xref: /dflybsd-src/sys/vm/vm_object.c (revision ec6257fc30945063d93beb15307f3b475b9b04a1)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object);
101 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 					     int pagerflags);
103 static void	vm_object_lock_init(vm_object_t);
104 static void	vm_object_hold_wake(vm_object_t);
105 static void	vm_object_hold_wait(vm_object_t);
106 
107 
108 /*
109  *	Virtual memory objects maintain the actual data
110  *	associated with allocated virtual memory.  A given
111  *	page of memory exists within exactly one object.
112  *
113  *	An object is only deallocated when all "references"
114  *	are given up.  Only one "reference" to a given
115  *	region of an object should be writeable.
116  *
117  *	Associated with each object is a list of all resident
118  *	memory pages belonging to that object; this list is
119  *	maintained by the "vm_page" module, and locked by the object's
120  *	lock.
121  *
122  *	Each object also records a "pager" routine which is
123  *	used to retrieve (and store) pages to the proper backing
124  *	storage.  In addition, objects may be backed by other
125  *	objects from which they were virtual-copied.
126  *
127  *	The only items within the object structure which are
128  *	modified after time of creation are:
129  *		reference count		locked by object's lock
130  *		pager routine		locked by object's lock
131  *
132  */
133 
134 struct object_q vm_object_list;		/* locked by vmobj_token */
135 struct vm_object kernel_object;
136 
137 static long vm_object_count;		/* locked by vmobj_token */
138 extern int vm_pageout_page_count;
139 
140 static long object_collapses;
141 static long object_bypasses;
142 static int next_index;
143 static vm_zone_t obj_zone;
144 static struct vm_zone obj_zone_store;
145 #define VM_OBJECTS_INIT 256
146 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
147 
148 /*
149  * Initialize a freshly allocated object
150  *
151  * Used only by vm_object_allocate() and zinitna().
152  *
153  * No requirements.
154  */
155 void
156 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
157 {
158 	int incr;
159 
160 	RB_INIT(&object->rb_memq);
161 	LIST_INIT(&object->shadow_head);
162 
163 	object->type = type;
164 	object->size = size;
165 	object->ref_count = 1;
166 	object->hold_count = 0;
167 	object->flags = 0;
168 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
169 		vm_object_set_flag(object, OBJ_ONEMAPPING);
170 	object->paging_in_progress = 0;
171 	object->resident_page_count = 0;
172 	object->agg_pv_list_count = 0;
173 	object->shadow_count = 0;
174 	object->pg_color = next_index;
175 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
176 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
177 	else
178 		incr = size;
179 	next_index = (next_index + incr) & PQ_L2_MASK;
180 	object->handle = NULL;
181 	object->backing_object = NULL;
182 	object->backing_object_offset = (vm_ooffset_t) 0;
183 
184 	object->generation++;
185 	object->swblock_count = 0;
186 	RB_INIT(&object->swblock_root);
187 	vm_object_lock_init(object);
188 
189 	lwkt_gettoken(&vmobj_token);
190 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
191 	vm_object_count++;
192 	lwkt_reltoken(&vmobj_token);
193 }
194 
195 /*
196  * Initialize the VM objects module.
197  *
198  * Called from the low level boot code only.
199  */
200 void
201 vm_object_init(void)
202 {
203 	TAILQ_INIT(&vm_object_list);
204 
205 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
206 			    &kernel_object);
207 
208 	obj_zone = &obj_zone_store;
209 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
210 		vm_objects_init, VM_OBJECTS_INIT);
211 }
212 
213 void
214 vm_object_init2(void)
215 {
216 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
217 }
218 
219 /*
220  * Allocate and return a new object of the specified type and size.
221  *
222  * No requirements.
223  */
224 vm_object_t
225 vm_object_allocate(objtype_t type, vm_pindex_t size)
226 {
227 	vm_object_t result;
228 
229 	result = (vm_object_t) zalloc(obj_zone);
230 
231 	_vm_object_allocate(type, size, result);
232 
233 	return (result);
234 }
235 
236 /*
237  * Add an additional reference to a vm_object.
238  *
239  * Object passed by caller must be stable or caller must already
240  * hold vmobj_token to avoid races.
241  */
242 void
243 vm_object_reference(vm_object_t object)
244 {
245 	lwkt_gettoken(&vmobj_token);
246 	vm_object_reference_locked(object);
247 	lwkt_reltoken(&vmobj_token);
248 }
249 
250 void
251 vm_object_reference_locked(vm_object_t object)
252 {
253 	if (object) {
254 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
255 		object->ref_count++;
256 		if (object->type == OBJT_VNODE) {
257 			vref(object->handle);
258 			/* XXX what if the vnode is being destroyed? */
259 		}
260 	}
261 }
262 
263 /*
264  * Dereference an object and its underlying vnode.
265  *
266  * The caller must hold vmobj_token.
267  */
268 static void
269 vm_object_vndeallocate(vm_object_t object)
270 {
271 	struct vnode *vp = (struct vnode *) object->handle;
272 
273 	KASSERT(object->type == OBJT_VNODE,
274 	    ("vm_object_vndeallocate: not a vnode object"));
275 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
276 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
277 #ifdef INVARIANTS
278 	if (object->ref_count == 0) {
279 		vprint("vm_object_vndeallocate", vp);
280 		panic("vm_object_vndeallocate: bad object reference count");
281 	}
282 #endif
283 
284 	object->ref_count--;
285 	if (object->ref_count == 0)
286 		vclrflags(vp, VTEXT);
287 	vrele(vp);
288 }
289 
290 /*
291  * Release a reference to the specified object, gained either through a
292  * vm_object_allocate or a vm_object_reference call.  When all references
293  * are gone, storage associated with this object may be relinquished.
294  */
295 void
296 vm_object_deallocate(vm_object_t object)
297 {
298 	lwkt_gettoken(&vmobj_token);
299 	vm_object_deallocate_locked(object);
300 	lwkt_reltoken(&vmobj_token);
301 }
302 
303 void
304 vm_object_deallocate_locked(vm_object_t object)
305 {
306 	vm_object_t temp;
307 
308 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
309 
310 	while (object != NULL) {
311 		if (object->type == OBJT_VNODE) {
312 			vm_object_vndeallocate(object);
313 			break;
314 		}
315 
316 		if (object->ref_count == 0) {
317 			panic("vm_object_deallocate: object deallocated "
318 			      "too many times: %d", object->type);
319 		}
320 		if (object->ref_count > 2) {
321 			object->ref_count--;
322 			break;
323 		}
324 
325 		/*
326 		 * We currently need the vm_token from this point on, and
327 		 * we must recheck ref_count after acquiring it.
328 		 */
329 		lwkt_gettoken(&vm_token);
330 
331 		if (object->ref_count > 2) {
332 			object->ref_count--;
333 			lwkt_reltoken(&vm_token);
334 			break;
335 		}
336 
337 		/*
338 		 * Here on ref_count of one or two, which are special cases for
339 		 * objects.
340 		 */
341 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
342 			vm_object_set_flag(object, OBJ_ONEMAPPING);
343 			object->ref_count--;
344 			lwkt_reltoken(&vm_token);
345 			break;
346 		}
347 		if ((object->ref_count == 2) && (object->shadow_count == 1)) {
348 			object->ref_count--;
349 			if ((object->handle == NULL) &&
350 			    (object->type == OBJT_DEFAULT ||
351 			     object->type == OBJT_SWAP)) {
352 				vm_object_t robject;
353 
354 				robject = LIST_FIRST(&object->shadow_head);
355 				KASSERT(robject != NULL,
356 					("vm_object_deallocate: ref_count: "
357 					"%d, shadow_count: %d",
358 					object->ref_count,
359 					object->shadow_count));
360 
361 				if ((robject->handle == NULL) &&
362 				    (robject->type == OBJT_DEFAULT ||
363 				     robject->type == OBJT_SWAP)) {
364 
365 					robject->ref_count++;
366 
367 					while (
368 						robject->paging_in_progress ||
369 						object->paging_in_progress
370 					) {
371 						vm_object_pip_sleep(robject, "objde1");
372 						vm_object_pip_sleep(object, "objde2");
373 					}
374 
375 					if (robject->ref_count == 1) {
376 						robject->ref_count--;
377 						object = robject;
378 						goto doterm;
379 					}
380 
381 					object = robject;
382 					vm_object_collapse(object);
383 					lwkt_reltoken(&vm_token);
384 					continue;
385 				}
386 			}
387 			lwkt_reltoken(&vm_token);
388 			break;
389 		}
390 
391 		/*
392 		 * Normal dereferencing path
393 		 */
394 		object->ref_count--;
395 		if (object->ref_count != 0) {
396 			lwkt_reltoken(&vm_token);
397 			break;
398 		}
399 
400 		/*
401 		 * Termination path
402 		 */
403 doterm:
404 		temp = object->backing_object;
405 		if (temp) {
406 			LIST_REMOVE(object, shadow_list);
407 			temp->shadow_count--;
408 			temp->generation++;
409 			object->backing_object = NULL;
410 		}
411 		lwkt_reltoken(&vm_token);
412 
413 		/*
414 		 * Don't double-terminate, we could be in a termination
415 		 * recursion due to the terminate having to sync data
416 		 * to disk.
417 		 */
418 		if ((object->flags & OBJ_DEAD) == 0)
419 			vm_object_terminate(object);
420 		object = temp;
421 	}
422 }
423 
424 /*
425  * Destroy the specified object, freeing up related resources.
426  *
427  * The object must have zero references.
428  *
429  * The caller must be holding vmobj_token and properly interlock with
430  * OBJ_DEAD.
431  */
432 static int vm_object_terminate_callback(vm_page_t p, void *data);
433 
434 void
435 vm_object_terminate(vm_object_t object)
436 {
437 	/*
438 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
439 	 * able to safely block.
440 	 */
441 	KKASSERT((object->flags & OBJ_DEAD) == 0);
442 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
443 	vm_object_set_flag(object, OBJ_DEAD);
444 
445 	/*
446 	 * Wait for the pageout daemon to be done with the object
447 	 */
448 	vm_object_pip_wait(object, "objtrm1");
449 
450 	KASSERT(!object->paging_in_progress,
451 		("vm_object_terminate: pageout in progress"));
452 
453 	/*
454 	 * Clean and free the pages, as appropriate. All references to the
455 	 * object are gone, so we don't need to lock it.
456 	 */
457 	if (object->type == OBJT_VNODE) {
458 		struct vnode *vp;
459 
460 		/*
461 		 * Clean pages and flush buffers.
462 		 */
463 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
464 
465 		vp = (struct vnode *) object->handle;
466 		vinvalbuf(vp, V_SAVE, 0, 0);
467 	}
468 
469 	/*
470 	 * Wait for any I/O to complete, after which there had better not
471 	 * be any references left on the object.
472 	 */
473 	vm_object_pip_wait(object, "objtrm2");
474 
475 	if (object->ref_count != 0) {
476 		panic("vm_object_terminate: object with references, "
477 		      "ref_count=%d", object->ref_count);
478 	}
479 
480 	/*
481 	 * Now free any remaining pages. For internal objects, this also
482 	 * removes them from paging queues. Don't free wired pages, just
483 	 * remove them from the object.
484 	 */
485 	lwkt_gettoken(&vm_token);
486 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
487 				vm_object_terminate_callback, NULL);
488 	lwkt_reltoken(&vm_token);
489 
490 	/*
491 	 * Let the pager know object is dead.
492 	 */
493 	vm_pager_deallocate(object);
494 
495 	/*
496 	 * Wait for the object hold count to hit zero, clean out pages as
497 	 * we go.
498 	 */
499 	lwkt_gettoken(&vm_token);
500 	for (;;) {
501 		vm_object_hold_wait(object);
502 		if (RB_ROOT(&object->rb_memq) == NULL)
503 			break;
504 		kprintf("vm_object_terminate: Warning, object %p "
505 			"still has %d pages\n",
506 			object, object->resident_page_count);
507 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
508 					vm_object_terminate_callback, NULL);
509 	}
510 	lwkt_reltoken(&vm_token);
511 
512 	/*
513 	 * There had better not be any pages left
514 	 */
515 	KKASSERT(object->resident_page_count == 0);
516 
517 	/*
518 	 * Remove the object from the global object list.
519 	 *
520 	 * (we are holding vmobj_token)
521 	 */
522 	TAILQ_REMOVE(&vm_object_list, object, object_list);
523 	vm_object_count--;
524 	vm_object_dead_wakeup(object);
525 
526 	if (object->ref_count != 0) {
527 		panic("vm_object_terminate2: object with references, "
528 		      "ref_count=%d", object->ref_count);
529 	}
530 
531 	/*
532 	 * Free the space for the object.
533 	 */
534 	zfree(obj_zone, object);
535 }
536 
537 /*
538  * The caller must hold vm_token.
539  */
540 static int
541 vm_object_terminate_callback(vm_page_t p, void *data __unused)
542 {
543 	if (p->busy || (p->flags & PG_BUSY))
544 		panic("vm_object_terminate: freeing busy page %p", p);
545 	if (p->wire_count == 0) {
546 		vm_page_busy(p);
547 		vm_page_free(p);
548 		mycpu->gd_cnt.v_pfree++;
549 	} else {
550 		if (p->queue != PQ_NONE)
551 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
552 		vm_page_busy(p);
553 		vm_page_remove(p);
554 		vm_page_wakeup(p);
555 	}
556 	return(0);
557 }
558 
559 /*
560  * The object is dead but still has an object<->pager association.  Sleep
561  * and return.  The caller typically retests the association in a loop.
562  *
563  * Must be called with the vmobj_token held.
564  */
565 void
566 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
567 {
568 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
569 	if (object->handle) {
570 		vm_object_set_flag(object, OBJ_DEADWNT);
571 		tsleep(object, 0, wmesg, 0);
572 		/* object may be invalid after this point */
573 	}
574 }
575 
576 /*
577  * Wakeup anyone waiting for the object<->pager disassociation on
578  * a dead object.
579  *
580  * Must be called with the vmobj_token held.
581  */
582 void
583 vm_object_dead_wakeup(vm_object_t object)
584 {
585 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
586 	if (object->flags & OBJ_DEADWNT) {
587 		vm_object_clear_flag(object, OBJ_DEADWNT);
588 		wakeup(object);
589 	}
590 }
591 
592 /*
593  * Clean all dirty pages in the specified range of object.  Leaves page
594  * on whatever queue it is currently on.   If NOSYNC is set then do not
595  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
596  * leaving the object dirty.
597  *
598  * When stuffing pages asynchronously, allow clustering.  XXX we need a
599  * synchronous clustering mode implementation.
600  *
601  * Odd semantics: if start == end, we clean everything.
602  *
603  * The object must be locked? XXX
604  */
605 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
606 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
607 
608 void
609 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
610 		     int flags)
611 {
612 	struct rb_vm_page_scan_info info;
613 	struct vnode *vp;
614 	int wholescan;
615 	int pagerflags;
616 	int curgeneration;
617 
618 	lwkt_gettoken(&vm_token);
619 	if (object->type != OBJT_VNODE ||
620 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
621 		lwkt_reltoken(&vm_token);
622 		return;
623 	}
624 
625 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
626 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
627 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
628 
629 	vp = object->handle;
630 
631 	/*
632 	 * Interlock other major object operations.  This allows us to
633 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
634 	 */
635 	crit_enter();
636 	vm_object_set_flag(object, OBJ_CLEANING);
637 
638 	/*
639 	 * Handle 'entire object' case
640 	 */
641 	info.start_pindex = start;
642 	if (end == 0) {
643 		info.end_pindex = object->size - 1;
644 	} else {
645 		info.end_pindex = end - 1;
646 	}
647 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
648 	info.limit = flags;
649 	info.pagerflags = pagerflags;
650 	info.object = object;
651 
652 	/*
653 	 * If cleaning the entire object do a pass to mark the pages read-only.
654 	 * If everything worked out ok, clear OBJ_WRITEABLE and
655 	 * OBJ_MIGHTBEDIRTY.
656 	 */
657 	if (wholescan) {
658 		info.error = 0;
659 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
660 					vm_object_page_clean_pass1, &info);
661 		if (info.error == 0) {
662 			vm_object_clear_flag(object,
663 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
664 			if (object->type == OBJT_VNODE &&
665 			    (vp = (struct vnode *)object->handle) != NULL) {
666 				if (vp->v_flag & VOBJDIRTY)
667 					vclrflags(vp, VOBJDIRTY);
668 			}
669 		}
670 	}
671 
672 	/*
673 	 * Do a pass to clean all the dirty pages we find.
674 	 */
675 	do {
676 		info.error = 0;
677 		curgeneration = object->generation;
678 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
679 					vm_object_page_clean_pass2, &info);
680 	} while (info.error || curgeneration != object->generation);
681 
682 	vm_object_clear_flag(object, OBJ_CLEANING);
683 	crit_exit();
684 	lwkt_reltoken(&vm_token);
685 }
686 
687 /*
688  * The caller must hold vm_token.
689  */
690 static
691 int
692 vm_object_page_clean_pass1(struct vm_page *p, void *data)
693 {
694 	struct rb_vm_page_scan_info *info = data;
695 
696 	vm_page_flag_set(p, PG_CLEANCHK);
697 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
698 		info->error = 1;
699 	else
700 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
701 	return(0);
702 }
703 
704 /*
705  * The caller must hold vm_token.
706  */
707 static
708 int
709 vm_object_page_clean_pass2(struct vm_page *p, void *data)
710 {
711 	struct rb_vm_page_scan_info *info = data;
712 	int n;
713 
714 	/*
715 	 * Do not mess with pages that were inserted after we started
716 	 * the cleaning pass.
717 	 */
718 	if ((p->flags & PG_CLEANCHK) == 0)
719 		return(0);
720 
721 	/*
722 	 * Before wasting time traversing the pmaps, check for trivial
723 	 * cases where the page cannot be dirty.
724 	 */
725 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
726 		KKASSERT((p->dirty & p->valid) == 0);
727 		return(0);
728 	}
729 
730 	/*
731 	 * Check whether the page is dirty or not.  The page has been set
732 	 * to be read-only so the check will not race a user dirtying the
733 	 * page.
734 	 */
735 	vm_page_test_dirty(p);
736 	if ((p->dirty & p->valid) == 0) {
737 		vm_page_flag_clear(p, PG_CLEANCHK);
738 		return(0);
739 	}
740 
741 	/*
742 	 * If we have been asked to skip nosync pages and this is a
743 	 * nosync page, skip it.  Note that the object flags were
744 	 * not cleared in this case (because pass1 will have returned an
745 	 * error), so we do not have to set them.
746 	 */
747 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
748 		vm_page_flag_clear(p, PG_CLEANCHK);
749 		return(0);
750 	}
751 
752 	/*
753 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
754 	 * the pages that get successfully flushed.  Set info->error if
755 	 * we raced an object modification.
756 	 */
757 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
758 	if (n == 0)
759 		info->error = 1;
760 	return(0);
761 }
762 
763 /*
764  * Collect the specified page and nearby pages and flush them out.
765  * The number of pages flushed is returned.
766  *
767  * The caller must hold vm_token.
768  */
769 static int
770 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
771 {
772 	int runlen;
773 	int maxf;
774 	int chkb;
775 	int maxb;
776 	int i;
777 	int curgeneration;
778 	vm_pindex_t pi;
779 	vm_page_t maf[vm_pageout_page_count];
780 	vm_page_t mab[vm_pageout_page_count];
781 	vm_page_t ma[vm_pageout_page_count];
782 
783 	curgeneration = object->generation;
784 
785 	pi = p->pindex;
786 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
787 		if (object->generation != curgeneration) {
788 			return(0);
789 		}
790 	}
791 	KKASSERT(p->object == object && p->pindex == pi);
792 
793 	maxf = 0;
794 	for(i = 1; i < vm_pageout_page_count; i++) {
795 		vm_page_t tp;
796 
797 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
798 			if ((tp->flags & PG_BUSY) ||
799 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
800 				 (tp->flags & PG_CLEANCHK) == 0) ||
801 				(tp->busy != 0))
802 				break;
803 			if((tp->queue - tp->pc) == PQ_CACHE) {
804 				vm_page_flag_clear(tp, PG_CLEANCHK);
805 				break;
806 			}
807 			vm_page_test_dirty(tp);
808 			if ((tp->dirty & tp->valid) == 0) {
809 				vm_page_flag_clear(tp, PG_CLEANCHK);
810 				break;
811 			}
812 			maf[ i - 1 ] = tp;
813 			maxf++;
814 			continue;
815 		}
816 		break;
817 	}
818 
819 	maxb = 0;
820 	chkb = vm_pageout_page_count -  maxf;
821 	if (chkb) {
822 		for(i = 1; i < chkb;i++) {
823 			vm_page_t tp;
824 
825 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
826 				if ((tp->flags & PG_BUSY) ||
827 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
828 					 (tp->flags & PG_CLEANCHK) == 0) ||
829 					(tp->busy != 0))
830 					break;
831 				if((tp->queue - tp->pc) == PQ_CACHE) {
832 					vm_page_flag_clear(tp, PG_CLEANCHK);
833 					break;
834 				}
835 				vm_page_test_dirty(tp);
836 				if ((tp->dirty & tp->valid) == 0) {
837 					vm_page_flag_clear(tp, PG_CLEANCHK);
838 					break;
839 				}
840 				mab[ i - 1 ] = tp;
841 				maxb++;
842 				continue;
843 			}
844 			break;
845 		}
846 	}
847 
848 	for(i = 0; i < maxb; i++) {
849 		int index = (maxb - i) - 1;
850 		ma[index] = mab[i];
851 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
852 	}
853 	vm_page_flag_clear(p, PG_CLEANCHK);
854 	ma[maxb] = p;
855 	for(i = 0; i < maxf; i++) {
856 		int index = (maxb + i) + 1;
857 		ma[index] = maf[i];
858 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
859 	}
860 	runlen = maxb + maxf + 1;
861 
862 	vm_pageout_flush(ma, runlen, pagerflags);
863 	for (i = 0; i < runlen; i++) {
864 		if (ma[i]->valid & ma[i]->dirty) {
865 			vm_page_protect(ma[i], VM_PROT_READ);
866 			vm_page_flag_set(ma[i], PG_CLEANCHK);
867 
868 			/*
869 			 * maxf will end up being the actual number of pages
870 			 * we wrote out contiguously, non-inclusive of the
871 			 * first page.  We do not count look-behind pages.
872 			 */
873 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
874 				maxf = i - maxb - 1;
875 		}
876 	}
877 	return(maxf + 1);
878 }
879 
880 /*
881  * Same as vm_object_pmap_copy, except range checking really
882  * works, and is meant for small sections of an object.
883  *
884  * This code protects resident pages by making them read-only
885  * and is typically called on a fork or split when a page
886  * is converted to copy-on-write.
887  *
888  * NOTE: If the page is already at VM_PROT_NONE, calling
889  * vm_page_protect will have no effect.
890  */
891 void
892 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
893 {
894 	vm_pindex_t idx;
895 	vm_page_t p;
896 
897 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
898 		return;
899 
900 	/*
901 	 * spl protection needed to prevent races between the lookup,
902 	 * an interrupt unbusy/free, and our protect call.
903 	 */
904 	crit_enter();
905 	lwkt_gettoken(&vm_token);
906 	for (idx = start; idx < end; idx++) {
907 		p = vm_page_lookup(object, idx);
908 		if (p == NULL)
909 			continue;
910 		vm_page_protect(p, VM_PROT_READ);
911 	}
912 	lwkt_reltoken(&vm_token);
913 	crit_exit();
914 }
915 
916 /*
917  * Removes all physical pages in the specified object range from all
918  * physical maps.
919  *
920  * The object must *not* be locked.
921  */
922 
923 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
924 
925 void
926 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
927 {
928 	struct rb_vm_page_scan_info info;
929 
930 	if (object == NULL)
931 		return;
932 	info.start_pindex = start;
933 	info.end_pindex = end - 1;
934 
935 	crit_enter();
936 	lwkt_gettoken(&vm_token);
937 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
938 				vm_object_pmap_remove_callback, &info);
939 	if (start == 0 && end == object->size)
940 		vm_object_clear_flag(object, OBJ_WRITEABLE);
941 	lwkt_reltoken(&vm_token);
942 	crit_exit();
943 }
944 
945 /*
946  * The caller must hold vm_token.
947  */
948 static int
949 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
950 {
951 	vm_page_protect(p, VM_PROT_NONE);
952 	return(0);
953 }
954 
955 /*
956  * Implements the madvise function at the object/page level.
957  *
958  * MADV_WILLNEED	(any object)
959  *
960  *	Activate the specified pages if they are resident.
961  *
962  * MADV_DONTNEED	(any object)
963  *
964  *	Deactivate the specified pages if they are resident.
965  *
966  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
967  *
968  *	Deactivate and clean the specified pages if they are
969  *	resident.  This permits the process to reuse the pages
970  *	without faulting or the kernel to reclaim the pages
971  *	without I/O.
972  *
973  * No requirements.
974  */
975 void
976 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
977 {
978 	vm_pindex_t end, tpindex;
979 	vm_object_t tobject;
980 	vm_page_t m;
981 
982 	if (object == NULL)
983 		return;
984 
985 	end = pindex + count;
986 
987 	lwkt_gettoken(&vm_token);
988 
989 	/*
990 	 * Locate and adjust resident pages
991 	 */
992 	for (; pindex < end; pindex += 1) {
993 relookup:
994 		tobject = object;
995 		tpindex = pindex;
996 shadowlookup:
997 		/*
998 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
999 		 * and those pages must be OBJ_ONEMAPPING.
1000 		 */
1001 		if (advise == MADV_FREE) {
1002 			if ((tobject->type != OBJT_DEFAULT &&
1003 			     tobject->type != OBJT_SWAP) ||
1004 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1005 				continue;
1006 			}
1007 		}
1008 
1009 		/*
1010 		 * spl protection is required to avoid a race between the
1011 		 * lookup, an interrupt unbusy/free, and our busy check.
1012 		 */
1013 
1014 		crit_enter();
1015 		m = vm_page_lookup(tobject, tpindex);
1016 
1017 		if (m == NULL) {
1018 			/*
1019 			 * There may be swap even if there is no backing page
1020 			 */
1021 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1022 				swap_pager_freespace(tobject, tpindex, 1);
1023 
1024 			/*
1025 			 * next object
1026 			 */
1027 			crit_exit();
1028 			if (tobject->backing_object == NULL)
1029 				continue;
1030 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1031 			tobject = tobject->backing_object;
1032 			goto shadowlookup;
1033 		}
1034 
1035 		/*
1036 		 * If the page is busy or not in a normal active state,
1037 		 * we skip it.  If the page is not managed there are no
1038 		 * page queues to mess with.  Things can break if we mess
1039 		 * with pages in any of the below states.
1040 		 */
1041 		if (
1042 		    m->hold_count ||
1043 		    m->wire_count ||
1044 		    (m->flags & PG_UNMANAGED) ||
1045 		    m->valid != VM_PAGE_BITS_ALL
1046 		) {
1047 			crit_exit();
1048 			continue;
1049 		}
1050 
1051  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1052 			crit_exit();
1053   			goto relookup;
1054 		}
1055 		vm_page_busy(m);
1056 		crit_exit();
1057 
1058 		/*
1059 		 * Theoretically once a page is known not to be busy, an
1060 		 * interrupt cannot come along and rip it out from under us.
1061 		 */
1062 
1063 		if (advise == MADV_WILLNEED) {
1064 			vm_page_activate(m);
1065 		} else if (advise == MADV_DONTNEED) {
1066 			vm_page_dontneed(m);
1067 		} else if (advise == MADV_FREE) {
1068 			/*
1069 			 * Mark the page clean.  This will allow the page
1070 			 * to be freed up by the system.  However, such pages
1071 			 * are often reused quickly by malloc()/free()
1072 			 * so we do not do anything that would cause
1073 			 * a page fault if we can help it.
1074 			 *
1075 			 * Specifically, we do not try to actually free
1076 			 * the page now nor do we try to put it in the
1077 			 * cache (which would cause a page fault on reuse).
1078 			 *
1079 			 * But we do make the page is freeable as we
1080 			 * can without actually taking the step of unmapping
1081 			 * it.
1082 			 */
1083 			pmap_clear_modify(m);
1084 			m->dirty = 0;
1085 			m->act_count = 0;
1086 			vm_page_dontneed(m);
1087 			if (tobject->type == OBJT_SWAP)
1088 				swap_pager_freespace(tobject, tpindex, 1);
1089 		}
1090 		vm_page_wakeup(m);
1091 	}
1092 	lwkt_reltoken(&vm_token);
1093 }
1094 
1095 /*
1096  * Create a new object which is backed by the specified existing object
1097  * range.  The source object reference is deallocated.
1098  *
1099  * The new object and offset into that object are returned in the source
1100  * parameters.
1101  *
1102  * No other requirements.
1103  */
1104 void
1105 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1106 {
1107 	vm_object_t source;
1108 	vm_object_t result;
1109 
1110 	source = *object;
1111 
1112 	/*
1113 	 * Don't create the new object if the old object isn't shared.
1114 	 */
1115 	lwkt_gettoken(&vm_token);
1116 
1117 	if (source != NULL &&
1118 	    source->ref_count == 1 &&
1119 	    source->handle == NULL &&
1120 	    (source->type == OBJT_DEFAULT ||
1121 	     source->type == OBJT_SWAP)) {
1122 		lwkt_reltoken(&vm_token);
1123 		return;
1124 	}
1125 
1126 	/*
1127 	 * Allocate a new object with the given length
1128 	 */
1129 
1130 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1131 		panic("vm_object_shadow: no object for shadowing");
1132 
1133 	/*
1134 	 * The new object shadows the source object, adding a reference to it.
1135 	 * Our caller changes his reference to point to the new object,
1136 	 * removing a reference to the source object.  Net result: no change
1137 	 * of reference count.
1138 	 *
1139 	 * Try to optimize the result object's page color when shadowing
1140 	 * in order to maintain page coloring consistency in the combined
1141 	 * shadowed object.
1142 	 */
1143 	result->backing_object = source;
1144 	if (source) {
1145 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1146 		source->shadow_count++;
1147 		source->generation++;
1148 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1149 	}
1150 
1151 	/*
1152 	 * Store the offset into the source object, and fix up the offset into
1153 	 * the new object.
1154 	 */
1155 	result->backing_object_offset = *offset;
1156 	lwkt_reltoken(&vm_token);
1157 
1158 	/*
1159 	 * Return the new things
1160 	 */
1161 	*offset = 0;
1162 	*object = result;
1163 }
1164 
1165 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1166 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1167 #define	OBSC_COLLAPSE_WAIT	0x0004
1168 
1169 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1170 
1171 /*
1172  * The caller must hold vm_token.
1173  */
1174 static __inline int
1175 vm_object_backing_scan(vm_object_t object, int op)
1176 {
1177 	struct rb_vm_page_scan_info info;
1178 	vm_object_t backing_object;
1179 
1180 	crit_enter();
1181 
1182 	backing_object = object->backing_object;
1183 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1184 
1185 	/*
1186 	 * Initial conditions
1187 	 */
1188 
1189 	if (op & OBSC_TEST_ALL_SHADOWED) {
1190 		/*
1191 		 * We do not want to have to test for the existence of
1192 		 * swap pages in the backing object.  XXX but with the
1193 		 * new swapper this would be pretty easy to do.
1194 		 *
1195 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1196 		 * been ZFOD faulted yet?  If we do not test for this, the
1197 		 * shadow test may succeed! XXX
1198 		 */
1199 		if (backing_object->type != OBJT_DEFAULT) {
1200 			crit_exit();
1201 			return(0);
1202 		}
1203 	}
1204 	if (op & OBSC_COLLAPSE_WAIT) {
1205 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1206 		vm_object_set_flag(backing_object, OBJ_DEAD);
1207 	}
1208 
1209 	/*
1210 	 * Our scan.   We have to retry if a negative error code is returned,
1211 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1212 	 * the scan had to be stopped because the parent does not completely
1213 	 * shadow the child.
1214 	 */
1215 	info.object = object;
1216 	info.backing_object = backing_object;
1217 	info.limit = op;
1218 	do {
1219 		info.error = 1;
1220 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1221 					vm_object_backing_scan_callback,
1222 					&info);
1223 	} while (info.error < 0);
1224 	crit_exit();
1225 	return(info.error);
1226 }
1227 
1228 /*
1229  * The caller must hold vm_token.
1230  */
1231 static int
1232 vm_object_backing_scan_callback(vm_page_t p, void *data)
1233 {
1234 	struct rb_vm_page_scan_info *info = data;
1235 	vm_object_t backing_object;
1236 	vm_object_t object;
1237 	vm_pindex_t new_pindex;
1238 	vm_pindex_t backing_offset_index;
1239 	int op;
1240 
1241 	new_pindex = p->pindex - info->backing_offset_index;
1242 	op = info->limit;
1243 	object = info->object;
1244 	backing_object = info->backing_object;
1245 	backing_offset_index = info->backing_offset_index;
1246 
1247 	if (op & OBSC_TEST_ALL_SHADOWED) {
1248 		vm_page_t pp;
1249 
1250 		/*
1251 		 * Ignore pages outside the parent object's range
1252 		 * and outside the parent object's mapping of the
1253 		 * backing object.
1254 		 *
1255 		 * note that we do not busy the backing object's
1256 		 * page.
1257 		 */
1258 		if (
1259 		    p->pindex < backing_offset_index ||
1260 		    new_pindex >= object->size
1261 		) {
1262 			return(0);
1263 		}
1264 
1265 		/*
1266 		 * See if the parent has the page or if the parent's
1267 		 * object pager has the page.  If the parent has the
1268 		 * page but the page is not valid, the parent's
1269 		 * object pager must have the page.
1270 		 *
1271 		 * If this fails, the parent does not completely shadow
1272 		 * the object and we might as well give up now.
1273 		 */
1274 
1275 		pp = vm_page_lookup(object, new_pindex);
1276 		if ((pp == NULL || pp->valid == 0) &&
1277 		    !vm_pager_has_page(object, new_pindex)
1278 		) {
1279 			info->error = 0;	/* problemo */
1280 			return(-1);		/* stop the scan */
1281 		}
1282 	}
1283 
1284 	/*
1285 	 * Check for busy page
1286 	 */
1287 
1288 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1289 		vm_page_t pp;
1290 
1291 		if (op & OBSC_COLLAPSE_NOWAIT) {
1292 			if (
1293 			    (p->flags & PG_BUSY) ||
1294 			    !p->valid ||
1295 			    p->hold_count ||
1296 			    p->wire_count ||
1297 			    p->busy
1298 			) {
1299 				return(0);
1300 			}
1301 		} else if (op & OBSC_COLLAPSE_WAIT) {
1302 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1303 				/*
1304 				 * If we slept, anything could have
1305 				 * happened.   Ask that the scan be restarted.
1306 				 *
1307 				 * Since the object is marked dead, the
1308 				 * backing offset should not have changed.
1309 				 */
1310 				info->error = -1;
1311 				return(-1);
1312 			}
1313 		}
1314 
1315 		/*
1316 		 * Busy the page
1317 		 */
1318 		vm_page_busy(p);
1319 
1320 		KASSERT(
1321 		    p->object == backing_object,
1322 		    ("vm_object_qcollapse(): object mismatch")
1323 		);
1324 
1325 		/*
1326 		 * Destroy any associated swap
1327 		 */
1328 		if (backing_object->type == OBJT_SWAP)
1329 			swap_pager_freespace(backing_object, p->pindex, 1);
1330 
1331 		if (
1332 		    p->pindex < backing_offset_index ||
1333 		    new_pindex >= object->size
1334 		) {
1335 			/*
1336 			 * Page is out of the parent object's range, we
1337 			 * can simply destroy it.
1338 			 */
1339 			vm_page_protect(p, VM_PROT_NONE);
1340 			vm_page_free(p);
1341 			return(0);
1342 		}
1343 
1344 		pp = vm_page_lookup(object, new_pindex);
1345 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1346 			/*
1347 			 * page already exists in parent OR swap exists
1348 			 * for this location in the parent.  Destroy
1349 			 * the original page from the backing object.
1350 			 *
1351 			 * Leave the parent's page alone
1352 			 */
1353 			vm_page_protect(p, VM_PROT_NONE);
1354 			vm_page_free(p);
1355 			return(0);
1356 		}
1357 
1358 		/*
1359 		 * Page does not exist in parent, rename the
1360 		 * page from the backing object to the main object.
1361 		 *
1362 		 * If the page was mapped to a process, it can remain
1363 		 * mapped through the rename.
1364 		 */
1365 		if ((p->queue - p->pc) == PQ_CACHE)
1366 			vm_page_deactivate(p);
1367 
1368 		vm_page_rename(p, object, new_pindex);
1369 		/* page automatically made dirty by rename */
1370 	}
1371 	return(0);
1372 }
1373 
1374 /*
1375  * This version of collapse allows the operation to occur earlier and
1376  * when paging_in_progress is true for an object...  This is not a complete
1377  * operation, but should plug 99.9% of the rest of the leaks.
1378  *
1379  * The caller must hold vm_token and vmobj_token.
1380  * (only called from vm_object_collapse)
1381  */
1382 static void
1383 vm_object_qcollapse(vm_object_t object)
1384 {
1385 	vm_object_t backing_object = object->backing_object;
1386 
1387 	if (backing_object->ref_count != 1)
1388 		return;
1389 
1390 	backing_object->ref_count += 2;
1391 
1392 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1393 
1394 	backing_object->ref_count -= 2;
1395 }
1396 
1397 /*
1398  * Collapse an object with the object backing it.  Pages in the backing
1399  * object are moved into the parent, and the backing object is deallocated.
1400  */
1401 void
1402 vm_object_collapse(vm_object_t object)
1403 {
1404 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1405 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1406 
1407 	while (TRUE) {
1408 		vm_object_t backing_object;
1409 
1410 		/*
1411 		 * Verify that the conditions are right for collapse:
1412 		 *
1413 		 * The object exists and the backing object exists.
1414 		 */
1415 		if (object == NULL)
1416 			break;
1417 
1418 		if ((backing_object = object->backing_object) == NULL)
1419 			break;
1420 
1421 		/*
1422 		 * we check the backing object first, because it is most likely
1423 		 * not collapsable.
1424 		 */
1425 		if (backing_object->handle != NULL ||
1426 		    (backing_object->type != OBJT_DEFAULT &&
1427 		     backing_object->type != OBJT_SWAP) ||
1428 		    (backing_object->flags & OBJ_DEAD) ||
1429 		    object->handle != NULL ||
1430 		    (object->type != OBJT_DEFAULT &&
1431 		     object->type != OBJT_SWAP) ||
1432 		    (object->flags & OBJ_DEAD)) {
1433 			break;
1434 		}
1435 
1436 		if (
1437 		    object->paging_in_progress != 0 ||
1438 		    backing_object->paging_in_progress != 0
1439 		) {
1440 			vm_object_qcollapse(object);
1441 			break;
1442 		}
1443 
1444 		/*
1445 		 * We know that we can either collapse the backing object (if
1446 		 * the parent is the only reference to it) or (perhaps) have
1447 		 * the parent bypass the object if the parent happens to shadow
1448 		 * all the resident pages in the entire backing object.
1449 		 *
1450 		 * This is ignoring pager-backed pages such as swap pages.
1451 		 * vm_object_backing_scan fails the shadowing test in this
1452 		 * case.
1453 		 */
1454 
1455 		if (backing_object->ref_count == 1) {
1456 			/*
1457 			 * If there is exactly one reference to the backing
1458 			 * object, we can collapse it into the parent.
1459 			 */
1460 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1461 
1462 			/*
1463 			 * Move the pager from backing_object to object.
1464 			 */
1465 
1466 			if (backing_object->type == OBJT_SWAP) {
1467 				vm_object_pip_add(backing_object, 1);
1468 
1469 				/*
1470 				 * scrap the paging_offset junk and do a
1471 				 * discrete copy.  This also removes major
1472 				 * assumptions about how the swap-pager
1473 				 * works from where it doesn't belong.  The
1474 				 * new swapper is able to optimize the
1475 				 * destroy-source case.
1476 				 */
1477 
1478 				vm_object_pip_add(object, 1);
1479 				swap_pager_copy(
1480 				    backing_object,
1481 				    object,
1482 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1483 				vm_object_pip_wakeup(object);
1484 
1485 				vm_object_pip_wakeup(backing_object);
1486 			}
1487 			/*
1488 			 * Object now shadows whatever backing_object did.
1489 			 * Note that the reference to
1490 			 * backing_object->backing_object moves from within
1491 			 * backing_object to within object.
1492 			 */
1493 
1494 			LIST_REMOVE(object, shadow_list);
1495 			object->backing_object->shadow_count--;
1496 			object->backing_object->generation++;
1497 			if (backing_object->backing_object) {
1498 				LIST_REMOVE(backing_object, shadow_list);
1499 				backing_object->backing_object->shadow_count--;
1500 				backing_object->backing_object->generation++;
1501 			}
1502 			object->backing_object = backing_object->backing_object;
1503 			if (object->backing_object) {
1504 				LIST_INSERT_HEAD(
1505 				    &object->backing_object->shadow_head,
1506 				    object,
1507 				    shadow_list
1508 				);
1509 				object->backing_object->shadow_count++;
1510 				object->backing_object->generation++;
1511 			}
1512 
1513 			object->backing_object_offset +=
1514 			    backing_object->backing_object_offset;
1515 
1516 			/*
1517 			 * Discard backing_object.
1518 			 *
1519 			 * Since the backing object has no pages, no pager left,
1520 			 * and no object references within it, all that is
1521 			 * necessary is to dispose of it.
1522 			 */
1523 
1524 			KASSERT(backing_object->ref_count == 1,
1525 				("backing_object %p was somehow "
1526 				 "re-referenced during collapse!",
1527 				 backing_object));
1528 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1529 				("backing_object %p somehow has left "
1530 				 "over pages during collapse!",
1531 				 backing_object));
1532 
1533 			/*
1534 			 * Wait for hold count to hit zero
1535 			 */
1536 			vm_object_hold_wait(backing_object);
1537 
1538 			/* (we are holding vmobj_token) */
1539 			TAILQ_REMOVE(&vm_object_list, backing_object,
1540 				     object_list);
1541 			vm_object_count--;
1542 
1543 			zfree(obj_zone, backing_object);
1544 
1545 			object_collapses++;
1546 		} else {
1547 			vm_object_t new_backing_object;
1548 
1549 			/*
1550 			 * If we do not entirely shadow the backing object,
1551 			 * there is nothing we can do so we give up.
1552 			 */
1553 
1554 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1555 				break;
1556 			}
1557 
1558 			/*
1559 			 * Make the parent shadow the next object in the
1560 			 * chain.  Deallocating backing_object will not remove
1561 			 * it, since its reference count is at least 2.
1562 			 */
1563 
1564 			LIST_REMOVE(object, shadow_list);
1565 			backing_object->shadow_count--;
1566 			backing_object->generation++;
1567 
1568 			new_backing_object = backing_object->backing_object;
1569 			if ((object->backing_object = new_backing_object) != NULL) {
1570 				vm_object_reference(new_backing_object);
1571 				LIST_INSERT_HEAD(
1572 				    &new_backing_object->shadow_head,
1573 				    object,
1574 				    shadow_list
1575 				);
1576 				new_backing_object->shadow_count++;
1577 				new_backing_object->generation++;
1578 				object->backing_object_offset +=
1579 					backing_object->backing_object_offset;
1580 			}
1581 
1582 			/*
1583 			 * Drop the reference count on backing_object. Since
1584 			 * its ref_count was at least 2, it will not vanish;
1585 			 * so we don't need to call vm_object_deallocate, but
1586 			 * we do anyway.
1587 			 */
1588 			vm_object_deallocate_locked(backing_object);
1589 			object_bypasses++;
1590 		}
1591 
1592 		/*
1593 		 * Try again with this object's new backing object.
1594 		 */
1595 	}
1596 }
1597 
1598 /*
1599  * Removes all physical pages in the specified object range from the
1600  * object's list of pages.
1601  *
1602  * No requirements.
1603  */
1604 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1605 
1606 void
1607 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1608 		      boolean_t clean_only)
1609 {
1610 	struct rb_vm_page_scan_info info;
1611 	int all;
1612 
1613 	/*
1614 	 * Degenerate cases and assertions
1615 	 */
1616 	lwkt_gettoken(&vm_token);
1617 	if (object == NULL ||
1618 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1619 		lwkt_reltoken(&vm_token);
1620 		return;
1621 	}
1622 	KASSERT(object->type != OBJT_PHYS,
1623 		("attempt to remove pages from a physical object"));
1624 
1625 	/*
1626 	 * Indicate that paging is occuring on the object
1627 	 */
1628 	crit_enter();
1629 	vm_object_pip_add(object, 1);
1630 
1631 	/*
1632 	 * Figure out the actual removal range and whether we are removing
1633 	 * the entire contents of the object or not.  If removing the entire
1634 	 * contents, be sure to get all pages, even those that might be
1635 	 * beyond the end of the object.
1636 	 */
1637 	info.start_pindex = start;
1638 	if (end == 0)
1639 		info.end_pindex = (vm_pindex_t)-1;
1640 	else
1641 		info.end_pindex = end - 1;
1642 	info.limit = clean_only;
1643 	all = (start == 0 && info.end_pindex >= object->size - 1);
1644 
1645 	/*
1646 	 * Loop until we are sure we have gotten them all.
1647 	 */
1648 	do {
1649 		info.error = 0;
1650 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1651 					vm_object_page_remove_callback, &info);
1652 	} while (info.error);
1653 
1654 	/*
1655 	 * Remove any related swap if throwing away pages, or for
1656 	 * non-swap objects (the swap is a clean copy in that case).
1657 	 */
1658 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1659 		if (all)
1660 			swap_pager_freespace_all(object);
1661 		else
1662 			swap_pager_freespace(object, info.start_pindex,
1663 			     info.end_pindex - info.start_pindex + 1);
1664 	}
1665 
1666 	/*
1667 	 * Cleanup
1668 	 */
1669 	vm_object_pip_wakeup(object);
1670 	crit_exit();
1671 	lwkt_reltoken(&vm_token);
1672 }
1673 
1674 /*
1675  * The caller must hold vm_token.
1676  */
1677 static int
1678 vm_object_page_remove_callback(vm_page_t p, void *data)
1679 {
1680 	struct rb_vm_page_scan_info *info = data;
1681 
1682 	/*
1683 	 * Wired pages cannot be destroyed, but they can be invalidated
1684 	 * and we do so if clean_only (limit) is not set.
1685 	 *
1686 	 * WARNING!  The page may be wired due to being part of a buffer
1687 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1688 	 *	     This is fine as part of a truncation but VFSs must be
1689 	 *	     sure to fix the buffer up when re-extending the file.
1690 	 */
1691 	if (p->wire_count != 0) {
1692 		vm_page_protect(p, VM_PROT_NONE);
1693 		if (info->limit == 0)
1694 			p->valid = 0;
1695 		return(0);
1696 	}
1697 
1698 	/*
1699 	 * The busy flags are only cleared at
1700 	 * interrupt -- minimize the spl transitions
1701 	 */
1702 
1703 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1704 		info->error = 1;
1705 		return(0);
1706 	}
1707 
1708 	/*
1709 	 * limit is our clean_only flag.  If set and the page is dirty, do
1710 	 * not free it.  If set and the page is being held by someone, do
1711 	 * not free it.
1712 	 */
1713 	if (info->limit && p->valid) {
1714 		vm_page_test_dirty(p);
1715 		if (p->valid & p->dirty)
1716 			return(0);
1717 		if (p->hold_count)
1718 			return(0);
1719 	}
1720 
1721 	/*
1722 	 * Destroy the page
1723 	 */
1724 	vm_page_busy(p);
1725 	vm_page_protect(p, VM_PROT_NONE);
1726 	vm_page_free(p);
1727 	return(0);
1728 }
1729 
1730 /*
1731  * Coalesces two objects backing up adjoining regions of memory into a
1732  * single object.
1733  *
1734  * returns TRUE if objects were combined.
1735  *
1736  * NOTE: Only works at the moment if the second object is NULL -
1737  *	 if it's not, which object do we lock first?
1738  *
1739  * Parameters:
1740  *	prev_object	First object to coalesce
1741  *	prev_offset	Offset into prev_object
1742  *	next_object	Second object into coalesce
1743  *	next_offset	Offset into next_object
1744  *
1745  *	prev_size	Size of reference to prev_object
1746  *	next_size	Size of reference to next_object
1747  *
1748  * The object must not be locked.
1749  * The caller must hold vm_token and vmobj_token.
1750  */
1751 boolean_t
1752 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1753 		   vm_size_t prev_size, vm_size_t next_size)
1754 {
1755 	vm_pindex_t next_pindex;
1756 
1757 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1758 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1759 
1760 	if (prev_object == NULL) {
1761 		return (TRUE);
1762 	}
1763 
1764 	if (prev_object->type != OBJT_DEFAULT &&
1765 	    prev_object->type != OBJT_SWAP) {
1766 		return (FALSE);
1767 	}
1768 
1769 	/*
1770 	 * Try to collapse the object first
1771 	 */
1772 	vm_object_collapse(prev_object);
1773 
1774 	/*
1775 	 * Can't coalesce if: . more than one reference . paged out . shadows
1776 	 * another object . has a copy elsewhere (any of which mean that the
1777 	 * pages not mapped to prev_entry may be in use anyway)
1778 	 */
1779 
1780 	if (prev_object->backing_object != NULL) {
1781 		return (FALSE);
1782 	}
1783 
1784 	prev_size >>= PAGE_SHIFT;
1785 	next_size >>= PAGE_SHIFT;
1786 	next_pindex = prev_pindex + prev_size;
1787 
1788 	if ((prev_object->ref_count > 1) &&
1789 	    (prev_object->size != next_pindex)) {
1790 		return (FALSE);
1791 	}
1792 
1793 	/*
1794 	 * Remove any pages that may still be in the object from a previous
1795 	 * deallocation.
1796 	 */
1797 	if (next_pindex < prev_object->size) {
1798 		vm_object_page_remove(prev_object,
1799 				      next_pindex,
1800 				      next_pindex + next_size, FALSE);
1801 		if (prev_object->type == OBJT_SWAP)
1802 			swap_pager_freespace(prev_object,
1803 					     next_pindex, next_size);
1804 	}
1805 
1806 	/*
1807 	 * Extend the object if necessary.
1808 	 */
1809 	if (next_pindex + next_size > prev_object->size)
1810 		prev_object->size = next_pindex + next_size;
1811 
1812 	return (TRUE);
1813 }
1814 
1815 /*
1816  * Make the object writable and flag is being possibly dirty.
1817  *
1818  * No requirements.
1819  */
1820 void
1821 vm_object_set_writeable_dirty(vm_object_t object)
1822 {
1823 	struct vnode *vp;
1824 
1825 	lwkt_gettoken(&vm_token);
1826 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1827 	if (object->type == OBJT_VNODE &&
1828 	    (vp = (struct vnode *)object->handle) != NULL) {
1829 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1830 			vsetflags(vp, VOBJDIRTY);
1831 		}
1832 	}
1833 	lwkt_reltoken(&vm_token);
1834 }
1835 
1836 static void
1837 vm_object_lock_init(vm_object_t obj)
1838 {
1839 #if defined(DEBUG_LOCKS)
1840 	int i;
1841 
1842 	obj->debug_hold_bitmap = 0;
1843 	obj->debug_hold_ovfl = 0;
1844 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1845 		obj->debug_hold_thrs[i] = NULL;
1846 	}
1847 #endif
1848 }
1849 
1850 void
1851 vm_object_lock(vm_object_t obj)
1852 {
1853 	lwkt_getpooltoken(obj);
1854 }
1855 
1856 void
1857 vm_object_unlock(vm_object_t obj)
1858 {
1859 	lwkt_relpooltoken(obj);
1860 }
1861 
1862 void
1863 vm_object_hold(vm_object_t obj)
1864 {
1865 	vm_object_lock(obj);
1866 
1867 	refcount_acquire(&obj->hold_count);
1868 
1869 #if defined(DEBUG_LOCKS)
1870 	int i;
1871 
1872 	i = ffs(~obj->debug_hold_bitmap) - 1;
1873 	if (i == -1) {
1874 		kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
1875 		obj->debug_hold_ovfl = 1;
1876 	}
1877 
1878 	obj->debug_hold_bitmap |= (1 << i);
1879 	obj->debug_hold_thrs[i] = curthread;
1880 #endif
1881 }
1882 
1883 void
1884 vm_object_drop(vm_object_t obj)
1885 {
1886 	int rc;
1887 
1888 #if defined(DEBUG_LOCKS)
1889 	int found = 0;
1890 	int i;
1891 
1892 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1893 		if ((obj->debug_hold_bitmap & (1 << i)) &&
1894 		    (obj->debug_hold_thrs[i] == curthread)) {
1895 			obj->debug_hold_bitmap &= ~(1 << i);
1896 			obj->debug_hold_thrs[i] = NULL;
1897 			found = 1;
1898 			break;
1899 		}
1900 	}
1901 
1902 	if (found == 0 && obj->debug_hold_ovfl == 0)
1903 		panic("vm_object: attempt to drop hold on non-self-held obj");
1904 #endif
1905 
1906 	rc = refcount_release(&obj->hold_count);
1907 	vm_object_unlock(obj);
1908 
1909 	if (rc)
1910 		vm_object_hold_wake(obj);
1911 }
1912 
1913 static void
1914 vm_object_hold_wake(vm_object_t obj)
1915 {
1916 	wakeup(obj);
1917 }
1918 
1919 static void
1920 vm_object_hold_wait(vm_object_t obj)
1921 {
1922 	vm_object_lock(obj);
1923 
1924 #if defined(DEBUG_LOCKS)
1925 	int i;
1926 
1927 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1928 		if ((obj->debug_hold_bitmap & (1 << i)) &&
1929 		    (obj->debug_hold_thrs[i] == curthread))
1930 			panic("vm_object: self-hold in terminate or collapse");
1931 	}
1932 #endif
1933 
1934 	while (obj->hold_count)
1935 		tsleep(obj, 0, "vmobjhld", 0);
1936 
1937 	vm_object_unlock(obj);
1938 }
1939 
1940 #include "opt_ddb.h"
1941 #ifdef DDB
1942 #include <sys/kernel.h>
1943 
1944 #include <sys/cons.h>
1945 
1946 #include <ddb/ddb.h>
1947 
1948 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1949 				       vm_map_entry_t entry);
1950 static int	vm_object_in_map (vm_object_t object);
1951 
1952 /*
1953  * The caller must hold vm_token.
1954  */
1955 static int
1956 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1957 {
1958 	vm_map_t tmpm;
1959 	vm_map_entry_t tmpe;
1960 	vm_object_t obj;
1961 	int entcount;
1962 
1963 	if (map == 0)
1964 		return 0;
1965 	if (entry == 0) {
1966 		tmpe = map->header.next;
1967 		entcount = map->nentries;
1968 		while (entcount-- && (tmpe != &map->header)) {
1969 			if( _vm_object_in_map(map, object, tmpe)) {
1970 				return 1;
1971 			}
1972 			tmpe = tmpe->next;
1973 		}
1974 		return (0);
1975 	}
1976 	switch(entry->maptype) {
1977 	case VM_MAPTYPE_SUBMAP:
1978 		tmpm = entry->object.sub_map;
1979 		tmpe = tmpm->header.next;
1980 		entcount = tmpm->nentries;
1981 		while (entcount-- && tmpe != &tmpm->header) {
1982 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1983 				return 1;
1984 			}
1985 			tmpe = tmpe->next;
1986 		}
1987 		break;
1988 	case VM_MAPTYPE_NORMAL:
1989 	case VM_MAPTYPE_VPAGETABLE:
1990 		obj = entry->object.vm_object;
1991 		while (obj) {
1992 			if (obj == object)
1993 				return 1;
1994 			obj = obj->backing_object;
1995 		}
1996 		break;
1997 	default:
1998 		break;
1999 	}
2000 	return 0;
2001 }
2002 
2003 static int vm_object_in_map_callback(struct proc *p, void *data);
2004 
2005 struct vm_object_in_map_info {
2006 	vm_object_t object;
2007 	int rv;
2008 };
2009 
2010 /*
2011  * Debugging only
2012  */
2013 static int
2014 vm_object_in_map(vm_object_t object)
2015 {
2016 	struct vm_object_in_map_info info;
2017 
2018 	info.rv = 0;
2019 	info.object = object;
2020 
2021 	allproc_scan(vm_object_in_map_callback, &info);
2022 	if (info.rv)
2023 		return 1;
2024 	if( _vm_object_in_map(&kernel_map, object, 0))
2025 		return 1;
2026 	if( _vm_object_in_map(&pager_map, object, 0))
2027 		return 1;
2028 	if( _vm_object_in_map(&buffer_map, object, 0))
2029 		return 1;
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Debugging only
2035  */
2036 static int
2037 vm_object_in_map_callback(struct proc *p, void *data)
2038 {
2039 	struct vm_object_in_map_info *info = data;
2040 
2041 	if (p->p_vmspace) {
2042 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2043 			info->rv = 1;
2044 			return -1;
2045 		}
2046 	}
2047 	return (0);
2048 }
2049 
2050 DB_SHOW_COMMAND(vmochk, vm_object_check)
2051 {
2052 	vm_object_t object;
2053 
2054 	/*
2055 	 * make sure that internal objs are in a map somewhere
2056 	 * and none have zero ref counts.
2057 	 */
2058 	for (object = TAILQ_FIRST(&vm_object_list);
2059 			object != NULL;
2060 			object = TAILQ_NEXT(object, object_list)) {
2061 		if (object->type == OBJT_MARKER)
2062 			continue;
2063 		if (object->handle == NULL &&
2064 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2065 			if (object->ref_count == 0) {
2066 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2067 					(long)object->size);
2068 			}
2069 			if (!vm_object_in_map(object)) {
2070 				db_printf(
2071 			"vmochk: internal obj is not in a map: "
2072 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2073 				    object->ref_count, (u_long)object->size,
2074 				    (u_long)object->size,
2075 				    (void *)object->backing_object);
2076 			}
2077 		}
2078 	}
2079 }
2080 
2081 /*
2082  * Debugging only
2083  */
2084 DB_SHOW_COMMAND(object, vm_object_print_static)
2085 {
2086 	/* XXX convert args. */
2087 	vm_object_t object = (vm_object_t)addr;
2088 	boolean_t full = have_addr;
2089 
2090 	vm_page_t p;
2091 
2092 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2093 #define	count	was_count
2094 
2095 	int count;
2096 
2097 	if (object == NULL)
2098 		return;
2099 
2100 	db_iprintf(
2101 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2102 	    object, (int)object->type, (u_long)object->size,
2103 	    object->resident_page_count, object->ref_count, object->flags);
2104 	/*
2105 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2106 	 */
2107 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2108 	    object->shadow_count,
2109 	    object->backing_object ? object->backing_object->ref_count : 0,
2110 	    object->backing_object, (long)object->backing_object_offset);
2111 
2112 	if (!full)
2113 		return;
2114 
2115 	db_indent += 2;
2116 	count = 0;
2117 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2118 		if (count == 0)
2119 			db_iprintf("memory:=");
2120 		else if (count == 6) {
2121 			db_printf("\n");
2122 			db_iprintf(" ...");
2123 			count = 0;
2124 		} else
2125 			db_printf(",");
2126 		count++;
2127 
2128 		db_printf("(off=0x%lx,page=0x%lx)",
2129 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2130 	}
2131 	if (count != 0)
2132 		db_printf("\n");
2133 	db_indent -= 2;
2134 }
2135 
2136 /* XXX. */
2137 #undef count
2138 
2139 /*
2140  * XXX need this non-static entry for calling from vm_map_print.
2141  *
2142  * Debugging only
2143  */
2144 void
2145 vm_object_print(/* db_expr_t */ long addr,
2146 		boolean_t have_addr,
2147 		/* db_expr_t */ long count,
2148 		char *modif)
2149 {
2150 	vm_object_print_static(addr, have_addr, count, modif);
2151 }
2152 
2153 /*
2154  * Debugging only
2155  */
2156 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2157 {
2158 	vm_object_t object;
2159 	int nl = 0;
2160 	int c;
2161 	for (object = TAILQ_FIRST(&vm_object_list);
2162 			object != NULL;
2163 			object = TAILQ_NEXT(object, object_list)) {
2164 		vm_pindex_t idx, fidx;
2165 		vm_pindex_t osize;
2166 		vm_paddr_t pa = -1, padiff;
2167 		int rcount;
2168 		vm_page_t m;
2169 
2170 		if (object->type == OBJT_MARKER)
2171 			continue;
2172 		db_printf("new object: %p\n", (void *)object);
2173 		if ( nl > 18) {
2174 			c = cngetc();
2175 			if (c != ' ')
2176 				return;
2177 			nl = 0;
2178 		}
2179 		nl++;
2180 		rcount = 0;
2181 		fidx = 0;
2182 		osize = object->size;
2183 		if (osize > 128)
2184 			osize = 128;
2185 		for (idx = 0; idx < osize; idx++) {
2186 			m = vm_page_lookup(object, idx);
2187 			if (m == NULL) {
2188 				if (rcount) {
2189 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2190 						(long)fidx, rcount, (long)pa);
2191 					if ( nl > 18) {
2192 						c = cngetc();
2193 						if (c != ' ')
2194 							return;
2195 						nl = 0;
2196 					}
2197 					nl++;
2198 					rcount = 0;
2199 				}
2200 				continue;
2201 			}
2202 
2203 
2204 			if (rcount &&
2205 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2206 				++rcount;
2207 				continue;
2208 			}
2209 			if (rcount) {
2210 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2211 				padiff >>= PAGE_SHIFT;
2212 				padiff &= PQ_L2_MASK;
2213 				if (padiff == 0) {
2214 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2215 					++rcount;
2216 					continue;
2217 				}
2218 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2219 					(long)fidx, rcount, (long)pa);
2220 				db_printf("pd(%ld)\n", (long)padiff);
2221 				if ( nl > 18) {
2222 					c = cngetc();
2223 					if (c != ' ')
2224 						return;
2225 					nl = 0;
2226 				}
2227 				nl++;
2228 			}
2229 			fidx = idx;
2230 			pa = VM_PAGE_TO_PHYS(m);
2231 			rcount = 1;
2232 		}
2233 		if (rcount) {
2234 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2235 				(long)fidx, rcount, (long)pa);
2236 			if ( nl > 18) {
2237 				c = cngetc();
2238 				if (c != ' ')
2239 					return;
2240 				nl = 0;
2241 			}
2242 			nl++;
2243 		}
2244 	}
2245 }
2246 #endif /* DDB */
2247