xref: /dflybsd-src/sys/vm/vm_object.c (revision fd2da346d8d75955f03246d811568a9f680db45e)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #include <machine/specialreg.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 
105 /*
106  *	Virtual memory objects maintain the actual data
107  *	associated with allocated virtual memory.  A given
108  *	page of memory exists within exactly one object.
109  *
110  *	An object is only deallocated when all "references"
111  *	are given up.  Only one "reference" to a given
112  *	region of an object should be writeable.
113  *
114  *	Associated with each object is a list of all resident
115  *	memory pages belonging to that object; this list is
116  *	maintained by the "vm_page" module, and locked by the object's
117  *	lock.
118  *
119  *	Each object also records a "pager" routine which is
120  *	used to retrieve (and store) pages to the proper backing
121  *	storage.  In addition, objects may be backed by other
122  *	objects from which they were virtual-copied.
123  *
124  *	The only items within the object structure which are
125  *	modified after time of creation are:
126  *		reference count		locked by object's lock
127  *		pager routine		locked by object's lock
128  *
129  */
130 
131 struct object_q vm_object_list;		/* locked by vmobj_token */
132 struct vm_object kernel_object;
133 
134 static long vm_object_count;		/* locked by vmobj_token */
135 
136 static long object_collapses;
137 static long object_bypasses;
138 static int next_index;
139 static vm_zone_t obj_zone;
140 static struct vm_zone obj_zone_store;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143 
144 /*
145  * Misc low level routines
146  */
147 static void
148 vm_object_lock_init(vm_object_t obj)
149 {
150 #if defined(DEBUG_LOCKS)
151 	int i;
152 
153 	obj->debug_hold_bitmap = 0;
154 	obj->debug_hold_ovfl = 0;
155 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
156 		obj->debug_hold_thrs[i] = NULL;
157 		obj->debug_hold_file[i] = NULL;
158 		obj->debug_hold_line[i] = 0;
159 	}
160 #endif
161 }
162 
163 void
164 vm_object_lock_swap(void)
165 {
166 	lwkt_token_swap();
167 }
168 
169 void
170 vm_object_lock(vm_object_t obj)
171 {
172 	lwkt_gettoken(&obj->token);
173 }
174 
175 /*
176  * Returns TRUE on sucesss
177  */
178 static int
179 vm_object_lock_try(vm_object_t obj)
180 {
181 	return(lwkt_trytoken(&obj->token));
182 }
183 
184 void
185 vm_object_lock_shared(vm_object_t obj)
186 {
187 	lwkt_gettoken_shared(&obj->token);
188 }
189 
190 void
191 vm_object_unlock(vm_object_t obj)
192 {
193 	lwkt_reltoken(&obj->token);
194 }
195 
196 static __inline void
197 vm_object_assert_held(vm_object_t obj)
198 {
199 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
200 }
201 
202 void
203 #ifndef DEBUG_LOCKS
204 vm_object_hold(vm_object_t obj)
205 #else
206 debugvm_object_hold(vm_object_t obj, char *file, int line)
207 #endif
208 {
209 	KKASSERT(obj != NULL);
210 
211 	/*
212 	 * Object must be held (object allocation is stable due to callers
213 	 * context, typically already holding the token on a parent object)
214 	 * prior to potentially blocking on the lock, otherwise the object
215 	 * can get ripped away from us.
216 	 */
217 	refcount_acquire(&obj->hold_count);
218 	vm_object_lock(obj);
219 
220 #if defined(DEBUG_LOCKS)
221 	int i;
222 	u_int mask;
223 
224 	for (;;) {
225 		mask = ~obj->debug_hold_bitmap;
226 		cpu_ccfence();
227 		if (mask == 0xFFFFFFFFU) {
228 			if (obj->debug_hold_ovfl == 0)
229 				obj->debug_hold_ovfl = 1;
230 			break;
231 		}
232 		i = ffs(mask) - 1;
233 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
234 				      ~mask | (1 << i))) {
235 			obj->debug_hold_bitmap |= (1 << i);
236 			obj->debug_hold_thrs[i] = curthread;
237 			obj->debug_hold_file[i] = file;
238 			obj->debug_hold_line[i] = line;
239 			break;
240 		}
241 	}
242 #endif
243 }
244 
245 int
246 #ifndef DEBUG_LOCKS
247 vm_object_hold_try(vm_object_t obj)
248 #else
249 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
250 #endif
251 {
252 	KKASSERT(obj != NULL);
253 
254 	/*
255 	 * Object must be held (object allocation is stable due to callers
256 	 * context, typically already holding the token on a parent object)
257 	 * prior to potentially blocking on the lock, otherwise the object
258 	 * can get ripped away from us.
259 	 */
260 	refcount_acquire(&obj->hold_count);
261 	if (vm_object_lock_try(obj) == 0) {
262 		if (refcount_release(&obj->hold_count)) {
263 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
264 				zfree(obj_zone, obj);
265 		}
266 		return(0);
267 	}
268 
269 #if defined(DEBUG_LOCKS)
270 	int i;
271 	u_int mask;
272 
273 	for (;;) {
274 		mask = ~obj->debug_hold_bitmap;
275 		cpu_ccfence();
276 		if (mask == 0xFFFFFFFFU) {
277 			if (obj->debug_hold_ovfl == 0)
278 				obj->debug_hold_ovfl = 1;
279 			break;
280 		}
281 		i = ffs(mask) - 1;
282 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
283 				      ~mask | (1 << i))) {
284 			obj->debug_hold_bitmap |= (1 << i);
285 			obj->debug_hold_thrs[i] = curthread;
286 			obj->debug_hold_file[i] = file;
287 			obj->debug_hold_line[i] = line;
288 			break;
289 		}
290 	}
291 #endif
292 	return(1);
293 }
294 
295 void
296 #ifndef DEBUG_LOCKS
297 vm_object_hold_shared(vm_object_t obj)
298 #else
299 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
300 #endif
301 {
302 	KKASSERT(obj != NULL);
303 
304 	/*
305 	 * Object must be held (object allocation is stable due to callers
306 	 * context, typically already holding the token on a parent object)
307 	 * prior to potentially blocking on the lock, otherwise the object
308 	 * can get ripped away from us.
309 	 */
310 	refcount_acquire(&obj->hold_count);
311 	vm_object_lock_shared(obj);
312 
313 #if defined(DEBUG_LOCKS)
314 	int i;
315 	u_int mask;
316 
317 	for (;;) {
318 		mask = ~obj->debug_hold_bitmap;
319 		cpu_ccfence();
320 		if (mask == 0xFFFFFFFFU) {
321 			if (obj->debug_hold_ovfl == 0)
322 				obj->debug_hold_ovfl = 1;
323 			break;
324 		}
325 		i = ffs(mask) - 1;
326 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
327 				      ~mask | (1 << i))) {
328 			obj->debug_hold_bitmap |= (1 << i);
329 			obj->debug_hold_thrs[i] = curthread;
330 			obj->debug_hold_file[i] = file;
331 			obj->debug_hold_line[i] = line;
332 			break;
333 		}
334 	}
335 #endif
336 }
337 
338 /*
339  * Obtain either a shared or exclusive lock on VM object
340  * based on whether this is a terminal vnode object or not.
341  */
342 int
343 #ifndef DEBUG_LOCKS
344 vm_object_hold_maybe_shared(vm_object_t obj)
345 #else
346 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line)
347 #endif
348 {
349 	if (vm_shared_fault &&
350 	    obj->type == OBJT_VNODE &&
351 	    obj->backing_object == NULL) {
352 		vm_object_hold_shared(obj);
353 		return(1);
354 	} else {
355 		vm_object_hold(obj);
356 		return(0);
357 	}
358 }
359 
360 /*
361  * Drop the token and hold_count on the object.
362  */
363 void
364 vm_object_drop(vm_object_t obj)
365 {
366 	if (obj == NULL)
367 		return;
368 
369 #if defined(DEBUG_LOCKS)
370 	int found = 0;
371 	int i;
372 
373 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
374 		if ((obj->debug_hold_bitmap & (1 << i)) &&
375 		    (obj->debug_hold_thrs[i] == curthread)) {
376 			obj->debug_hold_bitmap &= ~(1 << i);
377 			obj->debug_hold_thrs[i] = NULL;
378 			obj->debug_hold_file[i] = NULL;
379 			obj->debug_hold_line[i] = 0;
380 			found = 1;
381 			break;
382 		}
383 	}
384 
385 	if (found == 0 && obj->debug_hold_ovfl == 0)
386 		panic("vm_object: attempt to drop hold on non-self-held obj");
387 #endif
388 
389 	/*
390 	 * No new holders should be possible once we drop hold_count 1->0 as
391 	 * there is no longer any way to reference the object.
392 	 */
393 	KKASSERT(obj->hold_count > 0);
394 	if (refcount_release(&obj->hold_count)) {
395 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
396 			vm_object_unlock(obj);
397 			zfree(obj_zone, obj);
398 		} else {
399 			vm_object_unlock(obj);
400 		}
401 	} else {
402 		vm_object_unlock(obj);
403 	}
404 }
405 
406 /*
407  * Initialize a freshly allocated object, returning a held object.
408  *
409  * Used only by vm_object_allocate() and zinitna().
410  *
411  * No requirements.
412  */
413 void
414 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
415 {
416 	int incr;
417 
418 	RB_INIT(&object->rb_memq);
419 	LIST_INIT(&object->shadow_head);
420 	lwkt_token_init(&object->token, "vmobj");
421 
422 	object->type = type;
423 	object->size = size;
424 	object->ref_count = 1;
425 	object->memattr = VM_MEMATTR_DEFAULT;
426 	object->hold_count = 0;
427 	object->flags = 0;
428 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
429 		vm_object_set_flag(object, OBJ_ONEMAPPING);
430 	object->paging_in_progress = 0;
431 	object->resident_page_count = 0;
432 	object->agg_pv_list_count = 0;
433 	object->shadow_count = 0;
434 	/* cpu localization twist */
435 	object->pg_color = (int)(intptr_t)curthread;
436 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
437 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
438 	else
439 		incr = size;
440 	next_index = (next_index + incr) & PQ_L2_MASK;
441 	object->handle = NULL;
442 	object->backing_object = NULL;
443 	object->backing_object_offset = (vm_ooffset_t)0;
444 
445 	object->generation++;
446 	object->swblock_count = 0;
447 	RB_INIT(&object->swblock_root);
448 	vm_object_lock_init(object);
449 	pmap_object_init(object);
450 
451 	vm_object_hold(object);
452 	lwkt_gettoken(&vmobj_token);
453 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
454 	vm_object_count++;
455 	lwkt_reltoken(&vmobj_token);
456 }
457 
458 /*
459  * Initialize the VM objects module.
460  *
461  * Called from the low level boot code only.
462  */
463 void
464 vm_object_init(void)
465 {
466 	TAILQ_INIT(&vm_object_list);
467 
468 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
469 			    &kernel_object);
470 	vm_object_drop(&kernel_object);
471 
472 	obj_zone = &obj_zone_store;
473 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
474 		vm_objects_init, VM_OBJECTS_INIT);
475 }
476 
477 void
478 vm_object_init2(void)
479 {
480 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
481 }
482 
483 /*
484  * Allocate and return a new object of the specified type and size.
485  *
486  * No requirements.
487  */
488 vm_object_t
489 vm_object_allocate(objtype_t type, vm_pindex_t size)
490 {
491 	vm_object_t result;
492 
493 	result = (vm_object_t) zalloc(obj_zone);
494 
495 	_vm_object_allocate(type, size, result);
496 	vm_object_drop(result);
497 
498 	return (result);
499 }
500 
501 /*
502  * This version returns a held object, allowing further atomic initialization
503  * of the object.
504  */
505 vm_object_t
506 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
507 {
508 	vm_object_t result;
509 
510 	result = (vm_object_t) zalloc(obj_zone);
511 
512 	_vm_object_allocate(type, size, result);
513 
514 	return (result);
515 }
516 
517 /*
518  * Add an additional reference to a vm_object.  The object must already be
519  * held.  The original non-lock version is no longer supported.  The object
520  * must NOT be chain locked by anyone at the time the reference is added.
521  *
522  * Referencing a chain-locked object can blow up the fairly sensitive
523  * ref_count and shadow_count tests in the deallocator.  Most callers
524  * will call vm_object_chain_wait() prior to calling
525  * vm_object_reference_locked() to avoid the case.
526  *
527  * The object must be held, but may be held shared if desired (hence why
528  * we use an atomic op).
529  */
530 void
531 vm_object_reference_locked(vm_object_t object)
532 {
533 	KKASSERT(object != NULL);
534 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
535 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
536 	atomic_add_int(&object->ref_count, 1);
537 	if (object->type == OBJT_VNODE) {
538 		vref(object->handle);
539 		/* XXX what if the vnode is being destroyed? */
540 	}
541 }
542 
543 /*
544  * Object OBJ_CHAINLOCK lock handling.
545  *
546  * The caller can chain-lock backing objects recursively and then
547  * use vm_object_chain_release_all() to undo the whole chain.
548  *
549  * Chain locks are used to prevent collapses and are only applicable
550  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
551  * on other object types are ignored.  This is also important because
552  * it allows e.g. the vnode underlying a memory mapping to take concurrent
553  * faults.
554  *
555  * The object must usually be held on entry, though intermediate
556  * objects need not be held on release.
557  */
558 void
559 vm_object_chain_wait(vm_object_t object)
560 {
561 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
562 	while (object->flags & OBJ_CHAINLOCK) {
563 		vm_object_set_flag(object, OBJ_CHAINWANT);
564 		tsleep(object, 0, "objchain", 0);
565 	}
566 }
567 
568 void
569 vm_object_chain_acquire(vm_object_t object)
570 {
571 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
572 		vm_object_chain_wait(object);
573 		vm_object_set_flag(object, OBJ_CHAINLOCK);
574 	}
575 }
576 
577 void
578 vm_object_chain_release(vm_object_t object)
579 {
580 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
581 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
582 		KKASSERT(object->flags & OBJ_CHAINLOCK);
583 		if (object->flags & OBJ_CHAINWANT) {
584 			vm_object_clear_flag(object,
585 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
586 			wakeup(object);
587 		} else {
588 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
589 		}
590 	}
591 }
592 
593 /*
594  * This releases the entire chain of objects from first_object to and
595  * including stopobj, flowing through object->backing_object.
596  *
597  * We release stopobj first as an optimization as this object is most
598  * likely to be shared across multiple processes.
599  */
600 void
601 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
602 {
603 	vm_object_t backing_object;
604 	vm_object_t object;
605 
606 	vm_object_chain_release(stopobj);
607 	object = first_object;
608 
609 	while (object != stopobj) {
610 		KKASSERT(object);
611 		if (object != first_object)
612 			vm_object_hold(object);
613 		backing_object = object->backing_object;
614 		vm_object_chain_release(object);
615 		if (object != first_object)
616 			vm_object_drop(object);
617 		object = backing_object;
618 	}
619 }
620 
621 /*
622  * Dereference an object and its underlying vnode.
623  *
624  * The object must be held exclusively and will remain held on return.
625  * (We don't need an atomic op due to the exclusivity).
626  */
627 static void
628 vm_object_vndeallocate(vm_object_t object)
629 {
630 	struct vnode *vp = (struct vnode *) object->handle;
631 
632 	KASSERT(object->type == OBJT_VNODE,
633 	    ("vm_object_vndeallocate: not a vnode object"));
634 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
635 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
636 #ifdef INVARIANTS
637 	if (object->ref_count == 0) {
638 		vprint("vm_object_vndeallocate", vp);
639 		panic("vm_object_vndeallocate: bad object reference count");
640 	}
641 #endif
642 	object->ref_count--;
643 	if (object->ref_count == 0)
644 		vclrflags(vp, VTEXT);
645 	vrele(vp);
646 }
647 
648 /*
649  * Release a reference to the specified object, gained either through a
650  * vm_object_allocate or a vm_object_reference call.  When all references
651  * are gone, storage associated with this object may be relinquished.
652  *
653  * The caller does not have to hold the object locked but must have control
654  * over the reference in question in order to guarantee that the object
655  * does not get ripped out from under us.
656  *
657  * XXX Currently all deallocations require an exclusive lock.
658  */
659 void
660 vm_object_deallocate(vm_object_t object)
661 {
662 	if (object) {
663 		vm_object_hold(object);
664 		vm_object_deallocate_locked(object);
665 		vm_object_drop(object);
666 	}
667 }
668 
669 void
670 vm_object_deallocate_locked(vm_object_t object)
671 {
672 	struct vm_object_dealloc_list *dlist = NULL;
673 	struct vm_object_dealloc_list *dtmp;
674 	vm_object_t temp;
675 	int must_drop = 0;
676 
677 	/*
678 	 * We may chain deallocate object, but additional objects may
679 	 * collect on the dlist which also have to be deallocated.  We
680 	 * must avoid a recursion, vm_object chains can get deep.
681 	 */
682 again:
683 	while (object != NULL) {
684 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
685 #if 0
686 		/*
687 		 * Don't rip a ref_count out from under an object undergoing
688 		 * collapse, it will confuse the collapse code.
689 		 */
690 		vm_object_chain_wait(object);
691 #endif
692 		if (object->type == OBJT_VNODE) {
693 			vm_object_vndeallocate(object);
694 			break;
695 		}
696 
697 		if (object->ref_count == 0) {
698 			panic("vm_object_deallocate: object deallocated "
699 			      "too many times: %d", object->type);
700 		}
701 		if (object->ref_count > 2) {
702 			object->ref_count--;
703 			break;
704 		}
705 
706 		/*
707 		 * Here on ref_count of one or two, which are special cases for
708 		 * objects.
709 		 *
710 		 * Nominal ref_count > 1 case if the second ref is not from
711 		 * a shadow.
712 		 *
713 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
714 		 */
715 		if (object->ref_count == 2 && object->shadow_count == 0) {
716 			if (object->type == OBJT_DEFAULT ||
717 			    object->type == OBJT_SWAP) {
718 				vm_object_set_flag(object, OBJ_ONEMAPPING);
719 			}
720 			object->ref_count--;
721 			break;
722 		}
723 
724 		/*
725 		 * If the second ref is from a shadow we chain along it
726 		 * upwards if object's handle is exhausted.
727 		 *
728 		 * We have to decrement object->ref_count before potentially
729 		 * collapsing the first shadow object or the collapse code
730 		 * will not be able to handle the degenerate case to remove
731 		 * object.  However, if we do it too early the object can
732 		 * get ripped out from under us.
733 		 */
734 		if (object->ref_count == 2 && object->shadow_count == 1 &&
735 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
736 					       object->type == OBJT_SWAP)) {
737 			temp = LIST_FIRST(&object->shadow_head);
738 			KKASSERT(temp != NULL);
739 			vm_object_hold(temp);
740 
741 			/*
742 			 * Wait for any paging to complete so the collapse
743 			 * doesn't (or isn't likely to) qcollapse.  pip
744 			 * waiting must occur before we acquire the
745 			 * chainlock.
746 			 */
747 			while (
748 				temp->paging_in_progress ||
749 				object->paging_in_progress
750 			) {
751 				vm_object_pip_wait(temp, "objde1");
752 				vm_object_pip_wait(object, "objde2");
753 			}
754 
755 			/*
756 			 * If the parent is locked we have to give up, as
757 			 * otherwise we would be acquiring locks in the
758 			 * wrong order and potentially deadlock.
759 			 */
760 			if (temp->flags & OBJ_CHAINLOCK) {
761 				vm_object_drop(temp);
762 				goto skip;
763 			}
764 			vm_object_chain_acquire(temp);
765 
766 			/*
767 			 * Recheck/retry after the hold and the paging
768 			 * wait, both of which can block us.
769 			 */
770 			if (object->ref_count != 2 ||
771 			    object->shadow_count != 1 ||
772 			    object->handle ||
773 			    LIST_FIRST(&object->shadow_head) != temp ||
774 			    (object->type != OBJT_DEFAULT &&
775 			     object->type != OBJT_SWAP)) {
776 				vm_object_chain_release(temp);
777 				vm_object_drop(temp);
778 				continue;
779 			}
780 
781 			/*
782 			 * We can safely drop object's ref_count now.
783 			 */
784 			KKASSERT(object->ref_count == 2);
785 			object->ref_count--;
786 
787 			/*
788 			 * If our single parent is not collapseable just
789 			 * decrement ref_count (2->1) and stop.
790 			 */
791 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
792 					     temp->type != OBJT_SWAP)) {
793 				vm_object_chain_release(temp);
794 				vm_object_drop(temp);
795 				break;
796 			}
797 
798 			/*
799 			 * At this point we have already dropped object's
800 			 * ref_count so it is possible for a race to
801 			 * deallocate obj out from under us.  Any collapse
802 			 * will re-check the situation.  We must not block
803 			 * until we are able to collapse.
804 			 *
805 			 * Bump temp's ref_count to avoid an unwanted
806 			 * degenerate recursion (can't call
807 			 * vm_object_reference_locked() because it asserts
808 			 * that CHAINLOCK is not set).
809 			 */
810 			temp->ref_count++;
811 			KKASSERT(temp->ref_count > 1);
812 
813 			/*
814 			 * Collapse temp, then deallocate the extra ref
815 			 * formally.
816 			 */
817 			vm_object_collapse(temp, &dlist);
818 			vm_object_chain_release(temp);
819 			if (must_drop) {
820 				vm_object_lock_swap();
821 				vm_object_drop(object);
822 			}
823 			object = temp;
824 			must_drop = 1;
825 			continue;
826 		}
827 
828 		/*
829 		 * Drop the ref and handle termination on the 1->0 transition.
830 		 * We may have blocked above so we have to recheck.
831 		 */
832 skip:
833 		KKASSERT(object->ref_count != 0);
834 		if (object->ref_count >= 2) {
835 			object->ref_count--;
836 			break;
837 		}
838 		KKASSERT(object->ref_count == 1);
839 
840 		/*
841 		 * 1->0 transition.  Chain through the backing_object.
842 		 * Maintain the ref until we've located the backing object,
843 		 * then re-check.
844 		 */
845 		while ((temp = object->backing_object) != NULL) {
846 			vm_object_hold(temp);
847 			if (temp == object->backing_object)
848 				break;
849 			vm_object_drop(temp);
850 		}
851 
852 		/*
853 		 * 1->0 transition verified, retry if ref_count is no longer
854 		 * 1.  Otherwise disconnect the backing_object (temp) and
855 		 * clean up.
856 		 */
857 		if (object->ref_count != 1) {
858 			vm_object_drop(temp);
859 			continue;
860 		}
861 
862 		/*
863 		 * It shouldn't be possible for the object to be chain locked
864 		 * if we're removing the last ref on it.
865 		 */
866 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
867 
868 		if (temp) {
869 			LIST_REMOVE(object, shadow_list);
870 			temp->shadow_count--;
871 			temp->generation++;
872 			object->backing_object = NULL;
873 		}
874 
875 		--object->ref_count;
876 		if ((object->flags & OBJ_DEAD) == 0)
877 			vm_object_terminate(object);
878 		if (must_drop && temp)
879 			vm_object_lock_swap();
880 		if (must_drop)
881 			vm_object_drop(object);
882 		object = temp;
883 		must_drop = 1;
884 	}
885 	if (must_drop && object)
886 		vm_object_drop(object);
887 
888 	/*
889 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
890 	 * on the dlist have a hold count but are not locked.
891 	 */
892 	if ((dtmp = dlist) != NULL) {
893 		dlist = dtmp->next;
894 		object = dtmp->object;
895 		kfree(dtmp, M_TEMP);
896 
897 		vm_object_lock(object);	/* already held, add lock */
898 		must_drop = 1;		/* and we're responsible for it */
899 		goto again;
900 	}
901 }
902 
903 /*
904  * Destroy the specified object, freeing up related resources.
905  *
906  * The object must have zero references.
907  *
908  * The object must held.  The caller is responsible for dropping the object
909  * after terminate returns.  Terminate does NOT drop the object.
910  */
911 static int vm_object_terminate_callback(vm_page_t p, void *data);
912 
913 void
914 vm_object_terminate(vm_object_t object)
915 {
916 	/*
917 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
918 	 * able to safely block.
919 	 */
920 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
921 	KKASSERT((object->flags & OBJ_DEAD) == 0);
922 	vm_object_set_flag(object, OBJ_DEAD);
923 
924 	/*
925 	 * Wait for the pageout daemon to be done with the object
926 	 */
927 	vm_object_pip_wait(object, "objtrm1");
928 
929 	KASSERT(!object->paging_in_progress,
930 		("vm_object_terminate: pageout in progress"));
931 
932 	/*
933 	 * Clean and free the pages, as appropriate. All references to the
934 	 * object are gone, so we don't need to lock it.
935 	 */
936 	if (object->type == OBJT_VNODE) {
937 		struct vnode *vp;
938 
939 		/*
940 		 * Clean pages and flush buffers.
941 		 *
942 		 * NOTE!  TMPFS buffer flushes do not typically flush the
943 		 *	  actual page to swap as this would be highly
944 		 *	  inefficient, and normal filesystems usually wrap
945 		 *	  page flushes with buffer cache buffers.
946 		 *
947 		 *	  To deal with this we have to call vinvalbuf() both
948 		 *	  before and after the vm_object_page_clean().
949 		 */
950 		vp = (struct vnode *) object->handle;
951 		vinvalbuf(vp, V_SAVE, 0, 0);
952 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
953 		vinvalbuf(vp, V_SAVE, 0, 0);
954 	}
955 
956 	/*
957 	 * Wait for any I/O to complete, after which there had better not
958 	 * be any references left on the object.
959 	 */
960 	vm_object_pip_wait(object, "objtrm2");
961 
962 	if (object->ref_count != 0) {
963 		panic("vm_object_terminate: object with references, "
964 		      "ref_count=%d", object->ref_count);
965 	}
966 
967 	/*
968 	 * Cleanup any shared pmaps associated with this object.
969 	 */
970 	pmap_object_free(object);
971 
972 	/*
973 	 * Now free any remaining pages. For internal objects, this also
974 	 * removes them from paging queues. Don't free wired pages, just
975 	 * remove them from the object.
976 	 */
977 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
978 				vm_object_terminate_callback, NULL);
979 
980 	/*
981 	 * Let the pager know object is dead.
982 	 */
983 	vm_pager_deallocate(object);
984 
985 	/*
986 	 * Wait for the object hold count to hit 1, clean out pages as
987 	 * we go.  vmobj_token interlocks any race conditions that might
988 	 * pick the object up from the vm_object_list after we have cleared
989 	 * rb_memq.
990 	 */
991 	for (;;) {
992 		if (RB_ROOT(&object->rb_memq) == NULL)
993 			break;
994 		kprintf("vm_object_terminate: Warning, object %p "
995 			"still has %d pages\n",
996 			object, object->resident_page_count);
997 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
998 					vm_object_terminate_callback, NULL);
999 	}
1000 
1001 	/*
1002 	 * There had better not be any pages left
1003 	 */
1004 	KKASSERT(object->resident_page_count == 0);
1005 
1006 	/*
1007 	 * Remove the object from the global object list.
1008 	 */
1009 	lwkt_gettoken(&vmobj_token);
1010 	TAILQ_REMOVE(&vm_object_list, object, object_list);
1011 	vm_object_count--;
1012 	lwkt_reltoken(&vmobj_token);
1013 	vm_object_dead_wakeup(object);
1014 
1015 	if (object->ref_count != 0) {
1016 		panic("vm_object_terminate2: object with references, "
1017 		      "ref_count=%d", object->ref_count);
1018 	}
1019 
1020 	/*
1021 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1022 	 *	 the object here.  See vm_object_drop().
1023 	 */
1024 }
1025 
1026 /*
1027  * The caller must hold the object.
1028  */
1029 static int
1030 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1031 {
1032 	vm_object_t object;
1033 
1034 	object = p->object;
1035 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1036 	if (object != p->object) {
1037 		kprintf("vm_object_terminate: Warning: Encountered "
1038 			"busied page %p on queue %d\n", p, p->queue);
1039 		vm_page_wakeup(p);
1040 	} else if (p->wire_count == 0) {
1041 		/*
1042 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1043 		 */
1044 		vm_page_free(p);
1045 		mycpu->gd_cnt.v_pfree++;
1046 	} else {
1047 		if (p->queue != PQ_NONE)
1048 			kprintf("vm_object_terminate: Warning: Encountered "
1049 				"wired page %p on queue %d\n", p, p->queue);
1050 		vm_page_remove(p);
1051 		vm_page_wakeup(p);
1052 	}
1053 	lwkt_yield();
1054 	return(0);
1055 }
1056 
1057 /*
1058  * The object is dead but still has an object<->pager association.  Sleep
1059  * and return.  The caller typically retests the association in a loop.
1060  *
1061  * The caller must hold the object.
1062  */
1063 void
1064 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1065 {
1066 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1067 	if (object->handle) {
1068 		vm_object_set_flag(object, OBJ_DEADWNT);
1069 		tsleep(object, 0, wmesg, 0);
1070 		/* object may be invalid after this point */
1071 	}
1072 }
1073 
1074 /*
1075  * Wakeup anyone waiting for the object<->pager disassociation on
1076  * a dead object.
1077  *
1078  * The caller must hold the object.
1079  */
1080 void
1081 vm_object_dead_wakeup(vm_object_t object)
1082 {
1083 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1084 	if (object->flags & OBJ_DEADWNT) {
1085 		vm_object_clear_flag(object, OBJ_DEADWNT);
1086 		wakeup(object);
1087 	}
1088 }
1089 
1090 /*
1091  * Clean all dirty pages in the specified range of object.  Leaves page
1092  * on whatever queue it is currently on.   If NOSYNC is set then do not
1093  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1094  * leaving the object dirty.
1095  *
1096  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1097  * synchronous clustering mode implementation.
1098  *
1099  * Odd semantics: if start == end, we clean everything.
1100  *
1101  * The object must be locked? XXX
1102  */
1103 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1104 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1105 
1106 void
1107 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1108 		     int flags)
1109 {
1110 	struct rb_vm_page_scan_info info;
1111 	struct vnode *vp;
1112 	int wholescan;
1113 	int pagerflags;
1114 	int generation;
1115 
1116 	vm_object_hold(object);
1117 	if (object->type != OBJT_VNODE ||
1118 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1119 		vm_object_drop(object);
1120 		return;
1121 	}
1122 
1123 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1124 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1125 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1126 
1127 	vp = object->handle;
1128 
1129 	/*
1130 	 * Interlock other major object operations.  This allows us to
1131 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1132 	 */
1133 	vm_object_set_flag(object, OBJ_CLEANING);
1134 
1135 	/*
1136 	 * Handle 'entire object' case
1137 	 */
1138 	info.start_pindex = start;
1139 	if (end == 0) {
1140 		info.end_pindex = object->size - 1;
1141 	} else {
1142 		info.end_pindex = end - 1;
1143 	}
1144 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1145 	info.limit = flags;
1146 	info.pagerflags = pagerflags;
1147 	info.object = object;
1148 
1149 	/*
1150 	 * If cleaning the entire object do a pass to mark the pages read-only.
1151 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1152 	 * OBJ_MIGHTBEDIRTY.
1153 	 */
1154 	if (wholescan) {
1155 		info.error = 0;
1156 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1157 					vm_object_page_clean_pass1, &info);
1158 		if (info.error == 0) {
1159 			vm_object_clear_flag(object,
1160 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1161 			if (object->type == OBJT_VNODE &&
1162 			    (vp = (struct vnode *)object->handle) != NULL) {
1163 				if (vp->v_mount &&
1164 				    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
1165 					vclrobjdirty(vp);
1166 				} else {
1167 					vclrflags(vp, VOBJDIRTY);
1168 				}
1169 			}
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * Do a pass to clean all the dirty pages we find.
1175 	 */
1176 	do {
1177 		info.error = 0;
1178 		generation = object->generation;
1179 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1180 					vm_object_page_clean_pass2, &info);
1181 	} while (info.error || generation != object->generation);
1182 
1183 	vm_object_clear_flag(object, OBJ_CLEANING);
1184 	vm_object_drop(object);
1185 }
1186 
1187 /*
1188  * The caller must hold the object.
1189  */
1190 static
1191 int
1192 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1193 {
1194 	struct rb_vm_page_scan_info *info = data;
1195 
1196 	vm_page_flag_set(p, PG_CLEANCHK);
1197 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1198 		info->error = 1;
1199 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1200 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1201 		vm_page_wakeup(p);
1202 	} else {
1203 		info->error = 1;
1204 	}
1205 	lwkt_yield();
1206 	return(0);
1207 }
1208 
1209 /*
1210  * The caller must hold the object
1211  */
1212 static
1213 int
1214 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1215 {
1216 	struct rb_vm_page_scan_info *info = data;
1217 	int generation;
1218 
1219 	/*
1220 	 * Do not mess with pages that were inserted after we started
1221 	 * the cleaning pass.
1222 	 */
1223 	if ((p->flags & PG_CLEANCHK) == 0)
1224 		goto done;
1225 
1226 	generation = info->object->generation;
1227 	vm_page_busy_wait(p, TRUE, "vpcwai");
1228 	if (p->object != info->object ||
1229 	    info->object->generation != generation) {
1230 		info->error = 1;
1231 		vm_page_wakeup(p);
1232 		goto done;
1233 	}
1234 
1235 	/*
1236 	 * Before wasting time traversing the pmaps, check for trivial
1237 	 * cases where the page cannot be dirty.
1238 	 */
1239 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1240 		KKASSERT((p->dirty & p->valid) == 0 &&
1241 			 (p->flags & PG_NEED_COMMIT) == 0);
1242 		vm_page_wakeup(p);
1243 		goto done;
1244 	}
1245 
1246 	/*
1247 	 * Check whether the page is dirty or not.  The page has been set
1248 	 * to be read-only so the check will not race a user dirtying the
1249 	 * page.
1250 	 */
1251 	vm_page_test_dirty(p);
1252 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1253 		vm_page_flag_clear(p, PG_CLEANCHK);
1254 		vm_page_wakeup(p);
1255 		goto done;
1256 	}
1257 
1258 	/*
1259 	 * If we have been asked to skip nosync pages and this is a
1260 	 * nosync page, skip it.  Note that the object flags were
1261 	 * not cleared in this case (because pass1 will have returned an
1262 	 * error), so we do not have to set them.
1263 	 */
1264 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1265 		vm_page_flag_clear(p, PG_CLEANCHK);
1266 		vm_page_wakeup(p);
1267 		goto done;
1268 	}
1269 
1270 	/*
1271 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1272 	 * the pages that get successfully flushed.  Set info->error if
1273 	 * we raced an object modification.
1274 	 */
1275 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1276 	vm_wait_nominal();
1277 done:
1278 	lwkt_yield();
1279 	return(0);
1280 }
1281 
1282 /*
1283  * Collect the specified page and nearby pages and flush them out.
1284  * The number of pages flushed is returned.  The passed page is busied
1285  * by the caller and we are responsible for its disposition.
1286  *
1287  * The caller must hold the object.
1288  */
1289 static void
1290 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1291 {
1292 	int error;
1293 	int is;
1294 	int ib;
1295 	int i;
1296 	int page_base;
1297 	vm_pindex_t pi;
1298 	vm_page_t ma[BLIST_MAX_ALLOC];
1299 
1300 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1301 
1302 	pi = p->pindex;
1303 	page_base = pi % BLIST_MAX_ALLOC;
1304 	ma[page_base] = p;
1305 	ib = page_base - 1;
1306 	is = page_base + 1;
1307 
1308 	while (ib >= 0) {
1309 		vm_page_t tp;
1310 
1311 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1312 					     TRUE, &error);
1313 		if (error)
1314 			break;
1315 		if (tp == NULL)
1316 			break;
1317 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1318 		    (tp->flags & PG_CLEANCHK) == 0) {
1319 			vm_page_wakeup(tp);
1320 			break;
1321 		}
1322 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1323 			vm_page_flag_clear(tp, PG_CLEANCHK);
1324 			vm_page_wakeup(tp);
1325 			break;
1326 		}
1327 		vm_page_test_dirty(tp);
1328 		if ((tp->dirty & tp->valid) == 0 &&
1329 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1330 			vm_page_flag_clear(tp, PG_CLEANCHK);
1331 			vm_page_wakeup(tp);
1332 			break;
1333 		}
1334 		ma[ib] = tp;
1335 		--ib;
1336 	}
1337 	++ib;	/* fixup */
1338 
1339 	while (is < BLIST_MAX_ALLOC &&
1340 	       pi - page_base + is < object->size) {
1341 		vm_page_t tp;
1342 
1343 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1344 					     TRUE, &error);
1345 		if (error)
1346 			break;
1347 		if (tp == NULL)
1348 			break;
1349 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1350 		    (tp->flags & PG_CLEANCHK) == 0) {
1351 			vm_page_wakeup(tp);
1352 			break;
1353 		}
1354 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1355 			vm_page_flag_clear(tp, PG_CLEANCHK);
1356 			vm_page_wakeup(tp);
1357 			break;
1358 		}
1359 		vm_page_test_dirty(tp);
1360 		if ((tp->dirty & tp->valid) == 0 &&
1361 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1362 			vm_page_flag_clear(tp, PG_CLEANCHK);
1363 			vm_page_wakeup(tp);
1364 			break;
1365 		}
1366 		ma[is] = tp;
1367 		++is;
1368 	}
1369 
1370 	/*
1371 	 * All pages in the ma[] array are busied now
1372 	 */
1373 	for (i = ib; i < is; ++i) {
1374 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1375 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1376 	}
1377 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1378 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1379 		vm_page_unhold(ma[i]);
1380 }
1381 
1382 /*
1383  * Same as vm_object_pmap_copy, except range checking really
1384  * works, and is meant for small sections of an object.
1385  *
1386  * This code protects resident pages by making them read-only
1387  * and is typically called on a fork or split when a page
1388  * is converted to copy-on-write.
1389  *
1390  * NOTE: If the page is already at VM_PROT_NONE, calling
1391  * vm_page_protect will have no effect.
1392  */
1393 void
1394 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1395 {
1396 	vm_pindex_t idx;
1397 	vm_page_t p;
1398 
1399 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1400 		return;
1401 
1402 	vm_object_hold(object);
1403 	for (idx = start; idx < end; idx++) {
1404 		p = vm_page_lookup(object, idx);
1405 		if (p == NULL)
1406 			continue;
1407 		vm_page_protect(p, VM_PROT_READ);
1408 	}
1409 	vm_object_drop(object);
1410 }
1411 
1412 /*
1413  * Removes all physical pages in the specified object range from all
1414  * physical maps.
1415  *
1416  * The object must *not* be locked.
1417  */
1418 
1419 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1420 
1421 void
1422 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1423 {
1424 	struct rb_vm_page_scan_info info;
1425 
1426 	if (object == NULL)
1427 		return;
1428 	info.start_pindex = start;
1429 	info.end_pindex = end - 1;
1430 
1431 	vm_object_hold(object);
1432 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1433 				vm_object_pmap_remove_callback, &info);
1434 	if (start == 0 && end == object->size)
1435 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1436 	vm_object_drop(object);
1437 }
1438 
1439 /*
1440  * The caller must hold the object
1441  */
1442 static int
1443 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1444 {
1445 	vm_page_protect(p, VM_PROT_NONE);
1446 	return(0);
1447 }
1448 
1449 /*
1450  * Implements the madvise function at the object/page level.
1451  *
1452  * MADV_WILLNEED	(any object)
1453  *
1454  *	Activate the specified pages if they are resident.
1455  *
1456  * MADV_DONTNEED	(any object)
1457  *
1458  *	Deactivate the specified pages if they are resident.
1459  *
1460  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1461  *
1462  *	Deactivate and clean the specified pages if they are
1463  *	resident.  This permits the process to reuse the pages
1464  *	without faulting or the kernel to reclaim the pages
1465  *	without I/O.
1466  *
1467  * No requirements.
1468  */
1469 void
1470 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1471 {
1472 	vm_pindex_t end, tpindex;
1473 	vm_object_t tobject;
1474 	vm_object_t xobj;
1475 	vm_page_t m;
1476 	int error;
1477 
1478 	if (object == NULL)
1479 		return;
1480 
1481 	end = pindex + count;
1482 
1483 	vm_object_hold(object);
1484 	tobject = object;
1485 
1486 	/*
1487 	 * Locate and adjust resident pages
1488 	 */
1489 	for (; pindex < end; pindex += 1) {
1490 relookup:
1491 		if (tobject != object)
1492 			vm_object_drop(tobject);
1493 		tobject = object;
1494 		tpindex = pindex;
1495 shadowlookup:
1496 		/*
1497 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1498 		 * and those pages must be OBJ_ONEMAPPING.
1499 		 */
1500 		if (advise == MADV_FREE) {
1501 			if ((tobject->type != OBJT_DEFAULT &&
1502 			     tobject->type != OBJT_SWAP) ||
1503 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1504 				continue;
1505 			}
1506 		}
1507 
1508 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1509 
1510 		if (error) {
1511 			vm_page_sleep_busy(m, TRUE, "madvpo");
1512 			goto relookup;
1513 		}
1514 		if (m == NULL) {
1515 			/*
1516 			 * There may be swap even if there is no backing page
1517 			 */
1518 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1519 				swap_pager_freespace(tobject, tpindex, 1);
1520 
1521 			/*
1522 			 * next object
1523 			 */
1524 			while ((xobj = tobject->backing_object) != NULL) {
1525 				KKASSERT(xobj != object);
1526 				vm_object_hold(xobj);
1527 				if (xobj == tobject->backing_object)
1528 					break;
1529 				vm_object_drop(xobj);
1530 			}
1531 			if (xobj == NULL)
1532 				continue;
1533 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1534 			if (tobject != object) {
1535 				vm_object_lock_swap();
1536 				vm_object_drop(tobject);
1537 			}
1538 			tobject = xobj;
1539 			goto shadowlookup;
1540 		}
1541 
1542 		/*
1543 		 * If the page is not in a normal active state, we skip it.
1544 		 * If the page is not managed there are no page queues to
1545 		 * mess with.  Things can break if we mess with pages in
1546 		 * any of the below states.
1547 		 */
1548 		if (m->wire_count ||
1549 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1550 		    m->valid != VM_PAGE_BITS_ALL
1551 		) {
1552 			vm_page_wakeup(m);
1553 			continue;
1554 		}
1555 
1556 		/*
1557 		 * Theoretically once a page is known not to be busy, an
1558 		 * interrupt cannot come along and rip it out from under us.
1559 		 */
1560 
1561 		if (advise == MADV_WILLNEED) {
1562 			vm_page_activate(m);
1563 		} else if (advise == MADV_DONTNEED) {
1564 			vm_page_dontneed(m);
1565 		} else if (advise == MADV_FREE) {
1566 			/*
1567 			 * Mark the page clean.  This will allow the page
1568 			 * to be freed up by the system.  However, such pages
1569 			 * are often reused quickly by malloc()/free()
1570 			 * so we do not do anything that would cause
1571 			 * a page fault if we can help it.
1572 			 *
1573 			 * Specifically, we do not try to actually free
1574 			 * the page now nor do we try to put it in the
1575 			 * cache (which would cause a page fault on reuse).
1576 			 *
1577 			 * But we do make the page is freeable as we
1578 			 * can without actually taking the step of unmapping
1579 			 * it.
1580 			 */
1581 			pmap_clear_modify(m);
1582 			m->dirty = 0;
1583 			m->act_count = 0;
1584 			vm_page_dontneed(m);
1585 			if (tobject->type == OBJT_SWAP)
1586 				swap_pager_freespace(tobject, tpindex, 1);
1587 		}
1588 		vm_page_wakeup(m);
1589 	}
1590 	if (tobject != object)
1591 		vm_object_drop(tobject);
1592 	vm_object_drop(object);
1593 }
1594 
1595 /*
1596  * Create a new object which is backed by the specified existing object
1597  * range.  Replace the pointer and offset that was pointing at the existing
1598  * object with the pointer/offset for the new object.
1599  *
1600  * No other requirements.
1601  */
1602 void
1603 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1604 		 int addref)
1605 {
1606 	vm_object_t source;
1607 	vm_object_t result;
1608 
1609 	source = *objectp;
1610 
1611 	/*
1612 	 * Don't create the new object if the old object isn't shared.
1613 	 * We have to chain wait before adding the reference to avoid
1614 	 * racing a collapse or deallocation.
1615 	 *
1616 	 * Add the additional ref to source here to avoid racing a later
1617 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1618 	 * addref is TRUE or not in this case because the original object
1619 	 * will be shadowed.
1620 	 */
1621 	if (source) {
1622 		vm_object_hold(source);
1623 		vm_object_chain_wait(source);
1624 		if (source->ref_count == 1 &&
1625 		    source->handle == NULL &&
1626 		    (source->type == OBJT_DEFAULT ||
1627 		     source->type == OBJT_SWAP)) {
1628 			vm_object_drop(source);
1629 			if (addref) {
1630 				vm_object_reference_locked(source);
1631 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1632 			}
1633 			return;
1634 		}
1635 		vm_object_reference_locked(source);
1636 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1637 	}
1638 
1639 	/*
1640 	 * Allocate a new object with the given length.  The new object
1641 	 * is returned referenced but we may have to add another one.
1642 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1643 	 * (typically because the caller is about to clone a vm_map_entry).
1644 	 *
1645 	 * The source object currently has an extra reference to prevent
1646 	 * collapses into it while we mess with its shadow list, which
1647 	 * we will remove later in this routine.
1648 	 */
1649 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1650 		panic("vm_object_shadow: no object for shadowing");
1651 	vm_object_hold(result);
1652 	if (addref) {
1653 		vm_object_reference_locked(result);
1654 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1655 	}
1656 
1657 	/*
1658 	 * The new object shadows the source object.  Chain wait before
1659 	 * adjusting shadow_count or the shadow list to avoid races.
1660 	 *
1661 	 * Try to optimize the result object's page color when shadowing
1662 	 * in order to maintain page coloring consistency in the combined
1663 	 * shadowed object.
1664 	 */
1665 	KKASSERT(result->backing_object == NULL);
1666 	result->backing_object = source;
1667 	if (source) {
1668 		vm_object_chain_wait(source);
1669 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1670 		source->shadow_count++;
1671 		source->generation++;
1672 		/* cpu localization twist */
1673 		result->pg_color = (int)(intptr_t)curthread;
1674 	}
1675 
1676 	/*
1677 	 * Adjust the return storage.  Drop the ref on source before
1678 	 * returning.
1679 	 */
1680 	result->backing_object_offset = *offset;
1681 	vm_object_drop(result);
1682 	*offset = 0;
1683 	if (source) {
1684 		vm_object_deallocate_locked(source);
1685 		vm_object_drop(source);
1686 	}
1687 
1688 	/*
1689 	 * Return the new things
1690 	 */
1691 	*objectp = result;
1692 }
1693 
1694 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1695 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1696 #define	OBSC_COLLAPSE_WAIT	0x0004
1697 
1698 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1699 
1700 /*
1701  * The caller must hold the object.
1702  */
1703 static __inline int
1704 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1705 {
1706 	struct rb_vm_page_scan_info info;
1707 
1708 	vm_object_assert_held(object);
1709 	vm_object_assert_held(backing_object);
1710 
1711 	KKASSERT(backing_object == object->backing_object);
1712 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1713 
1714 	/*
1715 	 * Initial conditions
1716 	 */
1717 	if (op & OBSC_TEST_ALL_SHADOWED) {
1718 		/*
1719 		 * We do not want to have to test for the existence of
1720 		 * swap pages in the backing object.  XXX but with the
1721 		 * new swapper this would be pretty easy to do.
1722 		 *
1723 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1724 		 * been ZFOD faulted yet?  If we do not test for this, the
1725 		 * shadow test may succeed! XXX
1726 		 */
1727 		if (backing_object->type != OBJT_DEFAULT)
1728 			return(0);
1729 	}
1730 	if (op & OBSC_COLLAPSE_WAIT) {
1731 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1732 		vm_object_set_flag(backing_object, OBJ_DEAD);
1733 		lwkt_gettoken(&vmobj_token);
1734 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1735 		vm_object_count--;
1736 		lwkt_reltoken(&vmobj_token);
1737 		vm_object_dead_wakeup(backing_object);
1738 	}
1739 
1740 	/*
1741 	 * Our scan.   We have to retry if a negative error code is returned,
1742 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1743 	 * the scan had to be stopped because the parent does not completely
1744 	 * shadow the child.
1745 	 */
1746 	info.object = object;
1747 	info.backing_object = backing_object;
1748 	info.limit = op;
1749 	do {
1750 		info.error = 1;
1751 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1752 					vm_object_backing_scan_callback,
1753 					&info);
1754 	} while (info.error < 0);
1755 
1756 	return(info.error);
1757 }
1758 
1759 /*
1760  * The caller must hold the object.
1761  */
1762 static int
1763 vm_object_backing_scan_callback(vm_page_t p, void *data)
1764 {
1765 	struct rb_vm_page_scan_info *info = data;
1766 	vm_object_t backing_object;
1767 	vm_object_t object;
1768 	vm_pindex_t pindex;
1769 	vm_pindex_t new_pindex;
1770 	vm_pindex_t backing_offset_index;
1771 	int op;
1772 
1773 	pindex = p->pindex;
1774 	new_pindex = pindex - info->backing_offset_index;
1775 	op = info->limit;
1776 	object = info->object;
1777 	backing_object = info->backing_object;
1778 	backing_offset_index = info->backing_offset_index;
1779 
1780 	if (op & OBSC_TEST_ALL_SHADOWED) {
1781 		vm_page_t pp;
1782 
1783 		/*
1784 		 * Ignore pages outside the parent object's range
1785 		 * and outside the parent object's mapping of the
1786 		 * backing object.
1787 		 *
1788 		 * note that we do not busy the backing object's
1789 		 * page.
1790 		 */
1791 		if (pindex < backing_offset_index ||
1792 		    new_pindex >= object->size
1793 		) {
1794 			return(0);
1795 		}
1796 
1797 		/*
1798 		 * See if the parent has the page or if the parent's
1799 		 * object pager has the page.  If the parent has the
1800 		 * page but the page is not valid, the parent's
1801 		 * object pager must have the page.
1802 		 *
1803 		 * If this fails, the parent does not completely shadow
1804 		 * the object and we might as well give up now.
1805 		 */
1806 		pp = vm_page_lookup(object, new_pindex);
1807 		if ((pp == NULL || pp->valid == 0) &&
1808 		    !vm_pager_has_page(object, new_pindex)
1809 		) {
1810 			info->error = 0;	/* problemo */
1811 			return(-1);		/* stop the scan */
1812 		}
1813 	}
1814 
1815 	/*
1816 	 * Check for busy page.  Note that we may have lost (p) when we
1817 	 * possibly blocked above.
1818 	 */
1819 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1820 		vm_page_t pp;
1821 
1822 		if (vm_page_busy_try(p, TRUE)) {
1823 			if (op & OBSC_COLLAPSE_NOWAIT) {
1824 				return(0);
1825 			} else {
1826 				/*
1827 				 * If we slept, anything could have
1828 				 * happened.   Ask that the scan be restarted.
1829 				 *
1830 				 * Since the object is marked dead, the
1831 				 * backing offset should not have changed.
1832 				 */
1833 				vm_page_sleep_busy(p, TRUE, "vmocol");
1834 				info->error = -1;
1835 				return(-1);
1836 			}
1837 		}
1838 
1839 		/*
1840 		 * If (p) is no longer valid restart the scan.
1841 		 */
1842 		if (p->object != backing_object || p->pindex != pindex) {
1843 			kprintf("vm_object_backing_scan: Warning: page "
1844 				"%p ripped out from under us\n", p);
1845 			vm_page_wakeup(p);
1846 			info->error = -1;
1847 			return(-1);
1848 		}
1849 
1850 		if (op & OBSC_COLLAPSE_NOWAIT) {
1851 			if (p->valid == 0 ||
1852 			    p->wire_count ||
1853 			    (p->flags & PG_NEED_COMMIT)) {
1854 				vm_page_wakeup(p);
1855 				return(0);
1856 			}
1857 		} else {
1858 			/* XXX what if p->valid == 0 , hold_count, etc? */
1859 		}
1860 
1861 		KASSERT(
1862 		    p->object == backing_object,
1863 		    ("vm_object_qcollapse(): object mismatch")
1864 		);
1865 
1866 		/*
1867 		 * Destroy any associated swap
1868 		 */
1869 		if (backing_object->type == OBJT_SWAP)
1870 			swap_pager_freespace(backing_object, p->pindex, 1);
1871 
1872 		if (
1873 		    p->pindex < backing_offset_index ||
1874 		    new_pindex >= object->size
1875 		) {
1876 			/*
1877 			 * Page is out of the parent object's range, we
1878 			 * can simply destroy it.
1879 			 */
1880 			vm_page_protect(p, VM_PROT_NONE);
1881 			vm_page_free(p);
1882 			return(0);
1883 		}
1884 
1885 		pp = vm_page_lookup(object, new_pindex);
1886 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1887 			/*
1888 			 * page already exists in parent OR swap exists
1889 			 * for this location in the parent.  Destroy
1890 			 * the original page from the backing object.
1891 			 *
1892 			 * Leave the parent's page alone
1893 			 */
1894 			vm_page_protect(p, VM_PROT_NONE);
1895 			vm_page_free(p);
1896 			return(0);
1897 		}
1898 
1899 		/*
1900 		 * Page does not exist in parent, rename the
1901 		 * page from the backing object to the main object.
1902 		 *
1903 		 * If the page was mapped to a process, it can remain
1904 		 * mapped through the rename.
1905 		 */
1906 		if ((p->queue - p->pc) == PQ_CACHE)
1907 			vm_page_deactivate(p);
1908 
1909 		vm_page_rename(p, object, new_pindex);
1910 		vm_page_wakeup(p);
1911 		/* page automatically made dirty by rename */
1912 	}
1913 	return(0);
1914 }
1915 
1916 /*
1917  * This version of collapse allows the operation to occur earlier and
1918  * when paging_in_progress is true for an object...  This is not a complete
1919  * operation, but should plug 99.9% of the rest of the leaks.
1920  *
1921  * The caller must hold the object and backing_object and both must be
1922  * chainlocked.
1923  *
1924  * (only called from vm_object_collapse)
1925  */
1926 static void
1927 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1928 {
1929 	if (backing_object->ref_count == 1) {
1930 		backing_object->ref_count += 2;
1931 		vm_object_backing_scan(object, backing_object,
1932 				       OBSC_COLLAPSE_NOWAIT);
1933 		backing_object->ref_count -= 2;
1934 	}
1935 }
1936 
1937 /*
1938  * Collapse an object with the object backing it.  Pages in the backing
1939  * object are moved into the parent, and the backing object is deallocated.
1940  * Any conflict is resolved in favor of the parent's existing pages.
1941  *
1942  * object must be held and chain-locked on call.
1943  *
1944  * The caller must have an extra ref on object to prevent a race from
1945  * destroying it during the collapse.
1946  */
1947 void
1948 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1949 {
1950 	struct vm_object_dealloc_list *dlist = NULL;
1951 	vm_object_t backing_object;
1952 
1953 	/*
1954 	 * Only one thread is attempting a collapse at any given moment.
1955 	 * There are few restrictions for (object) that callers of this
1956 	 * function check so reentrancy is likely.
1957 	 */
1958 	KKASSERT(object != NULL);
1959 	vm_object_assert_held(object);
1960 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1961 
1962 	for (;;) {
1963 		vm_object_t bbobj;
1964 		int dodealloc;
1965 
1966 		/*
1967 		 * We have to hold the backing object, check races.
1968 		 */
1969 		while ((backing_object = object->backing_object) != NULL) {
1970 			vm_object_hold(backing_object);
1971 			if (backing_object == object->backing_object)
1972 				break;
1973 			vm_object_drop(backing_object);
1974 		}
1975 
1976 		/*
1977 		 * No backing object?  Nothing to collapse then.
1978 		 */
1979 		if (backing_object == NULL)
1980 			break;
1981 
1982 		/*
1983 		 * You can't collapse with a non-default/non-swap object.
1984 		 */
1985 		if (backing_object->type != OBJT_DEFAULT &&
1986 		    backing_object->type != OBJT_SWAP) {
1987 			vm_object_drop(backing_object);
1988 			backing_object = NULL;
1989 			break;
1990 		}
1991 
1992 		/*
1993 		 * Chain-lock the backing object too because if we
1994 		 * successfully merge its pages into the top object we
1995 		 * will collapse backing_object->backing_object as the
1996 		 * new backing_object.  Re-check that it is still our
1997 		 * backing object.
1998 		 */
1999 		vm_object_chain_acquire(backing_object);
2000 		if (backing_object != object->backing_object) {
2001 			vm_object_chain_release(backing_object);
2002 			vm_object_drop(backing_object);
2003 			continue;
2004 		}
2005 
2006 		/*
2007 		 * we check the backing object first, because it is most likely
2008 		 * not collapsable.
2009 		 */
2010 		if (backing_object->handle != NULL ||
2011 		    (backing_object->type != OBJT_DEFAULT &&
2012 		     backing_object->type != OBJT_SWAP) ||
2013 		    (backing_object->flags & OBJ_DEAD) ||
2014 		    object->handle != NULL ||
2015 		    (object->type != OBJT_DEFAULT &&
2016 		     object->type != OBJT_SWAP) ||
2017 		    (object->flags & OBJ_DEAD)) {
2018 			break;
2019 		}
2020 
2021 		/*
2022 		 * If paging is in progress we can't do a normal collapse.
2023 		 */
2024 		if (
2025 		    object->paging_in_progress != 0 ||
2026 		    backing_object->paging_in_progress != 0
2027 		) {
2028 			vm_object_qcollapse(object, backing_object);
2029 			break;
2030 		}
2031 
2032 		/*
2033 		 * We know that we can either collapse the backing object (if
2034 		 * the parent is the only reference to it) or (perhaps) have
2035 		 * the parent bypass the object if the parent happens to shadow
2036 		 * all the resident pages in the entire backing object.
2037 		 *
2038 		 * This is ignoring pager-backed pages such as swap pages.
2039 		 * vm_object_backing_scan fails the shadowing test in this
2040 		 * case.
2041 		 */
2042 		if (backing_object->ref_count == 1) {
2043 			/*
2044 			 * If there is exactly one reference to the backing
2045 			 * object, we can collapse it into the parent.
2046 			 */
2047 			KKASSERT(object->backing_object == backing_object);
2048 			vm_object_backing_scan(object, backing_object,
2049 					       OBSC_COLLAPSE_WAIT);
2050 
2051 			/*
2052 			 * Move the pager from backing_object to object.
2053 			 */
2054 			if (backing_object->type == OBJT_SWAP) {
2055 				vm_object_pip_add(backing_object, 1);
2056 
2057 				/*
2058 				 * scrap the paging_offset junk and do a
2059 				 * discrete copy.  This also removes major
2060 				 * assumptions about how the swap-pager
2061 				 * works from where it doesn't belong.  The
2062 				 * new swapper is able to optimize the
2063 				 * destroy-source case.
2064 				 */
2065 				vm_object_pip_add(object, 1);
2066 				swap_pager_copy(backing_object, object,
2067 				    OFF_TO_IDX(object->backing_object_offset),
2068 				    TRUE);
2069 				vm_object_pip_wakeup(object);
2070 				vm_object_pip_wakeup(backing_object);
2071 			}
2072 
2073 			/*
2074 			 * Object now shadows whatever backing_object did.
2075 			 * Remove object from backing_object's shadow_list.
2076 			 */
2077 			LIST_REMOVE(object, shadow_list);
2078 			KKASSERT(object->backing_object == backing_object);
2079 			backing_object->shadow_count--;
2080 			backing_object->generation++;
2081 
2082 			/*
2083 			 * backing_object->backing_object moves from within
2084 			 * backing_object to within object.
2085 			 */
2086 			while ((bbobj = backing_object->backing_object) != NULL) {
2087 				vm_object_hold(bbobj);
2088 				if (bbobj == backing_object->backing_object)
2089 					break;
2090 				vm_object_drop(bbobj);
2091 			}
2092 			if (bbobj) {
2093 				LIST_REMOVE(backing_object, shadow_list);
2094 				bbobj->shadow_count--;
2095 				bbobj->generation++;
2096 				backing_object->backing_object = NULL;
2097 			}
2098 			object->backing_object = bbobj;
2099 			if (bbobj) {
2100 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2101 						 object, shadow_list);
2102 				bbobj->shadow_count++;
2103 				bbobj->generation++;
2104 			}
2105 
2106 			object->backing_object_offset +=
2107 				backing_object->backing_object_offset;
2108 
2109 			vm_object_drop(bbobj);
2110 
2111 			/*
2112 			 * Discard the old backing_object.  Nothing should be
2113 			 * able to ref it, other than a vm_map_split(),
2114 			 * and vm_map_split() will stall on our chain lock.
2115 			 * And we control the parent so it shouldn't be
2116 			 * possible for it to go away either.
2117 			 *
2118 			 * Since the backing object has no pages, no pager
2119 			 * left, and no object references within it, all
2120 			 * that is necessary is to dispose of it.
2121 			 */
2122 			KASSERT(backing_object->ref_count == 1,
2123 				("backing_object %p was somehow "
2124 				 "re-referenced during collapse!",
2125 				 backing_object));
2126 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2127 				("backing_object %p somehow has left "
2128 				 "over pages during collapse!",
2129 				 backing_object));
2130 
2131 			/*
2132 			 * The object can be destroyed.
2133 			 *
2134 			 * XXX just fall through and dodealloc instead
2135 			 *     of forcing destruction?
2136 			 */
2137 			--backing_object->ref_count;
2138 			if ((backing_object->flags & OBJ_DEAD) == 0)
2139 				vm_object_terminate(backing_object);
2140 			object_collapses++;
2141 			dodealloc = 0;
2142 		} else {
2143 			/*
2144 			 * If we do not entirely shadow the backing object,
2145 			 * there is nothing we can do so we give up.
2146 			 */
2147 			if (vm_object_backing_scan(object, backing_object,
2148 						OBSC_TEST_ALL_SHADOWED) == 0) {
2149 				break;
2150 			}
2151 
2152 			/*
2153 			 * bbobj is backing_object->backing_object.  Since
2154 			 * object completely shadows backing_object we can
2155 			 * bypass it and become backed by bbobj instead.
2156 			 */
2157 			while ((bbobj = backing_object->backing_object) != NULL) {
2158 				vm_object_hold(bbobj);
2159 				if (bbobj == backing_object->backing_object)
2160 					break;
2161 				vm_object_drop(bbobj);
2162 			}
2163 
2164 			/*
2165 			 * Make object shadow bbobj instead of backing_object.
2166 			 * Remove object from backing_object's shadow list.
2167 			 *
2168 			 * Deallocating backing_object will not remove
2169 			 * it, since its reference count is at least 2.
2170 			 */
2171 			KKASSERT(object->backing_object == backing_object);
2172 			LIST_REMOVE(object, shadow_list);
2173 			backing_object->shadow_count--;
2174 			backing_object->generation++;
2175 
2176 			/*
2177 			 * Add a ref to bbobj, bbobj now shadows object.
2178 			 *
2179 			 * NOTE: backing_object->backing_object still points
2180 			 *	 to bbobj.  That relationship remains intact
2181 			 *	 because backing_object has > 1 ref, so
2182 			 *	 someone else is pointing to it (hence why
2183 			 *	 we can't collapse it into object and can
2184 			 *	 only handle the all-shadowed bypass case).
2185 			 */
2186 			if (bbobj) {
2187 				vm_object_chain_wait(bbobj);
2188 				vm_object_reference_locked(bbobj);
2189 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2190 						 object, shadow_list);
2191 				bbobj->shadow_count++;
2192 				bbobj->generation++;
2193 				object->backing_object_offset +=
2194 					backing_object->backing_object_offset;
2195 				object->backing_object = bbobj;
2196 				vm_object_drop(bbobj);
2197 			} else {
2198 				object->backing_object = NULL;
2199 			}
2200 
2201 			/*
2202 			 * Drop the reference count on backing_object.  To
2203 			 * handle ref_count races properly we can't assume
2204 			 * that the ref_count is still at least 2 so we
2205 			 * have to actually call vm_object_deallocate()
2206 			 * (after clearing the chainlock).
2207 			 */
2208 			object_bypasses++;
2209 			dodealloc = 1;
2210 		}
2211 
2212 		/*
2213 		 * Ok, we want to loop on the new object->bbobj association,
2214 		 * possibly collapsing it further.  However if dodealloc is
2215 		 * non-zero we have to deallocate the backing_object which
2216 		 * itself can potentially undergo a collapse, creating a
2217 		 * recursion depth issue with the LWKT token subsystem.
2218 		 *
2219 		 * In the case where we must deallocate the backing_object
2220 		 * it is possible now that the backing_object has a single
2221 		 * shadow count on some other object (not represented here
2222 		 * as yet), since it no longer shadows us.  Thus when we
2223 		 * call vm_object_deallocate() it may attempt to collapse
2224 		 * itself into its remaining parent.
2225 		 */
2226 		if (dodealloc) {
2227 			struct vm_object_dealloc_list *dtmp;
2228 
2229 			vm_object_chain_release(backing_object);
2230 			vm_object_unlock(backing_object);
2231 			/* backing_object remains held */
2232 
2233 			/*
2234 			 * Auto-deallocation list for caller convenience.
2235 			 */
2236 			if (dlistp == NULL)
2237 				dlistp = &dlist;
2238 
2239 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2240 			dtmp->object = backing_object;
2241 			dtmp->next = *dlistp;
2242 			*dlistp = dtmp;
2243 		} else {
2244 			vm_object_chain_release(backing_object);
2245 			vm_object_drop(backing_object);
2246 		}
2247 		/* backing_object = NULL; not needed */
2248 		/* loop */
2249 	}
2250 
2251 	/*
2252 	 * Clean up any left over backing_object
2253 	 */
2254 	if (backing_object) {
2255 		vm_object_chain_release(backing_object);
2256 		vm_object_drop(backing_object);
2257 	}
2258 
2259 	/*
2260 	 * Clean up any auto-deallocation list.  This is a convenience
2261 	 * for top-level callers so they don't have to pass &dlist.
2262 	 * Do not clean up any caller-passed dlistp, the caller will
2263 	 * do that.
2264 	 */
2265 	if (dlist)
2266 		vm_object_deallocate_list(&dlist);
2267 
2268 }
2269 
2270 /*
2271  * vm_object_collapse() may collect additional objects in need of
2272  * deallocation.  This routine deallocates these objects.  The
2273  * deallocation itself can trigger additional collapses (which the
2274  * deallocate function takes care of).  This procedure is used to
2275  * reduce procedural recursion since these vm_object shadow chains
2276  * can become quite long.
2277  */
2278 void
2279 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2280 {
2281 	struct vm_object_dealloc_list *dlist;
2282 
2283 	while ((dlist = *dlistp) != NULL) {
2284 		*dlistp = dlist->next;
2285 		vm_object_lock(dlist->object);
2286 		vm_object_deallocate_locked(dlist->object);
2287 		vm_object_drop(dlist->object);
2288 		kfree(dlist, M_TEMP);
2289 	}
2290 }
2291 
2292 /*
2293  * Removes all physical pages in the specified object range from the
2294  * object's list of pages.
2295  *
2296  * No requirements.
2297  */
2298 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2299 
2300 void
2301 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2302 		      boolean_t clean_only)
2303 {
2304 	struct rb_vm_page_scan_info info;
2305 	int all;
2306 
2307 	/*
2308 	 * Degenerate cases and assertions
2309 	 */
2310 	vm_object_hold(object);
2311 	if (object == NULL ||
2312 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2313 		vm_object_drop(object);
2314 		return;
2315 	}
2316 	KASSERT(object->type != OBJT_PHYS,
2317 		("attempt to remove pages from a physical object"));
2318 
2319 	/*
2320 	 * Indicate that paging is occuring on the object
2321 	 */
2322 	vm_object_pip_add(object, 1);
2323 
2324 	/*
2325 	 * Figure out the actual removal range and whether we are removing
2326 	 * the entire contents of the object or not.  If removing the entire
2327 	 * contents, be sure to get all pages, even those that might be
2328 	 * beyond the end of the object.
2329 	 */
2330 	info.start_pindex = start;
2331 	if (end == 0)
2332 		info.end_pindex = (vm_pindex_t)-1;
2333 	else
2334 		info.end_pindex = end - 1;
2335 	info.limit = clean_only;
2336 	all = (start == 0 && info.end_pindex >= object->size - 1);
2337 
2338 	/*
2339 	 * Loop until we are sure we have gotten them all.
2340 	 */
2341 	do {
2342 		info.error = 0;
2343 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2344 					vm_object_page_remove_callback, &info);
2345 	} while (info.error);
2346 
2347 	/*
2348 	 * Remove any related swap if throwing away pages, or for
2349 	 * non-swap objects (the swap is a clean copy in that case).
2350 	 */
2351 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2352 		if (all)
2353 			swap_pager_freespace_all(object);
2354 		else
2355 			swap_pager_freespace(object, info.start_pindex,
2356 			     info.end_pindex - info.start_pindex + 1);
2357 	}
2358 
2359 	/*
2360 	 * Cleanup
2361 	 */
2362 	vm_object_pip_wakeup(object);
2363 	vm_object_drop(object);
2364 }
2365 
2366 /*
2367  * The caller must hold the object
2368  */
2369 static int
2370 vm_object_page_remove_callback(vm_page_t p, void *data)
2371 {
2372 	struct rb_vm_page_scan_info *info = data;
2373 
2374 	if (vm_page_busy_try(p, TRUE)) {
2375 		vm_page_sleep_busy(p, TRUE, "vmopar");
2376 		info->error = 1;
2377 		return(0);
2378 	}
2379 
2380 	/*
2381 	 * Wired pages cannot be destroyed, but they can be invalidated
2382 	 * and we do so if clean_only (limit) is not set.
2383 	 *
2384 	 * WARNING!  The page may be wired due to being part of a buffer
2385 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2386 	 *	     This is fine as part of a truncation but VFSs must be
2387 	 *	     sure to fix the buffer up when re-extending the file.
2388 	 *
2389 	 * NOTE!     PG_NEED_COMMIT is ignored.
2390 	 */
2391 	if (p->wire_count != 0) {
2392 		vm_page_protect(p, VM_PROT_NONE);
2393 		if (info->limit == 0)
2394 			p->valid = 0;
2395 		vm_page_wakeup(p);
2396 		return(0);
2397 	}
2398 
2399 	/*
2400 	 * limit is our clean_only flag.  If set and the page is dirty or
2401 	 * requires a commit, do not free it.  If set and the page is being
2402 	 * held by someone, do not free it.
2403 	 */
2404 	if (info->limit && p->valid) {
2405 		vm_page_test_dirty(p);
2406 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2407 			vm_page_wakeup(p);
2408 			return(0);
2409 		}
2410 #if 0
2411 		if (p->hold_count) {
2412 			vm_page_wakeup(p);
2413 			return(0);
2414 		}
2415 #endif
2416 	}
2417 
2418 	/*
2419 	 * Destroy the page
2420 	 */
2421 	vm_page_protect(p, VM_PROT_NONE);
2422 	vm_page_free(p);
2423 	return(0);
2424 }
2425 
2426 /*
2427  * Coalesces two objects backing up adjoining regions of memory into a
2428  * single object.
2429  *
2430  * returns TRUE if objects were combined.
2431  *
2432  * NOTE: Only works at the moment if the second object is NULL -
2433  *	 if it's not, which object do we lock first?
2434  *
2435  * Parameters:
2436  *	prev_object	First object to coalesce
2437  *	prev_offset	Offset into prev_object
2438  *	next_object	Second object into coalesce
2439  *	next_offset	Offset into next_object
2440  *
2441  *	prev_size	Size of reference to prev_object
2442  *	next_size	Size of reference to next_object
2443  *
2444  * The caller does not need to hold (prev_object) but must have a stable
2445  * pointer to it (typically by holding the vm_map locked).
2446  */
2447 boolean_t
2448 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2449 		   vm_size_t prev_size, vm_size_t next_size)
2450 {
2451 	vm_pindex_t next_pindex;
2452 
2453 	if (prev_object == NULL)
2454 		return (TRUE);
2455 
2456 	vm_object_hold(prev_object);
2457 
2458 	if (prev_object->type != OBJT_DEFAULT &&
2459 	    prev_object->type != OBJT_SWAP) {
2460 		vm_object_drop(prev_object);
2461 		return (FALSE);
2462 	}
2463 
2464 	/*
2465 	 * Try to collapse the object first
2466 	 */
2467 	vm_object_chain_acquire(prev_object);
2468 	vm_object_collapse(prev_object, NULL);
2469 
2470 	/*
2471 	 * Can't coalesce if: . more than one reference . paged out . shadows
2472 	 * another object . has a copy elsewhere (any of which mean that the
2473 	 * pages not mapped to prev_entry may be in use anyway)
2474 	 */
2475 
2476 	if (prev_object->backing_object != NULL) {
2477 		vm_object_chain_release(prev_object);
2478 		vm_object_drop(prev_object);
2479 		return (FALSE);
2480 	}
2481 
2482 	prev_size >>= PAGE_SHIFT;
2483 	next_size >>= PAGE_SHIFT;
2484 	next_pindex = prev_pindex + prev_size;
2485 
2486 	if ((prev_object->ref_count > 1) &&
2487 	    (prev_object->size != next_pindex)) {
2488 		vm_object_chain_release(prev_object);
2489 		vm_object_drop(prev_object);
2490 		return (FALSE);
2491 	}
2492 
2493 	/*
2494 	 * Remove any pages that may still be in the object from a previous
2495 	 * deallocation.
2496 	 */
2497 	if (next_pindex < prev_object->size) {
2498 		vm_object_page_remove(prev_object,
2499 				      next_pindex,
2500 				      next_pindex + next_size, FALSE);
2501 		if (prev_object->type == OBJT_SWAP)
2502 			swap_pager_freespace(prev_object,
2503 					     next_pindex, next_size);
2504 	}
2505 
2506 	/*
2507 	 * Extend the object if necessary.
2508 	 */
2509 	if (next_pindex + next_size > prev_object->size)
2510 		prev_object->size = next_pindex + next_size;
2511 
2512 	vm_object_chain_release(prev_object);
2513 	vm_object_drop(prev_object);
2514 	return (TRUE);
2515 }
2516 
2517 /*
2518  * Make the object writable and flag is being possibly dirty.
2519  *
2520  * The object might not be held, the related vnode is probably not
2521  * held either.  Object and vnode are stable by virtue of the vm_page
2522  * busied by the caller preventing destruction.
2523  *
2524  * If the related mount is flagged MNTK_THR_SYNC we need to call
2525  * vsetobjdirty().  Filesystems using this option usually shortcut
2526  * synchronization by only scanning the syncer list.
2527  */
2528 void
2529 vm_object_set_writeable_dirty(vm_object_t object)
2530 {
2531 	struct vnode *vp;
2532 
2533 	/*vm_object_assert_held(object);*/
2534 	/*
2535 	 * Avoid contention in vm fault path by checking the state before
2536 	 * issuing an atomic op on it.
2537 	 */
2538 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2539 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2540 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2541 	}
2542 	if (object->type == OBJT_VNODE &&
2543 	    (vp = (struct vnode *)object->handle) != NULL) {
2544 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2545 			if (vp->v_mount &&
2546 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2547 				vsetobjdirty(vp);
2548 			} else {
2549 				vsetflags(vp, VOBJDIRTY);
2550 			}
2551 		}
2552 	}
2553 }
2554 
2555 #include "opt_ddb.h"
2556 #ifdef DDB
2557 #include <sys/kernel.h>
2558 
2559 #include <sys/cons.h>
2560 
2561 #include <ddb/ddb.h>
2562 
2563 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2564 				       vm_map_entry_t entry);
2565 static int	vm_object_in_map (vm_object_t object);
2566 
2567 /*
2568  * The caller must hold the object.
2569  */
2570 static int
2571 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2572 {
2573 	vm_map_t tmpm;
2574 	vm_map_entry_t tmpe;
2575 	vm_object_t obj, nobj;
2576 	int entcount;
2577 
2578 	if (map == 0)
2579 		return 0;
2580 	if (entry == 0) {
2581 		tmpe = map->header.next;
2582 		entcount = map->nentries;
2583 		while (entcount-- && (tmpe != &map->header)) {
2584 			if( _vm_object_in_map(map, object, tmpe)) {
2585 				return 1;
2586 			}
2587 			tmpe = tmpe->next;
2588 		}
2589 		return (0);
2590 	}
2591 	switch(entry->maptype) {
2592 	case VM_MAPTYPE_SUBMAP:
2593 		tmpm = entry->object.sub_map;
2594 		tmpe = tmpm->header.next;
2595 		entcount = tmpm->nentries;
2596 		while (entcount-- && tmpe != &tmpm->header) {
2597 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2598 				return 1;
2599 			}
2600 			tmpe = tmpe->next;
2601 		}
2602 		break;
2603 	case VM_MAPTYPE_NORMAL:
2604 	case VM_MAPTYPE_VPAGETABLE:
2605 		obj = entry->object.vm_object;
2606 		while (obj) {
2607 			if (obj == object) {
2608 				if (obj != entry->object.vm_object)
2609 					vm_object_drop(obj);
2610 				return 1;
2611 			}
2612 			while ((nobj = obj->backing_object) != NULL) {
2613 				vm_object_hold(nobj);
2614 				if (nobj == obj->backing_object)
2615 					break;
2616 				vm_object_drop(nobj);
2617 			}
2618 			if (obj != entry->object.vm_object) {
2619 				if (nobj)
2620 					vm_object_lock_swap();
2621 				vm_object_drop(obj);
2622 			}
2623 			obj = nobj;
2624 		}
2625 		break;
2626 	default:
2627 		break;
2628 	}
2629 	return 0;
2630 }
2631 
2632 static int vm_object_in_map_callback(struct proc *p, void *data);
2633 
2634 struct vm_object_in_map_info {
2635 	vm_object_t object;
2636 	int rv;
2637 };
2638 
2639 /*
2640  * Debugging only
2641  */
2642 static int
2643 vm_object_in_map(vm_object_t object)
2644 {
2645 	struct vm_object_in_map_info info;
2646 
2647 	info.rv = 0;
2648 	info.object = object;
2649 
2650 	allproc_scan(vm_object_in_map_callback, &info);
2651 	if (info.rv)
2652 		return 1;
2653 	if( _vm_object_in_map(&kernel_map, object, 0))
2654 		return 1;
2655 	if( _vm_object_in_map(&pager_map, object, 0))
2656 		return 1;
2657 	if( _vm_object_in_map(&buffer_map, object, 0))
2658 		return 1;
2659 	return 0;
2660 }
2661 
2662 /*
2663  * Debugging only
2664  */
2665 static int
2666 vm_object_in_map_callback(struct proc *p, void *data)
2667 {
2668 	struct vm_object_in_map_info *info = data;
2669 
2670 	if (p->p_vmspace) {
2671 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2672 			info->rv = 1;
2673 			return -1;
2674 		}
2675 	}
2676 	return (0);
2677 }
2678 
2679 DB_SHOW_COMMAND(vmochk, vm_object_check)
2680 {
2681 	vm_object_t object;
2682 
2683 	/*
2684 	 * make sure that internal objs are in a map somewhere
2685 	 * and none have zero ref counts.
2686 	 */
2687 	for (object = TAILQ_FIRST(&vm_object_list);
2688 			object != NULL;
2689 			object = TAILQ_NEXT(object, object_list)) {
2690 		if (object->type == OBJT_MARKER)
2691 			continue;
2692 		if (object->handle == NULL &&
2693 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2694 			if (object->ref_count == 0) {
2695 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2696 					(long)object->size);
2697 			}
2698 			if (!vm_object_in_map(object)) {
2699 				db_printf(
2700 			"vmochk: internal obj is not in a map: "
2701 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2702 				    object->ref_count, (u_long)object->size,
2703 				    (u_long)object->size,
2704 				    (void *)object->backing_object);
2705 			}
2706 		}
2707 	}
2708 }
2709 
2710 /*
2711  * Debugging only
2712  */
2713 DB_SHOW_COMMAND(object, vm_object_print_static)
2714 {
2715 	/* XXX convert args. */
2716 	vm_object_t object = (vm_object_t)addr;
2717 	boolean_t full = have_addr;
2718 
2719 	vm_page_t p;
2720 
2721 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2722 #define	count	was_count
2723 
2724 	int count;
2725 
2726 	if (object == NULL)
2727 		return;
2728 
2729 	db_iprintf(
2730 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2731 	    object, (int)object->type, (u_long)object->size,
2732 	    object->resident_page_count, object->ref_count, object->flags);
2733 	/*
2734 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2735 	 */
2736 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2737 	    object->shadow_count,
2738 	    object->backing_object ? object->backing_object->ref_count : 0,
2739 	    object->backing_object, (long)object->backing_object_offset);
2740 
2741 	if (!full)
2742 		return;
2743 
2744 	db_indent += 2;
2745 	count = 0;
2746 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2747 		if (count == 0)
2748 			db_iprintf("memory:=");
2749 		else if (count == 6) {
2750 			db_printf("\n");
2751 			db_iprintf(" ...");
2752 			count = 0;
2753 		} else
2754 			db_printf(",");
2755 		count++;
2756 
2757 		db_printf("(off=0x%lx,page=0x%lx)",
2758 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2759 	}
2760 	if (count != 0)
2761 		db_printf("\n");
2762 	db_indent -= 2;
2763 }
2764 
2765 /* XXX. */
2766 #undef count
2767 
2768 /*
2769  * XXX need this non-static entry for calling from vm_map_print.
2770  *
2771  * Debugging only
2772  */
2773 void
2774 vm_object_print(/* db_expr_t */ long addr,
2775 		boolean_t have_addr,
2776 		/* db_expr_t */ long count,
2777 		char *modif)
2778 {
2779 	vm_object_print_static(addr, have_addr, count, modif);
2780 }
2781 
2782 /*
2783  * Debugging only
2784  */
2785 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2786 {
2787 	vm_object_t object;
2788 	int nl = 0;
2789 	int c;
2790 	for (object = TAILQ_FIRST(&vm_object_list);
2791 			object != NULL;
2792 			object = TAILQ_NEXT(object, object_list)) {
2793 		vm_pindex_t idx, fidx;
2794 		vm_pindex_t osize;
2795 		vm_paddr_t pa = -1, padiff;
2796 		int rcount;
2797 		vm_page_t m;
2798 
2799 		if (object->type == OBJT_MARKER)
2800 			continue;
2801 		db_printf("new object: %p\n", (void *)object);
2802 		if ( nl > 18) {
2803 			c = cngetc();
2804 			if (c != ' ')
2805 				return;
2806 			nl = 0;
2807 		}
2808 		nl++;
2809 		rcount = 0;
2810 		fidx = 0;
2811 		osize = object->size;
2812 		if (osize > 128)
2813 			osize = 128;
2814 		for (idx = 0; idx < osize; idx++) {
2815 			m = vm_page_lookup(object, idx);
2816 			if (m == NULL) {
2817 				if (rcount) {
2818 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2819 						(long)fidx, rcount, (long)pa);
2820 					if ( nl > 18) {
2821 						c = cngetc();
2822 						if (c != ' ')
2823 							return;
2824 						nl = 0;
2825 					}
2826 					nl++;
2827 					rcount = 0;
2828 				}
2829 				continue;
2830 			}
2831 
2832 
2833 			if (rcount &&
2834 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2835 				++rcount;
2836 				continue;
2837 			}
2838 			if (rcount) {
2839 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2840 				padiff >>= PAGE_SHIFT;
2841 				padiff &= PQ_L2_MASK;
2842 				if (padiff == 0) {
2843 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2844 					++rcount;
2845 					continue;
2846 				}
2847 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2848 					(long)fidx, rcount, (long)pa);
2849 				db_printf("pd(%ld)\n", (long)padiff);
2850 				if ( nl > 18) {
2851 					c = cngetc();
2852 					if (c != ' ')
2853 						return;
2854 					nl = 0;
2855 				}
2856 				nl++;
2857 			}
2858 			fidx = idx;
2859 			pa = VM_PAGE_TO_PHYS(m);
2860 			rcount = 1;
2861 		}
2862 		if (rcount) {
2863 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2864 				(long)fidx, rcount, (long)pa);
2865 			if ( nl > 18) {
2866 				c = cngetc();
2867 				if (c != ' ')
2868 					return;
2869 				nl = 0;
2870 			}
2871 			nl++;
2872 		}
2873 	}
2874 }
2875 #endif /* DDB */
2876