xref: /dflybsd-src/sys/vm/vm_object.c (revision e219ee45bec4546377409eb2c04aa045f69ab87c)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <machine/specialreg.h>
93 
94 #define EASY_SCAN_FACTOR	8
95 
96 static void	vm_object_qcollapse(vm_object_t object,
97 				    vm_object_t backing_object);
98 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99 					     int pagerflags);
100 static void	vm_object_lock_init(vm_object_t);
101 
102 
103 /*
104  *	Virtual memory objects maintain the actual data
105  *	associated with allocated virtual memory.  A given
106  *	page of memory exists within exactly one object.
107  *
108  *	An object is only deallocated when all "references"
109  *	are given up.  Only one "reference" to a given
110  *	region of an object should be writeable.
111  *
112  *	Associated with each object is a list of all resident
113  *	memory pages belonging to that object; this list is
114  *	maintained by the "vm_page" module, and locked by the object's
115  *	lock.
116  *
117  *	Each object also records a "pager" routine which is
118  *	used to retrieve (and store) pages to the proper backing
119  *	storage.  In addition, objects may be backed by other
120  *	objects from which they were virtual-copied.
121  *
122  *	The only items within the object structure which are
123  *	modified after time of creation are:
124  *		reference count		locked by object's lock
125  *		pager routine		locked by object's lock
126  *
127  */
128 
129 struct object_q vm_object_list;		/* locked by vmobj_token */
130 struct vm_object kernel_object;
131 
132 static long vm_object_count;		/* locked by vmobj_token */
133 
134 static long object_collapses;
135 static long object_bypasses;
136 static int next_index;
137 static vm_zone_t obj_zone;
138 static struct vm_zone obj_zone_store;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141 
142 /*
143  * Misc low level routines
144  */
145 static void
146 vm_object_lock_init(vm_object_t obj)
147 {
148 #if defined(DEBUG_LOCKS)
149 	int i;
150 
151 	obj->debug_hold_bitmap = 0;
152 	obj->debug_hold_ovfl = 0;
153 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
154 		obj->debug_hold_thrs[i] = NULL;
155 		obj->debug_hold_file[i] = NULL;
156 		obj->debug_hold_line[i] = 0;
157 	}
158 #endif
159 }
160 
161 void
162 vm_object_lock_swap(void)
163 {
164 	lwkt_token_swap();
165 }
166 
167 void
168 vm_object_lock(vm_object_t obj)
169 {
170 	lwkt_gettoken(&obj->token);
171 }
172 
173 /*
174  * Returns TRUE on sucesss
175  */
176 static int
177 vm_object_lock_try(vm_object_t obj)
178 {
179 	return(lwkt_trytoken(&obj->token));
180 }
181 
182 void
183 vm_object_lock_shared(vm_object_t obj)
184 {
185 	lwkt_gettoken_shared(&obj->token);
186 }
187 
188 void
189 vm_object_unlock(vm_object_t obj)
190 {
191 	lwkt_reltoken(&obj->token);
192 }
193 
194 static __inline void
195 vm_object_assert_held(vm_object_t obj)
196 {
197 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
198 }
199 
200 void
201 #ifndef DEBUG_LOCKS
202 vm_object_hold(vm_object_t obj)
203 #else
204 debugvm_object_hold(vm_object_t obj, char *file, int line)
205 #endif
206 {
207 	KKASSERT(obj != NULL);
208 
209 	/*
210 	 * Object must be held (object allocation is stable due to callers
211 	 * context, typically already holding the token on a parent object)
212 	 * prior to potentially blocking on the lock, otherwise the object
213 	 * can get ripped away from us.
214 	 */
215 	refcount_acquire(&obj->hold_count);
216 	vm_object_lock(obj);
217 
218 #if defined(DEBUG_LOCKS)
219 	int i;
220 	u_int mask;
221 
222 	for (;;) {
223 		mask = ~obj->debug_hold_bitmap;
224 		cpu_ccfence();
225 		if (mask == 0xFFFFFFFFU) {
226 			if (obj->debug_hold_ovfl == 0)
227 				obj->debug_hold_ovfl = 1;
228 			break;
229 		}
230 		i = ffs(mask) - 1;
231 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
232 				      ~mask | (1 << i))) {
233 			obj->debug_hold_bitmap |= (1 << i);
234 			obj->debug_hold_thrs[i] = curthread;
235 			obj->debug_hold_file[i] = file;
236 			obj->debug_hold_line[i] = line;
237 			break;
238 		}
239 	}
240 #endif
241 }
242 
243 int
244 #ifndef DEBUG_LOCKS
245 vm_object_hold_try(vm_object_t obj)
246 #else
247 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
248 #endif
249 {
250 	KKASSERT(obj != NULL);
251 
252 	/*
253 	 * Object must be held (object allocation is stable due to callers
254 	 * context, typically already holding the token on a parent object)
255 	 * prior to potentially blocking on the lock, otherwise the object
256 	 * can get ripped away from us.
257 	 */
258 	refcount_acquire(&obj->hold_count);
259 	if (vm_object_lock_try(obj) == 0) {
260 		if (refcount_release(&obj->hold_count)) {
261 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
262 				zfree(obj_zone, obj);
263 		}
264 		return(0);
265 	}
266 
267 #if defined(DEBUG_LOCKS)
268 	int i;
269 	u_int mask;
270 
271 	for (;;) {
272 		mask = ~obj->debug_hold_bitmap;
273 		cpu_ccfence();
274 		if (mask == 0xFFFFFFFFU) {
275 			if (obj->debug_hold_ovfl == 0)
276 				obj->debug_hold_ovfl = 1;
277 			break;
278 		}
279 		i = ffs(mask) - 1;
280 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
281 				      ~mask | (1 << i))) {
282 			obj->debug_hold_bitmap |= (1 << i);
283 			obj->debug_hold_thrs[i] = curthread;
284 			obj->debug_hold_file[i] = file;
285 			obj->debug_hold_line[i] = line;
286 			break;
287 		}
288 	}
289 #endif
290 	return(1);
291 }
292 
293 void
294 #ifndef DEBUG_LOCKS
295 vm_object_hold_shared(vm_object_t obj)
296 #else
297 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
298 #endif
299 {
300 	KKASSERT(obj != NULL);
301 
302 	/*
303 	 * Object must be held (object allocation is stable due to callers
304 	 * context, typically already holding the token on a parent object)
305 	 * prior to potentially blocking on the lock, otherwise the object
306 	 * can get ripped away from us.
307 	 */
308 	refcount_acquire(&obj->hold_count);
309 	vm_object_lock_shared(obj);
310 
311 #if defined(DEBUG_LOCKS)
312 	int i;
313 	u_int mask;
314 
315 	for (;;) {
316 		mask = ~obj->debug_hold_bitmap;
317 		cpu_ccfence();
318 		if (mask == 0xFFFFFFFFU) {
319 			if (obj->debug_hold_ovfl == 0)
320 				obj->debug_hold_ovfl = 1;
321 			break;
322 		}
323 		i = ffs(mask) - 1;
324 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
325 				      ~mask | (1 << i))) {
326 			obj->debug_hold_bitmap |= (1 << i);
327 			obj->debug_hold_thrs[i] = curthread;
328 			obj->debug_hold_file[i] = file;
329 			obj->debug_hold_line[i] = line;
330 			break;
331 		}
332 	}
333 #endif
334 }
335 
336 /*
337  * Obtain either a shared or exclusive lock on VM object
338  * based on whether this is a terminal vnode object or not.
339  */
340 int
341 #ifndef DEBUG_LOCKS
342 vm_object_hold_maybe_shared(vm_object_t obj)
343 #else
344 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line)
345 #endif
346 {
347 	if (vm_shared_fault &&
348 	    obj->type == OBJT_VNODE &&
349 	    obj->backing_object == NULL) {
350 		vm_object_hold_shared(obj);
351 		return(1);
352 	} else {
353 		vm_object_hold(obj);
354 		return(0);
355 	}
356 }
357 
358 /*
359  * Drop the token and hold_count on the object.
360  */
361 void
362 vm_object_drop(vm_object_t obj)
363 {
364 	if (obj == NULL)
365 		return;
366 
367 #if defined(DEBUG_LOCKS)
368 	int found = 0;
369 	int i;
370 
371 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
372 		if ((obj->debug_hold_bitmap & (1 << i)) &&
373 		    (obj->debug_hold_thrs[i] == curthread)) {
374 			obj->debug_hold_bitmap &= ~(1 << i);
375 			obj->debug_hold_thrs[i] = NULL;
376 			obj->debug_hold_file[i] = NULL;
377 			obj->debug_hold_line[i] = 0;
378 			found = 1;
379 			break;
380 		}
381 	}
382 
383 	if (found == 0 && obj->debug_hold_ovfl == 0)
384 		panic("vm_object: attempt to drop hold on non-self-held obj");
385 #endif
386 
387 	/*
388 	 * No new holders should be possible once we drop hold_count 1->0 as
389 	 * there is no longer any way to reference the object.
390 	 */
391 	KKASSERT(obj->hold_count > 0);
392 	if (refcount_release(&obj->hold_count)) {
393 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
394 			vm_object_unlock(obj);
395 			zfree(obj_zone, obj);
396 		} else {
397 			vm_object_unlock(obj);
398 		}
399 	} else {
400 		vm_object_unlock(obj);
401 	}
402 }
403 
404 /*
405  * Initialize a freshly allocated object, returning a held object.
406  *
407  * Used only by vm_object_allocate() and zinitna().
408  *
409  * No requirements.
410  */
411 void
412 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
413 {
414 	int incr;
415 
416 	RB_INIT(&object->rb_memq);
417 	LIST_INIT(&object->shadow_head);
418 	lwkt_token_init(&object->token, "vmobj");
419 
420 	object->type = type;
421 	object->size = size;
422 	object->ref_count = 1;
423 	object->memattr = VM_MEMATTR_DEFAULT;
424 	object->hold_count = 0;
425 	object->flags = 0;
426 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
427 		vm_object_set_flag(object, OBJ_ONEMAPPING);
428 	object->paging_in_progress = 0;
429 	object->resident_page_count = 0;
430 	object->agg_pv_list_count = 0;
431 	object->shadow_count = 0;
432 	/* cpu localization twist */
433 	object->pg_color = (int)(intptr_t)curthread;
434 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
435 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
436 	else
437 		incr = size;
438 	next_index = (next_index + incr) & PQ_L2_MASK;
439 	object->handle = NULL;
440 	object->backing_object = NULL;
441 	object->backing_object_offset = (vm_ooffset_t)0;
442 
443 	object->generation++;
444 	object->swblock_count = 0;
445 	RB_INIT(&object->swblock_root);
446 	vm_object_lock_init(object);
447 	pmap_object_init(object);
448 
449 	vm_object_hold(object);
450 	lwkt_gettoken(&vmobj_token);
451 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
452 	vm_object_count++;
453 	lwkt_reltoken(&vmobj_token);
454 }
455 
456 /*
457  * Initialize the VM objects module.
458  *
459  * Called from the low level boot code only.
460  */
461 void
462 vm_object_init(void)
463 {
464 	TAILQ_INIT(&vm_object_list);
465 
466 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
467 			    &kernel_object);
468 	vm_object_drop(&kernel_object);
469 
470 	obj_zone = &obj_zone_store;
471 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
472 		vm_objects_init, VM_OBJECTS_INIT);
473 }
474 
475 void
476 vm_object_init2(void)
477 {
478 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
479 }
480 
481 /*
482  * Allocate and return a new object of the specified type and size.
483  *
484  * No requirements.
485  */
486 vm_object_t
487 vm_object_allocate(objtype_t type, vm_pindex_t size)
488 {
489 	vm_object_t result;
490 
491 	result = (vm_object_t) zalloc(obj_zone);
492 
493 	_vm_object_allocate(type, size, result);
494 	vm_object_drop(result);
495 
496 	return (result);
497 }
498 
499 /*
500  * This version returns a held object, allowing further atomic initialization
501  * of the object.
502  */
503 vm_object_t
504 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
505 {
506 	vm_object_t result;
507 
508 	result = (vm_object_t) zalloc(obj_zone);
509 
510 	_vm_object_allocate(type, size, result);
511 
512 	return (result);
513 }
514 
515 /*
516  * Add an additional reference to a vm_object.  The object must already be
517  * held.  The original non-lock version is no longer supported.  The object
518  * must NOT be chain locked by anyone at the time the reference is added.
519  *
520  * Referencing a chain-locked object can blow up the fairly sensitive
521  * ref_count and shadow_count tests in the deallocator.  Most callers
522  * will call vm_object_chain_wait() prior to calling
523  * vm_object_reference_locked() to avoid the case.
524  *
525  * The object must be held, but may be held shared if desired (hence why
526  * we use an atomic op).
527  */
528 void
529 vm_object_reference_locked(vm_object_t object)
530 {
531 	KKASSERT(object != NULL);
532 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
533 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
534 	atomic_add_int(&object->ref_count, 1);
535 	if (object->type == OBJT_VNODE) {
536 		vref(object->handle);
537 		/* XXX what if the vnode is being destroyed? */
538 	}
539 }
540 
541 /*
542  * Object OBJ_CHAINLOCK lock handling.
543  *
544  * The caller can chain-lock backing objects recursively and then
545  * use vm_object_chain_release_all() to undo the whole chain.
546  *
547  * Chain locks are used to prevent collapses and are only applicable
548  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
549  * on other object types are ignored.  This is also important because
550  * it allows e.g. the vnode underlying a memory mapping to take concurrent
551  * faults.
552  *
553  * The object must usually be held on entry, though intermediate
554  * objects need not be held on release.
555  */
556 void
557 vm_object_chain_wait(vm_object_t object)
558 {
559 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
560 	while (object->flags & OBJ_CHAINLOCK) {
561 		vm_object_set_flag(object, OBJ_CHAINWANT);
562 		tsleep(object, 0, "objchain", 0);
563 	}
564 }
565 
566 void
567 vm_object_chain_acquire(vm_object_t object)
568 {
569 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
570 		vm_object_chain_wait(object);
571 		vm_object_set_flag(object, OBJ_CHAINLOCK);
572 	}
573 }
574 
575 void
576 vm_object_chain_release(vm_object_t object)
577 {
578 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
579 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
580 		KKASSERT(object->flags & OBJ_CHAINLOCK);
581 		if (object->flags & OBJ_CHAINWANT) {
582 			vm_object_clear_flag(object,
583 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
584 			wakeup(object);
585 		} else {
586 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
587 		}
588 	}
589 }
590 
591 /*
592  * This releases the entire chain of objects from first_object to and
593  * including stopobj, flowing through object->backing_object.
594  *
595  * We release stopobj first as an optimization as this object is most
596  * likely to be shared across multiple processes.
597  */
598 void
599 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
600 {
601 	vm_object_t backing_object;
602 	vm_object_t object;
603 
604 	vm_object_chain_release(stopobj);
605 	object = first_object;
606 
607 	while (object != stopobj) {
608 		KKASSERT(object);
609 		if (object != first_object)
610 			vm_object_hold(object);
611 		backing_object = object->backing_object;
612 		vm_object_chain_release(object);
613 		if (object != first_object)
614 			vm_object_drop(object);
615 		object = backing_object;
616 	}
617 }
618 
619 /*
620  * Dereference an object and its underlying vnode.
621  *
622  * The object must be held exclusively and will remain held on return.
623  * (We don't need an atomic op due to the exclusivity).
624  */
625 static void
626 vm_object_vndeallocate(vm_object_t object)
627 {
628 	struct vnode *vp = (struct vnode *) object->handle;
629 
630 	KASSERT(object->type == OBJT_VNODE,
631 	    ("vm_object_vndeallocate: not a vnode object"));
632 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
633 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
634 #ifdef INVARIANTS
635 	if (object->ref_count == 0) {
636 		vprint("vm_object_vndeallocate", vp);
637 		panic("vm_object_vndeallocate: bad object reference count");
638 	}
639 #endif
640 	object->ref_count--;
641 	if (object->ref_count == 0)
642 		vclrflags(vp, VTEXT);
643 	vrele(vp);
644 }
645 
646 /*
647  * Release a reference to the specified object, gained either through a
648  * vm_object_allocate or a vm_object_reference call.  When all references
649  * are gone, storage associated with this object may be relinquished.
650  *
651  * The caller does not have to hold the object locked but must have control
652  * over the reference in question in order to guarantee that the object
653  * does not get ripped out from under us.
654  *
655  * XXX Currently all deallocations require an exclusive lock.
656  */
657 void
658 vm_object_deallocate(vm_object_t object)
659 {
660 	if (object) {
661 		vm_object_hold(object);
662 		vm_object_deallocate_locked(object);
663 		vm_object_drop(object);
664 	}
665 }
666 
667 void
668 vm_object_deallocate_locked(vm_object_t object)
669 {
670 	struct vm_object_dealloc_list *dlist = NULL;
671 	struct vm_object_dealloc_list *dtmp;
672 	vm_object_t temp;
673 	int must_drop = 0;
674 
675 	/*
676 	 * We may chain deallocate object, but additional objects may
677 	 * collect on the dlist which also have to be deallocated.  We
678 	 * must avoid a recursion, vm_object chains can get deep.
679 	 */
680 again:
681 	while (object != NULL) {
682 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
683 #if 0
684 		/*
685 		 * Don't rip a ref_count out from under an object undergoing
686 		 * collapse, it will confuse the collapse code.
687 		 */
688 		vm_object_chain_wait(object);
689 #endif
690 		if (object->type == OBJT_VNODE) {
691 			vm_object_vndeallocate(object);
692 			break;
693 		}
694 
695 		if (object->ref_count == 0) {
696 			panic("vm_object_deallocate: object deallocated "
697 			      "too many times: %d", object->type);
698 		}
699 		if (object->ref_count > 2) {
700 			object->ref_count--;
701 			break;
702 		}
703 
704 		/*
705 		 * Here on ref_count of one or two, which are special cases for
706 		 * objects.
707 		 *
708 		 * Nominal ref_count > 1 case if the second ref is not from
709 		 * a shadow.
710 		 *
711 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
712 		 */
713 		if (object->ref_count == 2 && object->shadow_count == 0) {
714 			if (object->type == OBJT_DEFAULT ||
715 			    object->type == OBJT_SWAP) {
716 				vm_object_set_flag(object, OBJ_ONEMAPPING);
717 			}
718 			object->ref_count--;
719 			break;
720 		}
721 
722 		/*
723 		 * If the second ref is from a shadow we chain along it
724 		 * upwards if object's handle is exhausted.
725 		 *
726 		 * We have to decrement object->ref_count before potentially
727 		 * collapsing the first shadow object or the collapse code
728 		 * will not be able to handle the degenerate case to remove
729 		 * object.  However, if we do it too early the object can
730 		 * get ripped out from under us.
731 		 */
732 		if (object->ref_count == 2 && object->shadow_count == 1 &&
733 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
734 					       object->type == OBJT_SWAP)) {
735 			temp = LIST_FIRST(&object->shadow_head);
736 			KKASSERT(temp != NULL);
737 			vm_object_hold(temp);
738 
739 			/*
740 			 * Wait for any paging to complete so the collapse
741 			 * doesn't (or isn't likely to) qcollapse.  pip
742 			 * waiting must occur before we acquire the
743 			 * chainlock.
744 			 */
745 			while (
746 				temp->paging_in_progress ||
747 				object->paging_in_progress
748 			) {
749 				vm_object_pip_wait(temp, "objde1");
750 				vm_object_pip_wait(object, "objde2");
751 			}
752 
753 			/*
754 			 * If the parent is locked we have to give up, as
755 			 * otherwise we would be acquiring locks in the
756 			 * wrong order and potentially deadlock.
757 			 */
758 			if (temp->flags & OBJ_CHAINLOCK) {
759 				vm_object_drop(temp);
760 				goto skip;
761 			}
762 			vm_object_chain_acquire(temp);
763 
764 			/*
765 			 * Recheck/retry after the hold and the paging
766 			 * wait, both of which can block us.
767 			 */
768 			if (object->ref_count != 2 ||
769 			    object->shadow_count != 1 ||
770 			    object->handle ||
771 			    LIST_FIRST(&object->shadow_head) != temp ||
772 			    (object->type != OBJT_DEFAULT &&
773 			     object->type != OBJT_SWAP)) {
774 				vm_object_chain_release(temp);
775 				vm_object_drop(temp);
776 				continue;
777 			}
778 
779 			/*
780 			 * We can safely drop object's ref_count now.
781 			 */
782 			KKASSERT(object->ref_count == 2);
783 			object->ref_count--;
784 
785 			/*
786 			 * If our single parent is not collapseable just
787 			 * decrement ref_count (2->1) and stop.
788 			 */
789 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
790 					     temp->type != OBJT_SWAP)) {
791 				vm_object_chain_release(temp);
792 				vm_object_drop(temp);
793 				break;
794 			}
795 
796 			/*
797 			 * At this point we have already dropped object's
798 			 * ref_count so it is possible for a race to
799 			 * deallocate obj out from under us.  Any collapse
800 			 * will re-check the situation.  We must not block
801 			 * until we are able to collapse.
802 			 *
803 			 * Bump temp's ref_count to avoid an unwanted
804 			 * degenerate recursion (can't call
805 			 * vm_object_reference_locked() because it asserts
806 			 * that CHAINLOCK is not set).
807 			 */
808 			temp->ref_count++;
809 			KKASSERT(temp->ref_count > 1);
810 
811 			/*
812 			 * Collapse temp, then deallocate the extra ref
813 			 * formally.
814 			 */
815 			vm_object_collapse(temp, &dlist);
816 			vm_object_chain_release(temp);
817 			if (must_drop) {
818 				vm_object_lock_swap();
819 				vm_object_drop(object);
820 			}
821 			object = temp;
822 			must_drop = 1;
823 			continue;
824 		}
825 
826 		/*
827 		 * Drop the ref and handle termination on the 1->0 transition.
828 		 * We may have blocked above so we have to recheck.
829 		 */
830 skip:
831 		KKASSERT(object->ref_count != 0);
832 		if (object->ref_count >= 2) {
833 			object->ref_count--;
834 			break;
835 		}
836 		KKASSERT(object->ref_count == 1);
837 
838 		/*
839 		 * 1->0 transition.  Chain through the backing_object.
840 		 * Maintain the ref until we've located the backing object,
841 		 * then re-check.
842 		 */
843 		while ((temp = object->backing_object) != NULL) {
844 			vm_object_hold(temp);
845 			if (temp == object->backing_object)
846 				break;
847 			vm_object_drop(temp);
848 		}
849 
850 		/*
851 		 * 1->0 transition verified, retry if ref_count is no longer
852 		 * 1.  Otherwise disconnect the backing_object (temp) and
853 		 * clean up.
854 		 */
855 		if (object->ref_count != 1) {
856 			vm_object_drop(temp);
857 			continue;
858 		}
859 
860 		/*
861 		 * It shouldn't be possible for the object to be chain locked
862 		 * if we're removing the last ref on it.
863 		 */
864 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
865 
866 		if (temp) {
867 			LIST_REMOVE(object, shadow_list);
868 			temp->shadow_count--;
869 			temp->generation++;
870 			object->backing_object = NULL;
871 		}
872 
873 		--object->ref_count;
874 		if ((object->flags & OBJ_DEAD) == 0)
875 			vm_object_terminate(object);
876 		if (must_drop && temp)
877 			vm_object_lock_swap();
878 		if (must_drop)
879 			vm_object_drop(object);
880 		object = temp;
881 		must_drop = 1;
882 	}
883 	if (must_drop && object)
884 		vm_object_drop(object);
885 
886 	/*
887 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
888 	 * on the dlist have a hold count but are not locked.
889 	 */
890 	if ((dtmp = dlist) != NULL) {
891 		dlist = dtmp->next;
892 		object = dtmp->object;
893 		kfree(dtmp, M_TEMP);
894 
895 		vm_object_lock(object);	/* already held, add lock */
896 		must_drop = 1;		/* and we're responsible for it */
897 		goto again;
898 	}
899 }
900 
901 /*
902  * Destroy the specified object, freeing up related resources.
903  *
904  * The object must have zero references.
905  *
906  * The object must held.  The caller is responsible for dropping the object
907  * after terminate returns.  Terminate does NOT drop the object.
908  */
909 static int vm_object_terminate_callback(vm_page_t p, void *data);
910 
911 void
912 vm_object_terminate(vm_object_t object)
913 {
914 	/*
915 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
916 	 * able to safely block.
917 	 */
918 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
919 	KKASSERT((object->flags & OBJ_DEAD) == 0);
920 	vm_object_set_flag(object, OBJ_DEAD);
921 
922 	/*
923 	 * Wait for the pageout daemon to be done with the object
924 	 */
925 	vm_object_pip_wait(object, "objtrm1");
926 
927 	KASSERT(!object->paging_in_progress,
928 		("vm_object_terminate: pageout in progress"));
929 
930 	/*
931 	 * Clean and free the pages, as appropriate. All references to the
932 	 * object are gone, so we don't need to lock it.
933 	 */
934 	if (object->type == OBJT_VNODE) {
935 		struct vnode *vp;
936 
937 		/*
938 		 * Clean pages and flush buffers.
939 		 *
940 		 * NOTE!  TMPFS buffer flushes do not typically flush the
941 		 *	  actual page to swap as this would be highly
942 		 *	  inefficient, and normal filesystems usually wrap
943 		 *	  page flushes with buffer cache buffers.
944 		 *
945 		 *	  To deal with this we have to call vinvalbuf() both
946 		 *	  before and after the vm_object_page_clean().
947 		 */
948 		vp = (struct vnode *) object->handle;
949 		vinvalbuf(vp, V_SAVE, 0, 0);
950 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
951 		vinvalbuf(vp, V_SAVE, 0, 0);
952 	}
953 
954 	/*
955 	 * Wait for any I/O to complete, after which there had better not
956 	 * be any references left on the object.
957 	 */
958 	vm_object_pip_wait(object, "objtrm2");
959 
960 	if (object->ref_count != 0) {
961 		panic("vm_object_terminate: object with references, "
962 		      "ref_count=%d", object->ref_count);
963 	}
964 
965 	/*
966 	 * Cleanup any shared pmaps associated with this object.
967 	 */
968 	pmap_object_free(object);
969 
970 	/*
971 	 * Now free any remaining pages. For internal objects, this also
972 	 * removes them from paging queues. Don't free wired pages, just
973 	 * remove them from the object.
974 	 */
975 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
976 				vm_object_terminate_callback, NULL);
977 
978 	/*
979 	 * Let the pager know object is dead.
980 	 */
981 	vm_pager_deallocate(object);
982 
983 	/*
984 	 * Wait for the object hold count to hit 1, clean out pages as
985 	 * we go.  vmobj_token interlocks any race conditions that might
986 	 * pick the object up from the vm_object_list after we have cleared
987 	 * rb_memq.
988 	 */
989 	for (;;) {
990 		if (RB_ROOT(&object->rb_memq) == NULL)
991 			break;
992 		kprintf("vm_object_terminate: Warning, object %p "
993 			"still has %d pages\n",
994 			object, object->resident_page_count);
995 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
996 					vm_object_terminate_callback, NULL);
997 	}
998 
999 	/*
1000 	 * There had better not be any pages left
1001 	 */
1002 	KKASSERT(object->resident_page_count == 0);
1003 
1004 	/*
1005 	 * Remove the object from the global object list.
1006 	 */
1007 	lwkt_gettoken(&vmobj_token);
1008 	TAILQ_REMOVE(&vm_object_list, object, object_list);
1009 	vm_object_count--;
1010 	lwkt_reltoken(&vmobj_token);
1011 	vm_object_dead_wakeup(object);
1012 
1013 	if (object->ref_count != 0) {
1014 		panic("vm_object_terminate2: object with references, "
1015 		      "ref_count=%d", object->ref_count);
1016 	}
1017 
1018 	/*
1019 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1020 	 *	 the object here.  See vm_object_drop().
1021 	 */
1022 }
1023 
1024 /*
1025  * The caller must hold the object.
1026  */
1027 static int
1028 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1029 {
1030 	vm_object_t object;
1031 
1032 	object = p->object;
1033 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1034 	if (object != p->object) {
1035 		kprintf("vm_object_terminate: Warning: Encountered "
1036 			"busied page %p on queue %d\n", p, p->queue);
1037 		vm_page_wakeup(p);
1038 	} else if (p->wire_count == 0) {
1039 		/*
1040 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1041 		 */
1042 		vm_page_free(p);
1043 		mycpu->gd_cnt.v_pfree++;
1044 	} else {
1045 		if (p->queue != PQ_NONE)
1046 			kprintf("vm_object_terminate: Warning: Encountered "
1047 				"wired page %p on queue %d\n", p, p->queue);
1048 		vm_page_remove(p);
1049 		vm_page_wakeup(p);
1050 	}
1051 	lwkt_yield();
1052 	return(0);
1053 }
1054 
1055 /*
1056  * The object is dead but still has an object<->pager association.  Sleep
1057  * and return.  The caller typically retests the association in a loop.
1058  *
1059  * The caller must hold the object.
1060  */
1061 void
1062 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1063 {
1064 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1065 	if (object->handle) {
1066 		vm_object_set_flag(object, OBJ_DEADWNT);
1067 		tsleep(object, 0, wmesg, 0);
1068 		/* object may be invalid after this point */
1069 	}
1070 }
1071 
1072 /*
1073  * Wakeup anyone waiting for the object<->pager disassociation on
1074  * a dead object.
1075  *
1076  * The caller must hold the object.
1077  */
1078 void
1079 vm_object_dead_wakeup(vm_object_t object)
1080 {
1081 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1082 	if (object->flags & OBJ_DEADWNT) {
1083 		vm_object_clear_flag(object, OBJ_DEADWNT);
1084 		wakeup(object);
1085 	}
1086 }
1087 
1088 /*
1089  * Clean all dirty pages in the specified range of object.  Leaves page
1090  * on whatever queue it is currently on.   If NOSYNC is set then do not
1091  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1092  * leaving the object dirty.
1093  *
1094  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1095  * synchronous clustering mode implementation.
1096  *
1097  * Odd semantics: if start == end, we clean everything.
1098  *
1099  * The object must be locked? XXX
1100  */
1101 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1102 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1103 
1104 void
1105 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1106 		     int flags)
1107 {
1108 	struct rb_vm_page_scan_info info;
1109 	struct vnode *vp;
1110 	int wholescan;
1111 	int pagerflags;
1112 	int generation;
1113 
1114 	vm_object_hold(object);
1115 	if (object->type != OBJT_VNODE ||
1116 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1117 		vm_object_drop(object);
1118 		return;
1119 	}
1120 
1121 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1122 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1123 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1124 
1125 	vp = object->handle;
1126 
1127 	/*
1128 	 * Interlock other major object operations.  This allows us to
1129 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1130 	 */
1131 	vm_object_set_flag(object, OBJ_CLEANING);
1132 
1133 	/*
1134 	 * Handle 'entire object' case
1135 	 */
1136 	info.start_pindex = start;
1137 	if (end == 0) {
1138 		info.end_pindex = object->size - 1;
1139 	} else {
1140 		info.end_pindex = end - 1;
1141 	}
1142 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1143 	info.limit = flags;
1144 	info.pagerflags = pagerflags;
1145 	info.object = object;
1146 
1147 	/*
1148 	 * If cleaning the entire object do a pass to mark the pages read-only.
1149 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1150 	 * OBJ_MIGHTBEDIRTY.
1151 	 */
1152 	if (wholescan) {
1153 		info.error = 0;
1154 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1155 					vm_object_page_clean_pass1, &info);
1156 		if (info.error == 0) {
1157 			vm_object_clear_flag(object,
1158 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1159 			if (object->type == OBJT_VNODE &&
1160 			    (vp = (struct vnode *)object->handle) != NULL) {
1161 				if (vp->v_flag & VOBJDIRTY)
1162 					vclrflags(vp, VOBJDIRTY);
1163 			}
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * Do a pass to clean all the dirty pages we find.
1169 	 */
1170 	do {
1171 		info.error = 0;
1172 		generation = object->generation;
1173 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1174 					vm_object_page_clean_pass2, &info);
1175 	} while (info.error || generation != object->generation);
1176 
1177 	vm_object_clear_flag(object, OBJ_CLEANING);
1178 	vm_object_drop(object);
1179 }
1180 
1181 /*
1182  * The caller must hold the object.
1183  */
1184 static
1185 int
1186 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1187 {
1188 	struct rb_vm_page_scan_info *info = data;
1189 
1190 	vm_page_flag_set(p, PG_CLEANCHK);
1191 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1192 		info->error = 1;
1193 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1194 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1195 		vm_page_wakeup(p);
1196 	} else {
1197 		info->error = 1;
1198 	}
1199 	lwkt_yield();
1200 	return(0);
1201 }
1202 
1203 /*
1204  * The caller must hold the object
1205  */
1206 static
1207 int
1208 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1209 {
1210 	struct rb_vm_page_scan_info *info = data;
1211 	int generation;
1212 
1213 	/*
1214 	 * Do not mess with pages that were inserted after we started
1215 	 * the cleaning pass.
1216 	 */
1217 	if ((p->flags & PG_CLEANCHK) == 0)
1218 		goto done;
1219 
1220 	generation = info->object->generation;
1221 	vm_page_busy_wait(p, TRUE, "vpcwai");
1222 	if (p->object != info->object ||
1223 	    info->object->generation != generation) {
1224 		info->error = 1;
1225 		vm_page_wakeup(p);
1226 		goto done;
1227 	}
1228 
1229 	/*
1230 	 * Before wasting time traversing the pmaps, check for trivial
1231 	 * cases where the page cannot be dirty.
1232 	 */
1233 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1234 		KKASSERT((p->dirty & p->valid) == 0 &&
1235 			 (p->flags & PG_NEED_COMMIT) == 0);
1236 		vm_page_wakeup(p);
1237 		goto done;
1238 	}
1239 
1240 	/*
1241 	 * Check whether the page is dirty or not.  The page has been set
1242 	 * to be read-only so the check will not race a user dirtying the
1243 	 * page.
1244 	 */
1245 	vm_page_test_dirty(p);
1246 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1247 		vm_page_flag_clear(p, PG_CLEANCHK);
1248 		vm_page_wakeup(p);
1249 		goto done;
1250 	}
1251 
1252 	/*
1253 	 * If we have been asked to skip nosync pages and this is a
1254 	 * nosync page, skip it.  Note that the object flags were
1255 	 * not cleared in this case (because pass1 will have returned an
1256 	 * error), so we do not have to set them.
1257 	 */
1258 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1259 		vm_page_flag_clear(p, PG_CLEANCHK);
1260 		vm_page_wakeup(p);
1261 		goto done;
1262 	}
1263 
1264 	/*
1265 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1266 	 * the pages that get successfully flushed.  Set info->error if
1267 	 * we raced an object modification.
1268 	 */
1269 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1270 	vm_wait_nominal();
1271 done:
1272 	lwkt_yield();
1273 	return(0);
1274 }
1275 
1276 /*
1277  * Collect the specified page and nearby pages and flush them out.
1278  * The number of pages flushed is returned.  The passed page is busied
1279  * by the caller and we are responsible for its disposition.
1280  *
1281  * The caller must hold the object.
1282  */
1283 static void
1284 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1285 {
1286 	int error;
1287 	int is;
1288 	int ib;
1289 	int i;
1290 	int page_base;
1291 	vm_pindex_t pi;
1292 	vm_page_t ma[BLIST_MAX_ALLOC];
1293 
1294 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1295 
1296 	pi = p->pindex;
1297 	page_base = pi % BLIST_MAX_ALLOC;
1298 	ma[page_base] = p;
1299 	ib = page_base - 1;
1300 	is = page_base + 1;
1301 
1302 	while (ib >= 0) {
1303 		vm_page_t tp;
1304 
1305 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1306 					     TRUE, &error);
1307 		if (error)
1308 			break;
1309 		if (tp == NULL)
1310 			break;
1311 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1312 		    (tp->flags & PG_CLEANCHK) == 0) {
1313 			vm_page_wakeup(tp);
1314 			break;
1315 		}
1316 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1317 			vm_page_flag_clear(tp, PG_CLEANCHK);
1318 			vm_page_wakeup(tp);
1319 			break;
1320 		}
1321 		vm_page_test_dirty(tp);
1322 		if ((tp->dirty & tp->valid) == 0 &&
1323 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1324 			vm_page_flag_clear(tp, PG_CLEANCHK);
1325 			vm_page_wakeup(tp);
1326 			break;
1327 		}
1328 		ma[ib] = tp;
1329 		--ib;
1330 	}
1331 	++ib;	/* fixup */
1332 
1333 	while (is < BLIST_MAX_ALLOC &&
1334 	       pi - page_base + is < object->size) {
1335 		vm_page_t tp;
1336 
1337 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1338 					     TRUE, &error);
1339 		if (error)
1340 			break;
1341 		if (tp == NULL)
1342 			break;
1343 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1344 		    (tp->flags & PG_CLEANCHK) == 0) {
1345 			vm_page_wakeup(tp);
1346 			break;
1347 		}
1348 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1349 			vm_page_flag_clear(tp, PG_CLEANCHK);
1350 			vm_page_wakeup(tp);
1351 			break;
1352 		}
1353 		vm_page_test_dirty(tp);
1354 		if ((tp->dirty & tp->valid) == 0 &&
1355 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1356 			vm_page_flag_clear(tp, PG_CLEANCHK);
1357 			vm_page_wakeup(tp);
1358 			break;
1359 		}
1360 		ma[is] = tp;
1361 		++is;
1362 	}
1363 
1364 	/*
1365 	 * All pages in the ma[] array are busied now
1366 	 */
1367 	for (i = ib; i < is; ++i) {
1368 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1369 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1370 	}
1371 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1372 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1373 		vm_page_unhold(ma[i]);
1374 }
1375 
1376 /*
1377  * Same as vm_object_pmap_copy, except range checking really
1378  * works, and is meant for small sections of an object.
1379  *
1380  * This code protects resident pages by making them read-only
1381  * and is typically called on a fork or split when a page
1382  * is converted to copy-on-write.
1383  *
1384  * NOTE: If the page is already at VM_PROT_NONE, calling
1385  * vm_page_protect will have no effect.
1386  */
1387 void
1388 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1389 {
1390 	vm_pindex_t idx;
1391 	vm_page_t p;
1392 
1393 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1394 		return;
1395 
1396 	vm_object_hold(object);
1397 	for (idx = start; idx < end; idx++) {
1398 		p = vm_page_lookup(object, idx);
1399 		if (p == NULL)
1400 			continue;
1401 		vm_page_protect(p, VM_PROT_READ);
1402 	}
1403 	vm_object_drop(object);
1404 }
1405 
1406 /*
1407  * Removes all physical pages in the specified object range from all
1408  * physical maps.
1409  *
1410  * The object must *not* be locked.
1411  */
1412 
1413 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1414 
1415 void
1416 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1417 {
1418 	struct rb_vm_page_scan_info info;
1419 
1420 	if (object == NULL)
1421 		return;
1422 	info.start_pindex = start;
1423 	info.end_pindex = end - 1;
1424 
1425 	vm_object_hold(object);
1426 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1427 				vm_object_pmap_remove_callback, &info);
1428 	if (start == 0 && end == object->size)
1429 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1430 	vm_object_drop(object);
1431 }
1432 
1433 /*
1434  * The caller must hold the object
1435  */
1436 static int
1437 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1438 {
1439 	vm_page_protect(p, VM_PROT_NONE);
1440 	return(0);
1441 }
1442 
1443 /*
1444  * Implements the madvise function at the object/page level.
1445  *
1446  * MADV_WILLNEED	(any object)
1447  *
1448  *	Activate the specified pages if they are resident.
1449  *
1450  * MADV_DONTNEED	(any object)
1451  *
1452  *	Deactivate the specified pages if they are resident.
1453  *
1454  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1455  *
1456  *	Deactivate and clean the specified pages if they are
1457  *	resident.  This permits the process to reuse the pages
1458  *	without faulting or the kernel to reclaim the pages
1459  *	without I/O.
1460  *
1461  * No requirements.
1462  */
1463 void
1464 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1465 {
1466 	vm_pindex_t end, tpindex;
1467 	vm_object_t tobject;
1468 	vm_object_t xobj;
1469 	vm_page_t m;
1470 	int error;
1471 
1472 	if (object == NULL)
1473 		return;
1474 
1475 	end = pindex + count;
1476 
1477 	vm_object_hold(object);
1478 	tobject = object;
1479 
1480 	/*
1481 	 * Locate and adjust resident pages
1482 	 */
1483 	for (; pindex < end; pindex += 1) {
1484 relookup:
1485 		if (tobject != object)
1486 			vm_object_drop(tobject);
1487 		tobject = object;
1488 		tpindex = pindex;
1489 shadowlookup:
1490 		/*
1491 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1492 		 * and those pages must be OBJ_ONEMAPPING.
1493 		 */
1494 		if (advise == MADV_FREE) {
1495 			if ((tobject->type != OBJT_DEFAULT &&
1496 			     tobject->type != OBJT_SWAP) ||
1497 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1498 				continue;
1499 			}
1500 		}
1501 
1502 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1503 
1504 		if (error) {
1505 			vm_page_sleep_busy(m, TRUE, "madvpo");
1506 			goto relookup;
1507 		}
1508 		if (m == NULL) {
1509 			/*
1510 			 * There may be swap even if there is no backing page
1511 			 */
1512 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1513 				swap_pager_freespace(tobject, tpindex, 1);
1514 
1515 			/*
1516 			 * next object
1517 			 */
1518 			while ((xobj = tobject->backing_object) != NULL) {
1519 				KKASSERT(xobj != object);
1520 				vm_object_hold(xobj);
1521 				if (xobj == tobject->backing_object)
1522 					break;
1523 				vm_object_drop(xobj);
1524 			}
1525 			if (xobj == NULL)
1526 				continue;
1527 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1528 			if (tobject != object) {
1529 				vm_object_lock_swap();
1530 				vm_object_drop(tobject);
1531 			}
1532 			tobject = xobj;
1533 			goto shadowlookup;
1534 		}
1535 
1536 		/*
1537 		 * If the page is not in a normal active state, we skip it.
1538 		 * If the page is not managed there are no page queues to
1539 		 * mess with.  Things can break if we mess with pages in
1540 		 * any of the below states.
1541 		 */
1542 		if (m->wire_count ||
1543 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1544 		    m->valid != VM_PAGE_BITS_ALL
1545 		) {
1546 			vm_page_wakeup(m);
1547 			continue;
1548 		}
1549 
1550 		/*
1551 		 * Theoretically once a page is known not to be busy, an
1552 		 * interrupt cannot come along and rip it out from under us.
1553 		 */
1554 
1555 		if (advise == MADV_WILLNEED) {
1556 			vm_page_activate(m);
1557 		} else if (advise == MADV_DONTNEED) {
1558 			vm_page_dontneed(m);
1559 		} else if (advise == MADV_FREE) {
1560 			/*
1561 			 * Mark the page clean.  This will allow the page
1562 			 * to be freed up by the system.  However, such pages
1563 			 * are often reused quickly by malloc()/free()
1564 			 * so we do not do anything that would cause
1565 			 * a page fault if we can help it.
1566 			 *
1567 			 * Specifically, we do not try to actually free
1568 			 * the page now nor do we try to put it in the
1569 			 * cache (which would cause a page fault on reuse).
1570 			 *
1571 			 * But we do make the page is freeable as we
1572 			 * can without actually taking the step of unmapping
1573 			 * it.
1574 			 */
1575 			pmap_clear_modify(m);
1576 			m->dirty = 0;
1577 			m->act_count = 0;
1578 			vm_page_dontneed(m);
1579 			if (tobject->type == OBJT_SWAP)
1580 				swap_pager_freespace(tobject, tpindex, 1);
1581 		}
1582 		vm_page_wakeup(m);
1583 	}
1584 	if (tobject != object)
1585 		vm_object_drop(tobject);
1586 	vm_object_drop(object);
1587 }
1588 
1589 /*
1590  * Create a new object which is backed by the specified existing object
1591  * range.  Replace the pointer and offset that was pointing at the existing
1592  * object with the pointer/offset for the new object.
1593  *
1594  * No other requirements.
1595  */
1596 void
1597 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1598 		 int addref)
1599 {
1600 	vm_object_t source;
1601 	vm_object_t result;
1602 
1603 	source = *objectp;
1604 
1605 	/*
1606 	 * Don't create the new object if the old object isn't shared.
1607 	 * We have to chain wait before adding the reference to avoid
1608 	 * racing a collapse or deallocation.
1609 	 *
1610 	 * Add the additional ref to source here to avoid racing a later
1611 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1612 	 * addref is TRUE or not in this case because the original object
1613 	 * will be shadowed.
1614 	 */
1615 	if (source) {
1616 		vm_object_hold(source);
1617 		vm_object_chain_wait(source);
1618 		if (source->ref_count == 1 &&
1619 		    source->handle == NULL &&
1620 		    (source->type == OBJT_DEFAULT ||
1621 		     source->type == OBJT_SWAP)) {
1622 			vm_object_drop(source);
1623 			if (addref) {
1624 				vm_object_reference_locked(source);
1625 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1626 			}
1627 			return;
1628 		}
1629 		vm_object_reference_locked(source);
1630 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1631 	}
1632 
1633 	/*
1634 	 * Allocate a new object with the given length.  The new object
1635 	 * is returned referenced but we may have to add another one.
1636 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1637 	 * (typically because the caller is about to clone a vm_map_entry).
1638 	 *
1639 	 * The source object currently has an extra reference to prevent
1640 	 * collapses into it while we mess with its shadow list, which
1641 	 * we will remove later in this routine.
1642 	 */
1643 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1644 		panic("vm_object_shadow: no object for shadowing");
1645 	vm_object_hold(result);
1646 	if (addref) {
1647 		vm_object_reference_locked(result);
1648 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1649 	}
1650 
1651 	/*
1652 	 * The new object shadows the source object.  Chain wait before
1653 	 * adjusting shadow_count or the shadow list to avoid races.
1654 	 *
1655 	 * Try to optimize the result object's page color when shadowing
1656 	 * in order to maintain page coloring consistency in the combined
1657 	 * shadowed object.
1658 	 */
1659 	KKASSERT(result->backing_object == NULL);
1660 	result->backing_object = source;
1661 	if (source) {
1662 		vm_object_chain_wait(source);
1663 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1664 		source->shadow_count++;
1665 		source->generation++;
1666 		/* cpu localization twist */
1667 		result->pg_color = (int)(intptr_t)curthread;
1668 	}
1669 
1670 	/*
1671 	 * Adjust the return storage.  Drop the ref on source before
1672 	 * returning.
1673 	 */
1674 	result->backing_object_offset = *offset;
1675 	vm_object_drop(result);
1676 	*offset = 0;
1677 	if (source) {
1678 		vm_object_deallocate_locked(source);
1679 		vm_object_drop(source);
1680 	}
1681 
1682 	/*
1683 	 * Return the new things
1684 	 */
1685 	*objectp = result;
1686 }
1687 
1688 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1689 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1690 #define	OBSC_COLLAPSE_WAIT	0x0004
1691 
1692 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1693 
1694 /*
1695  * The caller must hold the object.
1696  */
1697 static __inline int
1698 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1699 {
1700 	struct rb_vm_page_scan_info info;
1701 
1702 	vm_object_assert_held(object);
1703 	vm_object_assert_held(backing_object);
1704 
1705 	KKASSERT(backing_object == object->backing_object);
1706 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1707 
1708 	/*
1709 	 * Initial conditions
1710 	 */
1711 	if (op & OBSC_TEST_ALL_SHADOWED) {
1712 		/*
1713 		 * We do not want to have to test for the existence of
1714 		 * swap pages in the backing object.  XXX but with the
1715 		 * new swapper this would be pretty easy to do.
1716 		 *
1717 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1718 		 * been ZFOD faulted yet?  If we do not test for this, the
1719 		 * shadow test may succeed! XXX
1720 		 */
1721 		if (backing_object->type != OBJT_DEFAULT)
1722 			return(0);
1723 	}
1724 	if (op & OBSC_COLLAPSE_WAIT) {
1725 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1726 		vm_object_set_flag(backing_object, OBJ_DEAD);
1727 		lwkt_gettoken(&vmobj_token);
1728 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1729 		vm_object_count--;
1730 		lwkt_reltoken(&vmobj_token);
1731 		vm_object_dead_wakeup(backing_object);
1732 	}
1733 
1734 	/*
1735 	 * Our scan.   We have to retry if a negative error code is returned,
1736 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1737 	 * the scan had to be stopped because the parent does not completely
1738 	 * shadow the child.
1739 	 */
1740 	info.object = object;
1741 	info.backing_object = backing_object;
1742 	info.limit = op;
1743 	do {
1744 		info.error = 1;
1745 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1746 					vm_object_backing_scan_callback,
1747 					&info);
1748 	} while (info.error < 0);
1749 
1750 	return(info.error);
1751 }
1752 
1753 /*
1754  * The caller must hold the object.
1755  */
1756 static int
1757 vm_object_backing_scan_callback(vm_page_t p, void *data)
1758 {
1759 	struct rb_vm_page_scan_info *info = data;
1760 	vm_object_t backing_object;
1761 	vm_object_t object;
1762 	vm_pindex_t pindex;
1763 	vm_pindex_t new_pindex;
1764 	vm_pindex_t backing_offset_index;
1765 	int op;
1766 
1767 	pindex = p->pindex;
1768 	new_pindex = pindex - info->backing_offset_index;
1769 	op = info->limit;
1770 	object = info->object;
1771 	backing_object = info->backing_object;
1772 	backing_offset_index = info->backing_offset_index;
1773 
1774 	if (op & OBSC_TEST_ALL_SHADOWED) {
1775 		vm_page_t pp;
1776 
1777 		/*
1778 		 * Ignore pages outside the parent object's range
1779 		 * and outside the parent object's mapping of the
1780 		 * backing object.
1781 		 *
1782 		 * note that we do not busy the backing object's
1783 		 * page.
1784 		 */
1785 		if (pindex < backing_offset_index ||
1786 		    new_pindex >= object->size
1787 		) {
1788 			return(0);
1789 		}
1790 
1791 		/*
1792 		 * See if the parent has the page or if the parent's
1793 		 * object pager has the page.  If the parent has the
1794 		 * page but the page is not valid, the parent's
1795 		 * object pager must have the page.
1796 		 *
1797 		 * If this fails, the parent does not completely shadow
1798 		 * the object and we might as well give up now.
1799 		 */
1800 		pp = vm_page_lookup(object, new_pindex);
1801 		if ((pp == NULL || pp->valid == 0) &&
1802 		    !vm_pager_has_page(object, new_pindex)
1803 		) {
1804 			info->error = 0;	/* problemo */
1805 			return(-1);		/* stop the scan */
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * Check for busy page.  Note that we may have lost (p) when we
1811 	 * possibly blocked above.
1812 	 */
1813 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1814 		vm_page_t pp;
1815 
1816 		if (vm_page_busy_try(p, TRUE)) {
1817 			if (op & OBSC_COLLAPSE_NOWAIT) {
1818 				return(0);
1819 			} else {
1820 				/*
1821 				 * If we slept, anything could have
1822 				 * happened.   Ask that the scan be restarted.
1823 				 *
1824 				 * Since the object is marked dead, the
1825 				 * backing offset should not have changed.
1826 				 */
1827 				vm_page_sleep_busy(p, TRUE, "vmocol");
1828 				info->error = -1;
1829 				return(-1);
1830 			}
1831 		}
1832 
1833 		/*
1834 		 * If (p) is no longer valid restart the scan.
1835 		 */
1836 		if (p->object != backing_object || p->pindex != pindex) {
1837 			kprintf("vm_object_backing_scan: Warning: page "
1838 				"%p ripped out from under us\n", p);
1839 			vm_page_wakeup(p);
1840 			info->error = -1;
1841 			return(-1);
1842 		}
1843 
1844 		if (op & OBSC_COLLAPSE_NOWAIT) {
1845 			if (p->valid == 0 ||
1846 			    p->wire_count ||
1847 			    (p->flags & PG_NEED_COMMIT)) {
1848 				vm_page_wakeup(p);
1849 				return(0);
1850 			}
1851 		} else {
1852 			/* XXX what if p->valid == 0 , hold_count, etc? */
1853 		}
1854 
1855 		KASSERT(
1856 		    p->object == backing_object,
1857 		    ("vm_object_qcollapse(): object mismatch")
1858 		);
1859 
1860 		/*
1861 		 * Destroy any associated swap
1862 		 */
1863 		if (backing_object->type == OBJT_SWAP)
1864 			swap_pager_freespace(backing_object, p->pindex, 1);
1865 
1866 		if (
1867 		    p->pindex < backing_offset_index ||
1868 		    new_pindex >= object->size
1869 		) {
1870 			/*
1871 			 * Page is out of the parent object's range, we
1872 			 * can simply destroy it.
1873 			 */
1874 			vm_page_protect(p, VM_PROT_NONE);
1875 			vm_page_free(p);
1876 			return(0);
1877 		}
1878 
1879 		pp = vm_page_lookup(object, new_pindex);
1880 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1881 			/*
1882 			 * page already exists in parent OR swap exists
1883 			 * for this location in the parent.  Destroy
1884 			 * the original page from the backing object.
1885 			 *
1886 			 * Leave the parent's page alone
1887 			 */
1888 			vm_page_protect(p, VM_PROT_NONE);
1889 			vm_page_free(p);
1890 			return(0);
1891 		}
1892 
1893 		/*
1894 		 * Page does not exist in parent, rename the
1895 		 * page from the backing object to the main object.
1896 		 *
1897 		 * If the page was mapped to a process, it can remain
1898 		 * mapped through the rename.
1899 		 */
1900 		if ((p->queue - p->pc) == PQ_CACHE)
1901 			vm_page_deactivate(p);
1902 
1903 		vm_page_rename(p, object, new_pindex);
1904 		vm_page_wakeup(p);
1905 		/* page automatically made dirty by rename */
1906 	}
1907 	return(0);
1908 }
1909 
1910 /*
1911  * This version of collapse allows the operation to occur earlier and
1912  * when paging_in_progress is true for an object...  This is not a complete
1913  * operation, but should plug 99.9% of the rest of the leaks.
1914  *
1915  * The caller must hold the object and backing_object and both must be
1916  * chainlocked.
1917  *
1918  * (only called from vm_object_collapse)
1919  */
1920 static void
1921 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1922 {
1923 	if (backing_object->ref_count == 1) {
1924 		backing_object->ref_count += 2;
1925 		vm_object_backing_scan(object, backing_object,
1926 				       OBSC_COLLAPSE_NOWAIT);
1927 		backing_object->ref_count -= 2;
1928 	}
1929 }
1930 
1931 /*
1932  * Collapse an object with the object backing it.  Pages in the backing
1933  * object are moved into the parent, and the backing object is deallocated.
1934  * Any conflict is resolved in favor of the parent's existing pages.
1935  *
1936  * object must be held and chain-locked on call.
1937  *
1938  * The caller must have an extra ref on object to prevent a race from
1939  * destroying it during the collapse.
1940  */
1941 void
1942 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1943 {
1944 	struct vm_object_dealloc_list *dlist = NULL;
1945 	vm_object_t backing_object;
1946 
1947 	/*
1948 	 * Only one thread is attempting a collapse at any given moment.
1949 	 * There are few restrictions for (object) that callers of this
1950 	 * function check so reentrancy is likely.
1951 	 */
1952 	KKASSERT(object != NULL);
1953 	vm_object_assert_held(object);
1954 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1955 
1956 	for (;;) {
1957 		vm_object_t bbobj;
1958 		int dodealloc;
1959 
1960 		/*
1961 		 * We have to hold the backing object, check races.
1962 		 */
1963 		while ((backing_object = object->backing_object) != NULL) {
1964 			vm_object_hold(backing_object);
1965 			if (backing_object == object->backing_object)
1966 				break;
1967 			vm_object_drop(backing_object);
1968 		}
1969 
1970 		/*
1971 		 * No backing object?  Nothing to collapse then.
1972 		 */
1973 		if (backing_object == NULL)
1974 			break;
1975 
1976 		/*
1977 		 * You can't collapse with a non-default/non-swap object.
1978 		 */
1979 		if (backing_object->type != OBJT_DEFAULT &&
1980 		    backing_object->type != OBJT_SWAP) {
1981 			vm_object_drop(backing_object);
1982 			backing_object = NULL;
1983 			break;
1984 		}
1985 
1986 		/*
1987 		 * Chain-lock the backing object too because if we
1988 		 * successfully merge its pages into the top object we
1989 		 * will collapse backing_object->backing_object as the
1990 		 * new backing_object.  Re-check that it is still our
1991 		 * backing object.
1992 		 */
1993 		vm_object_chain_acquire(backing_object);
1994 		if (backing_object != object->backing_object) {
1995 			vm_object_chain_release(backing_object);
1996 			vm_object_drop(backing_object);
1997 			continue;
1998 		}
1999 
2000 		/*
2001 		 * we check the backing object first, because it is most likely
2002 		 * not collapsable.
2003 		 */
2004 		if (backing_object->handle != NULL ||
2005 		    (backing_object->type != OBJT_DEFAULT &&
2006 		     backing_object->type != OBJT_SWAP) ||
2007 		    (backing_object->flags & OBJ_DEAD) ||
2008 		    object->handle != NULL ||
2009 		    (object->type != OBJT_DEFAULT &&
2010 		     object->type != OBJT_SWAP) ||
2011 		    (object->flags & OBJ_DEAD)) {
2012 			break;
2013 		}
2014 
2015 		/*
2016 		 * If paging is in progress we can't do a normal collapse.
2017 		 */
2018 		if (
2019 		    object->paging_in_progress != 0 ||
2020 		    backing_object->paging_in_progress != 0
2021 		) {
2022 			vm_object_qcollapse(object, backing_object);
2023 			break;
2024 		}
2025 
2026 		/*
2027 		 * We know that we can either collapse the backing object (if
2028 		 * the parent is the only reference to it) or (perhaps) have
2029 		 * the parent bypass the object if the parent happens to shadow
2030 		 * all the resident pages in the entire backing object.
2031 		 *
2032 		 * This is ignoring pager-backed pages such as swap pages.
2033 		 * vm_object_backing_scan fails the shadowing test in this
2034 		 * case.
2035 		 */
2036 		if (backing_object->ref_count == 1) {
2037 			/*
2038 			 * If there is exactly one reference to the backing
2039 			 * object, we can collapse it into the parent.
2040 			 */
2041 			KKASSERT(object->backing_object == backing_object);
2042 			vm_object_backing_scan(object, backing_object,
2043 					       OBSC_COLLAPSE_WAIT);
2044 
2045 			/*
2046 			 * Move the pager from backing_object to object.
2047 			 */
2048 			if (backing_object->type == OBJT_SWAP) {
2049 				vm_object_pip_add(backing_object, 1);
2050 
2051 				/*
2052 				 * scrap the paging_offset junk and do a
2053 				 * discrete copy.  This also removes major
2054 				 * assumptions about how the swap-pager
2055 				 * works from where it doesn't belong.  The
2056 				 * new swapper is able to optimize the
2057 				 * destroy-source case.
2058 				 */
2059 				vm_object_pip_add(object, 1);
2060 				swap_pager_copy(backing_object, object,
2061 				    OFF_TO_IDX(object->backing_object_offset),
2062 				    TRUE);
2063 				vm_object_pip_wakeup(object);
2064 				vm_object_pip_wakeup(backing_object);
2065 			}
2066 
2067 			/*
2068 			 * Object now shadows whatever backing_object did.
2069 			 * Remove object from backing_object's shadow_list.
2070 			 */
2071 			LIST_REMOVE(object, shadow_list);
2072 			KKASSERT(object->backing_object == backing_object);
2073 			backing_object->shadow_count--;
2074 			backing_object->generation++;
2075 
2076 			/*
2077 			 * backing_object->backing_object moves from within
2078 			 * backing_object to within object.
2079 			 */
2080 			while ((bbobj = backing_object->backing_object) != NULL) {
2081 				vm_object_hold(bbobj);
2082 				if (bbobj == backing_object->backing_object)
2083 					break;
2084 				vm_object_drop(bbobj);
2085 			}
2086 			if (bbobj) {
2087 				LIST_REMOVE(backing_object, shadow_list);
2088 				bbobj->shadow_count--;
2089 				bbobj->generation++;
2090 				backing_object->backing_object = NULL;
2091 			}
2092 			object->backing_object = bbobj;
2093 			if (bbobj) {
2094 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2095 						 object, shadow_list);
2096 				bbobj->shadow_count++;
2097 				bbobj->generation++;
2098 			}
2099 
2100 			object->backing_object_offset +=
2101 				backing_object->backing_object_offset;
2102 
2103 			vm_object_drop(bbobj);
2104 
2105 			/*
2106 			 * Discard the old backing_object.  Nothing should be
2107 			 * able to ref it, other than a vm_map_split(),
2108 			 * and vm_map_split() will stall on our chain lock.
2109 			 * And we control the parent so it shouldn't be
2110 			 * possible for it to go away either.
2111 			 *
2112 			 * Since the backing object has no pages, no pager
2113 			 * left, and no object references within it, all
2114 			 * that is necessary is to dispose of it.
2115 			 */
2116 			KASSERT(backing_object->ref_count == 1,
2117 				("backing_object %p was somehow "
2118 				 "re-referenced during collapse!",
2119 				 backing_object));
2120 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2121 				("backing_object %p somehow has left "
2122 				 "over pages during collapse!",
2123 				 backing_object));
2124 
2125 			/*
2126 			 * The object can be destroyed.
2127 			 *
2128 			 * XXX just fall through and dodealloc instead
2129 			 *     of forcing destruction?
2130 			 */
2131 			--backing_object->ref_count;
2132 			if ((backing_object->flags & OBJ_DEAD) == 0)
2133 				vm_object_terminate(backing_object);
2134 			object_collapses++;
2135 			dodealloc = 0;
2136 		} else {
2137 			/*
2138 			 * If we do not entirely shadow the backing object,
2139 			 * there is nothing we can do so we give up.
2140 			 */
2141 			if (vm_object_backing_scan(object, backing_object,
2142 						OBSC_TEST_ALL_SHADOWED) == 0) {
2143 				break;
2144 			}
2145 
2146 			/*
2147 			 * bbobj is backing_object->backing_object.  Since
2148 			 * object completely shadows backing_object we can
2149 			 * bypass it and become backed by bbobj instead.
2150 			 */
2151 			while ((bbobj = backing_object->backing_object) != NULL) {
2152 				vm_object_hold(bbobj);
2153 				if (bbobj == backing_object->backing_object)
2154 					break;
2155 				vm_object_drop(bbobj);
2156 			}
2157 
2158 			/*
2159 			 * Make object shadow bbobj instead of backing_object.
2160 			 * Remove object from backing_object's shadow list.
2161 			 *
2162 			 * Deallocating backing_object will not remove
2163 			 * it, since its reference count is at least 2.
2164 			 */
2165 			KKASSERT(object->backing_object == backing_object);
2166 			LIST_REMOVE(object, shadow_list);
2167 			backing_object->shadow_count--;
2168 			backing_object->generation++;
2169 
2170 			/*
2171 			 * Add a ref to bbobj, bbobj now shadows object.
2172 			 *
2173 			 * NOTE: backing_object->backing_object still points
2174 			 *	 to bbobj.  That relationship remains intact
2175 			 *	 because backing_object has > 1 ref, so
2176 			 *	 someone else is pointing to it (hence why
2177 			 *	 we can't collapse it into object and can
2178 			 *	 only handle the all-shadowed bypass case).
2179 			 */
2180 			if (bbobj) {
2181 				vm_object_chain_wait(bbobj);
2182 				vm_object_reference_locked(bbobj);
2183 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2184 						 object, shadow_list);
2185 				bbobj->shadow_count++;
2186 				bbobj->generation++;
2187 				object->backing_object_offset +=
2188 					backing_object->backing_object_offset;
2189 				object->backing_object = bbobj;
2190 				vm_object_drop(bbobj);
2191 			} else {
2192 				object->backing_object = NULL;
2193 			}
2194 
2195 			/*
2196 			 * Drop the reference count on backing_object.  To
2197 			 * handle ref_count races properly we can't assume
2198 			 * that the ref_count is still at least 2 so we
2199 			 * have to actually call vm_object_deallocate()
2200 			 * (after clearing the chainlock).
2201 			 */
2202 			object_bypasses++;
2203 			dodealloc = 1;
2204 		}
2205 
2206 		/*
2207 		 * Ok, we want to loop on the new object->bbobj association,
2208 		 * possibly collapsing it further.  However if dodealloc is
2209 		 * non-zero we have to deallocate the backing_object which
2210 		 * itself can potentially undergo a collapse, creating a
2211 		 * recursion depth issue with the LWKT token subsystem.
2212 		 *
2213 		 * In the case where we must deallocate the backing_object
2214 		 * it is possible now that the backing_object has a single
2215 		 * shadow count on some other object (not represented here
2216 		 * as yet), since it no longer shadows us.  Thus when we
2217 		 * call vm_object_deallocate() it may attempt to collapse
2218 		 * itself into its remaining parent.
2219 		 */
2220 		if (dodealloc) {
2221 			struct vm_object_dealloc_list *dtmp;
2222 
2223 			vm_object_chain_release(backing_object);
2224 			vm_object_unlock(backing_object);
2225 			/* backing_object remains held */
2226 
2227 			/*
2228 			 * Auto-deallocation list for caller convenience.
2229 			 */
2230 			if (dlistp == NULL)
2231 				dlistp = &dlist;
2232 
2233 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2234 			dtmp->object = backing_object;
2235 			dtmp->next = *dlistp;
2236 			*dlistp = dtmp;
2237 		} else {
2238 			vm_object_chain_release(backing_object);
2239 			vm_object_drop(backing_object);
2240 		}
2241 		/* backing_object = NULL; not needed */
2242 		/* loop */
2243 	}
2244 
2245 	/*
2246 	 * Clean up any left over backing_object
2247 	 */
2248 	if (backing_object) {
2249 		vm_object_chain_release(backing_object);
2250 		vm_object_drop(backing_object);
2251 	}
2252 
2253 	/*
2254 	 * Clean up any auto-deallocation list.  This is a convenience
2255 	 * for top-level callers so they don't have to pass &dlist.
2256 	 * Do not clean up any caller-passed dlistp, the caller will
2257 	 * do that.
2258 	 */
2259 	if (dlist)
2260 		vm_object_deallocate_list(&dlist);
2261 
2262 }
2263 
2264 /*
2265  * vm_object_collapse() may collect additional objects in need of
2266  * deallocation.  This routine deallocates these objects.  The
2267  * deallocation itself can trigger additional collapses (which the
2268  * deallocate function takes care of).  This procedure is used to
2269  * reduce procedural recursion since these vm_object shadow chains
2270  * can become quite long.
2271  */
2272 void
2273 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2274 {
2275 	struct vm_object_dealloc_list *dlist;
2276 
2277 	while ((dlist = *dlistp) != NULL) {
2278 		*dlistp = dlist->next;
2279 		vm_object_lock(dlist->object);
2280 		vm_object_deallocate_locked(dlist->object);
2281 		vm_object_drop(dlist->object);
2282 		kfree(dlist, M_TEMP);
2283 	}
2284 }
2285 
2286 /*
2287  * Removes all physical pages in the specified object range from the
2288  * object's list of pages.
2289  *
2290  * No requirements.
2291  */
2292 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2293 
2294 void
2295 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2296 		      boolean_t clean_only)
2297 {
2298 	struct rb_vm_page_scan_info info;
2299 	int all;
2300 
2301 	/*
2302 	 * Degenerate cases and assertions
2303 	 */
2304 	vm_object_hold(object);
2305 	if (object == NULL ||
2306 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2307 		vm_object_drop(object);
2308 		return;
2309 	}
2310 	KASSERT(object->type != OBJT_PHYS,
2311 		("attempt to remove pages from a physical object"));
2312 
2313 	/*
2314 	 * Indicate that paging is occuring on the object
2315 	 */
2316 	vm_object_pip_add(object, 1);
2317 
2318 	/*
2319 	 * Figure out the actual removal range and whether we are removing
2320 	 * the entire contents of the object or not.  If removing the entire
2321 	 * contents, be sure to get all pages, even those that might be
2322 	 * beyond the end of the object.
2323 	 */
2324 	info.start_pindex = start;
2325 	if (end == 0)
2326 		info.end_pindex = (vm_pindex_t)-1;
2327 	else
2328 		info.end_pindex = end - 1;
2329 	info.limit = clean_only;
2330 	all = (start == 0 && info.end_pindex >= object->size - 1);
2331 
2332 	/*
2333 	 * Loop until we are sure we have gotten them all.
2334 	 */
2335 	do {
2336 		info.error = 0;
2337 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2338 					vm_object_page_remove_callback, &info);
2339 	} while (info.error);
2340 
2341 	/*
2342 	 * Remove any related swap if throwing away pages, or for
2343 	 * non-swap objects (the swap is a clean copy in that case).
2344 	 */
2345 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2346 		if (all)
2347 			swap_pager_freespace_all(object);
2348 		else
2349 			swap_pager_freespace(object, info.start_pindex,
2350 			     info.end_pindex - info.start_pindex + 1);
2351 	}
2352 
2353 	/*
2354 	 * Cleanup
2355 	 */
2356 	vm_object_pip_wakeup(object);
2357 	vm_object_drop(object);
2358 }
2359 
2360 /*
2361  * The caller must hold the object
2362  */
2363 static int
2364 vm_object_page_remove_callback(vm_page_t p, void *data)
2365 {
2366 	struct rb_vm_page_scan_info *info = data;
2367 
2368 	if (vm_page_busy_try(p, TRUE)) {
2369 		vm_page_sleep_busy(p, TRUE, "vmopar");
2370 		info->error = 1;
2371 		return(0);
2372 	}
2373 
2374 	/*
2375 	 * Wired pages cannot be destroyed, but they can be invalidated
2376 	 * and we do so if clean_only (limit) is not set.
2377 	 *
2378 	 * WARNING!  The page may be wired due to being part of a buffer
2379 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2380 	 *	     This is fine as part of a truncation but VFSs must be
2381 	 *	     sure to fix the buffer up when re-extending the file.
2382 	 *
2383 	 * NOTE!     PG_NEED_COMMIT is ignored.
2384 	 */
2385 	if (p->wire_count != 0) {
2386 		vm_page_protect(p, VM_PROT_NONE);
2387 		if (info->limit == 0)
2388 			p->valid = 0;
2389 		vm_page_wakeup(p);
2390 		return(0);
2391 	}
2392 
2393 	/*
2394 	 * limit is our clean_only flag.  If set and the page is dirty or
2395 	 * requires a commit, do not free it.  If set and the page is being
2396 	 * held by someone, do not free it.
2397 	 */
2398 	if (info->limit && p->valid) {
2399 		vm_page_test_dirty(p);
2400 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2401 			vm_page_wakeup(p);
2402 			return(0);
2403 		}
2404 #if 0
2405 		if (p->hold_count) {
2406 			vm_page_wakeup(p);
2407 			return(0);
2408 		}
2409 #endif
2410 	}
2411 
2412 	/*
2413 	 * Destroy the page
2414 	 */
2415 	vm_page_protect(p, VM_PROT_NONE);
2416 	vm_page_free(p);
2417 	return(0);
2418 }
2419 
2420 /*
2421  * Coalesces two objects backing up adjoining regions of memory into a
2422  * single object.
2423  *
2424  * returns TRUE if objects were combined.
2425  *
2426  * NOTE: Only works at the moment if the second object is NULL -
2427  *	 if it's not, which object do we lock first?
2428  *
2429  * Parameters:
2430  *	prev_object	First object to coalesce
2431  *	prev_offset	Offset into prev_object
2432  *	next_object	Second object into coalesce
2433  *	next_offset	Offset into next_object
2434  *
2435  *	prev_size	Size of reference to prev_object
2436  *	next_size	Size of reference to next_object
2437  *
2438  * The caller does not need to hold (prev_object) but must have a stable
2439  * pointer to it (typically by holding the vm_map locked).
2440  */
2441 boolean_t
2442 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2443 		   vm_size_t prev_size, vm_size_t next_size)
2444 {
2445 	vm_pindex_t next_pindex;
2446 
2447 	if (prev_object == NULL)
2448 		return (TRUE);
2449 
2450 	vm_object_hold(prev_object);
2451 
2452 	if (prev_object->type != OBJT_DEFAULT &&
2453 	    prev_object->type != OBJT_SWAP) {
2454 		vm_object_drop(prev_object);
2455 		return (FALSE);
2456 	}
2457 
2458 	/*
2459 	 * Try to collapse the object first
2460 	 */
2461 	vm_object_chain_acquire(prev_object);
2462 	vm_object_collapse(prev_object, NULL);
2463 
2464 	/*
2465 	 * Can't coalesce if: . more than one reference . paged out . shadows
2466 	 * another object . has a copy elsewhere (any of which mean that the
2467 	 * pages not mapped to prev_entry may be in use anyway)
2468 	 */
2469 
2470 	if (prev_object->backing_object != NULL) {
2471 		vm_object_chain_release(prev_object);
2472 		vm_object_drop(prev_object);
2473 		return (FALSE);
2474 	}
2475 
2476 	prev_size >>= PAGE_SHIFT;
2477 	next_size >>= PAGE_SHIFT;
2478 	next_pindex = prev_pindex + prev_size;
2479 
2480 	if ((prev_object->ref_count > 1) &&
2481 	    (prev_object->size != next_pindex)) {
2482 		vm_object_chain_release(prev_object);
2483 		vm_object_drop(prev_object);
2484 		return (FALSE);
2485 	}
2486 
2487 	/*
2488 	 * Remove any pages that may still be in the object from a previous
2489 	 * deallocation.
2490 	 */
2491 	if (next_pindex < prev_object->size) {
2492 		vm_object_page_remove(prev_object,
2493 				      next_pindex,
2494 				      next_pindex + next_size, FALSE);
2495 		if (prev_object->type == OBJT_SWAP)
2496 			swap_pager_freespace(prev_object,
2497 					     next_pindex, next_size);
2498 	}
2499 
2500 	/*
2501 	 * Extend the object if necessary.
2502 	 */
2503 	if (next_pindex + next_size > prev_object->size)
2504 		prev_object->size = next_pindex + next_size;
2505 
2506 	vm_object_chain_release(prev_object);
2507 	vm_object_drop(prev_object);
2508 	return (TRUE);
2509 }
2510 
2511 /*
2512  * Make the object writable and flag is being possibly dirty.
2513  *
2514  * The caller must hold the object. XXX called from vm_page_dirty(),
2515  * There is currently no requirement to hold the object.
2516  */
2517 void
2518 vm_object_set_writeable_dirty(vm_object_t object)
2519 {
2520 	struct vnode *vp;
2521 
2522 	/*vm_object_assert_held(object);*/
2523 	/*
2524 	 * Avoid contention in vm fault path by checking the state before
2525 	 * issuing an atomic op on it.
2526 	 */
2527 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2528 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2529 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2530 	}
2531 	if (object->type == OBJT_VNODE &&
2532 	    (vp = (struct vnode *)object->handle) != NULL) {
2533 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2534 			vsetflags(vp, VOBJDIRTY);
2535 		}
2536 	}
2537 }
2538 
2539 #include "opt_ddb.h"
2540 #ifdef DDB
2541 #include <sys/kernel.h>
2542 
2543 #include <sys/cons.h>
2544 
2545 #include <ddb/ddb.h>
2546 
2547 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2548 				       vm_map_entry_t entry);
2549 static int	vm_object_in_map (vm_object_t object);
2550 
2551 /*
2552  * The caller must hold the object.
2553  */
2554 static int
2555 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2556 {
2557 	vm_map_t tmpm;
2558 	vm_map_entry_t tmpe;
2559 	vm_object_t obj, nobj;
2560 	int entcount;
2561 
2562 	if (map == 0)
2563 		return 0;
2564 	if (entry == 0) {
2565 		tmpe = map->header.next;
2566 		entcount = map->nentries;
2567 		while (entcount-- && (tmpe != &map->header)) {
2568 			if( _vm_object_in_map(map, object, tmpe)) {
2569 				return 1;
2570 			}
2571 			tmpe = tmpe->next;
2572 		}
2573 		return (0);
2574 	}
2575 	switch(entry->maptype) {
2576 	case VM_MAPTYPE_SUBMAP:
2577 		tmpm = entry->object.sub_map;
2578 		tmpe = tmpm->header.next;
2579 		entcount = tmpm->nentries;
2580 		while (entcount-- && tmpe != &tmpm->header) {
2581 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2582 				return 1;
2583 			}
2584 			tmpe = tmpe->next;
2585 		}
2586 		break;
2587 	case VM_MAPTYPE_NORMAL:
2588 	case VM_MAPTYPE_VPAGETABLE:
2589 		obj = entry->object.vm_object;
2590 		while (obj) {
2591 			if (obj == object) {
2592 				if (obj != entry->object.vm_object)
2593 					vm_object_drop(obj);
2594 				return 1;
2595 			}
2596 			while ((nobj = obj->backing_object) != NULL) {
2597 				vm_object_hold(nobj);
2598 				if (nobj == obj->backing_object)
2599 					break;
2600 				vm_object_drop(nobj);
2601 			}
2602 			if (obj != entry->object.vm_object) {
2603 				if (nobj)
2604 					vm_object_lock_swap();
2605 				vm_object_drop(obj);
2606 			}
2607 			obj = nobj;
2608 		}
2609 		break;
2610 	default:
2611 		break;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static int vm_object_in_map_callback(struct proc *p, void *data);
2617 
2618 struct vm_object_in_map_info {
2619 	vm_object_t object;
2620 	int rv;
2621 };
2622 
2623 /*
2624  * Debugging only
2625  */
2626 static int
2627 vm_object_in_map(vm_object_t object)
2628 {
2629 	struct vm_object_in_map_info info;
2630 
2631 	info.rv = 0;
2632 	info.object = object;
2633 
2634 	allproc_scan(vm_object_in_map_callback, &info);
2635 	if (info.rv)
2636 		return 1;
2637 	if( _vm_object_in_map(&kernel_map, object, 0))
2638 		return 1;
2639 	if( _vm_object_in_map(&pager_map, object, 0))
2640 		return 1;
2641 	if( _vm_object_in_map(&buffer_map, object, 0))
2642 		return 1;
2643 	return 0;
2644 }
2645 
2646 /*
2647  * Debugging only
2648  */
2649 static int
2650 vm_object_in_map_callback(struct proc *p, void *data)
2651 {
2652 	struct vm_object_in_map_info *info = data;
2653 
2654 	if (p->p_vmspace) {
2655 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2656 			info->rv = 1;
2657 			return -1;
2658 		}
2659 	}
2660 	return (0);
2661 }
2662 
2663 DB_SHOW_COMMAND(vmochk, vm_object_check)
2664 {
2665 	vm_object_t object;
2666 
2667 	/*
2668 	 * make sure that internal objs are in a map somewhere
2669 	 * and none have zero ref counts.
2670 	 */
2671 	for (object = TAILQ_FIRST(&vm_object_list);
2672 			object != NULL;
2673 			object = TAILQ_NEXT(object, object_list)) {
2674 		if (object->type == OBJT_MARKER)
2675 			continue;
2676 		if (object->handle == NULL &&
2677 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2678 			if (object->ref_count == 0) {
2679 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2680 					(long)object->size);
2681 			}
2682 			if (!vm_object_in_map(object)) {
2683 				db_printf(
2684 			"vmochk: internal obj is not in a map: "
2685 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2686 				    object->ref_count, (u_long)object->size,
2687 				    (u_long)object->size,
2688 				    (void *)object->backing_object);
2689 			}
2690 		}
2691 	}
2692 }
2693 
2694 /*
2695  * Debugging only
2696  */
2697 DB_SHOW_COMMAND(object, vm_object_print_static)
2698 {
2699 	/* XXX convert args. */
2700 	vm_object_t object = (vm_object_t)addr;
2701 	boolean_t full = have_addr;
2702 
2703 	vm_page_t p;
2704 
2705 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2706 #define	count	was_count
2707 
2708 	int count;
2709 
2710 	if (object == NULL)
2711 		return;
2712 
2713 	db_iprintf(
2714 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2715 	    object, (int)object->type, (u_long)object->size,
2716 	    object->resident_page_count, object->ref_count, object->flags);
2717 	/*
2718 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2719 	 */
2720 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2721 	    object->shadow_count,
2722 	    object->backing_object ? object->backing_object->ref_count : 0,
2723 	    object->backing_object, (long)object->backing_object_offset);
2724 
2725 	if (!full)
2726 		return;
2727 
2728 	db_indent += 2;
2729 	count = 0;
2730 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2731 		if (count == 0)
2732 			db_iprintf("memory:=");
2733 		else if (count == 6) {
2734 			db_printf("\n");
2735 			db_iprintf(" ...");
2736 			count = 0;
2737 		} else
2738 			db_printf(",");
2739 		count++;
2740 
2741 		db_printf("(off=0x%lx,page=0x%lx)",
2742 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2743 	}
2744 	if (count != 0)
2745 		db_printf("\n");
2746 	db_indent -= 2;
2747 }
2748 
2749 /* XXX. */
2750 #undef count
2751 
2752 /*
2753  * XXX need this non-static entry for calling from vm_map_print.
2754  *
2755  * Debugging only
2756  */
2757 void
2758 vm_object_print(/* db_expr_t */ long addr,
2759 		boolean_t have_addr,
2760 		/* db_expr_t */ long count,
2761 		char *modif)
2762 {
2763 	vm_object_print_static(addr, have_addr, count, modif);
2764 }
2765 
2766 /*
2767  * Debugging only
2768  */
2769 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2770 {
2771 	vm_object_t object;
2772 	int nl = 0;
2773 	int c;
2774 	for (object = TAILQ_FIRST(&vm_object_list);
2775 			object != NULL;
2776 			object = TAILQ_NEXT(object, object_list)) {
2777 		vm_pindex_t idx, fidx;
2778 		vm_pindex_t osize;
2779 		vm_paddr_t pa = -1, padiff;
2780 		int rcount;
2781 		vm_page_t m;
2782 
2783 		if (object->type == OBJT_MARKER)
2784 			continue;
2785 		db_printf("new object: %p\n", (void *)object);
2786 		if ( nl > 18) {
2787 			c = cngetc();
2788 			if (c != ' ')
2789 				return;
2790 			nl = 0;
2791 		}
2792 		nl++;
2793 		rcount = 0;
2794 		fidx = 0;
2795 		osize = object->size;
2796 		if (osize > 128)
2797 			osize = 128;
2798 		for (idx = 0; idx < osize; idx++) {
2799 			m = vm_page_lookup(object, idx);
2800 			if (m == NULL) {
2801 				if (rcount) {
2802 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2803 						(long)fidx, rcount, (long)pa);
2804 					if ( nl > 18) {
2805 						c = cngetc();
2806 						if (c != ' ')
2807 							return;
2808 						nl = 0;
2809 					}
2810 					nl++;
2811 					rcount = 0;
2812 				}
2813 				continue;
2814 			}
2815 
2816 
2817 			if (rcount &&
2818 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2819 				++rcount;
2820 				continue;
2821 			}
2822 			if (rcount) {
2823 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2824 				padiff >>= PAGE_SHIFT;
2825 				padiff &= PQ_L2_MASK;
2826 				if (padiff == 0) {
2827 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2828 					++rcount;
2829 					continue;
2830 				}
2831 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2832 					(long)fidx, rcount, (long)pa);
2833 				db_printf("pd(%ld)\n", (long)padiff);
2834 				if ( nl > 18) {
2835 					c = cngetc();
2836 					if (c != ' ')
2837 						return;
2838 					nl = 0;
2839 				}
2840 				nl++;
2841 			}
2842 			fidx = idx;
2843 			pa = VM_PAGE_TO_PHYS(m);
2844 			rcount = 1;
2845 		}
2846 		if (rcount) {
2847 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2848 				(long)fidx, rcount, (long)pa);
2849 			if ( nl > 18) {
2850 				c = cngetc();
2851 				if (c != ' ')
2852 					return;
2853 				nl = 0;
2854 			}
2855 			nl++;
2856 		}
2857 	}
2858 }
2859 #endif /* DDB */
2860