xref: /dflybsd-src/sys/vm/vm_page.c (revision 0d5acd7467c4e95f792ef49fceb3ab8e917ce86b)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 #include <machine/specialreg.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/spinlock2.h>
98 
99 #define VMACTION_HSIZE	256
100 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
101 
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(u_short pg_color);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
107 
108 /*
109  * Array of tailq lists
110  */
111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
112 
113 LIST_HEAD(vm_page_action_list, vm_page_action);
114 struct vm_page_action_list	action_list[VMACTION_HSIZE];
115 static volatile int vm_pages_waiting;
116 
117 static struct alist vm_contig_alist;
118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
120 
121 static u_long vm_dma_reserved = 0;
122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
124 	    "Memory reserved for DMA");
125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
126 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
127 
128 static int vm_contig_verbose = 0;
129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
130 
131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
132 	     vm_pindex_t, pindex);
133 
134 static void
135 vm_page_queue_init(void)
136 {
137 	int i;
138 
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
145 	for (i = 0; i < PQ_L2_SIZE; i++)
146 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
147 	for (i = 0; i < PQ_L2_SIZE; i++)
148 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
149 	/* PQ_NONE has no queue */
150 
151 	for (i = 0; i < PQ_COUNT; i++) {
152 		TAILQ_INIT(&vm_page_queues[i].pl);
153 		spin_init(&vm_page_queues[i].spin);
154 	}
155 
156 	for (i = 0; i < VMACTION_HSIZE; i++)
157 		LIST_INIT(&action_list[i]);
158 }
159 
160 /*
161  * note: place in initialized data section?  Is this necessary?
162  */
163 long first_page = 0;
164 int vm_page_array_size = 0;
165 int vm_page_zero_count = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
168 
169 /*
170  * (low level boot)
171  *
172  * Sets the page size, perhaps based upon the memory size.
173  * Must be called before any use of page-size dependent functions.
174  */
175 void
176 vm_set_page_size(void)
177 {
178 	if (vmstats.v_page_size == 0)
179 		vmstats.v_page_size = PAGE_SIZE;
180 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 		panic("vm_set_page_size: page size not a power of two");
182 }
183 
184 /*
185  * (low level boot)
186  *
187  * Add a new page to the freelist for use by the system.  New pages
188  * are added to both the head and tail of the associated free page
189  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190  * requests pull 'recent' adds (higher physical addresses) first.
191  *
192  * Beware that the page zeroing daemon will also be running soon after
193  * boot, moving pages from the head to the tail of the PQ_FREE queues.
194  *
195  * Must be called in a critical section.
196  */
197 static void
198 vm_add_new_page(vm_paddr_t pa)
199 {
200 	struct vpgqueues *vpq;
201 	vm_page_t m;
202 
203 	m = PHYS_TO_VM_PAGE(pa);
204 	m->phys_addr = pa;
205 	m->flags = 0;
206 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 	m->pat_mode = PAT_WRITE_BACK;
208 	/*
209 	 * Twist for cpu localization in addition to page coloring, so
210 	 * different cpus selecting by m->queue get different page colors.
211 	 */
212 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
214 	/*
215 	 * Reserve a certain number of contiguous low memory pages for
216 	 * contigmalloc() to use.
217 	 */
218 	if (pa < vm_low_phys_reserved) {
219 		atomic_add_int(&vmstats.v_page_count, 1);
220 		atomic_add_int(&vmstats.v_dma_pages, 1);
221 		m->queue = PQ_NONE;
222 		m->wire_count = 1;
223 		atomic_add_int(&vmstats.v_wire_count, 1);
224 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 		return;
226 	}
227 
228 	/*
229 	 * General page
230 	 */
231 	m->queue = m->pc + PQ_FREE;
232 	KKASSERT(m->dirty == 0);
233 
234 	atomic_add_int(&vmstats.v_page_count, 1);
235 	atomic_add_int(&vmstats.v_free_count, 1);
236 	vpq = &vm_page_queues[m->queue];
237 	if ((vpq->flipflop & 15) == 0) {
238 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
239 		m->flags |= PG_ZERO;
240 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
241 		atomic_add_int(&vm_page_zero_count, 1);
242 	} else {
243 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
244 	}
245 	++vpq->flipflop;
246 	++vpq->lcnt;
247 }
248 
249 /*
250  * (low level boot)
251  *
252  * Initializes the resident memory module.
253  *
254  * Preallocates memory for critical VM structures and arrays prior to
255  * kernel_map becoming available.
256  *
257  * Memory is allocated from (virtual2_start, virtual2_end) if available,
258  * otherwise memory is allocated from (virtual_start, virtual_end).
259  *
260  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
261  * large enough to hold vm_page_array & other structures for machines with
262  * large amounts of ram, so we want to use virtual2* when available.
263  */
264 void
265 vm_page_startup(void)
266 {
267 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
268 	vm_offset_t mapped;
269 	vm_size_t npages;
270 	vm_paddr_t page_range;
271 	vm_paddr_t new_end;
272 	int i;
273 	vm_paddr_t pa;
274 	int nblocks;
275 	vm_paddr_t last_pa;
276 	vm_paddr_t end;
277 	vm_paddr_t biggestone, biggestsize;
278 	vm_paddr_t total;
279 
280 	total = 0;
281 	biggestsize = 0;
282 	biggestone = 0;
283 	nblocks = 0;
284 	vaddr = round_page(vaddr);
285 
286 	for (i = 0; phys_avail[i + 1]; i += 2) {
287 		phys_avail[i] = round_page64(phys_avail[i]);
288 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
289 	}
290 
291 	for (i = 0; phys_avail[i + 1]; i += 2) {
292 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
293 
294 		if (size > biggestsize) {
295 			biggestone = i;
296 			biggestsize = size;
297 		}
298 		++nblocks;
299 		total += size;
300 	}
301 
302 	end = phys_avail[biggestone+1];
303 	end = trunc_page(end);
304 
305 	/*
306 	 * Initialize the queue headers for the free queue, the active queue
307 	 * and the inactive queue.
308 	 */
309 	vm_page_queue_init();
310 
311 #if !defined(_KERNEL_VIRTUAL)
312 	/*
313 	 * VKERNELs don't support minidumps and as such don't need
314 	 * vm_page_dump
315 	 *
316 	 * Allocate a bitmap to indicate that a random physical page
317 	 * needs to be included in a minidump.
318 	 *
319 	 * The amd64 port needs this to indicate which direct map pages
320 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
321 	 *
322 	 * However, i386 still needs this workspace internally within the
323 	 * minidump code.  In theory, they are not needed on i386, but are
324 	 * included should the sf_buf code decide to use them.
325 	 */
326 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
328 	end -= vm_page_dump_size;
329 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
330 	    VM_PROT_READ | VM_PROT_WRITE);
331 	bzero((void *)vm_page_dump, vm_page_dump_size);
332 #endif
333 	/*
334 	 * Compute the number of pages of memory that will be available for
335 	 * use (taking into account the overhead of a page structure per
336 	 * page).
337 	 */
338 	first_page = phys_avail[0] / PAGE_SIZE;
339 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
340 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
341 
342 #ifndef _KERNEL_VIRTUAL
343 	/*
344 	 * (only applies to real kernels)
345 	 *
346 	 * Initialize the contiguous reserve map.  We initially reserve up
347 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
348 	 * is lower.
349 	 *
350 	 * Once device initialization is complete we return most of the
351 	 * reserved memory back to the normal page queues but leave some
352 	 * in reserve for things like usb attachments.
353 	 */
354 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
355 	if (vm_low_phys_reserved > total / 4)
356 		vm_low_phys_reserved = total / 4;
357 	if (vm_dma_reserved == 0) {
358 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
359 		if (vm_dma_reserved > total / 16)
360 			vm_dma_reserved = total / 16;
361 	}
362 #endif
363 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
364 		   ALIST_RECORDS_65536);
365 
366 	/*
367 	 * Initialize the mem entry structures now, and put them in the free
368 	 * queue.
369 	 */
370 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
371 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
372 	vm_page_array = (vm_page_t)mapped;
373 
374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
375 	/*
376 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
377 	 * we have to manually add these pages to the minidump tracking so
378 	 * that they can be dumped, including the vm_page_array.
379 	 */
380 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
381 		dump_add_page(pa);
382 #endif
383 
384 	/*
385 	 * Clear all of the page structures
386 	 */
387 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
388 	vm_page_array_size = page_range;
389 
390 	/*
391 	 * Construct the free queue(s) in ascending order (by physical
392 	 * address) so that the first 16MB of physical memory is allocated
393 	 * last rather than first.  On large-memory machines, this avoids
394 	 * the exhaustion of low physical memory before isa_dmainit has run.
395 	 */
396 	vmstats.v_page_count = 0;
397 	vmstats.v_free_count = 0;
398 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
399 		pa = phys_avail[i];
400 		if (i == biggestone)
401 			last_pa = new_end;
402 		else
403 			last_pa = phys_avail[i + 1];
404 		while (pa < last_pa && npages-- > 0) {
405 			vm_add_new_page(pa);
406 			pa += PAGE_SIZE;
407 		}
408 	}
409 	if (virtual2_start)
410 		virtual2_start = vaddr;
411 	else
412 		virtual_start = vaddr;
413 }
414 
415 /*
416  * We tended to reserve a ton of memory for contigmalloc().  Now that most
417  * drivers have initialized we want to return most the remaining free
418  * reserve back to the VM page queues so they can be used for normal
419  * allocations.
420  *
421  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
422  */
423 static void
424 vm_page_startup_finish(void *dummy __unused)
425 {
426 	alist_blk_t blk;
427 	alist_blk_t rblk;
428 	alist_blk_t count;
429 	alist_blk_t xcount;
430 	alist_blk_t bfree;
431 	vm_page_t m;
432 
433 	spin_lock(&vm_contig_spin);
434 	for (;;) {
435 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
436 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
437 			break;
438 		if (count == 0)
439 			break;
440 
441 		/*
442 		 * Figure out how much of the initial reserve we have to
443 		 * free in order to reach our target.
444 		 */
445 		bfree -= vm_dma_reserved / PAGE_SIZE;
446 		if (count > bfree) {
447 			blk += count - bfree;
448 			count = bfree;
449 		}
450 
451 		/*
452 		 * Calculate the nearest power of 2 <= count.
453 		 */
454 		for (xcount = 1; xcount <= count; xcount <<= 1)
455 			;
456 		xcount >>= 1;
457 		blk += count - xcount;
458 		count = xcount;
459 
460 		/*
461 		 * Allocate the pages from the alist, then free them to
462 		 * the normal VM page queues.
463 		 *
464 		 * Pages allocated from the alist are wired.  We have to
465 		 * busy, unwire, and free them.  We must also adjust
466 		 * vm_low_phys_reserved before freeing any pages to prevent
467 		 * confusion.
468 		 */
469 		rblk = alist_alloc(&vm_contig_alist, blk, count);
470 		if (rblk != blk) {
471 			kprintf("vm_page_startup_finish: Unable to return "
472 				"dma space @0x%08x/%d -> 0x%08x\n",
473 				blk, count, rblk);
474 			break;
475 		}
476 		atomic_add_int(&vmstats.v_dma_pages, -count);
477 		spin_unlock(&vm_contig_spin);
478 
479 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
480 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
481 		while (count) {
482 			vm_page_busy_wait(m, FALSE, "cpgfr");
483 			vm_page_unwire(m, 0);
484 			vm_page_free(m);
485 			--count;
486 			++m;
487 		}
488 		spin_lock(&vm_contig_spin);
489 	}
490 	spin_unlock(&vm_contig_spin);
491 
492 	/*
493 	 * Print out how much DMA space drivers have already allocated and
494 	 * how much is left over.
495 	 */
496 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
497 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
498 		(PAGE_SIZE / 1024),
499 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
500 }
501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
502 	vm_page_startup_finish, NULL)
503 
504 
505 /*
506  * Scan comparison function for Red-Black tree scans.  An inclusive
507  * (start,end) is expected.  Other fields are not used.
508  */
509 int
510 rb_vm_page_scancmp(struct vm_page *p, void *data)
511 {
512 	struct rb_vm_page_scan_info *info = data;
513 
514 	if (p->pindex < info->start_pindex)
515 		return(-1);
516 	if (p->pindex > info->end_pindex)
517 		return(1);
518 	return(0);
519 }
520 
521 int
522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
523 {
524 	if (p1->pindex < p2->pindex)
525 		return(-1);
526 	if (p1->pindex > p2->pindex)
527 		return(1);
528 	return(0);
529 }
530 
531 void
532 vm_page_init(vm_page_t m)
533 {
534 	/* do nothing for now.  Called from pmap_page_init() */
535 }
536 
537 /*
538  * Each page queue has its own spin lock, which is fairly optimal for
539  * allocating and freeing pages at least.
540  *
541  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
542  * queue spinlock via this function.  Also note that m->queue cannot change
543  * unless both the page and queue are locked.
544  */
545 static __inline
546 void
547 _vm_page_queue_spin_lock(vm_page_t m)
548 {
549 	u_short queue;
550 
551 	queue = m->queue;
552 	if (queue != PQ_NONE) {
553 		spin_lock(&vm_page_queues[queue].spin);
554 		KKASSERT(queue == m->queue);
555 	}
556 }
557 
558 static __inline
559 void
560 _vm_page_queue_spin_unlock(vm_page_t m)
561 {
562 	u_short queue;
563 
564 	queue = m->queue;
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_unlock(&vm_page_queues[queue].spin);
568 }
569 
570 static __inline
571 void
572 _vm_page_queues_spin_lock(u_short queue)
573 {
574 	cpu_ccfence();
575 	if (queue != PQ_NONE)
576 		spin_lock(&vm_page_queues[queue].spin);
577 }
578 
579 
580 static __inline
581 void
582 _vm_page_queues_spin_unlock(u_short queue)
583 {
584 	cpu_ccfence();
585 	if (queue != PQ_NONE)
586 		spin_unlock(&vm_page_queues[queue].spin);
587 }
588 
589 void
590 vm_page_queue_spin_lock(vm_page_t m)
591 {
592 	_vm_page_queue_spin_lock(m);
593 }
594 
595 void
596 vm_page_queues_spin_lock(u_short queue)
597 {
598 	_vm_page_queues_spin_lock(queue);
599 }
600 
601 void
602 vm_page_queue_spin_unlock(vm_page_t m)
603 {
604 	_vm_page_queue_spin_unlock(m);
605 }
606 
607 void
608 vm_page_queues_spin_unlock(u_short queue)
609 {
610 	_vm_page_queues_spin_unlock(queue);
611 }
612 
613 /*
614  * This locks the specified vm_page and its queue in the proper order
615  * (page first, then queue).  The queue may change so the caller must
616  * recheck on return.
617  */
618 static __inline
619 void
620 _vm_page_and_queue_spin_lock(vm_page_t m)
621 {
622 	vm_page_spin_lock(m);
623 	_vm_page_queue_spin_lock(m);
624 }
625 
626 static __inline
627 void
628 _vm_page_and_queue_spin_unlock(vm_page_t m)
629 {
630 	_vm_page_queues_spin_unlock(m->queue);
631 	vm_page_spin_unlock(m);
632 }
633 
634 void
635 vm_page_and_queue_spin_unlock(vm_page_t m)
636 {
637 	_vm_page_and_queue_spin_unlock(m);
638 }
639 
640 void
641 vm_page_and_queue_spin_lock(vm_page_t m)
642 {
643 	_vm_page_and_queue_spin_lock(m);
644 }
645 
646 /*
647  * Helper function removes vm_page from its current queue.
648  * Returns the base queue the page used to be on.
649  *
650  * The vm_page and the queue must be spinlocked.
651  * This function will unlock the queue but leave the page spinlocked.
652  */
653 static __inline u_short
654 _vm_page_rem_queue_spinlocked(vm_page_t m)
655 {
656 	struct vpgqueues *pq;
657 	u_short queue;
658 
659 	queue = m->queue;
660 	if (queue != PQ_NONE) {
661 		pq = &vm_page_queues[queue];
662 		TAILQ_REMOVE(&pq->pl, m, pageq);
663 		atomic_add_int(pq->cnt, -1);
664 		pq->lcnt--;
665 		m->queue = PQ_NONE;
666 		vm_page_queues_spin_unlock(queue);
667 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
668 			atomic_subtract_int(&vm_page_zero_count, 1);
669 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
670 			return (queue - m->pc);
671 	}
672 	return queue;
673 }
674 
675 /*
676  * Helper function places the vm_page on the specified queue.
677  *
678  * The vm_page must be spinlocked.
679  * This function will return with both the page and the queue locked.
680  */
681 static __inline void
682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
683 {
684 	struct vpgqueues *pq;
685 
686 	KKASSERT(m->queue == PQ_NONE);
687 
688 	if (queue != PQ_NONE) {
689 		vm_page_queues_spin_lock(queue);
690 		pq = &vm_page_queues[queue];
691 		++pq->lcnt;
692 		atomic_add_int(pq->cnt, 1);
693 		m->queue = queue;
694 
695 		/*
696 		 * Put zero'd pages on the end ( where we look for zero'd pages
697 		 * first ) and non-zerod pages at the head.
698 		 */
699 		if (queue - m->pc == PQ_FREE) {
700 			if (m->flags & PG_ZERO) {
701 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 				atomic_add_int(&vm_page_zero_count, 1);
703 			} else {
704 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
705 			}
706 		} else if (athead) {
707 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
708 		} else {
709 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
710 		}
711 		/* leave the queue spinlocked */
712 	}
713 }
714 
715 /*
716  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
717  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
718  * did not.  Only one sleep call will be made before returning.
719  *
720  * This function does NOT busy the page and on return the page is not
721  * guaranteed to be available.
722  */
723 void
724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
725 {
726 	u_int32_t flags;
727 
728 	for (;;) {
729 		flags = m->flags;
730 		cpu_ccfence();
731 
732 		if ((flags & PG_BUSY) == 0 &&
733 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
734 			break;
735 		}
736 		tsleep_interlock(m, 0);
737 		if (atomic_cmpset_int(&m->flags, flags,
738 				      flags | PG_WANTED | PG_REFERENCED)) {
739 			tsleep(m, PINTERLOCKED, msg, 0);
740 			break;
741 		}
742 	}
743 }
744 
745 /*
746  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
747  * also wait for m->busy to become 0 before setting PG_BUSY.
748  */
749 void
750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
751 				     int also_m_busy, const char *msg
752 				     VM_PAGE_DEBUG_ARGS)
753 {
754 	u_int32_t flags;
755 
756 	for (;;) {
757 		flags = m->flags;
758 		cpu_ccfence();
759 		if (flags & PG_BUSY) {
760 			tsleep_interlock(m, 0);
761 			if (atomic_cmpset_int(&m->flags, flags,
762 					  flags | PG_WANTED | PG_REFERENCED)) {
763 				tsleep(m, PINTERLOCKED, msg, 0);
764 			}
765 		} else if (also_m_busy && (flags & PG_SBUSY)) {
766 			tsleep_interlock(m, 0);
767 			if (atomic_cmpset_int(&m->flags, flags,
768 					  flags | PG_WANTED | PG_REFERENCED)) {
769 				tsleep(m, PINTERLOCKED, msg, 0);
770 			}
771 		} else {
772 			if (atomic_cmpset_int(&m->flags, flags,
773 					      flags | PG_BUSY)) {
774 #ifdef VM_PAGE_DEBUG
775 				m->busy_func = func;
776 				m->busy_line = lineno;
777 #endif
778 				break;
779 			}
780 		}
781 	}
782 }
783 
784 /*
785  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
786  * is also 0.
787  *
788  * Returns non-zero on failure.
789  */
790 int
791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
792 				    VM_PAGE_DEBUG_ARGS)
793 {
794 	u_int32_t flags;
795 
796 	for (;;) {
797 		flags = m->flags;
798 		cpu_ccfence();
799 		if (flags & PG_BUSY)
800 			return TRUE;
801 		if (also_m_busy && (flags & PG_SBUSY))
802 			return TRUE;
803 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
804 #ifdef VM_PAGE_DEBUG
805 				m->busy_func = func;
806 				m->busy_line = lineno;
807 #endif
808 			return FALSE;
809 		}
810 	}
811 }
812 
813 /*
814  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
815  * that a wakeup() should be performed.
816  *
817  * The vm_page must be spinlocked and will remain spinlocked on return.
818  * The related queue must NOT be spinlocked (which could deadlock us).
819  *
820  * (inline version)
821  */
822 static __inline
823 int
824 _vm_page_wakeup(vm_page_t m)
825 {
826 	u_int32_t flags;
827 
828 	for (;;) {
829 		flags = m->flags;
830 		cpu_ccfence();
831 		if (atomic_cmpset_int(&m->flags, flags,
832 				      flags & ~(PG_BUSY | PG_WANTED))) {
833 			break;
834 		}
835 	}
836 	return(flags & PG_WANTED);
837 }
838 
839 /*
840  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
841  * is typically the last call you make on a page before moving onto
842  * other things.
843  */
844 void
845 vm_page_wakeup(vm_page_t m)
846 {
847         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
848 	vm_page_spin_lock(m);
849 	if (_vm_page_wakeup(m)) {
850 		vm_page_spin_unlock(m);
851 		wakeup(m);
852 	} else {
853 		vm_page_spin_unlock(m);
854 	}
855 }
856 
857 /*
858  * Holding a page keeps it from being reused.  Other parts of the system
859  * can still disassociate the page from its current object and free it, or
860  * perform read or write I/O on it and/or otherwise manipulate the page,
861  * but if the page is held the VM system will leave the page and its data
862  * intact and not reuse the page for other purposes until the last hold
863  * reference is released.  (see vm_page_wire() if you want to prevent the
864  * page from being disassociated from its object too).
865  *
866  * The caller must still validate the contents of the page and, if necessary,
867  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
868  * before manipulating the page.
869  *
870  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
871  */
872 void
873 vm_page_hold(vm_page_t m)
874 {
875 	vm_page_spin_lock(m);
876 	atomic_add_int(&m->hold_count, 1);
877 	if (m->queue - m->pc == PQ_FREE) {
878 		_vm_page_queue_spin_lock(m);
879 		_vm_page_rem_queue_spinlocked(m);
880 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
881 		_vm_page_queue_spin_unlock(m);
882 	}
883 	vm_page_spin_unlock(m);
884 }
885 
886 /*
887  * The opposite of vm_page_hold().  A page can be freed while being held,
888  * which places it on the PQ_HOLD queue.  If we are able to busy the page
889  * after the hold count drops to zero we will move the page to the
890  * appropriate PQ_FREE queue by calling vm_page_free_toq().
891  */
892 void
893 vm_page_unhold(vm_page_t m)
894 {
895 	vm_page_spin_lock(m);
896 	atomic_add_int(&m->hold_count, -1);
897 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
898 		_vm_page_queue_spin_lock(m);
899 		_vm_page_rem_queue_spinlocked(m);
900 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
901 		_vm_page_queue_spin_unlock(m);
902 	}
903 	vm_page_spin_unlock(m);
904 }
905 
906 /*
907  *	vm_page_getfake:
908  *
909  *	Create a fictitious page with the specified physical address and
910  *	memory attribute.  The memory attribute is the only the machine-
911  *	dependent aspect of a fictitious page that must be initialized.
912  */
913 
914 void
915 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
916 {
917 
918 	if ((m->flags & PG_FICTITIOUS) != 0) {
919 		/*
920 		 * The page's memattr might have changed since the
921 		 * previous initialization.  Update the pmap to the
922 		 * new memattr.
923 		 */
924 		goto memattr;
925 	}
926 	m->phys_addr = paddr;
927 	m->queue = PQ_NONE;
928 	/* Fictitious pages don't use "segind". */
929 	/* Fictitious pages don't use "order" or "pool". */
930 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
931 	m->wire_count = 1;
932 	pmap_page_init(m);
933 memattr:
934 	pmap_page_set_memattr(m, memattr);
935 }
936 
937 /*
938  * Inserts the given vm_page into the object and object list.
939  *
940  * The pagetables are not updated but will presumably fault the page
941  * in if necessary, or if a kernel page the caller will at some point
942  * enter the page into the kernel's pmap.  We are not allowed to block
943  * here so we *can't* do this anyway.
944  *
945  * This routine may not block.
946  * This routine must be called with the vm_object held.
947  * This routine must be called with a critical section held.
948  *
949  * This routine returns TRUE if the page was inserted into the object
950  * successfully, and FALSE if the page already exists in the object.
951  */
952 int
953 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
954 {
955 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
956 	if (m->object != NULL)
957 		panic("vm_page_insert: already inserted");
958 
959 	object->generation++;
960 
961 	/*
962 	 * Record the object/offset pair in this page and add the
963 	 * pv_list_count of the page to the object.
964 	 *
965 	 * The vm_page spin lock is required for interactions with the pmap.
966 	 */
967 	vm_page_spin_lock(m);
968 	m->object = object;
969 	m->pindex = pindex;
970 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
971 		m->object = NULL;
972 		m->pindex = 0;
973 		vm_page_spin_unlock(m);
974 		return FALSE;
975 	}
976 	object->resident_page_count++;
977 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
978 	vm_page_spin_unlock(m);
979 
980 	/*
981 	 * Since we are inserting a new and possibly dirty page,
982 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
983 	 */
984 	if ((m->valid & m->dirty) ||
985 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
986 		vm_object_set_writeable_dirty(object);
987 
988 	/*
989 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
990 	 */
991 	swap_pager_page_inserted(m);
992 	return TRUE;
993 }
994 
995 /*
996  * Removes the given vm_page_t from the (object,index) table
997  *
998  * The underlying pmap entry (if any) is NOT removed here.
999  * This routine may not block.
1000  *
1001  * The page must be BUSY and will remain BUSY on return.
1002  * No other requirements.
1003  *
1004  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1005  *	 it busy.
1006  */
1007 void
1008 vm_page_remove(vm_page_t m)
1009 {
1010 	vm_object_t object;
1011 
1012 	if (m->object == NULL) {
1013 		return;
1014 	}
1015 
1016 	if ((m->flags & PG_BUSY) == 0)
1017 		panic("vm_page_remove: page not busy");
1018 
1019 	object = m->object;
1020 
1021 	vm_object_hold(object);
1022 
1023 	/*
1024 	 * Remove the page from the object and update the object.
1025 	 *
1026 	 * The vm_page spin lock is required for interactions with the pmap.
1027 	 */
1028 	vm_page_spin_lock(m);
1029 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1030 	object->resident_page_count--;
1031 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1032 	m->object = NULL;
1033 	vm_page_spin_unlock(m);
1034 
1035 	object->generation++;
1036 
1037 	vm_object_drop(object);
1038 }
1039 
1040 /*
1041  * Locate and return the page at (object, pindex), or NULL if the
1042  * page could not be found.
1043  *
1044  * The caller must hold the vm_object token.
1045  */
1046 vm_page_t
1047 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1048 {
1049 	vm_page_t m;
1050 
1051 	/*
1052 	 * Search the hash table for this object/offset pair
1053 	 */
1054 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1055 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1056 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1057 	return(m);
1058 }
1059 
1060 vm_page_t
1061 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1062 					    vm_pindex_t pindex,
1063 					    int also_m_busy, const char *msg
1064 					    VM_PAGE_DEBUG_ARGS)
1065 {
1066 	u_int32_t flags;
1067 	vm_page_t m;
1068 
1069 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1070 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1071 	while (m) {
1072 		KKASSERT(m->object == object && m->pindex == pindex);
1073 		flags = m->flags;
1074 		cpu_ccfence();
1075 		if (flags & PG_BUSY) {
1076 			tsleep_interlock(m, 0);
1077 			if (atomic_cmpset_int(&m->flags, flags,
1078 					  flags | PG_WANTED | PG_REFERENCED)) {
1079 				tsleep(m, PINTERLOCKED, msg, 0);
1080 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1081 							      pindex);
1082 			}
1083 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1084 			tsleep_interlock(m, 0);
1085 			if (atomic_cmpset_int(&m->flags, flags,
1086 					  flags | PG_WANTED | PG_REFERENCED)) {
1087 				tsleep(m, PINTERLOCKED, msg, 0);
1088 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1089 							      pindex);
1090 			}
1091 		} else if (atomic_cmpset_int(&m->flags, flags,
1092 					     flags | PG_BUSY)) {
1093 #ifdef VM_PAGE_DEBUG
1094 			m->busy_func = func;
1095 			m->busy_line = lineno;
1096 #endif
1097 			break;
1098 		}
1099 	}
1100 	return m;
1101 }
1102 
1103 /*
1104  * Attempt to lookup and busy a page.
1105  *
1106  * Returns NULL if the page could not be found
1107  *
1108  * Returns a vm_page and error == TRUE if the page exists but could not
1109  * be busied.
1110  *
1111  * Returns a vm_page and error == FALSE on success.
1112  */
1113 vm_page_t
1114 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1115 					   vm_pindex_t pindex,
1116 					   int also_m_busy, int *errorp
1117 					   VM_PAGE_DEBUG_ARGS)
1118 {
1119 	u_int32_t flags;
1120 	vm_page_t m;
1121 
1122 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1123 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1124 	*errorp = FALSE;
1125 	while (m) {
1126 		KKASSERT(m->object == object && m->pindex == pindex);
1127 		flags = m->flags;
1128 		cpu_ccfence();
1129 		if (flags & PG_BUSY) {
1130 			*errorp = TRUE;
1131 			break;
1132 		}
1133 		if (also_m_busy && (flags & PG_SBUSY)) {
1134 			*errorp = TRUE;
1135 			break;
1136 		}
1137 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1138 #ifdef VM_PAGE_DEBUG
1139 			m->busy_func = func;
1140 			m->busy_line = lineno;
1141 #endif
1142 			break;
1143 		}
1144 	}
1145 	return m;
1146 }
1147 
1148 /*
1149  * Caller must hold the related vm_object
1150  */
1151 vm_page_t
1152 vm_page_next(vm_page_t m)
1153 {
1154 	vm_page_t next;
1155 
1156 	next = vm_page_rb_tree_RB_NEXT(m);
1157 	if (next && next->pindex != m->pindex + 1)
1158 		next = NULL;
1159 	return (next);
1160 }
1161 
1162 /*
1163  * vm_page_rename()
1164  *
1165  * Move the given vm_page from its current object to the specified
1166  * target object/offset.  The page must be busy and will remain so
1167  * on return.
1168  *
1169  * new_object must be held.
1170  * This routine might block. XXX ?
1171  *
1172  * NOTE: Swap associated with the page must be invalidated by the move.  We
1173  *       have to do this for several reasons:  (1) we aren't freeing the
1174  *       page, (2) we are dirtying the page, (3) the VM system is probably
1175  *       moving the page from object A to B, and will then later move
1176  *       the backing store from A to B and we can't have a conflict.
1177  *
1178  * NOTE: We *always* dirty the page.  It is necessary both for the
1179  *       fact that we moved it, and because we may be invalidating
1180  *	 swap.  If the page is on the cache, we have to deactivate it
1181  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1182  *	 on the cache.
1183  */
1184 void
1185 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1186 {
1187 	KKASSERT(m->flags & PG_BUSY);
1188 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1189 	if (m->object) {
1190 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1191 		vm_page_remove(m);
1192 	}
1193 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1194 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1195 		      new_object, new_pindex);
1196 	}
1197 	if (m->queue - m->pc == PQ_CACHE)
1198 		vm_page_deactivate(m);
1199 	vm_page_dirty(m);
1200 }
1201 
1202 /*
1203  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1204  * is being moved between queues or otherwise is to remain BUSYied by the
1205  * caller.
1206  *
1207  * This routine may not block.
1208  */
1209 void
1210 vm_page_unqueue_nowakeup(vm_page_t m)
1211 {
1212 	vm_page_and_queue_spin_lock(m);
1213 	(void)_vm_page_rem_queue_spinlocked(m);
1214 	vm_page_spin_unlock(m);
1215 }
1216 
1217 /*
1218  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1219  * if necessary.
1220  *
1221  * This routine may not block.
1222  */
1223 void
1224 vm_page_unqueue(vm_page_t m)
1225 {
1226 	u_short queue;
1227 
1228 	vm_page_and_queue_spin_lock(m);
1229 	queue = _vm_page_rem_queue_spinlocked(m);
1230 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1231 		vm_page_spin_unlock(m);
1232 		pagedaemon_wakeup();
1233 	} else {
1234 		vm_page_spin_unlock(m);
1235 	}
1236 }
1237 
1238 /*
1239  * vm_page_list_find()
1240  *
1241  * Find a page on the specified queue with color optimization.
1242  *
1243  * The page coloring optimization attempts to locate a page that does
1244  * not overload other nearby pages in the object in the cpu's L1 or L2
1245  * caches.  We need this optimization because cpu caches tend to be
1246  * physical caches, while object spaces tend to be virtual.
1247  *
1248  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1249  * and the algorithm is adjusted to localize allocations on a per-core basis.
1250  * This is done by 'twisting' the colors.
1251  *
1252  * The page is returned spinlocked and removed from its queue (it will
1253  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1254  * is responsible for dealing with the busy-page case (usually by
1255  * deactivating the page and looping).
1256  *
1257  * NOTE:  This routine is carefully inlined.  A non-inlined version
1258  *	  is available for outside callers but the only critical path is
1259  *	  from within this source file.
1260  *
1261  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1262  *	  represent stable storage, allowing us to order our locks vm_page
1263  *	  first, then queue.
1264  */
1265 static __inline
1266 vm_page_t
1267 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1268 {
1269 	vm_page_t m;
1270 
1271 	for (;;) {
1272 		if (prefer_zero)
1273 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1274 		else
1275 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1276 		if (m == NULL) {
1277 			m = _vm_page_list_find2(basequeue, index);
1278 			return(m);
1279 		}
1280 		vm_page_and_queue_spin_lock(m);
1281 		if (m->queue == basequeue + index) {
1282 			_vm_page_rem_queue_spinlocked(m);
1283 			/* vm_page_t spin held, no queue spin */
1284 			break;
1285 		}
1286 		vm_page_and_queue_spin_unlock(m);
1287 	}
1288 	return(m);
1289 }
1290 
1291 static vm_page_t
1292 _vm_page_list_find2(int basequeue, int index)
1293 {
1294 	int i;
1295 	vm_page_t m = NULL;
1296 	struct vpgqueues *pq;
1297 
1298 	pq = &vm_page_queues[basequeue];
1299 
1300 	/*
1301 	 * Note that for the first loop, index+i and index-i wind up at the
1302 	 * same place.  Even though this is not totally optimal, we've already
1303 	 * blown it by missing the cache case so we do not care.
1304 	 */
1305 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1306 		for (;;) {
1307 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1308 			if (m) {
1309 				_vm_page_and_queue_spin_lock(m);
1310 				if (m->queue ==
1311 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1312 					_vm_page_rem_queue_spinlocked(m);
1313 					return(m);
1314 				}
1315 				_vm_page_and_queue_spin_unlock(m);
1316 				continue;
1317 			}
1318 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1319 			if (m) {
1320 				_vm_page_and_queue_spin_lock(m);
1321 				if (m->queue ==
1322 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1323 					_vm_page_rem_queue_spinlocked(m);
1324 					return(m);
1325 				}
1326 				_vm_page_and_queue_spin_unlock(m);
1327 				continue;
1328 			}
1329 			break;	/* next i */
1330 		}
1331 	}
1332 	return(m);
1333 }
1334 
1335 /*
1336  * Returns a vm_page candidate for allocation.  The page is not busied so
1337  * it can move around.  The caller must busy the page (and typically
1338  * deactivate it if it cannot be busied!)
1339  *
1340  * Returns a spinlocked vm_page that has been removed from its queue.
1341  */
1342 vm_page_t
1343 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1344 {
1345 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1346 }
1347 
1348 /*
1349  * Find a page on the cache queue with color optimization, remove it
1350  * from the queue, and busy it.  The returned page will not be spinlocked.
1351  *
1352  * A candidate failure will be deactivated.  Candidates can fail due to
1353  * being busied by someone else, in which case they will be deactivated.
1354  *
1355  * This routine may not block.
1356  *
1357  */
1358 static vm_page_t
1359 vm_page_select_cache(u_short pg_color)
1360 {
1361 	vm_page_t m;
1362 
1363 	for (;;) {
1364 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1365 		if (m == NULL)
1366 			break;
1367 		/*
1368 		 * (m) has been removed from its queue and spinlocked
1369 		 */
1370 		if (vm_page_busy_try(m, TRUE)) {
1371 			_vm_page_deactivate_locked(m, 0);
1372 			vm_page_spin_unlock(m);
1373 		} else {
1374 			/*
1375 			 * We successfully busied the page
1376 			 */
1377 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1378 			    m->hold_count == 0 &&
1379 			    m->wire_count == 0 &&
1380 			    (m->dirty & m->valid) == 0) {
1381 				vm_page_spin_unlock(m);
1382 				pagedaemon_wakeup();
1383 				return(m);
1384 			}
1385 
1386 			/*
1387 			 * The page cannot be recycled, deactivate it.
1388 			 */
1389 			_vm_page_deactivate_locked(m, 0);
1390 			if (_vm_page_wakeup(m)) {
1391 				vm_page_spin_unlock(m);
1392 				wakeup(m);
1393 			} else {
1394 				vm_page_spin_unlock(m);
1395 			}
1396 		}
1397 	}
1398 	return (m);
1399 }
1400 
1401 /*
1402  * Find a free or zero page, with specified preference.  We attempt to
1403  * inline the nominal case and fall back to _vm_page_select_free()
1404  * otherwise.  A busied page is removed from the queue and returned.
1405  *
1406  * This routine may not block.
1407  */
1408 static __inline vm_page_t
1409 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1410 {
1411 	vm_page_t m;
1412 
1413 	for (;;) {
1414 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1415 				       prefer_zero);
1416 		if (m == NULL)
1417 			break;
1418 		if (vm_page_busy_try(m, TRUE)) {
1419 			/*
1420 			 * Various mechanisms such as a pmap_collect can
1421 			 * result in a busy page on the free queue.  We
1422 			 * have to move the page out of the way so we can
1423 			 * retry the allocation.  If the other thread is not
1424 			 * allocating the page then m->valid will remain 0 and
1425 			 * the pageout daemon will free the page later on.
1426 			 *
1427 			 * Since we could not busy the page, however, we
1428 			 * cannot make assumptions as to whether the page
1429 			 * will be allocated by the other thread or not,
1430 			 * so all we can do is deactivate it to move it out
1431 			 * of the way.  In particular, if the other thread
1432 			 * wires the page it may wind up on the inactive
1433 			 * queue and the pageout daemon will have to deal
1434 			 * with that case too.
1435 			 */
1436 			_vm_page_deactivate_locked(m, 0);
1437 			vm_page_spin_unlock(m);
1438 		} else {
1439 			/*
1440 			 * Theoretically if we are able to busy the page
1441 			 * atomic with the queue removal (using the vm_page
1442 			 * lock) nobody else should be able to mess with the
1443 			 * page before us.
1444 			 */
1445 			KKASSERT((m->flags & (PG_UNMANAGED |
1446 					      PG_NEED_COMMIT)) == 0);
1447 			KKASSERT(m->hold_count == 0);
1448 			KKASSERT(m->wire_count == 0);
1449 			vm_page_spin_unlock(m);
1450 			pagedaemon_wakeup();
1451 
1452 			/* return busied and removed page */
1453 			return(m);
1454 		}
1455 	}
1456 	return(m);
1457 }
1458 
1459 /*
1460  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1461  * The idea is to populate this cache prior to acquiring any locks so
1462  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1463  * holding potentialy contending locks.
1464  *
1465  * Note that we allocate the page uninserted into anything and use a pindex
1466  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1467  * allocations should wind up being uncontended.  However, we still want
1468  * to rove across PQ_L2_SIZE.
1469  */
1470 void
1471 vm_page_pcpu_cache(void)
1472 {
1473 #if 0
1474 	globaldata_t gd = mycpu;
1475 	vm_page_t m;
1476 
1477 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1478 		crit_enter_gd(gd);
1479 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1480 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1481 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1482 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1483 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1484 				if ((m->flags & PG_ZERO) == 0) {
1485 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1486 					vm_page_flag_set(m, PG_ZERO);
1487 				}
1488 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1489 			} else {
1490 				vm_page_free(m);
1491 			}
1492 		}
1493 		crit_exit_gd(gd);
1494 	}
1495 #endif
1496 }
1497 
1498 /*
1499  * vm_page_alloc()
1500  *
1501  * Allocate and return a memory cell associated with this VM object/offset
1502  * pair.  If object is NULL an unassociated page will be allocated.
1503  *
1504  * The returned page will be busied and removed from its queues.  This
1505  * routine can block and may return NULL if a race occurs and the page
1506  * is found to already exist at the specified (object, pindex).
1507  *
1508  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1509  *	VM_ALLOC_QUICK		like normal but cannot use cache
1510  *	VM_ALLOC_SYSTEM		greater free drain
1511  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1512  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1513  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1514  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1515  *				(see vm_page_grab())
1516  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1517  *
1518  * The object must be held if not NULL
1519  * This routine may not block
1520  *
1521  * Additional special handling is required when called from an interrupt
1522  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1523  * in this case.
1524  */
1525 vm_page_t
1526 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1527 {
1528 	globaldata_t gd = mycpu;
1529 	vm_object_t obj;
1530 	vm_page_t m;
1531 	u_short pg_color;
1532 
1533 #if 0
1534 	/*
1535 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1536 	 * and pre-zerod for us.
1537 	 */
1538 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1539 		crit_enter_gd(gd);
1540 		if (gd->gd_vmpg_count) {
1541 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1542 			crit_exit_gd(gd);
1543 			goto done;
1544                 }
1545 		crit_exit_gd(gd);
1546         }
1547 #endif
1548 	m = NULL;
1549 
1550 	/*
1551 	 * Cpu twist - cpu localization algorithm
1552 	 */
1553 	if (object) {
1554 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1555 			   (object->pg_color & ~ncpus_fit_mask);
1556 	} else {
1557 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1558 	}
1559 	KKASSERT(page_req &
1560 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1561 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1562 
1563 	/*
1564 	 * Certain system threads (pageout daemon, buf_daemon's) are
1565 	 * allowed to eat deeper into the free page list.
1566 	 */
1567 	if (curthread->td_flags & TDF_SYSTHREAD)
1568 		page_req |= VM_ALLOC_SYSTEM;
1569 
1570 loop:
1571 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1572 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1573 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1574 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1575 	) {
1576 		/*
1577 		 * The free queue has sufficient free pages to take one out.
1578 		 */
1579 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1580 			m = vm_page_select_free(pg_color, TRUE);
1581 		else
1582 			m = vm_page_select_free(pg_color, FALSE);
1583 	} else if (page_req & VM_ALLOC_NORMAL) {
1584 		/*
1585 		 * Allocatable from the cache (non-interrupt only).  On
1586 		 * success, we must free the page and try again, thus
1587 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1588 		 */
1589 #ifdef INVARIANTS
1590 		if (curthread->td_preempted) {
1591 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1592 				" cache page from preempting interrupt\n");
1593 			m = NULL;
1594 		} else {
1595 			m = vm_page_select_cache(pg_color);
1596 		}
1597 #else
1598 		m = vm_page_select_cache(pg_color);
1599 #endif
1600 		/*
1601 		 * On success move the page into the free queue and loop.
1602 		 *
1603 		 * Only do this if we can safely acquire the vm_object lock,
1604 		 * because this is effectively a random page and the caller
1605 		 * might be holding the lock shared, we don't want to
1606 		 * deadlock.
1607 		 */
1608 		if (m != NULL) {
1609 			KASSERT(m->dirty == 0,
1610 				("Found dirty cache page %p", m));
1611 			if ((obj = m->object) != NULL) {
1612 				if (vm_object_hold_try(obj)) {
1613 					vm_page_protect(m, VM_PROT_NONE);
1614 					vm_page_free(m);
1615 					/* m->object NULL here */
1616 					vm_object_drop(obj);
1617 				} else {
1618 					vm_page_deactivate(m);
1619 					vm_page_wakeup(m);
1620 				}
1621 			} else {
1622 				vm_page_protect(m, VM_PROT_NONE);
1623 				vm_page_free(m);
1624 			}
1625 			goto loop;
1626 		}
1627 
1628 		/*
1629 		 * On failure return NULL
1630 		 */
1631 #if defined(DIAGNOSTIC)
1632 		if (vmstats.v_cache_count > 0)
1633 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1634 #endif
1635 		vm_pageout_deficit++;
1636 		pagedaemon_wakeup();
1637 		return (NULL);
1638 	} else {
1639 		/*
1640 		 * No pages available, wakeup the pageout daemon and give up.
1641 		 */
1642 		vm_pageout_deficit++;
1643 		pagedaemon_wakeup();
1644 		return (NULL);
1645 	}
1646 
1647 	/*
1648 	 * v_free_count can race so loop if we don't find the expected
1649 	 * page.
1650 	 */
1651 	if (m == NULL)
1652 		goto loop;
1653 
1654 	/*
1655 	 * Good page found.  The page has already been busied for us and
1656 	 * removed from its queues.
1657 	 */
1658 	KASSERT(m->dirty == 0,
1659 		("vm_page_alloc: free/cache page %p was dirty", m));
1660 	KKASSERT(m->queue == PQ_NONE);
1661 
1662 #if 0
1663 done:
1664 #endif
1665 	/*
1666 	 * Initialize the structure, inheriting some flags but clearing
1667 	 * all the rest.  The page has already been busied for us.
1668 	 */
1669 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1670 	KKASSERT(m->wire_count == 0);
1671 	KKASSERT(m->busy == 0);
1672 	m->act_count = 0;
1673 	m->valid = 0;
1674 
1675 	/*
1676 	 * Caller must be holding the object lock (asserted by
1677 	 * vm_page_insert()).
1678 	 *
1679 	 * NOTE: Inserting a page here does not insert it into any pmaps
1680 	 *	 (which could cause us to block allocating memory).
1681 	 *
1682 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1683 	 *	 can be used by the caller for any purpose.
1684 	 */
1685 	if (object) {
1686 		if (vm_page_insert(m, object, pindex) == FALSE) {
1687 			vm_page_free(m);
1688 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1689 				panic("PAGE RACE %p[%ld]/%p",
1690 				      object, (long)pindex, m);
1691 			m = NULL;
1692 		}
1693 	} else {
1694 		m->pindex = pindex;
1695 	}
1696 
1697 	/*
1698 	 * Don't wakeup too often - wakeup the pageout daemon when
1699 	 * we would be nearly out of memory.
1700 	 */
1701 	pagedaemon_wakeup();
1702 
1703 	/*
1704 	 * A PG_BUSY page is returned.
1705 	 */
1706 	return (m);
1707 }
1708 
1709 /*
1710  * Attempt to allocate contiguous physical memory with the specified
1711  * requirements.
1712  */
1713 vm_page_t
1714 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1715 		     unsigned long alignment, unsigned long boundary,
1716 		     unsigned long size, vm_memattr_t memattr)
1717 {
1718 	alist_blk_t blk;
1719 	vm_page_t m;
1720 	int i;
1721 
1722 	alignment >>= PAGE_SHIFT;
1723 	if (alignment == 0)
1724 		alignment = 1;
1725 	boundary >>= PAGE_SHIFT;
1726 	if (boundary == 0)
1727 		boundary = 1;
1728 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1729 
1730 	spin_lock(&vm_contig_spin);
1731 	blk = alist_alloc(&vm_contig_alist, 0, size);
1732 	if (blk == ALIST_BLOCK_NONE) {
1733 		spin_unlock(&vm_contig_spin);
1734 		if (bootverbose) {
1735 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1736 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1737 		}
1738 		return(NULL);
1739 	}
1740 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1741 		alist_free(&vm_contig_alist, blk, size);
1742 		spin_unlock(&vm_contig_spin);
1743 		if (bootverbose) {
1744 			kprintf("vm_page_alloc_contig: %ldk high "
1745 				"%016jx failed\n",
1746 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1747 				(intmax_t)high);
1748 		}
1749 		return(NULL);
1750 	}
1751 	spin_unlock(&vm_contig_spin);
1752 	if (vm_contig_verbose) {
1753 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1754 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1755 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1756 	}
1757 
1758 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1759 	if (memattr != VM_MEMATTR_DEFAULT)
1760 		for (i = 0;i < size;i++)
1761 			pmap_page_set_memattr(&m[i], memattr);
1762 	return m;
1763 }
1764 
1765 /*
1766  * Free contiguously allocated pages.  The pages will be wired but not busy.
1767  * When freeing to the alist we leave them wired and not busy.
1768  */
1769 void
1770 vm_page_free_contig(vm_page_t m, unsigned long size)
1771 {
1772 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1773 	vm_pindex_t start = pa >> PAGE_SHIFT;
1774 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1775 
1776 	if (vm_contig_verbose) {
1777 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1778 			(intmax_t)pa, size / 1024);
1779 	}
1780 	if (pa < vm_low_phys_reserved) {
1781 		KKASSERT(pa + size <= vm_low_phys_reserved);
1782 		spin_lock(&vm_contig_spin);
1783 		alist_free(&vm_contig_alist, start, pages);
1784 		spin_unlock(&vm_contig_spin);
1785 	} else {
1786 		while (pages) {
1787 			vm_page_busy_wait(m, FALSE, "cpgfr");
1788 			vm_page_unwire(m, 0);
1789 			vm_page_free(m);
1790 			--pages;
1791 			++m;
1792 		}
1793 
1794 	}
1795 }
1796 
1797 
1798 /*
1799  * Wait for sufficient free memory for nominal heavy memory use kernel
1800  * operations.
1801  *
1802  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1803  *	     will trivially deadlock the system.
1804  */
1805 void
1806 vm_wait_nominal(void)
1807 {
1808 	while (vm_page_count_min(0))
1809 		vm_wait(0);
1810 }
1811 
1812 /*
1813  * Test if vm_wait_nominal() would block.
1814  */
1815 int
1816 vm_test_nominal(void)
1817 {
1818 	if (vm_page_count_min(0))
1819 		return(1);
1820 	return(0);
1821 }
1822 
1823 /*
1824  * Block until free pages are available for allocation, called in various
1825  * places before memory allocations.
1826  *
1827  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1828  * more generous then that.
1829  */
1830 void
1831 vm_wait(int timo)
1832 {
1833 	/*
1834 	 * never wait forever
1835 	 */
1836 	if (timo == 0)
1837 		timo = hz;
1838 	lwkt_gettoken(&vm_token);
1839 
1840 	if (curthread == pagethread) {
1841 		/*
1842 		 * The pageout daemon itself needs pages, this is bad.
1843 		 */
1844 		if (vm_page_count_min(0)) {
1845 			vm_pageout_pages_needed = 1;
1846 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1847 		}
1848 	} else {
1849 		/*
1850 		 * Wakeup the pageout daemon if necessary and wait.
1851 		 *
1852 		 * Do not wait indefinitely for the target to be reached,
1853 		 * as load might prevent it from being reached any time soon.
1854 		 * But wait a little to try to slow down page allocations
1855 		 * and to give more important threads (the pagedaemon)
1856 		 * allocation priority.
1857 		 */
1858 		if (vm_page_count_target()) {
1859 			if (vm_pages_needed == 0) {
1860 				vm_pages_needed = 1;
1861 				wakeup(&vm_pages_needed);
1862 			}
1863 			++vm_pages_waiting;	/* SMP race ok */
1864 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1865 		}
1866 	}
1867 	lwkt_reltoken(&vm_token);
1868 }
1869 
1870 /*
1871  * Block until free pages are available for allocation
1872  *
1873  * Called only from vm_fault so that processes page faulting can be
1874  * easily tracked.
1875  */
1876 void
1877 vm_wait_pfault(void)
1878 {
1879 	/*
1880 	 * Wakeup the pageout daemon if necessary and wait.
1881 	 *
1882 	 * Do not wait indefinitely for the target to be reached,
1883 	 * as load might prevent it from being reached any time soon.
1884 	 * But wait a little to try to slow down page allocations
1885 	 * and to give more important threads (the pagedaemon)
1886 	 * allocation priority.
1887 	 */
1888 	if (vm_page_count_min(0)) {
1889 		lwkt_gettoken(&vm_token);
1890 		while (vm_page_count_severe()) {
1891 			if (vm_page_count_target()) {
1892 				if (vm_pages_needed == 0) {
1893 					vm_pages_needed = 1;
1894 					wakeup(&vm_pages_needed);
1895 				}
1896 				++vm_pages_waiting;	/* SMP race ok */
1897 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1898 			}
1899 		}
1900 		lwkt_reltoken(&vm_token);
1901 	}
1902 }
1903 
1904 /*
1905  * Put the specified page on the active list (if appropriate).  Ensure
1906  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1907  *
1908  * The caller should be holding the page busied ? XXX
1909  * This routine may not block.
1910  */
1911 void
1912 vm_page_activate(vm_page_t m)
1913 {
1914 	u_short oqueue;
1915 
1916 	vm_page_spin_lock(m);
1917 	if (m->queue - m->pc != PQ_ACTIVE) {
1918 		_vm_page_queue_spin_lock(m);
1919 		oqueue = _vm_page_rem_queue_spinlocked(m);
1920 		/* page is left spinlocked, queue is unlocked */
1921 
1922 		if (oqueue == PQ_CACHE)
1923 			mycpu->gd_cnt.v_reactivated++;
1924 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1925 			if (m->act_count < ACT_INIT)
1926 				m->act_count = ACT_INIT;
1927 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1928 		}
1929 		_vm_page_and_queue_spin_unlock(m);
1930 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1931 			pagedaemon_wakeup();
1932 	} else {
1933 		if (m->act_count < ACT_INIT)
1934 			m->act_count = ACT_INIT;
1935 		vm_page_spin_unlock(m);
1936 	}
1937 }
1938 
1939 /*
1940  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1941  * routine is called when a page has been added to the cache or free
1942  * queues.
1943  *
1944  * This routine may not block.
1945  */
1946 static __inline void
1947 vm_page_free_wakeup(void)
1948 {
1949 	/*
1950 	 * If the pageout daemon itself needs pages, then tell it that
1951 	 * there are some free.
1952 	 */
1953 	if (vm_pageout_pages_needed &&
1954 	    vmstats.v_cache_count + vmstats.v_free_count >=
1955 	    vmstats.v_pageout_free_min
1956 	) {
1957 		vm_pageout_pages_needed = 0;
1958 		wakeup(&vm_pageout_pages_needed);
1959 	}
1960 
1961 	/*
1962 	 * Wakeup processes that are waiting on memory.
1963 	 *
1964 	 * Generally speaking we want to wakeup stuck processes as soon as
1965 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
1966 	 * where we can do this.  Wait a bit longer to reduce degenerate
1967 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
1968 	 * to make sure the min-check w/hysteresis does not exceed the
1969 	 * normal target.
1970 	 */
1971 	if (vm_pages_waiting) {
1972 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
1973 		    !vm_page_count_target()) {
1974 			vm_pages_waiting = 0;
1975 			wakeup(&vmstats.v_free_count);
1976 			++mycpu->gd_cnt.v_ppwakeups;
1977 		}
1978 #if 0
1979 		if (!vm_page_count_target()) {
1980 			/*
1981 			 * Plenty of pages are free, wakeup everyone.
1982 			 */
1983 			vm_pages_waiting = 0;
1984 			wakeup(&vmstats.v_free_count);
1985 			++mycpu->gd_cnt.v_ppwakeups;
1986 		} else if (!vm_page_count_min(0)) {
1987 			/*
1988 			 * Some pages are free, wakeup someone.
1989 			 */
1990 			int wcount = vm_pages_waiting;
1991 			if (wcount > 0)
1992 				--wcount;
1993 			vm_pages_waiting = wcount;
1994 			wakeup_one(&vmstats.v_free_count);
1995 			++mycpu->gd_cnt.v_ppwakeups;
1996 		}
1997 #endif
1998 	}
1999 }
2000 
2001 /*
2002  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2003  * it from its VM object.
2004  *
2005  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2006  * return (the page will have been freed).
2007  */
2008 void
2009 vm_page_free_toq(vm_page_t m)
2010 {
2011 	mycpu->gd_cnt.v_tfree++;
2012 	KKASSERT((m->flags & PG_MAPPED) == 0);
2013 	KKASSERT(m->flags & PG_BUSY);
2014 
2015 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2016 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2017 			"PG_BUSY(%d), hold(%d)\n",
2018 			(u_long)m->pindex, m->busy,
2019 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2020 		if ((m->queue - m->pc) == PQ_FREE)
2021 			panic("vm_page_free: freeing free page");
2022 		else
2023 			panic("vm_page_free: freeing busy page");
2024 	}
2025 
2026 	/*
2027 	 * Remove from object, spinlock the page and its queues and
2028 	 * remove from any queue.  No queue spinlock will be held
2029 	 * after this section (because the page was removed from any
2030 	 * queue).
2031 	 */
2032 	vm_page_remove(m);
2033 	vm_page_and_queue_spin_lock(m);
2034 	_vm_page_rem_queue_spinlocked(m);
2035 
2036 	/*
2037 	 * No further management of fictitious pages occurs beyond object
2038 	 * and queue removal.
2039 	 */
2040 	if ((m->flags & PG_FICTITIOUS) != 0) {
2041 		vm_page_spin_unlock(m);
2042 		vm_page_wakeup(m);
2043 		return;
2044 	}
2045 
2046 	m->valid = 0;
2047 	vm_page_undirty(m);
2048 
2049 	if (m->wire_count != 0) {
2050 		if (m->wire_count > 1) {
2051 		    panic(
2052 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2053 			m->wire_count, (long)m->pindex);
2054 		}
2055 		panic("vm_page_free: freeing wired page");
2056 	}
2057 
2058 	/*
2059 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2060 	 * Clear the NEED_COMMIT flag
2061 	 */
2062 	if (m->flags & PG_UNMANAGED)
2063 		vm_page_flag_clear(m, PG_UNMANAGED);
2064 	if (m->flags & PG_NEED_COMMIT)
2065 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2066 
2067 	if (m->hold_count != 0) {
2068 		vm_page_flag_clear(m, PG_ZERO);
2069 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2070 	} else {
2071 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2072 	}
2073 
2074 	/*
2075 	 * This sequence allows us to clear PG_BUSY while still holding
2076 	 * its spin lock, which reduces contention vs allocators.  We
2077 	 * must not leave the queue locked or _vm_page_wakeup() may
2078 	 * deadlock.
2079 	 */
2080 	_vm_page_queue_spin_unlock(m);
2081 	if (_vm_page_wakeup(m)) {
2082 		vm_page_spin_unlock(m);
2083 		wakeup(m);
2084 	} else {
2085 		vm_page_spin_unlock(m);
2086 	}
2087 	vm_page_free_wakeup();
2088 }
2089 
2090 /*
2091  * vm_page_free_fromq_fast()
2092  *
2093  * Remove a non-zero page from one of the free queues; the page is removed for
2094  * zeroing, so do not issue a wakeup.
2095  */
2096 vm_page_t
2097 vm_page_free_fromq_fast(void)
2098 {
2099 	static int qi;
2100 	vm_page_t m;
2101 	int i;
2102 
2103 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2104 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2105 		/* page is returned spinlocked and removed from its queue */
2106 		if (m) {
2107 			if (vm_page_busy_try(m, TRUE)) {
2108 				/*
2109 				 * We were unable to busy the page, deactivate
2110 				 * it and loop.
2111 				 */
2112 				_vm_page_deactivate_locked(m, 0);
2113 				vm_page_spin_unlock(m);
2114 			} else if (m->flags & PG_ZERO) {
2115 				/*
2116 				 * The page is PG_ZERO, requeue it and loop
2117 				 */
2118 				_vm_page_add_queue_spinlocked(m,
2119 							      PQ_FREE + m->pc,
2120 							      0);
2121 				vm_page_queue_spin_unlock(m);
2122 				if (_vm_page_wakeup(m)) {
2123 					vm_page_spin_unlock(m);
2124 					wakeup(m);
2125 				} else {
2126 					vm_page_spin_unlock(m);
2127 				}
2128 			} else {
2129 				/*
2130 				 * The page is not PG_ZERO'd so return it.
2131 				 */
2132 				vm_page_spin_unlock(m);
2133 				KKASSERT((m->flags & (PG_UNMANAGED |
2134 						      PG_NEED_COMMIT)) == 0);
2135 				KKASSERT(m->hold_count == 0);
2136 				KKASSERT(m->wire_count == 0);
2137 				break;
2138 			}
2139 			m = NULL;
2140 		}
2141 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2142 	}
2143 	return (m);
2144 }
2145 
2146 /*
2147  * vm_page_unmanage()
2148  *
2149  * Prevent PV management from being done on the page.  The page is
2150  * removed from the paging queues as if it were wired, and as a
2151  * consequence of no longer being managed the pageout daemon will not
2152  * touch it (since there is no way to locate the pte mappings for the
2153  * page).  madvise() calls that mess with the pmap will also no longer
2154  * operate on the page.
2155  *
2156  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2157  * will clear the flag.
2158  *
2159  * This routine is used by OBJT_PHYS objects - objects using unswappable
2160  * physical memory as backing store rather then swap-backed memory and
2161  * will eventually be extended to support 4MB unmanaged physical
2162  * mappings.
2163  *
2164  * Caller must be holding the page busy.
2165  */
2166 void
2167 vm_page_unmanage(vm_page_t m)
2168 {
2169 	KKASSERT(m->flags & PG_BUSY);
2170 	if ((m->flags & PG_UNMANAGED) == 0) {
2171 		if (m->wire_count == 0)
2172 			vm_page_unqueue(m);
2173 	}
2174 	vm_page_flag_set(m, PG_UNMANAGED);
2175 }
2176 
2177 /*
2178  * Mark this page as wired down by yet another map, removing it from
2179  * paging queues as necessary.
2180  *
2181  * Caller must be holding the page busy.
2182  */
2183 void
2184 vm_page_wire(vm_page_t m)
2185 {
2186 	/*
2187 	 * Only bump the wire statistics if the page is not already wired,
2188 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2189 	 * it is already off the queues).  Don't do anything with fictitious
2190 	 * pages because they are always wired.
2191 	 */
2192 	KKASSERT(m->flags & PG_BUSY);
2193 	if ((m->flags & PG_FICTITIOUS) == 0) {
2194 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2195 			if ((m->flags & PG_UNMANAGED) == 0)
2196 				vm_page_unqueue(m);
2197 			atomic_add_int(&vmstats.v_wire_count, 1);
2198 		}
2199 		KASSERT(m->wire_count != 0,
2200 			("vm_page_wire: wire_count overflow m=%p", m));
2201 	}
2202 }
2203 
2204 /*
2205  * Release one wiring of this page, potentially enabling it to be paged again.
2206  *
2207  * Many pages placed on the inactive queue should actually go
2208  * into the cache, but it is difficult to figure out which.  What
2209  * we do instead, if the inactive target is well met, is to put
2210  * clean pages at the head of the inactive queue instead of the tail.
2211  * This will cause them to be moved to the cache more quickly and
2212  * if not actively re-referenced, freed more quickly.  If we just
2213  * stick these pages at the end of the inactive queue, heavy filesystem
2214  * meta-data accesses can cause an unnecessary paging load on memory bound
2215  * processes.  This optimization causes one-time-use metadata to be
2216  * reused more quickly.
2217  *
2218  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2219  * the inactive queue.  This helps the pageout daemon determine memory
2220  * pressure and act on out-of-memory situations more quickly.
2221  *
2222  * BUT, if we are in a low-memory situation we have no choice but to
2223  * put clean pages on the cache queue.
2224  *
2225  * A number of routines use vm_page_unwire() to guarantee that the page
2226  * will go into either the inactive or active queues, and will NEVER
2227  * be placed in the cache - for example, just after dirtying a page.
2228  * dirty pages in the cache are not allowed.
2229  *
2230  * The page queues must be locked.
2231  * This routine may not block.
2232  */
2233 void
2234 vm_page_unwire(vm_page_t m, int activate)
2235 {
2236 	KKASSERT(m->flags & PG_BUSY);
2237 	if (m->flags & PG_FICTITIOUS) {
2238 		/* do nothing */
2239 	} else if (m->wire_count <= 0) {
2240 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2241 	} else {
2242 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2243 			atomic_add_int(&vmstats.v_wire_count, -1);
2244 			if (m->flags & PG_UNMANAGED) {
2245 				;
2246 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2247 				vm_page_spin_lock(m);
2248 				_vm_page_add_queue_spinlocked(m,
2249 							PQ_ACTIVE + m->pc, 0);
2250 				_vm_page_and_queue_spin_unlock(m);
2251 			} else {
2252 				vm_page_spin_lock(m);
2253 				vm_page_flag_clear(m, PG_WINATCFLS);
2254 				_vm_page_add_queue_spinlocked(m,
2255 							PQ_INACTIVE + m->pc, 0);
2256 				++vm_swapcache_inactive_heuristic;
2257 				_vm_page_and_queue_spin_unlock(m);
2258 			}
2259 		}
2260 	}
2261 }
2262 
2263 /*
2264  * Move the specified page to the inactive queue.  If the page has
2265  * any associated swap, the swap is deallocated.
2266  *
2267  * Normally athead is 0 resulting in LRU operation.  athead is set
2268  * to 1 if we want this page to be 'as if it were placed in the cache',
2269  * except without unmapping it from the process address space.
2270  *
2271  * vm_page's spinlock must be held on entry and will remain held on return.
2272  * This routine may not block.
2273  */
2274 static void
2275 _vm_page_deactivate_locked(vm_page_t m, int athead)
2276 {
2277 	u_short oqueue;
2278 
2279 	/*
2280 	 * Ignore if already inactive.
2281 	 */
2282 	if (m->queue - m->pc == PQ_INACTIVE)
2283 		return;
2284 	_vm_page_queue_spin_lock(m);
2285 	oqueue = _vm_page_rem_queue_spinlocked(m);
2286 
2287 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2288 		if (oqueue == PQ_CACHE)
2289 			mycpu->gd_cnt.v_reactivated++;
2290 		vm_page_flag_clear(m, PG_WINATCFLS);
2291 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2292 		if (athead == 0)
2293 			++vm_swapcache_inactive_heuristic;
2294 	}
2295 	_vm_page_queue_spin_unlock(m);
2296 	/* leaves vm_page spinlocked */
2297 }
2298 
2299 /*
2300  * Attempt to deactivate a page.
2301  *
2302  * No requirements.
2303  */
2304 void
2305 vm_page_deactivate(vm_page_t m)
2306 {
2307 	vm_page_spin_lock(m);
2308 	_vm_page_deactivate_locked(m, 0);
2309 	vm_page_spin_unlock(m);
2310 }
2311 
2312 void
2313 vm_page_deactivate_locked(vm_page_t m)
2314 {
2315 	_vm_page_deactivate_locked(m, 0);
2316 }
2317 
2318 /*
2319  * Attempt to move a page to PQ_CACHE.
2320  *
2321  * Returns 0 on failure, 1 on success
2322  *
2323  * The page should NOT be busied by the caller.  This function will validate
2324  * whether the page can be safely moved to the cache.
2325  */
2326 int
2327 vm_page_try_to_cache(vm_page_t m)
2328 {
2329 	vm_page_spin_lock(m);
2330 	if (vm_page_busy_try(m, TRUE)) {
2331 		vm_page_spin_unlock(m);
2332 		return(0);
2333 	}
2334 	if (m->dirty || m->hold_count || m->wire_count ||
2335 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2336 		if (_vm_page_wakeup(m)) {
2337 			vm_page_spin_unlock(m);
2338 			wakeup(m);
2339 		} else {
2340 			vm_page_spin_unlock(m);
2341 		}
2342 		return(0);
2343 	}
2344 	vm_page_spin_unlock(m);
2345 
2346 	/*
2347 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2348 	 * be moved to the cache.
2349 	 */
2350 	vm_page_test_dirty(m);
2351 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2352 		vm_page_wakeup(m);
2353 		return(0);
2354 	}
2355 	vm_page_cache(m);
2356 	return(1);
2357 }
2358 
2359 /*
2360  * Attempt to free the page.  If we cannot free it, we do nothing.
2361  * 1 is returned on success, 0 on failure.
2362  *
2363  * No requirements.
2364  */
2365 int
2366 vm_page_try_to_free(vm_page_t m)
2367 {
2368 	vm_page_spin_lock(m);
2369 	if (vm_page_busy_try(m, TRUE)) {
2370 		vm_page_spin_unlock(m);
2371 		return(0);
2372 	}
2373 
2374 	/*
2375 	 * The page can be in any state, including already being on the free
2376 	 * queue.  Check to see if it really can be freed.
2377 	 */
2378 	if (m->dirty ||				/* can't free if it is dirty */
2379 	    m->hold_count ||			/* or held (XXX may be wrong) */
2380 	    m->wire_count ||			/* or wired */
2381 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2382 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2383 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2384 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2385 		if (_vm_page_wakeup(m)) {
2386 			vm_page_spin_unlock(m);
2387 			wakeup(m);
2388 		} else {
2389 			vm_page_spin_unlock(m);
2390 		}
2391 		return(0);
2392 	}
2393 	vm_page_spin_unlock(m);
2394 
2395 	/*
2396 	 * We can probably free the page.
2397 	 *
2398 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2399 	 * not be freed by this function.    We have to re-test the
2400 	 * dirty bit after cleaning out the pmaps.
2401 	 */
2402 	vm_page_test_dirty(m);
2403 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2404 		vm_page_wakeup(m);
2405 		return(0);
2406 	}
2407 	vm_page_protect(m, VM_PROT_NONE);
2408 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2409 		vm_page_wakeup(m);
2410 		return(0);
2411 	}
2412 	vm_page_free(m);
2413 	return(1);
2414 }
2415 
2416 /*
2417  * vm_page_cache
2418  *
2419  * Put the specified page onto the page cache queue (if appropriate).
2420  *
2421  * The page must be busy, and this routine will release the busy and
2422  * possibly even free the page.
2423  */
2424 void
2425 vm_page_cache(vm_page_t m)
2426 {
2427 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2428 	    m->busy || m->wire_count || m->hold_count) {
2429 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2430 		vm_page_wakeup(m);
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * Already in the cache (and thus not mapped)
2436 	 */
2437 	if ((m->queue - m->pc) == PQ_CACHE) {
2438 		KKASSERT((m->flags & PG_MAPPED) == 0);
2439 		vm_page_wakeup(m);
2440 		return;
2441 	}
2442 
2443 	/*
2444 	 * Caller is required to test m->dirty, but note that the act of
2445 	 * removing the page from its maps can cause it to become dirty
2446 	 * on an SMP system due to another cpu running in usermode.
2447 	 */
2448 	if (m->dirty) {
2449 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2450 			(long)m->pindex);
2451 	}
2452 
2453 	/*
2454 	 * Remove all pmaps and indicate that the page is not
2455 	 * writeable or mapped.  Our vm_page_protect() call may
2456 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2457 	 * everything.
2458 	 */
2459 	vm_page_protect(m, VM_PROT_NONE);
2460 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2461 	    m->busy || m->wire_count || m->hold_count) {
2462 		vm_page_wakeup(m);
2463 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2464 		vm_page_deactivate(m);
2465 		vm_page_wakeup(m);
2466 	} else {
2467 		_vm_page_and_queue_spin_lock(m);
2468 		_vm_page_rem_queue_spinlocked(m);
2469 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2470 		_vm_page_queue_spin_unlock(m);
2471 		if (_vm_page_wakeup(m)) {
2472 			vm_page_spin_unlock(m);
2473 			wakeup(m);
2474 		} else {
2475 			vm_page_spin_unlock(m);
2476 		}
2477 		vm_page_free_wakeup();
2478 	}
2479 }
2480 
2481 /*
2482  * vm_page_dontneed()
2483  *
2484  * Cache, deactivate, or do nothing as appropriate.  This routine
2485  * is typically used by madvise() MADV_DONTNEED.
2486  *
2487  * Generally speaking we want to move the page into the cache so
2488  * it gets reused quickly.  However, this can result in a silly syndrome
2489  * due to the page recycling too quickly.  Small objects will not be
2490  * fully cached.  On the otherhand, if we move the page to the inactive
2491  * queue we wind up with a problem whereby very large objects
2492  * unnecessarily blow away our inactive and cache queues.
2493  *
2494  * The solution is to move the pages based on a fixed weighting.  We
2495  * either leave them alone, deactivate them, or move them to the cache,
2496  * where moving them to the cache has the highest weighting.
2497  * By forcing some pages into other queues we eventually force the
2498  * system to balance the queues, potentially recovering other unrelated
2499  * space from active.  The idea is to not force this to happen too
2500  * often.
2501  *
2502  * The page must be busied.
2503  */
2504 void
2505 vm_page_dontneed(vm_page_t m)
2506 {
2507 	static int dnweight;
2508 	int dnw;
2509 	int head;
2510 
2511 	dnw = ++dnweight;
2512 
2513 	/*
2514 	 * occassionally leave the page alone
2515 	 */
2516 	if ((dnw & 0x01F0) == 0 ||
2517 	    m->queue - m->pc == PQ_INACTIVE ||
2518 	    m->queue - m->pc == PQ_CACHE
2519 	) {
2520 		if (m->act_count >= ACT_INIT)
2521 			--m->act_count;
2522 		return;
2523 	}
2524 
2525 	/*
2526 	 * If vm_page_dontneed() is inactivating a page, it must clear
2527 	 * the referenced flag; otherwise the pagedaemon will see references
2528 	 * on the page in the inactive queue and reactivate it. Until the
2529 	 * page can move to the cache queue, madvise's job is not done.
2530 	 */
2531 	vm_page_flag_clear(m, PG_REFERENCED);
2532 	pmap_clear_reference(m);
2533 
2534 	if (m->dirty == 0)
2535 		vm_page_test_dirty(m);
2536 
2537 	if (m->dirty || (dnw & 0x0070) == 0) {
2538 		/*
2539 		 * Deactivate the page 3 times out of 32.
2540 		 */
2541 		head = 0;
2542 	} else {
2543 		/*
2544 		 * Cache the page 28 times out of every 32.  Note that
2545 		 * the page is deactivated instead of cached, but placed
2546 		 * at the head of the queue instead of the tail.
2547 		 */
2548 		head = 1;
2549 	}
2550 	vm_page_spin_lock(m);
2551 	_vm_page_deactivate_locked(m, head);
2552 	vm_page_spin_unlock(m);
2553 }
2554 
2555 /*
2556  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2557  * is almost like PG_BUSY except that it allows certain compatible operations
2558  * to occur on the page while it is busy.  For example, a page undergoing a
2559  * write can still be mapped read-only.
2560  *
2561  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2562  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2563  * busy bit is cleared.
2564  */
2565 void
2566 vm_page_io_start(vm_page_t m)
2567 {
2568         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2569         atomic_add_char(&m->busy, 1);
2570 	vm_page_flag_set(m, PG_SBUSY);
2571 }
2572 
2573 void
2574 vm_page_io_finish(vm_page_t m)
2575 {
2576         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2577         atomic_subtract_char(&m->busy, 1);
2578 	if (m->busy == 0)
2579 		vm_page_flag_clear(m, PG_SBUSY);
2580 }
2581 
2582 /*
2583  * Indicate that a clean VM page requires a filesystem commit and cannot
2584  * be reused.  Used by tmpfs.
2585  */
2586 void
2587 vm_page_need_commit(vm_page_t m)
2588 {
2589 	vm_page_flag_set(m, PG_NEED_COMMIT);
2590 	vm_object_set_writeable_dirty(m->object);
2591 }
2592 
2593 void
2594 vm_page_clear_commit(vm_page_t m)
2595 {
2596 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2597 }
2598 
2599 /*
2600  * Grab a page, blocking if it is busy and allocating a page if necessary.
2601  * A busy page is returned or NULL.  The page may or may not be valid and
2602  * might not be on a queue (the caller is responsible for the disposition of
2603  * the page).
2604  *
2605  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2606  * page will be zero'd and marked valid.
2607  *
2608  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2609  * valid even if it already exists.
2610  *
2611  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2612  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2613  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2614  *
2615  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2616  * always returned if we had blocked.
2617  *
2618  * This routine may not be called from an interrupt.
2619  *
2620  * PG_ZERO is *ALWAYS* cleared by this routine.
2621  *
2622  * No other requirements.
2623  */
2624 vm_page_t
2625 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2626 {
2627 	vm_page_t m;
2628 	int error;
2629 
2630 	KKASSERT(allocflags &
2631 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2632 	vm_object_hold(object);
2633 	for (;;) {
2634 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2635 		if (error) {
2636 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2637 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2638 				m = NULL;
2639 				break;
2640 			}
2641 			/* retry */
2642 		} else if (m == NULL) {
2643 			if (allocflags & VM_ALLOC_RETRY)
2644 				allocflags |= VM_ALLOC_NULL_OK;
2645 			m = vm_page_alloc(object, pindex,
2646 					  allocflags & ~VM_ALLOC_RETRY);
2647 			if (m)
2648 				break;
2649 			vm_wait(0);
2650 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2651 				goto failed;
2652 		} else {
2653 			/* m found */
2654 			break;
2655 		}
2656 	}
2657 
2658 	/*
2659 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2660 	 *
2661 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2662 	 * valid even if already valid.
2663 	 */
2664 	if (m->valid == 0) {
2665 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2666 			if ((m->flags & PG_ZERO) == 0)
2667 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2668 			m->valid = VM_PAGE_BITS_ALL;
2669 		}
2670 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2671 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2672 		m->valid = VM_PAGE_BITS_ALL;
2673 	}
2674 	vm_page_flag_clear(m, PG_ZERO);
2675 failed:
2676 	vm_object_drop(object);
2677 	return(m);
2678 }
2679 
2680 /*
2681  * Mapping function for valid bits or for dirty bits in
2682  * a page.  May not block.
2683  *
2684  * Inputs are required to range within a page.
2685  *
2686  * No requirements.
2687  * Non blocking.
2688  */
2689 int
2690 vm_page_bits(int base, int size)
2691 {
2692 	int first_bit;
2693 	int last_bit;
2694 
2695 	KASSERT(
2696 	    base + size <= PAGE_SIZE,
2697 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2698 	);
2699 
2700 	if (size == 0)		/* handle degenerate case */
2701 		return(0);
2702 
2703 	first_bit = base >> DEV_BSHIFT;
2704 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2705 
2706 	return ((2 << last_bit) - (1 << first_bit));
2707 }
2708 
2709 /*
2710  * Sets portions of a page valid and clean.  The arguments are expected
2711  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2712  * of any partial chunks touched by the range.  The invalid portion of
2713  * such chunks will be zero'd.
2714  *
2715  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2716  *	 align base to DEV_BSIZE so as not to mark clean a partially
2717  *	 truncated device block.  Otherwise the dirty page status might be
2718  *	 lost.
2719  *
2720  * This routine may not block.
2721  *
2722  * (base + size) must be less then or equal to PAGE_SIZE.
2723  */
2724 static void
2725 _vm_page_zero_valid(vm_page_t m, int base, int size)
2726 {
2727 	int frag;
2728 	int endoff;
2729 
2730 	if (size == 0)	/* handle degenerate case */
2731 		return;
2732 
2733 	/*
2734 	 * If the base is not DEV_BSIZE aligned and the valid
2735 	 * bit is clear, we have to zero out a portion of the
2736 	 * first block.
2737 	 */
2738 
2739 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2740 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2741 	) {
2742 		pmap_zero_page_area(
2743 		    VM_PAGE_TO_PHYS(m),
2744 		    frag,
2745 		    base - frag
2746 		);
2747 	}
2748 
2749 	/*
2750 	 * If the ending offset is not DEV_BSIZE aligned and the
2751 	 * valid bit is clear, we have to zero out a portion of
2752 	 * the last block.
2753 	 */
2754 
2755 	endoff = base + size;
2756 
2757 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2758 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2759 	) {
2760 		pmap_zero_page_area(
2761 		    VM_PAGE_TO_PHYS(m),
2762 		    endoff,
2763 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2764 		);
2765 	}
2766 }
2767 
2768 /*
2769  * Set valid, clear dirty bits.  If validating the entire
2770  * page we can safely clear the pmap modify bit.  We also
2771  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2772  * takes a write fault on a MAP_NOSYNC memory area the flag will
2773  * be set again.
2774  *
2775  * We set valid bits inclusive of any overlap, but we can only
2776  * clear dirty bits for DEV_BSIZE chunks that are fully within
2777  * the range.
2778  *
2779  * Page must be busied?
2780  * No other requirements.
2781  */
2782 void
2783 vm_page_set_valid(vm_page_t m, int base, int size)
2784 {
2785 	_vm_page_zero_valid(m, base, size);
2786 	m->valid |= vm_page_bits(base, size);
2787 }
2788 
2789 
2790 /*
2791  * Set valid bits and clear dirty bits.
2792  *
2793  * NOTE: This function does not clear the pmap modified bit.
2794  *	 Also note that e.g. NFS may use a byte-granular base
2795  *	 and size.
2796  *
2797  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2798  *	    this without necessarily busying the page (via bdwrite()).
2799  *	    So for now vm_token must also be held.
2800  *
2801  * No other requirements.
2802  */
2803 void
2804 vm_page_set_validclean(vm_page_t m, int base, int size)
2805 {
2806 	int pagebits;
2807 
2808 	_vm_page_zero_valid(m, base, size);
2809 	pagebits = vm_page_bits(base, size);
2810 	m->valid |= pagebits;
2811 	m->dirty &= ~pagebits;
2812 	if (base == 0 && size == PAGE_SIZE) {
2813 		/*pmap_clear_modify(m);*/
2814 		vm_page_flag_clear(m, PG_NOSYNC);
2815 	}
2816 }
2817 
2818 /*
2819  * Set valid & dirty.  Used by buwrite()
2820  *
2821  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2822  *	    call this function in buwrite() so for now vm_token must
2823  *	    be held.
2824  *
2825  * No other requirements.
2826  */
2827 void
2828 vm_page_set_validdirty(vm_page_t m, int base, int size)
2829 {
2830 	int pagebits;
2831 
2832 	pagebits = vm_page_bits(base, size);
2833 	m->valid |= pagebits;
2834 	m->dirty |= pagebits;
2835 	if (m->object)
2836 	       vm_object_set_writeable_dirty(m->object);
2837 }
2838 
2839 /*
2840  * Clear dirty bits.
2841  *
2842  * NOTE: This function does not clear the pmap modified bit.
2843  *	 Also note that e.g. NFS may use a byte-granular base
2844  *	 and size.
2845  *
2846  * Page must be busied?
2847  * No other requirements.
2848  */
2849 void
2850 vm_page_clear_dirty(vm_page_t m, int base, int size)
2851 {
2852 	m->dirty &= ~vm_page_bits(base, size);
2853 	if (base == 0 && size == PAGE_SIZE) {
2854 		/*pmap_clear_modify(m);*/
2855 		vm_page_flag_clear(m, PG_NOSYNC);
2856 	}
2857 }
2858 
2859 /*
2860  * Make the page all-dirty.
2861  *
2862  * Also make sure the related object and vnode reflect the fact that the
2863  * object may now contain a dirty page.
2864  *
2865  * Page must be busied?
2866  * No other requirements.
2867  */
2868 void
2869 vm_page_dirty(vm_page_t m)
2870 {
2871 #ifdef INVARIANTS
2872         int pqtype = m->queue - m->pc;
2873 #endif
2874         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2875                 ("vm_page_dirty: page in free/cache queue!"));
2876 	if (m->dirty != VM_PAGE_BITS_ALL) {
2877 		m->dirty = VM_PAGE_BITS_ALL;
2878 		if (m->object)
2879 			vm_object_set_writeable_dirty(m->object);
2880 	}
2881 }
2882 
2883 /*
2884  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2885  * valid and dirty bits for the effected areas are cleared.
2886  *
2887  * Page must be busied?
2888  * Does not block.
2889  * No other requirements.
2890  */
2891 void
2892 vm_page_set_invalid(vm_page_t m, int base, int size)
2893 {
2894 	int bits;
2895 
2896 	bits = vm_page_bits(base, size);
2897 	m->valid &= ~bits;
2898 	m->dirty &= ~bits;
2899 	m->object->generation++;
2900 }
2901 
2902 /*
2903  * The kernel assumes that the invalid portions of a page contain
2904  * garbage, but such pages can be mapped into memory by user code.
2905  * When this occurs, we must zero out the non-valid portions of the
2906  * page so user code sees what it expects.
2907  *
2908  * Pages are most often semi-valid when the end of a file is mapped
2909  * into memory and the file's size is not page aligned.
2910  *
2911  * Page must be busied?
2912  * No other requirements.
2913  */
2914 void
2915 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2916 {
2917 	int b;
2918 	int i;
2919 
2920 	/*
2921 	 * Scan the valid bits looking for invalid sections that
2922 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2923 	 * valid bit may be set ) have already been zerod by
2924 	 * vm_page_set_validclean().
2925 	 */
2926 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2927 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2928 		    (m->valid & (1 << i))
2929 		) {
2930 			if (i > b) {
2931 				pmap_zero_page_area(
2932 				    VM_PAGE_TO_PHYS(m),
2933 				    b << DEV_BSHIFT,
2934 				    (i - b) << DEV_BSHIFT
2935 				);
2936 			}
2937 			b = i + 1;
2938 		}
2939 	}
2940 
2941 	/*
2942 	 * setvalid is TRUE when we can safely set the zero'd areas
2943 	 * as being valid.  We can do this if there are no cache consistency
2944 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2945 	 */
2946 	if (setvalid)
2947 		m->valid = VM_PAGE_BITS_ALL;
2948 }
2949 
2950 /*
2951  * Is a (partial) page valid?  Note that the case where size == 0
2952  * will return FALSE in the degenerate case where the page is entirely
2953  * invalid, and TRUE otherwise.
2954  *
2955  * Does not block.
2956  * No other requirements.
2957  */
2958 int
2959 vm_page_is_valid(vm_page_t m, int base, int size)
2960 {
2961 	int bits = vm_page_bits(base, size);
2962 
2963 	if (m->valid && ((m->valid & bits) == bits))
2964 		return 1;
2965 	else
2966 		return 0;
2967 }
2968 
2969 /*
2970  * update dirty bits from pmap/mmu.  May not block.
2971  *
2972  * Caller must hold the page busy
2973  */
2974 void
2975 vm_page_test_dirty(vm_page_t m)
2976 {
2977 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2978 		vm_page_dirty(m);
2979 	}
2980 }
2981 
2982 /*
2983  * Register an action, associating it with its vm_page
2984  */
2985 void
2986 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2987 {
2988 	struct vm_page_action_list *list;
2989 	int hv;
2990 
2991 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2992 	list = &action_list[hv];
2993 
2994 	lwkt_gettoken(&vm_token);
2995 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2996 	action->event = event;
2997 	LIST_INSERT_HEAD(list, action, entry);
2998 	lwkt_reltoken(&vm_token);
2999 }
3000 
3001 /*
3002  * Unregister an action, disassociating it from its related vm_page
3003  */
3004 void
3005 vm_page_unregister_action(vm_page_action_t action)
3006 {
3007 	struct vm_page_action_list *list;
3008 	int hv;
3009 
3010 	lwkt_gettoken(&vm_token);
3011 	if (action->event != VMEVENT_NONE) {
3012 		action->event = VMEVENT_NONE;
3013 		LIST_REMOVE(action, entry);
3014 
3015 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3016 		list = &action_list[hv];
3017 		if (LIST_EMPTY(list))
3018 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
3019 	}
3020 	lwkt_reltoken(&vm_token);
3021 }
3022 
3023 /*
3024  * Issue an event on a VM page.  Corresponding action structures are
3025  * removed from the page's list and called.
3026  *
3027  * If the vm_page has no more pending action events we clear its
3028  * PG_ACTIONLIST flag.
3029  */
3030 void
3031 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3032 {
3033 	struct vm_page_action_list *list;
3034 	struct vm_page_action *scan;
3035 	struct vm_page_action *next;
3036 	int hv;
3037 	int all;
3038 
3039 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3040 	list = &action_list[hv];
3041 	all = 1;
3042 
3043 	lwkt_gettoken(&vm_token);
3044 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3045 		if (scan->m == m) {
3046 			if (scan->event == event) {
3047 				scan->event = VMEVENT_NONE;
3048 				LIST_REMOVE(scan, entry);
3049 				scan->func(m, scan);
3050 				/* XXX */
3051 			} else {
3052 				all = 0;
3053 			}
3054 		}
3055 	}
3056 	if (all)
3057 		vm_page_flag_clear(m, PG_ACTIONLIST);
3058 	lwkt_reltoken(&vm_token);
3059 }
3060 
3061 #include "opt_ddb.h"
3062 #ifdef DDB
3063 #include <sys/kernel.h>
3064 
3065 #include <ddb/ddb.h>
3066 
3067 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3068 {
3069 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3070 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3071 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3072 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3073 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3074 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3075 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3076 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3077 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3078 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3079 }
3080 
3081 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3082 {
3083 	int i;
3084 	db_printf("PQ_FREE:");
3085 	for(i=0;i<PQ_L2_SIZE;i++) {
3086 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3087 	}
3088 	db_printf("\n");
3089 
3090 	db_printf("PQ_CACHE:");
3091 	for(i=0;i<PQ_L2_SIZE;i++) {
3092 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3093 	}
3094 	db_printf("\n");
3095 
3096 	db_printf("PQ_ACTIVE:");
3097 	for(i=0;i<PQ_L2_SIZE;i++) {
3098 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3099 	}
3100 	db_printf("\n");
3101 
3102 	db_printf("PQ_INACTIVE:");
3103 	for(i=0;i<PQ_L2_SIZE;i++) {
3104 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3105 	}
3106 	db_printf("\n");
3107 }
3108 #endif /* DDB */
3109