1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 #include <machine/specialreg.h> 95 96 #include <vm/vm_page2.h> 97 #include <sys/spinlock2.h> 98 99 #define VMACTION_HSIZE 256 100 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 101 102 static void vm_page_queue_init(void); 103 static void vm_page_free_wakeup(void); 104 static vm_page_t vm_page_select_cache(u_short pg_color); 105 static vm_page_t _vm_page_list_find2(int basequeue, int index); 106 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 107 108 /* 109 * Array of tailq lists 110 */ 111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 112 113 LIST_HEAD(vm_page_action_list, vm_page_action); 114 struct vm_page_action_list action_list[VMACTION_HSIZE]; 115 static volatile int vm_pages_waiting; 116 117 static struct alist vm_contig_alist; 118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 120 121 static u_long vm_dma_reserved = 0; 122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 124 "Memory reserved for DMA"); 125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 126 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 127 128 static int vm_contig_verbose = 0; 129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 130 131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 132 vm_pindex_t, pindex); 133 134 static void 135 vm_page_queue_init(void) 136 { 137 int i; 138 139 for (i = 0; i < PQ_L2_SIZE; i++) 140 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 141 for (i = 0; i < PQ_L2_SIZE; i++) 142 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 143 for (i = 0; i < PQ_L2_SIZE; i++) 144 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 145 for (i = 0; i < PQ_L2_SIZE; i++) 146 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 147 for (i = 0; i < PQ_L2_SIZE; i++) 148 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 149 /* PQ_NONE has no queue */ 150 151 for (i = 0; i < PQ_COUNT; i++) { 152 TAILQ_INIT(&vm_page_queues[i].pl); 153 spin_init(&vm_page_queues[i].spin); 154 } 155 156 for (i = 0; i < VMACTION_HSIZE; i++) 157 LIST_INIT(&action_list[i]); 158 } 159 160 /* 161 * note: place in initialized data section? Is this necessary? 162 */ 163 long first_page = 0; 164 int vm_page_array_size = 0; 165 int vm_page_zero_count = 0; 166 vm_page_t vm_page_array = NULL; 167 vm_paddr_t vm_low_phys_reserved; 168 169 /* 170 * (low level boot) 171 * 172 * Sets the page size, perhaps based upon the memory size. 173 * Must be called before any use of page-size dependent functions. 174 */ 175 void 176 vm_set_page_size(void) 177 { 178 if (vmstats.v_page_size == 0) 179 vmstats.v_page_size = PAGE_SIZE; 180 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 181 panic("vm_set_page_size: page size not a power of two"); 182 } 183 184 /* 185 * (low level boot) 186 * 187 * Add a new page to the freelist for use by the system. New pages 188 * are added to both the head and tail of the associated free page 189 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 190 * requests pull 'recent' adds (higher physical addresses) first. 191 * 192 * Beware that the page zeroing daemon will also be running soon after 193 * boot, moving pages from the head to the tail of the PQ_FREE queues. 194 * 195 * Must be called in a critical section. 196 */ 197 static void 198 vm_add_new_page(vm_paddr_t pa) 199 { 200 struct vpgqueues *vpq; 201 vm_page_t m; 202 203 m = PHYS_TO_VM_PAGE(pa); 204 m->phys_addr = pa; 205 m->flags = 0; 206 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 207 m->pat_mode = PAT_WRITE_BACK; 208 /* 209 * Twist for cpu localization in addition to page coloring, so 210 * different cpus selecting by m->queue get different page colors. 211 */ 212 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 213 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 214 /* 215 * Reserve a certain number of contiguous low memory pages for 216 * contigmalloc() to use. 217 */ 218 if (pa < vm_low_phys_reserved) { 219 atomic_add_int(&vmstats.v_page_count, 1); 220 atomic_add_int(&vmstats.v_dma_pages, 1); 221 m->queue = PQ_NONE; 222 m->wire_count = 1; 223 atomic_add_int(&vmstats.v_wire_count, 1); 224 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 225 return; 226 } 227 228 /* 229 * General page 230 */ 231 m->queue = m->pc + PQ_FREE; 232 KKASSERT(m->dirty == 0); 233 234 atomic_add_int(&vmstats.v_page_count, 1); 235 atomic_add_int(&vmstats.v_free_count, 1); 236 vpq = &vm_page_queues[m->queue]; 237 if ((vpq->flipflop & 15) == 0) { 238 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 239 m->flags |= PG_ZERO; 240 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 241 atomic_add_int(&vm_page_zero_count, 1); 242 } else { 243 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 244 } 245 ++vpq->flipflop; 246 ++vpq->lcnt; 247 } 248 249 /* 250 * (low level boot) 251 * 252 * Initializes the resident memory module. 253 * 254 * Preallocates memory for critical VM structures and arrays prior to 255 * kernel_map becoming available. 256 * 257 * Memory is allocated from (virtual2_start, virtual2_end) if available, 258 * otherwise memory is allocated from (virtual_start, virtual_end). 259 * 260 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 261 * large enough to hold vm_page_array & other structures for machines with 262 * large amounts of ram, so we want to use virtual2* when available. 263 */ 264 void 265 vm_page_startup(void) 266 { 267 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 268 vm_offset_t mapped; 269 vm_size_t npages; 270 vm_paddr_t page_range; 271 vm_paddr_t new_end; 272 int i; 273 vm_paddr_t pa; 274 int nblocks; 275 vm_paddr_t last_pa; 276 vm_paddr_t end; 277 vm_paddr_t biggestone, biggestsize; 278 vm_paddr_t total; 279 280 total = 0; 281 biggestsize = 0; 282 biggestone = 0; 283 nblocks = 0; 284 vaddr = round_page(vaddr); 285 286 for (i = 0; phys_avail[i + 1]; i += 2) { 287 phys_avail[i] = round_page64(phys_avail[i]); 288 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 289 } 290 291 for (i = 0; phys_avail[i + 1]; i += 2) { 292 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 293 294 if (size > biggestsize) { 295 biggestone = i; 296 biggestsize = size; 297 } 298 ++nblocks; 299 total += size; 300 } 301 302 end = phys_avail[biggestone+1]; 303 end = trunc_page(end); 304 305 /* 306 * Initialize the queue headers for the free queue, the active queue 307 * and the inactive queue. 308 */ 309 vm_page_queue_init(); 310 311 #if !defined(_KERNEL_VIRTUAL) 312 /* 313 * VKERNELs don't support minidumps and as such don't need 314 * vm_page_dump 315 * 316 * Allocate a bitmap to indicate that a random physical page 317 * needs to be included in a minidump. 318 * 319 * The amd64 port needs this to indicate which direct map pages 320 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 321 * 322 * However, i386 still needs this workspace internally within the 323 * minidump code. In theory, they are not needed on i386, but are 324 * included should the sf_buf code decide to use them. 325 */ 326 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 327 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 328 end -= vm_page_dump_size; 329 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 330 VM_PROT_READ | VM_PROT_WRITE); 331 bzero((void *)vm_page_dump, vm_page_dump_size); 332 #endif 333 /* 334 * Compute the number of pages of memory that will be available for 335 * use (taking into account the overhead of a page structure per 336 * page). 337 */ 338 first_page = phys_avail[0] / PAGE_SIZE; 339 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 340 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 341 342 #ifndef _KERNEL_VIRTUAL 343 /* 344 * (only applies to real kernels) 345 * 346 * Initialize the contiguous reserve map. We initially reserve up 347 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 348 * is lower. 349 * 350 * Once device initialization is complete we return most of the 351 * reserved memory back to the normal page queues but leave some 352 * in reserve for things like usb attachments. 353 */ 354 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 355 if (vm_low_phys_reserved > total / 4) 356 vm_low_phys_reserved = total / 4; 357 if (vm_dma_reserved == 0) { 358 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 359 if (vm_dma_reserved > total / 16) 360 vm_dma_reserved = total / 16; 361 } 362 #endif 363 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 364 ALIST_RECORDS_65536); 365 366 /* 367 * Initialize the mem entry structures now, and put them in the free 368 * queue. 369 */ 370 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 371 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 372 vm_page_array = (vm_page_t)mapped; 373 374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 375 /* 376 * since pmap_map on amd64 returns stuff out of a direct-map region, 377 * we have to manually add these pages to the minidump tracking so 378 * that they can be dumped, including the vm_page_array. 379 */ 380 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 381 dump_add_page(pa); 382 #endif 383 384 /* 385 * Clear all of the page structures 386 */ 387 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 388 vm_page_array_size = page_range; 389 390 /* 391 * Construct the free queue(s) in ascending order (by physical 392 * address) so that the first 16MB of physical memory is allocated 393 * last rather than first. On large-memory machines, this avoids 394 * the exhaustion of low physical memory before isa_dmainit has run. 395 */ 396 vmstats.v_page_count = 0; 397 vmstats.v_free_count = 0; 398 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 399 pa = phys_avail[i]; 400 if (i == biggestone) 401 last_pa = new_end; 402 else 403 last_pa = phys_avail[i + 1]; 404 while (pa < last_pa && npages-- > 0) { 405 vm_add_new_page(pa); 406 pa += PAGE_SIZE; 407 } 408 } 409 if (virtual2_start) 410 virtual2_start = vaddr; 411 else 412 virtual_start = vaddr; 413 } 414 415 /* 416 * We tended to reserve a ton of memory for contigmalloc(). Now that most 417 * drivers have initialized we want to return most the remaining free 418 * reserve back to the VM page queues so they can be used for normal 419 * allocations. 420 * 421 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 422 */ 423 static void 424 vm_page_startup_finish(void *dummy __unused) 425 { 426 alist_blk_t blk; 427 alist_blk_t rblk; 428 alist_blk_t count; 429 alist_blk_t xcount; 430 alist_blk_t bfree; 431 vm_page_t m; 432 433 spin_lock(&vm_contig_spin); 434 for (;;) { 435 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 436 if (bfree <= vm_dma_reserved / PAGE_SIZE) 437 break; 438 if (count == 0) 439 break; 440 441 /* 442 * Figure out how much of the initial reserve we have to 443 * free in order to reach our target. 444 */ 445 bfree -= vm_dma_reserved / PAGE_SIZE; 446 if (count > bfree) { 447 blk += count - bfree; 448 count = bfree; 449 } 450 451 /* 452 * Calculate the nearest power of 2 <= count. 453 */ 454 for (xcount = 1; xcount <= count; xcount <<= 1) 455 ; 456 xcount >>= 1; 457 blk += count - xcount; 458 count = xcount; 459 460 /* 461 * Allocate the pages from the alist, then free them to 462 * the normal VM page queues. 463 * 464 * Pages allocated from the alist are wired. We have to 465 * busy, unwire, and free them. We must also adjust 466 * vm_low_phys_reserved before freeing any pages to prevent 467 * confusion. 468 */ 469 rblk = alist_alloc(&vm_contig_alist, blk, count); 470 if (rblk != blk) { 471 kprintf("vm_page_startup_finish: Unable to return " 472 "dma space @0x%08x/%d -> 0x%08x\n", 473 blk, count, rblk); 474 break; 475 } 476 atomic_add_int(&vmstats.v_dma_pages, -count); 477 spin_unlock(&vm_contig_spin); 478 479 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 480 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 481 while (count) { 482 vm_page_busy_wait(m, FALSE, "cpgfr"); 483 vm_page_unwire(m, 0); 484 vm_page_free(m); 485 --count; 486 ++m; 487 } 488 spin_lock(&vm_contig_spin); 489 } 490 spin_unlock(&vm_contig_spin); 491 492 /* 493 * Print out how much DMA space drivers have already allocated and 494 * how much is left over. 495 */ 496 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 497 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 498 (PAGE_SIZE / 1024), 499 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 500 } 501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 502 vm_page_startup_finish, NULL) 503 504 505 /* 506 * Scan comparison function for Red-Black tree scans. An inclusive 507 * (start,end) is expected. Other fields are not used. 508 */ 509 int 510 rb_vm_page_scancmp(struct vm_page *p, void *data) 511 { 512 struct rb_vm_page_scan_info *info = data; 513 514 if (p->pindex < info->start_pindex) 515 return(-1); 516 if (p->pindex > info->end_pindex) 517 return(1); 518 return(0); 519 } 520 521 int 522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 523 { 524 if (p1->pindex < p2->pindex) 525 return(-1); 526 if (p1->pindex > p2->pindex) 527 return(1); 528 return(0); 529 } 530 531 void 532 vm_page_init(vm_page_t m) 533 { 534 /* do nothing for now. Called from pmap_page_init() */ 535 } 536 537 /* 538 * Each page queue has its own spin lock, which is fairly optimal for 539 * allocating and freeing pages at least. 540 * 541 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 542 * queue spinlock via this function. Also note that m->queue cannot change 543 * unless both the page and queue are locked. 544 */ 545 static __inline 546 void 547 _vm_page_queue_spin_lock(vm_page_t m) 548 { 549 u_short queue; 550 551 queue = m->queue; 552 if (queue != PQ_NONE) { 553 spin_lock(&vm_page_queues[queue].spin); 554 KKASSERT(queue == m->queue); 555 } 556 } 557 558 static __inline 559 void 560 _vm_page_queue_spin_unlock(vm_page_t m) 561 { 562 u_short queue; 563 564 queue = m->queue; 565 cpu_ccfence(); 566 if (queue != PQ_NONE) 567 spin_unlock(&vm_page_queues[queue].spin); 568 } 569 570 static __inline 571 void 572 _vm_page_queues_spin_lock(u_short queue) 573 { 574 cpu_ccfence(); 575 if (queue != PQ_NONE) 576 spin_lock(&vm_page_queues[queue].spin); 577 } 578 579 580 static __inline 581 void 582 _vm_page_queues_spin_unlock(u_short queue) 583 { 584 cpu_ccfence(); 585 if (queue != PQ_NONE) 586 spin_unlock(&vm_page_queues[queue].spin); 587 } 588 589 void 590 vm_page_queue_spin_lock(vm_page_t m) 591 { 592 _vm_page_queue_spin_lock(m); 593 } 594 595 void 596 vm_page_queues_spin_lock(u_short queue) 597 { 598 _vm_page_queues_spin_lock(queue); 599 } 600 601 void 602 vm_page_queue_spin_unlock(vm_page_t m) 603 { 604 _vm_page_queue_spin_unlock(m); 605 } 606 607 void 608 vm_page_queues_spin_unlock(u_short queue) 609 { 610 _vm_page_queues_spin_unlock(queue); 611 } 612 613 /* 614 * This locks the specified vm_page and its queue in the proper order 615 * (page first, then queue). The queue may change so the caller must 616 * recheck on return. 617 */ 618 static __inline 619 void 620 _vm_page_and_queue_spin_lock(vm_page_t m) 621 { 622 vm_page_spin_lock(m); 623 _vm_page_queue_spin_lock(m); 624 } 625 626 static __inline 627 void 628 _vm_page_and_queue_spin_unlock(vm_page_t m) 629 { 630 _vm_page_queues_spin_unlock(m->queue); 631 vm_page_spin_unlock(m); 632 } 633 634 void 635 vm_page_and_queue_spin_unlock(vm_page_t m) 636 { 637 _vm_page_and_queue_spin_unlock(m); 638 } 639 640 void 641 vm_page_and_queue_spin_lock(vm_page_t m) 642 { 643 _vm_page_and_queue_spin_lock(m); 644 } 645 646 /* 647 * Helper function removes vm_page from its current queue. 648 * Returns the base queue the page used to be on. 649 * 650 * The vm_page and the queue must be spinlocked. 651 * This function will unlock the queue but leave the page spinlocked. 652 */ 653 static __inline u_short 654 _vm_page_rem_queue_spinlocked(vm_page_t m) 655 { 656 struct vpgqueues *pq; 657 u_short queue; 658 659 queue = m->queue; 660 if (queue != PQ_NONE) { 661 pq = &vm_page_queues[queue]; 662 TAILQ_REMOVE(&pq->pl, m, pageq); 663 atomic_add_int(pq->cnt, -1); 664 pq->lcnt--; 665 m->queue = PQ_NONE; 666 vm_page_queues_spin_unlock(queue); 667 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 668 atomic_subtract_int(&vm_page_zero_count, 1); 669 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 670 return (queue - m->pc); 671 } 672 return queue; 673 } 674 675 /* 676 * Helper function places the vm_page on the specified queue. 677 * 678 * The vm_page must be spinlocked. 679 * This function will return with both the page and the queue locked. 680 */ 681 static __inline void 682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 683 { 684 struct vpgqueues *pq; 685 686 KKASSERT(m->queue == PQ_NONE); 687 688 if (queue != PQ_NONE) { 689 vm_page_queues_spin_lock(queue); 690 pq = &vm_page_queues[queue]; 691 ++pq->lcnt; 692 atomic_add_int(pq->cnt, 1); 693 m->queue = queue; 694 695 /* 696 * Put zero'd pages on the end ( where we look for zero'd pages 697 * first ) and non-zerod pages at the head. 698 */ 699 if (queue - m->pc == PQ_FREE) { 700 if (m->flags & PG_ZERO) { 701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 702 atomic_add_int(&vm_page_zero_count, 1); 703 } else { 704 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 705 } 706 } else if (athead) { 707 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 708 } else { 709 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 710 } 711 /* leave the queue spinlocked */ 712 } 713 } 714 715 /* 716 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 717 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 718 * did not. Only one sleep call will be made before returning. 719 * 720 * This function does NOT busy the page and on return the page is not 721 * guaranteed to be available. 722 */ 723 void 724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 725 { 726 u_int32_t flags; 727 728 for (;;) { 729 flags = m->flags; 730 cpu_ccfence(); 731 732 if ((flags & PG_BUSY) == 0 && 733 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 734 break; 735 } 736 tsleep_interlock(m, 0); 737 if (atomic_cmpset_int(&m->flags, flags, 738 flags | PG_WANTED | PG_REFERENCED)) { 739 tsleep(m, PINTERLOCKED, msg, 0); 740 break; 741 } 742 } 743 } 744 745 /* 746 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 747 * also wait for m->busy to become 0 before setting PG_BUSY. 748 */ 749 void 750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 751 int also_m_busy, const char *msg 752 VM_PAGE_DEBUG_ARGS) 753 { 754 u_int32_t flags; 755 756 for (;;) { 757 flags = m->flags; 758 cpu_ccfence(); 759 if (flags & PG_BUSY) { 760 tsleep_interlock(m, 0); 761 if (atomic_cmpset_int(&m->flags, flags, 762 flags | PG_WANTED | PG_REFERENCED)) { 763 tsleep(m, PINTERLOCKED, msg, 0); 764 } 765 } else if (also_m_busy && (flags & PG_SBUSY)) { 766 tsleep_interlock(m, 0); 767 if (atomic_cmpset_int(&m->flags, flags, 768 flags | PG_WANTED | PG_REFERENCED)) { 769 tsleep(m, PINTERLOCKED, msg, 0); 770 } 771 } else { 772 if (atomic_cmpset_int(&m->flags, flags, 773 flags | PG_BUSY)) { 774 #ifdef VM_PAGE_DEBUG 775 m->busy_func = func; 776 m->busy_line = lineno; 777 #endif 778 break; 779 } 780 } 781 } 782 } 783 784 /* 785 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 786 * is also 0. 787 * 788 * Returns non-zero on failure. 789 */ 790 int 791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 792 VM_PAGE_DEBUG_ARGS) 793 { 794 u_int32_t flags; 795 796 for (;;) { 797 flags = m->flags; 798 cpu_ccfence(); 799 if (flags & PG_BUSY) 800 return TRUE; 801 if (also_m_busy && (flags & PG_SBUSY)) 802 return TRUE; 803 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 804 #ifdef VM_PAGE_DEBUG 805 m->busy_func = func; 806 m->busy_line = lineno; 807 #endif 808 return FALSE; 809 } 810 } 811 } 812 813 /* 814 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 815 * that a wakeup() should be performed. 816 * 817 * The vm_page must be spinlocked and will remain spinlocked on return. 818 * The related queue must NOT be spinlocked (which could deadlock us). 819 * 820 * (inline version) 821 */ 822 static __inline 823 int 824 _vm_page_wakeup(vm_page_t m) 825 { 826 u_int32_t flags; 827 828 for (;;) { 829 flags = m->flags; 830 cpu_ccfence(); 831 if (atomic_cmpset_int(&m->flags, flags, 832 flags & ~(PG_BUSY | PG_WANTED))) { 833 break; 834 } 835 } 836 return(flags & PG_WANTED); 837 } 838 839 /* 840 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 841 * is typically the last call you make on a page before moving onto 842 * other things. 843 */ 844 void 845 vm_page_wakeup(vm_page_t m) 846 { 847 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 848 vm_page_spin_lock(m); 849 if (_vm_page_wakeup(m)) { 850 vm_page_spin_unlock(m); 851 wakeup(m); 852 } else { 853 vm_page_spin_unlock(m); 854 } 855 } 856 857 /* 858 * Holding a page keeps it from being reused. Other parts of the system 859 * can still disassociate the page from its current object and free it, or 860 * perform read or write I/O on it and/or otherwise manipulate the page, 861 * but if the page is held the VM system will leave the page and its data 862 * intact and not reuse the page for other purposes until the last hold 863 * reference is released. (see vm_page_wire() if you want to prevent the 864 * page from being disassociated from its object too). 865 * 866 * The caller must still validate the contents of the page and, if necessary, 867 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 868 * before manipulating the page. 869 * 870 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 871 */ 872 void 873 vm_page_hold(vm_page_t m) 874 { 875 vm_page_spin_lock(m); 876 atomic_add_int(&m->hold_count, 1); 877 if (m->queue - m->pc == PQ_FREE) { 878 _vm_page_queue_spin_lock(m); 879 _vm_page_rem_queue_spinlocked(m); 880 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 881 _vm_page_queue_spin_unlock(m); 882 } 883 vm_page_spin_unlock(m); 884 } 885 886 /* 887 * The opposite of vm_page_hold(). A page can be freed while being held, 888 * which places it on the PQ_HOLD queue. If we are able to busy the page 889 * after the hold count drops to zero we will move the page to the 890 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 891 */ 892 void 893 vm_page_unhold(vm_page_t m) 894 { 895 vm_page_spin_lock(m); 896 atomic_add_int(&m->hold_count, -1); 897 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 898 _vm_page_queue_spin_lock(m); 899 _vm_page_rem_queue_spinlocked(m); 900 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 901 _vm_page_queue_spin_unlock(m); 902 } 903 vm_page_spin_unlock(m); 904 } 905 906 /* 907 * vm_page_getfake: 908 * 909 * Create a fictitious page with the specified physical address and 910 * memory attribute. The memory attribute is the only the machine- 911 * dependent aspect of a fictitious page that must be initialized. 912 */ 913 914 void 915 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 916 { 917 918 if ((m->flags & PG_FICTITIOUS) != 0) { 919 /* 920 * The page's memattr might have changed since the 921 * previous initialization. Update the pmap to the 922 * new memattr. 923 */ 924 goto memattr; 925 } 926 m->phys_addr = paddr; 927 m->queue = PQ_NONE; 928 /* Fictitious pages don't use "segind". */ 929 /* Fictitious pages don't use "order" or "pool". */ 930 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY; 931 m->wire_count = 1; 932 pmap_page_init(m); 933 memattr: 934 pmap_page_set_memattr(m, memattr); 935 } 936 937 /* 938 * Inserts the given vm_page into the object and object list. 939 * 940 * The pagetables are not updated but will presumably fault the page 941 * in if necessary, or if a kernel page the caller will at some point 942 * enter the page into the kernel's pmap. We are not allowed to block 943 * here so we *can't* do this anyway. 944 * 945 * This routine may not block. 946 * This routine must be called with the vm_object held. 947 * This routine must be called with a critical section held. 948 * 949 * This routine returns TRUE if the page was inserted into the object 950 * successfully, and FALSE if the page already exists in the object. 951 */ 952 int 953 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 954 { 955 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 956 if (m->object != NULL) 957 panic("vm_page_insert: already inserted"); 958 959 object->generation++; 960 961 /* 962 * Record the object/offset pair in this page and add the 963 * pv_list_count of the page to the object. 964 * 965 * The vm_page spin lock is required for interactions with the pmap. 966 */ 967 vm_page_spin_lock(m); 968 m->object = object; 969 m->pindex = pindex; 970 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 971 m->object = NULL; 972 m->pindex = 0; 973 vm_page_spin_unlock(m); 974 return FALSE; 975 } 976 object->resident_page_count++; 977 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 978 vm_page_spin_unlock(m); 979 980 /* 981 * Since we are inserting a new and possibly dirty page, 982 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 983 */ 984 if ((m->valid & m->dirty) || 985 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 986 vm_object_set_writeable_dirty(object); 987 988 /* 989 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 990 */ 991 swap_pager_page_inserted(m); 992 return TRUE; 993 } 994 995 /* 996 * Removes the given vm_page_t from the (object,index) table 997 * 998 * The underlying pmap entry (if any) is NOT removed here. 999 * This routine may not block. 1000 * 1001 * The page must be BUSY and will remain BUSY on return. 1002 * No other requirements. 1003 * 1004 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 1005 * it busy. 1006 */ 1007 void 1008 vm_page_remove(vm_page_t m) 1009 { 1010 vm_object_t object; 1011 1012 if (m->object == NULL) { 1013 return; 1014 } 1015 1016 if ((m->flags & PG_BUSY) == 0) 1017 panic("vm_page_remove: page not busy"); 1018 1019 object = m->object; 1020 1021 vm_object_hold(object); 1022 1023 /* 1024 * Remove the page from the object and update the object. 1025 * 1026 * The vm_page spin lock is required for interactions with the pmap. 1027 */ 1028 vm_page_spin_lock(m); 1029 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 1030 object->resident_page_count--; 1031 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 1032 m->object = NULL; 1033 vm_page_spin_unlock(m); 1034 1035 object->generation++; 1036 1037 vm_object_drop(object); 1038 } 1039 1040 /* 1041 * Locate and return the page at (object, pindex), or NULL if the 1042 * page could not be found. 1043 * 1044 * The caller must hold the vm_object token. 1045 */ 1046 vm_page_t 1047 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1048 { 1049 vm_page_t m; 1050 1051 /* 1052 * Search the hash table for this object/offset pair 1053 */ 1054 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1055 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1056 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1057 return(m); 1058 } 1059 1060 vm_page_t 1061 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1062 vm_pindex_t pindex, 1063 int also_m_busy, const char *msg 1064 VM_PAGE_DEBUG_ARGS) 1065 { 1066 u_int32_t flags; 1067 vm_page_t m; 1068 1069 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1070 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1071 while (m) { 1072 KKASSERT(m->object == object && m->pindex == pindex); 1073 flags = m->flags; 1074 cpu_ccfence(); 1075 if (flags & PG_BUSY) { 1076 tsleep_interlock(m, 0); 1077 if (atomic_cmpset_int(&m->flags, flags, 1078 flags | PG_WANTED | PG_REFERENCED)) { 1079 tsleep(m, PINTERLOCKED, msg, 0); 1080 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1081 pindex); 1082 } 1083 } else if (also_m_busy && (flags & PG_SBUSY)) { 1084 tsleep_interlock(m, 0); 1085 if (atomic_cmpset_int(&m->flags, flags, 1086 flags | PG_WANTED | PG_REFERENCED)) { 1087 tsleep(m, PINTERLOCKED, msg, 0); 1088 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1089 pindex); 1090 } 1091 } else if (atomic_cmpset_int(&m->flags, flags, 1092 flags | PG_BUSY)) { 1093 #ifdef VM_PAGE_DEBUG 1094 m->busy_func = func; 1095 m->busy_line = lineno; 1096 #endif 1097 break; 1098 } 1099 } 1100 return m; 1101 } 1102 1103 /* 1104 * Attempt to lookup and busy a page. 1105 * 1106 * Returns NULL if the page could not be found 1107 * 1108 * Returns a vm_page and error == TRUE if the page exists but could not 1109 * be busied. 1110 * 1111 * Returns a vm_page and error == FALSE on success. 1112 */ 1113 vm_page_t 1114 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1115 vm_pindex_t pindex, 1116 int also_m_busy, int *errorp 1117 VM_PAGE_DEBUG_ARGS) 1118 { 1119 u_int32_t flags; 1120 vm_page_t m; 1121 1122 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1123 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1124 *errorp = FALSE; 1125 while (m) { 1126 KKASSERT(m->object == object && m->pindex == pindex); 1127 flags = m->flags; 1128 cpu_ccfence(); 1129 if (flags & PG_BUSY) { 1130 *errorp = TRUE; 1131 break; 1132 } 1133 if (also_m_busy && (flags & PG_SBUSY)) { 1134 *errorp = TRUE; 1135 break; 1136 } 1137 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1138 #ifdef VM_PAGE_DEBUG 1139 m->busy_func = func; 1140 m->busy_line = lineno; 1141 #endif 1142 break; 1143 } 1144 } 1145 return m; 1146 } 1147 1148 /* 1149 * Caller must hold the related vm_object 1150 */ 1151 vm_page_t 1152 vm_page_next(vm_page_t m) 1153 { 1154 vm_page_t next; 1155 1156 next = vm_page_rb_tree_RB_NEXT(m); 1157 if (next && next->pindex != m->pindex + 1) 1158 next = NULL; 1159 return (next); 1160 } 1161 1162 /* 1163 * vm_page_rename() 1164 * 1165 * Move the given vm_page from its current object to the specified 1166 * target object/offset. The page must be busy and will remain so 1167 * on return. 1168 * 1169 * new_object must be held. 1170 * This routine might block. XXX ? 1171 * 1172 * NOTE: Swap associated with the page must be invalidated by the move. We 1173 * have to do this for several reasons: (1) we aren't freeing the 1174 * page, (2) we are dirtying the page, (3) the VM system is probably 1175 * moving the page from object A to B, and will then later move 1176 * the backing store from A to B and we can't have a conflict. 1177 * 1178 * NOTE: We *always* dirty the page. It is necessary both for the 1179 * fact that we moved it, and because we may be invalidating 1180 * swap. If the page is on the cache, we have to deactivate it 1181 * or vm_page_dirty() will panic. Dirty pages are not allowed 1182 * on the cache. 1183 */ 1184 void 1185 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1186 { 1187 KKASSERT(m->flags & PG_BUSY); 1188 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1189 if (m->object) { 1190 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1191 vm_page_remove(m); 1192 } 1193 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1194 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1195 new_object, new_pindex); 1196 } 1197 if (m->queue - m->pc == PQ_CACHE) 1198 vm_page_deactivate(m); 1199 vm_page_dirty(m); 1200 } 1201 1202 /* 1203 * vm_page_unqueue() without any wakeup. This routine is used when a page 1204 * is being moved between queues or otherwise is to remain BUSYied by the 1205 * caller. 1206 * 1207 * This routine may not block. 1208 */ 1209 void 1210 vm_page_unqueue_nowakeup(vm_page_t m) 1211 { 1212 vm_page_and_queue_spin_lock(m); 1213 (void)_vm_page_rem_queue_spinlocked(m); 1214 vm_page_spin_unlock(m); 1215 } 1216 1217 /* 1218 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1219 * if necessary. 1220 * 1221 * This routine may not block. 1222 */ 1223 void 1224 vm_page_unqueue(vm_page_t m) 1225 { 1226 u_short queue; 1227 1228 vm_page_and_queue_spin_lock(m); 1229 queue = _vm_page_rem_queue_spinlocked(m); 1230 if (queue == PQ_FREE || queue == PQ_CACHE) { 1231 vm_page_spin_unlock(m); 1232 pagedaemon_wakeup(); 1233 } else { 1234 vm_page_spin_unlock(m); 1235 } 1236 } 1237 1238 /* 1239 * vm_page_list_find() 1240 * 1241 * Find a page on the specified queue with color optimization. 1242 * 1243 * The page coloring optimization attempts to locate a page that does 1244 * not overload other nearby pages in the object in the cpu's L1 or L2 1245 * caches. We need this optimization because cpu caches tend to be 1246 * physical caches, while object spaces tend to be virtual. 1247 * 1248 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1249 * and the algorithm is adjusted to localize allocations on a per-core basis. 1250 * This is done by 'twisting' the colors. 1251 * 1252 * The page is returned spinlocked and removed from its queue (it will 1253 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1254 * is responsible for dealing with the busy-page case (usually by 1255 * deactivating the page and looping). 1256 * 1257 * NOTE: This routine is carefully inlined. A non-inlined version 1258 * is available for outside callers but the only critical path is 1259 * from within this source file. 1260 * 1261 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1262 * represent stable storage, allowing us to order our locks vm_page 1263 * first, then queue. 1264 */ 1265 static __inline 1266 vm_page_t 1267 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1268 { 1269 vm_page_t m; 1270 1271 for (;;) { 1272 if (prefer_zero) 1273 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1274 else 1275 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1276 if (m == NULL) { 1277 m = _vm_page_list_find2(basequeue, index); 1278 return(m); 1279 } 1280 vm_page_and_queue_spin_lock(m); 1281 if (m->queue == basequeue + index) { 1282 _vm_page_rem_queue_spinlocked(m); 1283 /* vm_page_t spin held, no queue spin */ 1284 break; 1285 } 1286 vm_page_and_queue_spin_unlock(m); 1287 } 1288 return(m); 1289 } 1290 1291 static vm_page_t 1292 _vm_page_list_find2(int basequeue, int index) 1293 { 1294 int i; 1295 vm_page_t m = NULL; 1296 struct vpgqueues *pq; 1297 1298 pq = &vm_page_queues[basequeue]; 1299 1300 /* 1301 * Note that for the first loop, index+i and index-i wind up at the 1302 * same place. Even though this is not totally optimal, we've already 1303 * blown it by missing the cache case so we do not care. 1304 */ 1305 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1306 for (;;) { 1307 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1308 if (m) { 1309 _vm_page_and_queue_spin_lock(m); 1310 if (m->queue == 1311 basequeue + ((index + i) & PQ_L2_MASK)) { 1312 _vm_page_rem_queue_spinlocked(m); 1313 return(m); 1314 } 1315 _vm_page_and_queue_spin_unlock(m); 1316 continue; 1317 } 1318 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1319 if (m) { 1320 _vm_page_and_queue_spin_lock(m); 1321 if (m->queue == 1322 basequeue + ((index - i) & PQ_L2_MASK)) { 1323 _vm_page_rem_queue_spinlocked(m); 1324 return(m); 1325 } 1326 _vm_page_and_queue_spin_unlock(m); 1327 continue; 1328 } 1329 break; /* next i */ 1330 } 1331 } 1332 return(m); 1333 } 1334 1335 /* 1336 * Returns a vm_page candidate for allocation. The page is not busied so 1337 * it can move around. The caller must busy the page (and typically 1338 * deactivate it if it cannot be busied!) 1339 * 1340 * Returns a spinlocked vm_page that has been removed from its queue. 1341 */ 1342 vm_page_t 1343 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1344 { 1345 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1346 } 1347 1348 /* 1349 * Find a page on the cache queue with color optimization, remove it 1350 * from the queue, and busy it. The returned page will not be spinlocked. 1351 * 1352 * A candidate failure will be deactivated. Candidates can fail due to 1353 * being busied by someone else, in which case they will be deactivated. 1354 * 1355 * This routine may not block. 1356 * 1357 */ 1358 static vm_page_t 1359 vm_page_select_cache(u_short pg_color) 1360 { 1361 vm_page_t m; 1362 1363 for (;;) { 1364 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1365 if (m == NULL) 1366 break; 1367 /* 1368 * (m) has been removed from its queue and spinlocked 1369 */ 1370 if (vm_page_busy_try(m, TRUE)) { 1371 _vm_page_deactivate_locked(m, 0); 1372 vm_page_spin_unlock(m); 1373 } else { 1374 /* 1375 * We successfully busied the page 1376 */ 1377 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1378 m->hold_count == 0 && 1379 m->wire_count == 0 && 1380 (m->dirty & m->valid) == 0) { 1381 vm_page_spin_unlock(m); 1382 pagedaemon_wakeup(); 1383 return(m); 1384 } 1385 1386 /* 1387 * The page cannot be recycled, deactivate it. 1388 */ 1389 _vm_page_deactivate_locked(m, 0); 1390 if (_vm_page_wakeup(m)) { 1391 vm_page_spin_unlock(m); 1392 wakeup(m); 1393 } else { 1394 vm_page_spin_unlock(m); 1395 } 1396 } 1397 } 1398 return (m); 1399 } 1400 1401 /* 1402 * Find a free or zero page, with specified preference. We attempt to 1403 * inline the nominal case and fall back to _vm_page_select_free() 1404 * otherwise. A busied page is removed from the queue and returned. 1405 * 1406 * This routine may not block. 1407 */ 1408 static __inline vm_page_t 1409 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1410 { 1411 vm_page_t m; 1412 1413 for (;;) { 1414 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1415 prefer_zero); 1416 if (m == NULL) 1417 break; 1418 if (vm_page_busy_try(m, TRUE)) { 1419 /* 1420 * Various mechanisms such as a pmap_collect can 1421 * result in a busy page on the free queue. We 1422 * have to move the page out of the way so we can 1423 * retry the allocation. If the other thread is not 1424 * allocating the page then m->valid will remain 0 and 1425 * the pageout daemon will free the page later on. 1426 * 1427 * Since we could not busy the page, however, we 1428 * cannot make assumptions as to whether the page 1429 * will be allocated by the other thread or not, 1430 * so all we can do is deactivate it to move it out 1431 * of the way. In particular, if the other thread 1432 * wires the page it may wind up on the inactive 1433 * queue and the pageout daemon will have to deal 1434 * with that case too. 1435 */ 1436 _vm_page_deactivate_locked(m, 0); 1437 vm_page_spin_unlock(m); 1438 } else { 1439 /* 1440 * Theoretically if we are able to busy the page 1441 * atomic with the queue removal (using the vm_page 1442 * lock) nobody else should be able to mess with the 1443 * page before us. 1444 */ 1445 KKASSERT((m->flags & (PG_UNMANAGED | 1446 PG_NEED_COMMIT)) == 0); 1447 KKASSERT(m->hold_count == 0); 1448 KKASSERT(m->wire_count == 0); 1449 vm_page_spin_unlock(m); 1450 pagedaemon_wakeup(); 1451 1452 /* return busied and removed page */ 1453 return(m); 1454 } 1455 } 1456 return(m); 1457 } 1458 1459 /* 1460 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1461 * The idea is to populate this cache prior to acquiring any locks so 1462 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1463 * holding potentialy contending locks. 1464 * 1465 * Note that we allocate the page uninserted into anything and use a pindex 1466 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1467 * allocations should wind up being uncontended. However, we still want 1468 * to rove across PQ_L2_SIZE. 1469 */ 1470 void 1471 vm_page_pcpu_cache(void) 1472 { 1473 #if 0 1474 globaldata_t gd = mycpu; 1475 vm_page_t m; 1476 1477 if (gd->gd_vmpg_count < GD_MINVMPG) { 1478 crit_enter_gd(gd); 1479 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1480 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1481 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1482 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1483 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1484 if ((m->flags & PG_ZERO) == 0) { 1485 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1486 vm_page_flag_set(m, PG_ZERO); 1487 } 1488 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1489 } else { 1490 vm_page_free(m); 1491 } 1492 } 1493 crit_exit_gd(gd); 1494 } 1495 #endif 1496 } 1497 1498 /* 1499 * vm_page_alloc() 1500 * 1501 * Allocate and return a memory cell associated with this VM object/offset 1502 * pair. If object is NULL an unassociated page will be allocated. 1503 * 1504 * The returned page will be busied and removed from its queues. This 1505 * routine can block and may return NULL if a race occurs and the page 1506 * is found to already exist at the specified (object, pindex). 1507 * 1508 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1509 * VM_ALLOC_QUICK like normal but cannot use cache 1510 * VM_ALLOC_SYSTEM greater free drain 1511 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1512 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1513 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1514 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1515 * (see vm_page_grab()) 1516 * VM_ALLOC_USE_GD ok to use per-gd cache 1517 * 1518 * The object must be held if not NULL 1519 * This routine may not block 1520 * 1521 * Additional special handling is required when called from an interrupt 1522 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1523 * in this case. 1524 */ 1525 vm_page_t 1526 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1527 { 1528 globaldata_t gd = mycpu; 1529 vm_object_t obj; 1530 vm_page_t m; 1531 u_short pg_color; 1532 1533 #if 0 1534 /* 1535 * Special per-cpu free VM page cache. The pages are pre-busied 1536 * and pre-zerod for us. 1537 */ 1538 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1539 crit_enter_gd(gd); 1540 if (gd->gd_vmpg_count) { 1541 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1542 crit_exit_gd(gd); 1543 goto done; 1544 } 1545 crit_exit_gd(gd); 1546 } 1547 #endif 1548 m = NULL; 1549 1550 /* 1551 * Cpu twist - cpu localization algorithm 1552 */ 1553 if (object) { 1554 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1555 (object->pg_color & ~ncpus_fit_mask); 1556 } else { 1557 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1558 } 1559 KKASSERT(page_req & 1560 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1561 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1562 1563 /* 1564 * Certain system threads (pageout daemon, buf_daemon's) are 1565 * allowed to eat deeper into the free page list. 1566 */ 1567 if (curthread->td_flags & TDF_SYSTHREAD) 1568 page_req |= VM_ALLOC_SYSTEM; 1569 1570 loop: 1571 if (vmstats.v_free_count > vmstats.v_free_reserved || 1572 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1573 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1574 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1575 ) { 1576 /* 1577 * The free queue has sufficient free pages to take one out. 1578 */ 1579 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1580 m = vm_page_select_free(pg_color, TRUE); 1581 else 1582 m = vm_page_select_free(pg_color, FALSE); 1583 } else if (page_req & VM_ALLOC_NORMAL) { 1584 /* 1585 * Allocatable from the cache (non-interrupt only). On 1586 * success, we must free the page and try again, thus 1587 * ensuring that vmstats.v_*_free_min counters are replenished. 1588 */ 1589 #ifdef INVARIANTS 1590 if (curthread->td_preempted) { 1591 kprintf("vm_page_alloc(): warning, attempt to allocate" 1592 " cache page from preempting interrupt\n"); 1593 m = NULL; 1594 } else { 1595 m = vm_page_select_cache(pg_color); 1596 } 1597 #else 1598 m = vm_page_select_cache(pg_color); 1599 #endif 1600 /* 1601 * On success move the page into the free queue and loop. 1602 * 1603 * Only do this if we can safely acquire the vm_object lock, 1604 * because this is effectively a random page and the caller 1605 * might be holding the lock shared, we don't want to 1606 * deadlock. 1607 */ 1608 if (m != NULL) { 1609 KASSERT(m->dirty == 0, 1610 ("Found dirty cache page %p", m)); 1611 if ((obj = m->object) != NULL) { 1612 if (vm_object_hold_try(obj)) { 1613 vm_page_protect(m, VM_PROT_NONE); 1614 vm_page_free(m); 1615 /* m->object NULL here */ 1616 vm_object_drop(obj); 1617 } else { 1618 vm_page_deactivate(m); 1619 vm_page_wakeup(m); 1620 } 1621 } else { 1622 vm_page_protect(m, VM_PROT_NONE); 1623 vm_page_free(m); 1624 } 1625 goto loop; 1626 } 1627 1628 /* 1629 * On failure return NULL 1630 */ 1631 #if defined(DIAGNOSTIC) 1632 if (vmstats.v_cache_count > 0) 1633 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1634 #endif 1635 vm_pageout_deficit++; 1636 pagedaemon_wakeup(); 1637 return (NULL); 1638 } else { 1639 /* 1640 * No pages available, wakeup the pageout daemon and give up. 1641 */ 1642 vm_pageout_deficit++; 1643 pagedaemon_wakeup(); 1644 return (NULL); 1645 } 1646 1647 /* 1648 * v_free_count can race so loop if we don't find the expected 1649 * page. 1650 */ 1651 if (m == NULL) 1652 goto loop; 1653 1654 /* 1655 * Good page found. The page has already been busied for us and 1656 * removed from its queues. 1657 */ 1658 KASSERT(m->dirty == 0, 1659 ("vm_page_alloc: free/cache page %p was dirty", m)); 1660 KKASSERT(m->queue == PQ_NONE); 1661 1662 #if 0 1663 done: 1664 #endif 1665 /* 1666 * Initialize the structure, inheriting some flags but clearing 1667 * all the rest. The page has already been busied for us. 1668 */ 1669 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1670 KKASSERT(m->wire_count == 0); 1671 KKASSERT(m->busy == 0); 1672 m->act_count = 0; 1673 m->valid = 0; 1674 1675 /* 1676 * Caller must be holding the object lock (asserted by 1677 * vm_page_insert()). 1678 * 1679 * NOTE: Inserting a page here does not insert it into any pmaps 1680 * (which could cause us to block allocating memory). 1681 * 1682 * NOTE: If no object an unassociated page is allocated, m->pindex 1683 * can be used by the caller for any purpose. 1684 */ 1685 if (object) { 1686 if (vm_page_insert(m, object, pindex) == FALSE) { 1687 vm_page_free(m); 1688 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1689 panic("PAGE RACE %p[%ld]/%p", 1690 object, (long)pindex, m); 1691 m = NULL; 1692 } 1693 } else { 1694 m->pindex = pindex; 1695 } 1696 1697 /* 1698 * Don't wakeup too often - wakeup the pageout daemon when 1699 * we would be nearly out of memory. 1700 */ 1701 pagedaemon_wakeup(); 1702 1703 /* 1704 * A PG_BUSY page is returned. 1705 */ 1706 return (m); 1707 } 1708 1709 /* 1710 * Attempt to allocate contiguous physical memory with the specified 1711 * requirements. 1712 */ 1713 vm_page_t 1714 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1715 unsigned long alignment, unsigned long boundary, 1716 unsigned long size, vm_memattr_t memattr) 1717 { 1718 alist_blk_t blk; 1719 vm_page_t m; 1720 int i; 1721 1722 alignment >>= PAGE_SHIFT; 1723 if (alignment == 0) 1724 alignment = 1; 1725 boundary >>= PAGE_SHIFT; 1726 if (boundary == 0) 1727 boundary = 1; 1728 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1729 1730 spin_lock(&vm_contig_spin); 1731 blk = alist_alloc(&vm_contig_alist, 0, size); 1732 if (blk == ALIST_BLOCK_NONE) { 1733 spin_unlock(&vm_contig_spin); 1734 if (bootverbose) { 1735 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1736 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1737 } 1738 return(NULL); 1739 } 1740 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1741 alist_free(&vm_contig_alist, blk, size); 1742 spin_unlock(&vm_contig_spin); 1743 if (bootverbose) { 1744 kprintf("vm_page_alloc_contig: %ldk high " 1745 "%016jx failed\n", 1746 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1747 (intmax_t)high); 1748 } 1749 return(NULL); 1750 } 1751 spin_unlock(&vm_contig_spin); 1752 if (vm_contig_verbose) { 1753 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1754 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1755 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1756 } 1757 1758 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 1759 if (memattr != VM_MEMATTR_DEFAULT) 1760 for (i = 0;i < size;i++) 1761 pmap_page_set_memattr(&m[i], memattr); 1762 return m; 1763 } 1764 1765 /* 1766 * Free contiguously allocated pages. The pages will be wired but not busy. 1767 * When freeing to the alist we leave them wired and not busy. 1768 */ 1769 void 1770 vm_page_free_contig(vm_page_t m, unsigned long size) 1771 { 1772 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1773 vm_pindex_t start = pa >> PAGE_SHIFT; 1774 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1775 1776 if (vm_contig_verbose) { 1777 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1778 (intmax_t)pa, size / 1024); 1779 } 1780 if (pa < vm_low_phys_reserved) { 1781 KKASSERT(pa + size <= vm_low_phys_reserved); 1782 spin_lock(&vm_contig_spin); 1783 alist_free(&vm_contig_alist, start, pages); 1784 spin_unlock(&vm_contig_spin); 1785 } else { 1786 while (pages) { 1787 vm_page_busy_wait(m, FALSE, "cpgfr"); 1788 vm_page_unwire(m, 0); 1789 vm_page_free(m); 1790 --pages; 1791 ++m; 1792 } 1793 1794 } 1795 } 1796 1797 1798 /* 1799 * Wait for sufficient free memory for nominal heavy memory use kernel 1800 * operations. 1801 * 1802 * WARNING! Be sure never to call this in any vm_pageout code path, which 1803 * will trivially deadlock the system. 1804 */ 1805 void 1806 vm_wait_nominal(void) 1807 { 1808 while (vm_page_count_min(0)) 1809 vm_wait(0); 1810 } 1811 1812 /* 1813 * Test if vm_wait_nominal() would block. 1814 */ 1815 int 1816 vm_test_nominal(void) 1817 { 1818 if (vm_page_count_min(0)) 1819 return(1); 1820 return(0); 1821 } 1822 1823 /* 1824 * Block until free pages are available for allocation, called in various 1825 * places before memory allocations. 1826 * 1827 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1828 * more generous then that. 1829 */ 1830 void 1831 vm_wait(int timo) 1832 { 1833 /* 1834 * never wait forever 1835 */ 1836 if (timo == 0) 1837 timo = hz; 1838 lwkt_gettoken(&vm_token); 1839 1840 if (curthread == pagethread) { 1841 /* 1842 * The pageout daemon itself needs pages, this is bad. 1843 */ 1844 if (vm_page_count_min(0)) { 1845 vm_pageout_pages_needed = 1; 1846 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1847 } 1848 } else { 1849 /* 1850 * Wakeup the pageout daemon if necessary and wait. 1851 * 1852 * Do not wait indefinitely for the target to be reached, 1853 * as load might prevent it from being reached any time soon. 1854 * But wait a little to try to slow down page allocations 1855 * and to give more important threads (the pagedaemon) 1856 * allocation priority. 1857 */ 1858 if (vm_page_count_target()) { 1859 if (vm_pages_needed == 0) { 1860 vm_pages_needed = 1; 1861 wakeup(&vm_pages_needed); 1862 } 1863 ++vm_pages_waiting; /* SMP race ok */ 1864 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1865 } 1866 } 1867 lwkt_reltoken(&vm_token); 1868 } 1869 1870 /* 1871 * Block until free pages are available for allocation 1872 * 1873 * Called only from vm_fault so that processes page faulting can be 1874 * easily tracked. 1875 */ 1876 void 1877 vm_wait_pfault(void) 1878 { 1879 /* 1880 * Wakeup the pageout daemon if necessary and wait. 1881 * 1882 * Do not wait indefinitely for the target to be reached, 1883 * as load might prevent it from being reached any time soon. 1884 * But wait a little to try to slow down page allocations 1885 * and to give more important threads (the pagedaemon) 1886 * allocation priority. 1887 */ 1888 if (vm_page_count_min(0)) { 1889 lwkt_gettoken(&vm_token); 1890 while (vm_page_count_severe()) { 1891 if (vm_page_count_target()) { 1892 if (vm_pages_needed == 0) { 1893 vm_pages_needed = 1; 1894 wakeup(&vm_pages_needed); 1895 } 1896 ++vm_pages_waiting; /* SMP race ok */ 1897 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1898 } 1899 } 1900 lwkt_reltoken(&vm_token); 1901 } 1902 } 1903 1904 /* 1905 * Put the specified page on the active list (if appropriate). Ensure 1906 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1907 * 1908 * The caller should be holding the page busied ? XXX 1909 * This routine may not block. 1910 */ 1911 void 1912 vm_page_activate(vm_page_t m) 1913 { 1914 u_short oqueue; 1915 1916 vm_page_spin_lock(m); 1917 if (m->queue - m->pc != PQ_ACTIVE) { 1918 _vm_page_queue_spin_lock(m); 1919 oqueue = _vm_page_rem_queue_spinlocked(m); 1920 /* page is left spinlocked, queue is unlocked */ 1921 1922 if (oqueue == PQ_CACHE) 1923 mycpu->gd_cnt.v_reactivated++; 1924 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1925 if (m->act_count < ACT_INIT) 1926 m->act_count = ACT_INIT; 1927 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1928 } 1929 _vm_page_and_queue_spin_unlock(m); 1930 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1931 pagedaemon_wakeup(); 1932 } else { 1933 if (m->act_count < ACT_INIT) 1934 m->act_count = ACT_INIT; 1935 vm_page_spin_unlock(m); 1936 } 1937 } 1938 1939 /* 1940 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1941 * routine is called when a page has been added to the cache or free 1942 * queues. 1943 * 1944 * This routine may not block. 1945 */ 1946 static __inline void 1947 vm_page_free_wakeup(void) 1948 { 1949 /* 1950 * If the pageout daemon itself needs pages, then tell it that 1951 * there are some free. 1952 */ 1953 if (vm_pageout_pages_needed && 1954 vmstats.v_cache_count + vmstats.v_free_count >= 1955 vmstats.v_pageout_free_min 1956 ) { 1957 vm_pageout_pages_needed = 0; 1958 wakeup(&vm_pageout_pages_needed); 1959 } 1960 1961 /* 1962 * Wakeup processes that are waiting on memory. 1963 * 1964 * Generally speaking we want to wakeup stuck processes as soon as 1965 * possible. !vm_page_count_min(0) is the absolute minimum point 1966 * where we can do this. Wait a bit longer to reduce degenerate 1967 * re-blocking (vm_page_free_hysteresis). The target check is just 1968 * to make sure the min-check w/hysteresis does not exceed the 1969 * normal target. 1970 */ 1971 if (vm_pages_waiting) { 1972 if (!vm_page_count_min(vm_page_free_hysteresis) || 1973 !vm_page_count_target()) { 1974 vm_pages_waiting = 0; 1975 wakeup(&vmstats.v_free_count); 1976 ++mycpu->gd_cnt.v_ppwakeups; 1977 } 1978 #if 0 1979 if (!vm_page_count_target()) { 1980 /* 1981 * Plenty of pages are free, wakeup everyone. 1982 */ 1983 vm_pages_waiting = 0; 1984 wakeup(&vmstats.v_free_count); 1985 ++mycpu->gd_cnt.v_ppwakeups; 1986 } else if (!vm_page_count_min(0)) { 1987 /* 1988 * Some pages are free, wakeup someone. 1989 */ 1990 int wcount = vm_pages_waiting; 1991 if (wcount > 0) 1992 --wcount; 1993 vm_pages_waiting = wcount; 1994 wakeup_one(&vmstats.v_free_count); 1995 ++mycpu->gd_cnt.v_ppwakeups; 1996 } 1997 #endif 1998 } 1999 } 2000 2001 /* 2002 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 2003 * it from its VM object. 2004 * 2005 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 2006 * return (the page will have been freed). 2007 */ 2008 void 2009 vm_page_free_toq(vm_page_t m) 2010 { 2011 mycpu->gd_cnt.v_tfree++; 2012 KKASSERT((m->flags & PG_MAPPED) == 0); 2013 KKASSERT(m->flags & PG_BUSY); 2014 2015 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 2016 kprintf("vm_page_free: pindex(%lu), busy(%d), " 2017 "PG_BUSY(%d), hold(%d)\n", 2018 (u_long)m->pindex, m->busy, 2019 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 2020 if ((m->queue - m->pc) == PQ_FREE) 2021 panic("vm_page_free: freeing free page"); 2022 else 2023 panic("vm_page_free: freeing busy page"); 2024 } 2025 2026 /* 2027 * Remove from object, spinlock the page and its queues and 2028 * remove from any queue. No queue spinlock will be held 2029 * after this section (because the page was removed from any 2030 * queue). 2031 */ 2032 vm_page_remove(m); 2033 vm_page_and_queue_spin_lock(m); 2034 _vm_page_rem_queue_spinlocked(m); 2035 2036 /* 2037 * No further management of fictitious pages occurs beyond object 2038 * and queue removal. 2039 */ 2040 if ((m->flags & PG_FICTITIOUS) != 0) { 2041 vm_page_spin_unlock(m); 2042 vm_page_wakeup(m); 2043 return; 2044 } 2045 2046 m->valid = 0; 2047 vm_page_undirty(m); 2048 2049 if (m->wire_count != 0) { 2050 if (m->wire_count > 1) { 2051 panic( 2052 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2053 m->wire_count, (long)m->pindex); 2054 } 2055 panic("vm_page_free: freeing wired page"); 2056 } 2057 2058 /* 2059 * Clear the UNMANAGED flag when freeing an unmanaged page. 2060 * Clear the NEED_COMMIT flag 2061 */ 2062 if (m->flags & PG_UNMANAGED) 2063 vm_page_flag_clear(m, PG_UNMANAGED); 2064 if (m->flags & PG_NEED_COMMIT) 2065 vm_page_flag_clear(m, PG_NEED_COMMIT); 2066 2067 if (m->hold_count != 0) { 2068 vm_page_flag_clear(m, PG_ZERO); 2069 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2070 } else { 2071 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2072 } 2073 2074 /* 2075 * This sequence allows us to clear PG_BUSY while still holding 2076 * its spin lock, which reduces contention vs allocators. We 2077 * must not leave the queue locked or _vm_page_wakeup() may 2078 * deadlock. 2079 */ 2080 _vm_page_queue_spin_unlock(m); 2081 if (_vm_page_wakeup(m)) { 2082 vm_page_spin_unlock(m); 2083 wakeup(m); 2084 } else { 2085 vm_page_spin_unlock(m); 2086 } 2087 vm_page_free_wakeup(); 2088 } 2089 2090 /* 2091 * vm_page_free_fromq_fast() 2092 * 2093 * Remove a non-zero page from one of the free queues; the page is removed for 2094 * zeroing, so do not issue a wakeup. 2095 */ 2096 vm_page_t 2097 vm_page_free_fromq_fast(void) 2098 { 2099 static int qi; 2100 vm_page_t m; 2101 int i; 2102 2103 for (i = 0; i < PQ_L2_SIZE; ++i) { 2104 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2105 /* page is returned spinlocked and removed from its queue */ 2106 if (m) { 2107 if (vm_page_busy_try(m, TRUE)) { 2108 /* 2109 * We were unable to busy the page, deactivate 2110 * it and loop. 2111 */ 2112 _vm_page_deactivate_locked(m, 0); 2113 vm_page_spin_unlock(m); 2114 } else if (m->flags & PG_ZERO) { 2115 /* 2116 * The page is PG_ZERO, requeue it and loop 2117 */ 2118 _vm_page_add_queue_spinlocked(m, 2119 PQ_FREE + m->pc, 2120 0); 2121 vm_page_queue_spin_unlock(m); 2122 if (_vm_page_wakeup(m)) { 2123 vm_page_spin_unlock(m); 2124 wakeup(m); 2125 } else { 2126 vm_page_spin_unlock(m); 2127 } 2128 } else { 2129 /* 2130 * The page is not PG_ZERO'd so return it. 2131 */ 2132 vm_page_spin_unlock(m); 2133 KKASSERT((m->flags & (PG_UNMANAGED | 2134 PG_NEED_COMMIT)) == 0); 2135 KKASSERT(m->hold_count == 0); 2136 KKASSERT(m->wire_count == 0); 2137 break; 2138 } 2139 m = NULL; 2140 } 2141 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2142 } 2143 return (m); 2144 } 2145 2146 /* 2147 * vm_page_unmanage() 2148 * 2149 * Prevent PV management from being done on the page. The page is 2150 * removed from the paging queues as if it were wired, and as a 2151 * consequence of no longer being managed the pageout daemon will not 2152 * touch it (since there is no way to locate the pte mappings for the 2153 * page). madvise() calls that mess with the pmap will also no longer 2154 * operate on the page. 2155 * 2156 * Beyond that the page is still reasonably 'normal'. Freeing the page 2157 * will clear the flag. 2158 * 2159 * This routine is used by OBJT_PHYS objects - objects using unswappable 2160 * physical memory as backing store rather then swap-backed memory and 2161 * will eventually be extended to support 4MB unmanaged physical 2162 * mappings. 2163 * 2164 * Caller must be holding the page busy. 2165 */ 2166 void 2167 vm_page_unmanage(vm_page_t m) 2168 { 2169 KKASSERT(m->flags & PG_BUSY); 2170 if ((m->flags & PG_UNMANAGED) == 0) { 2171 if (m->wire_count == 0) 2172 vm_page_unqueue(m); 2173 } 2174 vm_page_flag_set(m, PG_UNMANAGED); 2175 } 2176 2177 /* 2178 * Mark this page as wired down by yet another map, removing it from 2179 * paging queues as necessary. 2180 * 2181 * Caller must be holding the page busy. 2182 */ 2183 void 2184 vm_page_wire(vm_page_t m) 2185 { 2186 /* 2187 * Only bump the wire statistics if the page is not already wired, 2188 * and only unqueue the page if it is on some queue (if it is unmanaged 2189 * it is already off the queues). Don't do anything with fictitious 2190 * pages because they are always wired. 2191 */ 2192 KKASSERT(m->flags & PG_BUSY); 2193 if ((m->flags & PG_FICTITIOUS) == 0) { 2194 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2195 if ((m->flags & PG_UNMANAGED) == 0) 2196 vm_page_unqueue(m); 2197 atomic_add_int(&vmstats.v_wire_count, 1); 2198 } 2199 KASSERT(m->wire_count != 0, 2200 ("vm_page_wire: wire_count overflow m=%p", m)); 2201 } 2202 } 2203 2204 /* 2205 * Release one wiring of this page, potentially enabling it to be paged again. 2206 * 2207 * Many pages placed on the inactive queue should actually go 2208 * into the cache, but it is difficult to figure out which. What 2209 * we do instead, if the inactive target is well met, is to put 2210 * clean pages at the head of the inactive queue instead of the tail. 2211 * This will cause them to be moved to the cache more quickly and 2212 * if not actively re-referenced, freed more quickly. If we just 2213 * stick these pages at the end of the inactive queue, heavy filesystem 2214 * meta-data accesses can cause an unnecessary paging load on memory bound 2215 * processes. This optimization causes one-time-use metadata to be 2216 * reused more quickly. 2217 * 2218 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2219 * the inactive queue. This helps the pageout daemon determine memory 2220 * pressure and act on out-of-memory situations more quickly. 2221 * 2222 * BUT, if we are in a low-memory situation we have no choice but to 2223 * put clean pages on the cache queue. 2224 * 2225 * A number of routines use vm_page_unwire() to guarantee that the page 2226 * will go into either the inactive or active queues, and will NEVER 2227 * be placed in the cache - for example, just after dirtying a page. 2228 * dirty pages in the cache are not allowed. 2229 * 2230 * The page queues must be locked. 2231 * This routine may not block. 2232 */ 2233 void 2234 vm_page_unwire(vm_page_t m, int activate) 2235 { 2236 KKASSERT(m->flags & PG_BUSY); 2237 if (m->flags & PG_FICTITIOUS) { 2238 /* do nothing */ 2239 } else if (m->wire_count <= 0) { 2240 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2241 } else { 2242 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2243 atomic_add_int(&vmstats.v_wire_count, -1); 2244 if (m->flags & PG_UNMANAGED) { 2245 ; 2246 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2247 vm_page_spin_lock(m); 2248 _vm_page_add_queue_spinlocked(m, 2249 PQ_ACTIVE + m->pc, 0); 2250 _vm_page_and_queue_spin_unlock(m); 2251 } else { 2252 vm_page_spin_lock(m); 2253 vm_page_flag_clear(m, PG_WINATCFLS); 2254 _vm_page_add_queue_spinlocked(m, 2255 PQ_INACTIVE + m->pc, 0); 2256 ++vm_swapcache_inactive_heuristic; 2257 _vm_page_and_queue_spin_unlock(m); 2258 } 2259 } 2260 } 2261 } 2262 2263 /* 2264 * Move the specified page to the inactive queue. If the page has 2265 * any associated swap, the swap is deallocated. 2266 * 2267 * Normally athead is 0 resulting in LRU operation. athead is set 2268 * to 1 if we want this page to be 'as if it were placed in the cache', 2269 * except without unmapping it from the process address space. 2270 * 2271 * vm_page's spinlock must be held on entry and will remain held on return. 2272 * This routine may not block. 2273 */ 2274 static void 2275 _vm_page_deactivate_locked(vm_page_t m, int athead) 2276 { 2277 u_short oqueue; 2278 2279 /* 2280 * Ignore if already inactive. 2281 */ 2282 if (m->queue - m->pc == PQ_INACTIVE) 2283 return; 2284 _vm_page_queue_spin_lock(m); 2285 oqueue = _vm_page_rem_queue_spinlocked(m); 2286 2287 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2288 if (oqueue == PQ_CACHE) 2289 mycpu->gd_cnt.v_reactivated++; 2290 vm_page_flag_clear(m, PG_WINATCFLS); 2291 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2292 if (athead == 0) 2293 ++vm_swapcache_inactive_heuristic; 2294 } 2295 _vm_page_queue_spin_unlock(m); 2296 /* leaves vm_page spinlocked */ 2297 } 2298 2299 /* 2300 * Attempt to deactivate a page. 2301 * 2302 * No requirements. 2303 */ 2304 void 2305 vm_page_deactivate(vm_page_t m) 2306 { 2307 vm_page_spin_lock(m); 2308 _vm_page_deactivate_locked(m, 0); 2309 vm_page_spin_unlock(m); 2310 } 2311 2312 void 2313 vm_page_deactivate_locked(vm_page_t m) 2314 { 2315 _vm_page_deactivate_locked(m, 0); 2316 } 2317 2318 /* 2319 * Attempt to move a page to PQ_CACHE. 2320 * 2321 * Returns 0 on failure, 1 on success 2322 * 2323 * The page should NOT be busied by the caller. This function will validate 2324 * whether the page can be safely moved to the cache. 2325 */ 2326 int 2327 vm_page_try_to_cache(vm_page_t m) 2328 { 2329 vm_page_spin_lock(m); 2330 if (vm_page_busy_try(m, TRUE)) { 2331 vm_page_spin_unlock(m); 2332 return(0); 2333 } 2334 if (m->dirty || m->hold_count || m->wire_count || 2335 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2336 if (_vm_page_wakeup(m)) { 2337 vm_page_spin_unlock(m); 2338 wakeup(m); 2339 } else { 2340 vm_page_spin_unlock(m); 2341 } 2342 return(0); 2343 } 2344 vm_page_spin_unlock(m); 2345 2346 /* 2347 * Page busied by us and no longer spinlocked. Dirty pages cannot 2348 * be moved to the cache. 2349 */ 2350 vm_page_test_dirty(m); 2351 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2352 vm_page_wakeup(m); 2353 return(0); 2354 } 2355 vm_page_cache(m); 2356 return(1); 2357 } 2358 2359 /* 2360 * Attempt to free the page. If we cannot free it, we do nothing. 2361 * 1 is returned on success, 0 on failure. 2362 * 2363 * No requirements. 2364 */ 2365 int 2366 vm_page_try_to_free(vm_page_t m) 2367 { 2368 vm_page_spin_lock(m); 2369 if (vm_page_busy_try(m, TRUE)) { 2370 vm_page_spin_unlock(m); 2371 return(0); 2372 } 2373 2374 /* 2375 * The page can be in any state, including already being on the free 2376 * queue. Check to see if it really can be freed. 2377 */ 2378 if (m->dirty || /* can't free if it is dirty */ 2379 m->hold_count || /* or held (XXX may be wrong) */ 2380 m->wire_count || /* or wired */ 2381 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2382 PG_NEED_COMMIT)) || /* or needs a commit */ 2383 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2384 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2385 if (_vm_page_wakeup(m)) { 2386 vm_page_spin_unlock(m); 2387 wakeup(m); 2388 } else { 2389 vm_page_spin_unlock(m); 2390 } 2391 return(0); 2392 } 2393 vm_page_spin_unlock(m); 2394 2395 /* 2396 * We can probably free the page. 2397 * 2398 * Page busied by us and no longer spinlocked. Dirty pages will 2399 * not be freed by this function. We have to re-test the 2400 * dirty bit after cleaning out the pmaps. 2401 */ 2402 vm_page_test_dirty(m); 2403 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2404 vm_page_wakeup(m); 2405 return(0); 2406 } 2407 vm_page_protect(m, VM_PROT_NONE); 2408 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2409 vm_page_wakeup(m); 2410 return(0); 2411 } 2412 vm_page_free(m); 2413 return(1); 2414 } 2415 2416 /* 2417 * vm_page_cache 2418 * 2419 * Put the specified page onto the page cache queue (if appropriate). 2420 * 2421 * The page must be busy, and this routine will release the busy and 2422 * possibly even free the page. 2423 */ 2424 void 2425 vm_page_cache(vm_page_t m) 2426 { 2427 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2428 m->busy || m->wire_count || m->hold_count) { 2429 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2430 vm_page_wakeup(m); 2431 return; 2432 } 2433 2434 /* 2435 * Already in the cache (and thus not mapped) 2436 */ 2437 if ((m->queue - m->pc) == PQ_CACHE) { 2438 KKASSERT((m->flags & PG_MAPPED) == 0); 2439 vm_page_wakeup(m); 2440 return; 2441 } 2442 2443 /* 2444 * Caller is required to test m->dirty, but note that the act of 2445 * removing the page from its maps can cause it to become dirty 2446 * on an SMP system due to another cpu running in usermode. 2447 */ 2448 if (m->dirty) { 2449 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2450 (long)m->pindex); 2451 } 2452 2453 /* 2454 * Remove all pmaps and indicate that the page is not 2455 * writeable or mapped. Our vm_page_protect() call may 2456 * have blocked (especially w/ VM_PROT_NONE), so recheck 2457 * everything. 2458 */ 2459 vm_page_protect(m, VM_PROT_NONE); 2460 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2461 m->busy || m->wire_count || m->hold_count) { 2462 vm_page_wakeup(m); 2463 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2464 vm_page_deactivate(m); 2465 vm_page_wakeup(m); 2466 } else { 2467 _vm_page_and_queue_spin_lock(m); 2468 _vm_page_rem_queue_spinlocked(m); 2469 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2470 _vm_page_queue_spin_unlock(m); 2471 if (_vm_page_wakeup(m)) { 2472 vm_page_spin_unlock(m); 2473 wakeup(m); 2474 } else { 2475 vm_page_spin_unlock(m); 2476 } 2477 vm_page_free_wakeup(); 2478 } 2479 } 2480 2481 /* 2482 * vm_page_dontneed() 2483 * 2484 * Cache, deactivate, or do nothing as appropriate. This routine 2485 * is typically used by madvise() MADV_DONTNEED. 2486 * 2487 * Generally speaking we want to move the page into the cache so 2488 * it gets reused quickly. However, this can result in a silly syndrome 2489 * due to the page recycling too quickly. Small objects will not be 2490 * fully cached. On the otherhand, if we move the page to the inactive 2491 * queue we wind up with a problem whereby very large objects 2492 * unnecessarily blow away our inactive and cache queues. 2493 * 2494 * The solution is to move the pages based on a fixed weighting. We 2495 * either leave them alone, deactivate them, or move them to the cache, 2496 * where moving them to the cache has the highest weighting. 2497 * By forcing some pages into other queues we eventually force the 2498 * system to balance the queues, potentially recovering other unrelated 2499 * space from active. The idea is to not force this to happen too 2500 * often. 2501 * 2502 * The page must be busied. 2503 */ 2504 void 2505 vm_page_dontneed(vm_page_t m) 2506 { 2507 static int dnweight; 2508 int dnw; 2509 int head; 2510 2511 dnw = ++dnweight; 2512 2513 /* 2514 * occassionally leave the page alone 2515 */ 2516 if ((dnw & 0x01F0) == 0 || 2517 m->queue - m->pc == PQ_INACTIVE || 2518 m->queue - m->pc == PQ_CACHE 2519 ) { 2520 if (m->act_count >= ACT_INIT) 2521 --m->act_count; 2522 return; 2523 } 2524 2525 /* 2526 * If vm_page_dontneed() is inactivating a page, it must clear 2527 * the referenced flag; otherwise the pagedaemon will see references 2528 * on the page in the inactive queue and reactivate it. Until the 2529 * page can move to the cache queue, madvise's job is not done. 2530 */ 2531 vm_page_flag_clear(m, PG_REFERENCED); 2532 pmap_clear_reference(m); 2533 2534 if (m->dirty == 0) 2535 vm_page_test_dirty(m); 2536 2537 if (m->dirty || (dnw & 0x0070) == 0) { 2538 /* 2539 * Deactivate the page 3 times out of 32. 2540 */ 2541 head = 0; 2542 } else { 2543 /* 2544 * Cache the page 28 times out of every 32. Note that 2545 * the page is deactivated instead of cached, but placed 2546 * at the head of the queue instead of the tail. 2547 */ 2548 head = 1; 2549 } 2550 vm_page_spin_lock(m); 2551 _vm_page_deactivate_locked(m, head); 2552 vm_page_spin_unlock(m); 2553 } 2554 2555 /* 2556 * These routines manipulate the 'soft busy' count for a page. A soft busy 2557 * is almost like PG_BUSY except that it allows certain compatible operations 2558 * to occur on the page while it is busy. For example, a page undergoing a 2559 * write can still be mapped read-only. 2560 * 2561 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2562 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2563 * busy bit is cleared. 2564 */ 2565 void 2566 vm_page_io_start(vm_page_t m) 2567 { 2568 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2569 atomic_add_char(&m->busy, 1); 2570 vm_page_flag_set(m, PG_SBUSY); 2571 } 2572 2573 void 2574 vm_page_io_finish(vm_page_t m) 2575 { 2576 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2577 atomic_subtract_char(&m->busy, 1); 2578 if (m->busy == 0) 2579 vm_page_flag_clear(m, PG_SBUSY); 2580 } 2581 2582 /* 2583 * Indicate that a clean VM page requires a filesystem commit and cannot 2584 * be reused. Used by tmpfs. 2585 */ 2586 void 2587 vm_page_need_commit(vm_page_t m) 2588 { 2589 vm_page_flag_set(m, PG_NEED_COMMIT); 2590 vm_object_set_writeable_dirty(m->object); 2591 } 2592 2593 void 2594 vm_page_clear_commit(vm_page_t m) 2595 { 2596 vm_page_flag_clear(m, PG_NEED_COMMIT); 2597 } 2598 2599 /* 2600 * Grab a page, blocking if it is busy and allocating a page if necessary. 2601 * A busy page is returned or NULL. The page may or may not be valid and 2602 * might not be on a queue (the caller is responsible for the disposition of 2603 * the page). 2604 * 2605 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2606 * page will be zero'd and marked valid. 2607 * 2608 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2609 * valid even if it already exists. 2610 * 2611 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2612 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2613 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2614 * 2615 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2616 * always returned if we had blocked. 2617 * 2618 * This routine may not be called from an interrupt. 2619 * 2620 * PG_ZERO is *ALWAYS* cleared by this routine. 2621 * 2622 * No other requirements. 2623 */ 2624 vm_page_t 2625 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2626 { 2627 vm_page_t m; 2628 int error; 2629 2630 KKASSERT(allocflags & 2631 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2632 vm_object_hold(object); 2633 for (;;) { 2634 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2635 if (error) { 2636 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2637 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2638 m = NULL; 2639 break; 2640 } 2641 /* retry */ 2642 } else if (m == NULL) { 2643 if (allocflags & VM_ALLOC_RETRY) 2644 allocflags |= VM_ALLOC_NULL_OK; 2645 m = vm_page_alloc(object, pindex, 2646 allocflags & ~VM_ALLOC_RETRY); 2647 if (m) 2648 break; 2649 vm_wait(0); 2650 if ((allocflags & VM_ALLOC_RETRY) == 0) 2651 goto failed; 2652 } else { 2653 /* m found */ 2654 break; 2655 } 2656 } 2657 2658 /* 2659 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2660 * 2661 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2662 * valid even if already valid. 2663 */ 2664 if (m->valid == 0) { 2665 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2666 if ((m->flags & PG_ZERO) == 0) 2667 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2668 m->valid = VM_PAGE_BITS_ALL; 2669 } 2670 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2671 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2672 m->valid = VM_PAGE_BITS_ALL; 2673 } 2674 vm_page_flag_clear(m, PG_ZERO); 2675 failed: 2676 vm_object_drop(object); 2677 return(m); 2678 } 2679 2680 /* 2681 * Mapping function for valid bits or for dirty bits in 2682 * a page. May not block. 2683 * 2684 * Inputs are required to range within a page. 2685 * 2686 * No requirements. 2687 * Non blocking. 2688 */ 2689 int 2690 vm_page_bits(int base, int size) 2691 { 2692 int first_bit; 2693 int last_bit; 2694 2695 KASSERT( 2696 base + size <= PAGE_SIZE, 2697 ("vm_page_bits: illegal base/size %d/%d", base, size) 2698 ); 2699 2700 if (size == 0) /* handle degenerate case */ 2701 return(0); 2702 2703 first_bit = base >> DEV_BSHIFT; 2704 last_bit = (base + size - 1) >> DEV_BSHIFT; 2705 2706 return ((2 << last_bit) - (1 << first_bit)); 2707 } 2708 2709 /* 2710 * Sets portions of a page valid and clean. The arguments are expected 2711 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2712 * of any partial chunks touched by the range. The invalid portion of 2713 * such chunks will be zero'd. 2714 * 2715 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2716 * align base to DEV_BSIZE so as not to mark clean a partially 2717 * truncated device block. Otherwise the dirty page status might be 2718 * lost. 2719 * 2720 * This routine may not block. 2721 * 2722 * (base + size) must be less then or equal to PAGE_SIZE. 2723 */ 2724 static void 2725 _vm_page_zero_valid(vm_page_t m, int base, int size) 2726 { 2727 int frag; 2728 int endoff; 2729 2730 if (size == 0) /* handle degenerate case */ 2731 return; 2732 2733 /* 2734 * If the base is not DEV_BSIZE aligned and the valid 2735 * bit is clear, we have to zero out a portion of the 2736 * first block. 2737 */ 2738 2739 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2740 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2741 ) { 2742 pmap_zero_page_area( 2743 VM_PAGE_TO_PHYS(m), 2744 frag, 2745 base - frag 2746 ); 2747 } 2748 2749 /* 2750 * If the ending offset is not DEV_BSIZE aligned and the 2751 * valid bit is clear, we have to zero out a portion of 2752 * the last block. 2753 */ 2754 2755 endoff = base + size; 2756 2757 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2758 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2759 ) { 2760 pmap_zero_page_area( 2761 VM_PAGE_TO_PHYS(m), 2762 endoff, 2763 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2764 ); 2765 } 2766 } 2767 2768 /* 2769 * Set valid, clear dirty bits. If validating the entire 2770 * page we can safely clear the pmap modify bit. We also 2771 * use this opportunity to clear the PG_NOSYNC flag. If a process 2772 * takes a write fault on a MAP_NOSYNC memory area the flag will 2773 * be set again. 2774 * 2775 * We set valid bits inclusive of any overlap, but we can only 2776 * clear dirty bits for DEV_BSIZE chunks that are fully within 2777 * the range. 2778 * 2779 * Page must be busied? 2780 * No other requirements. 2781 */ 2782 void 2783 vm_page_set_valid(vm_page_t m, int base, int size) 2784 { 2785 _vm_page_zero_valid(m, base, size); 2786 m->valid |= vm_page_bits(base, size); 2787 } 2788 2789 2790 /* 2791 * Set valid bits and clear dirty bits. 2792 * 2793 * NOTE: This function does not clear the pmap modified bit. 2794 * Also note that e.g. NFS may use a byte-granular base 2795 * and size. 2796 * 2797 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2798 * this without necessarily busying the page (via bdwrite()). 2799 * So for now vm_token must also be held. 2800 * 2801 * No other requirements. 2802 */ 2803 void 2804 vm_page_set_validclean(vm_page_t m, int base, int size) 2805 { 2806 int pagebits; 2807 2808 _vm_page_zero_valid(m, base, size); 2809 pagebits = vm_page_bits(base, size); 2810 m->valid |= pagebits; 2811 m->dirty &= ~pagebits; 2812 if (base == 0 && size == PAGE_SIZE) { 2813 /*pmap_clear_modify(m);*/ 2814 vm_page_flag_clear(m, PG_NOSYNC); 2815 } 2816 } 2817 2818 /* 2819 * Set valid & dirty. Used by buwrite() 2820 * 2821 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2822 * call this function in buwrite() so for now vm_token must 2823 * be held. 2824 * 2825 * No other requirements. 2826 */ 2827 void 2828 vm_page_set_validdirty(vm_page_t m, int base, int size) 2829 { 2830 int pagebits; 2831 2832 pagebits = vm_page_bits(base, size); 2833 m->valid |= pagebits; 2834 m->dirty |= pagebits; 2835 if (m->object) 2836 vm_object_set_writeable_dirty(m->object); 2837 } 2838 2839 /* 2840 * Clear dirty bits. 2841 * 2842 * NOTE: This function does not clear the pmap modified bit. 2843 * Also note that e.g. NFS may use a byte-granular base 2844 * and size. 2845 * 2846 * Page must be busied? 2847 * No other requirements. 2848 */ 2849 void 2850 vm_page_clear_dirty(vm_page_t m, int base, int size) 2851 { 2852 m->dirty &= ~vm_page_bits(base, size); 2853 if (base == 0 && size == PAGE_SIZE) { 2854 /*pmap_clear_modify(m);*/ 2855 vm_page_flag_clear(m, PG_NOSYNC); 2856 } 2857 } 2858 2859 /* 2860 * Make the page all-dirty. 2861 * 2862 * Also make sure the related object and vnode reflect the fact that the 2863 * object may now contain a dirty page. 2864 * 2865 * Page must be busied? 2866 * No other requirements. 2867 */ 2868 void 2869 vm_page_dirty(vm_page_t m) 2870 { 2871 #ifdef INVARIANTS 2872 int pqtype = m->queue - m->pc; 2873 #endif 2874 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2875 ("vm_page_dirty: page in free/cache queue!")); 2876 if (m->dirty != VM_PAGE_BITS_ALL) { 2877 m->dirty = VM_PAGE_BITS_ALL; 2878 if (m->object) 2879 vm_object_set_writeable_dirty(m->object); 2880 } 2881 } 2882 2883 /* 2884 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2885 * valid and dirty bits for the effected areas are cleared. 2886 * 2887 * Page must be busied? 2888 * Does not block. 2889 * No other requirements. 2890 */ 2891 void 2892 vm_page_set_invalid(vm_page_t m, int base, int size) 2893 { 2894 int bits; 2895 2896 bits = vm_page_bits(base, size); 2897 m->valid &= ~bits; 2898 m->dirty &= ~bits; 2899 m->object->generation++; 2900 } 2901 2902 /* 2903 * The kernel assumes that the invalid portions of a page contain 2904 * garbage, but such pages can be mapped into memory by user code. 2905 * When this occurs, we must zero out the non-valid portions of the 2906 * page so user code sees what it expects. 2907 * 2908 * Pages are most often semi-valid when the end of a file is mapped 2909 * into memory and the file's size is not page aligned. 2910 * 2911 * Page must be busied? 2912 * No other requirements. 2913 */ 2914 void 2915 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2916 { 2917 int b; 2918 int i; 2919 2920 /* 2921 * Scan the valid bits looking for invalid sections that 2922 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2923 * valid bit may be set ) have already been zerod by 2924 * vm_page_set_validclean(). 2925 */ 2926 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2927 if (i == (PAGE_SIZE / DEV_BSIZE) || 2928 (m->valid & (1 << i)) 2929 ) { 2930 if (i > b) { 2931 pmap_zero_page_area( 2932 VM_PAGE_TO_PHYS(m), 2933 b << DEV_BSHIFT, 2934 (i - b) << DEV_BSHIFT 2935 ); 2936 } 2937 b = i + 1; 2938 } 2939 } 2940 2941 /* 2942 * setvalid is TRUE when we can safely set the zero'd areas 2943 * as being valid. We can do this if there are no cache consistency 2944 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2945 */ 2946 if (setvalid) 2947 m->valid = VM_PAGE_BITS_ALL; 2948 } 2949 2950 /* 2951 * Is a (partial) page valid? Note that the case where size == 0 2952 * will return FALSE in the degenerate case where the page is entirely 2953 * invalid, and TRUE otherwise. 2954 * 2955 * Does not block. 2956 * No other requirements. 2957 */ 2958 int 2959 vm_page_is_valid(vm_page_t m, int base, int size) 2960 { 2961 int bits = vm_page_bits(base, size); 2962 2963 if (m->valid && ((m->valid & bits) == bits)) 2964 return 1; 2965 else 2966 return 0; 2967 } 2968 2969 /* 2970 * update dirty bits from pmap/mmu. May not block. 2971 * 2972 * Caller must hold the page busy 2973 */ 2974 void 2975 vm_page_test_dirty(vm_page_t m) 2976 { 2977 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2978 vm_page_dirty(m); 2979 } 2980 } 2981 2982 /* 2983 * Register an action, associating it with its vm_page 2984 */ 2985 void 2986 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2987 { 2988 struct vm_page_action_list *list; 2989 int hv; 2990 2991 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2992 list = &action_list[hv]; 2993 2994 lwkt_gettoken(&vm_token); 2995 vm_page_flag_set(action->m, PG_ACTIONLIST); 2996 action->event = event; 2997 LIST_INSERT_HEAD(list, action, entry); 2998 lwkt_reltoken(&vm_token); 2999 } 3000 3001 /* 3002 * Unregister an action, disassociating it from its related vm_page 3003 */ 3004 void 3005 vm_page_unregister_action(vm_page_action_t action) 3006 { 3007 struct vm_page_action_list *list; 3008 int hv; 3009 3010 lwkt_gettoken(&vm_token); 3011 if (action->event != VMEVENT_NONE) { 3012 action->event = VMEVENT_NONE; 3013 LIST_REMOVE(action, entry); 3014 3015 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 3016 list = &action_list[hv]; 3017 if (LIST_EMPTY(list)) 3018 vm_page_flag_clear(action->m, PG_ACTIONLIST); 3019 } 3020 lwkt_reltoken(&vm_token); 3021 } 3022 3023 /* 3024 * Issue an event on a VM page. Corresponding action structures are 3025 * removed from the page's list and called. 3026 * 3027 * If the vm_page has no more pending action events we clear its 3028 * PG_ACTIONLIST flag. 3029 */ 3030 void 3031 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 3032 { 3033 struct vm_page_action_list *list; 3034 struct vm_page_action *scan; 3035 struct vm_page_action *next; 3036 int hv; 3037 int all; 3038 3039 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 3040 list = &action_list[hv]; 3041 all = 1; 3042 3043 lwkt_gettoken(&vm_token); 3044 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 3045 if (scan->m == m) { 3046 if (scan->event == event) { 3047 scan->event = VMEVENT_NONE; 3048 LIST_REMOVE(scan, entry); 3049 scan->func(m, scan); 3050 /* XXX */ 3051 } else { 3052 all = 0; 3053 } 3054 } 3055 } 3056 if (all) 3057 vm_page_flag_clear(m, PG_ACTIONLIST); 3058 lwkt_reltoken(&vm_token); 3059 } 3060 3061 #include "opt_ddb.h" 3062 #ifdef DDB 3063 #include <sys/kernel.h> 3064 3065 #include <ddb/ddb.h> 3066 3067 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3068 { 3069 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3070 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3071 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3072 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3073 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3074 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3075 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3076 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3077 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3078 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3079 } 3080 3081 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3082 { 3083 int i; 3084 db_printf("PQ_FREE:"); 3085 for(i=0;i<PQ_L2_SIZE;i++) { 3086 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3087 } 3088 db_printf("\n"); 3089 3090 db_printf("PQ_CACHE:"); 3091 for(i=0;i<PQ_L2_SIZE;i++) { 3092 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3093 } 3094 db_printf("\n"); 3095 3096 db_printf("PQ_ACTIVE:"); 3097 for(i=0;i<PQ_L2_SIZE;i++) { 3098 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3099 } 3100 db_printf("\n"); 3101 3102 db_printf("PQ_INACTIVE:"); 3103 for(i=0;i<PQ_L2_SIZE;i++) { 3104 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3105 } 3106 db_printf("\n"); 3107 } 3108 #endif /* DDB */ 3109