1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 34 */ 35 36 /* 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 /* 63 * Resident memory management module. The module manipulates 'VM pages'. 64 * A VM page is the core building block for memory management. 65 */ 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/proc.h> 71 #include <sys/vmmeter.h> 72 #include <sys/vnode.h> 73 #include <sys/kernel.h> 74 #include <sys/alist.h> 75 #include <sys/sysctl.h> 76 #include <sys/cpu_topology.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <sys/lock.h> 81 #include <vm/vm_kern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_pager.h> 88 #include <vm/vm_extern.h> 89 #include <vm/swap_pager.h> 90 91 #include <machine/inttypes.h> 92 #include <machine/md_var.h> 93 #include <machine/specialreg.h> 94 95 #include <vm/vm_page2.h> 96 #include <sys/spinlock2.h> 97 98 /* 99 * Action hash for user umtx support. 100 */ 101 #define VMACTION_HSIZE 256 102 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 103 104 /* 105 * SET - Minimum required set associative size, must be a power of 2. We 106 * want this to match or exceed the set-associativeness of the cpu. 107 * 108 * GRP - A larger set that allows bleed-over into the domains of other 109 * nearby cpus. Also must be a power of 2. Used by the page zeroing 110 * code to smooth things out a bit. 111 */ 112 #define PQ_SET_ASSOC 16 113 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1) 114 115 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2) 116 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1) 117 118 static void vm_page_queue_init(void); 119 static void vm_page_free_wakeup(void); 120 static vm_page_t vm_page_select_cache(u_short pg_color); 121 static vm_page_t _vm_page_list_find2(int basequeue, int index); 122 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 123 124 /* 125 * Array of tailq lists 126 */ 127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 128 129 LIST_HEAD(vm_page_action_list, vm_page_action); 130 131 struct vm_page_action_hash { 132 struct vm_page_action_list list; 133 struct lock lk; 134 } __cachealign; 135 136 struct vm_page_action_hash action_hash[VMACTION_HSIZE]; 137 static volatile int vm_pages_waiting; 138 139 static struct alist vm_contig_alist; 140 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 141 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin"); 142 143 static u_long vm_dma_reserved = 0; 144 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 145 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 146 "Memory reserved for DMA"); 147 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 148 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 149 150 static int vm_contig_verbose = 0; 151 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 152 153 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 154 vm_pindex_t, pindex); 155 156 static void 157 vm_page_queue_init(void) 158 { 159 int i; 160 161 for (i = 0; i < PQ_L2_SIZE; i++) 162 vm_page_queues[PQ_FREE+i].cnt_offset = 163 offsetof(struct vmstats, v_free_count); 164 for (i = 0; i < PQ_L2_SIZE; i++) 165 vm_page_queues[PQ_CACHE+i].cnt_offset = 166 offsetof(struct vmstats, v_cache_count); 167 for (i = 0; i < PQ_L2_SIZE; i++) 168 vm_page_queues[PQ_INACTIVE+i].cnt_offset = 169 offsetof(struct vmstats, v_inactive_count); 170 for (i = 0; i < PQ_L2_SIZE; i++) 171 vm_page_queues[PQ_ACTIVE+i].cnt_offset = 172 offsetof(struct vmstats, v_active_count); 173 for (i = 0; i < PQ_L2_SIZE; i++) 174 vm_page_queues[PQ_HOLD+i].cnt_offset = 175 offsetof(struct vmstats, v_active_count); 176 /* PQ_NONE has no queue */ 177 178 for (i = 0; i < PQ_COUNT; i++) { 179 TAILQ_INIT(&vm_page_queues[i].pl); 180 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init"); 181 } 182 183 /* 184 * NOTE: Action lock might recurse due to callback, so allow 185 * recursion. 186 */ 187 for (i = 0; i < VMACTION_HSIZE; i++) { 188 LIST_INIT(&action_hash[i].list); 189 lockinit(&action_hash[i].lk, "actlk", 0, LK_CANRECURSE); 190 } 191 } 192 193 /* 194 * note: place in initialized data section? Is this necessary? 195 */ 196 long first_page = 0; 197 int vm_page_array_size = 0; 198 vm_page_t vm_page_array = NULL; 199 vm_paddr_t vm_low_phys_reserved; 200 201 /* 202 * (low level boot) 203 * 204 * Sets the page size, perhaps based upon the memory size. 205 * Must be called before any use of page-size dependent functions. 206 */ 207 void 208 vm_set_page_size(void) 209 { 210 if (vmstats.v_page_size == 0) 211 vmstats.v_page_size = PAGE_SIZE; 212 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 213 panic("vm_set_page_size: page size not a power of two"); 214 } 215 216 /* 217 * (low level boot) 218 * 219 * Add a new page to the freelist for use by the system. New pages 220 * are added to both the head and tail of the associated free page 221 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 222 * requests pull 'recent' adds (higher physical addresses) first. 223 * 224 * Beware that the page zeroing daemon will also be running soon after 225 * boot, moving pages from the head to the tail of the PQ_FREE queues. 226 * 227 * Must be called in a critical section. 228 */ 229 static void 230 vm_add_new_page(vm_paddr_t pa) 231 { 232 struct vpgqueues *vpq; 233 vm_page_t m; 234 235 m = PHYS_TO_VM_PAGE(pa); 236 m->phys_addr = pa; 237 m->flags = 0; 238 m->pat_mode = PAT_WRITE_BACK; 239 m->pc = (pa >> PAGE_SHIFT); 240 241 /* 242 * Twist for cpu localization in addition to page coloring, so 243 * different cpus selecting by m->queue get different page colors. 244 */ 245 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE); 246 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)); 247 m->pc &= PQ_L2_MASK; 248 249 /* 250 * Reserve a certain number of contiguous low memory pages for 251 * contigmalloc() to use. 252 */ 253 if (pa < vm_low_phys_reserved) { 254 atomic_add_int(&vmstats.v_page_count, 1); 255 atomic_add_int(&vmstats.v_dma_pages, 1); 256 m->queue = PQ_NONE; 257 m->wire_count = 1; 258 atomic_add_int(&vmstats.v_wire_count, 1); 259 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 260 return; 261 } 262 263 /* 264 * General page 265 */ 266 m->queue = m->pc + PQ_FREE; 267 KKASSERT(m->dirty == 0); 268 269 atomic_add_int(&vmstats.v_page_count, 1); 270 atomic_add_int(&vmstats.v_free_count, 1); 271 vpq = &vm_page_queues[m->queue]; 272 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 273 ++vpq->lcnt; 274 } 275 276 /* 277 * (low level boot) 278 * 279 * Initializes the resident memory module. 280 * 281 * Preallocates memory for critical VM structures and arrays prior to 282 * kernel_map becoming available. 283 * 284 * Memory is allocated from (virtual2_start, virtual2_end) if available, 285 * otherwise memory is allocated from (virtual_start, virtual_end). 286 * 287 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 288 * large enough to hold vm_page_array & other structures for machines with 289 * large amounts of ram, so we want to use virtual2* when available. 290 */ 291 void 292 vm_page_startup(void) 293 { 294 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 295 vm_offset_t mapped; 296 vm_size_t npages; 297 vm_paddr_t page_range; 298 vm_paddr_t new_end; 299 int i; 300 vm_paddr_t pa; 301 vm_paddr_t last_pa; 302 vm_paddr_t end; 303 vm_paddr_t biggestone, biggestsize; 304 vm_paddr_t total; 305 vm_page_t m; 306 307 total = 0; 308 biggestsize = 0; 309 biggestone = 0; 310 vaddr = round_page(vaddr); 311 312 /* 313 * Make sure ranges are page-aligned. 314 */ 315 for (i = 0; phys_avail[i].phys_end; ++i) { 316 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg); 317 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end); 318 if (phys_avail[i].phys_end < phys_avail[i].phys_beg) 319 phys_avail[i].phys_end = phys_avail[i].phys_beg; 320 } 321 322 /* 323 * Locate largest block 324 */ 325 for (i = 0; phys_avail[i].phys_end; ++i) { 326 vm_paddr_t size = phys_avail[i].phys_end - 327 phys_avail[i].phys_beg; 328 329 if (size > biggestsize) { 330 biggestone = i; 331 biggestsize = size; 332 } 333 total += size; 334 } 335 --i; /* adjust to last entry for use down below */ 336 337 end = phys_avail[biggestone].phys_end; 338 end = trunc_page(end); 339 340 /* 341 * Initialize the queue headers for the free queue, the active queue 342 * and the inactive queue. 343 */ 344 vm_page_queue_init(); 345 346 #if !defined(_KERNEL_VIRTUAL) 347 /* 348 * VKERNELs don't support minidumps and as such don't need 349 * vm_page_dump 350 * 351 * Allocate a bitmap to indicate that a random physical page 352 * needs to be included in a minidump. 353 * 354 * The amd64 port needs this to indicate which direct map pages 355 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 356 * 357 * However, i386 still needs this workspace internally within the 358 * minidump code. In theory, they are not needed on i386, but are 359 * included should the sf_buf code decide to use them. 360 */ 361 page_range = phys_avail[i].phys_end / PAGE_SIZE; 362 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 363 end -= vm_page_dump_size; 364 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 365 VM_PROT_READ | VM_PROT_WRITE); 366 bzero((void *)vm_page_dump, vm_page_dump_size); 367 #endif 368 /* 369 * Compute the number of pages of memory that will be available for 370 * use (taking into account the overhead of a page structure per 371 * page). 372 */ 373 first_page = phys_avail[0].phys_beg / PAGE_SIZE; 374 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page; 375 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 376 377 #ifndef _KERNEL_VIRTUAL 378 /* 379 * (only applies to real kernels) 380 * 381 * Reserve a large amount of low memory for potential 32-bit DMA 382 * space allocations. Once device initialization is complete we 383 * release most of it, but keep (vm_dma_reserved) memory reserved 384 * for later use. Typically for X / graphics. Through trial and 385 * error we find that GPUs usually requires ~60-100MB or so. 386 * 387 * By default, 128M is left in reserve on machines with 2G+ of ram. 388 */ 389 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 390 if (vm_low_phys_reserved > total / 4) 391 vm_low_phys_reserved = total / 4; 392 if (vm_dma_reserved == 0) { 393 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */ 394 if (vm_dma_reserved > total / 16) 395 vm_dma_reserved = total / 16; 396 } 397 #endif 398 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 399 ALIST_RECORDS_65536); 400 401 /* 402 * Initialize the mem entry structures now, and put them in the free 403 * queue. 404 */ 405 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 406 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 407 vm_page_array = (vm_page_t)mapped; 408 409 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 410 /* 411 * since pmap_map on amd64 returns stuff out of a direct-map region, 412 * we have to manually add these pages to the minidump tracking so 413 * that they can be dumped, including the vm_page_array. 414 */ 415 for (pa = new_end; 416 pa < phys_avail[biggestone].phys_end; 417 pa += PAGE_SIZE) { 418 dump_add_page(pa); 419 } 420 #endif 421 422 /* 423 * Clear all of the page structures, run basic initialization so 424 * PHYS_TO_VM_PAGE() operates properly even on pages not in the 425 * map. 426 */ 427 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 428 vm_page_array_size = page_range; 429 430 m = &vm_page_array[0]; 431 pa = ptoa(first_page); 432 for (i = 0; i < page_range; ++i) { 433 spin_init(&m->spin, "vm_page"); 434 m->phys_addr = pa; 435 pa += PAGE_SIZE; 436 ++m; 437 } 438 439 /* 440 * Construct the free queue(s) in ascending order (by physical 441 * address) so that the first 16MB of physical memory is allocated 442 * last rather than first. On large-memory machines, this avoids 443 * the exhaustion of low physical memory before isa_dmainit has run. 444 */ 445 vmstats.v_page_count = 0; 446 vmstats.v_free_count = 0; 447 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) { 448 pa = phys_avail[i].phys_beg; 449 if (i == biggestone) 450 last_pa = new_end; 451 else 452 last_pa = phys_avail[i].phys_end; 453 while (pa < last_pa && npages-- > 0) { 454 vm_add_new_page(pa); 455 pa += PAGE_SIZE; 456 } 457 } 458 if (virtual2_start) 459 virtual2_start = vaddr; 460 else 461 virtual_start = vaddr; 462 mycpu->gd_vmstats = vmstats; 463 } 464 465 /* 466 * Reorganize VM pages based on numa data. May be called as many times as 467 * necessary. Will reorganize the vm_page_t page color and related queue(s) 468 * to allow vm_page_alloc() to choose pages based on socket affinity. 469 * 470 * NOTE: This function is only called while we are still in UP mode, so 471 * we only need a critical section to protect the queues (which 472 * saves a lot of time, there are likely a ton of pages). 473 */ 474 void 475 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid) 476 { 477 vm_paddr_t scan_beg; 478 vm_paddr_t scan_end; 479 vm_paddr_t ran_end; 480 struct vpgqueues *vpq; 481 vm_page_t m; 482 vm_page_t mend; 483 int i; 484 int socket_mod; 485 int socket_value; 486 487 /* 488 * Check if no physical information, or there was only one socket 489 * (so don't waste time doing nothing!). 490 */ 491 if (cpu_topology_phys_ids <= 1 || 492 cpu_topology_core_ids == 0) { 493 return; 494 } 495 496 /* 497 * Setup for our iteration. Note that ACPI may iterate CPU 498 * sockets starting at 0 or 1 or some other number. The 499 * cpu_topology code mod's it against the socket count. 500 */ 501 ran_end = ran_beg + bytes; 502 physid %= cpu_topology_phys_ids; 503 504 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids; 505 socket_value = physid * socket_mod; 506 mend = &vm_page_array[vm_page_array_size]; 507 508 crit_enter(); 509 510 /* 511 * Adjust vm_page->pc and requeue all affected pages. The 512 * allocator will then be able to localize memory allocations 513 * to some degree. 514 */ 515 for (i = 0; phys_avail[i].phys_end; ++i) { 516 scan_beg = phys_avail[i].phys_beg; 517 scan_end = phys_avail[i].phys_end; 518 if (scan_end <= ran_beg) 519 continue; 520 if (scan_beg >= ran_end) 521 continue; 522 if (scan_beg < ran_beg) 523 scan_beg = ran_beg; 524 if (scan_end > ran_end) 525 scan_end = ran_end; 526 if (atop(scan_end) > first_page + vm_page_array_size) 527 scan_end = ptoa(first_page + vm_page_array_size); 528 529 m = PHYS_TO_VM_PAGE(scan_beg); 530 while (scan_beg < scan_end) { 531 KKASSERT(m < mend); 532 if (m->queue != PQ_NONE) { 533 vpq = &vm_page_queues[m->queue]; 534 TAILQ_REMOVE(&vpq->pl, m, pageq); 535 --vpq->lcnt; 536 /* queue doesn't change, no need to adj cnt */ 537 m->queue -= m->pc; 538 m->pc %= socket_mod; 539 m->pc += socket_value; 540 m->pc &= PQ_L2_MASK; 541 m->queue += m->pc; 542 vpq = &vm_page_queues[m->queue]; 543 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 544 ++vpq->lcnt; 545 /* queue doesn't change, no need to adj cnt */ 546 } else { 547 m->pc %= socket_mod; 548 m->pc += socket_value; 549 m->pc &= PQ_L2_MASK; 550 } 551 scan_beg += PAGE_SIZE; 552 ++m; 553 } 554 } 555 crit_exit(); 556 } 557 558 /* 559 * We tended to reserve a ton of memory for contigmalloc(). Now that most 560 * drivers have initialized we want to return most the remaining free 561 * reserve back to the VM page queues so they can be used for normal 562 * allocations. 563 * 564 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 565 */ 566 static void 567 vm_page_startup_finish(void *dummy __unused) 568 { 569 alist_blk_t blk; 570 alist_blk_t rblk; 571 alist_blk_t count; 572 alist_blk_t xcount; 573 alist_blk_t bfree; 574 vm_page_t m; 575 576 spin_lock(&vm_contig_spin); 577 for (;;) { 578 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 579 if (bfree <= vm_dma_reserved / PAGE_SIZE) 580 break; 581 if (count == 0) 582 break; 583 584 /* 585 * Figure out how much of the initial reserve we have to 586 * free in order to reach our target. 587 */ 588 bfree -= vm_dma_reserved / PAGE_SIZE; 589 if (count > bfree) { 590 blk += count - bfree; 591 count = bfree; 592 } 593 594 /* 595 * Calculate the nearest power of 2 <= count. 596 */ 597 for (xcount = 1; xcount <= count; xcount <<= 1) 598 ; 599 xcount >>= 1; 600 blk += count - xcount; 601 count = xcount; 602 603 /* 604 * Allocate the pages from the alist, then free them to 605 * the normal VM page queues. 606 * 607 * Pages allocated from the alist are wired. We have to 608 * busy, unwire, and free them. We must also adjust 609 * vm_low_phys_reserved before freeing any pages to prevent 610 * confusion. 611 */ 612 rblk = alist_alloc(&vm_contig_alist, blk, count); 613 if (rblk != blk) { 614 kprintf("vm_page_startup_finish: Unable to return " 615 "dma space @0x%08x/%d -> 0x%08x\n", 616 blk, count, rblk); 617 break; 618 } 619 atomic_add_int(&vmstats.v_dma_pages, -count); 620 spin_unlock(&vm_contig_spin); 621 622 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 623 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 624 while (count) { 625 vm_page_busy_wait(m, FALSE, "cpgfr"); 626 vm_page_unwire(m, 0); 627 vm_page_free(m); 628 --count; 629 ++m; 630 } 631 spin_lock(&vm_contig_spin); 632 } 633 spin_unlock(&vm_contig_spin); 634 635 /* 636 * Print out how much DMA space drivers have already allocated and 637 * how much is left over. 638 */ 639 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 640 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 641 (PAGE_SIZE / 1024), 642 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 643 } 644 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 645 vm_page_startup_finish, NULL); 646 647 648 /* 649 * Scan comparison function for Red-Black tree scans. An inclusive 650 * (start,end) is expected. Other fields are not used. 651 */ 652 int 653 rb_vm_page_scancmp(struct vm_page *p, void *data) 654 { 655 struct rb_vm_page_scan_info *info = data; 656 657 if (p->pindex < info->start_pindex) 658 return(-1); 659 if (p->pindex > info->end_pindex) 660 return(1); 661 return(0); 662 } 663 664 int 665 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 666 { 667 if (p1->pindex < p2->pindex) 668 return(-1); 669 if (p1->pindex > p2->pindex) 670 return(1); 671 return(0); 672 } 673 674 void 675 vm_page_init(vm_page_t m) 676 { 677 /* do nothing for now. Called from pmap_page_init() */ 678 } 679 680 /* 681 * Each page queue has its own spin lock, which is fairly optimal for 682 * allocating and freeing pages at least. 683 * 684 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 685 * queue spinlock via this function. Also note that m->queue cannot change 686 * unless both the page and queue are locked. 687 */ 688 static __inline 689 void 690 _vm_page_queue_spin_lock(vm_page_t m) 691 { 692 u_short queue; 693 694 queue = m->queue; 695 if (queue != PQ_NONE) { 696 spin_lock(&vm_page_queues[queue].spin); 697 KKASSERT(queue == m->queue); 698 } 699 } 700 701 static __inline 702 void 703 _vm_page_queue_spin_unlock(vm_page_t m) 704 { 705 u_short queue; 706 707 queue = m->queue; 708 cpu_ccfence(); 709 if (queue != PQ_NONE) 710 spin_unlock(&vm_page_queues[queue].spin); 711 } 712 713 static __inline 714 void 715 _vm_page_queues_spin_lock(u_short queue) 716 { 717 cpu_ccfence(); 718 if (queue != PQ_NONE) 719 spin_lock(&vm_page_queues[queue].spin); 720 } 721 722 723 static __inline 724 void 725 _vm_page_queues_spin_unlock(u_short queue) 726 { 727 cpu_ccfence(); 728 if (queue != PQ_NONE) 729 spin_unlock(&vm_page_queues[queue].spin); 730 } 731 732 void 733 vm_page_queue_spin_lock(vm_page_t m) 734 { 735 _vm_page_queue_spin_lock(m); 736 } 737 738 void 739 vm_page_queues_spin_lock(u_short queue) 740 { 741 _vm_page_queues_spin_lock(queue); 742 } 743 744 void 745 vm_page_queue_spin_unlock(vm_page_t m) 746 { 747 _vm_page_queue_spin_unlock(m); 748 } 749 750 void 751 vm_page_queues_spin_unlock(u_short queue) 752 { 753 _vm_page_queues_spin_unlock(queue); 754 } 755 756 /* 757 * This locks the specified vm_page and its queue in the proper order 758 * (page first, then queue). The queue may change so the caller must 759 * recheck on return. 760 */ 761 static __inline 762 void 763 _vm_page_and_queue_spin_lock(vm_page_t m) 764 { 765 vm_page_spin_lock(m); 766 _vm_page_queue_spin_lock(m); 767 } 768 769 static __inline 770 void 771 _vm_page_and_queue_spin_unlock(vm_page_t m) 772 { 773 _vm_page_queues_spin_unlock(m->queue); 774 vm_page_spin_unlock(m); 775 } 776 777 void 778 vm_page_and_queue_spin_unlock(vm_page_t m) 779 { 780 _vm_page_and_queue_spin_unlock(m); 781 } 782 783 void 784 vm_page_and_queue_spin_lock(vm_page_t m) 785 { 786 _vm_page_and_queue_spin_lock(m); 787 } 788 789 /* 790 * Helper function removes vm_page from its current queue. 791 * Returns the base queue the page used to be on. 792 * 793 * The vm_page and the queue must be spinlocked. 794 * This function will unlock the queue but leave the page spinlocked. 795 */ 796 static __inline u_short 797 _vm_page_rem_queue_spinlocked(vm_page_t m) 798 { 799 struct vpgqueues *pq; 800 u_short queue; 801 u_short oqueue; 802 int *cnt; 803 804 queue = m->queue; 805 if (queue != PQ_NONE) { 806 pq = &vm_page_queues[queue]; 807 TAILQ_REMOVE(&pq->pl, m, pageq); 808 809 /* 810 * Adjust our pcpu stats. In order for the nominal low-memory 811 * algorithms to work properly we don't let any pcpu stat get 812 * too negative before we force it to be rolled-up into the 813 * global stats. Otherwise our pageout and vm_wait tests 814 * will fail badly. 815 * 816 * The idea here is to reduce unnecessary SMP cache 817 * mastership changes in the global vmstats, which can be 818 * particularly bad in multi-socket systems. 819 */ 820 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset); 821 atomic_add_int(cnt, -1); 822 if (*cnt < -VMMETER_SLOP_COUNT) { 823 u_int copy = atomic_swap_int(cnt, 0); 824 cnt = (int *)((char *)&vmstats + pq->cnt_offset); 825 atomic_add_int(cnt, copy); 826 cnt = (int *)((char *)&mycpu->gd_vmstats + 827 pq->cnt_offset); 828 atomic_add_int(cnt, copy); 829 } 830 pq->lcnt--; 831 m->queue = PQ_NONE; 832 oqueue = queue; 833 queue -= m->pc; 834 vm_page_queues_spin_unlock(oqueue); /* intended */ 835 } 836 return queue; 837 } 838 839 /* 840 * Helper function places the vm_page on the specified queue. 841 * 842 * The vm_page must be spinlocked. 843 * This function will return with both the page and the queue locked. 844 */ 845 static __inline void 846 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 847 { 848 struct vpgqueues *pq; 849 u_int *cnt; 850 851 KKASSERT(m->queue == PQ_NONE); 852 853 if (queue != PQ_NONE) { 854 vm_page_queues_spin_lock(queue); 855 pq = &vm_page_queues[queue]; 856 ++pq->lcnt; 857 858 /* 859 * Adjust our pcpu stats. If a system entity really needs 860 * to incorporate the count it will call vmstats_rollup() 861 * to roll it all up into the global vmstats strufture. 862 */ 863 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset); 864 atomic_add_int(cnt, 1); 865 866 /* 867 * PQ_FREE is always handled LIFO style to try to provide 868 * cache-hot pages to programs. 869 */ 870 m->queue = queue; 871 if (queue - m->pc == PQ_FREE) { 872 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 873 } else if (athead) { 874 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 875 } else { 876 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 877 } 878 /* leave the queue spinlocked */ 879 } 880 } 881 882 /* 883 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 884 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 885 * did not. Only one sleep call will be made before returning. 886 * 887 * This function does NOT busy the page and on return the page is not 888 * guaranteed to be available. 889 */ 890 void 891 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 892 { 893 u_int32_t flags; 894 895 for (;;) { 896 flags = m->flags; 897 cpu_ccfence(); 898 899 if ((flags & PG_BUSY) == 0 && 900 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 901 break; 902 } 903 tsleep_interlock(m, 0); 904 if (atomic_cmpset_int(&m->flags, flags, 905 flags | PG_WANTED | PG_REFERENCED)) { 906 tsleep(m, PINTERLOCKED, msg, 0); 907 break; 908 } 909 } 910 } 911 912 /* 913 * This calculates and returns a page color given an optional VM object and 914 * either a pindex or an iterator. We attempt to return a cpu-localized 915 * pg_color that is still roughly 16-way set-associative. The CPU topology 916 * is used if it was probed. 917 * 918 * The caller may use the returned value to index into e.g. PQ_FREE when 919 * allocating a page in order to nominally obtain pages that are hopefully 920 * already localized to the requesting cpu. This function is not able to 921 * provide any sort of guarantee of this, but does its best to improve 922 * hardware cache management performance. 923 * 924 * WARNING! The caller must mask the returned value with PQ_L2_MASK. 925 */ 926 u_short 927 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex) 928 { 929 u_short pg_color; 930 int phys_id; 931 int core_id; 932 int object_pg_color; 933 934 phys_id = get_cpu_phys_id(cpuid); 935 core_id = get_cpu_core_id(cpuid); 936 object_pg_color = object ? object->pg_color : 0; 937 938 if (cpu_topology_phys_ids && cpu_topology_core_ids) { 939 int grpsize; 940 941 /* 942 * Break us down by socket and cpu 943 */ 944 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids; 945 pg_color += core_id * PQ_L2_SIZE / 946 (cpu_topology_core_ids * cpu_topology_phys_ids); 947 948 /* 949 * Calculate remaining component for object/queue color 950 */ 951 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids * 952 cpu_topology_phys_ids); 953 if (grpsize >= 8) { 954 pg_color += (pindex + object_pg_color) % grpsize; 955 } else { 956 if (grpsize <= 2) { 957 grpsize = 8; 958 } else { 959 /* 3->9, 4->8, 5->10, 6->12, 7->14 */ 960 grpsize += grpsize; 961 if (grpsize < 8) 962 grpsize += grpsize; 963 } 964 pg_color += (pindex + object_pg_color) % grpsize; 965 } 966 } else { 967 /* 968 * Unknown topology, distribute things evenly. 969 */ 970 pg_color = cpuid * PQ_L2_SIZE / ncpus; 971 pg_color += pindex + object_pg_color; 972 } 973 return (pg_color & PQ_L2_MASK); 974 } 975 976 /* 977 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 978 * also wait for m->busy to become 0 before setting PG_BUSY. 979 */ 980 void 981 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 982 int also_m_busy, const char *msg 983 VM_PAGE_DEBUG_ARGS) 984 { 985 u_int32_t flags; 986 987 for (;;) { 988 flags = m->flags; 989 cpu_ccfence(); 990 if (flags & PG_BUSY) { 991 tsleep_interlock(m, 0); 992 if (atomic_cmpset_int(&m->flags, flags, 993 flags | PG_WANTED | PG_REFERENCED)) { 994 tsleep(m, PINTERLOCKED, msg, 0); 995 } 996 } else if (also_m_busy && (flags & PG_SBUSY)) { 997 tsleep_interlock(m, 0); 998 if (atomic_cmpset_int(&m->flags, flags, 999 flags | PG_WANTED | PG_REFERENCED)) { 1000 tsleep(m, PINTERLOCKED, msg, 0); 1001 } 1002 } else { 1003 if (atomic_cmpset_int(&m->flags, flags, 1004 flags | PG_BUSY)) { 1005 #ifdef VM_PAGE_DEBUG 1006 m->busy_func = func; 1007 m->busy_line = lineno; 1008 #endif 1009 break; 1010 } 1011 } 1012 } 1013 } 1014 1015 /* 1016 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 1017 * is also 0. 1018 * 1019 * Returns non-zero on failure. 1020 */ 1021 int 1022 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 1023 VM_PAGE_DEBUG_ARGS) 1024 { 1025 u_int32_t flags; 1026 1027 for (;;) { 1028 flags = m->flags; 1029 cpu_ccfence(); 1030 if (flags & PG_BUSY) 1031 return TRUE; 1032 if (also_m_busy && (flags & PG_SBUSY)) 1033 return TRUE; 1034 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1035 #ifdef VM_PAGE_DEBUG 1036 m->busy_func = func; 1037 m->busy_line = lineno; 1038 #endif 1039 return FALSE; 1040 } 1041 } 1042 } 1043 1044 /* 1045 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 1046 * that a wakeup() should be performed. 1047 * 1048 * The vm_page must be spinlocked and will remain spinlocked on return. 1049 * The related queue must NOT be spinlocked (which could deadlock us). 1050 * 1051 * (inline version) 1052 */ 1053 static __inline 1054 int 1055 _vm_page_wakeup(vm_page_t m) 1056 { 1057 u_int32_t flags; 1058 1059 for (;;) { 1060 flags = m->flags; 1061 cpu_ccfence(); 1062 if (atomic_cmpset_int(&m->flags, flags, 1063 flags & ~(PG_BUSY | PG_WANTED))) { 1064 break; 1065 } 1066 } 1067 return(flags & PG_WANTED); 1068 } 1069 1070 /* 1071 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 1072 * is typically the last call you make on a page before moving onto 1073 * other things. 1074 */ 1075 void 1076 vm_page_wakeup(vm_page_t m) 1077 { 1078 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 1079 vm_page_spin_lock(m); 1080 if (_vm_page_wakeup(m)) { 1081 vm_page_spin_unlock(m); 1082 wakeup(m); 1083 } else { 1084 vm_page_spin_unlock(m); 1085 } 1086 } 1087 1088 /* 1089 * Holding a page keeps it from being reused. Other parts of the system 1090 * can still disassociate the page from its current object and free it, or 1091 * perform read or write I/O on it and/or otherwise manipulate the page, 1092 * but if the page is held the VM system will leave the page and its data 1093 * intact and not reuse the page for other purposes until the last hold 1094 * reference is released. (see vm_page_wire() if you want to prevent the 1095 * page from being disassociated from its object too). 1096 * 1097 * The caller must still validate the contents of the page and, if necessary, 1098 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 1099 * before manipulating the page. 1100 * 1101 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 1102 */ 1103 void 1104 vm_page_hold(vm_page_t m) 1105 { 1106 vm_page_spin_lock(m); 1107 atomic_add_int(&m->hold_count, 1); 1108 if (m->queue - m->pc == PQ_FREE) { 1109 _vm_page_queue_spin_lock(m); 1110 _vm_page_rem_queue_spinlocked(m); 1111 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 1112 _vm_page_queue_spin_unlock(m); 1113 } 1114 vm_page_spin_unlock(m); 1115 } 1116 1117 /* 1118 * The opposite of vm_page_hold(). If the page is on the HOLD queue 1119 * it was freed while held and must be moved back to the FREE queue. 1120 */ 1121 void 1122 vm_page_unhold(vm_page_t m) 1123 { 1124 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE, 1125 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)", 1126 m, m->hold_count, m->queue - m->pc)); 1127 vm_page_spin_lock(m); 1128 atomic_add_int(&m->hold_count, -1); 1129 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 1130 _vm_page_queue_spin_lock(m); 1131 _vm_page_rem_queue_spinlocked(m); 1132 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 1133 _vm_page_queue_spin_unlock(m); 1134 } 1135 vm_page_spin_unlock(m); 1136 } 1137 1138 /* 1139 * vm_page_getfake: 1140 * 1141 * Create a fictitious page with the specified physical address and 1142 * memory attribute. The memory attribute is the only the machine- 1143 * dependent aspect of a fictitious page that must be initialized. 1144 */ 1145 1146 void 1147 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1148 { 1149 1150 if ((m->flags & PG_FICTITIOUS) != 0) { 1151 /* 1152 * The page's memattr might have changed since the 1153 * previous initialization. Update the pmap to the 1154 * new memattr. 1155 */ 1156 goto memattr; 1157 } 1158 m->phys_addr = paddr; 1159 m->queue = PQ_NONE; 1160 /* Fictitious pages don't use "segind". */ 1161 /* Fictitious pages don't use "order" or "pool". */ 1162 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY; 1163 m->wire_count = 1; 1164 spin_init(&m->spin, "fake_page"); 1165 pmap_page_init(m); 1166 memattr: 1167 pmap_page_set_memattr(m, memattr); 1168 } 1169 1170 /* 1171 * Inserts the given vm_page into the object and object list. 1172 * 1173 * The pagetables are not updated but will presumably fault the page 1174 * in if necessary, or if a kernel page the caller will at some point 1175 * enter the page into the kernel's pmap. We are not allowed to block 1176 * here so we *can't* do this anyway. 1177 * 1178 * This routine may not block. 1179 * This routine must be called with the vm_object held. 1180 * This routine must be called with a critical section held. 1181 * 1182 * This routine returns TRUE if the page was inserted into the object 1183 * successfully, and FALSE if the page already exists in the object. 1184 */ 1185 int 1186 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1187 { 1188 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 1189 if (m->object != NULL) 1190 panic("vm_page_insert: already inserted"); 1191 1192 object->generation++; 1193 1194 /* 1195 * Record the object/offset pair in this page and add the 1196 * pv_list_count of the page to the object. 1197 * 1198 * The vm_page spin lock is required for interactions with the pmap. 1199 */ 1200 vm_page_spin_lock(m); 1201 m->object = object; 1202 m->pindex = pindex; 1203 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 1204 m->object = NULL; 1205 m->pindex = 0; 1206 vm_page_spin_unlock(m); 1207 return FALSE; 1208 } 1209 ++object->resident_page_count; 1210 ++mycpu->gd_vmtotal.t_rm; 1211 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 1212 vm_page_spin_unlock(m); 1213 1214 /* 1215 * Since we are inserting a new and possibly dirty page, 1216 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 1217 */ 1218 if ((m->valid & m->dirty) || 1219 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 1220 vm_object_set_writeable_dirty(object); 1221 1222 /* 1223 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 1224 */ 1225 swap_pager_page_inserted(m); 1226 return TRUE; 1227 } 1228 1229 /* 1230 * Removes the given vm_page_t from the (object,index) table 1231 * 1232 * The underlying pmap entry (if any) is NOT removed here. 1233 * This routine may not block. 1234 * 1235 * The page must be BUSY and will remain BUSY on return. 1236 * No other requirements. 1237 * 1238 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 1239 * it busy. 1240 */ 1241 void 1242 vm_page_remove(vm_page_t m) 1243 { 1244 vm_object_t object; 1245 1246 if (m->object == NULL) { 1247 return; 1248 } 1249 1250 if ((m->flags & PG_BUSY) == 0) 1251 panic("vm_page_remove: page not busy"); 1252 1253 object = m->object; 1254 1255 vm_object_hold(object); 1256 1257 /* 1258 * Remove the page from the object and update the object. 1259 * 1260 * The vm_page spin lock is required for interactions with the pmap. 1261 */ 1262 vm_page_spin_lock(m); 1263 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 1264 --object->resident_page_count; 1265 --mycpu->gd_vmtotal.t_rm; 1266 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 1267 m->object = NULL; 1268 vm_page_spin_unlock(m); 1269 1270 object->generation++; 1271 1272 vm_object_drop(object); 1273 } 1274 1275 /* 1276 * Locate and return the page at (object, pindex), or NULL if the 1277 * page could not be found. 1278 * 1279 * The caller must hold the vm_object token. 1280 */ 1281 vm_page_t 1282 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1283 { 1284 vm_page_t m; 1285 1286 /* 1287 * Search the hash table for this object/offset pair 1288 */ 1289 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1290 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1291 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1292 return(m); 1293 } 1294 1295 vm_page_t 1296 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1297 vm_pindex_t pindex, 1298 int also_m_busy, const char *msg 1299 VM_PAGE_DEBUG_ARGS) 1300 { 1301 u_int32_t flags; 1302 vm_page_t m; 1303 1304 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1305 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1306 while (m) { 1307 KKASSERT(m->object == object && m->pindex == pindex); 1308 flags = m->flags; 1309 cpu_ccfence(); 1310 if (flags & PG_BUSY) { 1311 tsleep_interlock(m, 0); 1312 if (atomic_cmpset_int(&m->flags, flags, 1313 flags | PG_WANTED | PG_REFERENCED)) { 1314 tsleep(m, PINTERLOCKED, msg, 0); 1315 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1316 pindex); 1317 } 1318 } else if (also_m_busy && (flags & PG_SBUSY)) { 1319 tsleep_interlock(m, 0); 1320 if (atomic_cmpset_int(&m->flags, flags, 1321 flags | PG_WANTED | PG_REFERENCED)) { 1322 tsleep(m, PINTERLOCKED, msg, 0); 1323 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1324 pindex); 1325 } 1326 } else if (atomic_cmpset_int(&m->flags, flags, 1327 flags | PG_BUSY)) { 1328 #ifdef VM_PAGE_DEBUG 1329 m->busy_func = func; 1330 m->busy_line = lineno; 1331 #endif 1332 break; 1333 } 1334 } 1335 return m; 1336 } 1337 1338 /* 1339 * Attempt to lookup and busy a page. 1340 * 1341 * Returns NULL if the page could not be found 1342 * 1343 * Returns a vm_page and error == TRUE if the page exists but could not 1344 * be busied. 1345 * 1346 * Returns a vm_page and error == FALSE on success. 1347 */ 1348 vm_page_t 1349 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1350 vm_pindex_t pindex, 1351 int also_m_busy, int *errorp 1352 VM_PAGE_DEBUG_ARGS) 1353 { 1354 u_int32_t flags; 1355 vm_page_t m; 1356 1357 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1358 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1359 *errorp = FALSE; 1360 while (m) { 1361 KKASSERT(m->object == object && m->pindex == pindex); 1362 flags = m->flags; 1363 cpu_ccfence(); 1364 if (flags & PG_BUSY) { 1365 *errorp = TRUE; 1366 break; 1367 } 1368 if (also_m_busy && (flags & PG_SBUSY)) { 1369 *errorp = TRUE; 1370 break; 1371 } 1372 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1373 #ifdef VM_PAGE_DEBUG 1374 m->busy_func = func; 1375 m->busy_line = lineno; 1376 #endif 1377 break; 1378 } 1379 } 1380 return m; 1381 } 1382 1383 /* 1384 * Attempt to repurpose the passed-in page. If the passed-in page cannot 1385 * be repurposed it will be released, *must_reenter will be set to 1, and 1386 * this function will fall-through to vm_page_lookup_busy_try(). 1387 * 1388 * The passed-in page must be wired and not busy. The returned page will 1389 * be busied and not wired. 1390 * 1391 * A different page may be returned. The returned page will be busied and 1392 * not wired. 1393 * 1394 * NULL can be returned. If so, the required page could not be busied. 1395 * The passed-in page will be unwired. 1396 */ 1397 vm_page_t 1398 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex, 1399 int also_m_busy, int *errorp, vm_page_t m, 1400 int *must_reenter, int *iswired) 1401 { 1402 if (m) { 1403 /* 1404 * Do not mess with pages in a complex state, such as pages 1405 * which are mapped, as repurposing such pages can be more 1406 * expensive than simply allocatin a new one. 1407 * 1408 * NOTE: Soft-busying can deadlock against putpages or I/O 1409 * so we only allow hard-busying here. 1410 */ 1411 KKASSERT(also_m_busy == FALSE); 1412 vm_page_busy_wait(m, also_m_busy, "biodep"); 1413 1414 if ((m->flags & (PG_UNMANAGED | PG_MAPPED | 1415 PG_FICTITIOUS | PG_SBUSY)) || 1416 m->busy || m->wire_count != 1 || m->hold_count) { 1417 vm_page_unwire(m, 0); 1418 vm_page_wakeup(m); 1419 /* fall through to normal lookup */ 1420 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 1421 vm_page_unwire(m, 0); 1422 vm_page_deactivate(m); 1423 vm_page_wakeup(m); 1424 /* fall through to normal lookup */ 1425 } else { 1426 /* 1427 * We can safely repurpose the page. It should 1428 * already be unqueued. 1429 */ 1430 KKASSERT(m->queue == PQ_NONE && m->dirty == 0); 1431 vm_page_remove(m); 1432 m->valid = 0; 1433 m->act_count = 0; 1434 if (vm_page_insert(m, object, pindex)) { 1435 *errorp = 0; 1436 *iswired = 1; 1437 1438 return m; 1439 } 1440 vm_page_unwire(m, 0); 1441 vm_page_free(m); 1442 /* fall through to normal lookup */ 1443 } 1444 } 1445 1446 /* 1447 * Cannot repurpose page, attempt to locate the desired page. May 1448 * return NULL. 1449 */ 1450 *must_reenter = 1; 1451 *iswired = 0; 1452 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp); 1453 1454 return m; 1455 } 1456 1457 /* 1458 * Caller must hold the related vm_object 1459 */ 1460 vm_page_t 1461 vm_page_next(vm_page_t m) 1462 { 1463 vm_page_t next; 1464 1465 next = vm_page_rb_tree_RB_NEXT(m); 1466 if (next && next->pindex != m->pindex + 1) 1467 next = NULL; 1468 return (next); 1469 } 1470 1471 /* 1472 * vm_page_rename() 1473 * 1474 * Move the given vm_page from its current object to the specified 1475 * target object/offset. The page must be busy and will remain so 1476 * on return. 1477 * 1478 * new_object must be held. 1479 * This routine might block. XXX ? 1480 * 1481 * NOTE: Swap associated with the page must be invalidated by the move. We 1482 * have to do this for several reasons: (1) we aren't freeing the 1483 * page, (2) we are dirtying the page, (3) the VM system is probably 1484 * moving the page from object A to B, and will then later move 1485 * the backing store from A to B and we can't have a conflict. 1486 * 1487 * NOTE: We *always* dirty the page. It is necessary both for the 1488 * fact that we moved it, and because we may be invalidating 1489 * swap. If the page is on the cache, we have to deactivate it 1490 * or vm_page_dirty() will panic. Dirty pages are not allowed 1491 * on the cache. 1492 */ 1493 void 1494 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1495 { 1496 KKASSERT(m->flags & PG_BUSY); 1497 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1498 if (m->object) { 1499 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1500 vm_page_remove(m); 1501 } 1502 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1503 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1504 new_object, new_pindex); 1505 } 1506 if (m->queue - m->pc == PQ_CACHE) 1507 vm_page_deactivate(m); 1508 vm_page_dirty(m); 1509 } 1510 1511 /* 1512 * vm_page_unqueue() without any wakeup. This routine is used when a page 1513 * is to remain BUSYied by the caller. 1514 * 1515 * This routine may not block. 1516 */ 1517 void 1518 vm_page_unqueue_nowakeup(vm_page_t m) 1519 { 1520 vm_page_and_queue_spin_lock(m); 1521 (void)_vm_page_rem_queue_spinlocked(m); 1522 vm_page_spin_unlock(m); 1523 } 1524 1525 /* 1526 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1527 * if necessary. 1528 * 1529 * This routine may not block. 1530 */ 1531 void 1532 vm_page_unqueue(vm_page_t m) 1533 { 1534 u_short queue; 1535 1536 vm_page_and_queue_spin_lock(m); 1537 queue = _vm_page_rem_queue_spinlocked(m); 1538 if (queue == PQ_FREE || queue == PQ_CACHE) { 1539 vm_page_spin_unlock(m); 1540 pagedaemon_wakeup(); 1541 } else { 1542 vm_page_spin_unlock(m); 1543 } 1544 } 1545 1546 /* 1547 * vm_page_list_find() 1548 * 1549 * Find a page on the specified queue with color optimization. 1550 * 1551 * The page coloring optimization attempts to locate a page that does 1552 * not overload other nearby pages in the object in the cpu's L1 or L2 1553 * caches. We need this optimization because cpu caches tend to be 1554 * physical caches, while object spaces tend to be virtual. 1555 * 1556 * The page coloring optimization also, very importantly, tries to localize 1557 * memory to cpus and physical sockets. 1558 * 1559 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1560 * and the algorithm is adjusted to localize allocations on a per-core basis. 1561 * This is done by 'twisting' the colors. 1562 * 1563 * The page is returned spinlocked and removed from its queue (it will 1564 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1565 * is responsible for dealing with the busy-page case (usually by 1566 * deactivating the page and looping). 1567 * 1568 * NOTE: This routine is carefully inlined. A non-inlined version 1569 * is available for outside callers but the only critical path is 1570 * from within this source file. 1571 * 1572 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1573 * represent stable storage, allowing us to order our locks vm_page 1574 * first, then queue. 1575 */ 1576 static __inline 1577 vm_page_t 1578 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1579 { 1580 vm_page_t m; 1581 1582 for (;;) { 1583 if (prefer_zero) { 1584 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, 1585 pglist); 1586 } else { 1587 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1588 } 1589 if (m == NULL) { 1590 m = _vm_page_list_find2(basequeue, index); 1591 return(m); 1592 } 1593 vm_page_and_queue_spin_lock(m); 1594 if (m->queue == basequeue + index) { 1595 _vm_page_rem_queue_spinlocked(m); 1596 /* vm_page_t spin held, no queue spin */ 1597 break; 1598 } 1599 vm_page_and_queue_spin_unlock(m); 1600 } 1601 return(m); 1602 } 1603 1604 /* 1605 * If we could not find the page in the desired queue try to find it in 1606 * a nearby queue. 1607 */ 1608 static vm_page_t 1609 _vm_page_list_find2(int basequeue, int index) 1610 { 1611 struct vpgqueues *pq; 1612 vm_page_t m = NULL; 1613 int pqmask = PQ_SET_ASSOC_MASK >> 1; 1614 int pqi; 1615 int i; 1616 1617 index &= PQ_L2_MASK; 1618 pq = &vm_page_queues[basequeue]; 1619 1620 /* 1621 * Run local sets of 16, 32, 64, 128, and the whole queue if all 1622 * else fails (PQ_L2_MASK which is 255). 1623 */ 1624 do { 1625 pqmask = (pqmask << 1) | 1; 1626 for (i = 0; i <= pqmask; ++i) { 1627 pqi = (index & ~pqmask) | ((index + i) & pqmask); 1628 m = TAILQ_FIRST(&pq[pqi].pl); 1629 if (m) { 1630 _vm_page_and_queue_spin_lock(m); 1631 if (m->queue == basequeue + pqi) { 1632 _vm_page_rem_queue_spinlocked(m); 1633 return(m); 1634 } 1635 _vm_page_and_queue_spin_unlock(m); 1636 --i; 1637 continue; 1638 } 1639 } 1640 } while (pqmask != PQ_L2_MASK); 1641 1642 return(m); 1643 } 1644 1645 /* 1646 * Returns a vm_page candidate for allocation. The page is not busied so 1647 * it can move around. The caller must busy the page (and typically 1648 * deactivate it if it cannot be busied!) 1649 * 1650 * Returns a spinlocked vm_page that has been removed from its queue. 1651 */ 1652 vm_page_t 1653 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1654 { 1655 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1656 } 1657 1658 /* 1659 * Find a page on the cache queue with color optimization, remove it 1660 * from the queue, and busy it. The returned page will not be spinlocked. 1661 * 1662 * A candidate failure will be deactivated. Candidates can fail due to 1663 * being busied by someone else, in which case they will be deactivated. 1664 * 1665 * This routine may not block. 1666 * 1667 */ 1668 static vm_page_t 1669 vm_page_select_cache(u_short pg_color) 1670 { 1671 vm_page_t m; 1672 1673 for (;;) { 1674 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1675 if (m == NULL) 1676 break; 1677 /* 1678 * (m) has been removed from its queue and spinlocked 1679 */ 1680 if (vm_page_busy_try(m, TRUE)) { 1681 _vm_page_deactivate_locked(m, 0); 1682 vm_page_spin_unlock(m); 1683 } else { 1684 /* 1685 * We successfully busied the page 1686 */ 1687 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1688 m->hold_count == 0 && 1689 m->wire_count == 0 && 1690 (m->dirty & m->valid) == 0) { 1691 vm_page_spin_unlock(m); 1692 pagedaemon_wakeup(); 1693 return(m); 1694 } 1695 1696 /* 1697 * The page cannot be recycled, deactivate it. 1698 */ 1699 _vm_page_deactivate_locked(m, 0); 1700 if (_vm_page_wakeup(m)) { 1701 vm_page_spin_unlock(m); 1702 wakeup(m); 1703 } else { 1704 vm_page_spin_unlock(m); 1705 } 1706 } 1707 } 1708 return (m); 1709 } 1710 1711 /* 1712 * Find a free or zero page, with specified preference. We attempt to 1713 * inline the nominal case and fall back to _vm_page_select_free() 1714 * otherwise. A busied page is removed from the queue and returned. 1715 * 1716 * This routine may not block. 1717 */ 1718 static __inline vm_page_t 1719 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1720 { 1721 vm_page_t m; 1722 1723 for (;;) { 1724 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1725 prefer_zero); 1726 if (m == NULL) 1727 break; 1728 if (vm_page_busy_try(m, TRUE)) { 1729 /* 1730 * Various mechanisms such as a pmap_collect can 1731 * result in a busy page on the free queue. We 1732 * have to move the page out of the way so we can 1733 * retry the allocation. If the other thread is not 1734 * allocating the page then m->valid will remain 0 and 1735 * the pageout daemon will free the page later on. 1736 * 1737 * Since we could not busy the page, however, we 1738 * cannot make assumptions as to whether the page 1739 * will be allocated by the other thread or not, 1740 * so all we can do is deactivate it to move it out 1741 * of the way. In particular, if the other thread 1742 * wires the page it may wind up on the inactive 1743 * queue and the pageout daemon will have to deal 1744 * with that case too. 1745 */ 1746 _vm_page_deactivate_locked(m, 0); 1747 vm_page_spin_unlock(m); 1748 } else { 1749 /* 1750 * Theoretically if we are able to busy the page 1751 * atomic with the queue removal (using the vm_page 1752 * lock) nobody else should be able to mess with the 1753 * page before us. 1754 */ 1755 KKASSERT((m->flags & (PG_UNMANAGED | 1756 PG_NEED_COMMIT)) == 0); 1757 KASSERT(m->hold_count == 0, ("m->hold_count is not zero " 1758 "pg %p q=%d flags=%08x hold=%d wire=%d", 1759 m, m->queue, m->flags, m->hold_count, m->wire_count)); 1760 KKASSERT(m->wire_count == 0); 1761 vm_page_spin_unlock(m); 1762 pagedaemon_wakeup(); 1763 1764 /* return busied and removed page */ 1765 return(m); 1766 } 1767 } 1768 return(m); 1769 } 1770 1771 /* 1772 * vm_page_alloc() 1773 * 1774 * Allocate and return a memory cell associated with this VM object/offset 1775 * pair. If object is NULL an unassociated page will be allocated. 1776 * 1777 * The returned page will be busied and removed from its queues. This 1778 * routine can block and may return NULL if a race occurs and the page 1779 * is found to already exist at the specified (object, pindex). 1780 * 1781 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1782 * VM_ALLOC_QUICK like normal but cannot use cache 1783 * VM_ALLOC_SYSTEM greater free drain 1784 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1785 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1786 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1787 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1788 * (see vm_page_grab()) 1789 * VM_ALLOC_USE_GD ok to use per-gd cache 1790 * 1791 * VM_ALLOC_CPU(n) allocate using specified cpu localization 1792 * 1793 * The object must be held if not NULL 1794 * This routine may not block 1795 * 1796 * Additional special handling is required when called from an interrupt 1797 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1798 * in this case. 1799 */ 1800 vm_page_t 1801 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1802 { 1803 globaldata_t gd; 1804 vm_object_t obj; 1805 vm_page_t m; 1806 u_short pg_color; 1807 int cpuid_local; 1808 1809 #if 0 1810 /* 1811 * Special per-cpu free VM page cache. The pages are pre-busied 1812 * and pre-zerod for us. 1813 */ 1814 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1815 crit_enter_gd(gd); 1816 if (gd->gd_vmpg_count) { 1817 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1818 crit_exit_gd(gd); 1819 goto done; 1820 } 1821 crit_exit_gd(gd); 1822 } 1823 #endif 1824 m = NULL; 1825 1826 /* 1827 * CPU LOCALIZATION 1828 * 1829 * CPU localization algorithm. Break the page queues up by physical 1830 * id and core id (note that two cpu threads will have the same core 1831 * id, and core_id != gd_cpuid). 1832 * 1833 * This is nowhere near perfect, for example the last pindex in a 1834 * subgroup will overflow into the next cpu or package. But this 1835 * should get us good page reuse locality in heavy mixed loads. 1836 * 1837 * (may be executed before the APs are started, so other GDs might 1838 * not exist!) 1839 */ 1840 if (page_req & VM_ALLOC_CPU_SPEC) 1841 cpuid_local = VM_ALLOC_GETCPU(page_req); 1842 else 1843 cpuid_local = mycpu->gd_cpuid; 1844 1845 pg_color = vm_get_pg_color(cpuid_local, object, pindex); 1846 1847 KKASSERT(page_req & 1848 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1849 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1850 1851 /* 1852 * Certain system threads (pageout daemon, buf_daemon's) are 1853 * allowed to eat deeper into the free page list. 1854 */ 1855 if (curthread->td_flags & TDF_SYSTHREAD) 1856 page_req |= VM_ALLOC_SYSTEM; 1857 1858 /* 1859 * Impose various limitations. Note that the v_free_reserved test 1860 * must match the opposite of vm_page_count_target() to avoid 1861 * livelocks, be careful. 1862 */ 1863 loop: 1864 gd = mycpu; 1865 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved || 1866 ((page_req & VM_ALLOC_INTERRUPT) && 1867 gd->gd_vmstats.v_free_count > 0) || 1868 ((page_req & VM_ALLOC_SYSTEM) && 1869 gd->gd_vmstats.v_cache_count == 0 && 1870 gd->gd_vmstats.v_free_count > 1871 gd->gd_vmstats.v_interrupt_free_min) 1872 ) { 1873 /* 1874 * The free queue has sufficient free pages to take one out. 1875 */ 1876 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1877 m = vm_page_select_free(pg_color, TRUE); 1878 else 1879 m = vm_page_select_free(pg_color, FALSE); 1880 } else if (page_req & VM_ALLOC_NORMAL) { 1881 /* 1882 * Allocatable from the cache (non-interrupt only). On 1883 * success, we must free the page and try again, thus 1884 * ensuring that vmstats.v_*_free_min counters are replenished. 1885 */ 1886 #ifdef INVARIANTS 1887 if (curthread->td_preempted) { 1888 kprintf("vm_page_alloc(): warning, attempt to allocate" 1889 " cache page from preempting interrupt\n"); 1890 m = NULL; 1891 } else { 1892 m = vm_page_select_cache(pg_color); 1893 } 1894 #else 1895 m = vm_page_select_cache(pg_color); 1896 #endif 1897 /* 1898 * On success move the page into the free queue and loop. 1899 * 1900 * Only do this if we can safely acquire the vm_object lock, 1901 * because this is effectively a random page and the caller 1902 * might be holding the lock shared, we don't want to 1903 * deadlock. 1904 */ 1905 if (m != NULL) { 1906 KASSERT(m->dirty == 0, 1907 ("Found dirty cache page %p", m)); 1908 if ((obj = m->object) != NULL) { 1909 if (vm_object_hold_try(obj)) { 1910 vm_page_protect(m, VM_PROT_NONE); 1911 vm_page_free(m); 1912 /* m->object NULL here */ 1913 vm_object_drop(obj); 1914 } else { 1915 vm_page_deactivate(m); 1916 vm_page_wakeup(m); 1917 } 1918 } else { 1919 vm_page_protect(m, VM_PROT_NONE); 1920 vm_page_free(m); 1921 } 1922 goto loop; 1923 } 1924 1925 /* 1926 * On failure return NULL 1927 */ 1928 atomic_add_int(&vm_pageout_deficit, 1); 1929 pagedaemon_wakeup(); 1930 return (NULL); 1931 } else { 1932 /* 1933 * No pages available, wakeup the pageout daemon and give up. 1934 */ 1935 atomic_add_int(&vm_pageout_deficit, 1); 1936 pagedaemon_wakeup(); 1937 return (NULL); 1938 } 1939 1940 /* 1941 * v_free_count can race so loop if we don't find the expected 1942 * page. 1943 */ 1944 if (m == NULL) { 1945 vmstats_rollup(); 1946 goto loop; 1947 } 1948 1949 /* 1950 * Good page found. The page has already been busied for us and 1951 * removed from its queues. 1952 */ 1953 KASSERT(m->dirty == 0, 1954 ("vm_page_alloc: free/cache page %p was dirty", m)); 1955 KKASSERT(m->queue == PQ_NONE); 1956 1957 #if 0 1958 done: 1959 #endif 1960 /* 1961 * Initialize the structure, inheriting some flags but clearing 1962 * all the rest. The page has already been busied for us. 1963 */ 1964 vm_page_flag_clear(m, ~(PG_BUSY | PG_SBUSY)); 1965 KKASSERT(m->wire_count == 0); 1966 KKASSERT(m->busy == 0); 1967 m->act_count = 0; 1968 m->valid = 0; 1969 1970 /* 1971 * Caller must be holding the object lock (asserted by 1972 * vm_page_insert()). 1973 * 1974 * NOTE: Inserting a page here does not insert it into any pmaps 1975 * (which could cause us to block allocating memory). 1976 * 1977 * NOTE: If no object an unassociated page is allocated, m->pindex 1978 * can be used by the caller for any purpose. 1979 */ 1980 if (object) { 1981 if (vm_page_insert(m, object, pindex) == FALSE) { 1982 vm_page_free(m); 1983 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1984 panic("PAGE RACE %p[%ld]/%p", 1985 object, (long)pindex, m); 1986 m = NULL; 1987 } 1988 } else { 1989 m->pindex = pindex; 1990 } 1991 1992 /* 1993 * Don't wakeup too often - wakeup the pageout daemon when 1994 * we would be nearly out of memory. 1995 */ 1996 pagedaemon_wakeup(); 1997 1998 /* 1999 * A PG_BUSY page is returned. 2000 */ 2001 return (m); 2002 } 2003 2004 /* 2005 * Returns number of pages available in our DMA memory reserve 2006 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf) 2007 */ 2008 vm_size_t 2009 vm_contig_avail_pages(void) 2010 { 2011 alist_blk_t blk; 2012 alist_blk_t count; 2013 alist_blk_t bfree; 2014 spin_lock(&vm_contig_spin); 2015 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 2016 spin_unlock(&vm_contig_spin); 2017 2018 return bfree; 2019 } 2020 2021 /* 2022 * Attempt to allocate contiguous physical memory with the specified 2023 * requirements. 2024 */ 2025 vm_page_t 2026 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 2027 unsigned long alignment, unsigned long boundary, 2028 unsigned long size, vm_memattr_t memattr) 2029 { 2030 alist_blk_t blk; 2031 vm_page_t m; 2032 int i; 2033 2034 alignment >>= PAGE_SHIFT; 2035 if (alignment == 0) 2036 alignment = 1; 2037 boundary >>= PAGE_SHIFT; 2038 if (boundary == 0) 2039 boundary = 1; 2040 size = (size + PAGE_MASK) >> PAGE_SHIFT; 2041 2042 spin_lock(&vm_contig_spin); 2043 blk = alist_alloc(&vm_contig_alist, 0, size); 2044 if (blk == ALIST_BLOCK_NONE) { 2045 spin_unlock(&vm_contig_spin); 2046 if (bootverbose) { 2047 kprintf("vm_page_alloc_contig: %ldk nospace\n", 2048 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 2049 } 2050 return(NULL); 2051 } 2052 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 2053 alist_free(&vm_contig_alist, blk, size); 2054 spin_unlock(&vm_contig_spin); 2055 if (bootverbose) { 2056 kprintf("vm_page_alloc_contig: %ldk high " 2057 "%016jx failed\n", 2058 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 2059 (intmax_t)high); 2060 } 2061 return(NULL); 2062 } 2063 spin_unlock(&vm_contig_spin); 2064 if (vm_contig_verbose) { 2065 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 2066 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 2067 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 2068 } 2069 2070 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 2071 if (memattr != VM_MEMATTR_DEFAULT) 2072 for (i = 0;i < size;i++) 2073 pmap_page_set_memattr(&m[i], memattr); 2074 return m; 2075 } 2076 2077 /* 2078 * Free contiguously allocated pages. The pages will be wired but not busy. 2079 * When freeing to the alist we leave them wired and not busy. 2080 */ 2081 void 2082 vm_page_free_contig(vm_page_t m, unsigned long size) 2083 { 2084 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 2085 vm_pindex_t start = pa >> PAGE_SHIFT; 2086 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 2087 2088 if (vm_contig_verbose) { 2089 kprintf("vm_page_free_contig: %016jx/%ldk\n", 2090 (intmax_t)pa, size / 1024); 2091 } 2092 if (pa < vm_low_phys_reserved) { 2093 KKASSERT(pa + size <= vm_low_phys_reserved); 2094 spin_lock(&vm_contig_spin); 2095 alist_free(&vm_contig_alist, start, pages); 2096 spin_unlock(&vm_contig_spin); 2097 } else { 2098 while (pages) { 2099 vm_page_busy_wait(m, FALSE, "cpgfr"); 2100 vm_page_unwire(m, 0); 2101 vm_page_free(m); 2102 --pages; 2103 ++m; 2104 } 2105 2106 } 2107 } 2108 2109 2110 /* 2111 * Wait for sufficient free memory for nominal heavy memory use kernel 2112 * operations. 2113 * 2114 * WARNING! Be sure never to call this in any vm_pageout code path, which 2115 * will trivially deadlock the system. 2116 */ 2117 void 2118 vm_wait_nominal(void) 2119 { 2120 while (vm_page_count_min(0)) 2121 vm_wait(0); 2122 } 2123 2124 /* 2125 * Test if vm_wait_nominal() would block. 2126 */ 2127 int 2128 vm_test_nominal(void) 2129 { 2130 if (vm_page_count_min(0)) 2131 return(1); 2132 return(0); 2133 } 2134 2135 /* 2136 * Block until free pages are available for allocation, called in various 2137 * places before memory allocations. 2138 * 2139 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 2140 * more generous then that. 2141 */ 2142 void 2143 vm_wait(int timo) 2144 { 2145 /* 2146 * never wait forever 2147 */ 2148 if (timo == 0) 2149 timo = hz; 2150 lwkt_gettoken(&vm_token); 2151 2152 if (curthread == pagethread) { 2153 /* 2154 * The pageout daemon itself needs pages, this is bad. 2155 */ 2156 if (vm_page_count_min(0)) { 2157 vm_pageout_pages_needed = 1; 2158 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 2159 } 2160 } else { 2161 /* 2162 * Wakeup the pageout daemon if necessary and wait. 2163 * 2164 * Do not wait indefinitely for the target to be reached, 2165 * as load might prevent it from being reached any time soon. 2166 * But wait a little to try to slow down page allocations 2167 * and to give more important threads (the pagedaemon) 2168 * allocation priority. 2169 */ 2170 if (vm_page_count_target()) { 2171 if (vm_pages_needed == 0) { 2172 vm_pages_needed = 1; 2173 wakeup(&vm_pages_needed); 2174 } 2175 ++vm_pages_waiting; /* SMP race ok */ 2176 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 2177 } 2178 } 2179 lwkt_reltoken(&vm_token); 2180 } 2181 2182 /* 2183 * Block until free pages are available for allocation 2184 * 2185 * Called only from vm_fault so that processes page faulting can be 2186 * easily tracked. 2187 */ 2188 void 2189 vm_wait_pfault(void) 2190 { 2191 /* 2192 * Wakeup the pageout daemon if necessary and wait. 2193 * 2194 * Do not wait indefinitely for the target to be reached, 2195 * as load might prevent it from being reached any time soon. 2196 * But wait a little to try to slow down page allocations 2197 * and to give more important threads (the pagedaemon) 2198 * allocation priority. 2199 */ 2200 if (vm_page_count_min(0)) { 2201 lwkt_gettoken(&vm_token); 2202 while (vm_page_count_severe()) { 2203 if (vm_page_count_target()) { 2204 thread_t td; 2205 2206 if (vm_pages_needed == 0) { 2207 vm_pages_needed = 1; 2208 wakeup(&vm_pages_needed); 2209 } 2210 ++vm_pages_waiting; /* SMP race ok */ 2211 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 2212 2213 /* 2214 * Do not stay stuck in the loop if the system is trying 2215 * to kill the process. 2216 */ 2217 td = curthread; 2218 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL)) 2219 break; 2220 } 2221 } 2222 lwkt_reltoken(&vm_token); 2223 } 2224 } 2225 2226 /* 2227 * Put the specified page on the active list (if appropriate). Ensure 2228 * that act_count is at least ACT_INIT but do not otherwise mess with it. 2229 * 2230 * The caller should be holding the page busied ? XXX 2231 * This routine may not block. 2232 */ 2233 void 2234 vm_page_activate(vm_page_t m) 2235 { 2236 u_short oqueue; 2237 2238 vm_page_spin_lock(m); 2239 if (m->queue - m->pc != PQ_ACTIVE) { 2240 _vm_page_queue_spin_lock(m); 2241 oqueue = _vm_page_rem_queue_spinlocked(m); 2242 /* page is left spinlocked, queue is unlocked */ 2243 2244 if (oqueue == PQ_CACHE) 2245 mycpu->gd_cnt.v_reactivated++; 2246 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2247 if (m->act_count < ACT_INIT) 2248 m->act_count = ACT_INIT; 2249 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 2250 } 2251 _vm_page_and_queue_spin_unlock(m); 2252 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 2253 pagedaemon_wakeup(); 2254 } else { 2255 if (m->act_count < ACT_INIT) 2256 m->act_count = ACT_INIT; 2257 vm_page_spin_unlock(m); 2258 } 2259 } 2260 2261 /* 2262 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2263 * routine is called when a page has been added to the cache or free 2264 * queues. 2265 * 2266 * This routine may not block. 2267 */ 2268 static __inline void 2269 vm_page_free_wakeup(void) 2270 { 2271 globaldata_t gd = mycpu; 2272 2273 /* 2274 * If the pageout daemon itself needs pages, then tell it that 2275 * there are some free. 2276 */ 2277 if (vm_pageout_pages_needed && 2278 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >= 2279 gd->gd_vmstats.v_pageout_free_min 2280 ) { 2281 vm_pageout_pages_needed = 0; 2282 wakeup(&vm_pageout_pages_needed); 2283 } 2284 2285 /* 2286 * Wakeup processes that are waiting on memory. 2287 * 2288 * Generally speaking we want to wakeup stuck processes as soon as 2289 * possible. !vm_page_count_min(0) is the absolute minimum point 2290 * where we can do this. Wait a bit longer to reduce degenerate 2291 * re-blocking (vm_page_free_hysteresis). The target check is just 2292 * to make sure the min-check w/hysteresis does not exceed the 2293 * normal target. 2294 */ 2295 if (vm_pages_waiting) { 2296 if (!vm_page_count_min(vm_page_free_hysteresis) || 2297 !vm_page_count_target()) { 2298 vm_pages_waiting = 0; 2299 wakeup(&vmstats.v_free_count); 2300 ++mycpu->gd_cnt.v_ppwakeups; 2301 } 2302 #if 0 2303 if (!vm_page_count_target()) { 2304 /* 2305 * Plenty of pages are free, wakeup everyone. 2306 */ 2307 vm_pages_waiting = 0; 2308 wakeup(&vmstats.v_free_count); 2309 ++mycpu->gd_cnt.v_ppwakeups; 2310 } else if (!vm_page_count_min(0)) { 2311 /* 2312 * Some pages are free, wakeup someone. 2313 */ 2314 int wcount = vm_pages_waiting; 2315 if (wcount > 0) 2316 --wcount; 2317 vm_pages_waiting = wcount; 2318 wakeup_one(&vmstats.v_free_count); 2319 ++mycpu->gd_cnt.v_ppwakeups; 2320 } 2321 #endif 2322 } 2323 } 2324 2325 /* 2326 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 2327 * it from its VM object. 2328 * 2329 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 2330 * return (the page will have been freed). 2331 */ 2332 void 2333 vm_page_free_toq(vm_page_t m) 2334 { 2335 mycpu->gd_cnt.v_tfree++; 2336 KKASSERT((m->flags & PG_MAPPED) == 0); 2337 KKASSERT(m->flags & PG_BUSY); 2338 2339 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 2340 kprintf("vm_page_free: pindex(%lu), busy(%d), " 2341 "PG_BUSY(%d), hold(%d)\n", 2342 (u_long)m->pindex, m->busy, 2343 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 2344 if ((m->queue - m->pc) == PQ_FREE) 2345 panic("vm_page_free: freeing free page"); 2346 else 2347 panic("vm_page_free: freeing busy page"); 2348 } 2349 2350 /* 2351 * Remove from object, spinlock the page and its queues and 2352 * remove from any queue. No queue spinlock will be held 2353 * after this section (because the page was removed from any 2354 * queue). 2355 */ 2356 vm_page_remove(m); 2357 vm_page_and_queue_spin_lock(m); 2358 _vm_page_rem_queue_spinlocked(m); 2359 2360 /* 2361 * No further management of fictitious pages occurs beyond object 2362 * and queue removal. 2363 */ 2364 if ((m->flags & PG_FICTITIOUS) != 0) { 2365 vm_page_spin_unlock(m); 2366 vm_page_wakeup(m); 2367 return; 2368 } 2369 2370 m->valid = 0; 2371 vm_page_undirty(m); 2372 2373 if (m->wire_count != 0) { 2374 if (m->wire_count > 1) { 2375 panic( 2376 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2377 m->wire_count, (long)m->pindex); 2378 } 2379 panic("vm_page_free: freeing wired page"); 2380 } 2381 2382 /* 2383 * Clear the UNMANAGED flag when freeing an unmanaged page. 2384 * Clear the NEED_COMMIT flag 2385 */ 2386 if (m->flags & PG_UNMANAGED) 2387 vm_page_flag_clear(m, PG_UNMANAGED); 2388 if (m->flags & PG_NEED_COMMIT) 2389 vm_page_flag_clear(m, PG_NEED_COMMIT); 2390 2391 if (m->hold_count != 0) { 2392 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2393 } else { 2394 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2395 } 2396 2397 /* 2398 * This sequence allows us to clear PG_BUSY while still holding 2399 * its spin lock, which reduces contention vs allocators. We 2400 * must not leave the queue locked or _vm_page_wakeup() may 2401 * deadlock. 2402 */ 2403 _vm_page_queue_spin_unlock(m); 2404 if (_vm_page_wakeup(m)) { 2405 vm_page_spin_unlock(m); 2406 wakeup(m); 2407 } else { 2408 vm_page_spin_unlock(m); 2409 } 2410 vm_page_free_wakeup(); 2411 } 2412 2413 /* 2414 * vm_page_unmanage() 2415 * 2416 * Prevent PV management from being done on the page. The page is 2417 * removed from the paging queues as if it were wired, and as a 2418 * consequence of no longer being managed the pageout daemon will not 2419 * touch it (since there is no way to locate the pte mappings for the 2420 * page). madvise() calls that mess with the pmap will also no longer 2421 * operate on the page. 2422 * 2423 * Beyond that the page is still reasonably 'normal'. Freeing the page 2424 * will clear the flag. 2425 * 2426 * This routine is used by OBJT_PHYS objects - objects using unswappable 2427 * physical memory as backing store rather then swap-backed memory and 2428 * will eventually be extended to support 4MB unmanaged physical 2429 * mappings. 2430 * 2431 * Caller must be holding the page busy. 2432 */ 2433 void 2434 vm_page_unmanage(vm_page_t m) 2435 { 2436 KKASSERT(m->flags & PG_BUSY); 2437 if ((m->flags & PG_UNMANAGED) == 0) { 2438 if (m->wire_count == 0) 2439 vm_page_unqueue(m); 2440 } 2441 vm_page_flag_set(m, PG_UNMANAGED); 2442 } 2443 2444 /* 2445 * Mark this page as wired down by yet another map, removing it from 2446 * paging queues as necessary. 2447 * 2448 * Caller must be holding the page busy. 2449 */ 2450 void 2451 vm_page_wire(vm_page_t m) 2452 { 2453 /* 2454 * Only bump the wire statistics if the page is not already wired, 2455 * and only unqueue the page if it is on some queue (if it is unmanaged 2456 * it is already off the queues). Don't do anything with fictitious 2457 * pages because they are always wired. 2458 */ 2459 KKASSERT(m->flags & PG_BUSY); 2460 if ((m->flags & PG_FICTITIOUS) == 0) { 2461 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2462 if ((m->flags & PG_UNMANAGED) == 0) 2463 vm_page_unqueue(m); 2464 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1); 2465 } 2466 KASSERT(m->wire_count != 0, 2467 ("vm_page_wire: wire_count overflow m=%p", m)); 2468 } 2469 } 2470 2471 /* 2472 * Release one wiring of this page, potentially enabling it to be paged again. 2473 * 2474 * Many pages placed on the inactive queue should actually go 2475 * into the cache, but it is difficult to figure out which. What 2476 * we do instead, if the inactive target is well met, is to put 2477 * clean pages at the head of the inactive queue instead of the tail. 2478 * This will cause them to be moved to the cache more quickly and 2479 * if not actively re-referenced, freed more quickly. If we just 2480 * stick these pages at the end of the inactive queue, heavy filesystem 2481 * meta-data accesses can cause an unnecessary paging load on memory bound 2482 * processes. This optimization causes one-time-use metadata to be 2483 * reused more quickly. 2484 * 2485 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2486 * the inactive queue. This helps the pageout daemon determine memory 2487 * pressure and act on out-of-memory situations more quickly. 2488 * 2489 * BUT, if we are in a low-memory situation we have no choice but to 2490 * put clean pages on the cache queue. 2491 * 2492 * A number of routines use vm_page_unwire() to guarantee that the page 2493 * will go into either the inactive or active queues, and will NEVER 2494 * be placed in the cache - for example, just after dirtying a page. 2495 * dirty pages in the cache are not allowed. 2496 * 2497 * This routine may not block. 2498 */ 2499 void 2500 vm_page_unwire(vm_page_t m, int activate) 2501 { 2502 KKASSERT(m->flags & PG_BUSY); 2503 if (m->flags & PG_FICTITIOUS) { 2504 /* do nothing */ 2505 } else if (m->wire_count <= 0) { 2506 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2507 } else { 2508 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2509 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1); 2510 if (m->flags & PG_UNMANAGED) { 2511 ; 2512 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2513 vm_page_spin_lock(m); 2514 _vm_page_add_queue_spinlocked(m, 2515 PQ_ACTIVE + m->pc, 0); 2516 _vm_page_and_queue_spin_unlock(m); 2517 } else { 2518 vm_page_spin_lock(m); 2519 vm_page_flag_clear(m, PG_WINATCFLS); 2520 _vm_page_add_queue_spinlocked(m, 2521 PQ_INACTIVE + m->pc, 0); 2522 ++vm_swapcache_inactive_heuristic; 2523 _vm_page_and_queue_spin_unlock(m); 2524 } 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Move the specified page to the inactive queue. If the page has 2531 * any associated swap, the swap is deallocated. 2532 * 2533 * Normally athead is 0 resulting in LRU operation. athead is set 2534 * to 1 if we want this page to be 'as if it were placed in the cache', 2535 * except without unmapping it from the process address space. 2536 * 2537 * vm_page's spinlock must be held on entry and will remain held on return. 2538 * This routine may not block. 2539 */ 2540 static void 2541 _vm_page_deactivate_locked(vm_page_t m, int athead) 2542 { 2543 u_short oqueue; 2544 2545 /* 2546 * Ignore if already inactive. 2547 */ 2548 if (m->queue - m->pc == PQ_INACTIVE) 2549 return; 2550 _vm_page_queue_spin_lock(m); 2551 oqueue = _vm_page_rem_queue_spinlocked(m); 2552 2553 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2554 if (oqueue == PQ_CACHE) 2555 mycpu->gd_cnt.v_reactivated++; 2556 vm_page_flag_clear(m, PG_WINATCFLS); 2557 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2558 if (athead == 0) 2559 ++vm_swapcache_inactive_heuristic; 2560 } 2561 /* NOTE: PQ_NONE if condition not taken */ 2562 _vm_page_queue_spin_unlock(m); 2563 /* leaves vm_page spinlocked */ 2564 } 2565 2566 /* 2567 * Attempt to deactivate a page. 2568 * 2569 * No requirements. 2570 */ 2571 void 2572 vm_page_deactivate(vm_page_t m) 2573 { 2574 vm_page_spin_lock(m); 2575 _vm_page_deactivate_locked(m, 0); 2576 vm_page_spin_unlock(m); 2577 } 2578 2579 void 2580 vm_page_deactivate_locked(vm_page_t m) 2581 { 2582 _vm_page_deactivate_locked(m, 0); 2583 } 2584 2585 /* 2586 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it. 2587 * 2588 * This function returns non-zero if it successfully moved the page to 2589 * PQ_CACHE. 2590 * 2591 * This function unconditionally unbusies the page on return. 2592 */ 2593 int 2594 vm_page_try_to_cache(vm_page_t m) 2595 { 2596 vm_page_spin_lock(m); 2597 if (m->dirty || m->hold_count || m->wire_count || 2598 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2599 if (_vm_page_wakeup(m)) { 2600 vm_page_spin_unlock(m); 2601 wakeup(m); 2602 } else { 2603 vm_page_spin_unlock(m); 2604 } 2605 return(0); 2606 } 2607 vm_page_spin_unlock(m); 2608 2609 /* 2610 * Page busied by us and no longer spinlocked. Dirty pages cannot 2611 * be moved to the cache. 2612 */ 2613 vm_page_test_dirty(m); 2614 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2615 vm_page_wakeup(m); 2616 return(0); 2617 } 2618 vm_page_cache(m); 2619 return(1); 2620 } 2621 2622 /* 2623 * Attempt to free the page. If we cannot free it, we do nothing. 2624 * 1 is returned on success, 0 on failure. 2625 * 2626 * No requirements. 2627 */ 2628 int 2629 vm_page_try_to_free(vm_page_t m) 2630 { 2631 vm_page_spin_lock(m); 2632 if (vm_page_busy_try(m, TRUE)) { 2633 vm_page_spin_unlock(m); 2634 return(0); 2635 } 2636 2637 /* 2638 * The page can be in any state, including already being on the free 2639 * queue. Check to see if it really can be freed. 2640 */ 2641 if (m->dirty || /* can't free if it is dirty */ 2642 m->hold_count || /* or held (XXX may be wrong) */ 2643 m->wire_count || /* or wired */ 2644 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2645 PG_NEED_COMMIT)) || /* or needs a commit */ 2646 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2647 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2648 if (_vm_page_wakeup(m)) { 2649 vm_page_spin_unlock(m); 2650 wakeup(m); 2651 } else { 2652 vm_page_spin_unlock(m); 2653 } 2654 return(0); 2655 } 2656 vm_page_spin_unlock(m); 2657 2658 /* 2659 * We can probably free the page. 2660 * 2661 * Page busied by us and no longer spinlocked. Dirty pages will 2662 * not be freed by this function. We have to re-test the 2663 * dirty bit after cleaning out the pmaps. 2664 */ 2665 vm_page_test_dirty(m); 2666 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2667 vm_page_wakeup(m); 2668 return(0); 2669 } 2670 vm_page_protect(m, VM_PROT_NONE); 2671 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2672 vm_page_wakeup(m); 2673 return(0); 2674 } 2675 vm_page_free(m); 2676 return(1); 2677 } 2678 2679 /* 2680 * vm_page_cache 2681 * 2682 * Put the specified page onto the page cache queue (if appropriate). 2683 * 2684 * The page must be busy, and this routine will release the busy and 2685 * possibly even free the page. 2686 */ 2687 void 2688 vm_page_cache(vm_page_t m) 2689 { 2690 /* 2691 * Not suitable for the cache 2692 */ 2693 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2694 m->busy || m->wire_count || m->hold_count) { 2695 vm_page_wakeup(m); 2696 return; 2697 } 2698 2699 /* 2700 * Already in the cache (and thus not mapped) 2701 */ 2702 if ((m->queue - m->pc) == PQ_CACHE) { 2703 KKASSERT((m->flags & PG_MAPPED) == 0); 2704 vm_page_wakeup(m); 2705 return; 2706 } 2707 2708 /* 2709 * Caller is required to test m->dirty, but note that the act of 2710 * removing the page from its maps can cause it to become dirty 2711 * on an SMP system due to another cpu running in usermode. 2712 */ 2713 if (m->dirty) { 2714 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2715 (long)m->pindex); 2716 } 2717 2718 /* 2719 * Remove all pmaps and indicate that the page is not 2720 * writeable or mapped. Our vm_page_protect() call may 2721 * have blocked (especially w/ VM_PROT_NONE), so recheck 2722 * everything. 2723 */ 2724 vm_page_protect(m, VM_PROT_NONE); 2725 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2726 m->busy || m->wire_count || m->hold_count) { 2727 vm_page_wakeup(m); 2728 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2729 vm_page_deactivate(m); 2730 vm_page_wakeup(m); 2731 } else { 2732 _vm_page_and_queue_spin_lock(m); 2733 _vm_page_rem_queue_spinlocked(m); 2734 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2735 _vm_page_queue_spin_unlock(m); 2736 if (_vm_page_wakeup(m)) { 2737 vm_page_spin_unlock(m); 2738 wakeup(m); 2739 } else { 2740 vm_page_spin_unlock(m); 2741 } 2742 vm_page_free_wakeup(); 2743 } 2744 } 2745 2746 /* 2747 * vm_page_dontneed() 2748 * 2749 * Cache, deactivate, or do nothing as appropriate. This routine 2750 * is typically used by madvise() MADV_DONTNEED. 2751 * 2752 * Generally speaking we want to move the page into the cache so 2753 * it gets reused quickly. However, this can result in a silly syndrome 2754 * due to the page recycling too quickly. Small objects will not be 2755 * fully cached. On the otherhand, if we move the page to the inactive 2756 * queue we wind up with a problem whereby very large objects 2757 * unnecessarily blow away our inactive and cache queues. 2758 * 2759 * The solution is to move the pages based on a fixed weighting. We 2760 * either leave them alone, deactivate them, or move them to the cache, 2761 * where moving them to the cache has the highest weighting. 2762 * By forcing some pages into other queues we eventually force the 2763 * system to balance the queues, potentially recovering other unrelated 2764 * space from active. The idea is to not force this to happen too 2765 * often. 2766 * 2767 * The page must be busied. 2768 */ 2769 void 2770 vm_page_dontneed(vm_page_t m) 2771 { 2772 static int dnweight; 2773 int dnw; 2774 int head; 2775 2776 dnw = ++dnweight; 2777 2778 /* 2779 * occassionally leave the page alone 2780 */ 2781 if ((dnw & 0x01F0) == 0 || 2782 m->queue - m->pc == PQ_INACTIVE || 2783 m->queue - m->pc == PQ_CACHE 2784 ) { 2785 if (m->act_count >= ACT_INIT) 2786 --m->act_count; 2787 return; 2788 } 2789 2790 /* 2791 * If vm_page_dontneed() is inactivating a page, it must clear 2792 * the referenced flag; otherwise the pagedaemon will see references 2793 * on the page in the inactive queue and reactivate it. Until the 2794 * page can move to the cache queue, madvise's job is not done. 2795 */ 2796 vm_page_flag_clear(m, PG_REFERENCED); 2797 pmap_clear_reference(m); 2798 2799 if (m->dirty == 0) 2800 vm_page_test_dirty(m); 2801 2802 if (m->dirty || (dnw & 0x0070) == 0) { 2803 /* 2804 * Deactivate the page 3 times out of 32. 2805 */ 2806 head = 0; 2807 } else { 2808 /* 2809 * Cache the page 28 times out of every 32. Note that 2810 * the page is deactivated instead of cached, but placed 2811 * at the head of the queue instead of the tail. 2812 */ 2813 head = 1; 2814 } 2815 vm_page_spin_lock(m); 2816 _vm_page_deactivate_locked(m, head); 2817 vm_page_spin_unlock(m); 2818 } 2819 2820 /* 2821 * These routines manipulate the 'soft busy' count for a page. A soft busy 2822 * is almost like PG_BUSY except that it allows certain compatible operations 2823 * to occur on the page while it is busy. For example, a page undergoing a 2824 * write can still be mapped read-only. 2825 * 2826 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2827 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2828 * busy bit is cleared. 2829 */ 2830 void 2831 vm_page_io_start(vm_page_t m) 2832 { 2833 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2834 atomic_add_char(&m->busy, 1); 2835 vm_page_flag_set(m, PG_SBUSY); 2836 } 2837 2838 void 2839 vm_page_io_finish(vm_page_t m) 2840 { 2841 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2842 atomic_subtract_char(&m->busy, 1); 2843 if (m->busy == 0) 2844 vm_page_flag_clear(m, PG_SBUSY); 2845 } 2846 2847 /* 2848 * Indicate that a clean VM page requires a filesystem commit and cannot 2849 * be reused. Used by tmpfs. 2850 */ 2851 void 2852 vm_page_need_commit(vm_page_t m) 2853 { 2854 vm_page_flag_set(m, PG_NEED_COMMIT); 2855 vm_object_set_writeable_dirty(m->object); 2856 } 2857 2858 void 2859 vm_page_clear_commit(vm_page_t m) 2860 { 2861 vm_page_flag_clear(m, PG_NEED_COMMIT); 2862 } 2863 2864 /* 2865 * Grab a page, blocking if it is busy and allocating a page if necessary. 2866 * A busy page is returned or NULL. The page may or may not be valid and 2867 * might not be on a queue (the caller is responsible for the disposition of 2868 * the page). 2869 * 2870 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2871 * page will be zero'd and marked valid. 2872 * 2873 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2874 * valid even if it already exists. 2875 * 2876 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2877 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2878 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2879 * 2880 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2881 * always returned if we had blocked. 2882 * 2883 * This routine may not be called from an interrupt. 2884 * 2885 * No other requirements. 2886 */ 2887 vm_page_t 2888 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2889 { 2890 vm_page_t m; 2891 int error; 2892 int shared = 1; 2893 2894 KKASSERT(allocflags & 2895 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2896 vm_object_hold_shared(object); 2897 for (;;) { 2898 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2899 if (error) { 2900 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2901 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2902 m = NULL; 2903 break; 2904 } 2905 /* retry */ 2906 } else if (m == NULL) { 2907 if (shared) { 2908 vm_object_upgrade(object); 2909 shared = 0; 2910 } 2911 if (allocflags & VM_ALLOC_RETRY) 2912 allocflags |= VM_ALLOC_NULL_OK; 2913 m = vm_page_alloc(object, pindex, 2914 allocflags & ~VM_ALLOC_RETRY); 2915 if (m) 2916 break; 2917 vm_wait(0); 2918 if ((allocflags & VM_ALLOC_RETRY) == 0) 2919 goto failed; 2920 } else { 2921 /* m found */ 2922 break; 2923 } 2924 } 2925 2926 /* 2927 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2928 * 2929 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2930 * valid even if already valid. 2931 * 2932 * NOTE! We have removed all of the PG_ZERO optimizations and also 2933 * removed the idle zeroing code. These optimizations actually 2934 * slow things down on modern cpus because the zerod area is 2935 * likely uncached, placing a memory-access burden on the 2936 * accesors taking the fault. 2937 * 2938 * By always zeroing the page in-line with the fault, no 2939 * dynamic ram reads are needed and the caches are hot, ready 2940 * for userland to access the memory. 2941 */ 2942 if (m->valid == 0) { 2943 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2944 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2945 m->valid = VM_PAGE_BITS_ALL; 2946 } 2947 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2948 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2949 m->valid = VM_PAGE_BITS_ALL; 2950 } 2951 failed: 2952 vm_object_drop(object); 2953 return(m); 2954 } 2955 2956 /* 2957 * Mapping function for valid bits or for dirty bits in 2958 * a page. May not block. 2959 * 2960 * Inputs are required to range within a page. 2961 * 2962 * No requirements. 2963 * Non blocking. 2964 */ 2965 int 2966 vm_page_bits(int base, int size) 2967 { 2968 int first_bit; 2969 int last_bit; 2970 2971 KASSERT( 2972 base + size <= PAGE_SIZE, 2973 ("vm_page_bits: illegal base/size %d/%d", base, size) 2974 ); 2975 2976 if (size == 0) /* handle degenerate case */ 2977 return(0); 2978 2979 first_bit = base >> DEV_BSHIFT; 2980 last_bit = (base + size - 1) >> DEV_BSHIFT; 2981 2982 return ((2 << last_bit) - (1 << first_bit)); 2983 } 2984 2985 /* 2986 * Sets portions of a page valid and clean. The arguments are expected 2987 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2988 * of any partial chunks touched by the range. The invalid portion of 2989 * such chunks will be zero'd. 2990 * 2991 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2992 * align base to DEV_BSIZE so as not to mark clean a partially 2993 * truncated device block. Otherwise the dirty page status might be 2994 * lost. 2995 * 2996 * This routine may not block. 2997 * 2998 * (base + size) must be less then or equal to PAGE_SIZE. 2999 */ 3000 static void 3001 _vm_page_zero_valid(vm_page_t m, int base, int size) 3002 { 3003 int frag; 3004 int endoff; 3005 3006 if (size == 0) /* handle degenerate case */ 3007 return; 3008 3009 /* 3010 * If the base is not DEV_BSIZE aligned and the valid 3011 * bit is clear, we have to zero out a portion of the 3012 * first block. 3013 */ 3014 3015 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 3016 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 3017 ) { 3018 pmap_zero_page_area( 3019 VM_PAGE_TO_PHYS(m), 3020 frag, 3021 base - frag 3022 ); 3023 } 3024 3025 /* 3026 * If the ending offset is not DEV_BSIZE aligned and the 3027 * valid bit is clear, we have to zero out a portion of 3028 * the last block. 3029 */ 3030 3031 endoff = base + size; 3032 3033 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 3034 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 3035 ) { 3036 pmap_zero_page_area( 3037 VM_PAGE_TO_PHYS(m), 3038 endoff, 3039 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 3040 ); 3041 } 3042 } 3043 3044 /* 3045 * Set valid, clear dirty bits. If validating the entire 3046 * page we can safely clear the pmap modify bit. We also 3047 * use this opportunity to clear the PG_NOSYNC flag. If a process 3048 * takes a write fault on a MAP_NOSYNC memory area the flag will 3049 * be set again. 3050 * 3051 * We set valid bits inclusive of any overlap, but we can only 3052 * clear dirty bits for DEV_BSIZE chunks that are fully within 3053 * the range. 3054 * 3055 * Page must be busied? 3056 * No other requirements. 3057 */ 3058 void 3059 vm_page_set_valid(vm_page_t m, int base, int size) 3060 { 3061 _vm_page_zero_valid(m, base, size); 3062 m->valid |= vm_page_bits(base, size); 3063 } 3064 3065 3066 /* 3067 * Set valid bits and clear dirty bits. 3068 * 3069 * Page must be busied by caller. 3070 * 3071 * NOTE: This function does not clear the pmap modified bit. 3072 * Also note that e.g. NFS may use a byte-granular base 3073 * and size. 3074 * 3075 * No other requirements. 3076 */ 3077 void 3078 vm_page_set_validclean(vm_page_t m, int base, int size) 3079 { 3080 int pagebits; 3081 3082 _vm_page_zero_valid(m, base, size); 3083 pagebits = vm_page_bits(base, size); 3084 m->valid |= pagebits; 3085 m->dirty &= ~pagebits; 3086 if (base == 0 && size == PAGE_SIZE) { 3087 /*pmap_clear_modify(m);*/ 3088 vm_page_flag_clear(m, PG_NOSYNC); 3089 } 3090 } 3091 3092 /* 3093 * Set valid & dirty. Used by buwrite() 3094 * 3095 * Page must be busied by caller. 3096 */ 3097 void 3098 vm_page_set_validdirty(vm_page_t m, int base, int size) 3099 { 3100 int pagebits; 3101 3102 pagebits = vm_page_bits(base, size); 3103 m->valid |= pagebits; 3104 m->dirty |= pagebits; 3105 if (m->object) 3106 vm_object_set_writeable_dirty(m->object); 3107 } 3108 3109 /* 3110 * Clear dirty bits. 3111 * 3112 * NOTE: This function does not clear the pmap modified bit. 3113 * Also note that e.g. NFS may use a byte-granular base 3114 * and size. 3115 * 3116 * Page must be busied? 3117 * No other requirements. 3118 */ 3119 void 3120 vm_page_clear_dirty(vm_page_t m, int base, int size) 3121 { 3122 m->dirty &= ~vm_page_bits(base, size); 3123 if (base == 0 && size == PAGE_SIZE) { 3124 /*pmap_clear_modify(m);*/ 3125 vm_page_flag_clear(m, PG_NOSYNC); 3126 } 3127 } 3128 3129 /* 3130 * Make the page all-dirty. 3131 * 3132 * Also make sure the related object and vnode reflect the fact that the 3133 * object may now contain a dirty page. 3134 * 3135 * Page must be busied? 3136 * No other requirements. 3137 */ 3138 void 3139 vm_page_dirty(vm_page_t m) 3140 { 3141 #ifdef INVARIANTS 3142 int pqtype = m->queue - m->pc; 3143 #endif 3144 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 3145 ("vm_page_dirty: page in free/cache queue!")); 3146 if (m->dirty != VM_PAGE_BITS_ALL) { 3147 m->dirty = VM_PAGE_BITS_ALL; 3148 if (m->object) 3149 vm_object_set_writeable_dirty(m->object); 3150 } 3151 } 3152 3153 /* 3154 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3155 * valid and dirty bits for the effected areas are cleared. 3156 * 3157 * Page must be busied? 3158 * Does not block. 3159 * No other requirements. 3160 */ 3161 void 3162 vm_page_set_invalid(vm_page_t m, int base, int size) 3163 { 3164 int bits; 3165 3166 bits = vm_page_bits(base, size); 3167 m->valid &= ~bits; 3168 m->dirty &= ~bits; 3169 m->object->generation++; 3170 } 3171 3172 /* 3173 * The kernel assumes that the invalid portions of a page contain 3174 * garbage, but such pages can be mapped into memory by user code. 3175 * When this occurs, we must zero out the non-valid portions of the 3176 * page so user code sees what it expects. 3177 * 3178 * Pages are most often semi-valid when the end of a file is mapped 3179 * into memory and the file's size is not page aligned. 3180 * 3181 * Page must be busied? 3182 * No other requirements. 3183 */ 3184 void 3185 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3186 { 3187 int b; 3188 int i; 3189 3190 /* 3191 * Scan the valid bits looking for invalid sections that 3192 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3193 * valid bit may be set ) have already been zerod by 3194 * vm_page_set_validclean(). 3195 */ 3196 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3197 if (i == (PAGE_SIZE / DEV_BSIZE) || 3198 (m->valid & (1 << i)) 3199 ) { 3200 if (i > b) { 3201 pmap_zero_page_area( 3202 VM_PAGE_TO_PHYS(m), 3203 b << DEV_BSHIFT, 3204 (i - b) << DEV_BSHIFT 3205 ); 3206 } 3207 b = i + 1; 3208 } 3209 } 3210 3211 /* 3212 * setvalid is TRUE when we can safely set the zero'd areas 3213 * as being valid. We can do this if there are no cache consistency 3214 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3215 */ 3216 if (setvalid) 3217 m->valid = VM_PAGE_BITS_ALL; 3218 } 3219 3220 /* 3221 * Is a (partial) page valid? Note that the case where size == 0 3222 * will return FALSE in the degenerate case where the page is entirely 3223 * invalid, and TRUE otherwise. 3224 * 3225 * Does not block. 3226 * No other requirements. 3227 */ 3228 int 3229 vm_page_is_valid(vm_page_t m, int base, int size) 3230 { 3231 int bits = vm_page_bits(base, size); 3232 3233 if (m->valid && ((m->valid & bits) == bits)) 3234 return 1; 3235 else 3236 return 0; 3237 } 3238 3239 /* 3240 * update dirty bits from pmap/mmu. May not block. 3241 * 3242 * Caller must hold the page busy 3243 */ 3244 void 3245 vm_page_test_dirty(vm_page_t m) 3246 { 3247 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 3248 vm_page_dirty(m); 3249 } 3250 } 3251 3252 /* 3253 * Register an action, associating it with its vm_page 3254 */ 3255 void 3256 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 3257 { 3258 struct vm_page_action_hash *hash; 3259 int hv; 3260 3261 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 3262 hash = &action_hash[hv]; 3263 3264 lockmgr(&hash->lk, LK_EXCLUSIVE); 3265 vm_page_flag_set(action->m, PG_ACTIONLIST); 3266 action->event = event; 3267 LIST_INSERT_HEAD(&hash->list, action, entry); 3268 lockmgr(&hash->lk, LK_RELEASE); 3269 } 3270 3271 /* 3272 * Unregister an action, disassociating it from its related vm_page 3273 */ 3274 void 3275 vm_page_unregister_action(vm_page_action_t action) 3276 { 3277 struct vm_page_action_hash *hash; 3278 int hv; 3279 3280 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 3281 hash = &action_hash[hv]; 3282 lockmgr(&hash->lk, LK_EXCLUSIVE); 3283 if (action->event != VMEVENT_NONE) { 3284 action->event = VMEVENT_NONE; 3285 LIST_REMOVE(action, entry); 3286 3287 if (LIST_EMPTY(&hash->list)) 3288 vm_page_flag_clear(action->m, PG_ACTIONLIST); 3289 } 3290 lockmgr(&hash->lk, LK_RELEASE); 3291 } 3292 3293 /* 3294 * Issue an event on a VM page. Corresponding action structures are 3295 * removed from the page's list and called. 3296 * 3297 * If the vm_page has no more pending action events we clear its 3298 * PG_ACTIONLIST flag. 3299 */ 3300 void 3301 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 3302 { 3303 struct vm_page_action_hash *hash; 3304 struct vm_page_action *scan; 3305 struct vm_page_action *next; 3306 int hv; 3307 int all; 3308 3309 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 3310 hash = &action_hash[hv]; 3311 all = 1; 3312 3313 lockmgr(&hash->lk, LK_EXCLUSIVE); 3314 LIST_FOREACH_MUTABLE(scan, &hash->list, entry, next) { 3315 if (scan->m == m) { 3316 if (scan->event == event) { 3317 scan->event = VMEVENT_NONE; 3318 LIST_REMOVE(scan, entry); 3319 scan->func(m, scan); 3320 /* XXX */ 3321 } else { 3322 all = 0; 3323 } 3324 } 3325 } 3326 if (all) 3327 vm_page_flag_clear(m, PG_ACTIONLIST); 3328 lockmgr(&hash->lk, LK_RELEASE); 3329 } 3330 3331 #include "opt_ddb.h" 3332 #ifdef DDB 3333 #include <sys/kernel.h> 3334 3335 #include <ddb/ddb.h> 3336 3337 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3338 { 3339 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3340 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3341 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3342 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3343 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3344 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3345 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3346 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3347 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3348 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3349 } 3350 3351 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3352 { 3353 int i; 3354 db_printf("PQ_FREE:"); 3355 for (i = 0; i < PQ_L2_SIZE; i++) { 3356 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3357 } 3358 db_printf("\n"); 3359 3360 db_printf("PQ_CACHE:"); 3361 for(i = 0; i < PQ_L2_SIZE; i++) { 3362 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3363 } 3364 db_printf("\n"); 3365 3366 db_printf("PQ_ACTIVE:"); 3367 for(i = 0; i < PQ_L2_SIZE; i++) { 3368 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3369 } 3370 db_printf("\n"); 3371 3372 db_printf("PQ_INACTIVE:"); 3373 for(i = 0; i < PQ_L2_SIZE; i++) { 3374 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3375 } 3376 db_printf("\n"); 3377 } 3378 #endif /* DDB */ 3379