moving them to the cache has the highest weighting. 3038 * By forcing some pages into other queues we eventually force the 3039 * system to balance the queues, potentially recovering other unrelated 3040 * space from active. The idea is to not force this to happen too 3041 * often. 3042 * 3043 * The page must be busied. 3044 */ 3045 void 3046 vm_page_dontneed(vm_page_t m) 3047 { 3048 static int dnweight; 3049 int dnw; 3050 int head; 3051 3052 dnw = ++dnweight; 3053 3054 /* 3055 * occassionally leave the page alone 3056 */ 3057 if ((dnw & 0x01F0) == 0 || 3058 m->queue - m->pc == PQ_INACTIVE || 3059 m->queue - m->pc == PQ_CACHE 3060 ) { 3061 if (m->act_count >= ACT_INIT) 3062 --m->act_count; 3063 return; 3064 } 3065 3066 /* 3067 * If vm_page_dontneed() is inactivating a page, it must clear 3068 * the referenced flag; otherwise the pagedaemon will see references 3069 * on the page in the inactive queue and reactivate it. Until the 3070 * page can move to the cache queue, madvise's job is not done. 3071 */ 3072 vm_page_flag_clear(m, PG_REFERENCED); 3073 pmap_clear_reference(m); 3074 3075 if (m->dirty == 0) 3076 vm_page_test_dirty(m); 3077 3078 if (m->dirty || (dnw & 0x0070) == 0) { 3079 /* 3080 * Deactivate the page 3 times out of 32. 3081 */ 3082 head = 0; 3083 } else { 3084 /* 3085 * Cache the page 28 times out of every 32. Note that 3086 * the page is deactivated instead of cached, but placed 3087 * at the head of the queue instead of the tail. 3088 */ 3089 head = 1; 3090 } 3091 vm_page_spin_lock(m); 3092 _vm_page_deactivate_locked(m, head); 3093 vm_page_spin_unlock(m); 3094 } 3095 3096 /* 3097 * These routines manipulate the 'soft busy' count for a page. A soft busy 3098 * is almost like a hard BUSY except that it allows certain compatible 3099 * operations to occur on the page while it is busy. For example, a page 3100 * undergoing a write can still be mapped read-only. 3101 * 3102 * We also use soft-busy to quickly pmap_enter shared read-only pages 3103 * without having to hold the page locked. 3104 * 3105 * The soft-busy count can be > 1 in situations where multiple threads 3106 * are pmap_enter()ing the same page simultaneously, or when two buffer 3107 * cache buffers overlap the same page. 3108 * 3109 * The caller must hold the page BUSY when making these two calls. 3110 */ 3111 void 3112 vm_page_io_start(vm_page_t m) 3113 { 3114 uint32_t ocount; 3115 3116 ocount = atomic_fetchadd_int(&m->busy_count, 1); 3117 KKASSERT(ocount & PBUSY_LOCKED); 3118 } 3119 3120 void 3121 vm_page_io_finish(vm_page_t m) 3122 { 3123 uint32_t ocount; 3124 3125 ocount = atomic_fetchadd_int(&m->busy_count, -1); 3126 KKASSERT(ocount & PBUSY_MASK); 3127 #if 0 3128 if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0) 3129 wakeup(m); 3130 #endif 3131 } 3132 3133 /* 3134 * Attempt to soft-busy a page. The page must not be PBUSY_LOCKED. 3135 * 3136 * We can't use fetchadd here because we might race a hard-busy and the 3137 * page freeing code asserts on a non-zero soft-busy count (even if only 3138 * temporary). 3139 * 3140 * Returns 0 on success, non-zero on failure. 3141 */ 3142 int 3143 vm_page_sbusy_try(vm_page_t m) 3144 { 3145 uint32_t ocount; 3146 3147 for (;;) { 3148 ocount = m->busy_count; 3149 cpu_ccfence(); 3150 if (ocount & PBUSY_LOCKED) 3151 return 1; 3152 if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1)) 3153 break; 3154 } 3155 return 0; 3156 #if 0 3157 if (m->busy_count & PBUSY_LOCKED) 3158 return 1; 3159 ocount = atomic_fetchadd_int(&m->busy_count, 1); 3160 if (ocount & PBUSY_LOCKED) { 3161 vm_page_sbusy_drop(m); 3162 return 1; 3163 } 3164 return 0; 3165 #endif 3166 } 3167 3168 /* 3169 * Indicate that a clean VM page requires a filesystem commit and cannot 3170 * be reused. Used by tmpfs. 3171 */ 3172 void 3173 vm_page_need_commit(vm_page_t m) 3174 { 3175 vm_page_flag_set(m, PG_NEED_COMMIT); 3176 vm_object_set_writeable_dirty(m->object); 3177 } 3178 3179 void 3180 vm_page_clear_commit(vm_page_t m) 3181 { 3182 vm_page_flag_clear(m, PG_NEED_COMMIT); 3183 } 3184 3185 /* 3186 * Grab a page, blocking if it is busy and allocating a page if necessary. 3187 * A busy page is returned or NULL. The page may or may not be valid and 3188 * might not be on a queue (the caller is responsible for the disposition of 3189 * the page). 3190 * 3191 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 3192 * page will be zero'd and marked valid. 3193 * 3194 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 3195 * valid even if it already exists. 3196 * 3197 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 3198 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 3199 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 3200 * 3201 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 3202 * always returned if we had blocked. 3203 * 3204 * This routine may not be called from an interrupt. 3205 * 3206 * No other requirements. 3207 */ 3208 vm_page_t 3209 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3210 { 3211 vm_page_t m; 3212 int error; 3213 int shared = 1; 3214 3215 KKASSERT(allocflags & 3216 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 3217 vm_object_hold_shared(object); 3218 for (;;) { 3219 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 3220 if (error) { 3221 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 3222 if ((allocflags & VM_ALLOC_RETRY) == 0) { 3223 m = NULL; 3224 break; 3225 } 3226 /* retry */ 3227 } else if (m == NULL) { 3228 if (shared) { 3229 vm_object_upgrade(object); 3230 shared = 0; 3231 } 3232 if (allocflags & VM_ALLOC_RETRY) 3233 allocflags |= VM_ALLOC_NULL_OK; 3234 m = vm_page_alloc(object, pindex, 3235 allocflags & ~VM_ALLOC_RETRY); 3236 if (m) 3237 break; 3238 vm_wait(0); 3239 if ((allocflags & VM_ALLOC_RETRY) == 0) 3240 goto failed; 3241 } else { 3242 /* m found */ 3243 break; 3244 } 3245 } 3246 3247 /* 3248 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 3249 * 3250 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 3251 * valid even if already valid. 3252 * 3253 * NOTE! We have removed all of the PG_ZERO optimizations and also 3254 * removed the idle zeroing code. These optimizations actually 3255 * slow things down on modern cpus because the zerod area is 3256 * likely uncached, placing a memory-access burden on the 3257 * accesors taking the fault. 3258 * 3259 * By always zeroing the page in-line with the fault, no 3260 * dynamic ram reads are needed and the caches are hot, ready 3261 * for userland to access the memory. 3262 */ 3263 if (m->valid == 0) { 3264 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 3265 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 3266 m->valid = VM_PAGE_BITS_ALL; 3267 } 3268 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 3269 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 3270 m->valid = VM_PAGE_BITS_ALL; 3271 } 3272 failed: 3273 vm_object_drop(object); 3274 return(m); 3275 } 3276 3277 /* 3278 * Mapping function for valid bits or for dirty bits in 3279 * a page. May not block. 3280 * 3281 * Inputs are required to range within a page. 3282 * 3283 * No requirements. 3284 * Non blocking. 3285 */ 3286 int 3287 vm_page_bits(int base, int size) 3288 { 3289 int first_bit; 3290 int last_bit; 3291 3292 KASSERT( 3293 base + size <= PAGE_SIZE, 3294 ("vm_page_bits: illegal base/size %d/%d", base, size) 3295 ); 3296 3297 if (size == 0) /* handle degenerate case */ 3298 return(0); 3299 3300 first_bit = base >> DEV_BSHIFT; 3301 last_bit = (base + size - 1) >> DEV_BSHIFT; 3302 3303 return ((2 << last_bit) - (1 << first_bit)); 3304 } 3305 3306 /* 3307 * Sets portions of a page valid and clean. The arguments are expected 3308 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3309 * of any partial chunks touched by the range. The invalid portion of 3310 * such chunks will be zero'd. 3311 * 3312 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 3313 * align base to DEV_BSIZE so as not to mark clean a partially 3314 * truncated device block. Otherwise the dirty page status might be 3315 * lost. 3316 * 3317 * This routine may not block. 3318 * 3319 * (base + size) must be less then or equal to PAGE_SIZE. 3320 */ 3321 static void 3322 _vm_page_zero_valid(vm_page_t m, int base, int size) 3323 { 3324 int frag; 3325 int endoff; 3326 3327 if (size == 0) /* handle degenerate case */ 3328 return; 3329 3330 /* 3331 * If the base is not DEV_BSIZE aligned and the valid 3332 * bit is clear, we have to zero out a portion of the 3333 * first block. 3334 */ 3335 3336 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 3337 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 3338 ) { 3339 pmap_zero_page_area( 3340 VM_PAGE_TO_PHYS(m), 3341 frag, 3342 base - frag 3343 ); 3344 } 3345 3346 /* 3347 * If the ending offset is not DEV_BSIZE aligned and the 3348 * valid bit is clear, we have to zero out a portion of 3349 * the last block. 3350 */ 3351 3352 endoff = base + size; 3353 3354 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 3355 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 3356 ) { 3357 pmap_zero_page_area( 3358 VM_PAGE_TO_PHYS(m), 3359 endoff, 3360 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 3361 ); 3362 } 3363 } 3364 3365 /* 3366 * Set valid, clear dirty bits. If validating the entire 3367 * page we can safely clear the pmap modify bit. We also 3368 * use this opportunity to clear the PG_NOSYNC flag. If a process 3369 * takes a write fault on a MAP_NOSYNC memory area the flag will 3370 * be set again. 3371 * 3372 * We set valid bits inclusive of any overlap, but we can only 3373 * clear dirty bits for DEV_BSIZE chunks that are fully within 3374 * the range. 3375 * 3376 * Page must be busied? 3377 * No other requirements. 3378 */ 3379 void 3380 vm_page_set_valid(vm_page_t m, int base, int size) 3381 { 3382 _vm_page_zero_valid(m, base, size); 3383 m->valid |= vm_page_bits(base, size); 3384 } 3385 3386 3387 /* 3388 * Set valid bits and clear dirty bits. 3389 * 3390 * Page must be busied by caller. 3391 * 3392 * NOTE: This function does not clear the pmap modified bit. 3393 * Also note that e.g. NFS may use a byte-granular base 3394 * and size. 3395 * 3396 * No other requirements. 3397 */ 3398 void 3399 vm_page_set_validclean(vm_page_t m, int base, int size) 3400 { 3401 int pagebits; 3402 3403 _vm_page_zero_valid(m, base, size); 3404 pagebits = vm_page_bits(base, size); 3405 m->valid |= pagebits; 3406 m->dirty &= ~pagebits; 3407 if (base == 0 && size == PAGE_SIZE) { 3408 /*pmap_clear_modify(m);*/ 3409 vm_page_flag_clear(m, PG_NOSYNC); 3410 } 3411 } 3412 3413 /* 3414 * Set valid & dirty. Used by buwrite() 3415 * 3416 * Page must be busied by caller. 3417 */ 3418 void 3419 vm_page_set_validdirty(vm_page_t m, int base, int size) 3420 { 3421 int pagebits; 3422 3423 pagebits = vm_page_bits(base, size); 3424 m->valid |= pagebits; 3425 m->dirty |= pagebits; 3426 if (m->object) 3427 vm_object_set_writeable_dirty(m->object); 3428 } 3429 3430 /* 3431 * Clear dirty bits. 3432 * 3433 * NOTE: This function does not clear the pmap modified bit. 3434 * Also note that e.g. NFS may use a byte-granular base 3435 * and size. 3436 * 3437 * Page must be busied? 3438 * No other requirements. 3439 */ 3440 void 3441 vm_page_clear_dirty(vm_page_t m, int base, int size) 3442 { 3443 m->dirty &= ~vm_page_bits(base, size); 3444 if (base == 0 && size == PAGE_SIZE) { 3445 /*pmap_clear_modify(m);*/ 3446 vm_page_flag_clear(m, PG_NOSYNC); 3447 } 3448 } 3449 3450 /* 3451 * Make the page all-dirty. 3452 * 3453 * Also make sure the related object and vnode reflect the fact that the 3454 * object may now contain a dirty page. 3455 * 3456 * Page must be busied? 3457 * No other requirements. 3458 */ 3459 void 3460 vm_page_dirty(vm_page_t m) 3461 { 3462 #ifdef INVARIANTS 3463 int pqtype = m->queue - m->pc; 3464 #endif 3465 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 3466 ("vm_page_dirty: page in free/cache queue!")); 3467 if (m->dirty != VM_PAGE_BITS_ALL) { 3468 m->dirty = VM_PAGE_BITS_ALL; 3469 if (m->object) 3470 vm_object_set_writeable_dirty(m->object); 3471 } 3472 } 3473 3474 /* 3475 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3476 * valid and dirty bits for the effected areas are cleared. 3477 * 3478 * Page must be busied? 3479 * Does not block. 3480 * No other requirements. 3481 */ 3482 void 3483 vm_page_set_invalid(vm_page_t m, int base, int size) 3484 { 3485 int bits; 3486 3487 bits = vm_page_bits(base, size); 3488 m->valid &= ~bits; 3489 m->dirty &= ~bits; 3490 atomic_add_int(&m->object->generation, 1); 3491 } 3492 3493 /* 3494 * The kernel assumes that the invalid portions of a page contain 3495 * garbage, but such pages can be mapped into memory by user code. 3496 * When this occurs, we must zero out the non-valid portions of the 3497 * page so user code sees what it expects. 3498 * 3499 * Pages are most often semi-valid when the end of a file is mapped 3500 * into memory and the file's size is not page aligned. 3501 * 3502 * Page must be busied? 3503 * No other requirements. 3504 */ 3505 void 3506 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3507 { 3508 int b; 3509 int i; 3510 3511 /* 3512 * Scan the valid bits looking for invalid sections that 3513 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3514 * valid bit may be set ) have already been zerod by 3515 * vm_page_set_validclean(). 3516 */ 3517 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3518 if (i == (PAGE_SIZE / DEV_BSIZE) || 3519 (m->valid & (1 << i)) 3520 ) { 3521 if (i > b) { 3522 pmap_zero_page_area( 3523 VM_PAGE_TO_PHYS(m), 3524 b << DEV_BSHIFT, 3525 (i - b) << DEV_BSHIFT 3526 ); 3527 } 3528 b = i + 1; 3529 } 3530 } 3531 3532 /* 3533 * setvalid is TRUE when we can safely set the zero'd areas 3534 * as being valid. We can do this if there are no cache consistency 3535 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3536 */ 3537 if (setvalid) 3538 m->valid = VM_PAGE_BITS_ALL; 3539 } 3540 3541 /* 3542 * Is a (partial) page valid? Note that the case where size == 0 3543 * will return FALSE in the degenerate case where the page is entirely 3544 * invalid, and TRUE otherwise. 3545 * 3546 * Does not block. 3547 * No other requirements. 3548 */ 3549 int 3550 vm_page_is_valid(vm_page_t m, int base, int size) 3551 { 3552 int bits = vm_page_bits(base, size); 3553 3554 if (m->valid && ((m->valid & bits) == bits)) 3555 return 1; 3556 else 3557 return 0; 3558 } 3559 3560 /* 3561 * update dirty bits from pmap/mmu. May not block. 3562 * 3563 * Caller must hold the page busy 3564 */ 3565 void 3566 vm_page_test_dirty(vm_page_t m) 3567 { 3568 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 3569 vm_page_dirty(m); 3570 } 3571 } 3572 3573 #include "opt_ddb.h" 3574 #ifdef DDB 3575 #include <ddb/ddb.h> 3576 3577 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3578 { 3579 db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count); 3580 db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count); 3581 db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count); 3582 db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count); 3583 db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count); 3584 db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved); 3585 db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min); 3586 db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target); 3587 db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min); 3588 db_printf("vmstats.v_inactive_target: %ld\n", 3589 vmstats.v_inactive_target); 3590 } 3591 3592 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3593 { 3594 int i; 3595 db_printf("PQ_FREE:"); 3596 for (i = 0; i < PQ_L2_SIZE; i++) { 3597 db_printf(" %ld", vm_page_queues[PQ_FREE + i].lcnt); 3598 } 3599 db_printf("\n"); 3600 3601 db_printf("PQ_CACHE:"); 3602 for(i = 0; i < PQ_L2_SIZE; i++) { 3603 db_printf(" %ld", vm_page_queues[PQ_CACHE + i].lcnt); 3604 } 3605 db_printf("\n"); 3606 3607 db_printf("PQ_ACTIVE:"); 3608 for(i = 0; i < PQ_L2_SIZE; i++) { 3609 db_printf(" %ld", vm_page_queues[PQ_ACTIVE + i].lcnt); 3610 } 3611 db_printf("\n"); 3612 3613 db_printf("PQ_INACTIVE:"); 3614 for(i = 0; i < PQ_L2_SIZE; i++) { 3615 db_printf(" %ld", vm_page_queues[PQ_INACTIVE + i].lcnt); 3616 } 3617 db_printf("\n"); 3618 } 3619 #endif /* DDB */ 3620