xref: /dflybsd-src/sys/vm/vm_object.c (revision ff10d9548f6b395b5e9c0485daa45a3b236c1572)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object,
101 				    vm_object_t backing_object);
102 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103 					     int pagerflags);
104 static void	vm_object_lock_init(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_getpooltoken(obj);
176 }
177 
178 void
179 vm_object_unlock(vm_object_t obj)
180 {
181 	lwkt_relpooltoken(obj);
182 }
183 
184 static __inline void
185 vm_object_assert_held(vm_object_t obj)
186 {
187 	ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup(obj));
188 }
189 
190 void
191 #ifndef DEBUG_LOCKS
192 vm_object_hold(vm_object_t obj)
193 #else
194 debugvm_object_hold(vm_object_t obj, char *file, int line)
195 #endif
196 {
197 	KKASSERT(obj != NULL);
198 
199 	/*
200 	 * Object must be held (object allocation is stable due to callers
201 	 * context, typically already holding the token on a parent object)
202 	 * prior to potentially blocking on the lock, otherwise the object
203 	 * can get ripped away from us.
204 	 */
205 	refcount_acquire(&obj->hold_count);
206 	vm_object_lock(obj);
207 
208 #if defined(DEBUG_LOCKS)
209 	int i;
210 
211 	i = ffs(~obj->debug_hold_bitmap) - 1;
212 	if (i == -1) {
213 		kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
214 		obj->debug_hold_ovfl = 1;
215 	}
216 
217 	obj->debug_hold_bitmap |= (1 << i);
218 	obj->debug_hold_thrs[i] = curthread;
219 	obj->debug_hold_file[i] = file;
220 	obj->debug_hold_line[i] = line;
221 #endif
222 }
223 
224 /*
225  * Drop the token and hold_count on the object.
226  */
227 void
228 vm_object_drop(vm_object_t obj)
229 {
230 	if (obj == NULL)
231 		return;
232 
233 #if defined(DEBUG_LOCKS)
234 	int found = 0;
235 	int i;
236 
237 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
238 		if ((obj->debug_hold_bitmap & (1 << i)) &&
239 		    (obj->debug_hold_thrs[i] == curthread)) {
240 			obj->debug_hold_bitmap &= ~(1 << i);
241 			obj->debug_hold_thrs[i] = NULL;
242 			obj->debug_hold_file[i] = NULL;
243 			obj->debug_hold_line[i] = 0;
244 			found = 1;
245 			break;
246 		}
247 	}
248 
249 	if (found == 0 && obj->debug_hold_ovfl == 0)
250 		panic("vm_object: attempt to drop hold on non-self-held obj");
251 #endif
252 
253 	/*
254 	 * The lock is a pool token, no new holders should be possible once
255 	 * we drop hold_count 1->0 as there is no longer any way to reference
256 	 * the object.
257 	 */
258 	KKASSERT(obj->hold_count > 0);
259 	if (refcount_release(&obj->hold_count)) {
260 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
261 			zfree(obj_zone, obj);
262 	}
263 	vm_object_unlock(obj);	/* uses pool token, ok to call on freed obj */
264 }
265 
266 /*
267  * Initialize a freshly allocated object
268  *
269  * Used only by vm_object_allocate() and zinitna().
270  *
271  * No requirements.
272  */
273 void
274 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
275 {
276 	int incr;
277 
278 	RB_INIT(&object->rb_memq);
279 	LIST_INIT(&object->shadow_head);
280 
281 	object->type = type;
282 	object->size = size;
283 	object->ref_count = 1;
284 	object->hold_count = 0;
285 	object->flags = 0;
286 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
287 		vm_object_set_flag(object, OBJ_ONEMAPPING);
288 	object->paging_in_progress = 0;
289 	object->resident_page_count = 0;
290 	object->agg_pv_list_count = 0;
291 	object->shadow_count = 0;
292 #ifdef SMP
293 	/* cpu localization twist */
294 	object->pg_color = (int)(intptr_t)curthread;
295 #else
296 	object->pg_color = next_index;
297 #endif
298 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
299 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
300 	else
301 		incr = size;
302 	next_index = (next_index + incr) & PQ_L2_MASK;
303 	object->handle = NULL;
304 	object->backing_object = NULL;
305 	object->backing_object_offset = (vm_ooffset_t)0;
306 
307 	object->generation++;
308 	object->swblock_count = 0;
309 	RB_INIT(&object->swblock_root);
310 	vm_object_lock_init(object);
311 
312 	lwkt_gettoken(&vmobj_token);
313 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
314 	vm_object_count++;
315 	lwkt_reltoken(&vmobj_token);
316 }
317 
318 /*
319  * Initialize the VM objects module.
320  *
321  * Called from the low level boot code only.
322  */
323 void
324 vm_object_init(void)
325 {
326 	TAILQ_INIT(&vm_object_list);
327 
328 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
329 			    &kernel_object);
330 
331 	obj_zone = &obj_zone_store;
332 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
333 		vm_objects_init, VM_OBJECTS_INIT);
334 }
335 
336 void
337 vm_object_init2(void)
338 {
339 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
340 }
341 
342 /*
343  * Allocate and return a new object of the specified type and size.
344  *
345  * No requirements.
346  */
347 vm_object_t
348 vm_object_allocate(objtype_t type, vm_pindex_t size)
349 {
350 	vm_object_t result;
351 
352 	result = (vm_object_t) zalloc(obj_zone);
353 
354 	_vm_object_allocate(type, size, result);
355 
356 	return (result);
357 }
358 
359 /*
360  * Add an additional reference to a vm_object.  The object must already be
361  * held.  The original non-lock version is no longer supported.  The object
362  * must NOT be chain locked by anyone at the time the reference is added.
363  *
364  * Referencing a chain-locked object can blow up the fairly sensitive
365  * ref_count and shadow_count tests in the deallocator.  Most callers
366  * will call vm_object_chain_wait() prior to calling
367  * vm_object_reference_locked() to avoid the case.
368  *
369  * The object must be held.
370  */
371 void
372 vm_object_reference_locked(vm_object_t object)
373 {
374 	KKASSERT(object != NULL);
375 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
376 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
377 	object->ref_count++;
378 	if (object->type == OBJT_VNODE) {
379 		vref(object->handle);
380 		/* XXX what if the vnode is being destroyed? */
381 	}
382 }
383 
384 /*
385  * Object OBJ_CHAINLOCK lock handling.
386  *
387  * The caller can chain-lock backing objects recursively and then
388  * use vm_object_chain_release_all() to undo the whole chain.
389  *
390  * Chain locks are used to prevent collapses and are only applicable
391  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
392  * on other object types are ignored.  This is also important because
393  * it allows e.g. the vnode underlying a memory mapping to take concurrent
394  * faults.
395  *
396  * The object must usually be held on entry, though intermediate
397  * objects need not be held on release.
398  */
399 void
400 vm_object_chain_wait(vm_object_t object)
401 {
402 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
403 	while (object->flags & OBJ_CHAINLOCK) {
404 		vm_object_set_flag(object, OBJ_CHAINWANT);
405 		tsleep(object, 0, "objchain", 0);
406 	}
407 }
408 
409 void
410 vm_object_chain_acquire(vm_object_t object)
411 {
412 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
413 		vm_object_chain_wait(object);
414 		vm_object_set_flag(object, OBJ_CHAINLOCK);
415 	}
416 }
417 
418 void
419 vm_object_chain_release(vm_object_t object)
420 {
421 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
422 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
423 		KKASSERT(object->flags & OBJ_CHAINLOCK);
424 		if (object->flags & OBJ_CHAINWANT) {
425 			vm_object_clear_flag(object,
426 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
427 			wakeup(object);
428 		} else {
429 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
430 		}
431 	}
432 }
433 
434 /*
435  * This releases the entire chain of objects from first_object to and
436  * including stopobj, flowing through object->backing_object.
437  *
438  * We release stopobj first as an optimization as this object is most
439  * likely to be shared across multiple processes.
440  */
441 void
442 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
443 {
444 	vm_object_t backing_object;
445 	vm_object_t object;
446 
447 	vm_object_chain_release(stopobj);
448 	object = first_object;
449 
450 	while (object != stopobj) {
451 		KKASSERT(object);
452 		if (object != first_object)
453 			vm_object_hold(object);
454 		backing_object = object->backing_object;
455 		vm_object_chain_release(object);
456 		if (object != first_object)
457 			vm_object_drop(object);
458 		object = backing_object;
459 	}
460 }
461 
462 /*
463  * Dereference an object and its underlying vnode.
464  *
465  * The object must be held and will be held on return.
466  */
467 static void
468 vm_object_vndeallocate(vm_object_t object)
469 {
470 	struct vnode *vp = (struct vnode *) object->handle;
471 
472 	KASSERT(object->type == OBJT_VNODE,
473 	    ("vm_object_vndeallocate: not a vnode object"));
474 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
475 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
476 #ifdef INVARIANTS
477 	if (object->ref_count == 0) {
478 		vprint("vm_object_vndeallocate", vp);
479 		panic("vm_object_vndeallocate: bad object reference count");
480 	}
481 #endif
482 	object->ref_count--;
483 	if (object->ref_count == 0)
484 		vclrflags(vp, VTEXT);
485 	vrele(vp);
486 }
487 
488 /*
489  * Release a reference to the specified object, gained either through a
490  * vm_object_allocate or a vm_object_reference call.  When all references
491  * are gone, storage associated with this object may be relinquished.
492  *
493  * The caller does not have to hold the object locked but must have control
494  * over the reference in question in order to guarantee that the object
495  * does not get ripped out from under us.
496  */
497 void
498 vm_object_deallocate(vm_object_t object)
499 {
500 	if (object) {
501 		vm_object_hold(object);
502 		vm_object_deallocate_locked(object);
503 		vm_object_drop(object);
504 	}
505 }
506 
507 void
508 vm_object_deallocate_locked(vm_object_t object)
509 {
510 	struct vm_object_dealloc_list *dlist = NULL;
511 	struct vm_object_dealloc_list *dtmp;
512 	vm_object_t temp;
513 	int must_drop = 0;
514 
515 	/*
516 	 * We may chain deallocate object, but additional objects may
517 	 * collect on the dlist which also have to be deallocated.  We
518 	 * must avoid a recursion, vm_object chains can get deep.
519 	 */
520 again:
521 	while (object != NULL) {
522 #if 0
523 		/*
524 		 * Don't rip a ref_count out from under an object undergoing
525 		 * collapse, it will confuse the collapse code.
526 		 */
527 		vm_object_chain_wait(object);
528 #endif
529 		if (object->type == OBJT_VNODE) {
530 			vm_object_vndeallocate(object);
531 			break;
532 		}
533 
534 		if (object->ref_count == 0) {
535 			panic("vm_object_deallocate: object deallocated "
536 			      "too many times: %d", object->type);
537 		}
538 		if (object->ref_count > 2) {
539 			object->ref_count--;
540 			break;
541 		}
542 
543 		/*
544 		 * Here on ref_count of one or two, which are special cases for
545 		 * objects.
546 		 *
547 		 * Nominal ref_count > 1 case if the second ref is not from
548 		 * a shadow.
549 		 */
550 		if (object->ref_count == 2 && object->shadow_count == 0) {
551 			vm_object_set_flag(object, OBJ_ONEMAPPING);
552 			object->ref_count--;
553 			break;
554 		}
555 
556 		/*
557 		 * If the second ref is from a shadow we chain along it
558 		 * upwards if object's handle is exhausted.
559 		 *
560 		 * We have to decrement object->ref_count before potentially
561 		 * collapsing the first shadow object or the collapse code
562 		 * will not be able to handle the degenerate case to remove
563 		 * object.  However, if we do it too early the object can
564 		 * get ripped out from under us.
565 		 */
566 		if (object->ref_count == 2 && object->shadow_count == 1 &&
567 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
568 					       object->type == OBJT_SWAP)) {
569 			temp = LIST_FIRST(&object->shadow_head);
570 			KKASSERT(temp != NULL);
571 			vm_object_hold(temp);
572 
573 			/*
574 			 * Wait for any paging to complete so the collapse
575 			 * doesn't (or isn't likely to) qcollapse.  pip
576 			 * waiting must occur before we acquire the
577 			 * chainlock.
578 			 */
579 			while (
580 				temp->paging_in_progress ||
581 				object->paging_in_progress
582 			) {
583 				vm_object_pip_wait(temp, "objde1");
584 				vm_object_pip_wait(object, "objde2");
585 			}
586 
587 			/*
588 			 * If the parent is locked we have to give up, as
589 			 * otherwise we would be acquiring locks in the
590 			 * wrong order and potentially deadlock.
591 			 */
592 			if (temp->flags & OBJ_CHAINLOCK) {
593 				vm_object_drop(temp);
594 				goto skip;
595 			}
596 			vm_object_chain_acquire(temp);
597 
598 			/*
599 			 * Recheck/retry after the hold and the paging
600 			 * wait, both of which can block us.
601 			 */
602 			if (object->ref_count != 2 ||
603 			    object->shadow_count != 1 ||
604 			    object->handle ||
605 			    LIST_FIRST(&object->shadow_head) != temp ||
606 			    (object->type != OBJT_DEFAULT &&
607 			     object->type != OBJT_SWAP)) {
608 				vm_object_chain_release(temp);
609 				vm_object_drop(temp);
610 				continue;
611 			}
612 
613 			/*
614 			 * We can safely drop object's ref_count now.
615 			 */
616 			KKASSERT(object->ref_count == 2);
617 			object->ref_count--;
618 
619 			/*
620 			 * If our single parent is not collapseable just
621 			 * decrement ref_count (2->1) and stop.
622 			 */
623 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
624 					     temp->type != OBJT_SWAP)) {
625 				vm_object_chain_release(temp);
626 				vm_object_drop(temp);
627 				break;
628 			}
629 
630 			/*
631 			 * At this point we have already dropped object's
632 			 * ref_count so it is possible for a race to
633 			 * deallocate obj out from under us.  Any collapse
634 			 * will re-check the situation.  We must not block
635 			 * until we are able to collapse.
636 			 *
637 			 * Bump temp's ref_count to avoid an unwanted
638 			 * degenerate recursion (can't call
639 			 * vm_object_reference_locked() because it asserts
640 			 * that CHAINLOCK is not set).
641 			 */
642 			temp->ref_count++;
643 			KKASSERT(temp->ref_count > 1);
644 
645 			/*
646 			 * Collapse temp, then deallocate the extra ref
647 			 * formally.
648 			 */
649 			vm_object_collapse(temp, &dlist);
650 			vm_object_chain_release(temp);
651 			if (must_drop) {
652 				vm_object_lock_swap();
653 				vm_object_drop(object);
654 			}
655 			object = temp;
656 			must_drop = 1;
657 			continue;
658 		}
659 
660 		/*
661 		 * Drop the ref and handle termination on the 1->0 transition.
662 		 * We may have blocked above so we have to recheck.
663 		 */
664 skip:
665 		KKASSERT(object->ref_count != 0);
666 		if (object->ref_count >= 2) {
667 			object->ref_count--;
668 			break;
669 		}
670 		KKASSERT(object->ref_count == 1);
671 
672 		/*
673 		 * 1->0 transition.  Chain through the backing_object.
674 		 * Maintain the ref until we've located the backing object,
675 		 * then re-check.
676 		 */
677 		while ((temp = object->backing_object) != NULL) {
678 			vm_object_hold(temp);
679 			if (temp == object->backing_object)
680 				break;
681 			vm_object_drop(temp);
682 		}
683 
684 		/*
685 		 * 1->0 transition verified, retry if ref_count is no longer
686 		 * 1.  Otherwise disconnect the backing_object (temp) and
687 		 * clean up.
688 		 */
689 		if (object->ref_count != 1) {
690 			vm_object_drop(temp);
691 			continue;
692 		}
693 
694 		/*
695 		 * It shouldn't be possible for the object to be chain locked
696 		 * if we're removing the last ref on it.
697 		 */
698 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
699 
700 		if (temp) {
701 			LIST_REMOVE(object, shadow_list);
702 			temp->shadow_count--;
703 			temp->generation++;
704 			object->backing_object = NULL;
705 		}
706 
707 		--object->ref_count;
708 		if ((object->flags & OBJ_DEAD) == 0)
709 			vm_object_terminate(object);
710 		if (must_drop && temp)
711 			vm_object_lock_swap();
712 		if (must_drop)
713 			vm_object_drop(object);
714 		object = temp;
715 		must_drop = 1;
716 	}
717 	if (must_drop && object)
718 		vm_object_drop(object);
719 
720 	/*
721 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
722 	 * on the dlist have a hold count but are not locked.
723 	 */
724 	if ((dtmp = dlist) != NULL) {
725 		dlist = dtmp->next;
726 		object = dtmp->object;
727 		kfree(dtmp, M_TEMP);
728 
729 		vm_object_lock(object);	/* already held, add lock */
730 		must_drop = 1;		/* and we're responsible for it */
731 		goto again;
732 	}
733 }
734 
735 /*
736  * Destroy the specified object, freeing up related resources.
737  *
738  * The object must have zero references.
739  *
740  * The object must held.  The caller is responsible for dropping the object
741  * after terminate returns.  Terminate does NOT drop the object.
742  */
743 static int vm_object_terminate_callback(vm_page_t p, void *data);
744 
745 void
746 vm_object_terminate(vm_object_t object)
747 {
748 	/*
749 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
750 	 * able to safely block.
751 	 */
752 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
753 	KKASSERT((object->flags & OBJ_DEAD) == 0);
754 	vm_object_set_flag(object, OBJ_DEAD);
755 
756 	/*
757 	 * Wait for the pageout daemon to be done with the object
758 	 */
759 	vm_object_pip_wait(object, "objtrm1");
760 
761 	KASSERT(!object->paging_in_progress,
762 		("vm_object_terminate: pageout in progress"));
763 
764 	/*
765 	 * Clean and free the pages, as appropriate. All references to the
766 	 * object are gone, so we don't need to lock it.
767 	 */
768 	if (object->type == OBJT_VNODE) {
769 		struct vnode *vp;
770 
771 		/*
772 		 * Clean pages and flush buffers.
773 		 */
774 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
775 
776 		vp = (struct vnode *) object->handle;
777 		vinvalbuf(vp, V_SAVE, 0, 0);
778 	}
779 
780 	/*
781 	 * Wait for any I/O to complete, after which there had better not
782 	 * be any references left on the object.
783 	 */
784 	vm_object_pip_wait(object, "objtrm2");
785 
786 	if (object->ref_count != 0) {
787 		panic("vm_object_terminate: object with references, "
788 		      "ref_count=%d", object->ref_count);
789 	}
790 
791 	/*
792 	 * Now free any remaining pages. For internal objects, this also
793 	 * removes them from paging queues. Don't free wired pages, just
794 	 * remove them from the object.
795 	 */
796 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
797 				vm_object_terminate_callback, NULL);
798 
799 	/*
800 	 * Let the pager know object is dead.
801 	 */
802 	vm_pager_deallocate(object);
803 
804 	/*
805 	 * Wait for the object hold count to hit 1, clean out pages as
806 	 * we go.  vmobj_token interlocks any race conditions that might
807 	 * pick the object up from the vm_object_list after we have cleared
808 	 * rb_memq.
809 	 */
810 	for (;;) {
811 		if (RB_ROOT(&object->rb_memq) == NULL)
812 			break;
813 		kprintf("vm_object_terminate: Warning, object %p "
814 			"still has %d pages\n",
815 			object, object->resident_page_count);
816 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
817 					vm_object_terminate_callback, NULL);
818 	}
819 
820 	/*
821 	 * There had better not be any pages left
822 	 */
823 	KKASSERT(object->resident_page_count == 0);
824 
825 	/*
826 	 * Remove the object from the global object list.
827 	 */
828 	lwkt_gettoken(&vmobj_token);
829 	TAILQ_REMOVE(&vm_object_list, object, object_list);
830 	vm_object_count--;
831 	lwkt_reltoken(&vmobj_token);
832 	vm_object_dead_wakeup(object);
833 
834 	if (object->ref_count != 0) {
835 		panic("vm_object_terminate2: object with references, "
836 		      "ref_count=%d", object->ref_count);
837 	}
838 
839 	/*
840 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
841 	 *	 the object here.  See vm_object_drop().
842 	 */
843 }
844 
845 /*
846  * The caller must hold the object.
847  */
848 static int
849 vm_object_terminate_callback(vm_page_t p, void *data __unused)
850 {
851 	vm_object_t object;
852 
853 	object = p->object;
854 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
855 	if (object != p->object) {
856 		kprintf("vm_object_terminate: Warning: Encountered "
857 			"busied page %p on queue %d\n", p, p->queue);
858 		vm_page_wakeup(p);
859 	} else if (p->wire_count == 0) {
860 		vm_page_free(p);
861 		mycpu->gd_cnt.v_pfree++;
862 	} else {
863 		if (p->queue != PQ_NONE)
864 			kprintf("vm_object_terminate: Warning: Encountered "
865 				"wired page %p on queue %d\n", p, p->queue);
866 		vm_page_remove(p);
867 		vm_page_wakeup(p);
868 	}
869 	lwkt_yield();
870 	return(0);
871 }
872 
873 /*
874  * The object is dead but still has an object<->pager association.  Sleep
875  * and return.  The caller typically retests the association in a loop.
876  *
877  * The caller must hold the object.
878  */
879 void
880 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
881 {
882 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
883 	if (object->handle) {
884 		vm_object_set_flag(object, OBJ_DEADWNT);
885 		tsleep(object, 0, wmesg, 0);
886 		/* object may be invalid after this point */
887 	}
888 }
889 
890 /*
891  * Wakeup anyone waiting for the object<->pager disassociation on
892  * a dead object.
893  *
894  * The caller must hold the object.
895  */
896 void
897 vm_object_dead_wakeup(vm_object_t object)
898 {
899 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
900 	if (object->flags & OBJ_DEADWNT) {
901 		vm_object_clear_flag(object, OBJ_DEADWNT);
902 		wakeup(object);
903 	}
904 }
905 
906 /*
907  * Clean all dirty pages in the specified range of object.  Leaves page
908  * on whatever queue it is currently on.   If NOSYNC is set then do not
909  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
910  * leaving the object dirty.
911  *
912  * When stuffing pages asynchronously, allow clustering.  XXX we need a
913  * synchronous clustering mode implementation.
914  *
915  * Odd semantics: if start == end, we clean everything.
916  *
917  * The object must be locked? XXX
918  */
919 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
920 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
921 
922 void
923 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
924 		     int flags)
925 {
926 	struct rb_vm_page_scan_info info;
927 	struct vnode *vp;
928 	int wholescan;
929 	int pagerflags;
930 	int generation;
931 
932 	vm_object_hold(object);
933 	if (object->type != OBJT_VNODE ||
934 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
935 		vm_object_drop(object);
936 		return;
937 	}
938 
939 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
940 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
941 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
942 
943 	vp = object->handle;
944 
945 	/*
946 	 * Interlock other major object operations.  This allows us to
947 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
948 	 */
949 	vm_object_set_flag(object, OBJ_CLEANING);
950 
951 	/*
952 	 * Handle 'entire object' case
953 	 */
954 	info.start_pindex = start;
955 	if (end == 0) {
956 		info.end_pindex = object->size - 1;
957 	} else {
958 		info.end_pindex = end - 1;
959 	}
960 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
961 	info.limit = flags;
962 	info.pagerflags = pagerflags;
963 	info.object = object;
964 
965 	/*
966 	 * If cleaning the entire object do a pass to mark the pages read-only.
967 	 * If everything worked out ok, clear OBJ_WRITEABLE and
968 	 * OBJ_MIGHTBEDIRTY.
969 	 */
970 	if (wholescan) {
971 		info.error = 0;
972 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
973 					vm_object_page_clean_pass1, &info);
974 		if (info.error == 0) {
975 			vm_object_clear_flag(object,
976 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
977 			if (object->type == OBJT_VNODE &&
978 			    (vp = (struct vnode *)object->handle) != NULL) {
979 				if (vp->v_flag & VOBJDIRTY)
980 					vclrflags(vp, VOBJDIRTY);
981 			}
982 		}
983 	}
984 
985 	/*
986 	 * Do a pass to clean all the dirty pages we find.
987 	 */
988 	do {
989 		info.error = 0;
990 		generation = object->generation;
991 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
992 					vm_object_page_clean_pass2, &info);
993 	} while (info.error || generation != object->generation);
994 
995 	vm_object_clear_flag(object, OBJ_CLEANING);
996 	vm_object_drop(object);
997 }
998 
999 /*
1000  * The caller must hold the object.
1001  */
1002 static
1003 int
1004 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1005 {
1006 	struct rb_vm_page_scan_info *info = data;
1007 
1008 	vm_page_flag_set(p, PG_CLEANCHK);
1009 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1010 		info->error = 1;
1011 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1012 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1013 		vm_page_wakeup(p);
1014 	} else {
1015 		info->error = 1;
1016 	}
1017 	lwkt_yield();
1018 	return(0);
1019 }
1020 
1021 /*
1022  * The caller must hold the object
1023  */
1024 static
1025 int
1026 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1027 {
1028 	struct rb_vm_page_scan_info *info = data;
1029 	int generation;
1030 
1031 	/*
1032 	 * Do not mess with pages that were inserted after we started
1033 	 * the cleaning pass.
1034 	 */
1035 	if ((p->flags & PG_CLEANCHK) == 0)
1036 		goto done;
1037 
1038 	generation = info->object->generation;
1039 	vm_page_busy_wait(p, TRUE, "vpcwai");
1040 	if (p->object != info->object ||
1041 	    info->object->generation != generation) {
1042 		info->error = 1;
1043 		vm_page_wakeup(p);
1044 		goto done;
1045 	}
1046 
1047 	/*
1048 	 * Before wasting time traversing the pmaps, check for trivial
1049 	 * cases where the page cannot be dirty.
1050 	 */
1051 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1052 		KKASSERT((p->dirty & p->valid) == 0);
1053 		vm_page_wakeup(p);
1054 		goto done;
1055 	}
1056 
1057 	/*
1058 	 * Check whether the page is dirty or not.  The page has been set
1059 	 * to be read-only so the check will not race a user dirtying the
1060 	 * page.
1061 	 */
1062 	vm_page_test_dirty(p);
1063 	if ((p->dirty & p->valid) == 0) {
1064 		vm_page_flag_clear(p, PG_CLEANCHK);
1065 		vm_page_wakeup(p);
1066 		goto done;
1067 	}
1068 
1069 	/*
1070 	 * If we have been asked to skip nosync pages and this is a
1071 	 * nosync page, skip it.  Note that the object flags were
1072 	 * not cleared in this case (because pass1 will have returned an
1073 	 * error), so we do not have to set them.
1074 	 */
1075 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1076 		vm_page_flag_clear(p, PG_CLEANCHK);
1077 		vm_page_wakeup(p);
1078 		goto done;
1079 	}
1080 
1081 	/*
1082 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1083 	 * the pages that get successfully flushed.  Set info->error if
1084 	 * we raced an object modification.
1085 	 */
1086 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1087 done:
1088 	lwkt_yield();
1089 	return(0);
1090 }
1091 
1092 /*
1093  * Collect the specified page and nearby pages and flush them out.
1094  * The number of pages flushed is returned.  The passed page is busied
1095  * by the caller and we are responsible for its disposition.
1096  *
1097  * The caller must hold the object.
1098  */
1099 static int
1100 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1101 {
1102 	int runlen;
1103 	int error;
1104 	int maxf;
1105 	int chkb;
1106 	int maxb;
1107 	int i;
1108 	vm_pindex_t pi;
1109 	vm_page_t maf[vm_pageout_page_count];
1110 	vm_page_t mab[vm_pageout_page_count];
1111 	vm_page_t ma[vm_pageout_page_count];
1112 
1113 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1114 
1115 	pi = p->pindex;
1116 
1117 	maxf = 0;
1118 	for(i = 1; i < vm_pageout_page_count; i++) {
1119 		vm_page_t tp;
1120 
1121 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1122 		if (error)
1123 			break;
1124 		if (tp == NULL)
1125 			break;
1126 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1127 		    (tp->flags & PG_CLEANCHK) == 0) {
1128 			vm_page_wakeup(tp);
1129 			break;
1130 		}
1131 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1132 			vm_page_flag_clear(tp, PG_CLEANCHK);
1133 			vm_page_wakeup(tp);
1134 			break;
1135 		}
1136 		vm_page_test_dirty(tp);
1137 		if ((tp->dirty & tp->valid) == 0) {
1138 			vm_page_flag_clear(tp, PG_CLEANCHK);
1139 			vm_page_wakeup(tp);
1140 			break;
1141 		}
1142 		maf[i - 1] = tp;
1143 		maxf++;
1144 	}
1145 
1146 	maxb = 0;
1147 	chkb = vm_pageout_page_count -  maxf;
1148 	/*
1149 	 * NOTE: chkb can be 0
1150 	 */
1151 	for(i = 1; chkb && i < chkb; i++) {
1152 		vm_page_t tp;
1153 
1154 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1155 		if (error)
1156 			break;
1157 		if (tp == NULL)
1158 			break;
1159 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1160 		    (tp->flags & PG_CLEANCHK) == 0) {
1161 			vm_page_wakeup(tp);
1162 			break;
1163 		}
1164 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1165 			vm_page_flag_clear(tp, PG_CLEANCHK);
1166 			vm_page_wakeup(tp);
1167 			break;
1168 		}
1169 		vm_page_test_dirty(tp);
1170 		if ((tp->dirty & tp->valid) == 0) {
1171 			vm_page_flag_clear(tp, PG_CLEANCHK);
1172 			vm_page_wakeup(tp);
1173 			break;
1174 		}
1175 		mab[i - 1] = tp;
1176 		maxb++;
1177 	}
1178 
1179 	/*
1180 	 * All pages in the maf[] and mab[] array are busied.
1181 	 */
1182 	for (i = 0; i < maxb; i++) {
1183 		int index = (maxb - i) - 1;
1184 		ma[index] = mab[i];
1185 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1186 	}
1187 	vm_page_flag_clear(p, PG_CLEANCHK);
1188 	ma[maxb] = p;
1189 	for(i = 0; i < maxf; i++) {
1190 		int index = (maxb + i) + 1;
1191 		ma[index] = maf[i];
1192 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1193 	}
1194 	runlen = maxb + maxf + 1;
1195 
1196 	for (i = 0; i < runlen; i++)
1197 		vm_page_hold(ma[i]);
1198 
1199 	vm_pageout_flush(ma, runlen, pagerflags);
1200 
1201 	for (i = 0; i < runlen; i++) {
1202 		if (ma[i]->valid & ma[i]->dirty) {
1203 			vm_page_protect(ma[i], VM_PROT_READ);
1204 			vm_page_flag_set(ma[i], PG_CLEANCHK);
1205 
1206 			/*
1207 			 * maxf will end up being the actual number of pages
1208 			 * we wrote out contiguously, non-inclusive of the
1209 			 * first page.  We do not count look-behind pages.
1210 			 */
1211 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1212 				maxf = i - maxb - 1;
1213 		}
1214 		vm_page_unhold(ma[i]);
1215 	}
1216 	return(maxf + 1);
1217 }
1218 
1219 /*
1220  * Same as vm_object_pmap_copy, except range checking really
1221  * works, and is meant for small sections of an object.
1222  *
1223  * This code protects resident pages by making them read-only
1224  * and is typically called on a fork or split when a page
1225  * is converted to copy-on-write.
1226  *
1227  * NOTE: If the page is already at VM_PROT_NONE, calling
1228  * vm_page_protect will have no effect.
1229  */
1230 void
1231 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1232 {
1233 	vm_pindex_t idx;
1234 	vm_page_t p;
1235 
1236 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1237 		return;
1238 
1239 	vm_object_hold(object);
1240 	for (idx = start; idx < end; idx++) {
1241 		p = vm_page_lookup(object, idx);
1242 		if (p == NULL)
1243 			continue;
1244 		vm_page_protect(p, VM_PROT_READ);
1245 	}
1246 	vm_object_drop(object);
1247 }
1248 
1249 /*
1250  * Removes all physical pages in the specified object range from all
1251  * physical maps.
1252  *
1253  * The object must *not* be locked.
1254  */
1255 
1256 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1257 
1258 void
1259 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1260 {
1261 	struct rb_vm_page_scan_info info;
1262 
1263 	if (object == NULL)
1264 		return;
1265 	info.start_pindex = start;
1266 	info.end_pindex = end - 1;
1267 
1268 	vm_object_hold(object);
1269 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1270 				vm_object_pmap_remove_callback, &info);
1271 	if (start == 0 && end == object->size)
1272 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1273 	vm_object_drop(object);
1274 }
1275 
1276 /*
1277  * The caller must hold the object
1278  */
1279 static int
1280 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1281 {
1282 	vm_page_protect(p, VM_PROT_NONE);
1283 	return(0);
1284 }
1285 
1286 /*
1287  * Implements the madvise function at the object/page level.
1288  *
1289  * MADV_WILLNEED	(any object)
1290  *
1291  *	Activate the specified pages if they are resident.
1292  *
1293  * MADV_DONTNEED	(any object)
1294  *
1295  *	Deactivate the specified pages if they are resident.
1296  *
1297  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1298  *
1299  *	Deactivate and clean the specified pages if they are
1300  *	resident.  This permits the process to reuse the pages
1301  *	without faulting or the kernel to reclaim the pages
1302  *	without I/O.
1303  *
1304  * No requirements.
1305  */
1306 void
1307 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1308 {
1309 	vm_pindex_t end, tpindex;
1310 	vm_object_t tobject;
1311 	vm_object_t xobj;
1312 	vm_page_t m;
1313 	int error;
1314 
1315 	if (object == NULL)
1316 		return;
1317 
1318 	end = pindex + count;
1319 
1320 	vm_object_hold(object);
1321 	tobject = object;
1322 
1323 	/*
1324 	 * Locate and adjust resident pages
1325 	 */
1326 	for (; pindex < end; pindex += 1) {
1327 relookup:
1328 		if (tobject != object)
1329 			vm_object_drop(tobject);
1330 		tobject = object;
1331 		tpindex = pindex;
1332 shadowlookup:
1333 		/*
1334 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1335 		 * and those pages must be OBJ_ONEMAPPING.
1336 		 */
1337 		if (advise == MADV_FREE) {
1338 			if ((tobject->type != OBJT_DEFAULT &&
1339 			     tobject->type != OBJT_SWAP) ||
1340 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1341 				continue;
1342 			}
1343 		}
1344 
1345 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1346 
1347 		if (error) {
1348 			vm_page_sleep_busy(m, TRUE, "madvpo");
1349 			goto relookup;
1350 		}
1351 		if (m == NULL) {
1352 			/*
1353 			 * There may be swap even if there is no backing page
1354 			 */
1355 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1356 				swap_pager_freespace(tobject, tpindex, 1);
1357 
1358 			/*
1359 			 * next object
1360 			 */
1361 			while ((xobj = tobject->backing_object) != NULL) {
1362 				KKASSERT(xobj != object);
1363 				vm_object_hold(xobj);
1364 				if (xobj == tobject->backing_object)
1365 					break;
1366 				vm_object_drop(xobj);
1367 			}
1368 			if (xobj == NULL)
1369 				continue;
1370 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1371 			if (tobject != object) {
1372 				vm_object_lock_swap();
1373 				vm_object_drop(tobject);
1374 			}
1375 			tobject = xobj;
1376 			goto shadowlookup;
1377 		}
1378 
1379 		/*
1380 		 * If the page is not in a normal active state, we skip it.
1381 		 * If the page is not managed there are no page queues to
1382 		 * mess with.  Things can break if we mess with pages in
1383 		 * any of the below states.
1384 		 */
1385 		if (
1386 		    /*m->hold_count ||*/
1387 		    m->wire_count ||
1388 		    (m->flags & PG_UNMANAGED) ||
1389 		    m->valid != VM_PAGE_BITS_ALL
1390 		) {
1391 			vm_page_wakeup(m);
1392 			continue;
1393 		}
1394 
1395 		/*
1396 		 * Theoretically once a page is known not to be busy, an
1397 		 * interrupt cannot come along and rip it out from under us.
1398 		 */
1399 
1400 		if (advise == MADV_WILLNEED) {
1401 			vm_page_activate(m);
1402 		} else if (advise == MADV_DONTNEED) {
1403 			vm_page_dontneed(m);
1404 		} else if (advise == MADV_FREE) {
1405 			/*
1406 			 * Mark the page clean.  This will allow the page
1407 			 * to be freed up by the system.  However, such pages
1408 			 * are often reused quickly by malloc()/free()
1409 			 * so we do not do anything that would cause
1410 			 * a page fault if we can help it.
1411 			 *
1412 			 * Specifically, we do not try to actually free
1413 			 * the page now nor do we try to put it in the
1414 			 * cache (which would cause a page fault on reuse).
1415 			 *
1416 			 * But we do make the page is freeable as we
1417 			 * can without actually taking the step of unmapping
1418 			 * it.
1419 			 */
1420 			pmap_clear_modify(m);
1421 			m->dirty = 0;
1422 			m->act_count = 0;
1423 			vm_page_dontneed(m);
1424 			if (tobject->type == OBJT_SWAP)
1425 				swap_pager_freespace(tobject, tpindex, 1);
1426 		}
1427 		vm_page_wakeup(m);
1428 	}
1429 	if (tobject != object)
1430 		vm_object_drop(tobject);
1431 	vm_object_drop(object);
1432 }
1433 
1434 /*
1435  * Create a new object which is backed by the specified existing object
1436  * range.  Replace the pointer and offset that was pointing at the existing
1437  * object with the pointer/offset for the new object.
1438  *
1439  * No other requirements.
1440  */
1441 void
1442 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1443 		 int addref)
1444 {
1445 	vm_object_t source;
1446 	vm_object_t result;
1447 
1448 	source = *objectp;
1449 
1450 	/*
1451 	 * Don't create the new object if the old object isn't shared.
1452 	 * We have to chain wait before adding the reference to avoid
1453 	 * racing a collapse or deallocation.
1454 	 *
1455 	 * Add the additional ref to source here to avoid racing a later
1456 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1457 	 * addref is TRUE or not in this case because the original object
1458 	 * will be shadowed.
1459 	 */
1460 	if (source) {
1461 		vm_object_hold(source);
1462 		vm_object_chain_wait(source);
1463 		if (source->ref_count == 1 &&
1464 		    source->handle == NULL &&
1465 		    (source->type == OBJT_DEFAULT ||
1466 		     source->type == OBJT_SWAP)) {
1467 			vm_object_drop(source);
1468 			if (addref) {
1469 				vm_object_reference_locked(source);
1470 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1471 			}
1472 			return;
1473 		}
1474 		vm_object_reference_locked(source);
1475 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1476 	}
1477 
1478 	/*
1479 	 * Allocate a new object with the given length.  The new object
1480 	 * is returned referenced but we may have to add another one.
1481 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1482 	 * (typically because the caller is about to clone a vm_map_entry).
1483 	 *
1484 	 * The source object currently has an extra reference to prevent
1485 	 * collapses into it while we mess with its shadow list, which
1486 	 * we will remove later in this routine.
1487 	 */
1488 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1489 		panic("vm_object_shadow: no object for shadowing");
1490 	vm_object_hold(result);
1491 	if (addref) {
1492 		vm_object_reference_locked(result);
1493 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1494 	}
1495 
1496 	/*
1497 	 * The new object shadows the source object.  Chain wait before
1498 	 * adjusting shadow_count or the shadow list to avoid races.
1499 	 *
1500 	 * Try to optimize the result object's page color when shadowing
1501 	 * in order to maintain page coloring consistency in the combined
1502 	 * shadowed object.
1503 	 */
1504 	KKASSERT(result->backing_object == NULL);
1505 	result->backing_object = source;
1506 	if (source) {
1507 		vm_object_chain_wait(source);
1508 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1509 		source->shadow_count++;
1510 		source->generation++;
1511 #ifdef SMP
1512 		/* cpu localization twist */
1513 		result->pg_color = (int)(intptr_t)curthread;
1514 #else
1515 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1516 				   PQ_L2_MASK;
1517 #endif
1518 	}
1519 
1520 	/*
1521 	 * Adjust the return storage.  Drop the ref on source before
1522 	 * returning.
1523 	 */
1524 	result->backing_object_offset = *offset;
1525 	vm_object_drop(result);
1526 	*offset = 0;
1527 	if (source) {
1528 		vm_object_deallocate_locked(source);
1529 		vm_object_drop(source);
1530 	}
1531 
1532 	/*
1533 	 * Return the new things
1534 	 */
1535 	*objectp = result;
1536 }
1537 
1538 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1539 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1540 #define	OBSC_COLLAPSE_WAIT	0x0004
1541 
1542 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1543 
1544 /*
1545  * The caller must hold the object.
1546  */
1547 static __inline int
1548 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1549 {
1550 	struct rb_vm_page_scan_info info;
1551 
1552 	vm_object_assert_held(object);
1553 	vm_object_assert_held(backing_object);
1554 
1555 	KKASSERT(backing_object == object->backing_object);
1556 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1557 
1558 	/*
1559 	 * Initial conditions
1560 	 */
1561 	if (op & OBSC_TEST_ALL_SHADOWED) {
1562 		/*
1563 		 * We do not want to have to test for the existence of
1564 		 * swap pages in the backing object.  XXX but with the
1565 		 * new swapper this would be pretty easy to do.
1566 		 *
1567 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1568 		 * been ZFOD faulted yet?  If we do not test for this, the
1569 		 * shadow test may succeed! XXX
1570 		 */
1571 		if (backing_object->type != OBJT_DEFAULT)
1572 			return(0);
1573 	}
1574 	if (op & OBSC_COLLAPSE_WAIT) {
1575 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1576 		vm_object_set_flag(backing_object, OBJ_DEAD);
1577 		lwkt_gettoken(&vmobj_token);
1578 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1579 		vm_object_count--;
1580 		lwkt_reltoken(&vmobj_token);
1581 		vm_object_dead_wakeup(backing_object);
1582 	}
1583 
1584 	/*
1585 	 * Our scan.   We have to retry if a negative error code is returned,
1586 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1587 	 * the scan had to be stopped because the parent does not completely
1588 	 * shadow the child.
1589 	 */
1590 	info.object = object;
1591 	info.backing_object = backing_object;
1592 	info.limit = op;
1593 	do {
1594 		info.error = 1;
1595 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1596 					vm_object_backing_scan_callback,
1597 					&info);
1598 	} while (info.error < 0);
1599 
1600 	return(info.error);
1601 }
1602 
1603 /*
1604  * The caller must hold the object.
1605  */
1606 static int
1607 vm_object_backing_scan_callback(vm_page_t p, void *data)
1608 {
1609 	struct rb_vm_page_scan_info *info = data;
1610 	vm_object_t backing_object;
1611 	vm_object_t object;
1612 	vm_pindex_t new_pindex;
1613 	vm_pindex_t backing_offset_index;
1614 	int op;
1615 
1616 	new_pindex = p->pindex - info->backing_offset_index;
1617 	op = info->limit;
1618 	object = info->object;
1619 	backing_object = info->backing_object;
1620 	backing_offset_index = info->backing_offset_index;
1621 
1622 	if (op & OBSC_TEST_ALL_SHADOWED) {
1623 		vm_page_t pp;
1624 
1625 		/*
1626 		 * Ignore pages outside the parent object's range
1627 		 * and outside the parent object's mapping of the
1628 		 * backing object.
1629 		 *
1630 		 * note that we do not busy the backing object's
1631 		 * page.
1632 		 */
1633 		if (
1634 		    p->pindex < backing_offset_index ||
1635 		    new_pindex >= object->size
1636 		) {
1637 			return(0);
1638 		}
1639 
1640 		/*
1641 		 * See if the parent has the page or if the parent's
1642 		 * object pager has the page.  If the parent has the
1643 		 * page but the page is not valid, the parent's
1644 		 * object pager must have the page.
1645 		 *
1646 		 * If this fails, the parent does not completely shadow
1647 		 * the object and we might as well give up now.
1648 		 */
1649 
1650 		pp = vm_page_lookup(object, new_pindex);
1651 		if ((pp == NULL || pp->valid == 0) &&
1652 		    !vm_pager_has_page(object, new_pindex)
1653 		) {
1654 			info->error = 0;	/* problemo */
1655 			return(-1);		/* stop the scan */
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * Check for busy page
1661 	 */
1662 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1663 		vm_page_t pp;
1664 
1665 		if (vm_page_busy_try(p, TRUE)) {
1666 			if (op & OBSC_COLLAPSE_NOWAIT) {
1667 				return(0);
1668 			} else {
1669 				/*
1670 				 * If we slept, anything could have
1671 				 * happened.   Ask that the scan be restarted.
1672 				 *
1673 				 * Since the object is marked dead, the
1674 				 * backing offset should not have changed.
1675 				 */
1676 				vm_page_sleep_busy(p, TRUE, "vmocol");
1677 				info->error = -1;
1678 				return(-1);
1679 			}
1680 		}
1681 		if (op & OBSC_COLLAPSE_NOWAIT) {
1682 			if (p->valid == 0 /*|| p->hold_count*/ ||
1683 			    p->wire_count) {
1684 				vm_page_wakeup(p);
1685 				return(0);
1686 			}
1687 		} else {
1688 			/* XXX what if p->valid == 0 , hold_count, etc? */
1689 		}
1690 
1691 		KASSERT(
1692 		    p->object == backing_object,
1693 		    ("vm_object_qcollapse(): object mismatch")
1694 		);
1695 
1696 		/*
1697 		 * Destroy any associated swap
1698 		 */
1699 		if (backing_object->type == OBJT_SWAP)
1700 			swap_pager_freespace(backing_object, p->pindex, 1);
1701 
1702 		if (
1703 		    p->pindex < backing_offset_index ||
1704 		    new_pindex >= object->size
1705 		) {
1706 			/*
1707 			 * Page is out of the parent object's range, we
1708 			 * can simply destroy it.
1709 			 */
1710 			vm_page_protect(p, VM_PROT_NONE);
1711 			vm_page_free(p);
1712 			return(0);
1713 		}
1714 
1715 		pp = vm_page_lookup(object, new_pindex);
1716 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1717 			/*
1718 			 * page already exists in parent OR swap exists
1719 			 * for this location in the parent.  Destroy
1720 			 * the original page from the backing object.
1721 			 *
1722 			 * Leave the parent's page alone
1723 			 */
1724 			vm_page_protect(p, VM_PROT_NONE);
1725 			vm_page_free(p);
1726 			return(0);
1727 		}
1728 
1729 		/*
1730 		 * Page does not exist in parent, rename the
1731 		 * page from the backing object to the main object.
1732 		 *
1733 		 * If the page was mapped to a process, it can remain
1734 		 * mapped through the rename.
1735 		 */
1736 		if ((p->queue - p->pc) == PQ_CACHE)
1737 			vm_page_deactivate(p);
1738 
1739 		vm_page_rename(p, object, new_pindex);
1740 		vm_page_wakeup(p);
1741 		/* page automatically made dirty by rename */
1742 	}
1743 	return(0);
1744 }
1745 
1746 /*
1747  * This version of collapse allows the operation to occur earlier and
1748  * when paging_in_progress is true for an object...  This is not a complete
1749  * operation, but should plug 99.9% of the rest of the leaks.
1750  *
1751  * The caller must hold the object and backing_object and both must be
1752  * chainlocked.
1753  *
1754  * (only called from vm_object_collapse)
1755  */
1756 static void
1757 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1758 {
1759 	if (backing_object->ref_count == 1) {
1760 		backing_object->ref_count += 2;
1761 		vm_object_backing_scan(object, backing_object,
1762 				       OBSC_COLLAPSE_NOWAIT);
1763 		backing_object->ref_count -= 2;
1764 	}
1765 }
1766 
1767 /*
1768  * Collapse an object with the object backing it.  Pages in the backing
1769  * object are moved into the parent, and the backing object is deallocated.
1770  * Any conflict is resolved in favor of the parent's existing pages.
1771  *
1772  * object must be held and chain-locked on call.
1773  *
1774  * The caller must have an extra ref on object to prevent a race from
1775  * destroying it during the collapse.
1776  */
1777 void
1778 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1779 {
1780 	struct vm_object_dealloc_list *dlist = NULL;
1781 	vm_object_t backing_object;
1782 
1783 	/*
1784 	 * Only one thread is attempting a collapse at any given moment.
1785 	 * There are few restrictions for (object) that callers of this
1786 	 * function check so reentrancy is likely.
1787 	 */
1788 	KKASSERT(object != NULL);
1789 	vm_object_assert_held(object);
1790 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1791 
1792 	for (;;) {
1793 		vm_object_t bbobj;
1794 		int dodealloc;
1795 
1796 		/*
1797 		 * We have to hold the backing object, check races.
1798 		 */
1799 		while ((backing_object = object->backing_object) != NULL) {
1800 			vm_object_hold(backing_object);
1801 			if (backing_object == object->backing_object)
1802 				break;
1803 			vm_object_drop(backing_object);
1804 		}
1805 
1806 		/*
1807 		 * No backing object?  Nothing to collapse then.
1808 		 */
1809 		if (backing_object == NULL)
1810 			break;
1811 
1812 		/*
1813 		 * You can't collapse with a non-default/non-swap object.
1814 		 */
1815 		if (backing_object->type != OBJT_DEFAULT &&
1816 		    backing_object->type != OBJT_SWAP) {
1817 			vm_object_drop(backing_object);
1818 			backing_object = NULL;
1819 			break;
1820 		}
1821 
1822 		/*
1823 		 * Chain-lock the backing object too because if we
1824 		 * successfully merge its pages into the top object we
1825 		 * will collapse backing_object->backing_object as the
1826 		 * new backing_object.  Re-check that it is still our
1827 		 * backing object.
1828 		 */
1829 		vm_object_chain_acquire(backing_object);
1830 		if (backing_object != object->backing_object) {
1831 			vm_object_chain_release(backing_object);
1832 			vm_object_drop(backing_object);
1833 			continue;
1834 		}
1835 
1836 		/*
1837 		 * we check the backing object first, because it is most likely
1838 		 * not collapsable.
1839 		 */
1840 		if (backing_object->handle != NULL ||
1841 		    (backing_object->type != OBJT_DEFAULT &&
1842 		     backing_object->type != OBJT_SWAP) ||
1843 		    (backing_object->flags & OBJ_DEAD) ||
1844 		    object->handle != NULL ||
1845 		    (object->type != OBJT_DEFAULT &&
1846 		     object->type != OBJT_SWAP) ||
1847 		    (object->flags & OBJ_DEAD)) {
1848 			break;
1849 		}
1850 
1851 		/*
1852 		 * If paging is in progress we can't do a normal collapse.
1853 		 */
1854 		if (
1855 		    object->paging_in_progress != 0 ||
1856 		    backing_object->paging_in_progress != 0
1857 		) {
1858 			vm_object_qcollapse(object, backing_object);
1859 			break;
1860 		}
1861 
1862 		/*
1863 		 * We know that we can either collapse the backing object (if
1864 		 * the parent is the only reference to it) or (perhaps) have
1865 		 * the parent bypass the object if the parent happens to shadow
1866 		 * all the resident pages in the entire backing object.
1867 		 *
1868 		 * This is ignoring pager-backed pages such as swap pages.
1869 		 * vm_object_backing_scan fails the shadowing test in this
1870 		 * case.
1871 		 */
1872 		if (backing_object->ref_count == 1) {
1873 			/*
1874 			 * If there is exactly one reference to the backing
1875 			 * object, we can collapse it into the parent.
1876 			 */
1877 			KKASSERT(object->backing_object == backing_object);
1878 			vm_object_backing_scan(object, backing_object,
1879 					       OBSC_COLLAPSE_WAIT);
1880 
1881 			/*
1882 			 * Move the pager from backing_object to object.
1883 			 */
1884 			if (backing_object->type == OBJT_SWAP) {
1885 				vm_object_pip_add(backing_object, 1);
1886 
1887 				/*
1888 				 * scrap the paging_offset junk and do a
1889 				 * discrete copy.  This also removes major
1890 				 * assumptions about how the swap-pager
1891 				 * works from where it doesn't belong.  The
1892 				 * new swapper is able to optimize the
1893 				 * destroy-source case.
1894 				 */
1895 				vm_object_pip_add(object, 1);
1896 				swap_pager_copy(backing_object, object,
1897 				    OFF_TO_IDX(object->backing_object_offset),
1898 				    TRUE);
1899 				vm_object_pip_wakeup(object);
1900 				vm_object_pip_wakeup(backing_object);
1901 			}
1902 
1903 			/*
1904 			 * Object now shadows whatever backing_object did.
1905 			 * Remove object from backing_object's shadow_list.
1906 			 */
1907 			LIST_REMOVE(object, shadow_list);
1908 			KKASSERT(object->backing_object == backing_object);
1909 			backing_object->shadow_count--;
1910 			backing_object->generation++;
1911 
1912 			/*
1913 			 * backing_object->backing_object moves from within
1914 			 * backing_object to within object.
1915 			 */
1916 			while ((bbobj = backing_object->backing_object) != NULL) {
1917 				vm_object_hold(bbobj);
1918 				if (bbobj == backing_object->backing_object)
1919 					break;
1920 				vm_object_drop(bbobj);
1921 			}
1922 			if (bbobj) {
1923 				LIST_REMOVE(backing_object, shadow_list);
1924 				bbobj->shadow_count--;
1925 				bbobj->generation++;
1926 				backing_object->backing_object = NULL;
1927 			}
1928 			object->backing_object = bbobj;
1929 			if (bbobj) {
1930 				LIST_INSERT_HEAD(&bbobj->shadow_head,
1931 						 object, shadow_list);
1932 				bbobj->shadow_count++;
1933 				bbobj->generation++;
1934 			}
1935 
1936 			object->backing_object_offset +=
1937 				backing_object->backing_object_offset;
1938 
1939 			vm_object_drop(bbobj);
1940 
1941 			/*
1942 			 * Discard the old backing_object.  Nothing should be
1943 			 * able to ref it, other than a vm_map_split(),
1944 			 * and vm_map_split() will stall on our chain lock.
1945 			 * And we control the parent so it shouldn't be
1946 			 * possible for it to go away either.
1947 			 *
1948 			 * Since the backing object has no pages, no pager
1949 			 * left, and no object references within it, all
1950 			 * that is necessary is to dispose of it.
1951 			 */
1952 			KASSERT(backing_object->ref_count == 1,
1953 				("backing_object %p was somehow "
1954 				 "re-referenced during collapse!",
1955 				 backing_object));
1956 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1957 				("backing_object %p somehow has left "
1958 				 "over pages during collapse!",
1959 				 backing_object));
1960 
1961 			/*
1962 			 * The object can be destroyed.
1963 			 *
1964 			 * XXX just fall through and dodealloc instead
1965 			 *     of forcing destruction?
1966 			 */
1967 			--backing_object->ref_count;
1968 			if ((backing_object->flags & OBJ_DEAD) == 0)
1969 				vm_object_terminate(backing_object);
1970 			object_collapses++;
1971 			dodealloc = 0;
1972 		} else {
1973 			/*
1974 			 * If we do not entirely shadow the backing object,
1975 			 * there is nothing we can do so we give up.
1976 			 */
1977 			if (vm_object_backing_scan(object, backing_object,
1978 						OBSC_TEST_ALL_SHADOWED) == 0) {
1979 				break;
1980 			}
1981 
1982 			/*
1983 			 * bbobj is backing_object->backing_object.  Since
1984 			 * object completely shadows backing_object we can
1985 			 * bypass it and become backed by bbobj instead.
1986 			 */
1987 			while ((bbobj = backing_object->backing_object) != NULL) {
1988 				vm_object_hold(bbobj);
1989 				if (bbobj == backing_object->backing_object)
1990 					break;
1991 				vm_object_drop(bbobj);
1992 			}
1993 
1994 			/*
1995 			 * Make object shadow bbobj instead of backing_object.
1996 			 * Remove object from backing_object's shadow list.
1997 			 *
1998 			 * Deallocating backing_object will not remove
1999 			 * it, since its reference count is at least 2.
2000 			 */
2001 			KKASSERT(object->backing_object == backing_object);
2002 			LIST_REMOVE(object, shadow_list);
2003 			backing_object->shadow_count--;
2004 			backing_object->generation++;
2005 
2006 			/*
2007 			 * Add a ref to bbobj, bbobj now shadows object.
2008 			 *
2009 			 * NOTE: backing_object->backing_object still points
2010 			 *	 to bbobj.  That relationship remains intact
2011 			 *	 because backing_object has > 1 ref, so
2012 			 *	 someone else is pointing to it (hence why
2013 			 *	 we can't collapse it into object and can
2014 			 *	 only handle the all-shadowed bypass case).
2015 			 */
2016 			if (bbobj) {
2017 				vm_object_chain_wait(bbobj);
2018 				vm_object_reference_locked(bbobj);
2019 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2020 						 object, shadow_list);
2021 				bbobj->shadow_count++;
2022 				bbobj->generation++;
2023 				object->backing_object_offset +=
2024 					backing_object->backing_object_offset;
2025 				object->backing_object = bbobj;
2026 				vm_object_drop(bbobj);
2027 			} else {
2028 				object->backing_object = NULL;
2029 			}
2030 
2031 			/*
2032 			 * Drop the reference count on backing_object.  To
2033 			 * handle ref_count races properly we can't assume
2034 			 * that the ref_count is still at least 2 so we
2035 			 * have to actually call vm_object_deallocate()
2036 			 * (after clearing the chainlock).
2037 			 */
2038 			object_bypasses++;
2039 			dodealloc = 1;
2040 		}
2041 
2042 		/*
2043 		 * Ok, we want to loop on the new object->bbobj association,
2044 		 * possibly collapsing it further.  However if dodealloc is
2045 		 * non-zero we have to deallocate the backing_object which
2046 		 * itself can potentially undergo a collapse, creating a
2047 		 * recursion depth issue with the LWKT token subsystem.
2048 		 *
2049 		 * In the case where we must deallocate the backing_object
2050 		 * it is possible now that the backing_object has a single
2051 		 * shadow count on some other object (not represented here
2052 		 * as yet), since it no longer shadows us.  Thus when we
2053 		 * call vm_object_deallocate() it may attempt to collapse
2054 		 * itself into its remaining parent.
2055 		 */
2056 		if (dodealloc) {
2057 			struct vm_object_dealloc_list *dtmp;
2058 
2059 			vm_object_chain_release(backing_object);
2060 			vm_object_unlock(backing_object);
2061 			/* backing_object remains held */
2062 
2063 			/*
2064 			 * Auto-deallocation list for caller convenience.
2065 			 */
2066 			if (dlistp == NULL)
2067 				dlistp = &dlist;
2068 
2069 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2070 			dtmp->object = backing_object;
2071 			dtmp->next = *dlistp;
2072 			*dlistp = dtmp;
2073 		} else {
2074 			vm_object_chain_release(backing_object);
2075 			vm_object_drop(backing_object);
2076 		}
2077 		/* backing_object = NULL; not needed */
2078 		/* loop */
2079 	}
2080 
2081 	/*
2082 	 * Clean up any left over backing_object
2083 	 */
2084 	if (backing_object) {
2085 		vm_object_chain_release(backing_object);
2086 		vm_object_drop(backing_object);
2087 	}
2088 
2089 	/*
2090 	 * Clean up any auto-deallocation list.  This is a convenience
2091 	 * for top-level callers so they don't have to pass &dlist.
2092 	 * Do not clean up any caller-passed dlistp, the caller will
2093 	 * do that.
2094 	 */
2095 	if (dlist)
2096 		vm_object_deallocate_list(&dlist);
2097 
2098 }
2099 
2100 /*
2101  * vm_object_collapse() may collect additional objects in need of
2102  * deallocation.  This routine deallocates these objects.  The
2103  * deallocation itself can trigger additional collapses (which the
2104  * deallocate function takes care of).  This procedure is used to
2105  * reduce procedural recursion since these vm_object shadow chains
2106  * can become quite long.
2107  */
2108 void
2109 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2110 {
2111 	struct vm_object_dealloc_list *dlist;
2112 
2113 	while ((dlist = *dlistp) != NULL) {
2114 		*dlistp = dlist->next;
2115 		vm_object_lock(dlist->object);
2116 		vm_object_deallocate_locked(dlist->object);
2117 		vm_object_drop(dlist->object);
2118 		kfree(dlist, M_TEMP);
2119 	}
2120 }
2121 
2122 /*
2123  * Removes all physical pages in the specified object range from the
2124  * object's list of pages.
2125  *
2126  * No requirements.
2127  */
2128 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2129 
2130 void
2131 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2132 		      boolean_t clean_only)
2133 {
2134 	struct rb_vm_page_scan_info info;
2135 	int all;
2136 
2137 	/*
2138 	 * Degenerate cases and assertions
2139 	 */
2140 	vm_object_hold(object);
2141 	if (object == NULL ||
2142 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2143 		vm_object_drop(object);
2144 		return;
2145 	}
2146 	KASSERT(object->type != OBJT_PHYS,
2147 		("attempt to remove pages from a physical object"));
2148 
2149 	/*
2150 	 * Indicate that paging is occuring on the object
2151 	 */
2152 	vm_object_pip_add(object, 1);
2153 
2154 	/*
2155 	 * Figure out the actual removal range and whether we are removing
2156 	 * the entire contents of the object or not.  If removing the entire
2157 	 * contents, be sure to get all pages, even those that might be
2158 	 * beyond the end of the object.
2159 	 */
2160 	info.start_pindex = start;
2161 	if (end == 0)
2162 		info.end_pindex = (vm_pindex_t)-1;
2163 	else
2164 		info.end_pindex = end - 1;
2165 	info.limit = clean_only;
2166 	all = (start == 0 && info.end_pindex >= object->size - 1);
2167 
2168 	/*
2169 	 * Loop until we are sure we have gotten them all.
2170 	 */
2171 	do {
2172 		info.error = 0;
2173 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2174 					vm_object_page_remove_callback, &info);
2175 	} while (info.error);
2176 
2177 	/*
2178 	 * Remove any related swap if throwing away pages, or for
2179 	 * non-swap objects (the swap is a clean copy in that case).
2180 	 */
2181 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2182 		if (all)
2183 			swap_pager_freespace_all(object);
2184 		else
2185 			swap_pager_freespace(object, info.start_pindex,
2186 			     info.end_pindex - info.start_pindex + 1);
2187 	}
2188 
2189 	/*
2190 	 * Cleanup
2191 	 */
2192 	vm_object_pip_wakeup(object);
2193 	vm_object_drop(object);
2194 }
2195 
2196 /*
2197  * The caller must hold the object
2198  */
2199 static int
2200 vm_object_page_remove_callback(vm_page_t p, void *data)
2201 {
2202 	struct rb_vm_page_scan_info *info = data;
2203 
2204 	if (vm_page_busy_try(p, TRUE)) {
2205 		vm_page_sleep_busy(p, TRUE, "vmopar");
2206 		info->error = 1;
2207 		return(0);
2208 	}
2209 
2210 	/*
2211 	 * Wired pages cannot be destroyed, but they can be invalidated
2212 	 * and we do so if clean_only (limit) is not set.
2213 	 *
2214 	 * WARNING!  The page may be wired due to being part of a buffer
2215 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2216 	 *	     This is fine as part of a truncation but VFSs must be
2217 	 *	     sure to fix the buffer up when re-extending the file.
2218 	 */
2219 	if (p->wire_count != 0) {
2220 		vm_page_protect(p, VM_PROT_NONE);
2221 		if (info->limit == 0)
2222 			p->valid = 0;
2223 		vm_page_wakeup(p);
2224 		return(0);
2225 	}
2226 
2227 	/*
2228 	 * limit is our clean_only flag.  If set and the page is dirty, do
2229 	 * not free it.  If set and the page is being held by someone, do
2230 	 * not free it.
2231 	 */
2232 	if (info->limit && p->valid) {
2233 		vm_page_test_dirty(p);
2234 		if (p->valid & p->dirty) {
2235 			vm_page_wakeup(p);
2236 			return(0);
2237 		}
2238 #if 0
2239 		if (p->hold_count) {
2240 			vm_page_wakeup(p);
2241 			return(0);
2242 		}
2243 #endif
2244 	}
2245 
2246 	/*
2247 	 * Destroy the page
2248 	 */
2249 	vm_page_protect(p, VM_PROT_NONE);
2250 	vm_page_free(p);
2251 	return(0);
2252 }
2253 
2254 /*
2255  * Coalesces two objects backing up adjoining regions of memory into a
2256  * single object.
2257  *
2258  * returns TRUE if objects were combined.
2259  *
2260  * NOTE: Only works at the moment if the second object is NULL -
2261  *	 if it's not, which object do we lock first?
2262  *
2263  * Parameters:
2264  *	prev_object	First object to coalesce
2265  *	prev_offset	Offset into prev_object
2266  *	next_object	Second object into coalesce
2267  *	next_offset	Offset into next_object
2268  *
2269  *	prev_size	Size of reference to prev_object
2270  *	next_size	Size of reference to next_object
2271  *
2272  * The caller does not need to hold (prev_object) but must have a stable
2273  * pointer to it (typically by holding the vm_map locked).
2274  */
2275 boolean_t
2276 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2277 		   vm_size_t prev_size, vm_size_t next_size)
2278 {
2279 	vm_pindex_t next_pindex;
2280 
2281 	if (prev_object == NULL)
2282 		return (TRUE);
2283 
2284 	vm_object_hold(prev_object);
2285 
2286 	if (prev_object->type != OBJT_DEFAULT &&
2287 	    prev_object->type != OBJT_SWAP) {
2288 		vm_object_drop(prev_object);
2289 		return (FALSE);
2290 	}
2291 
2292 	/*
2293 	 * Try to collapse the object first
2294 	 */
2295 	vm_object_chain_acquire(prev_object);
2296 	vm_object_collapse(prev_object, NULL);
2297 
2298 	/*
2299 	 * Can't coalesce if: . more than one reference . paged out . shadows
2300 	 * another object . has a copy elsewhere (any of which mean that the
2301 	 * pages not mapped to prev_entry may be in use anyway)
2302 	 */
2303 
2304 	if (prev_object->backing_object != NULL) {
2305 		vm_object_chain_release(prev_object);
2306 		vm_object_drop(prev_object);
2307 		return (FALSE);
2308 	}
2309 
2310 	prev_size >>= PAGE_SHIFT;
2311 	next_size >>= PAGE_SHIFT;
2312 	next_pindex = prev_pindex + prev_size;
2313 
2314 	if ((prev_object->ref_count > 1) &&
2315 	    (prev_object->size != next_pindex)) {
2316 		vm_object_chain_release(prev_object);
2317 		vm_object_drop(prev_object);
2318 		return (FALSE);
2319 	}
2320 
2321 	/*
2322 	 * Remove any pages that may still be in the object from a previous
2323 	 * deallocation.
2324 	 */
2325 	if (next_pindex < prev_object->size) {
2326 		vm_object_page_remove(prev_object,
2327 				      next_pindex,
2328 				      next_pindex + next_size, FALSE);
2329 		if (prev_object->type == OBJT_SWAP)
2330 			swap_pager_freespace(prev_object,
2331 					     next_pindex, next_size);
2332 	}
2333 
2334 	/*
2335 	 * Extend the object if necessary.
2336 	 */
2337 	if (next_pindex + next_size > prev_object->size)
2338 		prev_object->size = next_pindex + next_size;
2339 
2340 	vm_object_chain_release(prev_object);
2341 	vm_object_drop(prev_object);
2342 	return (TRUE);
2343 }
2344 
2345 /*
2346  * Make the object writable and flag is being possibly dirty.
2347  *
2348  * The caller must hold the object. XXX called from vm_page_dirty(),
2349  * There is currently no requirement to hold the object.
2350  */
2351 void
2352 vm_object_set_writeable_dirty(vm_object_t object)
2353 {
2354 	struct vnode *vp;
2355 
2356 	/*vm_object_assert_held(object);*/
2357 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2358 	if (object->type == OBJT_VNODE &&
2359 	    (vp = (struct vnode *)object->handle) != NULL) {
2360 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2361 			vsetflags(vp, VOBJDIRTY);
2362 		}
2363 	}
2364 }
2365 
2366 #include "opt_ddb.h"
2367 #ifdef DDB
2368 #include <sys/kernel.h>
2369 
2370 #include <sys/cons.h>
2371 
2372 #include <ddb/ddb.h>
2373 
2374 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2375 				       vm_map_entry_t entry);
2376 static int	vm_object_in_map (vm_object_t object);
2377 
2378 /*
2379  * The caller must hold the object.
2380  */
2381 static int
2382 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2383 {
2384 	vm_map_t tmpm;
2385 	vm_map_entry_t tmpe;
2386 	vm_object_t obj, nobj;
2387 	int entcount;
2388 
2389 	if (map == 0)
2390 		return 0;
2391 	if (entry == 0) {
2392 		tmpe = map->header.next;
2393 		entcount = map->nentries;
2394 		while (entcount-- && (tmpe != &map->header)) {
2395 			if( _vm_object_in_map(map, object, tmpe)) {
2396 				return 1;
2397 			}
2398 			tmpe = tmpe->next;
2399 		}
2400 		return (0);
2401 	}
2402 	switch(entry->maptype) {
2403 	case VM_MAPTYPE_SUBMAP:
2404 		tmpm = entry->object.sub_map;
2405 		tmpe = tmpm->header.next;
2406 		entcount = tmpm->nentries;
2407 		while (entcount-- && tmpe != &tmpm->header) {
2408 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2409 				return 1;
2410 			}
2411 			tmpe = tmpe->next;
2412 		}
2413 		break;
2414 	case VM_MAPTYPE_NORMAL:
2415 	case VM_MAPTYPE_VPAGETABLE:
2416 		obj = entry->object.vm_object;
2417 		while (obj) {
2418 			if (obj == object) {
2419 				if (obj != entry->object.vm_object)
2420 					vm_object_drop(obj);
2421 				return 1;
2422 			}
2423 			while ((nobj = obj->backing_object) != NULL) {
2424 				vm_object_hold(nobj);
2425 				if (nobj == obj->backing_object)
2426 					break;
2427 				vm_object_drop(nobj);
2428 			}
2429 			if (obj != entry->object.vm_object) {
2430 				if (nobj)
2431 					vm_object_lock_swap();
2432 				vm_object_drop(obj);
2433 			}
2434 			obj = nobj;
2435 		}
2436 		break;
2437 	default:
2438 		break;
2439 	}
2440 	return 0;
2441 }
2442 
2443 static int vm_object_in_map_callback(struct proc *p, void *data);
2444 
2445 struct vm_object_in_map_info {
2446 	vm_object_t object;
2447 	int rv;
2448 };
2449 
2450 /*
2451  * Debugging only
2452  */
2453 static int
2454 vm_object_in_map(vm_object_t object)
2455 {
2456 	struct vm_object_in_map_info info;
2457 
2458 	info.rv = 0;
2459 	info.object = object;
2460 
2461 	allproc_scan(vm_object_in_map_callback, &info);
2462 	if (info.rv)
2463 		return 1;
2464 	if( _vm_object_in_map(&kernel_map, object, 0))
2465 		return 1;
2466 	if( _vm_object_in_map(&pager_map, object, 0))
2467 		return 1;
2468 	if( _vm_object_in_map(&buffer_map, object, 0))
2469 		return 1;
2470 	return 0;
2471 }
2472 
2473 /*
2474  * Debugging only
2475  */
2476 static int
2477 vm_object_in_map_callback(struct proc *p, void *data)
2478 {
2479 	struct vm_object_in_map_info *info = data;
2480 
2481 	if (p->p_vmspace) {
2482 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2483 			info->rv = 1;
2484 			return -1;
2485 		}
2486 	}
2487 	return (0);
2488 }
2489 
2490 DB_SHOW_COMMAND(vmochk, vm_object_check)
2491 {
2492 	vm_object_t object;
2493 
2494 	/*
2495 	 * make sure that internal objs are in a map somewhere
2496 	 * and none have zero ref counts.
2497 	 */
2498 	for (object = TAILQ_FIRST(&vm_object_list);
2499 			object != NULL;
2500 			object = TAILQ_NEXT(object, object_list)) {
2501 		if (object->type == OBJT_MARKER)
2502 			continue;
2503 		if (object->handle == NULL &&
2504 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2505 			if (object->ref_count == 0) {
2506 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2507 					(long)object->size);
2508 			}
2509 			if (!vm_object_in_map(object)) {
2510 				db_printf(
2511 			"vmochk: internal obj is not in a map: "
2512 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2513 				    object->ref_count, (u_long)object->size,
2514 				    (u_long)object->size,
2515 				    (void *)object->backing_object);
2516 			}
2517 		}
2518 	}
2519 }
2520 
2521 /*
2522  * Debugging only
2523  */
2524 DB_SHOW_COMMAND(object, vm_object_print_static)
2525 {
2526 	/* XXX convert args. */
2527 	vm_object_t object = (vm_object_t)addr;
2528 	boolean_t full = have_addr;
2529 
2530 	vm_page_t p;
2531 
2532 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2533 #define	count	was_count
2534 
2535 	int count;
2536 
2537 	if (object == NULL)
2538 		return;
2539 
2540 	db_iprintf(
2541 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2542 	    object, (int)object->type, (u_long)object->size,
2543 	    object->resident_page_count, object->ref_count, object->flags);
2544 	/*
2545 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2546 	 */
2547 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2548 	    object->shadow_count,
2549 	    object->backing_object ? object->backing_object->ref_count : 0,
2550 	    object->backing_object, (long)object->backing_object_offset);
2551 
2552 	if (!full)
2553 		return;
2554 
2555 	db_indent += 2;
2556 	count = 0;
2557 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2558 		if (count == 0)
2559 			db_iprintf("memory:=");
2560 		else if (count == 6) {
2561 			db_printf("\n");
2562 			db_iprintf(" ...");
2563 			count = 0;
2564 		} else
2565 			db_printf(",");
2566 		count++;
2567 
2568 		db_printf("(off=0x%lx,page=0x%lx)",
2569 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2570 	}
2571 	if (count != 0)
2572 		db_printf("\n");
2573 	db_indent -= 2;
2574 }
2575 
2576 /* XXX. */
2577 #undef count
2578 
2579 /*
2580  * XXX need this non-static entry for calling from vm_map_print.
2581  *
2582  * Debugging only
2583  */
2584 void
2585 vm_object_print(/* db_expr_t */ long addr,
2586 		boolean_t have_addr,
2587 		/* db_expr_t */ long count,
2588 		char *modif)
2589 {
2590 	vm_object_print_static(addr, have_addr, count, modif);
2591 }
2592 
2593 /*
2594  * Debugging only
2595  */
2596 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2597 {
2598 	vm_object_t object;
2599 	int nl = 0;
2600 	int c;
2601 	for (object = TAILQ_FIRST(&vm_object_list);
2602 			object != NULL;
2603 			object = TAILQ_NEXT(object, object_list)) {
2604 		vm_pindex_t idx, fidx;
2605 		vm_pindex_t osize;
2606 		vm_paddr_t pa = -1, padiff;
2607 		int rcount;
2608 		vm_page_t m;
2609 
2610 		if (object->type == OBJT_MARKER)
2611 			continue;
2612 		db_printf("new object: %p\n", (void *)object);
2613 		if ( nl > 18) {
2614 			c = cngetc();
2615 			if (c != ' ')
2616 				return;
2617 			nl = 0;
2618 		}
2619 		nl++;
2620 		rcount = 0;
2621 		fidx = 0;
2622 		osize = object->size;
2623 		if (osize > 128)
2624 			osize = 128;
2625 		for (idx = 0; idx < osize; idx++) {
2626 			m = vm_page_lookup(object, idx);
2627 			if (m == NULL) {
2628 				if (rcount) {
2629 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2630 						(long)fidx, rcount, (long)pa);
2631 					if ( nl > 18) {
2632 						c = cngetc();
2633 						if (c != ' ')
2634 							return;
2635 						nl = 0;
2636 					}
2637 					nl++;
2638 					rcount = 0;
2639 				}
2640 				continue;
2641 			}
2642 
2643 
2644 			if (rcount &&
2645 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2646 				++rcount;
2647 				continue;
2648 			}
2649 			if (rcount) {
2650 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2651 				padiff >>= PAGE_SHIFT;
2652 				padiff &= PQ_L2_MASK;
2653 				if (padiff == 0) {
2654 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2655 					++rcount;
2656 					continue;
2657 				}
2658 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2659 					(long)fidx, rcount, (long)pa);
2660 				db_printf("pd(%ld)\n", (long)padiff);
2661 				if ( nl > 18) {
2662 					c = cngetc();
2663 					if (c != ' ')
2664 						return;
2665 					nl = 0;
2666 				}
2667 				nl++;
2668 			}
2669 			fidx = idx;
2670 			pa = VM_PAGE_TO_PHYS(m);
2671 			rcount = 1;
2672 		}
2673 		if (rcount) {
2674 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2675 				(long)fidx, rcount, (long)pa);
2676 			if ( nl > 18) {
2677 				c = cngetc();
2678 				if (c != ' ')
2679 					return;
2680 				nl = 0;
2681 			}
2682 			nl++;
2683 		}
2684 	}
2685 }
2686 #endif /* DDB */
2687