1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 95 #include <vm/vm_page2.h> 96 #include <sys/spinlock2.h> 97 98 #define VMACTION_HSIZE 256 99 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 100 101 static void vm_page_queue_init(void); 102 static void vm_page_free_wakeup(void); 103 static vm_page_t vm_page_select_cache(u_short pg_color); 104 static vm_page_t _vm_page_list_find2(int basequeue, int index); 105 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 106 107 /* 108 * Array of tailq lists 109 */ 110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 111 112 LIST_HEAD(vm_page_action_list, vm_page_action); 113 struct vm_page_action_list action_list[VMACTION_HSIZE]; 114 static volatile int vm_pages_waiting; 115 116 static struct alist vm_contig_alist; 117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 119 120 static u_long vm_dma_reserved = 0; 121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 123 "Memory reserved for DMA"); 124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 125 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 126 127 static int vm_contig_verbose = 0; 128 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 129 130 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 131 vm_pindex_t, pindex); 132 133 static void 134 vm_page_queue_init(void) 135 { 136 int i; 137 138 for (i = 0; i < PQ_L2_SIZE; i++) 139 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 140 for (i = 0; i < PQ_L2_SIZE; i++) 141 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 142 for (i = 0; i < PQ_L2_SIZE; i++) 143 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 144 for (i = 0; i < PQ_L2_SIZE; i++) 145 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 146 for (i = 0; i < PQ_L2_SIZE; i++) 147 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 148 /* PQ_NONE has no queue */ 149 150 for (i = 0; i < PQ_COUNT; i++) { 151 TAILQ_INIT(&vm_page_queues[i].pl); 152 spin_init(&vm_page_queues[i].spin); 153 } 154 155 for (i = 0; i < VMACTION_HSIZE; i++) 156 LIST_INIT(&action_list[i]); 157 } 158 159 /* 160 * note: place in initialized data section? Is this necessary? 161 */ 162 long first_page = 0; 163 int vm_page_array_size = 0; 164 int vm_page_zero_count = 0; 165 vm_page_t vm_page_array = NULL; 166 vm_paddr_t vm_low_phys_reserved; 167 168 /* 169 * (low level boot) 170 * 171 * Sets the page size, perhaps based upon the memory size. 172 * Must be called before any use of page-size dependent functions. 173 */ 174 void 175 vm_set_page_size(void) 176 { 177 if (vmstats.v_page_size == 0) 178 vmstats.v_page_size = PAGE_SIZE; 179 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 180 panic("vm_set_page_size: page size not a power of two"); 181 } 182 183 /* 184 * (low level boot) 185 * 186 * Add a new page to the freelist for use by the system. New pages 187 * are added to both the head and tail of the associated free page 188 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 189 * requests pull 'recent' adds (higher physical addresses) first. 190 * 191 * Beware that the page zeroing daemon will also be running soon after 192 * boot, moving pages from the head to the tail of the PQ_FREE queues. 193 * 194 * Must be called in a critical section. 195 */ 196 static void 197 vm_add_new_page(vm_paddr_t pa) 198 { 199 struct vpgqueues *vpq; 200 vm_page_t m; 201 202 m = PHYS_TO_VM_PAGE(pa); 203 m->phys_addr = pa; 204 m->flags = 0; 205 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 206 /* 207 * Twist for cpu localization in addition to page coloring, so 208 * different cpus selecting by m->queue get different page colors. 209 */ 210 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 211 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 212 /* 213 * Reserve a certain number of contiguous low memory pages for 214 * contigmalloc() to use. 215 */ 216 if (pa < vm_low_phys_reserved) { 217 atomic_add_int(&vmstats.v_page_count, 1); 218 atomic_add_int(&vmstats.v_dma_pages, 1); 219 m->queue = PQ_NONE; 220 m->wire_count = 1; 221 atomic_add_int(&vmstats.v_wire_count, 1); 222 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 223 return; 224 } 225 226 /* 227 * General page 228 */ 229 m->queue = m->pc + PQ_FREE; 230 KKASSERT(m->dirty == 0); 231 232 atomic_add_int(&vmstats.v_page_count, 1); 233 atomic_add_int(&vmstats.v_free_count, 1); 234 vpq = &vm_page_queues[m->queue]; 235 if ((vpq->flipflop & 15) == 0) { 236 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 237 m->flags |= PG_ZERO; 238 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 239 atomic_add_int(&vm_page_zero_count, 1); 240 } else { 241 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 242 } 243 ++vpq->flipflop; 244 ++vpq->lcnt; 245 } 246 247 /* 248 * (low level boot) 249 * 250 * Initializes the resident memory module. 251 * 252 * Preallocates memory for critical VM structures and arrays prior to 253 * kernel_map becoming available. 254 * 255 * Memory is allocated from (virtual2_start, virtual2_end) if available, 256 * otherwise memory is allocated from (virtual_start, virtual_end). 257 * 258 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 259 * large enough to hold vm_page_array & other structures for machines with 260 * large amounts of ram, so we want to use virtual2* when available. 261 */ 262 void 263 vm_page_startup(void) 264 { 265 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 266 vm_offset_t mapped; 267 vm_size_t npages; 268 vm_paddr_t page_range; 269 vm_paddr_t new_end; 270 int i; 271 vm_paddr_t pa; 272 int nblocks; 273 vm_paddr_t last_pa; 274 vm_paddr_t end; 275 vm_paddr_t biggestone, biggestsize; 276 vm_paddr_t total; 277 278 total = 0; 279 biggestsize = 0; 280 biggestone = 0; 281 nblocks = 0; 282 vaddr = round_page(vaddr); 283 284 for (i = 0; phys_avail[i + 1]; i += 2) { 285 phys_avail[i] = round_page64(phys_avail[i]); 286 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 287 } 288 289 for (i = 0; phys_avail[i + 1]; i += 2) { 290 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 291 292 if (size > biggestsize) { 293 biggestone = i; 294 biggestsize = size; 295 } 296 ++nblocks; 297 total += size; 298 } 299 300 end = phys_avail[biggestone+1]; 301 end = trunc_page(end); 302 303 /* 304 * Initialize the queue headers for the free queue, the active queue 305 * and the inactive queue. 306 */ 307 vm_page_queue_init(); 308 309 #if !defined(_KERNEL_VIRTUAL) 310 /* 311 * VKERNELs don't support minidumps and as such don't need 312 * vm_page_dump 313 * 314 * Allocate a bitmap to indicate that a random physical page 315 * needs to be included in a minidump. 316 * 317 * The amd64 port needs this to indicate which direct map pages 318 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 319 * 320 * However, i386 still needs this workspace internally within the 321 * minidump code. In theory, they are not needed on i386, but are 322 * included should the sf_buf code decide to use them. 323 */ 324 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 325 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 326 end -= vm_page_dump_size; 327 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 328 VM_PROT_READ | VM_PROT_WRITE); 329 bzero((void *)vm_page_dump, vm_page_dump_size); 330 #endif 331 /* 332 * Compute the number of pages of memory that will be available for 333 * use (taking into account the overhead of a page structure per 334 * page). 335 */ 336 first_page = phys_avail[0] / PAGE_SIZE; 337 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 338 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 339 340 #ifndef _KERNEL_VIRTUAL 341 /* 342 * (only applies to real kernels) 343 * 344 * Initialize the contiguous reserve map. We initially reserve up 345 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 346 * is lower. 347 * 348 * Once device initialization is complete we return most of the 349 * reserved memory back to the normal page queues but leave some 350 * in reserve for things like usb attachments. 351 */ 352 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 353 if (vm_low_phys_reserved > total / 4) 354 vm_low_phys_reserved = total / 4; 355 if (vm_dma_reserved == 0) { 356 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 357 if (vm_dma_reserved > total / 16) 358 vm_dma_reserved = total / 16; 359 } 360 #endif 361 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 362 ALIST_RECORDS_65536); 363 364 /* 365 * Initialize the mem entry structures now, and put them in the free 366 * queue. 367 */ 368 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 369 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 370 vm_page_array = (vm_page_t)mapped; 371 372 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 373 /* 374 * since pmap_map on amd64 returns stuff out of a direct-map region, 375 * we have to manually add these pages to the minidump tracking so 376 * that they can be dumped, including the vm_page_array. 377 */ 378 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 379 dump_add_page(pa); 380 #endif 381 382 /* 383 * Clear all of the page structures 384 */ 385 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 386 vm_page_array_size = page_range; 387 388 /* 389 * Construct the free queue(s) in ascending order (by physical 390 * address) so that the first 16MB of physical memory is allocated 391 * last rather than first. On large-memory machines, this avoids 392 * the exhaustion of low physical memory before isa_dmainit has run. 393 */ 394 vmstats.v_page_count = 0; 395 vmstats.v_free_count = 0; 396 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 397 pa = phys_avail[i]; 398 if (i == biggestone) 399 last_pa = new_end; 400 else 401 last_pa = phys_avail[i + 1]; 402 while (pa < last_pa && npages-- > 0) { 403 vm_add_new_page(pa); 404 pa += PAGE_SIZE; 405 } 406 } 407 if (virtual2_start) 408 virtual2_start = vaddr; 409 else 410 virtual_start = vaddr; 411 } 412 413 /* 414 * We tended to reserve a ton of memory for contigmalloc(). Now that most 415 * drivers have initialized we want to return most the remaining free 416 * reserve back to the VM page queues so they can be used for normal 417 * allocations. 418 * 419 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 420 */ 421 static void 422 vm_page_startup_finish(void *dummy __unused) 423 { 424 alist_blk_t blk; 425 alist_blk_t rblk; 426 alist_blk_t count; 427 alist_blk_t xcount; 428 alist_blk_t bfree; 429 vm_page_t m; 430 431 spin_lock(&vm_contig_spin); 432 for (;;) { 433 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 434 if (bfree <= vm_dma_reserved / PAGE_SIZE) 435 break; 436 if (count == 0) 437 break; 438 439 /* 440 * Figure out how much of the initial reserve we have to 441 * free in order to reach our target. 442 */ 443 bfree -= vm_dma_reserved / PAGE_SIZE; 444 if (count > bfree) { 445 blk += count - bfree; 446 count = bfree; 447 } 448 449 /* 450 * Calculate the nearest power of 2 <= count. 451 */ 452 for (xcount = 1; xcount <= count; xcount <<= 1) 453 ; 454 xcount >>= 1; 455 blk += count - xcount; 456 count = xcount; 457 458 /* 459 * Allocate the pages from the alist, then free them to 460 * the normal VM page queues. 461 * 462 * Pages allocated from the alist are wired. We have to 463 * busy, unwire, and free them. We must also adjust 464 * vm_low_phys_reserved before freeing any pages to prevent 465 * confusion. 466 */ 467 rblk = alist_alloc(&vm_contig_alist, blk, count); 468 if (rblk != blk) { 469 kprintf("vm_page_startup_finish: Unable to return " 470 "dma space @0x%08x/%d -> 0x%08x\n", 471 blk, count, rblk); 472 break; 473 } 474 atomic_add_int(&vmstats.v_dma_pages, -count); 475 spin_unlock(&vm_contig_spin); 476 477 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 478 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 479 while (count) { 480 vm_page_busy_wait(m, FALSE, "cpgfr"); 481 vm_page_unwire(m, 0); 482 vm_page_free(m); 483 --count; 484 ++m; 485 } 486 spin_lock(&vm_contig_spin); 487 } 488 spin_unlock(&vm_contig_spin); 489 490 /* 491 * Print out how much DMA space drivers have already allocated and 492 * how much is left over. 493 */ 494 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 495 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 496 (PAGE_SIZE / 1024), 497 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 498 } 499 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 500 vm_page_startup_finish, NULL) 501 502 503 /* 504 * Scan comparison function for Red-Black tree scans. An inclusive 505 * (start,end) is expected. Other fields are not used. 506 */ 507 int 508 rb_vm_page_scancmp(struct vm_page *p, void *data) 509 { 510 struct rb_vm_page_scan_info *info = data; 511 512 if (p->pindex < info->start_pindex) 513 return(-1); 514 if (p->pindex > info->end_pindex) 515 return(1); 516 return(0); 517 } 518 519 int 520 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 521 { 522 if (p1->pindex < p2->pindex) 523 return(-1); 524 if (p1->pindex > p2->pindex) 525 return(1); 526 return(0); 527 } 528 529 /* 530 * Each page queue has its own spin lock, which is fairly optimal for 531 * allocating and freeing pages at least. 532 * 533 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 534 * queue spinlock via this function. Also note that m->queue cannot change 535 * unless both the page and queue are locked. 536 */ 537 static __inline 538 void 539 _vm_page_queue_spin_lock(vm_page_t m) 540 { 541 u_short queue; 542 543 queue = m->queue; 544 if (queue != PQ_NONE) { 545 spin_lock(&vm_page_queues[queue].spin); 546 KKASSERT(queue == m->queue); 547 } 548 } 549 550 static __inline 551 void 552 _vm_page_queue_spin_unlock(vm_page_t m) 553 { 554 u_short queue; 555 556 queue = m->queue; 557 cpu_ccfence(); 558 if (queue != PQ_NONE) 559 spin_unlock(&vm_page_queues[queue].spin); 560 } 561 562 static __inline 563 void 564 _vm_page_queues_spin_lock(u_short queue) 565 { 566 cpu_ccfence(); 567 if (queue != PQ_NONE) 568 spin_lock(&vm_page_queues[queue].spin); 569 } 570 571 572 static __inline 573 void 574 _vm_page_queues_spin_unlock(u_short queue) 575 { 576 cpu_ccfence(); 577 if (queue != PQ_NONE) 578 spin_unlock(&vm_page_queues[queue].spin); 579 } 580 581 void 582 vm_page_queue_spin_lock(vm_page_t m) 583 { 584 _vm_page_queue_spin_lock(m); 585 } 586 587 void 588 vm_page_queues_spin_lock(u_short queue) 589 { 590 _vm_page_queues_spin_lock(queue); 591 } 592 593 void 594 vm_page_queue_spin_unlock(vm_page_t m) 595 { 596 _vm_page_queue_spin_unlock(m); 597 } 598 599 void 600 vm_page_queues_spin_unlock(u_short queue) 601 { 602 _vm_page_queues_spin_unlock(queue); 603 } 604 605 /* 606 * This locks the specified vm_page and its queue in the proper order 607 * (page first, then queue). The queue may change so the caller must 608 * recheck on return. 609 */ 610 static __inline 611 void 612 _vm_page_and_queue_spin_lock(vm_page_t m) 613 { 614 vm_page_spin_lock(m); 615 _vm_page_queue_spin_lock(m); 616 } 617 618 static __inline 619 void 620 _vm_page_and_queue_spin_unlock(vm_page_t m) 621 { 622 _vm_page_queues_spin_unlock(m->queue); 623 vm_page_spin_unlock(m); 624 } 625 626 void 627 vm_page_and_queue_spin_unlock(vm_page_t m) 628 { 629 _vm_page_and_queue_spin_unlock(m); 630 } 631 632 void 633 vm_page_and_queue_spin_lock(vm_page_t m) 634 { 635 _vm_page_and_queue_spin_lock(m); 636 } 637 638 /* 639 * Helper function removes vm_page from its current queue. 640 * Returns the base queue the page used to be on. 641 * 642 * The vm_page and the queue must be spinlocked. 643 * This function will unlock the queue but leave the page spinlocked. 644 */ 645 static __inline u_short 646 _vm_page_rem_queue_spinlocked(vm_page_t m) 647 { 648 struct vpgqueues *pq; 649 u_short queue; 650 651 queue = m->queue; 652 if (queue != PQ_NONE) { 653 pq = &vm_page_queues[queue]; 654 TAILQ_REMOVE(&pq->pl, m, pageq); 655 atomic_add_int(pq->cnt, -1); 656 pq->lcnt--; 657 m->queue = PQ_NONE; 658 vm_page_queues_spin_unlock(queue); 659 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 660 atomic_subtract_int(&vm_page_zero_count, 1); 661 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 662 return (queue - m->pc); 663 } 664 return queue; 665 } 666 667 /* 668 * Helper function places the vm_page on the specified queue. 669 * 670 * The vm_page must be spinlocked. 671 * This function will return with both the page and the queue locked. 672 */ 673 static __inline void 674 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 675 { 676 struct vpgqueues *pq; 677 678 KKASSERT(m->queue == PQ_NONE); 679 680 if (queue != PQ_NONE) { 681 vm_page_queues_spin_lock(queue); 682 pq = &vm_page_queues[queue]; 683 ++pq->lcnt; 684 atomic_add_int(pq->cnt, 1); 685 m->queue = queue; 686 687 /* 688 * Put zero'd pages on the end ( where we look for zero'd pages 689 * first ) and non-zerod pages at the head. 690 */ 691 if (queue - m->pc == PQ_FREE) { 692 if (m->flags & PG_ZERO) { 693 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 694 atomic_add_int(&vm_page_zero_count, 1); 695 } else { 696 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 697 } 698 } else if (athead) { 699 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 700 } else { 701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 702 } 703 /* leave the queue spinlocked */ 704 } 705 } 706 707 /* 708 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 709 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 710 * did not. Only one sleep call will be made before returning. 711 * 712 * This function does NOT busy the page and on return the page is not 713 * guaranteed to be available. 714 */ 715 void 716 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 717 { 718 u_int32_t flags; 719 720 for (;;) { 721 flags = m->flags; 722 cpu_ccfence(); 723 724 if ((flags & PG_BUSY) == 0 && 725 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 726 break; 727 } 728 tsleep_interlock(m, 0); 729 if (atomic_cmpset_int(&m->flags, flags, 730 flags | PG_WANTED | PG_REFERENCED)) { 731 tsleep(m, PINTERLOCKED, msg, 0); 732 break; 733 } 734 } 735 } 736 737 /* 738 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 739 * also wait for m->busy to become 0 before setting PG_BUSY. 740 */ 741 void 742 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 743 int also_m_busy, const char *msg 744 VM_PAGE_DEBUG_ARGS) 745 { 746 u_int32_t flags; 747 748 for (;;) { 749 flags = m->flags; 750 cpu_ccfence(); 751 if (flags & PG_BUSY) { 752 tsleep_interlock(m, 0); 753 if (atomic_cmpset_int(&m->flags, flags, 754 flags | PG_WANTED | PG_REFERENCED)) { 755 tsleep(m, PINTERLOCKED, msg, 0); 756 } 757 } else if (also_m_busy && (flags & PG_SBUSY)) { 758 tsleep_interlock(m, 0); 759 if (atomic_cmpset_int(&m->flags, flags, 760 flags | PG_WANTED | PG_REFERENCED)) { 761 tsleep(m, PINTERLOCKED, msg, 0); 762 } 763 } else { 764 if (atomic_cmpset_int(&m->flags, flags, 765 flags | PG_BUSY)) { 766 #ifdef VM_PAGE_DEBUG 767 m->busy_func = func; 768 m->busy_line = lineno; 769 #endif 770 break; 771 } 772 } 773 } 774 } 775 776 /* 777 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 778 * is also 0. 779 * 780 * Returns non-zero on failure. 781 */ 782 int 783 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 784 VM_PAGE_DEBUG_ARGS) 785 { 786 u_int32_t flags; 787 788 for (;;) { 789 flags = m->flags; 790 cpu_ccfence(); 791 if (flags & PG_BUSY) 792 return TRUE; 793 if (also_m_busy && (flags & PG_SBUSY)) 794 return TRUE; 795 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 796 #ifdef VM_PAGE_DEBUG 797 m->busy_func = func; 798 m->busy_line = lineno; 799 #endif 800 return FALSE; 801 } 802 } 803 } 804 805 /* 806 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 807 * that a wakeup() should be performed. 808 * 809 * The vm_page must be spinlocked and will remain spinlocked on return. 810 * The related queue must NOT be spinlocked (which could deadlock us). 811 * 812 * (inline version) 813 */ 814 static __inline 815 int 816 _vm_page_wakeup(vm_page_t m) 817 { 818 u_int32_t flags; 819 820 for (;;) { 821 flags = m->flags; 822 cpu_ccfence(); 823 if (atomic_cmpset_int(&m->flags, flags, 824 flags & ~(PG_BUSY | PG_WANTED))) { 825 break; 826 } 827 } 828 return(flags & PG_WANTED); 829 } 830 831 /* 832 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 833 * is typically the last call you make on a page before moving onto 834 * other things. 835 */ 836 void 837 vm_page_wakeup(vm_page_t m) 838 { 839 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 840 vm_page_spin_lock(m); 841 if (_vm_page_wakeup(m)) { 842 vm_page_spin_unlock(m); 843 wakeup(m); 844 } else { 845 vm_page_spin_unlock(m); 846 } 847 } 848 849 /* 850 * Holding a page keeps it from being reused. Other parts of the system 851 * can still disassociate the page from its current object and free it, or 852 * perform read or write I/O on it and/or otherwise manipulate the page, 853 * but if the page is held the VM system will leave the page and its data 854 * intact and not reuse the page for other purposes until the last hold 855 * reference is released. (see vm_page_wire() if you want to prevent the 856 * page from being disassociated from its object too). 857 * 858 * The caller must still validate the contents of the page and, if necessary, 859 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 860 * before manipulating the page. 861 * 862 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 863 */ 864 void 865 vm_page_hold(vm_page_t m) 866 { 867 vm_page_spin_lock(m); 868 atomic_add_int(&m->hold_count, 1); 869 if (m->queue - m->pc == PQ_FREE) { 870 _vm_page_queue_spin_lock(m); 871 _vm_page_rem_queue_spinlocked(m); 872 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 873 _vm_page_queue_spin_unlock(m); 874 } 875 vm_page_spin_unlock(m); 876 } 877 878 /* 879 * The opposite of vm_page_hold(). A page can be freed while being held, 880 * which places it on the PQ_HOLD queue. If we are able to busy the page 881 * after the hold count drops to zero we will move the page to the 882 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 883 */ 884 void 885 vm_page_unhold(vm_page_t m) 886 { 887 vm_page_spin_lock(m); 888 atomic_add_int(&m->hold_count, -1); 889 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 890 _vm_page_queue_spin_lock(m); 891 _vm_page_rem_queue_spinlocked(m); 892 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 893 _vm_page_queue_spin_unlock(m); 894 } 895 vm_page_spin_unlock(m); 896 } 897 898 /* 899 * Inserts the given vm_page into the object and object list. 900 * 901 * The pagetables are not updated but will presumably fault the page 902 * in if necessary, or if a kernel page the caller will at some point 903 * enter the page into the kernel's pmap. We are not allowed to block 904 * here so we *can't* do this anyway. 905 * 906 * This routine may not block. 907 * This routine must be called with the vm_object held. 908 * This routine must be called with a critical section held. 909 * 910 * This routine returns TRUE if the page was inserted into the object 911 * successfully, and FALSE if the page already exists in the object. 912 */ 913 int 914 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 915 { 916 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 917 if (m->object != NULL) 918 panic("vm_page_insert: already inserted"); 919 920 object->generation++; 921 922 /* 923 * Record the object/offset pair in this page and add the 924 * pv_list_count of the page to the object. 925 * 926 * The vm_page spin lock is required for interactions with the pmap. 927 */ 928 vm_page_spin_lock(m); 929 m->object = object; 930 m->pindex = pindex; 931 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 932 m->object = NULL; 933 m->pindex = 0; 934 vm_page_spin_unlock(m); 935 return FALSE; 936 } 937 object->resident_page_count++; 938 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 939 vm_page_spin_unlock(m); 940 941 /* 942 * Since we are inserting a new and possibly dirty page, 943 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 944 */ 945 if ((m->valid & m->dirty) || 946 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 947 vm_object_set_writeable_dirty(object); 948 949 /* 950 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 951 */ 952 swap_pager_page_inserted(m); 953 return TRUE; 954 } 955 956 /* 957 * Removes the given vm_page_t from the (object,index) table 958 * 959 * The underlying pmap entry (if any) is NOT removed here. 960 * This routine may not block. 961 * 962 * The page must be BUSY and will remain BUSY on return. 963 * No other requirements. 964 * 965 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 966 * it busy. 967 */ 968 void 969 vm_page_remove(vm_page_t m) 970 { 971 vm_object_t object; 972 973 if (m->object == NULL) { 974 return; 975 } 976 977 if ((m->flags & PG_BUSY) == 0) 978 panic("vm_page_remove: page not busy"); 979 980 object = m->object; 981 982 vm_object_hold(object); 983 984 /* 985 * Remove the page from the object and update the object. 986 * 987 * The vm_page spin lock is required for interactions with the pmap. 988 */ 989 vm_page_spin_lock(m); 990 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 991 object->resident_page_count--; 992 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 993 m->object = NULL; 994 vm_page_spin_unlock(m); 995 996 object->generation++; 997 998 vm_object_drop(object); 999 } 1000 1001 /* 1002 * Locate and return the page at (object, pindex), or NULL if the 1003 * page could not be found. 1004 * 1005 * The caller must hold the vm_object token. 1006 */ 1007 vm_page_t 1008 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1009 { 1010 vm_page_t m; 1011 1012 /* 1013 * Search the hash table for this object/offset pair 1014 */ 1015 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1016 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1017 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1018 return(m); 1019 } 1020 1021 vm_page_t 1022 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1023 vm_pindex_t pindex, 1024 int also_m_busy, const char *msg 1025 VM_PAGE_DEBUG_ARGS) 1026 { 1027 u_int32_t flags; 1028 vm_page_t m; 1029 1030 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1031 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1032 while (m) { 1033 KKASSERT(m->object == object && m->pindex == pindex); 1034 flags = m->flags; 1035 cpu_ccfence(); 1036 if (flags & PG_BUSY) { 1037 tsleep_interlock(m, 0); 1038 if (atomic_cmpset_int(&m->flags, flags, 1039 flags | PG_WANTED | PG_REFERENCED)) { 1040 tsleep(m, PINTERLOCKED, msg, 0); 1041 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1042 pindex); 1043 } 1044 } else if (also_m_busy && (flags & PG_SBUSY)) { 1045 tsleep_interlock(m, 0); 1046 if (atomic_cmpset_int(&m->flags, flags, 1047 flags | PG_WANTED | PG_REFERENCED)) { 1048 tsleep(m, PINTERLOCKED, msg, 0); 1049 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1050 pindex); 1051 } 1052 } else if (atomic_cmpset_int(&m->flags, flags, 1053 flags | PG_BUSY)) { 1054 #ifdef VM_PAGE_DEBUG 1055 m->busy_func = func; 1056 m->busy_line = lineno; 1057 #endif 1058 break; 1059 } 1060 } 1061 return m; 1062 } 1063 1064 /* 1065 * Attempt to lookup and busy a page. 1066 * 1067 * Returns NULL if the page could not be found 1068 * 1069 * Returns a vm_page and error == TRUE if the page exists but could not 1070 * be busied. 1071 * 1072 * Returns a vm_page and error == FALSE on success. 1073 */ 1074 vm_page_t 1075 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1076 vm_pindex_t pindex, 1077 int also_m_busy, int *errorp 1078 VM_PAGE_DEBUG_ARGS) 1079 { 1080 u_int32_t flags; 1081 vm_page_t m; 1082 1083 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1084 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1085 *errorp = FALSE; 1086 while (m) { 1087 KKASSERT(m->object == object && m->pindex == pindex); 1088 flags = m->flags; 1089 cpu_ccfence(); 1090 if (flags & PG_BUSY) { 1091 *errorp = TRUE; 1092 break; 1093 } 1094 if (also_m_busy && (flags & PG_SBUSY)) { 1095 *errorp = TRUE; 1096 break; 1097 } 1098 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1099 #ifdef VM_PAGE_DEBUG 1100 m->busy_func = func; 1101 m->busy_line = lineno; 1102 #endif 1103 break; 1104 } 1105 } 1106 return m; 1107 } 1108 1109 /* 1110 * Caller must hold the related vm_object 1111 */ 1112 vm_page_t 1113 vm_page_next(vm_page_t m) 1114 { 1115 vm_page_t next; 1116 1117 next = vm_page_rb_tree_RB_NEXT(m); 1118 if (next && next->pindex != m->pindex + 1) 1119 next = NULL; 1120 return (next); 1121 } 1122 1123 /* 1124 * vm_page_rename() 1125 * 1126 * Move the given vm_page from its current object to the specified 1127 * target object/offset. The page must be busy and will remain so 1128 * on return. 1129 * 1130 * new_object must be held. 1131 * This routine might block. XXX ? 1132 * 1133 * NOTE: Swap associated with the page must be invalidated by the move. We 1134 * have to do this for several reasons: (1) we aren't freeing the 1135 * page, (2) we are dirtying the page, (3) the VM system is probably 1136 * moving the page from object A to B, and will then later move 1137 * the backing store from A to B and we can't have a conflict. 1138 * 1139 * NOTE: We *always* dirty the page. It is necessary both for the 1140 * fact that we moved it, and because we may be invalidating 1141 * swap. If the page is on the cache, we have to deactivate it 1142 * or vm_page_dirty() will panic. Dirty pages are not allowed 1143 * on the cache. 1144 */ 1145 void 1146 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1147 { 1148 KKASSERT(m->flags & PG_BUSY); 1149 ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object)); 1150 if (m->object) { 1151 ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object)); 1152 vm_page_remove(m); 1153 } 1154 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1155 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1156 new_object, new_pindex); 1157 } 1158 if (m->queue - m->pc == PQ_CACHE) 1159 vm_page_deactivate(m); 1160 vm_page_dirty(m); 1161 } 1162 1163 /* 1164 * vm_page_unqueue() without any wakeup. This routine is used when a page 1165 * is being moved between queues or otherwise is to remain BUSYied by the 1166 * caller. 1167 * 1168 * This routine may not block. 1169 */ 1170 void 1171 vm_page_unqueue_nowakeup(vm_page_t m) 1172 { 1173 vm_page_and_queue_spin_lock(m); 1174 (void)_vm_page_rem_queue_spinlocked(m); 1175 vm_page_spin_unlock(m); 1176 } 1177 1178 /* 1179 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1180 * if necessary. 1181 * 1182 * This routine may not block. 1183 */ 1184 void 1185 vm_page_unqueue(vm_page_t m) 1186 { 1187 u_short queue; 1188 1189 vm_page_and_queue_spin_lock(m); 1190 queue = _vm_page_rem_queue_spinlocked(m); 1191 if (queue == PQ_FREE || queue == PQ_CACHE) { 1192 vm_page_spin_unlock(m); 1193 pagedaemon_wakeup(); 1194 } else { 1195 vm_page_spin_unlock(m); 1196 } 1197 } 1198 1199 /* 1200 * vm_page_list_find() 1201 * 1202 * Find a page on the specified queue with color optimization. 1203 * 1204 * The page coloring optimization attempts to locate a page that does 1205 * not overload other nearby pages in the object in the cpu's L1 or L2 1206 * caches. We need this optimization because cpu caches tend to be 1207 * physical caches, while object spaces tend to be virtual. 1208 * 1209 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1210 * and the algorithm is adjusted to localize allocations on a per-core basis. 1211 * This is done by 'twisting' the colors. 1212 * 1213 * The page is returned spinlocked and removed from its queue (it will 1214 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1215 * is responsible for dealing with the busy-page case (usually by 1216 * deactivating the page and looping). 1217 * 1218 * NOTE: This routine is carefully inlined. A non-inlined version 1219 * is available for outside callers but the only critical path is 1220 * from within this source file. 1221 * 1222 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1223 * represent stable storage, allowing us to order our locks vm_page 1224 * first, then queue. 1225 */ 1226 static __inline 1227 vm_page_t 1228 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1229 { 1230 vm_page_t m; 1231 1232 for (;;) { 1233 if (prefer_zero) 1234 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1235 else 1236 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1237 if (m == NULL) { 1238 m = _vm_page_list_find2(basequeue, index); 1239 return(m); 1240 } 1241 vm_page_and_queue_spin_lock(m); 1242 if (m->queue == basequeue + index) { 1243 _vm_page_rem_queue_spinlocked(m); 1244 /* vm_page_t spin held, no queue spin */ 1245 break; 1246 } 1247 vm_page_and_queue_spin_unlock(m); 1248 } 1249 return(m); 1250 } 1251 1252 static vm_page_t 1253 _vm_page_list_find2(int basequeue, int index) 1254 { 1255 int i; 1256 vm_page_t m = NULL; 1257 struct vpgqueues *pq; 1258 1259 pq = &vm_page_queues[basequeue]; 1260 1261 /* 1262 * Note that for the first loop, index+i and index-i wind up at the 1263 * same place. Even though this is not totally optimal, we've already 1264 * blown it by missing the cache case so we do not care. 1265 */ 1266 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1267 for (;;) { 1268 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1269 if (m) { 1270 _vm_page_and_queue_spin_lock(m); 1271 if (m->queue == 1272 basequeue + ((index + i) & PQ_L2_MASK)) { 1273 _vm_page_rem_queue_spinlocked(m); 1274 return(m); 1275 } 1276 _vm_page_and_queue_spin_unlock(m); 1277 continue; 1278 } 1279 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1280 if (m) { 1281 _vm_page_and_queue_spin_lock(m); 1282 if (m->queue == 1283 basequeue + ((index - i) & PQ_L2_MASK)) { 1284 _vm_page_rem_queue_spinlocked(m); 1285 return(m); 1286 } 1287 _vm_page_and_queue_spin_unlock(m); 1288 continue; 1289 } 1290 break; /* next i */ 1291 } 1292 } 1293 return(m); 1294 } 1295 1296 /* 1297 * Returns a vm_page candidate for allocation. The page is not busied so 1298 * it can move around. The caller must busy the page (and typically 1299 * deactivate it if it cannot be busied!) 1300 * 1301 * Returns a spinlocked vm_page that has been removed from its queue. 1302 */ 1303 vm_page_t 1304 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1305 { 1306 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1307 } 1308 1309 /* 1310 * Find a page on the cache queue with color optimization, remove it 1311 * from the queue, and busy it. The returned page will not be spinlocked. 1312 * 1313 * A candidate failure will be deactivated. Candidates can fail due to 1314 * being busied by someone else, in which case they will be deactivated. 1315 * 1316 * This routine may not block. 1317 * 1318 */ 1319 static vm_page_t 1320 vm_page_select_cache(u_short pg_color) 1321 { 1322 vm_page_t m; 1323 1324 for (;;) { 1325 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1326 if (m == NULL) 1327 break; 1328 /* 1329 * (m) has been removed from its queue and spinlocked 1330 */ 1331 if (vm_page_busy_try(m, TRUE)) { 1332 _vm_page_deactivate_locked(m, 0); 1333 vm_page_spin_unlock(m); 1334 #ifdef INVARIANTS 1335 kprintf("Warning: busy page %p found in cache\n", m); 1336 #endif 1337 } else { 1338 /* 1339 * We successfully busied the page 1340 */ 1341 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1342 m->hold_count == 0 && 1343 m->wire_count == 0 && 1344 (m->dirty & m->valid) == 0) { 1345 vm_page_spin_unlock(m); 1346 pagedaemon_wakeup(); 1347 return(m); 1348 } 1349 1350 /* 1351 * The page cannot be recycled, deactivate it. 1352 */ 1353 _vm_page_deactivate_locked(m, 0); 1354 if (_vm_page_wakeup(m)) { 1355 vm_page_spin_unlock(m); 1356 wakeup(m); 1357 } else { 1358 vm_page_spin_unlock(m); 1359 } 1360 } 1361 } 1362 return (m); 1363 } 1364 1365 /* 1366 * Find a free or zero page, with specified preference. We attempt to 1367 * inline the nominal case and fall back to _vm_page_select_free() 1368 * otherwise. A busied page is removed from the queue and returned. 1369 * 1370 * This routine may not block. 1371 */ 1372 static __inline vm_page_t 1373 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1374 { 1375 vm_page_t m; 1376 1377 for (;;) { 1378 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1379 prefer_zero); 1380 if (m == NULL) 1381 break; 1382 if (vm_page_busy_try(m, TRUE)) { 1383 /* 1384 * Various mechanisms such as a pmap_collect can 1385 * result in a busy page on the free queue. We 1386 * have to move the page out of the way so we can 1387 * retry the allocation. If the other thread is not 1388 * allocating the page then m->valid will remain 0 and 1389 * the pageout daemon will free the page later on. 1390 * 1391 * Since we could not busy the page, however, we 1392 * cannot make assumptions as to whether the page 1393 * will be allocated by the other thread or not, 1394 * so all we can do is deactivate it to move it out 1395 * of the way. In particular, if the other thread 1396 * wires the page it may wind up on the inactive 1397 * queue and the pageout daemon will have to deal 1398 * with that case too. 1399 */ 1400 _vm_page_deactivate_locked(m, 0); 1401 vm_page_spin_unlock(m); 1402 #ifdef INVARIANTS 1403 kprintf("Warning: busy page %p found in cache\n", m); 1404 #endif 1405 } else { 1406 /* 1407 * Theoretically if we are able to busy the page 1408 * atomic with the queue removal (using the vm_page 1409 * lock) nobody else should be able to mess with the 1410 * page before us. 1411 */ 1412 KKASSERT((m->flags & (PG_UNMANAGED | 1413 PG_NEED_COMMIT)) == 0); 1414 KKASSERT(m->hold_count == 0); 1415 KKASSERT(m->wire_count == 0); 1416 vm_page_spin_unlock(m); 1417 pagedaemon_wakeup(); 1418 1419 /* return busied and removed page */ 1420 return(m); 1421 } 1422 } 1423 return(m); 1424 } 1425 1426 /* 1427 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1428 * The idea is to populate this cache prior to acquiring any locks so 1429 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1430 * holding potentialy contending locks. 1431 * 1432 * Note that we allocate the page uninserted into anything and use a pindex 1433 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1434 * allocations should wind up being uncontended. However, we still want 1435 * to rove across PQ_L2_SIZE. 1436 */ 1437 void 1438 vm_page_pcpu_cache(void) 1439 { 1440 #if 0 1441 globaldata_t gd = mycpu; 1442 vm_page_t m; 1443 1444 if (gd->gd_vmpg_count < GD_MINVMPG) { 1445 crit_enter_gd(gd); 1446 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1447 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1448 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1449 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1450 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1451 if ((m->flags & PG_ZERO) == 0) { 1452 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1453 vm_page_flag_set(m, PG_ZERO); 1454 } 1455 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1456 } else { 1457 vm_page_free(m); 1458 } 1459 } 1460 crit_exit_gd(gd); 1461 } 1462 #endif 1463 } 1464 1465 /* 1466 * vm_page_alloc() 1467 * 1468 * Allocate and return a memory cell associated with this VM object/offset 1469 * pair. If object is NULL an unassociated page will be allocated. 1470 * 1471 * The returned page will be busied and removed from its queues. This 1472 * routine can block and may return NULL if a race occurs and the page 1473 * is found to already exist at the specified (object, pindex). 1474 * 1475 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1476 * VM_ALLOC_QUICK like normal but cannot use cache 1477 * VM_ALLOC_SYSTEM greater free drain 1478 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1479 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1480 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1481 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1482 * (see vm_page_grab()) 1483 * VM_ALLOC_USE_GD ok to use per-gd cache 1484 * 1485 * The object must be held if not NULL 1486 * This routine may not block 1487 * 1488 * Additional special handling is required when called from an interrupt 1489 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1490 * in this case. 1491 */ 1492 vm_page_t 1493 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1494 { 1495 globaldata_t gd = mycpu; 1496 vm_object_t obj; 1497 vm_page_t m; 1498 u_short pg_color; 1499 1500 #if 0 1501 /* 1502 * Special per-cpu free VM page cache. The pages are pre-busied 1503 * and pre-zerod for us. 1504 */ 1505 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1506 crit_enter_gd(gd); 1507 if (gd->gd_vmpg_count) { 1508 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1509 crit_exit_gd(gd); 1510 goto done; 1511 } 1512 crit_exit_gd(gd); 1513 } 1514 #endif 1515 m = NULL; 1516 1517 /* 1518 * Cpu twist - cpu localization algorithm 1519 */ 1520 if (object) { 1521 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1522 (object->pg_color & ~ncpus_fit_mask); 1523 } else { 1524 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1525 } 1526 KKASSERT(page_req & 1527 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1528 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1529 1530 /* 1531 * Certain system threads (pageout daemon, buf_daemon's) are 1532 * allowed to eat deeper into the free page list. 1533 */ 1534 if (curthread->td_flags & TDF_SYSTHREAD) 1535 page_req |= VM_ALLOC_SYSTEM; 1536 1537 loop: 1538 if (vmstats.v_free_count > vmstats.v_free_reserved || 1539 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1540 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1541 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1542 ) { 1543 /* 1544 * The free queue has sufficient free pages to take one out. 1545 */ 1546 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1547 m = vm_page_select_free(pg_color, TRUE); 1548 else 1549 m = vm_page_select_free(pg_color, FALSE); 1550 } else if (page_req & VM_ALLOC_NORMAL) { 1551 /* 1552 * Allocatable from the cache (non-interrupt only). On 1553 * success, we must free the page and try again, thus 1554 * ensuring that vmstats.v_*_free_min counters are replenished. 1555 */ 1556 #ifdef INVARIANTS 1557 if (curthread->td_preempted) { 1558 kprintf("vm_page_alloc(): warning, attempt to allocate" 1559 " cache page from preempting interrupt\n"); 1560 m = NULL; 1561 } else { 1562 m = vm_page_select_cache(pg_color); 1563 } 1564 #else 1565 m = vm_page_select_cache(pg_color); 1566 #endif 1567 /* 1568 * On success move the page into the free queue and loop. 1569 * 1570 * Only do this if we can safely acquire the vm_object lock, 1571 * because this is effectively a random page and the caller 1572 * might be holding the lock shared, we don't want to 1573 * deadlock. 1574 */ 1575 if (m != NULL) { 1576 KASSERT(m->dirty == 0, 1577 ("Found dirty cache page %p", m)); 1578 if ((obj = m->object) != NULL) { 1579 if (vm_object_hold_try(obj)) { 1580 vm_page_protect(m, VM_PROT_NONE); 1581 vm_page_free(m); 1582 /* m->object NULL here */ 1583 vm_object_drop(obj); 1584 } else { 1585 vm_page_deactivate(m); 1586 vm_page_wakeup(m); 1587 } 1588 } else { 1589 vm_page_protect(m, VM_PROT_NONE); 1590 vm_page_free(m); 1591 } 1592 goto loop; 1593 } 1594 1595 /* 1596 * On failure return NULL 1597 */ 1598 #if defined(DIAGNOSTIC) 1599 if (vmstats.v_cache_count > 0) 1600 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1601 #endif 1602 vm_pageout_deficit++; 1603 pagedaemon_wakeup(); 1604 return (NULL); 1605 } else { 1606 /* 1607 * No pages available, wakeup the pageout daemon and give up. 1608 */ 1609 vm_pageout_deficit++; 1610 pagedaemon_wakeup(); 1611 return (NULL); 1612 } 1613 1614 /* 1615 * v_free_count can race so loop if we don't find the expected 1616 * page. 1617 */ 1618 if (m == NULL) 1619 goto loop; 1620 1621 /* 1622 * Good page found. The page has already been busied for us and 1623 * removed from its queues. 1624 */ 1625 KASSERT(m->dirty == 0, 1626 ("vm_page_alloc: free/cache page %p was dirty", m)); 1627 KKASSERT(m->queue == PQ_NONE); 1628 1629 #if 0 1630 done: 1631 #endif 1632 /* 1633 * Initialize the structure, inheriting some flags but clearing 1634 * all the rest. The page has already been busied for us. 1635 */ 1636 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1637 KKASSERT(m->wire_count == 0); 1638 KKASSERT(m->busy == 0); 1639 m->act_count = 0; 1640 m->valid = 0; 1641 1642 /* 1643 * Caller must be holding the object lock (asserted by 1644 * vm_page_insert()). 1645 * 1646 * NOTE: Inserting a page here does not insert it into any pmaps 1647 * (which could cause us to block allocating memory). 1648 * 1649 * NOTE: If no object an unassociated page is allocated, m->pindex 1650 * can be used by the caller for any purpose. 1651 */ 1652 if (object) { 1653 if (vm_page_insert(m, object, pindex) == FALSE) { 1654 kprintf("PAGE RACE (%p:%d,%"PRIu64")\n", 1655 object, object->type, pindex); 1656 vm_page_free(m); 1657 m = NULL; 1658 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1659 panic("PAGE RACE"); 1660 } 1661 } else { 1662 m->pindex = pindex; 1663 } 1664 1665 /* 1666 * Don't wakeup too often - wakeup the pageout daemon when 1667 * we would be nearly out of memory. 1668 */ 1669 pagedaemon_wakeup(); 1670 1671 /* 1672 * A PG_BUSY page is returned. 1673 */ 1674 return (m); 1675 } 1676 1677 /* 1678 * Attempt to allocate contiguous physical memory with the specified 1679 * requirements. 1680 */ 1681 vm_page_t 1682 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1683 unsigned long alignment, unsigned long boundary, 1684 unsigned long size) 1685 { 1686 alist_blk_t blk; 1687 1688 alignment >>= PAGE_SHIFT; 1689 if (alignment == 0) 1690 alignment = 1; 1691 boundary >>= PAGE_SHIFT; 1692 if (boundary == 0) 1693 boundary = 1; 1694 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1695 1696 spin_lock(&vm_contig_spin); 1697 blk = alist_alloc(&vm_contig_alist, 0, size); 1698 if (blk == ALIST_BLOCK_NONE) { 1699 spin_unlock(&vm_contig_spin); 1700 if (bootverbose) { 1701 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1702 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1703 } 1704 return(NULL); 1705 } 1706 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1707 alist_free(&vm_contig_alist, blk, size); 1708 spin_unlock(&vm_contig_spin); 1709 if (bootverbose) { 1710 kprintf("vm_page_alloc_contig: %ldk high " 1711 "%016jx failed\n", 1712 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1713 (intmax_t)high); 1714 } 1715 return(NULL); 1716 } 1717 spin_unlock(&vm_contig_spin); 1718 if (vm_contig_verbose) { 1719 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1720 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1721 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1722 } 1723 return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT)); 1724 } 1725 1726 /* 1727 * Free contiguously allocated pages. The pages will be wired but not busy. 1728 * When freeing to the alist we leave them wired and not busy. 1729 */ 1730 void 1731 vm_page_free_contig(vm_page_t m, unsigned long size) 1732 { 1733 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1734 vm_pindex_t start = pa >> PAGE_SHIFT; 1735 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1736 1737 if (vm_contig_verbose) { 1738 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1739 (intmax_t)pa, size / 1024); 1740 } 1741 if (pa < vm_low_phys_reserved) { 1742 KKASSERT(pa + size <= vm_low_phys_reserved); 1743 spin_lock(&vm_contig_spin); 1744 alist_free(&vm_contig_alist, start, pages); 1745 spin_unlock(&vm_contig_spin); 1746 } else { 1747 while (pages) { 1748 vm_page_busy_wait(m, FALSE, "cpgfr"); 1749 vm_page_unwire(m, 0); 1750 vm_page_free(m); 1751 --pages; 1752 ++m; 1753 } 1754 1755 } 1756 } 1757 1758 1759 /* 1760 * Wait for sufficient free memory for nominal heavy memory use kernel 1761 * operations. 1762 * 1763 * WARNING! Be sure never to call this in any vm_pageout code path, which 1764 * will trivially deadlock the system. 1765 */ 1766 void 1767 vm_wait_nominal(void) 1768 { 1769 while (vm_page_count_min(0)) 1770 vm_wait(0); 1771 } 1772 1773 /* 1774 * Test if vm_wait_nominal() would block. 1775 */ 1776 int 1777 vm_test_nominal(void) 1778 { 1779 if (vm_page_count_min(0)) 1780 return(1); 1781 return(0); 1782 } 1783 1784 /* 1785 * Block until free pages are available for allocation, called in various 1786 * places before memory allocations. 1787 * 1788 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1789 * more generous then that. 1790 */ 1791 void 1792 vm_wait(int timo) 1793 { 1794 /* 1795 * never wait forever 1796 */ 1797 if (timo == 0) 1798 timo = hz; 1799 lwkt_gettoken(&vm_token); 1800 1801 if (curthread == pagethread) { 1802 /* 1803 * The pageout daemon itself needs pages, this is bad. 1804 */ 1805 if (vm_page_count_min(0)) { 1806 vm_pageout_pages_needed = 1; 1807 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1808 } 1809 } else { 1810 /* 1811 * Wakeup the pageout daemon if necessary and wait. 1812 */ 1813 if (vm_page_count_target()) { 1814 if (vm_pages_needed == 0) { 1815 vm_pages_needed = 1; 1816 wakeup(&vm_pages_needed); 1817 } 1818 ++vm_pages_waiting; /* SMP race ok */ 1819 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1820 } 1821 } 1822 lwkt_reltoken(&vm_token); 1823 } 1824 1825 /* 1826 * Block until free pages are available for allocation 1827 * 1828 * Called only from vm_fault so that processes page faulting can be 1829 * easily tracked. 1830 */ 1831 void 1832 vm_waitpfault(void) 1833 { 1834 /* 1835 * Wakeup the pageout daemon if necessary and wait. 1836 */ 1837 if (vm_page_count_target()) { 1838 lwkt_gettoken(&vm_token); 1839 if (vm_page_count_target()) { 1840 if (vm_pages_needed == 0) { 1841 vm_pages_needed = 1; 1842 wakeup(&vm_pages_needed); 1843 } 1844 ++vm_pages_waiting; /* SMP race ok */ 1845 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1846 } 1847 lwkt_reltoken(&vm_token); 1848 } 1849 } 1850 1851 /* 1852 * Put the specified page on the active list (if appropriate). Ensure 1853 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1854 * 1855 * The caller should be holding the page busied ? XXX 1856 * This routine may not block. 1857 */ 1858 void 1859 vm_page_activate(vm_page_t m) 1860 { 1861 u_short oqueue; 1862 1863 vm_page_spin_lock(m); 1864 if (m->queue - m->pc != PQ_ACTIVE) { 1865 _vm_page_queue_spin_lock(m); 1866 oqueue = _vm_page_rem_queue_spinlocked(m); 1867 /* page is left spinlocked, queue is unlocked */ 1868 1869 if (oqueue == PQ_CACHE) 1870 mycpu->gd_cnt.v_reactivated++; 1871 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1872 if (m->act_count < ACT_INIT) 1873 m->act_count = ACT_INIT; 1874 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1875 } 1876 _vm_page_and_queue_spin_unlock(m); 1877 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1878 pagedaemon_wakeup(); 1879 } else { 1880 if (m->act_count < ACT_INIT) 1881 m->act_count = ACT_INIT; 1882 vm_page_spin_unlock(m); 1883 } 1884 } 1885 1886 /* 1887 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1888 * routine is called when a page has been added to the cache or free 1889 * queues. 1890 * 1891 * This routine may not block. 1892 */ 1893 static __inline void 1894 vm_page_free_wakeup(void) 1895 { 1896 /* 1897 * If the pageout daemon itself needs pages, then tell it that 1898 * there are some free. 1899 */ 1900 if (vm_pageout_pages_needed && 1901 vmstats.v_cache_count + vmstats.v_free_count >= 1902 vmstats.v_pageout_free_min 1903 ) { 1904 wakeup(&vm_pageout_pages_needed); 1905 vm_pageout_pages_needed = 0; 1906 } 1907 1908 /* 1909 * Wakeup processes that are waiting on memory. 1910 * 1911 * NOTE: vm_paging_target() is the pageout daemon's target, while 1912 * vm_page_count_target() is somewhere inbetween. We want 1913 * to wake processes up prior to the pageout daemon reaching 1914 * its target to provide some hysteresis. 1915 */ 1916 if (vm_pages_waiting) { 1917 if (!vm_page_count_target()) { 1918 /* 1919 * Plenty of pages are free, wakeup everyone. 1920 */ 1921 vm_pages_waiting = 0; 1922 wakeup(&vmstats.v_free_count); 1923 ++mycpu->gd_cnt.v_ppwakeups; 1924 } else if (!vm_page_count_min(0)) { 1925 /* 1926 * Some pages are free, wakeup someone. 1927 */ 1928 int wcount = vm_pages_waiting; 1929 if (wcount > 0) 1930 --wcount; 1931 vm_pages_waiting = wcount; 1932 wakeup_one(&vmstats.v_free_count); 1933 ++mycpu->gd_cnt.v_ppwakeups; 1934 } 1935 } 1936 } 1937 1938 /* 1939 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1940 * it from its VM object. 1941 * 1942 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1943 * return (the page will have been freed). 1944 */ 1945 void 1946 vm_page_free_toq(vm_page_t m) 1947 { 1948 mycpu->gd_cnt.v_tfree++; 1949 KKASSERT((m->flags & PG_MAPPED) == 0); 1950 KKASSERT(m->flags & PG_BUSY); 1951 1952 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1953 kprintf("vm_page_free: pindex(%lu), busy(%d), " 1954 "PG_BUSY(%d), hold(%d)\n", 1955 (u_long)m->pindex, m->busy, 1956 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 1957 if ((m->queue - m->pc) == PQ_FREE) 1958 panic("vm_page_free: freeing free page"); 1959 else 1960 panic("vm_page_free: freeing busy page"); 1961 } 1962 1963 /* 1964 * Remove from object, spinlock the page and its queues and 1965 * remove from any queue. No queue spinlock will be held 1966 * after this section (because the page was removed from any 1967 * queue). 1968 */ 1969 vm_page_remove(m); 1970 vm_page_and_queue_spin_lock(m); 1971 _vm_page_rem_queue_spinlocked(m); 1972 1973 /* 1974 * No further management of fictitious pages occurs beyond object 1975 * and queue removal. 1976 */ 1977 if ((m->flags & PG_FICTITIOUS) != 0) { 1978 vm_page_spin_unlock(m); 1979 vm_page_wakeup(m); 1980 return; 1981 } 1982 1983 m->valid = 0; 1984 vm_page_undirty(m); 1985 1986 if (m->wire_count != 0) { 1987 if (m->wire_count > 1) { 1988 panic( 1989 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1990 m->wire_count, (long)m->pindex); 1991 } 1992 panic("vm_page_free: freeing wired page"); 1993 } 1994 1995 /* 1996 * Clear the UNMANAGED flag when freeing an unmanaged page. 1997 * Clear the NEED_COMMIT flag 1998 */ 1999 if (m->flags & PG_UNMANAGED) 2000 vm_page_flag_clear(m, PG_UNMANAGED); 2001 if (m->flags & PG_NEED_COMMIT) 2002 vm_page_flag_clear(m, PG_NEED_COMMIT); 2003 2004 if (m->hold_count != 0) { 2005 vm_page_flag_clear(m, PG_ZERO); 2006 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2007 } else { 2008 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2009 } 2010 2011 /* 2012 * This sequence allows us to clear PG_BUSY while still holding 2013 * its spin lock, which reduces contention vs allocators. We 2014 * must not leave the queue locked or _vm_page_wakeup() may 2015 * deadlock. 2016 */ 2017 _vm_page_queue_spin_unlock(m); 2018 if (_vm_page_wakeup(m)) { 2019 vm_page_spin_unlock(m); 2020 wakeup(m); 2021 } else { 2022 vm_page_spin_unlock(m); 2023 } 2024 vm_page_free_wakeup(); 2025 } 2026 2027 /* 2028 * vm_page_free_fromq_fast() 2029 * 2030 * Remove a non-zero page from one of the free queues; the page is removed for 2031 * zeroing, so do not issue a wakeup. 2032 */ 2033 vm_page_t 2034 vm_page_free_fromq_fast(void) 2035 { 2036 static int qi; 2037 vm_page_t m; 2038 int i; 2039 2040 for (i = 0; i < PQ_L2_SIZE; ++i) { 2041 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2042 /* page is returned spinlocked and removed from its queue */ 2043 if (m) { 2044 if (vm_page_busy_try(m, TRUE)) { 2045 /* 2046 * We were unable to busy the page, deactivate 2047 * it and loop. 2048 */ 2049 _vm_page_deactivate_locked(m, 0); 2050 vm_page_spin_unlock(m); 2051 } else if (m->flags & PG_ZERO) { 2052 /* 2053 * The page is PG_ZERO, requeue it and loop 2054 */ 2055 _vm_page_add_queue_spinlocked(m, 2056 PQ_FREE + m->pc, 2057 0); 2058 vm_page_queue_spin_unlock(m); 2059 if (_vm_page_wakeup(m)) { 2060 vm_page_spin_unlock(m); 2061 wakeup(m); 2062 } else { 2063 vm_page_spin_unlock(m); 2064 } 2065 } else { 2066 /* 2067 * The page is not PG_ZERO'd so return it. 2068 */ 2069 vm_page_spin_unlock(m); 2070 KKASSERT((m->flags & (PG_UNMANAGED | 2071 PG_NEED_COMMIT)) == 0); 2072 KKASSERT(m->hold_count == 0); 2073 KKASSERT(m->wire_count == 0); 2074 break; 2075 } 2076 m = NULL; 2077 } 2078 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2079 } 2080 return (m); 2081 } 2082 2083 /* 2084 * vm_page_unmanage() 2085 * 2086 * Prevent PV management from being done on the page. The page is 2087 * removed from the paging queues as if it were wired, and as a 2088 * consequence of no longer being managed the pageout daemon will not 2089 * touch it (since there is no way to locate the pte mappings for the 2090 * page). madvise() calls that mess with the pmap will also no longer 2091 * operate on the page. 2092 * 2093 * Beyond that the page is still reasonably 'normal'. Freeing the page 2094 * will clear the flag. 2095 * 2096 * This routine is used by OBJT_PHYS objects - objects using unswappable 2097 * physical memory as backing store rather then swap-backed memory and 2098 * will eventually be extended to support 4MB unmanaged physical 2099 * mappings. 2100 * 2101 * Caller must be holding the page busy. 2102 */ 2103 void 2104 vm_page_unmanage(vm_page_t m) 2105 { 2106 KKASSERT(m->flags & PG_BUSY); 2107 if ((m->flags & PG_UNMANAGED) == 0) { 2108 if (m->wire_count == 0) 2109 vm_page_unqueue(m); 2110 } 2111 vm_page_flag_set(m, PG_UNMANAGED); 2112 } 2113 2114 /* 2115 * Mark this page as wired down by yet another map, removing it from 2116 * paging queues as necessary. 2117 * 2118 * Caller must be holding the page busy. 2119 */ 2120 void 2121 vm_page_wire(vm_page_t m) 2122 { 2123 /* 2124 * Only bump the wire statistics if the page is not already wired, 2125 * and only unqueue the page if it is on some queue (if it is unmanaged 2126 * it is already off the queues). Don't do anything with fictitious 2127 * pages because they are always wired. 2128 */ 2129 KKASSERT(m->flags & PG_BUSY); 2130 if ((m->flags & PG_FICTITIOUS) == 0) { 2131 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2132 if ((m->flags & PG_UNMANAGED) == 0) 2133 vm_page_unqueue(m); 2134 atomic_add_int(&vmstats.v_wire_count, 1); 2135 } 2136 KASSERT(m->wire_count != 0, 2137 ("vm_page_wire: wire_count overflow m=%p", m)); 2138 } 2139 } 2140 2141 /* 2142 * Release one wiring of this page, potentially enabling it to be paged again. 2143 * 2144 * Many pages placed on the inactive queue should actually go 2145 * into the cache, but it is difficult to figure out which. What 2146 * we do instead, if the inactive target is well met, is to put 2147 * clean pages at the head of the inactive queue instead of the tail. 2148 * This will cause them to be moved to the cache more quickly and 2149 * if not actively re-referenced, freed more quickly. If we just 2150 * stick these pages at the end of the inactive queue, heavy filesystem 2151 * meta-data accesses can cause an unnecessary paging load on memory bound 2152 * processes. This optimization causes one-time-use metadata to be 2153 * reused more quickly. 2154 * 2155 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2156 * the inactive queue. This helps the pageout daemon determine memory 2157 * pressure and act on out-of-memory situations more quickly. 2158 * 2159 * BUT, if we are in a low-memory situation we have no choice but to 2160 * put clean pages on the cache queue. 2161 * 2162 * A number of routines use vm_page_unwire() to guarantee that the page 2163 * will go into either the inactive or active queues, and will NEVER 2164 * be placed in the cache - for example, just after dirtying a page. 2165 * dirty pages in the cache are not allowed. 2166 * 2167 * The page queues must be locked. 2168 * This routine may not block. 2169 */ 2170 void 2171 vm_page_unwire(vm_page_t m, int activate) 2172 { 2173 KKASSERT(m->flags & PG_BUSY); 2174 if (m->flags & PG_FICTITIOUS) { 2175 /* do nothing */ 2176 } else if (m->wire_count <= 0) { 2177 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2178 } else { 2179 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2180 atomic_add_int(&vmstats.v_wire_count, -1); 2181 if (m->flags & PG_UNMANAGED) { 2182 ; 2183 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2184 vm_page_spin_lock(m); 2185 _vm_page_add_queue_spinlocked(m, 2186 PQ_ACTIVE + m->pc, 0); 2187 _vm_page_and_queue_spin_unlock(m); 2188 } else { 2189 vm_page_spin_lock(m); 2190 vm_page_flag_clear(m, PG_WINATCFLS); 2191 _vm_page_add_queue_spinlocked(m, 2192 PQ_INACTIVE + m->pc, 0); 2193 ++vm_swapcache_inactive_heuristic; 2194 _vm_page_and_queue_spin_unlock(m); 2195 } 2196 } 2197 } 2198 } 2199 2200 /* 2201 * Move the specified page to the inactive queue. If the page has 2202 * any associated swap, the swap is deallocated. 2203 * 2204 * Normally athead is 0 resulting in LRU operation. athead is set 2205 * to 1 if we want this page to be 'as if it were placed in the cache', 2206 * except without unmapping it from the process address space. 2207 * 2208 * vm_page's spinlock must be held on entry and will remain held on return. 2209 * This routine may not block. 2210 */ 2211 static void 2212 _vm_page_deactivate_locked(vm_page_t m, int athead) 2213 { 2214 u_short oqueue; 2215 2216 /* 2217 * Ignore if already inactive. 2218 */ 2219 if (m->queue - m->pc == PQ_INACTIVE) 2220 return; 2221 _vm_page_queue_spin_lock(m); 2222 oqueue = _vm_page_rem_queue_spinlocked(m); 2223 2224 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2225 if (oqueue == PQ_CACHE) 2226 mycpu->gd_cnt.v_reactivated++; 2227 vm_page_flag_clear(m, PG_WINATCFLS); 2228 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2229 if (athead == 0) 2230 ++vm_swapcache_inactive_heuristic; 2231 } 2232 _vm_page_queue_spin_unlock(m); 2233 /* leaves vm_page spinlocked */ 2234 } 2235 2236 /* 2237 * Attempt to deactivate a page. 2238 * 2239 * No requirements. 2240 */ 2241 void 2242 vm_page_deactivate(vm_page_t m) 2243 { 2244 vm_page_spin_lock(m); 2245 _vm_page_deactivate_locked(m, 0); 2246 vm_page_spin_unlock(m); 2247 } 2248 2249 void 2250 vm_page_deactivate_locked(vm_page_t m) 2251 { 2252 _vm_page_deactivate_locked(m, 0); 2253 } 2254 2255 /* 2256 * Attempt to move a page to PQ_CACHE. 2257 * 2258 * Returns 0 on failure, 1 on success 2259 * 2260 * The page should NOT be busied by the caller. This function will validate 2261 * whether the page can be safely moved to the cache. 2262 */ 2263 int 2264 vm_page_try_to_cache(vm_page_t m) 2265 { 2266 vm_page_spin_lock(m); 2267 if (vm_page_busy_try(m, TRUE)) { 2268 vm_page_spin_unlock(m); 2269 return(0); 2270 } 2271 if (m->dirty || m->hold_count || m->wire_count || 2272 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2273 if (_vm_page_wakeup(m)) { 2274 vm_page_spin_unlock(m); 2275 wakeup(m); 2276 } else { 2277 vm_page_spin_unlock(m); 2278 } 2279 return(0); 2280 } 2281 vm_page_spin_unlock(m); 2282 2283 /* 2284 * Page busied by us and no longer spinlocked. Dirty pages cannot 2285 * be moved to the cache. 2286 */ 2287 vm_page_test_dirty(m); 2288 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2289 vm_page_wakeup(m); 2290 return(0); 2291 } 2292 vm_page_cache(m); 2293 return(1); 2294 } 2295 2296 /* 2297 * Attempt to free the page. If we cannot free it, we do nothing. 2298 * 1 is returned on success, 0 on failure. 2299 * 2300 * No requirements. 2301 */ 2302 int 2303 vm_page_try_to_free(vm_page_t m) 2304 { 2305 vm_page_spin_lock(m); 2306 if (vm_page_busy_try(m, TRUE)) { 2307 vm_page_spin_unlock(m); 2308 return(0); 2309 } 2310 2311 /* 2312 * The page can be in any state, including already being on the free 2313 * queue. Check to see if it really can be freed. 2314 */ 2315 if (m->dirty || /* can't free if it is dirty */ 2316 m->hold_count || /* or held (XXX may be wrong) */ 2317 m->wire_count || /* or wired */ 2318 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2319 PG_NEED_COMMIT)) || /* or needs a commit */ 2320 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2321 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2322 if (_vm_page_wakeup(m)) { 2323 vm_page_spin_unlock(m); 2324 wakeup(m); 2325 } else { 2326 vm_page_spin_unlock(m); 2327 } 2328 return(0); 2329 } 2330 vm_page_spin_unlock(m); 2331 2332 /* 2333 * We can probably free the page. 2334 * 2335 * Page busied by us and no longer spinlocked. Dirty pages will 2336 * not be freed by this function. We have to re-test the 2337 * dirty bit after cleaning out the pmaps. 2338 */ 2339 vm_page_test_dirty(m); 2340 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2341 vm_page_wakeup(m); 2342 return(0); 2343 } 2344 vm_page_protect(m, VM_PROT_NONE); 2345 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2346 vm_page_wakeup(m); 2347 return(0); 2348 } 2349 vm_page_free(m); 2350 return(1); 2351 } 2352 2353 /* 2354 * vm_page_cache 2355 * 2356 * Put the specified page onto the page cache queue (if appropriate). 2357 * 2358 * The page must be busy, and this routine will release the busy and 2359 * possibly even free the page. 2360 */ 2361 void 2362 vm_page_cache(vm_page_t m) 2363 { 2364 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2365 m->busy || m->wire_count || m->hold_count) { 2366 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2367 vm_page_wakeup(m); 2368 return; 2369 } 2370 2371 /* 2372 * Already in the cache (and thus not mapped) 2373 */ 2374 if ((m->queue - m->pc) == PQ_CACHE) { 2375 KKASSERT((m->flags & PG_MAPPED) == 0); 2376 vm_page_wakeup(m); 2377 return; 2378 } 2379 2380 /* 2381 * Caller is required to test m->dirty, but note that the act of 2382 * removing the page from its maps can cause it to become dirty 2383 * on an SMP system due to another cpu running in usermode. 2384 */ 2385 if (m->dirty) { 2386 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2387 (long)m->pindex); 2388 } 2389 2390 /* 2391 * Remove all pmaps and indicate that the page is not 2392 * writeable or mapped. Our vm_page_protect() call may 2393 * have blocked (especially w/ VM_PROT_NONE), so recheck 2394 * everything. 2395 */ 2396 vm_page_protect(m, VM_PROT_NONE); 2397 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2398 m->busy || m->wire_count || m->hold_count) { 2399 vm_page_wakeup(m); 2400 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2401 vm_page_deactivate(m); 2402 vm_page_wakeup(m); 2403 } else { 2404 _vm_page_and_queue_spin_lock(m); 2405 _vm_page_rem_queue_spinlocked(m); 2406 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2407 _vm_page_queue_spin_unlock(m); 2408 if (_vm_page_wakeup(m)) { 2409 vm_page_spin_unlock(m); 2410 wakeup(m); 2411 } else { 2412 vm_page_spin_unlock(m); 2413 } 2414 vm_page_free_wakeup(); 2415 } 2416 } 2417 2418 /* 2419 * vm_page_dontneed() 2420 * 2421 * Cache, deactivate, or do nothing as appropriate. This routine 2422 * is typically used by madvise() MADV_DONTNEED. 2423 * 2424 * Generally speaking we want to move the page into the cache so 2425 * it gets reused quickly. However, this can result in a silly syndrome 2426 * due to the page recycling too quickly. Small objects will not be 2427 * fully cached. On the otherhand, if we move the page to the inactive 2428 * queue we wind up with a problem whereby very large objects 2429 * unnecessarily blow away our inactive and cache queues. 2430 * 2431 * The solution is to move the pages based on a fixed weighting. We 2432 * either leave them alone, deactivate them, or move them to the cache, 2433 * where moving them to the cache has the highest weighting. 2434 * By forcing some pages into other queues we eventually force the 2435 * system to balance the queues, potentially recovering other unrelated 2436 * space from active. The idea is to not force this to happen too 2437 * often. 2438 * 2439 * The page must be busied. 2440 */ 2441 void 2442 vm_page_dontneed(vm_page_t m) 2443 { 2444 static int dnweight; 2445 int dnw; 2446 int head; 2447 2448 dnw = ++dnweight; 2449 2450 /* 2451 * occassionally leave the page alone 2452 */ 2453 if ((dnw & 0x01F0) == 0 || 2454 m->queue - m->pc == PQ_INACTIVE || 2455 m->queue - m->pc == PQ_CACHE 2456 ) { 2457 if (m->act_count >= ACT_INIT) 2458 --m->act_count; 2459 return; 2460 } 2461 2462 /* 2463 * If vm_page_dontneed() is inactivating a page, it must clear 2464 * the referenced flag; otherwise the pagedaemon will see references 2465 * on the page in the inactive queue and reactivate it. Until the 2466 * page can move to the cache queue, madvise's job is not done. 2467 */ 2468 vm_page_flag_clear(m, PG_REFERENCED); 2469 pmap_clear_reference(m); 2470 2471 if (m->dirty == 0) 2472 vm_page_test_dirty(m); 2473 2474 if (m->dirty || (dnw & 0x0070) == 0) { 2475 /* 2476 * Deactivate the page 3 times out of 32. 2477 */ 2478 head = 0; 2479 } else { 2480 /* 2481 * Cache the page 28 times out of every 32. Note that 2482 * the page is deactivated instead of cached, but placed 2483 * at the head of the queue instead of the tail. 2484 */ 2485 head = 1; 2486 } 2487 vm_page_spin_lock(m); 2488 _vm_page_deactivate_locked(m, head); 2489 vm_page_spin_unlock(m); 2490 } 2491 2492 /* 2493 * These routines manipulate the 'soft busy' count for a page. A soft busy 2494 * is almost like PG_BUSY except that it allows certain compatible operations 2495 * to occur on the page while it is busy. For example, a page undergoing a 2496 * write can still be mapped read-only. 2497 * 2498 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2499 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2500 * busy bit is cleared. 2501 */ 2502 void 2503 vm_page_io_start(vm_page_t m) 2504 { 2505 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2506 atomic_add_char(&m->busy, 1); 2507 vm_page_flag_set(m, PG_SBUSY); 2508 } 2509 2510 void 2511 vm_page_io_finish(vm_page_t m) 2512 { 2513 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2514 atomic_subtract_char(&m->busy, 1); 2515 if (m->busy == 0) 2516 vm_page_flag_clear(m, PG_SBUSY); 2517 } 2518 2519 /* 2520 * Indicate that a clean VM page requires a filesystem commit and cannot 2521 * be reused. Used by tmpfs. 2522 */ 2523 void 2524 vm_page_need_commit(vm_page_t m) 2525 { 2526 vm_page_flag_set(m, PG_NEED_COMMIT); 2527 vm_object_set_writeable_dirty(m->object); 2528 } 2529 2530 void 2531 vm_page_clear_commit(vm_page_t m) 2532 { 2533 vm_page_flag_clear(m, PG_NEED_COMMIT); 2534 } 2535 2536 /* 2537 * Grab a page, blocking if it is busy and allocating a page if necessary. 2538 * A busy page is returned or NULL. The page may or may not be valid and 2539 * might not be on a queue (the caller is responsible for the disposition of 2540 * the page). 2541 * 2542 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2543 * page will be zero'd and marked valid. 2544 * 2545 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2546 * valid even if it already exists. 2547 * 2548 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2549 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2550 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2551 * 2552 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2553 * always returned if we had blocked. 2554 * 2555 * This routine may not be called from an interrupt. 2556 * 2557 * PG_ZERO is *ALWAYS* cleared by this routine. 2558 * 2559 * No other requirements. 2560 */ 2561 vm_page_t 2562 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2563 { 2564 vm_page_t m; 2565 int error; 2566 2567 KKASSERT(allocflags & 2568 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2569 vm_object_hold(object); 2570 for (;;) { 2571 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2572 if (error) { 2573 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2574 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2575 m = NULL; 2576 break; 2577 } 2578 /* retry */ 2579 } else if (m == NULL) { 2580 if (allocflags & VM_ALLOC_RETRY) 2581 allocflags |= VM_ALLOC_NULL_OK; 2582 m = vm_page_alloc(object, pindex, 2583 allocflags & ~VM_ALLOC_RETRY); 2584 if (m) 2585 break; 2586 vm_wait(0); 2587 if ((allocflags & VM_ALLOC_RETRY) == 0) 2588 goto failed; 2589 } else { 2590 /* m found */ 2591 break; 2592 } 2593 } 2594 2595 /* 2596 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2597 * 2598 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2599 * valid even if already valid. 2600 */ 2601 if (m->valid == 0) { 2602 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2603 if ((m->flags & PG_ZERO) == 0) 2604 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2605 m->valid = VM_PAGE_BITS_ALL; 2606 } 2607 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2608 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2609 m->valid = VM_PAGE_BITS_ALL; 2610 } 2611 vm_page_flag_clear(m, PG_ZERO); 2612 failed: 2613 vm_object_drop(object); 2614 return(m); 2615 } 2616 2617 /* 2618 * Mapping function for valid bits or for dirty bits in 2619 * a page. May not block. 2620 * 2621 * Inputs are required to range within a page. 2622 * 2623 * No requirements. 2624 * Non blocking. 2625 */ 2626 int 2627 vm_page_bits(int base, int size) 2628 { 2629 int first_bit; 2630 int last_bit; 2631 2632 KASSERT( 2633 base + size <= PAGE_SIZE, 2634 ("vm_page_bits: illegal base/size %d/%d", base, size) 2635 ); 2636 2637 if (size == 0) /* handle degenerate case */ 2638 return(0); 2639 2640 first_bit = base >> DEV_BSHIFT; 2641 last_bit = (base + size - 1) >> DEV_BSHIFT; 2642 2643 return ((2 << last_bit) - (1 << first_bit)); 2644 } 2645 2646 /* 2647 * Sets portions of a page valid and clean. The arguments are expected 2648 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2649 * of any partial chunks touched by the range. The invalid portion of 2650 * such chunks will be zero'd. 2651 * 2652 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2653 * align base to DEV_BSIZE so as not to mark clean a partially 2654 * truncated device block. Otherwise the dirty page status might be 2655 * lost. 2656 * 2657 * This routine may not block. 2658 * 2659 * (base + size) must be less then or equal to PAGE_SIZE. 2660 */ 2661 static void 2662 _vm_page_zero_valid(vm_page_t m, int base, int size) 2663 { 2664 int frag; 2665 int endoff; 2666 2667 if (size == 0) /* handle degenerate case */ 2668 return; 2669 2670 /* 2671 * If the base is not DEV_BSIZE aligned and the valid 2672 * bit is clear, we have to zero out a portion of the 2673 * first block. 2674 */ 2675 2676 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2677 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2678 ) { 2679 pmap_zero_page_area( 2680 VM_PAGE_TO_PHYS(m), 2681 frag, 2682 base - frag 2683 ); 2684 } 2685 2686 /* 2687 * If the ending offset is not DEV_BSIZE aligned and the 2688 * valid bit is clear, we have to zero out a portion of 2689 * the last block. 2690 */ 2691 2692 endoff = base + size; 2693 2694 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2695 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2696 ) { 2697 pmap_zero_page_area( 2698 VM_PAGE_TO_PHYS(m), 2699 endoff, 2700 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2701 ); 2702 } 2703 } 2704 2705 /* 2706 * Set valid, clear dirty bits. If validating the entire 2707 * page we can safely clear the pmap modify bit. We also 2708 * use this opportunity to clear the PG_NOSYNC flag. If a process 2709 * takes a write fault on a MAP_NOSYNC memory area the flag will 2710 * be set again. 2711 * 2712 * We set valid bits inclusive of any overlap, but we can only 2713 * clear dirty bits for DEV_BSIZE chunks that are fully within 2714 * the range. 2715 * 2716 * Page must be busied? 2717 * No other requirements. 2718 */ 2719 void 2720 vm_page_set_valid(vm_page_t m, int base, int size) 2721 { 2722 _vm_page_zero_valid(m, base, size); 2723 m->valid |= vm_page_bits(base, size); 2724 } 2725 2726 2727 /* 2728 * Set valid bits and clear dirty bits. 2729 * 2730 * NOTE: This function does not clear the pmap modified bit. 2731 * Also note that e.g. NFS may use a byte-granular base 2732 * and size. 2733 * 2734 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2735 * this without necessarily busying the page (via bdwrite()). 2736 * So for now vm_token must also be held. 2737 * 2738 * No other requirements. 2739 */ 2740 void 2741 vm_page_set_validclean(vm_page_t m, int base, int size) 2742 { 2743 int pagebits; 2744 2745 _vm_page_zero_valid(m, base, size); 2746 pagebits = vm_page_bits(base, size); 2747 m->valid |= pagebits; 2748 m->dirty &= ~pagebits; 2749 if (base == 0 && size == PAGE_SIZE) { 2750 /*pmap_clear_modify(m);*/ 2751 vm_page_flag_clear(m, PG_NOSYNC); 2752 } 2753 } 2754 2755 /* 2756 * Set valid & dirty. Used by buwrite() 2757 * 2758 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2759 * call this function in buwrite() so for now vm_token must 2760 * be held. 2761 * 2762 * No other requirements. 2763 */ 2764 void 2765 vm_page_set_validdirty(vm_page_t m, int base, int size) 2766 { 2767 int pagebits; 2768 2769 pagebits = vm_page_bits(base, size); 2770 m->valid |= pagebits; 2771 m->dirty |= pagebits; 2772 if (m->object) 2773 vm_object_set_writeable_dirty(m->object); 2774 } 2775 2776 /* 2777 * Clear dirty bits. 2778 * 2779 * NOTE: This function does not clear the pmap modified bit. 2780 * Also note that e.g. NFS may use a byte-granular base 2781 * and size. 2782 * 2783 * Page must be busied? 2784 * No other requirements. 2785 */ 2786 void 2787 vm_page_clear_dirty(vm_page_t m, int base, int size) 2788 { 2789 m->dirty &= ~vm_page_bits(base, size); 2790 if (base == 0 && size == PAGE_SIZE) { 2791 /*pmap_clear_modify(m);*/ 2792 vm_page_flag_clear(m, PG_NOSYNC); 2793 } 2794 } 2795 2796 /* 2797 * Make the page all-dirty. 2798 * 2799 * Also make sure the related object and vnode reflect the fact that the 2800 * object may now contain a dirty page. 2801 * 2802 * Page must be busied? 2803 * No other requirements. 2804 */ 2805 void 2806 vm_page_dirty(vm_page_t m) 2807 { 2808 #ifdef INVARIANTS 2809 int pqtype = m->queue - m->pc; 2810 #endif 2811 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2812 ("vm_page_dirty: page in free/cache queue!")); 2813 if (m->dirty != VM_PAGE_BITS_ALL) { 2814 m->dirty = VM_PAGE_BITS_ALL; 2815 if (m->object) 2816 vm_object_set_writeable_dirty(m->object); 2817 } 2818 } 2819 2820 /* 2821 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2822 * valid and dirty bits for the effected areas are cleared. 2823 * 2824 * Page must be busied? 2825 * Does not block. 2826 * No other requirements. 2827 */ 2828 void 2829 vm_page_set_invalid(vm_page_t m, int base, int size) 2830 { 2831 int bits; 2832 2833 bits = vm_page_bits(base, size); 2834 m->valid &= ~bits; 2835 m->dirty &= ~bits; 2836 m->object->generation++; 2837 } 2838 2839 /* 2840 * The kernel assumes that the invalid portions of a page contain 2841 * garbage, but such pages can be mapped into memory by user code. 2842 * When this occurs, we must zero out the non-valid portions of the 2843 * page so user code sees what it expects. 2844 * 2845 * Pages are most often semi-valid when the end of a file is mapped 2846 * into memory and the file's size is not page aligned. 2847 * 2848 * Page must be busied? 2849 * No other requirements. 2850 */ 2851 void 2852 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2853 { 2854 int b; 2855 int i; 2856 2857 /* 2858 * Scan the valid bits looking for invalid sections that 2859 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2860 * valid bit may be set ) have already been zerod by 2861 * vm_page_set_validclean(). 2862 */ 2863 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2864 if (i == (PAGE_SIZE / DEV_BSIZE) || 2865 (m->valid & (1 << i)) 2866 ) { 2867 if (i > b) { 2868 pmap_zero_page_area( 2869 VM_PAGE_TO_PHYS(m), 2870 b << DEV_BSHIFT, 2871 (i - b) << DEV_BSHIFT 2872 ); 2873 } 2874 b = i + 1; 2875 } 2876 } 2877 2878 /* 2879 * setvalid is TRUE when we can safely set the zero'd areas 2880 * as being valid. We can do this if there are no cache consistency 2881 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2882 */ 2883 if (setvalid) 2884 m->valid = VM_PAGE_BITS_ALL; 2885 } 2886 2887 /* 2888 * Is a (partial) page valid? Note that the case where size == 0 2889 * will return FALSE in the degenerate case where the page is entirely 2890 * invalid, and TRUE otherwise. 2891 * 2892 * Does not block. 2893 * No other requirements. 2894 */ 2895 int 2896 vm_page_is_valid(vm_page_t m, int base, int size) 2897 { 2898 int bits = vm_page_bits(base, size); 2899 2900 if (m->valid && ((m->valid & bits) == bits)) 2901 return 1; 2902 else 2903 return 0; 2904 } 2905 2906 /* 2907 * update dirty bits from pmap/mmu. May not block. 2908 * 2909 * Caller must hold the page busy 2910 */ 2911 void 2912 vm_page_test_dirty(vm_page_t m) 2913 { 2914 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2915 vm_page_dirty(m); 2916 } 2917 } 2918 2919 /* 2920 * Register an action, associating it with its vm_page 2921 */ 2922 void 2923 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2924 { 2925 struct vm_page_action_list *list; 2926 int hv; 2927 2928 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2929 list = &action_list[hv]; 2930 2931 lwkt_gettoken(&vm_token); 2932 vm_page_flag_set(action->m, PG_ACTIONLIST); 2933 action->event = event; 2934 LIST_INSERT_HEAD(list, action, entry); 2935 lwkt_reltoken(&vm_token); 2936 } 2937 2938 /* 2939 * Unregister an action, disassociating it from its related vm_page 2940 */ 2941 void 2942 vm_page_unregister_action(vm_page_action_t action) 2943 { 2944 struct vm_page_action_list *list; 2945 int hv; 2946 2947 lwkt_gettoken(&vm_token); 2948 if (action->event != VMEVENT_NONE) { 2949 action->event = VMEVENT_NONE; 2950 LIST_REMOVE(action, entry); 2951 2952 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2953 list = &action_list[hv]; 2954 if (LIST_EMPTY(list)) 2955 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2956 } 2957 lwkt_reltoken(&vm_token); 2958 } 2959 2960 /* 2961 * Issue an event on a VM page. Corresponding action structures are 2962 * removed from the page's list and called. 2963 * 2964 * If the vm_page has no more pending action events we clear its 2965 * PG_ACTIONLIST flag. 2966 */ 2967 void 2968 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2969 { 2970 struct vm_page_action_list *list; 2971 struct vm_page_action *scan; 2972 struct vm_page_action *next; 2973 int hv; 2974 int all; 2975 2976 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 2977 list = &action_list[hv]; 2978 all = 1; 2979 2980 lwkt_gettoken(&vm_token); 2981 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 2982 if (scan->m == m) { 2983 if (scan->event == event) { 2984 scan->event = VMEVENT_NONE; 2985 LIST_REMOVE(scan, entry); 2986 scan->func(m, scan); 2987 /* XXX */ 2988 } else { 2989 all = 0; 2990 } 2991 } 2992 } 2993 if (all) 2994 vm_page_flag_clear(m, PG_ACTIONLIST); 2995 lwkt_reltoken(&vm_token); 2996 } 2997 2998 #include "opt_ddb.h" 2999 #ifdef DDB 3000 #include <sys/kernel.h> 3001 3002 #include <ddb/ddb.h> 3003 3004 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3005 { 3006 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3007 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3008 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3009 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3010 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3011 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3012 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3013 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3014 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3015 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3016 } 3017 3018 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3019 { 3020 int i; 3021 db_printf("PQ_FREE:"); 3022 for(i=0;i<PQ_L2_SIZE;i++) { 3023 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3024 } 3025 db_printf("\n"); 3026 3027 db_printf("PQ_CACHE:"); 3028 for(i=0;i<PQ_L2_SIZE;i++) { 3029 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3030 } 3031 db_printf("\n"); 3032 3033 db_printf("PQ_ACTIVE:"); 3034 for(i=0;i<PQ_L2_SIZE;i++) { 3035 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3036 } 3037 db_printf("\n"); 3038 3039 db_printf("PQ_INACTIVE:"); 3040 for(i=0;i<PQ_L2_SIZE;i++) { 3041 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3042 } 3043 db_printf("\n"); 3044 } 3045 #endif /* DDB */ 3046