xref: /dflybsd-src/sys/vm/vm_object.c (revision e7302aa08274de307cd2c3345fc64c56dbe56e21)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 static void	vm_object_qcollapse(vm_object_t object);
98 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99 					     int pagerflags);
100 
101 /*
102  *	Virtual memory objects maintain the actual data
103  *	associated with allocated virtual memory.  A given
104  *	page of memory exists within exactly one object.
105  *
106  *	An object is only deallocated when all "references"
107  *	are given up.  Only one "reference" to a given
108  *	region of an object should be writeable.
109  *
110  *	Associated with each object is a list of all resident
111  *	memory pages belonging to that object; this list is
112  *	maintained by the "vm_page" module, and locked by the object's
113  *	lock.
114  *
115  *	Each object also records a "pager" routine which is
116  *	used to retrieve (and store) pages to the proper backing
117  *	storage.  In addition, objects may be backed by other
118  *	objects from which they were virtual-copied.
119  *
120  *	The only items within the object structure which are
121  *	modified after time of creation are:
122  *		reference count		locked by object's lock
123  *		pager routine		locked by object's lock
124  *
125  */
126 
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
129 
130 static long vm_object_count;		/* count of all objects */
131 extern int vm_pageout_page_count;
132 
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141 
142 void
143 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
144 {
145 	int incr;
146 	RB_INIT(&object->rb_memq);
147 	LIST_INIT(&object->shadow_head);
148 
149 	object->type = type;
150 	object->size = size;
151 	object->ref_count = 1;
152 	object->flags = 0;
153 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154 		vm_object_set_flag(object, OBJ_ONEMAPPING);
155 	object->paging_in_progress = 0;
156 	object->resident_page_count = 0;
157 	object->shadow_count = 0;
158 	object->pg_color = next_index;
159 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161 	else
162 		incr = size;
163 	next_index = (next_index + incr) & PQ_L2_MASK;
164 	object->handle = NULL;
165 	object->backing_object = NULL;
166 	object->backing_object_offset = (vm_ooffset_t) 0;
167 	/*
168 	 * Try to generate a number that will spread objects out in the
169 	 * hash table.  We 'wipe' new objects across the hash in 128 page
170 	 * increments plus 1 more to offset it a little more by the time
171 	 * it wraps around.
172 	 */
173 	object->hash_rand = object_hash_rand - 129;
174 
175 	object->generation++;
176 	object->swblock_count = 0;
177 	RB_INIT(&object->swblock_root);
178 
179 	crit_enter();
180 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
181 	vm_object_count++;
182 	object_hash_rand = object->hash_rand;
183 	crit_exit();
184 }
185 
186 /*
187  *	vm_object_init:
188  *
189  *	Initialize the VM objects module.
190  */
191 void
192 vm_object_init(void)
193 {
194 	TAILQ_INIT(&vm_object_list);
195 
196 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
197 			    &kernel_object);
198 
199 	obj_zone = &obj_zone_store;
200 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
201 		vm_objects_init, VM_OBJECTS_INIT);
202 }
203 
204 void
205 vm_object_init2(void)
206 {
207 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
208 }
209 
210 /*
211  *	vm_object_allocate:
212  *
213  *	Returns a new object with the given size.
214  */
215 
216 vm_object_t
217 vm_object_allocate(objtype_t type, vm_pindex_t size)
218 {
219 	vm_object_t result;
220 
221 	result = (vm_object_t) zalloc(obj_zone);
222 
223 	_vm_object_allocate(type, size, result);
224 
225 	return (result);
226 }
227 
228 
229 /*
230  *	vm_object_reference:
231  *
232  *	Gets another reference to the given object.
233  */
234 void
235 vm_object_reference(vm_object_t object)
236 {
237 	if (object == NULL)
238 		return;
239 
240 	object->ref_count++;
241 	if (object->type == OBJT_VNODE) {
242 		vref(object->handle);
243 		/* XXX what if the vnode is being destroyed? */
244 	}
245 }
246 
247 static void
248 vm_object_vndeallocate(vm_object_t object)
249 {
250 	struct vnode *vp = (struct vnode *) object->handle;
251 
252 	KASSERT(object->type == OBJT_VNODE,
253 	    ("vm_object_vndeallocate: not a vnode object"));
254 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
255 #ifdef INVARIANTS
256 	if (object->ref_count == 0) {
257 		vprint("vm_object_vndeallocate", vp);
258 		panic("vm_object_vndeallocate: bad object reference count");
259 	}
260 #endif
261 
262 	object->ref_count--;
263 	if (object->ref_count == 0)
264 		vclrflags(vp, VTEXT);
265 	vrele(vp);
266 }
267 
268 /*
269  *	vm_object_deallocate:
270  *
271  *	Release a reference to the specified object,
272  *	gained either through a vm_object_allocate
273  *	or a vm_object_reference call.  When all references
274  *	are gone, storage associated with this object
275  *	may be relinquished.
276  *
277  *	No object may be locked.
278  */
279 void
280 vm_object_deallocate(vm_object_t object)
281 {
282 	vm_object_t temp;
283 
284 	while (object != NULL) {
285 		if (object->type == OBJT_VNODE) {
286 			vm_object_vndeallocate(object);
287 			return;
288 		}
289 
290 		if (object->ref_count == 0) {
291 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
292 		} else if (object->ref_count > 2) {
293 			object->ref_count--;
294 			return;
295 		}
296 
297 		/*
298 		 * Here on ref_count of one or two, which are special cases for
299 		 * objects.
300 		 */
301 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
302 			vm_object_set_flag(object, OBJ_ONEMAPPING);
303 			object->ref_count--;
304 			return;
305 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
306 			object->ref_count--;
307 			if ((object->handle == NULL) &&
308 			    (object->type == OBJT_DEFAULT ||
309 			     object->type == OBJT_SWAP)) {
310 				vm_object_t robject;
311 
312 				robject = LIST_FIRST(&object->shadow_head);
313 				KASSERT(robject != NULL,
314 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
315 					 object->ref_count,
316 					 object->shadow_count));
317 				if ((robject->handle == NULL) &&
318 				    (robject->type == OBJT_DEFAULT ||
319 				     robject->type == OBJT_SWAP)) {
320 
321 					robject->ref_count++;
322 
323 					while (
324 						robject->paging_in_progress ||
325 						object->paging_in_progress
326 					) {
327 						vm_object_pip_sleep(robject, "objde1");
328 						vm_object_pip_sleep(object, "objde2");
329 					}
330 
331 					if (robject->ref_count == 1) {
332 						robject->ref_count--;
333 						object = robject;
334 						goto doterm;
335 					}
336 
337 					object = robject;
338 					vm_object_collapse(object);
339 					continue;
340 				}
341 			}
342 
343 			return;
344 
345 		} else {
346 			object->ref_count--;
347 			if (object->ref_count != 0)
348 				return;
349 		}
350 
351 doterm:
352 
353 		temp = object->backing_object;
354 		if (temp) {
355 			LIST_REMOVE(object, shadow_list);
356 			temp->shadow_count--;
357 			temp->generation++;
358 			object->backing_object = NULL;
359 		}
360 
361 		/*
362 		 * Don't double-terminate, we could be in a termination
363 		 * recursion due to the terminate having to sync data
364 		 * to disk.
365 		 */
366 		if ((object->flags & OBJ_DEAD) == 0)
367 			vm_object_terminate(object);
368 		object = temp;
369 	}
370 }
371 
372 /*
373  *	vm_object_terminate actually destroys the specified object, freeing
374  *	up all previously used resources.
375  *
376  *	The object must be locked.
377  *	This routine may block.
378  */
379 static int vm_object_terminate_callback(vm_page_t p, void *data);
380 
381 void
382 vm_object_terminate(vm_object_t object)
383 {
384 	/*
385 	 * Make sure no one uses us.
386 	 */
387 	vm_object_set_flag(object, OBJ_DEAD);
388 
389 	/*
390 	 * wait for the pageout daemon to be done with the object
391 	 */
392 	vm_object_pip_wait(object, "objtrm");
393 
394 	KASSERT(!object->paging_in_progress,
395 		("vm_object_terminate: pageout in progress"));
396 
397 	/*
398 	 * Clean and free the pages, as appropriate. All references to the
399 	 * object are gone, so we don't need to lock it.
400 	 */
401 	if (object->type == OBJT_VNODE) {
402 		struct vnode *vp;
403 
404 		/*
405 		 * Clean pages and flush buffers.
406 		 */
407 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
408 
409 		vp = (struct vnode *) object->handle;
410 		vinvalbuf(vp, V_SAVE, 0, 0);
411 	}
412 
413 	/*
414 	 * Wait for any I/O to complete, after which there had better not
415 	 * be any references left on the object.
416 	 */
417 	vm_object_pip_wait(object, "objtrm");
418 
419 	if (object->ref_count != 0)
420 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
421 
422 	/*
423 	 * Now free any remaining pages. For internal objects, this also
424 	 * removes them from paging queues. Don't free wired pages, just
425 	 * remove them from the object.
426 	 */
427 	crit_enter();
428 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
429 				vm_object_terminate_callback, NULL);
430 	crit_exit();
431 
432 	/*
433 	 * Let the pager know object is dead.
434 	 */
435 	vm_pager_deallocate(object);
436 
437 	/*
438 	 * Remove the object from the global object list.
439 	 */
440 	crit_enter();
441 	TAILQ_REMOVE(&vm_object_list, object, object_list);
442 	vm_object_count--;
443 	crit_exit();
444 
445 	vm_object_dead_wakeup(object);
446 	if (object->ref_count != 0)
447 		panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
448 
449 	/*
450 	 * Free the space for the object.
451 	 */
452 	zfree(obj_zone, object);
453 }
454 
455 static int
456 vm_object_terminate_callback(vm_page_t p, void *data __unused)
457 {
458 	if (p->busy || (p->flags & PG_BUSY))
459 		panic("vm_object_terminate: freeing busy page %p", p);
460 	if (p->wire_count == 0) {
461 		vm_page_busy(p);
462 		vm_page_free(p);
463 		mycpu->gd_cnt.v_pfree++;
464 	} else {
465 		if (p->queue != PQ_NONE)
466 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
467 		vm_page_busy(p);
468 		vm_page_remove(p);
469 		vm_page_wakeup(p);
470 	}
471 	return(0);
472 }
473 
474 /*
475  * The object is dead but still has an object<->pager association.  Sleep
476  * and return.  The caller typically retests the association in a loop.
477  */
478 void
479 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
480 {
481 	crit_enter();
482 	if (object->handle) {
483 		vm_object_set_flag(object, OBJ_DEADWNT);
484 		tsleep(object, 0, wmesg, 0);
485 	}
486 	crit_exit();
487 }
488 
489 /*
490  * Wakeup anyone waiting for the object<->pager disassociation on
491  * a dead object.
492  */
493 void
494 vm_object_dead_wakeup(vm_object_t object)
495 {
496 	if (object->flags & OBJ_DEADWNT) {
497 		vm_object_clear_flag(object, OBJ_DEADWNT);
498 		wakeup(object);
499 	}
500 }
501 
502 /*
503  *	vm_object_page_clean
504  *
505  *	Clean all dirty pages in the specified range of object.  Leaves page
506  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
507  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
508  *	leaving the object dirty.
509  *
510  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
511  *	synchronous clustering mode implementation.
512  *
513  *	Odd semantics: if start == end, we clean everything.
514  */
515 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
516 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
517 
518 void
519 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
520 		     int flags)
521 {
522 	struct rb_vm_page_scan_info info;
523 	struct vnode *vp;
524 	int wholescan;
525 	int pagerflags;
526 	int curgeneration;
527 
528 	if (object->type != OBJT_VNODE ||
529 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
530 		return;
531 
532 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
533 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
534 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
535 
536 	vp = object->handle;
537 
538 	/*
539 	 * Interlock other major object operations.  This allows us to
540 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
541 	 */
542 	crit_enter();
543 	vm_object_set_flag(object, OBJ_CLEANING);
544 
545 	/*
546 	 * Handle 'entire object' case
547 	 */
548 	info.start_pindex = start;
549 	if (end == 0) {
550 		info.end_pindex = object->size - 1;
551 	} else {
552 		info.end_pindex = end - 1;
553 	}
554 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
555 	info.limit = flags;
556 	info.pagerflags = pagerflags;
557 	info.object = object;
558 
559 	/*
560 	 * If cleaning the entire object do a pass to mark the pages read-only.
561 	 * If everything worked out ok, clear OBJ_WRITEABLE and
562 	 * OBJ_MIGHTBEDIRTY.
563 	 */
564 	if (wholescan) {
565 		info.error = 0;
566 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
567 					vm_object_page_clean_pass1, &info);
568 		if (info.error == 0) {
569 			vm_object_clear_flag(object,
570 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
571 			if (object->type == OBJT_VNODE &&
572 			    (vp = (struct vnode *)object->handle) != NULL) {
573 				if (vp->v_flag & VOBJDIRTY)
574 					vclrflags(vp, VOBJDIRTY);
575 			}
576 		}
577 	}
578 
579 	/*
580 	 * Do a pass to clean all the dirty pages we find.
581 	 */
582 	do {
583 		info.error = 0;
584 		curgeneration = object->generation;
585 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
586 					vm_object_page_clean_pass2, &info);
587 	} while (info.error || curgeneration != object->generation);
588 
589 	vm_object_clear_flag(object, OBJ_CLEANING);
590 	crit_exit();
591 }
592 
593 static
594 int
595 vm_object_page_clean_pass1(struct vm_page *p, void *data)
596 {
597 	struct rb_vm_page_scan_info *info = data;
598 
599 	vm_page_flag_set(p, PG_CLEANCHK);
600 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
601 		info->error = 1;
602 	else
603 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
604 	return(0);
605 }
606 
607 static
608 int
609 vm_object_page_clean_pass2(struct vm_page *p, void *data)
610 {
611 	struct rb_vm_page_scan_info *info = data;
612 	int n;
613 
614 	/*
615 	 * Do not mess with pages that were inserted after we started
616 	 * the cleaning pass.
617 	 */
618 	if ((p->flags & PG_CLEANCHK) == 0)
619 		return(0);
620 
621 	/*
622 	 * Before wasting time traversing the pmaps, check for trivial
623 	 * cases where the page cannot be dirty.
624 	 */
625 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
626 		KKASSERT((p->dirty & p->valid) == 0);
627 		return(0);
628 	}
629 
630 	/*
631 	 * Check whether the page is dirty or not.  The page has been set
632 	 * to be read-only so the check will not race a user dirtying the
633 	 * page.
634 	 */
635 	vm_page_test_dirty(p);
636 	if ((p->dirty & p->valid) == 0) {
637 		vm_page_flag_clear(p, PG_CLEANCHK);
638 		return(0);
639 	}
640 
641 	/*
642 	 * If we have been asked to skip nosync pages and this is a
643 	 * nosync page, skip it.  Note that the object flags were
644 	 * not cleared in this case (because pass1 will have returned an
645 	 * error), so we do not have to set them.
646 	 */
647 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
648 		vm_page_flag_clear(p, PG_CLEANCHK);
649 		return(0);
650 	}
651 
652 	/*
653 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
654 	 * the pages that get successfully flushed.  Set info->error if
655 	 * we raced an object modification.
656 	 */
657 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
658 	if (n == 0)
659 		info->error = 1;
660 	return(0);
661 }
662 
663 /*
664  * This routine must be called within a critical section to properly avoid
665  * an interrupt unbusy/free race that can occur prior to the busy check.
666  *
667  * Using the object generation number here to detect page ripout is not
668  * the best idea in the world. XXX
669  *
670  * NOTE: we operate under the assumption that a page found to not be busy
671  * will not be ripped out from under us by an interrupt.  XXX we should
672  * recode this to explicitly busy the pages.
673  */
674 static int
675 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
676 {
677 	int runlen;
678 	int maxf;
679 	int chkb;
680 	int maxb;
681 	int i;
682 	int curgeneration;
683 	vm_pindex_t pi;
684 	vm_page_t maf[vm_pageout_page_count];
685 	vm_page_t mab[vm_pageout_page_count];
686 	vm_page_t ma[vm_pageout_page_count];
687 
688 	curgeneration = object->generation;
689 
690 	pi = p->pindex;
691 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
692 		if (object->generation != curgeneration) {
693 			return(0);
694 		}
695 	}
696 	KKASSERT(p->object == object && p->pindex == pi);
697 
698 	maxf = 0;
699 	for(i = 1; i < vm_pageout_page_count; i++) {
700 		vm_page_t tp;
701 
702 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
703 			if ((tp->flags & PG_BUSY) ||
704 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
705 				 (tp->flags & PG_CLEANCHK) == 0) ||
706 				(tp->busy != 0))
707 				break;
708 			if((tp->queue - tp->pc) == PQ_CACHE) {
709 				vm_page_flag_clear(tp, PG_CLEANCHK);
710 				break;
711 			}
712 			vm_page_test_dirty(tp);
713 			if ((tp->dirty & tp->valid) == 0) {
714 				vm_page_flag_clear(tp, PG_CLEANCHK);
715 				break;
716 			}
717 			maf[ i - 1 ] = tp;
718 			maxf++;
719 			continue;
720 		}
721 		break;
722 	}
723 
724 	maxb = 0;
725 	chkb = vm_pageout_page_count -  maxf;
726 	if (chkb) {
727 		for(i = 1; i < chkb;i++) {
728 			vm_page_t tp;
729 
730 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
731 				if ((tp->flags & PG_BUSY) ||
732 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
733 					 (tp->flags & PG_CLEANCHK) == 0) ||
734 					(tp->busy != 0))
735 					break;
736 				if((tp->queue - tp->pc) == PQ_CACHE) {
737 					vm_page_flag_clear(tp, PG_CLEANCHK);
738 					break;
739 				}
740 				vm_page_test_dirty(tp);
741 				if ((tp->dirty & tp->valid) == 0) {
742 					vm_page_flag_clear(tp, PG_CLEANCHK);
743 					break;
744 				}
745 				mab[ i - 1 ] = tp;
746 				maxb++;
747 				continue;
748 			}
749 			break;
750 		}
751 	}
752 
753 	for(i = 0; i < maxb; i++) {
754 		int index = (maxb - i) - 1;
755 		ma[index] = mab[i];
756 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
757 	}
758 	vm_page_flag_clear(p, PG_CLEANCHK);
759 	ma[maxb] = p;
760 	for(i = 0; i < maxf; i++) {
761 		int index = (maxb + i) + 1;
762 		ma[index] = maf[i];
763 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
764 	}
765 	runlen = maxb + maxf + 1;
766 
767 	vm_pageout_flush(ma, runlen, pagerflags);
768 	for (i = 0; i < runlen; i++) {
769 		if (ma[i]->valid & ma[i]->dirty) {
770 			vm_page_protect(ma[i], VM_PROT_READ);
771 			vm_page_flag_set(ma[i], PG_CLEANCHK);
772 
773 			/*
774 			 * maxf will end up being the actual number of pages
775 			 * we wrote out contiguously, non-inclusive of the
776 			 * first page.  We do not count look-behind pages.
777 			 */
778 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
779 				maxf = i - maxb - 1;
780 		}
781 	}
782 	return(maxf + 1);
783 }
784 
785 #ifdef not_used
786 /* XXX I cannot tell if this should be an exported symbol */
787 /*
788  *	vm_object_deactivate_pages
789  *
790  *	Deactivate all pages in the specified object.  (Keep its pages
791  *	in memory even though it is no longer referenced.)
792  *
793  *	The object must be locked.
794  */
795 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
796 
797 static void
798 vm_object_deactivate_pages(vm_object_t object)
799 {
800 	crit_enter();
801 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
802 				vm_object_deactivate_pages_callback, NULL);
803 	crit_exit();
804 }
805 
806 static int
807 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
808 {
809 	vm_page_deactivate(p);
810 	return(0);
811 }
812 
813 #endif
814 
815 /*
816  * Same as vm_object_pmap_copy, except range checking really
817  * works, and is meant for small sections of an object.
818  *
819  * This code protects resident pages by making them read-only
820  * and is typically called on a fork or split when a page
821  * is converted to copy-on-write.
822  *
823  * NOTE: If the page is already at VM_PROT_NONE, calling
824  * vm_page_protect will have no effect.
825  */
826 void
827 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
828 {
829 	vm_pindex_t idx;
830 	vm_page_t p;
831 
832 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
833 		return;
834 
835 	/*
836 	 * spl protection needed to prevent races between the lookup,
837 	 * an interrupt unbusy/free, and our protect call.
838 	 */
839 	crit_enter();
840 	for (idx = start; idx < end; idx++) {
841 		p = vm_page_lookup(object, idx);
842 		if (p == NULL)
843 			continue;
844 		vm_page_protect(p, VM_PROT_READ);
845 	}
846 	crit_exit();
847 }
848 
849 /*
850  *	vm_object_pmap_remove:
851  *
852  *	Removes all physical pages in the specified
853  *	object range from all physical maps.
854  *
855  *	The object must *not* be locked.
856  */
857 
858 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
859 
860 void
861 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
862 {
863 	struct rb_vm_page_scan_info info;
864 
865 	if (object == NULL)
866 		return;
867 	info.start_pindex = start;
868 	info.end_pindex = end - 1;
869 	crit_enter();
870 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
871 				vm_object_pmap_remove_callback, &info);
872 	if (start == 0 && end == object->size)
873 		vm_object_clear_flag(object, OBJ_WRITEABLE);
874 	crit_exit();
875 }
876 
877 static int
878 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
879 {
880 	vm_page_protect(p, VM_PROT_NONE);
881 	return(0);
882 }
883 
884 /*
885  *	vm_object_madvise:
886  *
887  *	Implements the madvise function at the object/page level.
888  *
889  *	MADV_WILLNEED	(any object)
890  *
891  *	    Activate the specified pages if they are resident.
892  *
893  *	MADV_DONTNEED	(any object)
894  *
895  *	    Deactivate the specified pages if they are resident.
896  *
897  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
898  *			 OBJ_ONEMAPPING only)
899  *
900  *	    Deactivate and clean the specified pages if they are
901  *	    resident.  This permits the process to reuse the pages
902  *	    without faulting or the kernel to reclaim the pages
903  *	    without I/O.
904  */
905 void
906 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
907 {
908 	vm_pindex_t end, tpindex;
909 	vm_object_t tobject;
910 	vm_page_t m;
911 
912 	if (object == NULL)
913 		return;
914 
915 	end = pindex + count;
916 
917 	/*
918 	 * Locate and adjust resident pages
919 	 */
920 
921 	for (; pindex < end; pindex += 1) {
922 relookup:
923 		tobject = object;
924 		tpindex = pindex;
925 shadowlookup:
926 		/*
927 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
928 		 * and those pages must be OBJ_ONEMAPPING.
929 		 */
930 		if (advise == MADV_FREE) {
931 			if ((tobject->type != OBJT_DEFAULT &&
932 			     tobject->type != OBJT_SWAP) ||
933 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
934 				continue;
935 			}
936 		}
937 
938 		/*
939 		 * spl protection is required to avoid a race between the
940 		 * lookup, an interrupt unbusy/free, and our busy check.
941 		 */
942 
943 		crit_enter();
944 		m = vm_page_lookup(tobject, tpindex);
945 
946 		if (m == NULL) {
947 			/*
948 			 * There may be swap even if there is no backing page
949 			 */
950 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
951 				swap_pager_freespace(tobject, tpindex, 1);
952 
953 			/*
954 			 * next object
955 			 */
956 			crit_exit();
957 			if (tobject->backing_object == NULL)
958 				continue;
959 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
960 			tobject = tobject->backing_object;
961 			goto shadowlookup;
962 		}
963 
964 		/*
965 		 * If the page is busy or not in a normal active state,
966 		 * we skip it.  If the page is not managed there are no
967 		 * page queues to mess with.  Things can break if we mess
968 		 * with pages in any of the below states.
969 		 */
970 		if (
971 		    m->hold_count ||
972 		    m->wire_count ||
973 		    (m->flags & PG_UNMANAGED) ||
974 		    m->valid != VM_PAGE_BITS_ALL
975 		) {
976 			crit_exit();
977 			continue;
978 		}
979 
980  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
981 			crit_exit();
982   			goto relookup;
983 		}
984 		crit_exit();
985 
986 		/*
987 		 * Theoretically once a page is known not to be busy, an
988 		 * interrupt cannot come along and rip it out from under us.
989 		 */
990 
991 		if (advise == MADV_WILLNEED) {
992 			vm_page_activate(m);
993 		} else if (advise == MADV_DONTNEED) {
994 			vm_page_dontneed(m);
995 		} else if (advise == MADV_FREE) {
996 			/*
997 			 * Mark the page clean.  This will allow the page
998 			 * to be freed up by the system.  However, such pages
999 			 * are often reused quickly by malloc()/free()
1000 			 * so we do not do anything that would cause
1001 			 * a page fault if we can help it.
1002 			 *
1003 			 * Specifically, we do not try to actually free
1004 			 * the page now nor do we try to put it in the
1005 			 * cache (which would cause a page fault on reuse).
1006 			 *
1007 			 * But we do make the page is freeable as we
1008 			 * can without actually taking the step of unmapping
1009 			 * it.
1010 			 */
1011 			pmap_clear_modify(m);
1012 			m->dirty = 0;
1013 			m->act_count = 0;
1014 			vm_page_dontneed(m);
1015 			if (tobject->type == OBJT_SWAP)
1016 				swap_pager_freespace(tobject, tpindex, 1);
1017 		}
1018 	}
1019 }
1020 
1021 /*
1022  *	vm_object_shadow:
1023  *
1024  *	Create a new object which is backed by the
1025  *	specified existing object range.  The source
1026  *	object reference is deallocated.
1027  *
1028  *	The new object and offset into that object
1029  *	are returned in the source parameters.
1030  */
1031 
1032 void
1033 vm_object_shadow(vm_object_t *object,	/* IN/OUT */
1034 		 vm_ooffset_t *offset,	/* IN/OUT */
1035 		 vm_size_t length)
1036 {
1037 	vm_object_t source;
1038 	vm_object_t result;
1039 
1040 	source = *object;
1041 
1042 	/*
1043 	 * Don't create the new object if the old object isn't shared.
1044 	 */
1045 
1046 	if (source != NULL &&
1047 	    source->ref_count == 1 &&
1048 	    source->handle == NULL &&
1049 	    (source->type == OBJT_DEFAULT ||
1050 	     source->type == OBJT_SWAP))
1051 		return;
1052 
1053 	/*
1054 	 * Allocate a new object with the given length
1055 	 */
1056 
1057 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1058 		panic("vm_object_shadow: no object for shadowing");
1059 
1060 	/*
1061 	 * The new object shadows the source object, adding a reference to it.
1062 	 * Our caller changes his reference to point to the new object,
1063 	 * removing a reference to the source object.  Net result: no change
1064 	 * of reference count.
1065 	 *
1066 	 * Try to optimize the result object's page color when shadowing
1067 	 * in order to maintain page coloring consistency in the combined
1068 	 * shadowed object.
1069 	 */
1070 	result->backing_object = source;
1071 	if (source) {
1072 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1073 		source->shadow_count++;
1074 		source->generation++;
1075 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1076 	}
1077 
1078 	/*
1079 	 * Store the offset into the source object, and fix up the offset into
1080 	 * the new object.
1081 	 */
1082 
1083 	result->backing_object_offset = *offset;
1084 
1085 	/*
1086 	 * Return the new things
1087 	 */
1088 
1089 	*offset = 0;
1090 	*object = result;
1091 }
1092 
1093 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1094 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1095 #define	OBSC_COLLAPSE_WAIT	0x0004
1096 
1097 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1098 
1099 static __inline int
1100 vm_object_backing_scan(vm_object_t object, int op)
1101 {
1102 	struct rb_vm_page_scan_info info;
1103 	vm_object_t backing_object;
1104 
1105 	/*
1106 	 * spl protection is required to avoid races between the memq/lookup,
1107 	 * an interrupt doing an unbusy/free, and our busy check.  Amoung
1108 	 * other things.
1109 	 */
1110 	crit_enter();
1111 
1112 	backing_object = object->backing_object;
1113 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1114 
1115 	/*
1116 	 * Initial conditions
1117 	 */
1118 
1119 	if (op & OBSC_TEST_ALL_SHADOWED) {
1120 		/*
1121 		 * We do not want to have to test for the existence of
1122 		 * swap pages in the backing object.  XXX but with the
1123 		 * new swapper this would be pretty easy to do.
1124 		 *
1125 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1126 		 * been ZFOD faulted yet?  If we do not test for this, the
1127 		 * shadow test may succeed! XXX
1128 		 */
1129 		if (backing_object->type != OBJT_DEFAULT) {
1130 			crit_exit();
1131 			return(0);
1132 		}
1133 	}
1134 	if (op & OBSC_COLLAPSE_WAIT) {
1135 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1136 		vm_object_set_flag(backing_object, OBJ_DEAD);
1137 	}
1138 
1139 	/*
1140 	 * Our scan.   We have to retry if a negative error code is returned,
1141 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1142 	 * the scan had to be stopped because the parent does not completely
1143 	 * shadow the child.
1144 	 */
1145 	info.object = object;
1146 	info.backing_object = backing_object;
1147 	info.limit = op;
1148 	do {
1149 		info.error = 1;
1150 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1151 					vm_object_backing_scan_callback,
1152 					&info);
1153 	} while (info.error < 0);
1154 	crit_exit();
1155 	return(info.error);
1156 }
1157 
1158 static int
1159 vm_object_backing_scan_callback(vm_page_t p, void *data)
1160 {
1161 	struct rb_vm_page_scan_info *info = data;
1162 	vm_object_t backing_object;
1163 	vm_object_t object;
1164 	vm_pindex_t new_pindex;
1165 	vm_pindex_t backing_offset_index;
1166 	int op;
1167 
1168 	new_pindex = p->pindex - info->backing_offset_index;
1169 	op = info->limit;
1170 	object = info->object;
1171 	backing_object = info->backing_object;
1172 	backing_offset_index = info->backing_offset_index;
1173 
1174 	if (op & OBSC_TEST_ALL_SHADOWED) {
1175 		vm_page_t pp;
1176 
1177 		/*
1178 		 * Ignore pages outside the parent object's range
1179 		 * and outside the parent object's mapping of the
1180 		 * backing object.
1181 		 *
1182 		 * note that we do not busy the backing object's
1183 		 * page.
1184 		 */
1185 		if (
1186 		    p->pindex < backing_offset_index ||
1187 		    new_pindex >= object->size
1188 		) {
1189 			return(0);
1190 		}
1191 
1192 		/*
1193 		 * See if the parent has the page or if the parent's
1194 		 * object pager has the page.  If the parent has the
1195 		 * page but the page is not valid, the parent's
1196 		 * object pager must have the page.
1197 		 *
1198 		 * If this fails, the parent does not completely shadow
1199 		 * the object and we might as well give up now.
1200 		 */
1201 
1202 		pp = vm_page_lookup(object, new_pindex);
1203 		if ((pp == NULL || pp->valid == 0) &&
1204 		    !vm_pager_has_page(object, new_pindex)
1205 		) {
1206 			info->error = 0;	/* problemo */
1207 			return(-1);		/* stop the scan */
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * Check for busy page
1213 	 */
1214 
1215 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1216 		vm_page_t pp;
1217 
1218 		if (op & OBSC_COLLAPSE_NOWAIT) {
1219 			if (
1220 			    (p->flags & PG_BUSY) ||
1221 			    !p->valid ||
1222 			    p->hold_count ||
1223 			    p->wire_count ||
1224 			    p->busy
1225 			) {
1226 				return(0);
1227 			}
1228 		} else if (op & OBSC_COLLAPSE_WAIT) {
1229 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1230 				/*
1231 				 * If we slept, anything could have
1232 				 * happened.   Ask that the scan be restarted.
1233 				 *
1234 				 * Since the object is marked dead, the
1235 				 * backing offset should not have changed.
1236 				 */
1237 				info->error = -1;
1238 				return(-1);
1239 			}
1240 		}
1241 
1242 		/*
1243 		 * Busy the page
1244 		 */
1245 		vm_page_busy(p);
1246 
1247 		KASSERT(
1248 		    p->object == backing_object,
1249 		    ("vm_object_qcollapse(): object mismatch")
1250 		);
1251 
1252 		/*
1253 		 * Destroy any associated swap
1254 		 */
1255 		if (backing_object->type == OBJT_SWAP)
1256 			swap_pager_freespace(backing_object, p->pindex, 1);
1257 
1258 		if (
1259 		    p->pindex < backing_offset_index ||
1260 		    new_pindex >= object->size
1261 		) {
1262 			/*
1263 			 * Page is out of the parent object's range, we
1264 			 * can simply destroy it.
1265 			 */
1266 			vm_page_protect(p, VM_PROT_NONE);
1267 			vm_page_free(p);
1268 			return(0);
1269 		}
1270 
1271 		pp = vm_page_lookup(object, new_pindex);
1272 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1273 			/*
1274 			 * page already exists in parent OR swap exists
1275 			 * for this location in the parent.  Destroy
1276 			 * the original page from the backing object.
1277 			 *
1278 			 * Leave the parent's page alone
1279 			 */
1280 			vm_page_protect(p, VM_PROT_NONE);
1281 			vm_page_free(p);
1282 			return(0);
1283 		}
1284 
1285 		/*
1286 		 * Page does not exist in parent, rename the
1287 		 * page from the backing object to the main object.
1288 		 *
1289 		 * If the page was mapped to a process, it can remain
1290 		 * mapped through the rename.
1291 		 */
1292 		if ((p->queue - p->pc) == PQ_CACHE)
1293 			vm_page_deactivate(p);
1294 
1295 		vm_page_rename(p, object, new_pindex);
1296 		/* page automatically made dirty by rename */
1297 	}
1298 	return(0);
1299 }
1300 
1301 /*
1302  * this version of collapse allows the operation to occur earlier and
1303  * when paging_in_progress is true for an object...  This is not a complete
1304  * operation, but should plug 99.9% of the rest of the leaks.
1305  */
1306 static void
1307 vm_object_qcollapse(vm_object_t object)
1308 {
1309 	vm_object_t backing_object = object->backing_object;
1310 
1311 	if (backing_object->ref_count != 1)
1312 		return;
1313 
1314 	backing_object->ref_count += 2;
1315 
1316 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1317 
1318 	backing_object->ref_count -= 2;
1319 }
1320 
1321 /*
1322  *	vm_object_collapse:
1323  *
1324  *	Collapse an object with the object backing it.
1325  *	Pages in the backing object are moved into the
1326  *	parent, and the backing object is deallocated.
1327  */
1328 void
1329 vm_object_collapse(vm_object_t object)
1330 {
1331 	while (TRUE) {
1332 		vm_object_t backing_object;
1333 
1334 		/*
1335 		 * Verify that the conditions are right for collapse:
1336 		 *
1337 		 * The object exists and the backing object exists.
1338 		 */
1339 		if (object == NULL)
1340 			break;
1341 
1342 		if ((backing_object = object->backing_object) == NULL)
1343 			break;
1344 
1345 		/*
1346 		 * we check the backing object first, because it is most likely
1347 		 * not collapsable.
1348 		 */
1349 		if (backing_object->handle != NULL ||
1350 		    (backing_object->type != OBJT_DEFAULT &&
1351 		     backing_object->type != OBJT_SWAP) ||
1352 		    (backing_object->flags & OBJ_DEAD) ||
1353 		    object->handle != NULL ||
1354 		    (object->type != OBJT_DEFAULT &&
1355 		     object->type != OBJT_SWAP) ||
1356 		    (object->flags & OBJ_DEAD)) {
1357 			break;
1358 		}
1359 
1360 		if (
1361 		    object->paging_in_progress != 0 ||
1362 		    backing_object->paging_in_progress != 0
1363 		) {
1364 			vm_object_qcollapse(object);
1365 			break;
1366 		}
1367 
1368 		/*
1369 		 * We know that we can either collapse the backing object (if
1370 		 * the parent is the only reference to it) or (perhaps) have
1371 		 * the parent bypass the object if the parent happens to shadow
1372 		 * all the resident pages in the entire backing object.
1373 		 *
1374 		 * This is ignoring pager-backed pages such as swap pages.
1375 		 * vm_object_backing_scan fails the shadowing test in this
1376 		 * case.
1377 		 */
1378 
1379 		if (backing_object->ref_count == 1) {
1380 			/*
1381 			 * If there is exactly one reference to the backing
1382 			 * object, we can collapse it into the parent.
1383 			 */
1384 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1385 
1386 			/*
1387 			 * Move the pager from backing_object to object.
1388 			 */
1389 
1390 			if (backing_object->type == OBJT_SWAP) {
1391 				vm_object_pip_add(backing_object, 1);
1392 
1393 				/*
1394 				 * scrap the paging_offset junk and do a
1395 				 * discrete copy.  This also removes major
1396 				 * assumptions about how the swap-pager
1397 				 * works from where it doesn't belong.  The
1398 				 * new swapper is able to optimize the
1399 				 * destroy-source case.
1400 				 */
1401 
1402 				vm_object_pip_add(object, 1);
1403 				swap_pager_copy(
1404 				    backing_object,
1405 				    object,
1406 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1407 				vm_object_pip_wakeup(object);
1408 
1409 				vm_object_pip_wakeup(backing_object);
1410 			}
1411 			/*
1412 			 * Object now shadows whatever backing_object did.
1413 			 * Note that the reference to
1414 			 * backing_object->backing_object moves from within
1415 			 * backing_object to within object.
1416 			 */
1417 
1418 			LIST_REMOVE(object, shadow_list);
1419 			object->backing_object->shadow_count--;
1420 			object->backing_object->generation++;
1421 			if (backing_object->backing_object) {
1422 				LIST_REMOVE(backing_object, shadow_list);
1423 				backing_object->backing_object->shadow_count--;
1424 				backing_object->backing_object->generation++;
1425 			}
1426 			object->backing_object = backing_object->backing_object;
1427 			if (object->backing_object) {
1428 				LIST_INSERT_HEAD(
1429 				    &object->backing_object->shadow_head,
1430 				    object,
1431 				    shadow_list
1432 				);
1433 				object->backing_object->shadow_count++;
1434 				object->backing_object->generation++;
1435 			}
1436 
1437 			object->backing_object_offset +=
1438 			    backing_object->backing_object_offset;
1439 
1440 			/*
1441 			 * Discard backing_object.
1442 			 *
1443 			 * Since the backing object has no pages, no pager left,
1444 			 * and no object references within it, all that is
1445 			 * necessary is to dispose of it.
1446 			 */
1447 
1448 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1449 			KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1450 			crit_enter();
1451 			TAILQ_REMOVE(
1452 			    &vm_object_list,
1453 			    backing_object,
1454 			    object_list
1455 			);
1456 			vm_object_count--;
1457 			crit_exit();
1458 
1459 			zfree(obj_zone, backing_object);
1460 
1461 			object_collapses++;
1462 		} else {
1463 			vm_object_t new_backing_object;
1464 
1465 			/*
1466 			 * If we do not entirely shadow the backing object,
1467 			 * there is nothing we can do so we give up.
1468 			 */
1469 
1470 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1471 				break;
1472 			}
1473 
1474 			/*
1475 			 * Make the parent shadow the next object in the
1476 			 * chain.  Deallocating backing_object will not remove
1477 			 * it, since its reference count is at least 2.
1478 			 */
1479 
1480 			LIST_REMOVE(object, shadow_list);
1481 			backing_object->shadow_count--;
1482 			backing_object->generation++;
1483 
1484 			new_backing_object = backing_object->backing_object;
1485 			if ((object->backing_object = new_backing_object) != NULL) {
1486 				vm_object_reference(new_backing_object);
1487 				LIST_INSERT_HEAD(
1488 				    &new_backing_object->shadow_head,
1489 				    object,
1490 				    shadow_list
1491 				);
1492 				new_backing_object->shadow_count++;
1493 				new_backing_object->generation++;
1494 				object->backing_object_offset +=
1495 					backing_object->backing_object_offset;
1496 			}
1497 
1498 			/*
1499 			 * Drop the reference count on backing_object. Since
1500 			 * its ref_count was at least 2, it will not vanish;
1501 			 * so we don't need to call vm_object_deallocate, but
1502 			 * we do anyway.
1503 			 */
1504 			vm_object_deallocate(backing_object);
1505 			object_bypasses++;
1506 		}
1507 
1508 		/*
1509 		 * Try again with this object's new backing object.
1510 		 */
1511 	}
1512 }
1513 
1514 /*
1515  *	vm_object_page_remove: [internal]
1516  *
1517  *	Removes all physical pages in the specified
1518  *	object range from the object's list of pages.
1519  */
1520 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1521 
1522 void
1523 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1524 		      boolean_t clean_only)
1525 {
1526 	struct rb_vm_page_scan_info info;
1527 	int all;
1528 
1529 	/*
1530 	 * Degenerate cases and assertions
1531 	 */
1532 	if (object == NULL ||
1533 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1534 		return;
1535 	}
1536 	KASSERT(object->type != OBJT_PHYS,
1537 		("attempt to remove pages from a physical object"));
1538 
1539 	/*
1540 	 * Indicate that paging is occuring on the object
1541 	 */
1542 	crit_enter();
1543 	vm_object_pip_add(object, 1);
1544 
1545 	/*
1546 	 * Figure out the actual removal range and whether we are removing
1547 	 * the entire contents of the object or not.  If removing the entire
1548 	 * contents, be sure to get all pages, even those that might be
1549 	 * beyond the end of the object.
1550 	 */
1551 	info.start_pindex = start;
1552 	if (end == 0)
1553 		info.end_pindex = (vm_pindex_t)-1;
1554 	else
1555 		info.end_pindex = end - 1;
1556 	info.limit = clean_only;
1557 	all = (start == 0 && info.end_pindex >= object->size - 1);
1558 
1559 	/*
1560 	 * Loop until we are sure we have gotten them all.
1561 	 */
1562 	do {
1563 		info.error = 0;
1564 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1565 					vm_object_page_remove_callback, &info);
1566 	} while (info.error);
1567 
1568 	/*
1569 	 * Remove any related swap if throwing away pages, or for
1570 	 * non-swap objects (the swap is a clean copy in that case).
1571 	 */
1572 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1573 		if (all)
1574 			swap_pager_freespace_all(object);
1575 		else
1576 			swap_pager_freespace(object, info.start_pindex,
1577 			     info.end_pindex - info.start_pindex + 1);
1578 	}
1579 
1580 	/*
1581 	 * Cleanup
1582 	 */
1583 	vm_object_pip_wakeup(object);
1584 	crit_exit();
1585 }
1586 
1587 static int
1588 vm_object_page_remove_callback(vm_page_t p, void *data)
1589 {
1590 	struct rb_vm_page_scan_info *info = data;
1591 
1592 	/*
1593 	 * Wired pages cannot be destroyed, but they can be invalidated
1594 	 * and we do so if clean_only (limit) is not set.
1595 	 *
1596 	 * WARNING!  The page may be wired due to being part of a buffer
1597 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1598 	 *	     This is fine as part of a truncation but VFSs must be
1599 	 *	     sure to fix the buffer up when re-extending the file.
1600 	 */
1601 	if (p->wire_count != 0) {
1602 		vm_page_protect(p, VM_PROT_NONE);
1603 		if (info->limit == 0)
1604 			p->valid = 0;
1605 		return(0);
1606 	}
1607 
1608 	/*
1609 	 * The busy flags are only cleared at
1610 	 * interrupt -- minimize the spl transitions
1611 	 */
1612 
1613 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1614 		info->error = 1;
1615 		return(0);
1616 	}
1617 
1618 	/*
1619 	 * limit is our clean_only flag.  If set and the page is dirty, do
1620 	 * not free it.  If set and the page is being held by someone, do
1621 	 * not free it.
1622 	 */
1623 	if (info->limit && p->valid) {
1624 		vm_page_test_dirty(p);
1625 		if (p->valid & p->dirty)
1626 			return(0);
1627 		if (p->hold_count)
1628 			return(0);
1629 	}
1630 
1631 	/*
1632 	 * Destroy the page
1633 	 */
1634 	vm_page_busy(p);
1635 	vm_page_protect(p, VM_PROT_NONE);
1636 	vm_page_free(p);
1637 	return(0);
1638 }
1639 
1640 /*
1641  *	Routine:	vm_object_coalesce
1642  *	Function:	Coalesces two objects backing up adjoining
1643  *			regions of memory into a single object.
1644  *
1645  *	returns TRUE if objects were combined.
1646  *
1647  *	NOTE:	Only works at the moment if the second object is NULL -
1648  *		if it's not, which object do we lock first?
1649  *
1650  *	Parameters:
1651  *		prev_object	First object to coalesce
1652  *		prev_offset	Offset into prev_object
1653  *		next_object	Second object into coalesce
1654  *		next_offset	Offset into next_object
1655  *
1656  *		prev_size	Size of reference to prev_object
1657  *		next_size	Size of reference to next_object
1658  *
1659  *	Conditions:
1660  *	The object must *not* be locked.
1661  */
1662 boolean_t
1663 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1664 		   vm_size_t prev_size, vm_size_t next_size)
1665 {
1666 	vm_pindex_t next_pindex;
1667 
1668 	if (prev_object == NULL) {
1669 		return (TRUE);
1670 	}
1671 
1672 	if (prev_object->type != OBJT_DEFAULT &&
1673 	    prev_object->type != OBJT_SWAP) {
1674 		return (FALSE);
1675 	}
1676 
1677 	/*
1678 	 * Try to collapse the object first
1679 	 */
1680 	vm_object_collapse(prev_object);
1681 
1682 	/*
1683 	 * Can't coalesce if: . more than one reference . paged out . shadows
1684 	 * another object . has a copy elsewhere (any of which mean that the
1685 	 * pages not mapped to prev_entry may be in use anyway)
1686 	 */
1687 
1688 	if (prev_object->backing_object != NULL) {
1689 		return (FALSE);
1690 	}
1691 
1692 	prev_size >>= PAGE_SHIFT;
1693 	next_size >>= PAGE_SHIFT;
1694 	next_pindex = prev_pindex + prev_size;
1695 
1696 	if ((prev_object->ref_count > 1) &&
1697 	    (prev_object->size != next_pindex)) {
1698 		return (FALSE);
1699 	}
1700 
1701 	/*
1702 	 * Remove any pages that may still be in the object from a previous
1703 	 * deallocation.
1704 	 */
1705 	if (next_pindex < prev_object->size) {
1706 		vm_object_page_remove(prev_object,
1707 				      next_pindex,
1708 				      next_pindex + next_size, FALSE);
1709 		if (prev_object->type == OBJT_SWAP)
1710 			swap_pager_freespace(prev_object,
1711 					     next_pindex, next_size);
1712 	}
1713 
1714 	/*
1715 	 * Extend the object if necessary.
1716 	 */
1717 	if (next_pindex + next_size > prev_object->size)
1718 		prev_object->size = next_pindex + next_size;
1719 
1720 	return (TRUE);
1721 }
1722 
1723 void
1724 vm_object_set_writeable_dirty(vm_object_t object)
1725 {
1726 	struct vnode *vp;
1727 
1728 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1729 	if (object->type == OBJT_VNODE &&
1730 	    (vp = (struct vnode *)object->handle) != NULL) {
1731 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1732 			vsetflags(vp, VOBJDIRTY);
1733 		}
1734 	}
1735 }
1736 
1737 
1738 
1739 #include "opt_ddb.h"
1740 #ifdef DDB
1741 #include <sys/kernel.h>
1742 
1743 #include <sys/cons.h>
1744 
1745 #include <ddb/ddb.h>
1746 
1747 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1748 				       vm_map_entry_t entry);
1749 static int	vm_object_in_map (vm_object_t object);
1750 
1751 static int
1752 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1753 {
1754 	vm_map_t tmpm;
1755 	vm_map_entry_t tmpe;
1756 	vm_object_t obj;
1757 	int entcount;
1758 
1759 	if (map == 0)
1760 		return 0;
1761 	if (entry == 0) {
1762 		tmpe = map->header.next;
1763 		entcount = map->nentries;
1764 		while (entcount-- && (tmpe != &map->header)) {
1765 			if( _vm_object_in_map(map, object, tmpe)) {
1766 				return 1;
1767 			}
1768 			tmpe = tmpe->next;
1769 		}
1770 		return (0);
1771 	}
1772 	switch(entry->maptype) {
1773 	case VM_MAPTYPE_SUBMAP:
1774 		tmpm = entry->object.sub_map;
1775 		tmpe = tmpm->header.next;
1776 		entcount = tmpm->nentries;
1777 		while (entcount-- && tmpe != &tmpm->header) {
1778 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1779 				return 1;
1780 			}
1781 			tmpe = tmpe->next;
1782 		}
1783 		break;
1784 	case VM_MAPTYPE_NORMAL:
1785 	case VM_MAPTYPE_VPAGETABLE:
1786 		obj = entry->object.vm_object;
1787 		while (obj) {
1788 			if (obj == object)
1789 				return 1;
1790 			obj = obj->backing_object;
1791 		}
1792 		break;
1793 	default:
1794 		break;
1795 	}
1796 	return 0;
1797 }
1798 
1799 static int vm_object_in_map_callback(struct proc *p, void *data);
1800 
1801 struct vm_object_in_map_info {
1802 	vm_object_t object;
1803 	int rv;
1804 };
1805 
1806 static int
1807 vm_object_in_map(vm_object_t object)
1808 {
1809 	struct vm_object_in_map_info info;
1810 
1811 	info.rv = 0;
1812 	info.object = object;
1813 
1814 	allproc_scan(vm_object_in_map_callback, &info);
1815 	if (info.rv)
1816 		return 1;
1817 	if( _vm_object_in_map(&kernel_map, object, 0))
1818 		return 1;
1819 	if( _vm_object_in_map(&pager_map, object, 0))
1820 		return 1;
1821 	if( _vm_object_in_map(&buffer_map, object, 0))
1822 		return 1;
1823 	return 0;
1824 }
1825 
1826 static int
1827 vm_object_in_map_callback(struct proc *p, void *data)
1828 {
1829 	struct vm_object_in_map_info *info = data;
1830 
1831 	if (p->p_vmspace) {
1832 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1833 			info->rv = 1;
1834 			return -1;
1835 		}
1836 	}
1837 	return (0);
1838 }
1839 
1840 DB_SHOW_COMMAND(vmochk, vm_object_check)
1841 {
1842 	vm_object_t object;
1843 
1844 	/*
1845 	 * make sure that internal objs are in a map somewhere
1846 	 * and none have zero ref counts.
1847 	 */
1848 	for (object = TAILQ_FIRST(&vm_object_list);
1849 			object != NULL;
1850 			object = TAILQ_NEXT(object, object_list)) {
1851 		if (object->type == OBJT_MARKER)
1852 			continue;
1853 		if (object->handle == NULL &&
1854 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1855 			if (object->ref_count == 0) {
1856 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1857 					(long)object->size);
1858 			}
1859 			if (!vm_object_in_map(object)) {
1860 				db_printf(
1861 			"vmochk: internal obj is not in a map: "
1862 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1863 				    object->ref_count, (u_long)object->size,
1864 				    (u_long)object->size,
1865 				    (void *)object->backing_object);
1866 			}
1867 		}
1868 	}
1869 }
1870 
1871 /*
1872  *	vm_object_print:	[ debug ]
1873  */
1874 DB_SHOW_COMMAND(object, vm_object_print_static)
1875 {
1876 	/* XXX convert args. */
1877 	vm_object_t object = (vm_object_t)addr;
1878 	boolean_t full = have_addr;
1879 
1880 	vm_page_t p;
1881 
1882 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1883 #define	count	was_count
1884 
1885 	int count;
1886 
1887 	if (object == NULL)
1888 		return;
1889 
1890 	db_iprintf(
1891 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1892 	    object, (int)object->type, (u_long)object->size,
1893 	    object->resident_page_count, object->ref_count, object->flags);
1894 	/*
1895 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1896 	 */
1897 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1898 	    object->shadow_count,
1899 	    object->backing_object ? object->backing_object->ref_count : 0,
1900 	    object->backing_object, (long)object->backing_object_offset);
1901 
1902 	if (!full)
1903 		return;
1904 
1905 	db_indent += 2;
1906 	count = 0;
1907 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1908 		if (count == 0)
1909 			db_iprintf("memory:=");
1910 		else if (count == 6) {
1911 			db_printf("\n");
1912 			db_iprintf(" ...");
1913 			count = 0;
1914 		} else
1915 			db_printf(",");
1916 		count++;
1917 
1918 		db_printf("(off=0x%lx,page=0x%lx)",
1919 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1920 	}
1921 	if (count != 0)
1922 		db_printf("\n");
1923 	db_indent -= 2;
1924 }
1925 
1926 /* XXX. */
1927 #undef count
1928 
1929 /* XXX need this non-static entry for calling from vm_map_print. */
1930 void
1931 vm_object_print(/* db_expr_t */ long addr,
1932 		boolean_t have_addr,
1933 		/* db_expr_t */ long count,
1934 		char *modif)
1935 {
1936 	vm_object_print_static(addr, have_addr, count, modif);
1937 }
1938 
1939 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1940 {
1941 	vm_object_t object;
1942 	int nl = 0;
1943 	int c;
1944 	for (object = TAILQ_FIRST(&vm_object_list);
1945 			object != NULL;
1946 			object = TAILQ_NEXT(object, object_list)) {
1947 		vm_pindex_t idx, fidx;
1948 		vm_pindex_t osize;
1949 		vm_paddr_t pa = -1, padiff;
1950 		int rcount;
1951 		vm_page_t m;
1952 
1953 		if (object->type == OBJT_MARKER)
1954 			continue;
1955 		db_printf("new object: %p\n", (void *)object);
1956 		if ( nl > 18) {
1957 			c = cngetc();
1958 			if (c != ' ')
1959 				return;
1960 			nl = 0;
1961 		}
1962 		nl++;
1963 		rcount = 0;
1964 		fidx = 0;
1965 		osize = object->size;
1966 		if (osize > 128)
1967 			osize = 128;
1968 		for (idx = 0; idx < osize; idx++) {
1969 			m = vm_page_lookup(object, idx);
1970 			if (m == NULL) {
1971 				if (rcount) {
1972 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1973 						(long)fidx, rcount, (long)pa);
1974 					if ( nl > 18) {
1975 						c = cngetc();
1976 						if (c != ' ')
1977 							return;
1978 						nl = 0;
1979 					}
1980 					nl++;
1981 					rcount = 0;
1982 				}
1983 				continue;
1984 			}
1985 
1986 
1987 			if (rcount &&
1988 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1989 				++rcount;
1990 				continue;
1991 			}
1992 			if (rcount) {
1993 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1994 				padiff >>= PAGE_SHIFT;
1995 				padiff &= PQ_L2_MASK;
1996 				if (padiff == 0) {
1997 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1998 					++rcount;
1999 					continue;
2000 				}
2001 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2002 					(long)fidx, rcount, (long)pa);
2003 				db_printf("pd(%ld)\n", (long)padiff);
2004 				if ( nl > 18) {
2005 					c = cngetc();
2006 					if (c != ' ')
2007 						return;
2008 					nl = 0;
2009 				}
2010 				nl++;
2011 			}
2012 			fidx = idx;
2013 			pa = VM_PAGE_TO_PHYS(m);
2014 			rcount = 1;
2015 		}
2016 		if (rcount) {
2017 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2018 				(long)fidx, rcount, (long)pa);
2019 			if ( nl > 18) {
2020 				c = cngetc();
2021 				if (c != ' ')
2022 					return;
2023 				nl = 0;
2024 			}
2025 			nl++;
2026 		}
2027 	}
2028 }
2029 #endif /* DDB */
2030