xref: /dflybsd-src/sys/vm/vm_page.c (revision 0e6f0e2886bc8da263ff35cca55f08c8c57fac2d)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 #define VMACTION_HSIZE	256
99 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
100 
101 static void vm_page_queue_init(void);
102 static void vm_page_free_wakeup(void);
103 static vm_page_t vm_page_select_cache(u_short pg_color);
104 static vm_page_t _vm_page_list_find2(int basequeue, int index);
105 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
106 
107 /*
108  * Array of tailq lists
109  */
110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
111 
112 LIST_HEAD(vm_page_action_list, vm_page_action);
113 struct vm_page_action_list	action_list[VMACTION_HSIZE];
114 static volatile int vm_pages_waiting;
115 
116 static struct alist vm_contig_alist;
117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
119 
120 static u_long vm_dma_reserved = 0;
121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
123 	    "Memory reserved for DMA");
124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
125 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
126 
127 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
128 	     vm_pindex_t, pindex);
129 
130 static void
131 vm_page_queue_init(void)
132 {
133 	int i;
134 
135 	for (i = 0; i < PQ_L2_SIZE; i++)
136 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
137 	for (i = 0; i < PQ_L2_SIZE; i++)
138 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
145 	/* PQ_NONE has no queue */
146 
147 	for (i = 0; i < PQ_COUNT; i++) {
148 		TAILQ_INIT(&vm_page_queues[i].pl);
149 		spin_init(&vm_page_queues[i].spin);
150 	}
151 
152 	for (i = 0; i < VMACTION_HSIZE; i++)
153 		LIST_INIT(&action_list[i]);
154 }
155 
156 /*
157  * note: place in initialized data section?  Is this necessary?
158  */
159 long first_page = 0;
160 int vm_page_array_size = 0;
161 int vm_page_zero_count = 0;
162 vm_page_t vm_page_array = NULL;
163 vm_paddr_t vm_low_phys_reserved;
164 
165 /*
166  * (low level boot)
167  *
168  * Sets the page size, perhaps based upon the memory size.
169  * Must be called before any use of page-size dependent functions.
170  */
171 void
172 vm_set_page_size(void)
173 {
174 	if (vmstats.v_page_size == 0)
175 		vmstats.v_page_size = PAGE_SIZE;
176 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
177 		panic("vm_set_page_size: page size not a power of two");
178 }
179 
180 /*
181  * (low level boot)
182  *
183  * Add a new page to the freelist for use by the system.  New pages
184  * are added to both the head and tail of the associated free page
185  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
186  * requests pull 'recent' adds (higher physical addresses) first.
187  *
188  * Beware that the page zeroing daemon will also be running soon after
189  * boot, moving pages from the head to the tail of the PQ_FREE queues.
190  *
191  * Must be called in a critical section.
192  */
193 static void
194 vm_add_new_page(vm_paddr_t pa)
195 {
196 	struct vpgqueues *vpq;
197 	vm_page_t m;
198 
199 	m = PHYS_TO_VM_PAGE(pa);
200 	m->phys_addr = pa;
201 	m->flags = 0;
202 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
203 #ifdef SMP
204 	/*
205 	 * Twist for cpu localization in addition to page coloring, so
206 	 * different cpus selecting by m->queue get different page colors.
207 	 */
208 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
209 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
210 #endif
211 	/*
212 	 * Reserve a certain number of contiguous low memory pages for
213 	 * contigmalloc() to use.
214 	 */
215 	if (pa < vm_low_phys_reserved) {
216 		atomic_add_int(&vmstats.v_page_count, 1);
217 		atomic_add_int(&vmstats.v_dma_pages, 1);
218 		m->queue = PQ_NONE;
219 		m->wire_count = 1;
220 		atomic_add_int(&vmstats.v_wire_count, 1);
221 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
222 		return;
223 	}
224 
225 	/*
226 	 * General page
227 	 */
228 	m->queue = m->pc + PQ_FREE;
229 	KKASSERT(m->dirty == 0);
230 
231 	atomic_add_int(&vmstats.v_page_count, 1);
232 	atomic_add_int(&vmstats.v_free_count, 1);
233 	vpq = &vm_page_queues[m->queue];
234 	if ((vpq->flipflop & 15) == 0) {
235 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
236 		m->flags |= PG_ZERO;
237 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
238 		atomic_add_int(&vm_page_zero_count, 1);
239 	} else {
240 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
241 	}
242 	++vpq->flipflop;
243 	++vpq->lcnt;
244 }
245 
246 /*
247  * (low level boot)
248  *
249  * Initializes the resident memory module.
250  *
251  * Preallocates memory for critical VM structures and arrays prior to
252  * kernel_map becoming available.
253  *
254  * Memory is allocated from (virtual2_start, virtual2_end) if available,
255  * otherwise memory is allocated from (virtual_start, virtual_end).
256  *
257  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
258  * large enough to hold vm_page_array & other structures for machines with
259  * large amounts of ram, so we want to use virtual2* when available.
260  */
261 void
262 vm_page_startup(void)
263 {
264 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
265 	vm_offset_t mapped;
266 	vm_size_t npages;
267 	vm_paddr_t page_range;
268 	vm_paddr_t new_end;
269 	int i;
270 	vm_paddr_t pa;
271 	int nblocks;
272 	vm_paddr_t last_pa;
273 	vm_paddr_t end;
274 	vm_paddr_t biggestone, biggestsize;
275 	vm_paddr_t total;
276 
277 	total = 0;
278 	biggestsize = 0;
279 	biggestone = 0;
280 	nblocks = 0;
281 	vaddr = round_page(vaddr);
282 
283 	for (i = 0; phys_avail[i + 1]; i += 2) {
284 		phys_avail[i] = round_page64(phys_avail[i]);
285 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
286 	}
287 
288 	for (i = 0; phys_avail[i + 1]; i += 2) {
289 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
290 
291 		if (size > biggestsize) {
292 			biggestone = i;
293 			biggestsize = size;
294 		}
295 		++nblocks;
296 		total += size;
297 	}
298 
299 	end = phys_avail[biggestone+1];
300 	end = trunc_page(end);
301 
302 	/*
303 	 * Initialize the queue headers for the free queue, the active queue
304 	 * and the inactive queue.
305 	 */
306 	vm_page_queue_init();
307 
308 #if !defined(_KERNEL_VIRTUAL)
309 	/*
310 	 * VKERNELs don't support minidumps and as such don't need
311 	 * vm_page_dump
312 	 *
313 	 * Allocate a bitmap to indicate that a random physical page
314 	 * needs to be included in a minidump.
315 	 *
316 	 * The amd64 port needs this to indicate which direct map pages
317 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
318 	 *
319 	 * However, i386 still needs this workspace internally within the
320 	 * minidump code.  In theory, they are not needed on i386, but are
321 	 * included should the sf_buf code decide to use them.
322 	 */
323 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
324 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
325 	end -= vm_page_dump_size;
326 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
327 	    VM_PROT_READ | VM_PROT_WRITE);
328 	bzero((void *)vm_page_dump, vm_page_dump_size);
329 #endif
330 	/*
331 	 * Compute the number of pages of memory that will be available for
332 	 * use (taking into account the overhead of a page structure per
333 	 * page).
334 	 */
335 	first_page = phys_avail[0] / PAGE_SIZE;
336 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
337 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
338 
339 #ifndef _KERNEL_VIRTUAL
340 	/*
341 	 * (only applies to real kernels)
342 	 *
343 	 * Initialize the contiguous reserve map.  We initially reserve up
344 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
345 	 * is lower.
346 	 *
347 	 * Once device initialization is complete we return most of the
348 	 * reserved memory back to the normal page queues but leave some
349 	 * in reserve for things like usb attachments.
350 	 */
351 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
352 	if (vm_low_phys_reserved > total / 4)
353 		vm_low_phys_reserved = total / 4;
354 	if (vm_dma_reserved == 0) {
355 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
356 		if (vm_dma_reserved > total / 16)
357 			vm_dma_reserved = total / 16;
358 	}
359 #endif
360 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
361 		   ALIST_RECORDS_65536);
362 
363 	/*
364 	 * Initialize the mem entry structures now, and put them in the free
365 	 * queue.
366 	 */
367 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
368 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
369 	vm_page_array = (vm_page_t)mapped;
370 
371 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
372 	/*
373 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
374 	 * we have to manually add these pages to the minidump tracking so
375 	 * that they can be dumped, including the vm_page_array.
376 	 */
377 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
378 		dump_add_page(pa);
379 #endif
380 
381 	/*
382 	 * Clear all of the page structures
383 	 */
384 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
385 	vm_page_array_size = page_range;
386 
387 	/*
388 	 * Construct the free queue(s) in ascending order (by physical
389 	 * address) so that the first 16MB of physical memory is allocated
390 	 * last rather than first.  On large-memory machines, this avoids
391 	 * the exhaustion of low physical memory before isa_dmainit has run.
392 	 */
393 	vmstats.v_page_count = 0;
394 	vmstats.v_free_count = 0;
395 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
396 		pa = phys_avail[i];
397 		if (i == biggestone)
398 			last_pa = new_end;
399 		else
400 			last_pa = phys_avail[i + 1];
401 		while (pa < last_pa && npages-- > 0) {
402 			vm_add_new_page(pa);
403 			pa += PAGE_SIZE;
404 		}
405 	}
406 	if (virtual2_start)
407 		virtual2_start = vaddr;
408 	else
409 		virtual_start = vaddr;
410 }
411 
412 /*
413  * We tended to reserve a ton of memory for contigmalloc().  Now that most
414  * drivers have initialized we want to return most the remaining free
415  * reserve back to the VM page queues so they can be used for normal
416  * allocations.
417  *
418  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
419  */
420 static void
421 vm_page_startup_finish(void *dummy __unused)
422 {
423 	alist_blk_t blk;
424 	alist_blk_t rblk;
425 	alist_blk_t count;
426 	alist_blk_t xcount;
427 	alist_blk_t bfree;
428 	vm_page_t m;
429 
430 	spin_lock(&vm_contig_spin);
431 	for (;;) {
432 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
433 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
434 			break;
435 		if (count == 0)
436 			break;
437 
438 		/*
439 		 * Figure out how much of the initial reserve we have to
440 		 * free in order to reach our target.
441 		 */
442 		bfree -= vm_dma_reserved / PAGE_SIZE;
443 		if (count > bfree) {
444 			blk += count - bfree;
445 			count = bfree;
446 		}
447 
448 		/*
449 		 * Calculate the nearest power of 2 <= count.
450 		 */
451 		for (xcount = 1; xcount <= count; xcount <<= 1)
452 			;
453 		xcount >>= 1;
454 		blk += count - xcount;
455 		count = xcount;
456 
457 		/*
458 		 * Allocate the pages from the alist, then free them to
459 		 * the normal VM page queues.
460 		 *
461 		 * Pages allocated from the alist are wired.  We have to
462 		 * busy, unwire, and free them.  We must also adjust
463 		 * vm_low_phys_reserved before freeing any pages to prevent
464 		 * confusion.
465 		 */
466 		rblk = alist_alloc(&vm_contig_alist, blk, count);
467 		if (rblk != blk) {
468 			kprintf("vm_page_startup_finish: Unable to return "
469 				"dma space @0x%08x/%d -> 0x%08x\n",
470 				blk, count, rblk);
471 			break;
472 		}
473 		atomic_add_int(&vmstats.v_dma_pages, -count);
474 		spin_unlock(&vm_contig_spin);
475 
476 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
477 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
478 		while (count) {
479 			vm_page_busy_wait(m, FALSE, "cpgfr");
480 			vm_page_unwire(m, 0);
481 			vm_page_free(m);
482 			--count;
483 			++m;
484 		}
485 		spin_lock(&vm_contig_spin);
486 	}
487 	spin_unlock(&vm_contig_spin);
488 
489 	/*
490 	 * Print out how much DMA space drivers have already allocated and
491 	 * how much is left over.
492 	 */
493 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
494 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
495 		(PAGE_SIZE / 1024),
496 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
497 }
498 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
499 	vm_page_startup_finish, NULL)
500 
501 
502 /*
503  * Scan comparison function for Red-Black tree scans.  An inclusive
504  * (start,end) is expected.  Other fields are not used.
505  */
506 int
507 rb_vm_page_scancmp(struct vm_page *p, void *data)
508 {
509 	struct rb_vm_page_scan_info *info = data;
510 
511 	if (p->pindex < info->start_pindex)
512 		return(-1);
513 	if (p->pindex > info->end_pindex)
514 		return(1);
515 	return(0);
516 }
517 
518 int
519 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
520 {
521 	if (p1->pindex < p2->pindex)
522 		return(-1);
523 	if (p1->pindex > p2->pindex)
524 		return(1);
525 	return(0);
526 }
527 
528 /*
529  * Each page queue has its own spin lock, which is fairly optimal for
530  * allocating and freeing pages at least.
531  *
532  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
533  * queue spinlock via this function.  Also note that m->queue cannot change
534  * unless both the page and queue are locked.
535  */
536 static __inline
537 void
538 _vm_page_queue_spin_lock(vm_page_t m)
539 {
540 	u_short queue;
541 
542 	queue = m->queue;
543 	if (queue != PQ_NONE) {
544 		spin_lock(&vm_page_queues[queue].spin);
545 		KKASSERT(queue == m->queue);
546 	}
547 }
548 
549 static __inline
550 void
551 _vm_page_queue_spin_unlock(vm_page_t m)
552 {
553 	u_short queue;
554 
555 	queue = m->queue;
556 	cpu_ccfence();
557 	if (queue != PQ_NONE)
558 		spin_unlock(&vm_page_queues[queue].spin);
559 }
560 
561 static __inline
562 void
563 _vm_page_queues_spin_lock(u_short queue)
564 {
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_lock(&vm_page_queues[queue].spin);
568 }
569 
570 
571 static __inline
572 void
573 _vm_page_queues_spin_unlock(u_short queue)
574 {
575 	cpu_ccfence();
576 	if (queue != PQ_NONE)
577 		spin_unlock(&vm_page_queues[queue].spin);
578 }
579 
580 void
581 vm_page_queue_spin_lock(vm_page_t m)
582 {
583 	_vm_page_queue_spin_lock(m);
584 }
585 
586 void
587 vm_page_queues_spin_lock(u_short queue)
588 {
589 	_vm_page_queues_spin_lock(queue);
590 }
591 
592 void
593 vm_page_queue_spin_unlock(vm_page_t m)
594 {
595 	_vm_page_queue_spin_unlock(m);
596 }
597 
598 void
599 vm_page_queues_spin_unlock(u_short queue)
600 {
601 	_vm_page_queues_spin_unlock(queue);
602 }
603 
604 /*
605  * This locks the specified vm_page and its queue in the proper order
606  * (page first, then queue).  The queue may change so the caller must
607  * recheck on return.
608  */
609 static __inline
610 void
611 _vm_page_and_queue_spin_lock(vm_page_t m)
612 {
613 	vm_page_spin_lock(m);
614 	_vm_page_queue_spin_lock(m);
615 }
616 
617 static __inline
618 void
619 _vm_page_and_queue_spin_unlock(vm_page_t m)
620 {
621 	_vm_page_queues_spin_unlock(m->queue);
622 	vm_page_spin_unlock(m);
623 }
624 
625 void
626 vm_page_and_queue_spin_unlock(vm_page_t m)
627 {
628 	_vm_page_and_queue_spin_unlock(m);
629 }
630 
631 void
632 vm_page_and_queue_spin_lock(vm_page_t m)
633 {
634 	_vm_page_and_queue_spin_lock(m);
635 }
636 
637 /*
638  * Helper function removes vm_page from its current queue.
639  * Returns the base queue the page used to be on.
640  *
641  * The vm_page and the queue must be spinlocked.
642  * This function will unlock the queue but leave the page spinlocked.
643  */
644 static __inline u_short
645 _vm_page_rem_queue_spinlocked(vm_page_t m)
646 {
647 	struct vpgqueues *pq;
648 	u_short queue;
649 
650 	queue = m->queue;
651 	if (queue != PQ_NONE) {
652 		pq = &vm_page_queues[queue];
653 		TAILQ_REMOVE(&pq->pl, m, pageq);
654 		atomic_add_int(pq->cnt, -1);
655 		pq->lcnt--;
656 		m->queue = PQ_NONE;
657 		vm_page_queues_spin_unlock(queue);
658 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
659 			atomic_subtract_int(&vm_page_zero_count, 1);
660 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
661 			return (queue - m->pc);
662 	}
663 	return queue;
664 }
665 
666 /*
667  * Helper function places the vm_page on the specified queue.
668  *
669  * The vm_page must be spinlocked.
670  * This function will return with both the page and the queue locked.
671  */
672 static __inline void
673 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
674 {
675 	struct vpgqueues *pq;
676 
677 	KKASSERT(m->queue == PQ_NONE);
678 
679 	if (queue != PQ_NONE) {
680 		vm_page_queues_spin_lock(queue);
681 		pq = &vm_page_queues[queue];
682 		++pq->lcnt;
683 		atomic_add_int(pq->cnt, 1);
684 		m->queue = queue;
685 
686 		/*
687 		 * Put zero'd pages on the end ( where we look for zero'd pages
688 		 * first ) and non-zerod pages at the head.
689 		 */
690 		if (queue - m->pc == PQ_FREE) {
691 			if (m->flags & PG_ZERO) {
692 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
693 				atomic_add_int(&vm_page_zero_count, 1);
694 			} else {
695 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
696 			}
697 		} else if (athead) {
698 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
699 		} else {
700 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
701 		}
702 		/* leave the queue spinlocked */
703 	}
704 }
705 
706 /*
707  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
708  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
709  * did not.  Only one sleep call will be made before returning.
710  *
711  * This function does NOT busy the page and on return the page is not
712  * guaranteed to be available.
713  */
714 void
715 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
716 {
717 	u_int32_t flags;
718 
719 	for (;;) {
720 		flags = m->flags;
721 		cpu_ccfence();
722 
723 		if ((flags & PG_BUSY) == 0 &&
724 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
725 			break;
726 		}
727 		tsleep_interlock(m, 0);
728 		if (atomic_cmpset_int(&m->flags, flags,
729 				      flags | PG_WANTED | PG_REFERENCED)) {
730 			tsleep(m, PINTERLOCKED, msg, 0);
731 			break;
732 		}
733 	}
734 }
735 
736 /*
737  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
738  * also wait for m->busy to become 0 before setting PG_BUSY.
739  */
740 void
741 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
742 				     int also_m_busy, const char *msg
743 				     VM_PAGE_DEBUG_ARGS)
744 {
745 	u_int32_t flags;
746 
747 	for (;;) {
748 		flags = m->flags;
749 		cpu_ccfence();
750 		if (flags & PG_BUSY) {
751 			tsleep_interlock(m, 0);
752 			if (atomic_cmpset_int(&m->flags, flags,
753 					  flags | PG_WANTED | PG_REFERENCED)) {
754 				tsleep(m, PINTERLOCKED, msg, 0);
755 			}
756 		} else if (also_m_busy && (flags & PG_SBUSY)) {
757 			tsleep_interlock(m, 0);
758 			if (atomic_cmpset_int(&m->flags, flags,
759 					  flags | PG_WANTED | PG_REFERENCED)) {
760 				tsleep(m, PINTERLOCKED, msg, 0);
761 			}
762 		} else {
763 			if (atomic_cmpset_int(&m->flags, flags,
764 					      flags | PG_BUSY)) {
765 #ifdef VM_PAGE_DEBUG
766 				m->busy_func = func;
767 				m->busy_line = lineno;
768 #endif
769 				break;
770 			}
771 		}
772 	}
773 }
774 
775 /*
776  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
777  * is also 0.
778  *
779  * Returns non-zero on failure.
780  */
781 int
782 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
783 				    VM_PAGE_DEBUG_ARGS)
784 {
785 	u_int32_t flags;
786 
787 	for (;;) {
788 		flags = m->flags;
789 		cpu_ccfence();
790 		if (flags & PG_BUSY)
791 			return TRUE;
792 		if (also_m_busy && (flags & PG_SBUSY))
793 			return TRUE;
794 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
795 #ifdef VM_PAGE_DEBUG
796 				m->busy_func = func;
797 				m->busy_line = lineno;
798 #endif
799 			return FALSE;
800 		}
801 	}
802 }
803 
804 /*
805  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
806  * that a wakeup() should be performed.
807  *
808  * The vm_page must be spinlocked and will remain spinlocked on return.
809  * The related queue must NOT be spinlocked (which could deadlock us).
810  *
811  * (inline version)
812  */
813 static __inline
814 int
815 _vm_page_wakeup(vm_page_t m)
816 {
817 	u_int32_t flags;
818 
819 	for (;;) {
820 		flags = m->flags;
821 		cpu_ccfence();
822 		if (atomic_cmpset_int(&m->flags, flags,
823 				      flags & ~(PG_BUSY | PG_WANTED))) {
824 			break;
825 		}
826 	}
827 	return(flags & PG_WANTED);
828 }
829 
830 /*
831  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
832  * is typically the last call you make on a page before moving onto
833  * other things.
834  */
835 void
836 vm_page_wakeup(vm_page_t m)
837 {
838         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
839 	vm_page_spin_lock(m);
840 	if (_vm_page_wakeup(m)) {
841 		vm_page_spin_unlock(m);
842 		wakeup(m);
843 	} else {
844 		vm_page_spin_unlock(m);
845 	}
846 }
847 
848 /*
849  * Holding a page keeps it from being reused.  Other parts of the system
850  * can still disassociate the page from its current object and free it, or
851  * perform read or write I/O on it and/or otherwise manipulate the page,
852  * but if the page is held the VM system will leave the page and its data
853  * intact and not reuse the page for other purposes until the last hold
854  * reference is released.  (see vm_page_wire() if you want to prevent the
855  * page from being disassociated from its object too).
856  *
857  * The caller must still validate the contents of the page and, if necessary,
858  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
859  * before manipulating the page.
860  *
861  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
862  */
863 void
864 vm_page_hold(vm_page_t m)
865 {
866 	vm_page_spin_lock(m);
867 	atomic_add_int(&m->hold_count, 1);
868 	if (m->queue - m->pc == PQ_FREE) {
869 		_vm_page_queue_spin_lock(m);
870 		_vm_page_rem_queue_spinlocked(m);
871 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
872 		_vm_page_queue_spin_unlock(m);
873 	}
874 	vm_page_spin_unlock(m);
875 }
876 
877 /*
878  * The opposite of vm_page_hold().  A page can be freed while being held,
879  * which places it on the PQ_HOLD queue.  If we are able to busy the page
880  * after the hold count drops to zero we will move the page to the
881  * appropriate PQ_FREE queue by calling vm_page_free_toq().
882  */
883 void
884 vm_page_unhold(vm_page_t m)
885 {
886 	vm_page_spin_lock(m);
887 	atomic_add_int(&m->hold_count, -1);
888 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
889 		_vm_page_queue_spin_lock(m);
890 		_vm_page_rem_queue_spinlocked(m);
891 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
892 		_vm_page_queue_spin_unlock(m);
893 	}
894 	vm_page_spin_unlock(m);
895 }
896 
897 /*
898  * Inserts the given vm_page into the object and object list.
899  *
900  * The pagetables are not updated but will presumably fault the page
901  * in if necessary, or if a kernel page the caller will at some point
902  * enter the page into the kernel's pmap.  We are not allowed to block
903  * here so we *can't* do this anyway.
904  *
905  * This routine may not block.
906  * This routine must be called with the vm_object held.
907  * This routine must be called with a critical section held.
908  *
909  * This routine returns TRUE if the page was inserted into the object
910  * successfully, and FALSE if the page already exists in the object.
911  */
912 int
913 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
914 {
915 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
916 	if (m->object != NULL)
917 		panic("vm_page_insert: already inserted");
918 
919 	object->generation++;
920 
921 	/*
922 	 * Record the object/offset pair in this page and add the
923 	 * pv_list_count of the page to the object.
924 	 *
925 	 * The vm_page spin lock is required for interactions with the pmap.
926 	 */
927 	vm_page_spin_lock(m);
928 	m->object = object;
929 	m->pindex = pindex;
930 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
931 		m->object = NULL;
932 		m->pindex = 0;
933 		vm_page_spin_unlock(m);
934 		return FALSE;
935 	}
936 	object->resident_page_count++;
937 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
938 	vm_page_spin_unlock(m);
939 
940 	/*
941 	 * Since we are inserting a new and possibly dirty page,
942 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
943 	 */
944 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
945 		vm_object_set_writeable_dirty(object);
946 
947 	/*
948 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
949 	 */
950 	swap_pager_page_inserted(m);
951 	return TRUE;
952 }
953 
954 /*
955  * Removes the given vm_page_t from the (object,index) table
956  *
957  * The underlying pmap entry (if any) is NOT removed here.
958  * This routine may not block.
959  *
960  * The page must be BUSY and will remain BUSY on return.
961  * No other requirements.
962  *
963  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
964  *	 it busy.
965  */
966 void
967 vm_page_remove(vm_page_t m)
968 {
969 	vm_object_t object;
970 
971 	if (m->object == NULL) {
972 		return;
973 	}
974 
975 	if ((m->flags & PG_BUSY) == 0)
976 		panic("vm_page_remove: page not busy");
977 
978 	object = m->object;
979 
980 	vm_object_hold(object);
981 
982 	/*
983 	 * Remove the page from the object and update the object.
984 	 *
985 	 * The vm_page spin lock is required for interactions with the pmap.
986 	 */
987 	vm_page_spin_lock(m);
988 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
989 	object->resident_page_count--;
990 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
991 	m->object = NULL;
992 	vm_page_spin_unlock(m);
993 
994 	object->generation++;
995 
996 	vm_object_drop(object);
997 }
998 
999 /*
1000  * Locate and return the page at (object, pindex), or NULL if the
1001  * page could not be found.
1002  *
1003  * The caller must hold the vm_object token.
1004  */
1005 vm_page_t
1006 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1007 {
1008 	vm_page_t m;
1009 
1010 	/*
1011 	 * Search the hash table for this object/offset pair
1012 	 */
1013 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1014 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1015 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1016 	return(m);
1017 }
1018 
1019 vm_page_t
1020 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1021 					    vm_pindex_t pindex,
1022 					    int also_m_busy, const char *msg
1023 					    VM_PAGE_DEBUG_ARGS)
1024 {
1025 	u_int32_t flags;
1026 	vm_page_t m;
1027 
1028 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1029 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1030 	while (m) {
1031 		KKASSERT(m->object == object && m->pindex == pindex);
1032 		flags = m->flags;
1033 		cpu_ccfence();
1034 		if (flags & PG_BUSY) {
1035 			tsleep_interlock(m, 0);
1036 			if (atomic_cmpset_int(&m->flags, flags,
1037 					  flags | PG_WANTED | PG_REFERENCED)) {
1038 				tsleep(m, PINTERLOCKED, msg, 0);
1039 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1040 							      pindex);
1041 			}
1042 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1043 			tsleep_interlock(m, 0);
1044 			if (atomic_cmpset_int(&m->flags, flags,
1045 					  flags | PG_WANTED | PG_REFERENCED)) {
1046 				tsleep(m, PINTERLOCKED, msg, 0);
1047 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1048 							      pindex);
1049 			}
1050 		} else if (atomic_cmpset_int(&m->flags, flags,
1051 					     flags | PG_BUSY)) {
1052 #ifdef VM_PAGE_DEBUG
1053 			m->busy_func = func;
1054 			m->busy_line = lineno;
1055 #endif
1056 			break;
1057 		}
1058 	}
1059 	return m;
1060 }
1061 
1062 /*
1063  * Attempt to lookup and busy a page.
1064  *
1065  * Returns NULL if the page could not be found
1066  *
1067  * Returns a vm_page and error == TRUE if the page exists but could not
1068  * be busied.
1069  *
1070  * Returns a vm_page and error == FALSE on success.
1071  */
1072 vm_page_t
1073 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1074 					   vm_pindex_t pindex,
1075 					   int also_m_busy, int *errorp
1076 					   VM_PAGE_DEBUG_ARGS)
1077 {
1078 	u_int32_t flags;
1079 	vm_page_t m;
1080 
1081 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1082 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1083 	*errorp = FALSE;
1084 	while (m) {
1085 		KKASSERT(m->object == object && m->pindex == pindex);
1086 		flags = m->flags;
1087 		cpu_ccfence();
1088 		if (flags & PG_BUSY) {
1089 			*errorp = TRUE;
1090 			break;
1091 		}
1092 		if (also_m_busy && (flags & PG_SBUSY)) {
1093 			*errorp = TRUE;
1094 			break;
1095 		}
1096 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1097 #ifdef VM_PAGE_DEBUG
1098 			m->busy_func = func;
1099 			m->busy_line = lineno;
1100 #endif
1101 			break;
1102 		}
1103 	}
1104 	return m;
1105 }
1106 
1107 /*
1108  * Caller must hold the related vm_object
1109  */
1110 vm_page_t
1111 vm_page_next(vm_page_t m)
1112 {
1113 	vm_page_t next;
1114 
1115 	next = vm_page_rb_tree_RB_NEXT(m);
1116 	if (next && next->pindex != m->pindex + 1)
1117 		next = NULL;
1118 	return (next);
1119 }
1120 
1121 /*
1122  * vm_page_rename()
1123  *
1124  * Move the given vm_page from its current object to the specified
1125  * target object/offset.  The page must be busy and will remain so
1126  * on return.
1127  *
1128  * new_object must be held.
1129  * This routine might block. XXX ?
1130  *
1131  * NOTE: Swap associated with the page must be invalidated by the move.  We
1132  *       have to do this for several reasons:  (1) we aren't freeing the
1133  *       page, (2) we are dirtying the page, (3) the VM system is probably
1134  *       moving the page from object A to B, and will then later move
1135  *       the backing store from A to B and we can't have a conflict.
1136  *
1137  * NOTE: We *always* dirty the page.  It is necessary both for the
1138  *       fact that we moved it, and because we may be invalidating
1139  *	 swap.  If the page is on the cache, we have to deactivate it
1140  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1141  *	 on the cache.
1142  */
1143 void
1144 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1145 {
1146 	KKASSERT(m->flags & PG_BUSY);
1147 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object));
1148 	if (m->object) {
1149 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object));
1150 		vm_page_remove(m);
1151 	}
1152 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1153 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1154 		      new_object, new_pindex);
1155 	}
1156 	if (m->queue - m->pc == PQ_CACHE)
1157 		vm_page_deactivate(m);
1158 	vm_page_dirty(m);
1159 }
1160 
1161 /*
1162  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1163  * is being moved between queues or otherwise is to remain BUSYied by the
1164  * caller.
1165  *
1166  * This routine may not block.
1167  */
1168 void
1169 vm_page_unqueue_nowakeup(vm_page_t m)
1170 {
1171 	vm_page_and_queue_spin_lock(m);
1172 	(void)_vm_page_rem_queue_spinlocked(m);
1173 	vm_page_spin_unlock(m);
1174 }
1175 
1176 /*
1177  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1178  * if necessary.
1179  *
1180  * This routine may not block.
1181  */
1182 void
1183 vm_page_unqueue(vm_page_t m)
1184 {
1185 	u_short queue;
1186 
1187 	vm_page_and_queue_spin_lock(m);
1188 	queue = _vm_page_rem_queue_spinlocked(m);
1189 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1190 		vm_page_spin_unlock(m);
1191 		pagedaemon_wakeup();
1192 	} else {
1193 		vm_page_spin_unlock(m);
1194 	}
1195 }
1196 
1197 /*
1198  * vm_page_list_find()
1199  *
1200  * Find a page on the specified queue with color optimization.
1201  *
1202  * The page coloring optimization attempts to locate a page that does
1203  * not overload other nearby pages in the object in the cpu's L1 or L2
1204  * caches.  We need this optimization because cpu caches tend to be
1205  * physical caches, while object spaces tend to be virtual.
1206  *
1207  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1208  * and the algorithm is adjusted to localize allocations on a per-core basis.
1209  * This is done by 'twisting' the colors.
1210  *
1211  * The page is returned spinlocked and removed from its queue (it will
1212  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1213  * is responsible for dealing with the busy-page case (usually by
1214  * deactivating the page and looping).
1215  *
1216  * NOTE:  This routine is carefully inlined.  A non-inlined version
1217  *	  is available for outside callers but the only critical path is
1218  *	  from within this source file.
1219  *
1220  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1221  *	  represent stable storage, allowing us to order our locks vm_page
1222  *	  first, then queue.
1223  */
1224 static __inline
1225 vm_page_t
1226 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1227 {
1228 	vm_page_t m;
1229 
1230 	for (;;) {
1231 		if (prefer_zero)
1232 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1233 		else
1234 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1235 		if (m == NULL) {
1236 			m = _vm_page_list_find2(basequeue, index);
1237 			return(m);
1238 		}
1239 		vm_page_and_queue_spin_lock(m);
1240 		if (m->queue == basequeue + index) {
1241 			_vm_page_rem_queue_spinlocked(m);
1242 			/* vm_page_t spin held, no queue spin */
1243 			break;
1244 		}
1245 		vm_page_and_queue_spin_unlock(m);
1246 	}
1247 	return(m);
1248 }
1249 
1250 static vm_page_t
1251 _vm_page_list_find2(int basequeue, int index)
1252 {
1253 	int i;
1254 	vm_page_t m = NULL;
1255 	struct vpgqueues *pq;
1256 
1257 	pq = &vm_page_queues[basequeue];
1258 
1259 	/*
1260 	 * Note that for the first loop, index+i and index-i wind up at the
1261 	 * same place.  Even though this is not totally optimal, we've already
1262 	 * blown it by missing the cache case so we do not care.
1263 	 */
1264 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1265 		for (;;) {
1266 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1267 			if (m) {
1268 				_vm_page_and_queue_spin_lock(m);
1269 				if (m->queue ==
1270 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1271 					_vm_page_rem_queue_spinlocked(m);
1272 					return(m);
1273 				}
1274 				_vm_page_and_queue_spin_unlock(m);
1275 				continue;
1276 			}
1277 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1278 			if (m) {
1279 				_vm_page_and_queue_spin_lock(m);
1280 				if (m->queue ==
1281 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1282 					_vm_page_rem_queue_spinlocked(m);
1283 					return(m);
1284 				}
1285 				_vm_page_and_queue_spin_unlock(m);
1286 				continue;
1287 			}
1288 			break;	/* next i */
1289 		}
1290 	}
1291 	return(m);
1292 }
1293 
1294 /*
1295  * Returns a vm_page candidate for allocation.  The page is not busied so
1296  * it can move around.  The caller must busy the page (and typically
1297  * deactivate it if it cannot be busied!)
1298  *
1299  * Returns a spinlocked vm_page that has been removed from its queue.
1300  */
1301 vm_page_t
1302 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1303 {
1304 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1305 }
1306 
1307 /*
1308  * Find a page on the cache queue with color optimization, remove it
1309  * from the queue, and busy it.  The returned page will not be spinlocked.
1310  *
1311  * A candidate failure will be deactivated.  Candidates can fail due to
1312  * being busied by someone else, in which case they will be deactivated.
1313  *
1314  * This routine may not block.
1315  *
1316  */
1317 static vm_page_t
1318 vm_page_select_cache(u_short pg_color)
1319 {
1320 	vm_page_t m;
1321 
1322 	for (;;) {
1323 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1324 		if (m == NULL)
1325 			break;
1326 		/*
1327 		 * (m) has been removed from its queue and spinlocked
1328 		 */
1329 		if (vm_page_busy_try(m, TRUE)) {
1330 			_vm_page_deactivate_locked(m, 0);
1331 			vm_page_spin_unlock(m);
1332 #ifdef INVARIANTS
1333                         kprintf("Warning: busy page %p found in cache\n", m);
1334 #endif
1335 		} else {
1336 			/*
1337 			 * We successfully busied the page
1338 			 */
1339 			if ((m->flags & PG_UNMANAGED) == 0 &&
1340 			    m->hold_count == 0 &&
1341 			    m->wire_count == 0) {
1342 				vm_page_spin_unlock(m);
1343 				pagedaemon_wakeup();
1344 				return(m);
1345 			}
1346 			_vm_page_deactivate_locked(m, 0);
1347 			if (_vm_page_wakeup(m)) {
1348 				vm_page_spin_unlock(m);
1349 				wakeup(m);
1350 			} else {
1351 				vm_page_spin_unlock(m);
1352 			}
1353 		}
1354 	}
1355 	return (m);
1356 }
1357 
1358 /*
1359  * Find a free or zero page, with specified preference.  We attempt to
1360  * inline the nominal case and fall back to _vm_page_select_free()
1361  * otherwise.  A busied page is removed from the queue and returned.
1362  *
1363  * This routine may not block.
1364  */
1365 static __inline vm_page_t
1366 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1367 {
1368 	vm_page_t m;
1369 
1370 	for (;;) {
1371 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1372 				       prefer_zero);
1373 		if (m == NULL)
1374 			break;
1375 		if (vm_page_busy_try(m, TRUE)) {
1376 			/*
1377 			 * Various mechanisms such as a pmap_collect can
1378 			 * result in a busy page on the free queue.  We
1379 			 * have to move the page out of the way so we can
1380 			 * retry the allocation.  If the other thread is not
1381 			 * allocating the page then m->valid will remain 0 and
1382 			 * the pageout daemon will free the page later on.
1383 			 *
1384 			 * Since we could not busy the page, however, we
1385 			 * cannot make assumptions as to whether the page
1386 			 * will be allocated by the other thread or not,
1387 			 * so all we can do is deactivate it to move it out
1388 			 * of the way.  In particular, if the other thread
1389 			 * wires the page it may wind up on the inactive
1390 			 * queue and the pageout daemon will have to deal
1391 			 * with that case too.
1392 			 */
1393 			_vm_page_deactivate_locked(m, 0);
1394 			vm_page_spin_unlock(m);
1395 #ifdef INVARIANTS
1396                         kprintf("Warning: busy page %p found in cache\n", m);
1397 #endif
1398 		} else {
1399 			/*
1400 			 * Theoretically if we are able to busy the page
1401 			 * atomic with the queue removal (using the vm_page
1402 			 * lock) nobody else should be able to mess with the
1403 			 * page before us.
1404 			 */
1405 			KKASSERT((m->flags & PG_UNMANAGED) == 0);
1406 			KKASSERT(m->hold_count == 0);
1407 			KKASSERT(m->wire_count == 0);
1408 			vm_page_spin_unlock(m);
1409 			pagedaemon_wakeup();
1410 
1411 			/* return busied and removed page */
1412 			return(m);
1413 		}
1414 	}
1415 	return(m);
1416 }
1417 
1418 /*
1419  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1420  * The idea is to populate this cache prior to acquiring any locks so
1421  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1422  * holding potentialy contending locks.
1423  *
1424  * Note that we allocate the page uninserted into anything and use a pindex
1425  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1426  * allocations should wind up being uncontended.  However, we still want
1427  * to rove across PQ_L2_SIZE.
1428  */
1429 void
1430 vm_page_pcpu_cache(void)
1431 {
1432 #if 0
1433 	globaldata_t gd = mycpu;
1434 	vm_page_t m;
1435 
1436 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1437 		crit_enter_gd(gd);
1438 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1439 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1440 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1441 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1442 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1443 				if ((m->flags & PG_ZERO) == 0) {
1444 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1445 					vm_page_flag_set(m, PG_ZERO);
1446 				}
1447 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1448 			} else {
1449 				vm_page_free(m);
1450 			}
1451 		}
1452 		crit_exit_gd(gd);
1453 	}
1454 #endif
1455 }
1456 
1457 /*
1458  * vm_page_alloc()
1459  *
1460  * Allocate and return a memory cell associated with this VM object/offset
1461  * pair.  If object is NULL an unassociated page will be allocated.
1462  *
1463  * The returned page will be busied and removed from its queues.  This
1464  * routine can block and may return NULL if a race occurs and the page
1465  * is found to already exist at the specified (object, pindex).
1466  *
1467  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1468  *	VM_ALLOC_QUICK		like normal but cannot use cache
1469  *	VM_ALLOC_SYSTEM		greater free drain
1470  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1471  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1472  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1473  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1474  *				(see vm_page_grab())
1475  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1476  *
1477  * The object must be held if not NULL
1478  * This routine may not block
1479  *
1480  * Additional special handling is required when called from an interrupt
1481  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1482  * in this case.
1483  */
1484 vm_page_t
1485 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1486 {
1487 #ifdef SMP
1488 	globaldata_t gd = mycpu;
1489 #endif
1490 	vm_object_t obj;
1491 	vm_page_t m;
1492 	u_short pg_color;
1493 
1494 #if 0
1495 	/*
1496 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1497 	 * and pre-zerod for us.
1498 	 */
1499 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1500 		crit_enter_gd(gd);
1501 		if (gd->gd_vmpg_count) {
1502 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1503 			crit_exit_gd(gd);
1504 			goto done;
1505                 }
1506 		crit_exit_gd(gd);
1507         }
1508 #endif
1509 	m = NULL;
1510 
1511 #ifdef SMP
1512 	/*
1513 	 * Cpu twist - cpu localization algorithm
1514 	 */
1515 	if (object) {
1516 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1517 			   (object->pg_color & ~ncpus_fit_mask);
1518 	} else {
1519 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1520 	}
1521 #else
1522 	/*
1523 	 * Normal page coloring algorithm
1524 	 */
1525 	if (object) {
1526 		pg_color = object->pg_color + pindex;
1527 	} else {
1528 		pg_color = pindex;
1529 	}
1530 #endif
1531 	KKASSERT(page_req &
1532 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1533 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1534 
1535 	/*
1536 	 * Certain system threads (pageout daemon, buf_daemon's) are
1537 	 * allowed to eat deeper into the free page list.
1538 	 */
1539 	if (curthread->td_flags & TDF_SYSTHREAD)
1540 		page_req |= VM_ALLOC_SYSTEM;
1541 
1542 loop:
1543 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1544 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1545 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1546 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1547 	) {
1548 		/*
1549 		 * The free queue has sufficient free pages to take one out.
1550 		 */
1551 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1552 			m = vm_page_select_free(pg_color, TRUE);
1553 		else
1554 			m = vm_page_select_free(pg_color, FALSE);
1555 	} else if (page_req & VM_ALLOC_NORMAL) {
1556 		/*
1557 		 * Allocatable from the cache (non-interrupt only).  On
1558 		 * success, we must free the page and try again, thus
1559 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1560 		 */
1561 #ifdef INVARIANTS
1562 		if (curthread->td_preempted) {
1563 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1564 				" cache page from preempting interrupt\n");
1565 			m = NULL;
1566 		} else {
1567 			m = vm_page_select_cache(pg_color);
1568 		}
1569 #else
1570 		m = vm_page_select_cache(pg_color);
1571 #endif
1572 		/*
1573 		 * On success move the page into the free queue and loop.
1574 		 *
1575 		 * Only do this if we can safely acquire the vm_object lock,
1576 		 * because this is effectively a random page and the caller
1577 		 * might be holding the lock shared, we don't want to
1578 		 * deadlock.
1579 		 */
1580 		if (m != NULL) {
1581 			KASSERT(m->dirty == 0,
1582 				("Found dirty cache page %p", m));
1583 			if ((obj = m->object) != NULL) {
1584 				if (vm_object_hold_try(obj)) {
1585 					vm_page_protect(m, VM_PROT_NONE);
1586 					vm_page_free(m);
1587 					/* m->object NULL here */
1588 					vm_object_drop(obj);
1589 				} else {
1590 					vm_page_deactivate(m);
1591 					vm_page_wakeup(m);
1592 				}
1593 			} else {
1594 				vm_page_protect(m, VM_PROT_NONE);
1595 				vm_page_free(m);
1596 			}
1597 			goto loop;
1598 		}
1599 
1600 		/*
1601 		 * On failure return NULL
1602 		 */
1603 #if defined(DIAGNOSTIC)
1604 		if (vmstats.v_cache_count > 0)
1605 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1606 #endif
1607 		vm_pageout_deficit++;
1608 		pagedaemon_wakeup();
1609 		return (NULL);
1610 	} else {
1611 		/*
1612 		 * No pages available, wakeup the pageout daemon and give up.
1613 		 */
1614 		vm_pageout_deficit++;
1615 		pagedaemon_wakeup();
1616 		return (NULL);
1617 	}
1618 
1619 	/*
1620 	 * v_free_count can race so loop if we don't find the expected
1621 	 * page.
1622 	 */
1623 	if (m == NULL)
1624 		goto loop;
1625 
1626 	/*
1627 	 * Good page found.  The page has already been busied for us and
1628 	 * removed from its queues.
1629 	 */
1630 	KASSERT(m->dirty == 0,
1631 		("vm_page_alloc: free/cache page %p was dirty", m));
1632 	KKASSERT(m->queue == PQ_NONE);
1633 
1634 #if 0
1635 done:
1636 #endif
1637 	/*
1638 	 * Initialize the structure, inheriting some flags but clearing
1639 	 * all the rest.  The page has already been busied for us.
1640 	 */
1641 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1642 	KKASSERT(m->wire_count == 0);
1643 	KKASSERT(m->busy == 0);
1644 	m->act_count = 0;
1645 	m->valid = 0;
1646 
1647 	/*
1648 	 * Caller must be holding the object lock (asserted by
1649 	 * vm_page_insert()).
1650 	 *
1651 	 * NOTE: Inserting a page here does not insert it into any pmaps
1652 	 *	 (which could cause us to block allocating memory).
1653 	 *
1654 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1655 	 *	 can be used by the caller for any purpose.
1656 	 */
1657 	if (object) {
1658 		if (vm_page_insert(m, object, pindex) == FALSE) {
1659 			kprintf("PAGE RACE (%p:%d,%"PRIu64")\n",
1660 				object, object->type, pindex);
1661 			vm_page_free(m);
1662 			m = NULL;
1663 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1664 				panic("PAGE RACE");
1665 		}
1666 	} else {
1667 		m->pindex = pindex;
1668 	}
1669 
1670 	/*
1671 	 * Don't wakeup too often - wakeup the pageout daemon when
1672 	 * we would be nearly out of memory.
1673 	 */
1674 	pagedaemon_wakeup();
1675 
1676 	/*
1677 	 * A PG_BUSY page is returned.
1678 	 */
1679 	return (m);
1680 }
1681 
1682 /*
1683  * Attempt to allocate contiguous physical memory with the specified
1684  * requirements.
1685  */
1686 vm_page_t
1687 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1688 		     unsigned long alignment, unsigned long boundary,
1689 		     unsigned long size)
1690 {
1691 	alist_blk_t blk;
1692 
1693 	alignment >>= PAGE_SHIFT;
1694 	if (alignment == 0)
1695 		alignment = 1;
1696 	boundary >>= PAGE_SHIFT;
1697 	if (boundary == 0)
1698 		boundary = 1;
1699 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1700 
1701 	spin_lock(&vm_contig_spin);
1702 	blk = alist_alloc(&vm_contig_alist, 0, size);
1703 	if (blk == ALIST_BLOCK_NONE) {
1704 		spin_unlock(&vm_contig_spin);
1705 		if (bootverbose) {
1706 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1707 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1708 		}
1709 		return(NULL);
1710 	}
1711 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1712 		alist_free(&vm_contig_alist, blk, size);
1713 		spin_unlock(&vm_contig_spin);
1714 		if (bootverbose) {
1715 			kprintf("vm_page_alloc_contig: %ldk high "
1716 				"%016jx failed\n",
1717 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1718 				(intmax_t)high);
1719 		}
1720 		return(NULL);
1721 	}
1722 	spin_unlock(&vm_contig_spin);
1723 	if (bootverbose) {
1724 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1725 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1726 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1727 	}
1728 	return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT));
1729 }
1730 
1731 /*
1732  * Free contiguously allocated pages.  The pages will be wired but not busy.
1733  * When freeing to the alist we leave them wired and not busy.
1734  */
1735 void
1736 vm_page_free_contig(vm_page_t m, unsigned long size)
1737 {
1738 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1739 	vm_pindex_t start = pa >> PAGE_SHIFT;
1740 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1741 
1742 	if (bootverbose) {
1743 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1744 			(intmax_t)pa, size / 1024);
1745 	}
1746 	if (pa < vm_low_phys_reserved) {
1747 		KKASSERT(pa + size <= vm_low_phys_reserved);
1748 		spin_lock(&vm_contig_spin);
1749 		alist_free(&vm_contig_alist, start, pages);
1750 		spin_unlock(&vm_contig_spin);
1751 	} else {
1752 		while (pages) {
1753 			vm_page_busy_wait(m, FALSE, "cpgfr");
1754 			vm_page_unwire(m, 0);
1755 			vm_page_free(m);
1756 			--pages;
1757 			++m;
1758 		}
1759 
1760 	}
1761 }
1762 
1763 
1764 /*
1765  * Wait for sufficient free memory for nominal heavy memory use kernel
1766  * operations.
1767  *
1768  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1769  *	     will trivially deadlock the system.
1770  */
1771 void
1772 vm_wait_nominal(void)
1773 {
1774 	while (vm_page_count_min(0))
1775 		vm_wait(0);
1776 }
1777 
1778 /*
1779  * Test if vm_wait_nominal() would block.
1780  */
1781 int
1782 vm_test_nominal(void)
1783 {
1784 	if (vm_page_count_min(0))
1785 		return(1);
1786 	return(0);
1787 }
1788 
1789 /*
1790  * Block until free pages are available for allocation, called in various
1791  * places before memory allocations.
1792  *
1793  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1794  * more generous then that.
1795  */
1796 void
1797 vm_wait(int timo)
1798 {
1799 	/*
1800 	 * never wait forever
1801 	 */
1802 	if (timo == 0)
1803 		timo = hz;
1804 	lwkt_gettoken(&vm_token);
1805 
1806 	if (curthread == pagethread) {
1807 		/*
1808 		 * The pageout daemon itself needs pages, this is bad.
1809 		 */
1810 		if (vm_page_count_min(0)) {
1811 			vm_pageout_pages_needed = 1;
1812 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1813 		}
1814 	} else {
1815 		/*
1816 		 * Wakeup the pageout daemon if necessary and wait.
1817 		 */
1818 		if (vm_page_count_target()) {
1819 			if (vm_pages_needed == 0) {
1820 				vm_pages_needed = 1;
1821 				wakeup(&vm_pages_needed);
1822 			}
1823 			++vm_pages_waiting;	/* SMP race ok */
1824 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1825 		}
1826 	}
1827 	lwkt_reltoken(&vm_token);
1828 }
1829 
1830 /*
1831  * Block until free pages are available for allocation
1832  *
1833  * Called only from vm_fault so that processes page faulting can be
1834  * easily tracked.
1835  */
1836 void
1837 vm_waitpfault(void)
1838 {
1839 	/*
1840 	 * Wakeup the pageout daemon if necessary and wait.
1841 	 */
1842 	if (vm_page_count_target()) {
1843 		lwkt_gettoken(&vm_token);
1844 		if (vm_page_count_target()) {
1845 			if (vm_pages_needed == 0) {
1846 				vm_pages_needed = 1;
1847 				wakeup(&vm_pages_needed);
1848 			}
1849 			++vm_pages_waiting;	/* SMP race ok */
1850 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1851 		}
1852 		lwkt_reltoken(&vm_token);
1853 	}
1854 }
1855 
1856 /*
1857  * Put the specified page on the active list (if appropriate).  Ensure
1858  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1859  *
1860  * The caller should be holding the page busied ? XXX
1861  * This routine may not block.
1862  */
1863 void
1864 vm_page_activate(vm_page_t m)
1865 {
1866 	u_short oqueue;
1867 
1868 	vm_page_spin_lock(m);
1869 	if (m->queue - m->pc != PQ_ACTIVE) {
1870 		_vm_page_queue_spin_lock(m);
1871 		oqueue = _vm_page_rem_queue_spinlocked(m);
1872 		/* page is left spinlocked, queue is unlocked */
1873 
1874 		if (oqueue == PQ_CACHE)
1875 			mycpu->gd_cnt.v_reactivated++;
1876 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1877 			if (m->act_count < ACT_INIT)
1878 				m->act_count = ACT_INIT;
1879 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1880 		}
1881 		_vm_page_and_queue_spin_unlock(m);
1882 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1883 			pagedaemon_wakeup();
1884 	} else {
1885 		if (m->act_count < ACT_INIT)
1886 			m->act_count = ACT_INIT;
1887 		vm_page_spin_unlock(m);
1888 	}
1889 }
1890 
1891 /*
1892  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1893  * routine is called when a page has been added to the cache or free
1894  * queues.
1895  *
1896  * This routine may not block.
1897  */
1898 static __inline void
1899 vm_page_free_wakeup(void)
1900 {
1901 	/*
1902 	 * If the pageout daemon itself needs pages, then tell it that
1903 	 * there are some free.
1904 	 */
1905 	if (vm_pageout_pages_needed &&
1906 	    vmstats.v_cache_count + vmstats.v_free_count >=
1907 	    vmstats.v_pageout_free_min
1908 	) {
1909 		wakeup(&vm_pageout_pages_needed);
1910 		vm_pageout_pages_needed = 0;
1911 	}
1912 
1913 	/*
1914 	 * Wakeup processes that are waiting on memory.
1915 	 *
1916 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1917 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1918 	 *	 to wake processes up prior to the pageout daemon reaching
1919 	 *	 its target to provide some hysteresis.
1920 	 */
1921 	if (vm_pages_waiting) {
1922 		if (!vm_page_count_target()) {
1923 			/*
1924 			 * Plenty of pages are free, wakeup everyone.
1925 			 */
1926 			vm_pages_waiting = 0;
1927 			wakeup(&vmstats.v_free_count);
1928 			++mycpu->gd_cnt.v_ppwakeups;
1929 		} else if (!vm_page_count_min(0)) {
1930 			/*
1931 			 * Some pages are free, wakeup someone.
1932 			 */
1933 			int wcount = vm_pages_waiting;
1934 			if (wcount > 0)
1935 				--wcount;
1936 			vm_pages_waiting = wcount;
1937 			wakeup_one(&vmstats.v_free_count);
1938 			++mycpu->gd_cnt.v_ppwakeups;
1939 		}
1940 	}
1941 }
1942 
1943 /*
1944  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
1945  * it from its VM object.
1946  *
1947  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1948  * return (the page will have been freed).
1949  */
1950 void
1951 vm_page_free_toq(vm_page_t m)
1952 {
1953 	mycpu->gd_cnt.v_tfree++;
1954 	KKASSERT((m->flags & PG_MAPPED) == 0);
1955 	KKASSERT(m->flags & PG_BUSY);
1956 
1957 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1958 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
1959 			"PG_BUSY(%d), hold(%d)\n",
1960 			(u_long)m->pindex, m->busy,
1961 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
1962 		if ((m->queue - m->pc) == PQ_FREE)
1963 			panic("vm_page_free: freeing free page");
1964 		else
1965 			panic("vm_page_free: freeing busy page");
1966 	}
1967 
1968 	/*
1969 	 * Remove from object, spinlock the page and its queues and
1970 	 * remove from any queue.  No queue spinlock will be held
1971 	 * after this section (because the page was removed from any
1972 	 * queue).
1973 	 */
1974 	vm_page_remove(m);
1975 	vm_page_and_queue_spin_lock(m);
1976 	_vm_page_rem_queue_spinlocked(m);
1977 
1978 	/*
1979 	 * No further management of fictitious pages occurs beyond object
1980 	 * and queue removal.
1981 	 */
1982 	if ((m->flags & PG_FICTITIOUS) != 0) {
1983 		vm_page_spin_unlock(m);
1984 		vm_page_wakeup(m);
1985 		return;
1986 	}
1987 
1988 	m->valid = 0;
1989 	vm_page_undirty(m);
1990 
1991 	if (m->wire_count != 0) {
1992 		if (m->wire_count > 1) {
1993 		    panic(
1994 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1995 			m->wire_count, (long)m->pindex);
1996 		}
1997 		panic("vm_page_free: freeing wired page");
1998 	}
1999 
2000 	/*
2001 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2002 	 */
2003 	if (m->flags & PG_UNMANAGED) {
2004 		vm_page_flag_clear(m, PG_UNMANAGED);
2005 	}
2006 
2007 	if (m->hold_count != 0) {
2008 		vm_page_flag_clear(m, PG_ZERO);
2009 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2010 	} else {
2011 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2012 	}
2013 
2014 	/*
2015 	 * This sequence allows us to clear PG_BUSY while still holding
2016 	 * its spin lock, which reduces contention vs allocators.  We
2017 	 * must not leave the queue locked or _vm_page_wakeup() may
2018 	 * deadlock.
2019 	 */
2020 	_vm_page_queue_spin_unlock(m);
2021 	if (_vm_page_wakeup(m)) {
2022 		vm_page_spin_unlock(m);
2023 		wakeup(m);
2024 	} else {
2025 		vm_page_spin_unlock(m);
2026 	}
2027 	vm_page_free_wakeup();
2028 }
2029 
2030 /*
2031  * vm_page_free_fromq_fast()
2032  *
2033  * Remove a non-zero page from one of the free queues; the page is removed for
2034  * zeroing, so do not issue a wakeup.
2035  */
2036 vm_page_t
2037 vm_page_free_fromq_fast(void)
2038 {
2039 	static int qi;
2040 	vm_page_t m;
2041 	int i;
2042 
2043 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2044 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2045 		/* page is returned spinlocked and removed from its queue */
2046 		if (m) {
2047 			if (vm_page_busy_try(m, TRUE)) {
2048 				/*
2049 				 * We were unable to busy the page, deactivate
2050 				 * it and loop.
2051 				 */
2052 				_vm_page_deactivate_locked(m, 0);
2053 				vm_page_spin_unlock(m);
2054 			} else if (m->flags & PG_ZERO) {
2055 				/*
2056 				 * The page is PG_ZERO, requeue it and loop
2057 				 */
2058 				_vm_page_add_queue_spinlocked(m,
2059 							      PQ_FREE + m->pc,
2060 							      0);
2061 				vm_page_queue_spin_unlock(m);
2062 				if (_vm_page_wakeup(m)) {
2063 					vm_page_spin_unlock(m);
2064 					wakeup(m);
2065 				} else {
2066 					vm_page_spin_unlock(m);
2067 				}
2068 			} else {
2069 				/*
2070 				 * The page is not PG_ZERO'd so return it.
2071 				 */
2072 				vm_page_spin_unlock(m);
2073 				KKASSERT((m->flags & PG_UNMANAGED) == 0);
2074 				KKASSERT(m->hold_count == 0);
2075 				KKASSERT(m->wire_count == 0);
2076 				break;
2077 			}
2078 			m = NULL;
2079 		}
2080 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2081 	}
2082 	return (m);
2083 }
2084 
2085 /*
2086  * vm_page_unmanage()
2087  *
2088  * Prevent PV management from being done on the page.  The page is
2089  * removed from the paging queues as if it were wired, and as a
2090  * consequence of no longer being managed the pageout daemon will not
2091  * touch it (since there is no way to locate the pte mappings for the
2092  * page).  madvise() calls that mess with the pmap will also no longer
2093  * operate on the page.
2094  *
2095  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2096  * will clear the flag.
2097  *
2098  * This routine is used by OBJT_PHYS objects - objects using unswappable
2099  * physical memory as backing store rather then swap-backed memory and
2100  * will eventually be extended to support 4MB unmanaged physical
2101  * mappings.
2102  *
2103  * Caller must be holding the page busy.
2104  */
2105 void
2106 vm_page_unmanage(vm_page_t m)
2107 {
2108 	KKASSERT(m->flags & PG_BUSY);
2109 	if ((m->flags & PG_UNMANAGED) == 0) {
2110 		if (m->wire_count == 0)
2111 			vm_page_unqueue(m);
2112 	}
2113 	vm_page_flag_set(m, PG_UNMANAGED);
2114 }
2115 
2116 /*
2117  * Mark this page as wired down by yet another map, removing it from
2118  * paging queues as necessary.
2119  *
2120  * Caller must be holding the page busy.
2121  */
2122 void
2123 vm_page_wire(vm_page_t m)
2124 {
2125 	/*
2126 	 * Only bump the wire statistics if the page is not already wired,
2127 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2128 	 * it is already off the queues).  Don't do anything with fictitious
2129 	 * pages because they are always wired.
2130 	 */
2131 	KKASSERT(m->flags & PG_BUSY);
2132 	if ((m->flags & PG_FICTITIOUS) == 0) {
2133 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2134 			if ((m->flags & PG_UNMANAGED) == 0)
2135 				vm_page_unqueue(m);
2136 			atomic_add_int(&vmstats.v_wire_count, 1);
2137 		}
2138 		KASSERT(m->wire_count != 0,
2139 			("vm_page_wire: wire_count overflow m=%p", m));
2140 	}
2141 }
2142 
2143 /*
2144  * Release one wiring of this page, potentially enabling it to be paged again.
2145  *
2146  * Many pages placed on the inactive queue should actually go
2147  * into the cache, but it is difficult to figure out which.  What
2148  * we do instead, if the inactive target is well met, is to put
2149  * clean pages at the head of the inactive queue instead of the tail.
2150  * This will cause them to be moved to the cache more quickly and
2151  * if not actively re-referenced, freed more quickly.  If we just
2152  * stick these pages at the end of the inactive queue, heavy filesystem
2153  * meta-data accesses can cause an unnecessary paging load on memory bound
2154  * processes.  This optimization causes one-time-use metadata to be
2155  * reused more quickly.
2156  *
2157  * BUT, if we are in a low-memory situation we have no choice but to
2158  * put clean pages on the cache queue.
2159  *
2160  * A number of routines use vm_page_unwire() to guarantee that the page
2161  * will go into either the inactive or active queues, and will NEVER
2162  * be placed in the cache - for example, just after dirtying a page.
2163  * dirty pages in the cache are not allowed.
2164  *
2165  * The page queues must be locked.
2166  * This routine may not block.
2167  */
2168 void
2169 vm_page_unwire(vm_page_t m, int activate)
2170 {
2171 	KKASSERT(m->flags & PG_BUSY);
2172 	if (m->flags & PG_FICTITIOUS) {
2173 		/* do nothing */
2174 	} else if (m->wire_count <= 0) {
2175 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2176 	} else {
2177 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2178 			atomic_add_int(&vmstats.v_wire_count, -1);
2179 			if (m->flags & PG_UNMANAGED) {
2180 				;
2181 			} else if (activate) {
2182 				vm_page_spin_lock(m);
2183 				_vm_page_add_queue_spinlocked(m,
2184 							PQ_ACTIVE + m->pc, 0);
2185 				_vm_page_and_queue_spin_unlock(m);
2186 			} else {
2187 				vm_page_spin_lock(m);
2188 				vm_page_flag_clear(m, PG_WINATCFLS);
2189 				_vm_page_add_queue_spinlocked(m,
2190 							PQ_INACTIVE + m->pc, 0);
2191 				++vm_swapcache_inactive_heuristic;
2192 				_vm_page_and_queue_spin_unlock(m);
2193 			}
2194 		}
2195 	}
2196 }
2197 
2198 /*
2199  * Move the specified page to the inactive queue.  If the page has
2200  * any associated swap, the swap is deallocated.
2201  *
2202  * Normally athead is 0 resulting in LRU operation.  athead is set
2203  * to 1 if we want this page to be 'as if it were placed in the cache',
2204  * except without unmapping it from the process address space.
2205  *
2206  * vm_page's spinlock must be held on entry and will remain held on return.
2207  * This routine may not block.
2208  */
2209 static void
2210 _vm_page_deactivate_locked(vm_page_t m, int athead)
2211 {
2212 	u_short oqueue;
2213 
2214 	/*
2215 	 * Ignore if already inactive.
2216 	 */
2217 	if (m->queue - m->pc == PQ_INACTIVE)
2218 		return;
2219 	_vm_page_queue_spin_lock(m);
2220 	oqueue = _vm_page_rem_queue_spinlocked(m);
2221 
2222 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2223 		if (oqueue == PQ_CACHE)
2224 			mycpu->gd_cnt.v_reactivated++;
2225 		vm_page_flag_clear(m, PG_WINATCFLS);
2226 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2227 		if (athead == 0)
2228 			++vm_swapcache_inactive_heuristic;
2229 	}
2230 	_vm_page_queue_spin_unlock(m);
2231 	/* leaves vm_page spinlocked */
2232 }
2233 
2234 /*
2235  * Attempt to deactivate a page.
2236  *
2237  * No requirements.
2238  */
2239 void
2240 vm_page_deactivate(vm_page_t m)
2241 {
2242 	vm_page_spin_lock(m);
2243 	_vm_page_deactivate_locked(m, 0);
2244 	vm_page_spin_unlock(m);
2245 }
2246 
2247 void
2248 vm_page_deactivate_locked(vm_page_t m)
2249 {
2250 	_vm_page_deactivate_locked(m, 0);
2251 }
2252 
2253 /*
2254  * Attempt to move a page to PQ_CACHE.
2255  *
2256  * Returns 0 on failure, 1 on success
2257  *
2258  * The page should NOT be busied by the caller.  This function will validate
2259  * whether the page can be safely moved to the cache.
2260  */
2261 int
2262 vm_page_try_to_cache(vm_page_t m)
2263 {
2264 	vm_page_spin_lock(m);
2265 	if (vm_page_busy_try(m, TRUE)) {
2266 		vm_page_spin_unlock(m);
2267 		return(0);
2268 	}
2269 	if (m->dirty || m->hold_count || m->wire_count ||
2270 	    (m->flags & PG_UNMANAGED)) {
2271 		if (_vm_page_wakeup(m)) {
2272 			vm_page_spin_unlock(m);
2273 			wakeup(m);
2274 		} else {
2275 			vm_page_spin_unlock(m);
2276 		}
2277 		return(0);
2278 	}
2279 	vm_page_spin_unlock(m);
2280 
2281 	/*
2282 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2283 	 * be moved to the cache.
2284 	 */
2285 	vm_page_test_dirty(m);
2286 	if (m->dirty) {
2287 		vm_page_wakeup(m);
2288 		return(0);
2289 	}
2290 	vm_page_cache(m);
2291 	return(1);
2292 }
2293 
2294 /*
2295  * Attempt to free the page.  If we cannot free it, we do nothing.
2296  * 1 is returned on success, 0 on failure.
2297  *
2298  * No requirements.
2299  */
2300 int
2301 vm_page_try_to_free(vm_page_t m)
2302 {
2303 	vm_page_spin_lock(m);
2304 	if (vm_page_busy_try(m, TRUE)) {
2305 		vm_page_spin_unlock(m);
2306 		return(0);
2307 	}
2308 
2309 	/*
2310 	 * The page can be in any state, including already being on the free
2311 	 * queue.  Check to see if it really can be freed.
2312 	 */
2313 	if (m->dirty ||				/* can't free if it is dirty */
2314 	    m->hold_count ||			/* or held (XXX may be wrong) */
2315 	    m->wire_count ||			/* or wired */
2316 	    (m->flags & PG_UNMANAGED) ||	/* or unmanaged */
2317 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2318 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2319 		if (_vm_page_wakeup(m)) {
2320 			vm_page_spin_unlock(m);
2321 			wakeup(m);
2322 		} else {
2323 			vm_page_spin_unlock(m);
2324 		}
2325 		return(0);
2326 	}
2327 	vm_page_spin_unlock(m);
2328 
2329 	/*
2330 	 * We can probably free the page.
2331 	 *
2332 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2333 	 * not be freed by this function.    We have to re-test the
2334 	 * dirty bit after cleaning out the pmaps.
2335 	 */
2336 	vm_page_test_dirty(m);
2337 	if (m->dirty) {
2338 		vm_page_wakeup(m);
2339 		return(0);
2340 	}
2341 	vm_page_protect(m, VM_PROT_NONE);
2342 	if (m->dirty) {
2343 		vm_page_wakeup(m);
2344 		return(0);
2345 	}
2346 	vm_page_free(m);
2347 	return(1);
2348 }
2349 
2350 /*
2351  * vm_page_cache
2352  *
2353  * Put the specified page onto the page cache queue (if appropriate).
2354  *
2355  * The page must be busy, and this routine will release the busy and
2356  * possibly even free the page.
2357  */
2358 void
2359 vm_page_cache(vm_page_t m)
2360 {
2361 	if ((m->flags & PG_UNMANAGED) || m->busy ||
2362 	    m->wire_count || m->hold_count) {
2363 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2364 		vm_page_wakeup(m);
2365 		return;
2366 	}
2367 
2368 	/*
2369 	 * Already in the cache (and thus not mapped)
2370 	 */
2371 	if ((m->queue - m->pc) == PQ_CACHE) {
2372 		KKASSERT((m->flags & PG_MAPPED) == 0);
2373 		vm_page_wakeup(m);
2374 		return;
2375 	}
2376 
2377 	/*
2378 	 * Caller is required to test m->dirty, but note that the act of
2379 	 * removing the page from its maps can cause it to become dirty
2380 	 * on an SMP system due to another cpu running in usermode.
2381 	 */
2382 	if (m->dirty) {
2383 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2384 			(long)m->pindex);
2385 	}
2386 
2387 	/*
2388 	 * Remove all pmaps and indicate that the page is not
2389 	 * writeable or mapped.  Our vm_page_protect() call may
2390 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2391 	 * everything.
2392 	 */
2393 	vm_page_protect(m, VM_PROT_NONE);
2394 	if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy ||
2395 			m->wire_count || m->hold_count) {
2396 		vm_page_wakeup(m);
2397 	} else if (m->dirty) {
2398 		vm_page_deactivate(m);
2399 		vm_page_wakeup(m);
2400 	} else {
2401 		_vm_page_and_queue_spin_lock(m);
2402 		_vm_page_rem_queue_spinlocked(m);
2403 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2404 		_vm_page_queue_spin_unlock(m);
2405 		if (_vm_page_wakeup(m)) {
2406 			vm_page_spin_unlock(m);
2407 			wakeup(m);
2408 		} else {
2409 			vm_page_spin_unlock(m);
2410 		}
2411 		vm_page_free_wakeup();
2412 	}
2413 }
2414 
2415 /*
2416  * vm_page_dontneed()
2417  *
2418  * Cache, deactivate, or do nothing as appropriate.  This routine
2419  * is typically used by madvise() MADV_DONTNEED.
2420  *
2421  * Generally speaking we want to move the page into the cache so
2422  * it gets reused quickly.  However, this can result in a silly syndrome
2423  * due to the page recycling too quickly.  Small objects will not be
2424  * fully cached.  On the otherhand, if we move the page to the inactive
2425  * queue we wind up with a problem whereby very large objects
2426  * unnecessarily blow away our inactive and cache queues.
2427  *
2428  * The solution is to move the pages based on a fixed weighting.  We
2429  * either leave them alone, deactivate them, or move them to the cache,
2430  * where moving them to the cache has the highest weighting.
2431  * By forcing some pages into other queues we eventually force the
2432  * system to balance the queues, potentially recovering other unrelated
2433  * space from active.  The idea is to not force this to happen too
2434  * often.
2435  *
2436  * The page must be busied.
2437  */
2438 void
2439 vm_page_dontneed(vm_page_t m)
2440 {
2441 	static int dnweight;
2442 	int dnw;
2443 	int head;
2444 
2445 	dnw = ++dnweight;
2446 
2447 	/*
2448 	 * occassionally leave the page alone
2449 	 */
2450 	if ((dnw & 0x01F0) == 0 ||
2451 	    m->queue - m->pc == PQ_INACTIVE ||
2452 	    m->queue - m->pc == PQ_CACHE
2453 	) {
2454 		if (m->act_count >= ACT_INIT)
2455 			--m->act_count;
2456 		return;
2457 	}
2458 
2459 	/*
2460 	 * If vm_page_dontneed() is inactivating a page, it must clear
2461 	 * the referenced flag; otherwise the pagedaemon will see references
2462 	 * on the page in the inactive queue and reactivate it. Until the
2463 	 * page can move to the cache queue, madvise's job is not done.
2464 	 */
2465 	vm_page_flag_clear(m, PG_REFERENCED);
2466 	pmap_clear_reference(m);
2467 
2468 	if (m->dirty == 0)
2469 		vm_page_test_dirty(m);
2470 
2471 	if (m->dirty || (dnw & 0x0070) == 0) {
2472 		/*
2473 		 * Deactivate the page 3 times out of 32.
2474 		 */
2475 		head = 0;
2476 	} else {
2477 		/*
2478 		 * Cache the page 28 times out of every 32.  Note that
2479 		 * the page is deactivated instead of cached, but placed
2480 		 * at the head of the queue instead of the tail.
2481 		 */
2482 		head = 1;
2483 	}
2484 	vm_page_spin_lock(m);
2485 	_vm_page_deactivate_locked(m, head);
2486 	vm_page_spin_unlock(m);
2487 }
2488 
2489 /*
2490  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2491  * is almost like PG_BUSY except that it allows certain compatible operations
2492  * to occur on the page while it is busy.  For example, a page undergoing a
2493  * write can still be mapped read-only.
2494  *
2495  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2496  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2497  * busy bit is cleared.
2498  */
2499 void
2500 vm_page_io_start(vm_page_t m)
2501 {
2502         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2503         atomic_add_char(&m->busy, 1);
2504 	vm_page_flag_set(m, PG_SBUSY);
2505 }
2506 
2507 void
2508 vm_page_io_finish(vm_page_t m)
2509 {
2510         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2511         atomic_subtract_char(&m->busy, 1);
2512 	if (m->busy == 0)
2513 		vm_page_flag_clear(m, PG_SBUSY);
2514 }
2515 
2516 /*
2517  * Grab a page, blocking if it is busy and allocating a page if necessary.
2518  * A busy page is returned or NULL.  The page may or may not be valid and
2519  * might not be on a queue (the caller is responsible for the disposition of
2520  * the page).
2521  *
2522  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2523  * page will be zero'd and marked valid.
2524  *
2525  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2526  * valid even if it already exists.
2527  *
2528  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2529  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2530  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2531  *
2532  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2533  * always returned if we had blocked.
2534  *
2535  * This routine may not be called from an interrupt.
2536  *
2537  * PG_ZERO is *ALWAYS* cleared by this routine.
2538  *
2539  * No other requirements.
2540  */
2541 vm_page_t
2542 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2543 {
2544 	vm_page_t m;
2545 	int error;
2546 
2547 	KKASSERT(allocflags &
2548 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2549 	vm_object_hold(object);
2550 	for (;;) {
2551 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2552 		if (error) {
2553 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2554 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2555 				m = NULL;
2556 				break;
2557 			}
2558 			/* retry */
2559 		} else if (m == NULL) {
2560 			if (allocflags & VM_ALLOC_RETRY)
2561 				allocflags |= VM_ALLOC_NULL_OK;
2562 			m = vm_page_alloc(object, pindex,
2563 					  allocflags & ~VM_ALLOC_RETRY);
2564 			if (m)
2565 				break;
2566 			vm_wait(0);
2567 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2568 				goto failed;
2569 		} else {
2570 			/* m found */
2571 			break;
2572 		}
2573 	}
2574 
2575 	/*
2576 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2577 	 *
2578 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2579 	 * valid even if already valid.
2580 	 */
2581 	if (m->valid == 0) {
2582 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2583 			if ((m->flags & PG_ZERO) == 0)
2584 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2585 			m->valid = VM_PAGE_BITS_ALL;
2586 		}
2587 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2588 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2589 		m->valid = VM_PAGE_BITS_ALL;
2590 	}
2591 	vm_page_flag_clear(m, PG_ZERO);
2592 failed:
2593 	vm_object_drop(object);
2594 	return(m);
2595 }
2596 
2597 /*
2598  * Mapping function for valid bits or for dirty bits in
2599  * a page.  May not block.
2600  *
2601  * Inputs are required to range within a page.
2602  *
2603  * No requirements.
2604  * Non blocking.
2605  */
2606 int
2607 vm_page_bits(int base, int size)
2608 {
2609 	int first_bit;
2610 	int last_bit;
2611 
2612 	KASSERT(
2613 	    base + size <= PAGE_SIZE,
2614 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2615 	);
2616 
2617 	if (size == 0)		/* handle degenerate case */
2618 		return(0);
2619 
2620 	first_bit = base >> DEV_BSHIFT;
2621 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2622 
2623 	return ((2 << last_bit) - (1 << first_bit));
2624 }
2625 
2626 /*
2627  * Sets portions of a page valid and clean.  The arguments are expected
2628  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2629  * of any partial chunks touched by the range.  The invalid portion of
2630  * such chunks will be zero'd.
2631  *
2632  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2633  *	 align base to DEV_BSIZE so as not to mark clean a partially
2634  *	 truncated device block.  Otherwise the dirty page status might be
2635  *	 lost.
2636  *
2637  * This routine may not block.
2638  *
2639  * (base + size) must be less then or equal to PAGE_SIZE.
2640  */
2641 static void
2642 _vm_page_zero_valid(vm_page_t m, int base, int size)
2643 {
2644 	int frag;
2645 	int endoff;
2646 
2647 	if (size == 0)	/* handle degenerate case */
2648 		return;
2649 
2650 	/*
2651 	 * If the base is not DEV_BSIZE aligned and the valid
2652 	 * bit is clear, we have to zero out a portion of the
2653 	 * first block.
2654 	 */
2655 
2656 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2657 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2658 	) {
2659 		pmap_zero_page_area(
2660 		    VM_PAGE_TO_PHYS(m),
2661 		    frag,
2662 		    base - frag
2663 		);
2664 	}
2665 
2666 	/*
2667 	 * If the ending offset is not DEV_BSIZE aligned and the
2668 	 * valid bit is clear, we have to zero out a portion of
2669 	 * the last block.
2670 	 */
2671 
2672 	endoff = base + size;
2673 
2674 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2675 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2676 	) {
2677 		pmap_zero_page_area(
2678 		    VM_PAGE_TO_PHYS(m),
2679 		    endoff,
2680 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2681 		);
2682 	}
2683 }
2684 
2685 /*
2686  * Set valid, clear dirty bits.  If validating the entire
2687  * page we can safely clear the pmap modify bit.  We also
2688  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2689  * takes a write fault on a MAP_NOSYNC memory area the flag will
2690  * be set again.
2691  *
2692  * We set valid bits inclusive of any overlap, but we can only
2693  * clear dirty bits for DEV_BSIZE chunks that are fully within
2694  * the range.
2695  *
2696  * Page must be busied?
2697  * No other requirements.
2698  */
2699 void
2700 vm_page_set_valid(vm_page_t m, int base, int size)
2701 {
2702 	_vm_page_zero_valid(m, base, size);
2703 	m->valid |= vm_page_bits(base, size);
2704 }
2705 
2706 
2707 /*
2708  * Set valid bits and clear dirty bits.
2709  *
2710  * NOTE: This function does not clear the pmap modified bit.
2711  *	 Also note that e.g. NFS may use a byte-granular base
2712  *	 and size.
2713  *
2714  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2715  *	    this without necessarily busying the page (via bdwrite()).
2716  *	    So for now vm_token must also be held.
2717  *
2718  * No other requirements.
2719  */
2720 void
2721 vm_page_set_validclean(vm_page_t m, int base, int size)
2722 {
2723 	int pagebits;
2724 
2725 	_vm_page_zero_valid(m, base, size);
2726 	pagebits = vm_page_bits(base, size);
2727 	m->valid |= pagebits;
2728 	m->dirty &= ~pagebits;
2729 	if (base == 0 && size == PAGE_SIZE) {
2730 		/*pmap_clear_modify(m);*/
2731 		vm_page_flag_clear(m, PG_NOSYNC);
2732 	}
2733 }
2734 
2735 /*
2736  * Set valid & dirty.  Used by buwrite()
2737  *
2738  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2739  *	    call this function in buwrite() so for now vm_token must
2740  * 	    be held.
2741  *
2742  * No other requirements.
2743  */
2744 void
2745 vm_page_set_validdirty(vm_page_t m, int base, int size)
2746 {
2747 	int pagebits;
2748 
2749 	pagebits = vm_page_bits(base, size);
2750 	m->valid |= pagebits;
2751 	m->dirty |= pagebits;
2752 	if (m->object)
2753 		vm_object_set_writeable_dirty(m->object);
2754 }
2755 
2756 /*
2757  * Clear dirty bits.
2758  *
2759  * NOTE: This function does not clear the pmap modified bit.
2760  *	 Also note that e.g. NFS may use a byte-granular base
2761  *	 and size.
2762  *
2763  * Page must be busied?
2764  * No other requirements.
2765  */
2766 void
2767 vm_page_clear_dirty(vm_page_t m, int base, int size)
2768 {
2769 	m->dirty &= ~vm_page_bits(base, size);
2770 	if (base == 0 && size == PAGE_SIZE) {
2771 		/*pmap_clear_modify(m);*/
2772 		vm_page_flag_clear(m, PG_NOSYNC);
2773 	}
2774 }
2775 
2776 /*
2777  * Make the page all-dirty.
2778  *
2779  * Also make sure the related object and vnode reflect the fact that the
2780  * object may now contain a dirty page.
2781  *
2782  * Page must be busied?
2783  * No other requirements.
2784  */
2785 void
2786 vm_page_dirty(vm_page_t m)
2787 {
2788 #ifdef INVARIANTS
2789         int pqtype = m->queue - m->pc;
2790 #endif
2791         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2792                 ("vm_page_dirty: page in free/cache queue!"));
2793 	if (m->dirty != VM_PAGE_BITS_ALL) {
2794 		m->dirty = VM_PAGE_BITS_ALL;
2795 		if (m->object)
2796 			vm_object_set_writeable_dirty(m->object);
2797 	}
2798 }
2799 
2800 /*
2801  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2802  * valid and dirty bits for the effected areas are cleared.
2803  *
2804  * Page must be busied?
2805  * Does not block.
2806  * No other requirements.
2807  */
2808 void
2809 vm_page_set_invalid(vm_page_t m, int base, int size)
2810 {
2811 	int bits;
2812 
2813 	bits = vm_page_bits(base, size);
2814 	m->valid &= ~bits;
2815 	m->dirty &= ~bits;
2816 	m->object->generation++;
2817 }
2818 
2819 /*
2820  * The kernel assumes that the invalid portions of a page contain
2821  * garbage, but such pages can be mapped into memory by user code.
2822  * When this occurs, we must zero out the non-valid portions of the
2823  * page so user code sees what it expects.
2824  *
2825  * Pages are most often semi-valid when the end of a file is mapped
2826  * into memory and the file's size is not page aligned.
2827  *
2828  * Page must be busied?
2829  * No other requirements.
2830  */
2831 void
2832 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2833 {
2834 	int b;
2835 	int i;
2836 
2837 	/*
2838 	 * Scan the valid bits looking for invalid sections that
2839 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2840 	 * valid bit may be set ) have already been zerod by
2841 	 * vm_page_set_validclean().
2842 	 */
2843 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2844 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2845 		    (m->valid & (1 << i))
2846 		) {
2847 			if (i > b) {
2848 				pmap_zero_page_area(
2849 				    VM_PAGE_TO_PHYS(m),
2850 				    b << DEV_BSHIFT,
2851 				    (i - b) << DEV_BSHIFT
2852 				);
2853 			}
2854 			b = i + 1;
2855 		}
2856 	}
2857 
2858 	/*
2859 	 * setvalid is TRUE when we can safely set the zero'd areas
2860 	 * as being valid.  We can do this if there are no cache consistency
2861 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2862 	 */
2863 	if (setvalid)
2864 		m->valid = VM_PAGE_BITS_ALL;
2865 }
2866 
2867 /*
2868  * Is a (partial) page valid?  Note that the case where size == 0
2869  * will return FALSE in the degenerate case where the page is entirely
2870  * invalid, and TRUE otherwise.
2871  *
2872  * Does not block.
2873  * No other requirements.
2874  */
2875 int
2876 vm_page_is_valid(vm_page_t m, int base, int size)
2877 {
2878 	int bits = vm_page_bits(base, size);
2879 
2880 	if (m->valid && ((m->valid & bits) == bits))
2881 		return 1;
2882 	else
2883 		return 0;
2884 }
2885 
2886 /*
2887  * update dirty bits from pmap/mmu.  May not block.
2888  *
2889  * Caller must hold the page busy
2890  */
2891 void
2892 vm_page_test_dirty(vm_page_t m)
2893 {
2894 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2895 		vm_page_dirty(m);
2896 	}
2897 }
2898 
2899 /*
2900  * Register an action, associating it with its vm_page
2901  */
2902 void
2903 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2904 {
2905 	struct vm_page_action_list *list;
2906 	int hv;
2907 
2908 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2909 	list = &action_list[hv];
2910 
2911 	lwkt_gettoken(&vm_token);
2912 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2913 	action->event = event;
2914 	LIST_INSERT_HEAD(list, action, entry);
2915 	lwkt_reltoken(&vm_token);
2916 }
2917 
2918 /*
2919  * Unregister an action, disassociating it from its related vm_page
2920  */
2921 void
2922 vm_page_unregister_action(vm_page_action_t action)
2923 {
2924 	struct vm_page_action_list *list;
2925 	int hv;
2926 
2927 	lwkt_gettoken(&vm_token);
2928 	if (action->event != VMEVENT_NONE) {
2929 		action->event = VMEVENT_NONE;
2930 		LIST_REMOVE(action, entry);
2931 
2932 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2933 		list = &action_list[hv];
2934 		if (LIST_EMPTY(list))
2935 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
2936 	}
2937 	lwkt_reltoken(&vm_token);
2938 }
2939 
2940 /*
2941  * Issue an event on a VM page.  Corresponding action structures are
2942  * removed from the page's list and called.
2943  *
2944  * If the vm_page has no more pending action events we clear its
2945  * PG_ACTIONLIST flag.
2946  */
2947 void
2948 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
2949 {
2950 	struct vm_page_action_list *list;
2951 	struct vm_page_action *scan;
2952 	struct vm_page_action *next;
2953 	int hv;
2954 	int all;
2955 
2956 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
2957 	list = &action_list[hv];
2958 	all = 1;
2959 
2960 	lwkt_gettoken(&vm_token);
2961 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
2962 		if (scan->m == m) {
2963 			if (scan->event == event) {
2964 				scan->event = VMEVENT_NONE;
2965 				LIST_REMOVE(scan, entry);
2966 				scan->func(m, scan);
2967 				/* XXX */
2968 			} else {
2969 				all = 0;
2970 			}
2971 		}
2972 	}
2973 	if (all)
2974 		vm_page_flag_clear(m, PG_ACTIONLIST);
2975 	lwkt_reltoken(&vm_token);
2976 }
2977 
2978 #include "opt_ddb.h"
2979 #ifdef DDB
2980 #include <sys/kernel.h>
2981 
2982 #include <ddb/ddb.h>
2983 
2984 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2985 {
2986 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
2987 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
2988 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
2989 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
2990 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
2991 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
2992 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
2993 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2994 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2995 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2996 }
2997 
2998 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2999 {
3000 	int i;
3001 	db_printf("PQ_FREE:");
3002 	for(i=0;i<PQ_L2_SIZE;i++) {
3003 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3004 	}
3005 	db_printf("\n");
3006 
3007 	db_printf("PQ_CACHE:");
3008 	for(i=0;i<PQ_L2_SIZE;i++) {
3009 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3010 	}
3011 	db_printf("\n");
3012 
3013 	db_printf("PQ_ACTIVE:");
3014 	for(i=0;i<PQ_L2_SIZE;i++) {
3015 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3016 	}
3017 	db_printf("\n");
3018 
3019 	db_printf("PQ_INACTIVE:");
3020 	for(i=0;i<PQ_L2_SIZE;i++) {
3021 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3022 	}
3023 	db_printf("\n");
3024 }
3025 #endif /* DDB */
3026