xref: /dflybsd-src/sys/vm/vm_page.c (revision 330d3c4b487f3fc5d0eb023645b0b2a569f7048e)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
39  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
41  */
42 
43 /*
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 /*
70  * Resident memory management module.  The module manipulates 'VM pages'.
71  * A VM page is the core building block for memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <sys/lock.h>
84 #include <vm/vm_kern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 
94 #include <machine/md_var.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/mplock2.h>
98 
99 static void vm_page_queue_init(void);
100 static void vm_page_free_wakeup(void);
101 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
102 static vm_page_t _vm_page_list_find2(int basequeue, int index);
103 
104 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
105 
106 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
107 
108 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
109 	     vm_pindex_t, pindex);
110 
111 static void
112 vm_page_queue_init(void)
113 {
114 	int i;
115 
116 	for (i = 0; i < PQ_L2_SIZE; i++)
117 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
118 	for (i = 0; i < PQ_L2_SIZE; i++)
119 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
120 
121 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
122 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
123 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
124 	/* PQ_NONE has no queue */
125 
126 	for (i = 0; i < PQ_COUNT; i++)
127 		TAILQ_INIT(&vm_page_queues[i].pl);
128 }
129 
130 /*
131  * note: place in initialized data section?  Is this necessary?
132  */
133 long first_page = 0;
134 int vm_page_array_size = 0;
135 int vm_page_zero_count = 0;
136 vm_page_t vm_page_array = 0;
137 
138 /*
139  * (low level boot)
140  *
141  * Sets the page size, perhaps based upon the memory size.
142  * Must be called before any use of page-size dependent functions.
143  */
144 void
145 vm_set_page_size(void)
146 {
147 	if (vmstats.v_page_size == 0)
148 		vmstats.v_page_size = PAGE_SIZE;
149 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
150 		panic("vm_set_page_size: page size not a power of two");
151 }
152 
153 /*
154  * (low level boot)
155  *
156  * Add a new page to the freelist for use by the system.  New pages
157  * are added to both the head and tail of the associated free page
158  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
159  * requests pull 'recent' adds (higher physical addresses) first.
160  *
161  * Must be called in a critical section.
162  */
163 vm_page_t
164 vm_add_new_page(vm_paddr_t pa)
165 {
166 	struct vpgqueues *vpq;
167 	vm_page_t m;
168 
169 	++vmstats.v_page_count;
170 	++vmstats.v_free_count;
171 	m = PHYS_TO_VM_PAGE(pa);
172 	m->phys_addr = pa;
173 	m->flags = 0;
174 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
175 	m->queue = m->pc + PQ_FREE;
176 	KKASSERT(m->dirty == 0);
177 
178 	vpq = &vm_page_queues[m->queue];
179 	if (vpq->flipflop)
180 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
181 	else
182 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
183 	vpq->flipflop = 1 - vpq->flipflop;
184 
185 	vm_page_queues[m->queue].lcnt++;
186 	return (m);
187 }
188 
189 /*
190  * (low level boot)
191  *
192  * Initializes the resident memory module.
193  *
194  * Allocates memory for the page cells, and for the object/offset-to-page
195  * hash table headers.  Each page cell is initialized and placed on the
196  * free list.
197  *
198  * starta/enda represents the range of physical memory addresses available
199  * for use (skipping memory already used by the kernel), subject to
200  * phys_avail[].  Note that phys_avail[] has already mapped out memory
201  * already in use by the kernel.
202  */
203 vm_offset_t
204 vm_page_startup(vm_offset_t vaddr)
205 {
206 	vm_offset_t mapped;
207 	vm_size_t npages;
208 	vm_paddr_t page_range;
209 	vm_paddr_t new_end;
210 	int i;
211 	vm_paddr_t pa;
212 	int nblocks;
213 	vm_paddr_t last_pa;
214 	vm_paddr_t end;
215 	vm_paddr_t biggestone, biggestsize;
216 	vm_paddr_t total;
217 
218 	total = 0;
219 	biggestsize = 0;
220 	biggestone = 0;
221 	nblocks = 0;
222 	vaddr = round_page(vaddr);
223 
224 	for (i = 0; phys_avail[i + 1]; i += 2) {
225 		phys_avail[i] = round_page64(phys_avail[i]);
226 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
227 	}
228 
229 	for (i = 0; phys_avail[i + 1]; i += 2) {
230 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
231 
232 		if (size > biggestsize) {
233 			biggestone = i;
234 			biggestsize = size;
235 		}
236 		++nblocks;
237 		total += size;
238 	}
239 
240 	end = phys_avail[biggestone+1];
241 	end = trunc_page(end);
242 
243 	/*
244 	 * Initialize the queue headers for the free queue, the active queue
245 	 * and the inactive queue.
246 	 */
247 
248 	vm_page_queue_init();
249 
250 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
251 #if !defined(_KERNEL_VIRTUAL)
252 	/*
253 	 * Allocate a bitmap to indicate that a random physical page
254 	 * needs to be included in a minidump.
255 	 *
256 	 * The amd64 port needs this to indicate which direct map pages
257 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
258 	 *
259 	 * However, i386 still needs this workspace internally within the
260 	 * minidump code.  In theory, they are not needed on i386, but are
261 	 * included should the sf_buf code decide to use them.
262 	 */
263 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
264 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
265 	end -= vm_page_dump_size;
266 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
267 	    VM_PROT_READ | VM_PROT_WRITE);
268 	bzero((void *)vm_page_dump, vm_page_dump_size);
269 #endif
270 
271 	/*
272 	 * Compute the number of pages of memory that will be available for
273 	 * use (taking into account the overhead of a page structure per
274 	 * page).
275 	 */
276 	first_page = phys_avail[0] / PAGE_SIZE;
277 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
278 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
279 
280 	/*
281 	 * Initialize the mem entry structures now, and put them in the free
282 	 * queue.
283 	 */
284 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
285 	mapped = pmap_map(&vaddr, new_end, end,
286 	    VM_PROT_READ | VM_PROT_WRITE);
287 	vm_page_array = (vm_page_t)mapped;
288 
289 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
290 	/*
291 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
292 	 * we have to manually add these pages to the minidump tracking so
293 	 * that they can be dumped, including the vm_page_array.
294 	 */
295 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
296 		dump_add_page(pa);
297 #endif
298 
299 	/*
300 	 * Clear all of the page structures
301 	 */
302 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
303 	vm_page_array_size = page_range;
304 
305 	/*
306 	 * Construct the free queue(s) in ascending order (by physical
307 	 * address) so that the first 16MB of physical memory is allocated
308 	 * last rather than first.  On large-memory machines, this avoids
309 	 * the exhaustion of low physical memory before isa_dmainit has run.
310 	 */
311 	vmstats.v_page_count = 0;
312 	vmstats.v_free_count = 0;
313 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
314 		pa = phys_avail[i];
315 		if (i == biggestone)
316 			last_pa = new_end;
317 		else
318 			last_pa = phys_avail[i + 1];
319 		while (pa < last_pa && npages-- > 0) {
320 			vm_add_new_page(pa);
321 			pa += PAGE_SIZE;
322 		}
323 	}
324 	return (vaddr);
325 }
326 
327 /*
328  * Scan comparison function for Red-Black tree scans.  An inclusive
329  * (start,end) is expected.  Other fields are not used.
330  */
331 int
332 rb_vm_page_scancmp(struct vm_page *p, void *data)
333 {
334 	struct rb_vm_page_scan_info *info = data;
335 
336 	if (p->pindex < info->start_pindex)
337 		return(-1);
338 	if (p->pindex > info->end_pindex)
339 		return(1);
340 	return(0);
341 }
342 
343 int
344 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
345 {
346 	if (p1->pindex < p2->pindex)
347 		return(-1);
348 	if (p1->pindex > p2->pindex)
349 		return(1);
350 	return(0);
351 }
352 
353 /*
354  * Holding a page keeps it from being reused.  Other parts of the system
355  * can still disassociate the page from its current object and free it, or
356  * perform read or write I/O on it and/or otherwise manipulate the page,
357  * but if the page is held the VM system will leave the page and its data
358  * intact and not reuse the page for other purposes until the last hold
359  * reference is released.  (see vm_page_wire() if you want to prevent the
360  * page from being disassociated from its object too).
361  *
362  * The caller must hold vm_token.
363  *
364  * The caller must still validate the contents of the page and, if necessary,
365  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
366  * before manipulating the page.
367  */
368 void
369 vm_page_hold(vm_page_t m)
370 {
371 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
372 	++m->hold_count;
373 }
374 
375 /*
376  * The opposite of vm_page_hold().  A page can be freed while being held,
377  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
378  * in this case to actually free it once the hold count drops to 0.
379  *
380  * The caller must hold vm_token if non-blocking operation is desired,
381  * but otherwise does not need to.
382  */
383 void
384 vm_page_unhold(vm_page_t m)
385 {
386 	lwkt_gettoken(&vm_token);
387 	--m->hold_count;
388 	KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
389 	if (m->hold_count == 0 && m->queue == PQ_HOLD) {
390 		vm_page_busy(m);
391 		vm_page_free_toq(m);
392 	}
393 	lwkt_reltoken(&vm_token);
394 }
395 
396 /*
397  * Inserts the given vm_page into the object and object list.
398  *
399  * The pagetables are not updated but will presumably fault the page
400  * in if necessary, or if a kernel page the caller will at some point
401  * enter the page into the kernel's pmap.  We are not allowed to block
402  * here so we *can't* do this anyway.
403  *
404  * This routine may not block.
405  * This routine must be called with the vm_token held.
406  * This routine must be called with a critical section held.
407  */
408 void
409 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
410 {
411 	ASSERT_IN_CRIT_SECTION();
412 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
413 	if (m->object != NULL)
414 		panic("vm_page_insert: already inserted");
415 
416 	/*
417 	 * Record the object/offset pair in this page
418 	 */
419 	m->object = object;
420 	m->pindex = pindex;
421 
422 	/*
423 	 * Insert it into the object.
424 	 */
425 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
426 	object->generation++;
427 
428 	/*
429 	 * show that the object has one more resident page.
430 	 */
431 	object->resident_page_count++;
432 
433 	/*
434 	 * Since we are inserting a new and possibly dirty page,
435 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
436 	 */
437 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
438 		vm_object_set_writeable_dirty(object);
439 
440 	/*
441 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
442 	 */
443 	swap_pager_page_inserted(m);
444 }
445 
446 /*
447  * Removes the given vm_page_t from the global (object,index) hash table
448  * and from the object's memq.
449  *
450  * The underlying pmap entry (if any) is NOT removed here.
451  * This routine may not block.
452  *
453  * The page must be BUSY and will remain BUSY on return.
454  * No other requirements.
455  *
456  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
457  *	 it busy.
458  */
459 void
460 vm_page_remove(vm_page_t m)
461 {
462 	vm_object_t object;
463 
464 	crit_enter();
465 	lwkt_gettoken(&vm_token);
466 	if (m->object == NULL) {
467 		lwkt_reltoken(&vm_token);
468 		crit_exit();
469 		return;
470 	}
471 
472 	if ((m->flags & PG_BUSY) == 0)
473 		panic("vm_page_remove: page not busy");
474 
475 	object = m->object;
476 
477 	/*
478 	 * Remove the page from the object and update the object.
479 	 */
480 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
481 	object->resident_page_count--;
482 	object->generation++;
483 	m->object = NULL;
484 
485 	lwkt_reltoken(&vm_token);
486 	crit_exit();
487 }
488 
489 /*
490  * Locate and return the page at (object, pindex), or NULL if the
491  * page could not be found.
492  *
493  * The caller must hold vm_token.
494  */
495 vm_page_t
496 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
497 {
498 	vm_page_t m;
499 
500 	/*
501 	 * Search the hash table for this object/offset pair
502 	 */
503 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
504 	crit_enter();
505 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
506 	crit_exit();
507 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
508 	return(m);
509 }
510 
511 /*
512  * vm_page_rename()
513  *
514  * Move the given memory entry from its current object to the specified
515  * target object/offset.
516  *
517  * The object must be locked.
518  * This routine may not block.
519  *
520  * Note: This routine will raise itself to splvm(), the caller need not.
521  *
522  * Note: Swap associated with the page must be invalidated by the move.  We
523  *       have to do this for several reasons:  (1) we aren't freeing the
524  *       page, (2) we are dirtying the page, (3) the VM system is probably
525  *       moving the page from object A to B, and will then later move
526  *       the backing store from A to B and we can't have a conflict.
527  *
528  * Note: We *always* dirty the page.  It is necessary both for the
529  *       fact that we moved it, and because we may be invalidating
530  *	 swap.  If the page is on the cache, we have to deactivate it
531  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
532  *	 on the cache.
533  */
534 void
535 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
536 {
537 	crit_enter();
538 	lwkt_gettoken(&vm_token);
539 	vm_page_remove(m);
540 	vm_page_insert(m, new_object, new_pindex);
541 	if (m->queue - m->pc == PQ_CACHE)
542 		vm_page_deactivate(m);
543 	vm_page_dirty(m);
544 	vm_page_wakeup(m);
545 	lwkt_reltoken(&vm_token);
546 	crit_exit();
547 }
548 
549 /*
550  * vm_page_unqueue() without any wakeup.  This routine is used when a page
551  * is being moved between queues or otherwise is to remain BUSYied by the
552  * caller.
553  *
554  * The caller must hold vm_token
555  * This routine may not block.
556  */
557 void
558 vm_page_unqueue_nowakeup(vm_page_t m)
559 {
560 	int queue = m->queue;
561 	struct vpgqueues *pq;
562 
563 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
564 	if (queue != PQ_NONE) {
565 		pq = &vm_page_queues[queue];
566 		m->queue = PQ_NONE;
567 		TAILQ_REMOVE(&pq->pl, m, pageq);
568 		(*pq->cnt)--;
569 		pq->lcnt--;
570 	}
571 }
572 
573 /*
574  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
575  * if necessary.
576  *
577  * The caller must hold vm_token
578  * This routine may not block.
579  */
580 void
581 vm_page_unqueue(vm_page_t m)
582 {
583 	int queue = m->queue;
584 	struct vpgqueues *pq;
585 
586 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
587 	if (queue != PQ_NONE) {
588 		m->queue = PQ_NONE;
589 		pq = &vm_page_queues[queue];
590 		TAILQ_REMOVE(&pq->pl, m, pageq);
591 		(*pq->cnt)--;
592 		pq->lcnt--;
593 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
594 			pagedaemon_wakeup();
595 	}
596 }
597 
598 /*
599  * vm_page_list_find()
600  *
601  * Find a page on the specified queue with color optimization.
602  *
603  * The page coloring optimization attempts to locate a page that does
604  * not overload other nearby pages in the object in the cpu's L1 or L2
605  * caches.  We need this optimization because cpu caches tend to be
606  * physical caches, while object spaces tend to be virtual.
607  *
608  * Must be called with vm_token held.
609  * This routine may not block.
610  *
611  * Note that this routine is carefully inlined.  A non-inlined version
612  * is available for outside callers but the only critical path is
613  * from within this source file.
614  */
615 static __inline
616 vm_page_t
617 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
618 {
619 	vm_page_t m;
620 
621 	if (prefer_zero)
622 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
623 	else
624 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
625 	if (m == NULL)
626 		m = _vm_page_list_find2(basequeue, index);
627 	return(m);
628 }
629 
630 static vm_page_t
631 _vm_page_list_find2(int basequeue, int index)
632 {
633 	int i;
634 	vm_page_t m = NULL;
635 	struct vpgqueues *pq;
636 
637 	pq = &vm_page_queues[basequeue];
638 
639 	/*
640 	 * Note that for the first loop, index+i and index-i wind up at the
641 	 * same place.  Even though this is not totally optimal, we've already
642 	 * blown it by missing the cache case so we do not care.
643 	 */
644 
645 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
646 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
647 			break;
648 
649 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
650 			break;
651 	}
652 	return(m);
653 }
654 
655 /*
656  * Must be called with vm_token held if the caller desired non-blocking
657  * operation and a stable result.
658  */
659 vm_page_t
660 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
661 {
662 	return(_vm_page_list_find(basequeue, index, prefer_zero));
663 }
664 
665 /*
666  * Find a page on the cache queue with color optimization.  As pages
667  * might be found, but not applicable, they are deactivated.  This
668  * keeps us from using potentially busy cached pages.
669  *
670  * This routine may not block.
671  * Must be called with vm_token held.
672  */
673 vm_page_t
674 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
675 {
676 	vm_page_t m;
677 
678 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
679 	while (TRUE) {
680 		m = _vm_page_list_find(
681 		    PQ_CACHE,
682 		    (pindex + object->pg_color) & PQ_L2_MASK,
683 		    FALSE
684 		);
685 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
686 			       m->hold_count || m->wire_count)) {
687 			vm_page_deactivate(m);
688 			continue;
689 		}
690 		return m;
691 	}
692 	/* not reached */
693 }
694 
695 /*
696  * Find a free or zero page, with specified preference.  We attempt to
697  * inline the nominal case and fall back to _vm_page_select_free()
698  * otherwise.
699  *
700  * This routine must be called with a critical section held.
701  * This routine may not block.
702  */
703 static __inline vm_page_t
704 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
705 {
706 	vm_page_t m;
707 
708 	m = _vm_page_list_find(
709 		PQ_FREE,
710 		(pindex + object->pg_color) & PQ_L2_MASK,
711 		prefer_zero
712 	);
713 	return(m);
714 }
715 
716 /*
717  * vm_page_alloc()
718  *
719  * Allocate and return a memory cell associated with this VM object/offset
720  * pair.
721  *
722  *	page_req classes:
723  *
724  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
725  *	VM_ALLOC_QUICK		like normal but cannot use cache
726  *	VM_ALLOC_SYSTEM		greater free drain
727  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
728  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
729  *
730  * The object must be locked.
731  * This routine may not block.
732  * The returned page will be marked PG_BUSY
733  *
734  * Additional special handling is required when called from an interrupt
735  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
736  * in this case.
737  */
738 vm_page_t
739 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
740 {
741 	vm_page_t m = NULL;
742 
743 	crit_enter();
744 	lwkt_gettoken(&vm_token);
745 
746 	KKASSERT(object != NULL);
747 	KASSERT(!vm_page_lookup(object, pindex),
748 		("vm_page_alloc: page already allocated"));
749 	KKASSERT(page_req &
750 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
751 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
752 
753 	/*
754 	 * Certain system threads (pageout daemon, buf_daemon's) are
755 	 * allowed to eat deeper into the free page list.
756 	 */
757 	if (curthread->td_flags & TDF_SYSTHREAD)
758 		page_req |= VM_ALLOC_SYSTEM;
759 
760 loop:
761 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
762 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
763 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
764 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
765 	) {
766 		/*
767 		 * The free queue has sufficient free pages to take one out.
768 		 */
769 		if (page_req & VM_ALLOC_ZERO)
770 			m = vm_page_select_free(object, pindex, TRUE);
771 		else
772 			m = vm_page_select_free(object, pindex, FALSE);
773 	} else if (page_req & VM_ALLOC_NORMAL) {
774 		/*
775 		 * Allocatable from the cache (non-interrupt only).  On
776 		 * success, we must free the page and try again, thus
777 		 * ensuring that vmstats.v_*_free_min counters are replenished.
778 		 */
779 #ifdef INVARIANTS
780 		if (curthread->td_preempted) {
781 			kprintf("vm_page_alloc(): warning, attempt to allocate"
782 				" cache page from preempting interrupt\n");
783 			m = NULL;
784 		} else {
785 			m = vm_page_select_cache(object, pindex);
786 		}
787 #else
788 		m = vm_page_select_cache(object, pindex);
789 #endif
790 		/*
791 		 * On success move the page into the free queue and loop.
792 		 */
793 		if (m != NULL) {
794 			KASSERT(m->dirty == 0,
795 			    ("Found dirty cache page %p", m));
796 			vm_page_busy(m);
797 			vm_page_protect(m, VM_PROT_NONE);
798 			vm_page_free(m);
799 			goto loop;
800 		}
801 
802 		/*
803 		 * On failure return NULL
804 		 */
805 		lwkt_reltoken(&vm_token);
806 		crit_exit();
807 #if defined(DIAGNOSTIC)
808 		if (vmstats.v_cache_count > 0)
809 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
810 #endif
811 		vm_pageout_deficit++;
812 		pagedaemon_wakeup();
813 		return (NULL);
814 	} else {
815 		/*
816 		 * No pages available, wakeup the pageout daemon and give up.
817 		 */
818 		lwkt_reltoken(&vm_token);
819 		crit_exit();
820 		vm_pageout_deficit++;
821 		pagedaemon_wakeup();
822 		return (NULL);
823 	}
824 
825 	/*
826 	 * Good page found.  The page has not yet been busied.  We are in
827 	 * a critical section.
828 	 */
829 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
830 	KASSERT(m->dirty == 0,
831 		("vm_page_alloc: free/cache page %p was dirty", m));
832 
833 	/*
834 	 * Remove from free queue
835 	 */
836 	vm_page_unqueue_nowakeup(m);
837 
838 	/*
839 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
840 	 * the page PG_BUSY
841 	 */
842 	if (m->flags & PG_ZERO) {
843 		vm_page_zero_count--;
844 		m->flags = PG_ZERO | PG_BUSY;
845 	} else {
846 		m->flags = PG_BUSY;
847 	}
848 	m->wire_count = 0;
849 	m->hold_count = 0;
850 	m->act_count = 0;
851 	m->busy = 0;
852 	m->valid = 0;
853 
854 	/*
855 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
856 	 * inserting a page here does not insert it into the pmap (which
857 	 * could cause us to block allocating memory).  We cannot block
858 	 * anywhere.
859 	 */
860 	vm_page_insert(m, object, pindex);
861 
862 	/*
863 	 * Don't wakeup too often - wakeup the pageout daemon when
864 	 * we would be nearly out of memory.
865 	 */
866 	pagedaemon_wakeup();
867 
868 	lwkt_reltoken(&vm_token);
869 	crit_exit();
870 
871 	/*
872 	 * A PG_BUSY page is returned.
873 	 */
874 	return (m);
875 }
876 
877 /*
878  * Wait for sufficient free memory for nominal heavy memory use kernel
879  * operations.
880  */
881 void
882 vm_wait_nominal(void)
883 {
884 	while (vm_page_count_min(0))
885 		vm_wait(0);
886 }
887 
888 /*
889  * Test if vm_wait_nominal() would block.
890  */
891 int
892 vm_test_nominal(void)
893 {
894 	if (vm_page_count_min(0))
895 		return(1);
896 	return(0);
897 }
898 
899 /*
900  * Block until free pages are available for allocation, called in various
901  * places before memory allocations.
902  */
903 void
904 vm_wait(int timo)
905 {
906 	crit_enter();
907 	lwkt_gettoken(&vm_token);
908 	if (curthread == pagethread) {
909 		vm_pageout_pages_needed = 1;
910 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
911 	} else {
912 		if (vm_pages_needed == 0) {
913 			vm_pages_needed = 1;
914 			wakeup(&vm_pages_needed);
915 		}
916 		tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
917 	}
918 	lwkt_reltoken(&vm_token);
919 	crit_exit();
920 }
921 
922 /*
923  * Block until free pages are available for allocation
924  *
925  * Called only in vm_fault so that processes page faulting can be
926  * easily tracked.
927  */
928 void
929 vm_waitpfault(void)
930 {
931 	crit_enter();
932 	lwkt_gettoken(&vm_token);
933 	if (vm_pages_needed == 0) {
934 		vm_pages_needed = 1;
935 		wakeup(&vm_pages_needed);
936 	}
937 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
938 	lwkt_reltoken(&vm_token);
939 	crit_exit();
940 }
941 
942 /*
943  * Put the specified page on the active list (if appropriate).  Ensure
944  * that act_count is at least ACT_INIT but do not otherwise mess with it.
945  *
946  * The page queues must be locked.
947  * This routine may not block.
948  */
949 void
950 vm_page_activate(vm_page_t m)
951 {
952 	crit_enter();
953 	lwkt_gettoken(&vm_token);
954 	if (m->queue != PQ_ACTIVE) {
955 		if ((m->queue - m->pc) == PQ_CACHE)
956 			mycpu->gd_cnt.v_reactivated++;
957 
958 		vm_page_unqueue(m);
959 
960 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
961 			m->queue = PQ_ACTIVE;
962 			vm_page_queues[PQ_ACTIVE].lcnt++;
963 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
964 					    m, pageq);
965 			if (m->act_count < ACT_INIT)
966 				m->act_count = ACT_INIT;
967 			vmstats.v_active_count++;
968 		}
969 	} else {
970 		if (m->act_count < ACT_INIT)
971 			m->act_count = ACT_INIT;
972 	}
973 	lwkt_reltoken(&vm_token);
974 	crit_exit();
975 }
976 
977 /*
978  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
979  * routine is called when a page has been added to the cache or free
980  * queues.
981  *
982  * This routine may not block.
983  * This routine must be called at splvm()
984  */
985 static __inline void
986 vm_page_free_wakeup(void)
987 {
988 	/*
989 	 * if pageout daemon needs pages, then tell it that there are
990 	 * some free.
991 	 */
992 	if (vm_pageout_pages_needed &&
993 	    vmstats.v_cache_count + vmstats.v_free_count >=
994 	    vmstats.v_pageout_free_min
995 	) {
996 		wakeup(&vm_pageout_pages_needed);
997 		vm_pageout_pages_needed = 0;
998 	}
999 
1000 	/*
1001 	 * wakeup processes that are waiting on memory if we hit a
1002 	 * high water mark. And wakeup scheduler process if we have
1003 	 * lots of memory. this process will swapin processes.
1004 	 */
1005 	if (vm_pages_needed && !vm_page_count_min(0)) {
1006 		vm_pages_needed = 0;
1007 		wakeup(&vmstats.v_free_count);
1008 	}
1009 }
1010 
1011 /*
1012  *	vm_page_free_toq:
1013  *
1014  *	Returns the given page to the PQ_FREE list, disassociating it with
1015  *	any VM object.
1016  *
1017  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1018  *	return (the page will have been freed).  No particular spl is required
1019  *	on entry.
1020  *
1021  *	This routine may not block.
1022  */
1023 void
1024 vm_page_free_toq(vm_page_t m)
1025 {
1026 	struct vpgqueues *pq;
1027 
1028 	crit_enter();
1029 	lwkt_gettoken(&vm_token);
1030 	mycpu->gd_cnt.v_tfree++;
1031 
1032 	KKASSERT((m->flags & PG_MAPPED) == 0);
1033 
1034 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1035 		kprintf(
1036 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1037 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1038 		    m->hold_count);
1039 		if ((m->queue - m->pc) == PQ_FREE)
1040 			panic("vm_page_free: freeing free page");
1041 		else
1042 			panic("vm_page_free: freeing busy page");
1043 	}
1044 
1045 	/*
1046 	 * unqueue, then remove page.  Note that we cannot destroy
1047 	 * the page here because we do not want to call the pager's
1048 	 * callback routine until after we've put the page on the
1049 	 * appropriate free queue.
1050 	 */
1051 	vm_page_unqueue_nowakeup(m);
1052 	vm_page_remove(m);
1053 
1054 	/*
1055 	 * No further management of fictitious pages occurs beyond object
1056 	 * and queue removal.
1057 	 */
1058 	if ((m->flags & PG_FICTITIOUS) != 0) {
1059 		vm_page_wakeup(m);
1060 		lwkt_reltoken(&vm_token);
1061 		crit_exit();
1062 		return;
1063 	}
1064 
1065 	m->valid = 0;
1066 	vm_page_undirty(m);
1067 
1068 	if (m->wire_count != 0) {
1069 		if (m->wire_count > 1) {
1070 		    panic(
1071 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1072 			m->wire_count, (long)m->pindex);
1073 		}
1074 		panic("vm_page_free: freeing wired page");
1075 	}
1076 
1077 	/*
1078 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1079 	 */
1080 	if (m->flags & PG_UNMANAGED) {
1081 	    m->flags &= ~PG_UNMANAGED;
1082 	}
1083 
1084 	if (m->hold_count != 0) {
1085 		m->flags &= ~PG_ZERO;
1086 		m->queue = PQ_HOLD;
1087 	} else {
1088 		m->queue = PQ_FREE + m->pc;
1089 	}
1090 	pq = &vm_page_queues[m->queue];
1091 	pq->lcnt++;
1092 	++(*pq->cnt);
1093 
1094 	/*
1095 	 * Put zero'd pages on the end ( where we look for zero'd pages
1096 	 * first ) and non-zerod pages at the head.
1097 	 */
1098 	if (m->flags & PG_ZERO) {
1099 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1100 		++vm_page_zero_count;
1101 	} else {
1102 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1103 	}
1104 	vm_page_wakeup(m);
1105 	vm_page_free_wakeup();
1106 	lwkt_reltoken(&vm_token);
1107 	crit_exit();
1108 }
1109 
1110 /*
1111  * vm_page_free_fromq_fast()
1112  *
1113  * Remove a non-zero page from one of the free queues; the page is removed for
1114  * zeroing, so do not issue a wakeup.
1115  *
1116  * MPUNSAFE
1117  */
1118 vm_page_t
1119 vm_page_free_fromq_fast(void)
1120 {
1121 	static int qi;
1122 	vm_page_t m;
1123 	int i;
1124 
1125 	crit_enter();
1126 	lwkt_gettoken(&vm_token);
1127 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1128 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1129 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1130 		if (m && (m->flags & PG_ZERO) == 0) {
1131 			vm_page_unqueue_nowakeup(m);
1132 			vm_page_busy(m);
1133 			break;
1134 		}
1135 		m = NULL;
1136 	}
1137 	lwkt_reltoken(&vm_token);
1138 	crit_exit();
1139 	return (m);
1140 }
1141 
1142 /*
1143  * vm_page_unmanage()
1144  *
1145  * Prevent PV management from being done on the page.  The page is
1146  * removed from the paging queues as if it were wired, and as a
1147  * consequence of no longer being managed the pageout daemon will not
1148  * touch it (since there is no way to locate the pte mappings for the
1149  * page).  madvise() calls that mess with the pmap will also no longer
1150  * operate on the page.
1151  *
1152  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1153  * will clear the flag.
1154  *
1155  * This routine is used by OBJT_PHYS objects - objects using unswappable
1156  * physical memory as backing store rather then swap-backed memory and
1157  * will eventually be extended to support 4MB unmanaged physical
1158  * mappings.
1159  *
1160  * Must be called with a critical section held.
1161  * Must be called with vm_token held.
1162  */
1163 void
1164 vm_page_unmanage(vm_page_t m)
1165 {
1166 	ASSERT_IN_CRIT_SECTION();
1167 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1168 	if ((m->flags & PG_UNMANAGED) == 0) {
1169 		if (m->wire_count == 0)
1170 			vm_page_unqueue(m);
1171 	}
1172 	vm_page_flag_set(m, PG_UNMANAGED);
1173 }
1174 
1175 /*
1176  * Mark this page as wired down by yet another map, removing it from
1177  * paging queues as necessary.
1178  *
1179  * The page queues must be locked.
1180  * This routine may not block.
1181  */
1182 void
1183 vm_page_wire(vm_page_t m)
1184 {
1185 	/*
1186 	 * Only bump the wire statistics if the page is not already wired,
1187 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1188 	 * it is already off the queues).  Don't do anything with fictitious
1189 	 * pages because they are always wired.
1190 	 */
1191 	crit_enter();
1192 	lwkt_gettoken(&vm_token);
1193 	if ((m->flags & PG_FICTITIOUS) == 0) {
1194 		if (m->wire_count == 0) {
1195 			if ((m->flags & PG_UNMANAGED) == 0)
1196 				vm_page_unqueue(m);
1197 			vmstats.v_wire_count++;
1198 		}
1199 		m->wire_count++;
1200 		KASSERT(m->wire_count != 0,
1201 			("vm_page_wire: wire_count overflow m=%p", m));
1202 	}
1203 	lwkt_reltoken(&vm_token);
1204 	crit_exit();
1205 }
1206 
1207 /*
1208  * Release one wiring of this page, potentially enabling it to be paged again.
1209  *
1210  * Many pages placed on the inactive queue should actually go
1211  * into the cache, but it is difficult to figure out which.  What
1212  * we do instead, if the inactive target is well met, is to put
1213  * clean pages at the head of the inactive queue instead of the tail.
1214  * This will cause them to be moved to the cache more quickly and
1215  * if not actively re-referenced, freed more quickly.  If we just
1216  * stick these pages at the end of the inactive queue, heavy filesystem
1217  * meta-data accesses can cause an unnecessary paging load on memory bound
1218  * processes.  This optimization causes one-time-use metadata to be
1219  * reused more quickly.
1220  *
1221  * BUT, if we are in a low-memory situation we have no choice but to
1222  * put clean pages on the cache queue.
1223  *
1224  * A number of routines use vm_page_unwire() to guarantee that the page
1225  * will go into either the inactive or active queues, and will NEVER
1226  * be placed in the cache - for example, just after dirtying a page.
1227  * dirty pages in the cache are not allowed.
1228  *
1229  * The page queues must be locked.
1230  * This routine may not block.
1231  */
1232 void
1233 vm_page_unwire(vm_page_t m, int activate)
1234 {
1235 	crit_enter();
1236 	lwkt_gettoken(&vm_token);
1237 	if (m->flags & PG_FICTITIOUS) {
1238 		/* do nothing */
1239 	} else if (m->wire_count <= 0) {
1240 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1241 	} else {
1242 		if (--m->wire_count == 0) {
1243 			--vmstats.v_wire_count;
1244 			if (m->flags & PG_UNMANAGED) {
1245 				;
1246 			} else if (activate) {
1247 				TAILQ_INSERT_TAIL(
1248 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1249 				m->queue = PQ_ACTIVE;
1250 				vm_page_queues[PQ_ACTIVE].lcnt++;
1251 				vmstats.v_active_count++;
1252 			} else {
1253 				vm_page_flag_clear(m, PG_WINATCFLS);
1254 				TAILQ_INSERT_TAIL(
1255 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1256 				m->queue = PQ_INACTIVE;
1257 				vm_page_queues[PQ_INACTIVE].lcnt++;
1258 				vmstats.v_inactive_count++;
1259 				++vm_swapcache_inactive_heuristic;
1260 			}
1261 		}
1262 	}
1263 	lwkt_reltoken(&vm_token);
1264 	crit_exit();
1265 }
1266 
1267 
1268 /*
1269  * Move the specified page to the inactive queue.  If the page has
1270  * any associated swap, the swap is deallocated.
1271  *
1272  * Normally athead is 0 resulting in LRU operation.  athead is set
1273  * to 1 if we want this page to be 'as if it were placed in the cache',
1274  * except without unmapping it from the process address space.
1275  *
1276  * This routine may not block.
1277  * The caller must hold vm_token.
1278  */
1279 static __inline void
1280 _vm_page_deactivate(vm_page_t m, int athead)
1281 {
1282 	/*
1283 	 * Ignore if already inactive.
1284 	 */
1285 	if (m->queue == PQ_INACTIVE)
1286 		return;
1287 
1288 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1289 		if ((m->queue - m->pc) == PQ_CACHE)
1290 			mycpu->gd_cnt.v_reactivated++;
1291 		vm_page_flag_clear(m, PG_WINATCFLS);
1292 		vm_page_unqueue(m);
1293 		if (athead) {
1294 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1295 					  m, pageq);
1296 		} else {
1297 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1298 					  m, pageq);
1299 			++vm_swapcache_inactive_heuristic;
1300 		}
1301 		m->queue = PQ_INACTIVE;
1302 		vm_page_queues[PQ_INACTIVE].lcnt++;
1303 		vmstats.v_inactive_count++;
1304 	}
1305 }
1306 
1307 /*
1308  * Attempt to deactivate a page.
1309  *
1310  * No requirements.
1311  */
1312 void
1313 vm_page_deactivate(vm_page_t m)
1314 {
1315 	crit_enter();
1316 	lwkt_gettoken(&vm_token);
1317 	_vm_page_deactivate(m, 0);
1318 	lwkt_reltoken(&vm_token);
1319 	crit_exit();
1320 }
1321 
1322 /*
1323  * Attempt to move a page to PQ_CACHE.
1324  * Returns 0 on failure, 1 on success
1325  *
1326  * No requirements.
1327  */
1328 int
1329 vm_page_try_to_cache(vm_page_t m)
1330 {
1331 	crit_enter();
1332 	lwkt_gettoken(&vm_token);
1333 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1334 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1335 		lwkt_reltoken(&vm_token);
1336 		crit_exit();
1337 		return(0);
1338 	}
1339 	vm_page_test_dirty(m);
1340 	if (m->dirty) {
1341 		lwkt_reltoken(&vm_token);
1342 		crit_exit();
1343 		return(0);
1344 	}
1345 	vm_page_cache(m);
1346 	lwkt_reltoken(&vm_token);
1347 	crit_exit();
1348 	return(1);
1349 }
1350 
1351 /*
1352  * Attempt to free the page.  If we cannot free it, we do nothing.
1353  * 1 is returned on success, 0 on failure.
1354  *
1355  * No requirements.
1356  */
1357 int
1358 vm_page_try_to_free(vm_page_t m)
1359 {
1360 	crit_enter();
1361 	lwkt_gettoken(&vm_token);
1362 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1363 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1364 		lwkt_reltoken(&vm_token);
1365 		crit_exit();
1366 		return(0);
1367 	}
1368 	vm_page_test_dirty(m);
1369 	if (m->dirty) {
1370 		lwkt_reltoken(&vm_token);
1371 		crit_exit();
1372 		return(0);
1373 	}
1374 	vm_page_busy(m);
1375 	vm_page_protect(m, VM_PROT_NONE);
1376 	vm_page_free(m);
1377 	lwkt_reltoken(&vm_token);
1378 	crit_exit();
1379 	return(1);
1380 }
1381 
1382 /*
1383  * vm_page_cache
1384  *
1385  * Put the specified page onto the page cache queue (if appropriate).
1386  *
1387  * The caller must hold vm_token.
1388  * This routine may not block.
1389  */
1390 void
1391 vm_page_cache(vm_page_t m)
1392 {
1393 	ASSERT_IN_CRIT_SECTION();
1394 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1395 
1396 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1397 			m->wire_count || m->hold_count) {
1398 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1399 		return;
1400 	}
1401 
1402 	/*
1403 	 * Already in the cache (and thus not mapped)
1404 	 */
1405 	if ((m->queue - m->pc) == PQ_CACHE) {
1406 		KKASSERT((m->flags & PG_MAPPED) == 0);
1407 		return;
1408 	}
1409 
1410 	/*
1411 	 * Caller is required to test m->dirty, but note that the act of
1412 	 * removing the page from its maps can cause it to become dirty
1413 	 * on an SMP system due to another cpu running in usermode.
1414 	 */
1415 	if (m->dirty) {
1416 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1417 			(long)m->pindex);
1418 	}
1419 
1420 	/*
1421 	 * Remove all pmaps and indicate that the page is not
1422 	 * writeable or mapped.  Our vm_page_protect() call may
1423 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1424 	 * everything.
1425 	 */
1426 	vm_page_busy(m);
1427 	vm_page_protect(m, VM_PROT_NONE);
1428 	vm_page_wakeup(m);
1429 	if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1430 			m->wire_count || m->hold_count) {
1431 		/* do nothing */
1432 	} else if (m->dirty) {
1433 		vm_page_deactivate(m);
1434 	} else {
1435 		vm_page_unqueue_nowakeup(m);
1436 		m->queue = PQ_CACHE + m->pc;
1437 		vm_page_queues[m->queue].lcnt++;
1438 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1439 		vmstats.v_cache_count++;
1440 		vm_page_free_wakeup();
1441 	}
1442 }
1443 
1444 /*
1445  * vm_page_dontneed()
1446  *
1447  * Cache, deactivate, or do nothing as appropriate.  This routine
1448  * is typically used by madvise() MADV_DONTNEED.
1449  *
1450  * Generally speaking we want to move the page into the cache so
1451  * it gets reused quickly.  However, this can result in a silly syndrome
1452  * due to the page recycling too quickly.  Small objects will not be
1453  * fully cached.  On the otherhand, if we move the page to the inactive
1454  * queue we wind up with a problem whereby very large objects
1455  * unnecessarily blow away our inactive and cache queues.
1456  *
1457  * The solution is to move the pages based on a fixed weighting.  We
1458  * either leave them alone, deactivate them, or move them to the cache,
1459  * where moving them to the cache has the highest weighting.
1460  * By forcing some pages into other queues we eventually force the
1461  * system to balance the queues, potentially recovering other unrelated
1462  * space from active.  The idea is to not force this to happen too
1463  * often.
1464  *
1465  * No requirements.
1466  */
1467 void
1468 vm_page_dontneed(vm_page_t m)
1469 {
1470 	static int dnweight;
1471 	int dnw;
1472 	int head;
1473 
1474 	dnw = ++dnweight;
1475 
1476 	/*
1477 	 * occassionally leave the page alone
1478 	 */
1479 	crit_enter();
1480 	lwkt_gettoken(&vm_token);
1481 	if ((dnw & 0x01F0) == 0 ||
1482 	    m->queue == PQ_INACTIVE ||
1483 	    m->queue - m->pc == PQ_CACHE
1484 	) {
1485 		if (m->act_count >= ACT_INIT)
1486 			--m->act_count;
1487 		lwkt_reltoken(&vm_token);
1488 		crit_exit();
1489 		return;
1490 	}
1491 
1492 	if (m->dirty == 0)
1493 		vm_page_test_dirty(m);
1494 
1495 	if (m->dirty || (dnw & 0x0070) == 0) {
1496 		/*
1497 		 * Deactivate the page 3 times out of 32.
1498 		 */
1499 		head = 0;
1500 	} else {
1501 		/*
1502 		 * Cache the page 28 times out of every 32.  Note that
1503 		 * the page is deactivated instead of cached, but placed
1504 		 * at the head of the queue instead of the tail.
1505 		 */
1506 		head = 1;
1507 	}
1508 	_vm_page_deactivate(m, head);
1509 	lwkt_reltoken(&vm_token);
1510 	crit_exit();
1511 }
1512 
1513 /*
1514  * Grab a page, blocking if it is busy and allocating a page if necessary.
1515  * A busy page is returned or NULL.
1516  *
1517  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1518  * If VM_ALLOC_RETRY is not specified
1519  *
1520  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1521  * always returned if we had blocked.
1522  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1523  * This routine may not be called from an interrupt.
1524  * The returned page may not be entirely valid.
1525  *
1526  * This routine may be called from mainline code without spl protection and
1527  * be guarenteed a busied page associated with the object at the specified
1528  * index.
1529  *
1530  * No requirements.
1531  */
1532 vm_page_t
1533 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1534 {
1535 	vm_page_t m;
1536 	int generation;
1537 
1538 	KKASSERT(allocflags &
1539 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1540 	crit_enter();
1541 	lwkt_gettoken(&vm_token);
1542 retrylookup:
1543 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1544 		if (m->busy || (m->flags & PG_BUSY)) {
1545 			generation = object->generation;
1546 
1547 			while ((object->generation == generation) &&
1548 					(m->busy || (m->flags & PG_BUSY))) {
1549 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1550 				tsleep(m, 0, "pgrbwt", 0);
1551 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1552 					m = NULL;
1553 					goto done;
1554 				}
1555 			}
1556 			goto retrylookup;
1557 		} else {
1558 			vm_page_busy(m);
1559 			goto done;
1560 		}
1561 	}
1562 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1563 	if (m == NULL) {
1564 		vm_wait(0);
1565 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1566 			goto done;
1567 		goto retrylookup;
1568 	}
1569 done:
1570 	lwkt_reltoken(&vm_token);
1571 	crit_exit();
1572 	return(m);
1573 }
1574 
1575 /*
1576  * Mapping function for valid bits or for dirty bits in
1577  * a page.  May not block.
1578  *
1579  * Inputs are required to range within a page.
1580  *
1581  * No requirements.
1582  * Non blocking.
1583  */
1584 int
1585 vm_page_bits(int base, int size)
1586 {
1587 	int first_bit;
1588 	int last_bit;
1589 
1590 	KASSERT(
1591 	    base + size <= PAGE_SIZE,
1592 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1593 	);
1594 
1595 	if (size == 0)		/* handle degenerate case */
1596 		return(0);
1597 
1598 	first_bit = base >> DEV_BSHIFT;
1599 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1600 
1601 	return ((2 << last_bit) - (1 << first_bit));
1602 }
1603 
1604 /*
1605  * Sets portions of a page valid and clean.  The arguments are expected
1606  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1607  * of any partial chunks touched by the range.  The invalid portion of
1608  * such chunks will be zero'd.
1609  *
1610  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1611  *	 align base to DEV_BSIZE so as not to mark clean a partially
1612  *	 truncated device block.  Otherwise the dirty page status might be
1613  *	 lost.
1614  *
1615  * This routine may not block.
1616  *
1617  * (base + size) must be less then or equal to PAGE_SIZE.
1618  */
1619 static void
1620 _vm_page_zero_valid(vm_page_t m, int base, int size)
1621 {
1622 	int frag;
1623 	int endoff;
1624 
1625 	if (size == 0)	/* handle degenerate case */
1626 		return;
1627 
1628 	/*
1629 	 * If the base is not DEV_BSIZE aligned and the valid
1630 	 * bit is clear, we have to zero out a portion of the
1631 	 * first block.
1632 	 */
1633 
1634 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1635 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1636 	) {
1637 		pmap_zero_page_area(
1638 		    VM_PAGE_TO_PHYS(m),
1639 		    frag,
1640 		    base - frag
1641 		);
1642 	}
1643 
1644 	/*
1645 	 * If the ending offset is not DEV_BSIZE aligned and the
1646 	 * valid bit is clear, we have to zero out a portion of
1647 	 * the last block.
1648 	 */
1649 
1650 	endoff = base + size;
1651 
1652 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1653 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1654 	) {
1655 		pmap_zero_page_area(
1656 		    VM_PAGE_TO_PHYS(m),
1657 		    endoff,
1658 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1659 		);
1660 	}
1661 }
1662 
1663 /*
1664  * Set valid, clear dirty bits.  If validating the entire
1665  * page we can safely clear the pmap modify bit.  We also
1666  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1667  * takes a write fault on a MAP_NOSYNC memory area the flag will
1668  * be set again.
1669  *
1670  * We set valid bits inclusive of any overlap, but we can only
1671  * clear dirty bits for DEV_BSIZE chunks that are fully within
1672  * the range.
1673  *
1674  * Page must be busied?
1675  * No other requirements.
1676  */
1677 void
1678 vm_page_set_valid(vm_page_t m, int base, int size)
1679 {
1680 	_vm_page_zero_valid(m, base, size);
1681 	m->valid |= vm_page_bits(base, size);
1682 }
1683 
1684 
1685 /*
1686  * Set valid bits and clear dirty bits.
1687  *
1688  * NOTE: This function does not clear the pmap modified bit.
1689  *	 Also note that e.g. NFS may use a byte-granular base
1690  *	 and size.
1691  *
1692  * Page must be busied?
1693  * No other requirements.
1694  */
1695 void
1696 vm_page_set_validclean(vm_page_t m, int base, int size)
1697 {
1698 	int pagebits;
1699 
1700 	_vm_page_zero_valid(m, base, size);
1701 	pagebits = vm_page_bits(base, size);
1702 	m->valid |= pagebits;
1703 	m->dirty &= ~pagebits;
1704 	if (base == 0 && size == PAGE_SIZE) {
1705 		/*pmap_clear_modify(m);*/
1706 		vm_page_flag_clear(m, PG_NOSYNC);
1707 	}
1708 }
1709 
1710 /*
1711  * Set valid & dirty.  Used by buwrite()
1712  *
1713  * Page must be busied?
1714  * No other requirements.
1715  */
1716 void
1717 vm_page_set_validdirty(vm_page_t m, int base, int size)
1718 {
1719 	int pagebits;
1720 
1721 	pagebits = vm_page_bits(base, size);
1722 	m->valid |= pagebits;
1723 	m->dirty |= pagebits;
1724 	if (m->object)
1725 		vm_object_set_writeable_dirty(m->object);
1726 }
1727 
1728 /*
1729  * Clear dirty bits.
1730  *
1731  * NOTE: This function does not clear the pmap modified bit.
1732  *	 Also note that e.g. NFS may use a byte-granular base
1733  *	 and size.
1734  *
1735  * Page must be busied?
1736  * No other requirements.
1737  */
1738 void
1739 vm_page_clear_dirty(vm_page_t m, int base, int size)
1740 {
1741 	m->dirty &= ~vm_page_bits(base, size);
1742 	if (base == 0 && size == PAGE_SIZE) {
1743 		/*pmap_clear_modify(m);*/
1744 		vm_page_flag_clear(m, PG_NOSYNC);
1745 	}
1746 }
1747 
1748 /*
1749  * Make the page all-dirty.
1750  *
1751  * Also make sure the related object and vnode reflect the fact that the
1752  * object may now contain a dirty page.
1753  *
1754  * Page must be busied?
1755  * No other requirements.
1756  */
1757 void
1758 vm_page_dirty(vm_page_t m)
1759 {
1760 #ifdef INVARIANTS
1761         int pqtype = m->queue - m->pc;
1762 #endif
1763         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1764                 ("vm_page_dirty: page in free/cache queue!"));
1765 	if (m->dirty != VM_PAGE_BITS_ALL) {
1766 		m->dirty = VM_PAGE_BITS_ALL;
1767 		if (m->object)
1768 			vm_object_set_writeable_dirty(m->object);
1769 	}
1770 }
1771 
1772 /*
1773  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1774  * valid and dirty bits for the effected areas are cleared.
1775  *
1776  * Page must be busied?
1777  * Does not block.
1778  * No other requirements.
1779  */
1780 void
1781 vm_page_set_invalid(vm_page_t m, int base, int size)
1782 {
1783 	int bits;
1784 
1785 	bits = vm_page_bits(base, size);
1786 	m->valid &= ~bits;
1787 	m->dirty &= ~bits;
1788 	m->object->generation++;
1789 }
1790 
1791 /*
1792  * The kernel assumes that the invalid portions of a page contain
1793  * garbage, but such pages can be mapped into memory by user code.
1794  * When this occurs, we must zero out the non-valid portions of the
1795  * page so user code sees what it expects.
1796  *
1797  * Pages are most often semi-valid when the end of a file is mapped
1798  * into memory and the file's size is not page aligned.
1799  *
1800  * Page must be busied?
1801  * No other requirements.
1802  */
1803 void
1804 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1805 {
1806 	int b;
1807 	int i;
1808 
1809 	/*
1810 	 * Scan the valid bits looking for invalid sections that
1811 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1812 	 * valid bit may be set ) have already been zerod by
1813 	 * vm_page_set_validclean().
1814 	 */
1815 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1816 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1817 		    (m->valid & (1 << i))
1818 		) {
1819 			if (i > b) {
1820 				pmap_zero_page_area(
1821 				    VM_PAGE_TO_PHYS(m),
1822 				    b << DEV_BSHIFT,
1823 				    (i - b) << DEV_BSHIFT
1824 				);
1825 			}
1826 			b = i + 1;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * setvalid is TRUE when we can safely set the zero'd areas
1832 	 * as being valid.  We can do this if there are no cache consistency
1833 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1834 	 */
1835 	if (setvalid)
1836 		m->valid = VM_PAGE_BITS_ALL;
1837 }
1838 
1839 /*
1840  * Is a (partial) page valid?  Note that the case where size == 0
1841  * will return FALSE in the degenerate case where the page is entirely
1842  * invalid, and TRUE otherwise.
1843  *
1844  * Does not block.
1845  * No other requirements.
1846  */
1847 int
1848 vm_page_is_valid(vm_page_t m, int base, int size)
1849 {
1850 	int bits = vm_page_bits(base, size);
1851 
1852 	if (m->valid && ((m->valid & bits) == bits))
1853 		return 1;
1854 	else
1855 		return 0;
1856 }
1857 
1858 /*
1859  * update dirty bits from pmap/mmu.  May not block.
1860  *
1861  * Caller must hold vm_token if non-blocking operation desired.
1862  * No other requirements.
1863  */
1864 void
1865 vm_page_test_dirty(vm_page_t m)
1866 {
1867 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1868 		vm_page_dirty(m);
1869 	}
1870 }
1871 
1872 /*
1873  * Issue an event on a VM page.  Corresponding action structures are
1874  * removed from the page's list and called.
1875  */
1876 void
1877 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1878 {
1879 	struct vm_page_action *scan, *next;
1880 
1881 	LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1882 		if (scan->event == event) {
1883 			scan->event = VMEVENT_NONE;
1884 			LIST_REMOVE(scan, entry);
1885 			scan->func(m, scan);
1886 		}
1887 	}
1888 }
1889 
1890 
1891 #include "opt_ddb.h"
1892 #ifdef DDB
1893 #include <sys/kernel.h>
1894 
1895 #include <ddb/ddb.h>
1896 
1897 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1898 {
1899 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1900 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1901 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1902 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1903 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1904 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1905 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1906 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1907 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1908 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1909 }
1910 
1911 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1912 {
1913 	int i;
1914 	db_printf("PQ_FREE:");
1915 	for(i=0;i<PQ_L2_SIZE;i++) {
1916 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1917 	}
1918 	db_printf("\n");
1919 
1920 	db_printf("PQ_CACHE:");
1921 	for(i=0;i<PQ_L2_SIZE;i++) {
1922 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1923 	}
1924 	db_printf("\n");
1925 
1926 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1927 		vm_page_queues[PQ_ACTIVE].lcnt,
1928 		vm_page_queues[PQ_INACTIVE].lcnt);
1929 }
1930 #endif /* DDB */
1931