xref: /dflybsd-src/sys/vm/vm_object.c (revision dae741e33c840b92a8a53bf9f01157ede145e256)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object,
101 				    vm_object_t backing_object);
102 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103 					     int pagerflags);
104 static void	vm_object_lock_init(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_getpooltoken(obj);
176 }
177 
178 void
179 vm_object_unlock(vm_object_t obj)
180 {
181 	lwkt_relpooltoken(obj);
182 }
183 
184 static __inline void
185 vm_object_assert_held(vm_object_t obj)
186 {
187 	ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup(obj));
188 }
189 
190 void
191 #ifndef DEBUG_LOCKS
192 vm_object_hold(vm_object_t obj)
193 #else
194 debugvm_object_hold(vm_object_t obj, char *file, int line)
195 #endif
196 {
197 	KKASSERT(obj != NULL);
198 
199 	/*
200 	 * Object must be held (object allocation is stable due to callers
201 	 * context, typically already holding the token on a parent object)
202 	 * prior to potentially blocking on the lock, otherwise the object
203 	 * can get ripped away from us.
204 	 */
205 	refcount_acquire(&obj->hold_count);
206 	vm_object_lock(obj);
207 
208 #if defined(DEBUG_LOCKS)
209 	int i;
210 
211 	i = ffs(~obj->debug_hold_bitmap) - 1;
212 	if (i == -1) {
213 		kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
214 		obj->debug_hold_ovfl = 1;
215 	}
216 
217 	obj->debug_hold_bitmap |= (1 << i);
218 	obj->debug_hold_thrs[i] = curthread;
219 	obj->debug_hold_file[i] = file;
220 	obj->debug_hold_line[i] = line;
221 #endif
222 }
223 
224 /*
225  * Drop the token and hold_count on the object.
226  */
227 void
228 vm_object_drop(vm_object_t obj)
229 {
230 	if (obj == NULL)
231 		return;
232 
233 #if defined(DEBUG_LOCKS)
234 	int found = 0;
235 	int i;
236 
237 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
238 		if ((obj->debug_hold_bitmap & (1 << i)) &&
239 		    (obj->debug_hold_thrs[i] == curthread)) {
240 			obj->debug_hold_bitmap &= ~(1 << i);
241 			obj->debug_hold_thrs[i] = NULL;
242 			obj->debug_hold_file[i] = NULL;
243 			obj->debug_hold_line[i] = 0;
244 			found = 1;
245 			break;
246 		}
247 	}
248 
249 	if (found == 0 && obj->debug_hold_ovfl == 0)
250 		panic("vm_object: attempt to drop hold on non-self-held obj");
251 #endif
252 
253 	/*
254 	 * The lock is a pool token, no new holders should be possible once
255 	 * we drop hold_count 1->0 as there is no longer any way to reference
256 	 * the object.
257 	 */
258 	if (refcount_release(&obj->hold_count)) {
259 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
260 			zfree(obj_zone, obj);
261 	}
262 	vm_object_unlock(obj);	/* uses pool token, ok to call on freed obj */
263 }
264 
265 /*
266  * Initialize a freshly allocated object
267  *
268  * Used only by vm_object_allocate() and zinitna().
269  *
270  * No requirements.
271  */
272 void
273 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
274 {
275 	int incr;
276 
277 	RB_INIT(&object->rb_memq);
278 	LIST_INIT(&object->shadow_head);
279 
280 	object->type = type;
281 	object->size = size;
282 	object->ref_count = 1;
283 	object->hold_count = 0;
284 	object->flags = 0;
285 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
286 		vm_object_set_flag(object, OBJ_ONEMAPPING);
287 	object->paging_in_progress = 0;
288 	object->resident_page_count = 0;
289 	object->agg_pv_list_count = 0;
290 	object->shadow_count = 0;
291 #ifdef SMP
292 	/* cpu localization twist */
293 	object->pg_color = (int)(intptr_t)curthread;
294 #else
295 	object->pg_color = next_index;
296 #endif
297 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
298 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
299 	else
300 		incr = size;
301 	next_index = (next_index + incr) & PQ_L2_MASK;
302 	object->handle = NULL;
303 	object->backing_object = NULL;
304 	object->backing_object_offset = (vm_ooffset_t)0;
305 
306 	object->generation++;
307 	object->swblock_count = 0;
308 	RB_INIT(&object->swblock_root);
309 	vm_object_lock_init(object);
310 
311 	lwkt_gettoken(&vmobj_token);
312 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
313 	vm_object_count++;
314 	lwkt_reltoken(&vmobj_token);
315 }
316 
317 /*
318  * Initialize the VM objects module.
319  *
320  * Called from the low level boot code only.
321  */
322 void
323 vm_object_init(void)
324 {
325 	TAILQ_INIT(&vm_object_list);
326 
327 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
328 			    &kernel_object);
329 
330 	obj_zone = &obj_zone_store;
331 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
332 		vm_objects_init, VM_OBJECTS_INIT);
333 }
334 
335 void
336 vm_object_init2(void)
337 {
338 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
339 }
340 
341 /*
342  * Allocate and return a new object of the specified type and size.
343  *
344  * No requirements.
345  */
346 vm_object_t
347 vm_object_allocate(objtype_t type, vm_pindex_t size)
348 {
349 	vm_object_t result;
350 
351 	result = (vm_object_t) zalloc(obj_zone);
352 
353 	_vm_object_allocate(type, size, result);
354 
355 	return (result);
356 }
357 
358 /*
359  * Add an additional reference to a vm_object.  The object must already be
360  * held.  The original non-lock version is no longer supported.  The object
361  * must NOT be chain locked by anyone at the time the reference is added.
362  *
363  * Referencing a chain-locked object can blow up the fairly sensitive
364  * ref_count and shadow_count tests in the deallocator.  Most callers
365  * will call vm_object_chain_wait() prior to calling
366  * vm_object_reference_locked() to avoid the case.
367  *
368  * The object must be held.
369  */
370 void
371 vm_object_reference_locked(vm_object_t object)
372 {
373 	KKASSERT(object != NULL);
374 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
375 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
376 	object->ref_count++;
377 	if (object->type == OBJT_VNODE) {
378 		vref(object->handle);
379 		/* XXX what if the vnode is being destroyed? */
380 	}
381 }
382 
383 /*
384  * Object OBJ_CHAINLOCK lock handling.
385  *
386  * The caller can chain-lock backing objects recursively and then
387  * use vm_object_chain_release_all() to undo the whole chain.
388  *
389  * Chain locks are used to prevent collapses and are only applicable
390  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
391  * on other object types are ignored.  This is also important because
392  * it allows e.g. the vnode underlying a memory mapping to take concurrent
393  * faults.
394  *
395  * The object must usually be held on entry, though intermediate
396  * objects need not be held on release.
397  */
398 void
399 vm_object_chain_wait(vm_object_t object)
400 {
401 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
402 	while (object->flags & OBJ_CHAINLOCK) {
403 		vm_object_set_flag(object, OBJ_CHAINWANT);
404 		tsleep(object, 0, "objchain", 0);
405 	}
406 }
407 
408 void
409 vm_object_chain_acquire(vm_object_t object)
410 {
411 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
412 		vm_object_chain_wait(object);
413 		vm_object_set_flag(object, OBJ_CHAINLOCK);
414 	}
415 }
416 
417 void
418 vm_object_chain_release(vm_object_t object)
419 {
420 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
421 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
422 		KKASSERT(object->flags & OBJ_CHAINLOCK);
423 		if (object->flags & OBJ_CHAINWANT) {
424 			vm_object_clear_flag(object,
425 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
426 			wakeup(object);
427 		} else {
428 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
429 		}
430 	}
431 }
432 
433 /*
434  * This releases the entire chain of objects from first_object to and
435  * including stopobj, flowing through object->backing_object.
436  *
437  * We release stopobj first as an optimization as this object is most
438  * likely to be shared across multiple processes.
439  */
440 void
441 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
442 {
443 	vm_object_t backing_object;
444 	vm_object_t object;
445 
446 	vm_object_chain_release(stopobj);
447 	object = first_object;
448 
449 	while (object != stopobj) {
450 		KKASSERT(object);
451 		if (object != first_object)
452 			vm_object_hold(object);
453 		backing_object = object->backing_object;
454 		vm_object_chain_release(object);
455 		if (object != first_object)
456 			vm_object_drop(object);
457 		object = backing_object;
458 	}
459 }
460 
461 /*
462  * Dereference an object and its underlying vnode.
463  *
464  * The object must be held and will be held on return.
465  */
466 static void
467 vm_object_vndeallocate(vm_object_t object)
468 {
469 	struct vnode *vp = (struct vnode *) object->handle;
470 
471 	KASSERT(object->type == OBJT_VNODE,
472 	    ("vm_object_vndeallocate: not a vnode object"));
473 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
474 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
475 #ifdef INVARIANTS
476 	if (object->ref_count == 0) {
477 		vprint("vm_object_vndeallocate", vp);
478 		panic("vm_object_vndeallocate: bad object reference count");
479 	}
480 #endif
481 	object->ref_count--;
482 	if (object->ref_count == 0)
483 		vclrflags(vp, VTEXT);
484 	vrele(vp);
485 }
486 
487 /*
488  * Release a reference to the specified object, gained either through a
489  * vm_object_allocate or a vm_object_reference call.  When all references
490  * are gone, storage associated with this object may be relinquished.
491  *
492  * The caller does not have to hold the object locked but must have control
493  * over the reference in question in order to guarantee that the object
494  * does not get ripped out from under us.
495  */
496 void
497 vm_object_deallocate(vm_object_t object)
498 {
499 	if (object) {
500 		vm_object_hold(object);
501 		vm_object_deallocate_locked(object);
502 		vm_object_drop(object);
503 	}
504 }
505 
506 void
507 vm_object_deallocate_locked(vm_object_t object)
508 {
509 	struct vm_object_dealloc_list *dlist = NULL;
510 	struct vm_object_dealloc_list *dtmp;
511 	vm_object_t temp;
512 	int must_drop = 0;
513 
514 	/*
515 	 * We may chain deallocate object, but additional objects may
516 	 * collect on the dlist which also have to be deallocated.  We
517 	 * must avoid a recursion, vm_object chains can get deep.
518 	 */
519 again:
520 	while (object != NULL) {
521 #if 0
522 		/*
523 		 * Don't rip a ref_count out from under an object undergoing
524 		 * collapse, it will confuse the collapse code.
525 		 */
526 		vm_object_chain_wait(object);
527 #endif
528 		if (object->type == OBJT_VNODE) {
529 			vm_object_vndeallocate(object);
530 			break;
531 		}
532 
533 		if (object->ref_count == 0) {
534 			panic("vm_object_deallocate: object deallocated "
535 			      "too many times: %d", object->type);
536 		}
537 		if (object->ref_count > 2) {
538 			object->ref_count--;
539 			break;
540 		}
541 
542 		/*
543 		 * Here on ref_count of one or two, which are special cases for
544 		 * objects.
545 		 *
546 		 * Nominal ref_count > 1 case if the second ref is not from
547 		 * a shadow.
548 		 */
549 		if (object->ref_count == 2 && object->shadow_count == 0) {
550 			vm_object_set_flag(object, OBJ_ONEMAPPING);
551 			object->ref_count--;
552 			break;
553 		}
554 
555 		/*
556 		 * If the second ref is from a shadow we chain along it
557 		 * upwards if object's handle is exhausted.
558 		 *
559 		 * We have to decrement object->ref_count before potentially
560 		 * collapsing the first shadow object or the collapse code
561 		 * will not be able to handle the degenerate case to remove
562 		 * object.  However, if we do it too early the object can
563 		 * get ripped out from under us.
564 		 */
565 		if (object->ref_count == 2 && object->shadow_count == 1 &&
566 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
567 					       object->type == OBJT_SWAP)) {
568 			temp = LIST_FIRST(&object->shadow_head);
569 			KKASSERT(temp != NULL);
570 			vm_object_hold(temp);
571 
572 			/*
573 			 * Wait for any paging to complete so the collapse
574 			 * doesn't (or isn't likely to) qcollapse.  pip
575 			 * waiting must occur before we acquire the
576 			 * chainlock.
577 			 */
578 			while (
579 				temp->paging_in_progress ||
580 				object->paging_in_progress
581 			) {
582 				vm_object_pip_wait(temp, "objde1");
583 				vm_object_pip_wait(object, "objde2");
584 			}
585 
586 			/*
587 			 * If the parent is locked we have to give up, as
588 			 * otherwise we would be acquiring locks in the
589 			 * wrong order and potentially deadlock.
590 			 */
591 			if (temp->flags & OBJ_CHAINLOCK) {
592 				vm_object_drop(temp);
593 				goto skip;
594 			}
595 			vm_object_chain_acquire(temp);
596 
597 			/*
598 			 * Recheck/retry after the hold and the paging
599 			 * wait, both of which can block us.
600 			 */
601 			if (object->ref_count != 2 ||
602 			    object->shadow_count != 1 ||
603 			    object->handle ||
604 			    LIST_FIRST(&object->shadow_head) != temp ||
605 			    (object->type != OBJT_DEFAULT &&
606 			     object->type != OBJT_SWAP)) {
607 				vm_object_chain_release(temp);
608 				vm_object_drop(temp);
609 				continue;
610 			}
611 
612 			/*
613 			 * We can safely drop object's ref_count now.
614 			 */
615 			KKASSERT(object->ref_count == 2);
616 			object->ref_count--;
617 
618 			/*
619 			 * If our single parent is not collapseable just
620 			 * decrement ref_count (2->1) and stop.
621 			 */
622 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
623 					     temp->type != OBJT_SWAP)) {
624 				vm_object_chain_release(temp);
625 				vm_object_drop(temp);
626 				break;
627 			}
628 
629 			/*
630 			 * At this point we have already dropped object's
631 			 * ref_count so it is possible for a race to
632 			 * deallocate obj out from under us.  Any collapse
633 			 * will re-check the situation.  We must not block
634 			 * until we are able to collapse.
635 			 *
636 			 * Bump temp's ref_count to avoid an unwanted
637 			 * degenerate recursion (can't call
638 			 * vm_object_reference_locked() because it asserts
639 			 * that CHAINLOCK is not set).
640 			 */
641 			temp->ref_count++;
642 			KKASSERT(temp->ref_count > 1);
643 
644 			/*
645 			 * Collapse temp, then deallocate the extra ref
646 			 * formally.
647 			 */
648 			vm_object_collapse(temp, &dlist);
649 			vm_object_chain_release(temp);
650 			if (must_drop) {
651 				vm_object_lock_swap();
652 				vm_object_drop(object);
653 			}
654 			object = temp;
655 			must_drop = 1;
656 			continue;
657 		}
658 
659 		/*
660 		 * Drop the ref and handle termination on the 1->0 transition.
661 		 * We may have blocked above so we have to recheck.
662 		 */
663 skip:
664 		KKASSERT(object->ref_count != 0);
665 		if (object->ref_count >= 2) {
666 			object->ref_count--;
667 			break;
668 		}
669 		KKASSERT(object->ref_count == 1);
670 
671 		/*
672 		 * 1->0 transition.  Chain through the backing_object.
673 		 * Maintain the ref until we've located the backing object,
674 		 * then re-check.
675 		 */
676 		while ((temp = object->backing_object) != NULL) {
677 			vm_object_hold(temp);
678 			if (temp == object->backing_object)
679 				break;
680 			vm_object_drop(temp);
681 		}
682 
683 		/*
684 		 * 1->0 transition verified, retry if ref_count is no longer
685 		 * 1.  Otherwise disconnect the backing_object (temp) and
686 		 * clean up.
687 		 */
688 		if (object->ref_count != 1) {
689 			vm_object_drop(temp);
690 			continue;
691 		}
692 
693 		/*
694 		 * It shouldn't be possible for the object to be chain locked
695 		 * if we're removing the last ref on it.
696 		 */
697 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
698 
699 		if (temp) {
700 			LIST_REMOVE(object, shadow_list);
701 			temp->shadow_count--;
702 			temp->generation++;
703 			object->backing_object = NULL;
704 		}
705 
706 		--object->ref_count;
707 		if ((object->flags & OBJ_DEAD) == 0)
708 			vm_object_terminate(object);
709 		if (must_drop && temp)
710 			vm_object_lock_swap();
711 		if (must_drop)
712 			vm_object_drop(object);
713 		object = temp;
714 		must_drop = 1;
715 	}
716 	if (must_drop && object)
717 		vm_object_drop(object);
718 
719 	/*
720 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
721 	 * on the dlist have a hold count but are not locked.
722 	 */
723 	if ((dtmp = dlist) != NULL) {
724 		dlist = dtmp->next;
725 		object = dtmp->object;
726 		kfree(dtmp, M_TEMP);
727 
728 		vm_object_lock(object);	/* already held, add lock */
729 		must_drop = 1;		/* and we're responsible for it */
730 		goto again;
731 	}
732 }
733 
734 /*
735  * Destroy the specified object, freeing up related resources.
736  *
737  * The object must have zero references.
738  *
739  * The object must held.  The caller is responsible for dropping the object
740  * after terminate returns.  Terminate does NOT drop the object.
741  */
742 static int vm_object_terminate_callback(vm_page_t p, void *data);
743 
744 void
745 vm_object_terminate(vm_object_t object)
746 {
747 	/*
748 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
749 	 * able to safely block.
750 	 */
751 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
752 	KKASSERT((object->flags & OBJ_DEAD) == 0);
753 	vm_object_set_flag(object, OBJ_DEAD);
754 
755 	/*
756 	 * Wait for the pageout daemon to be done with the object
757 	 */
758 	vm_object_pip_wait(object, "objtrm1");
759 
760 	KASSERT(!object->paging_in_progress,
761 		("vm_object_terminate: pageout in progress"));
762 
763 	/*
764 	 * Clean and free the pages, as appropriate. All references to the
765 	 * object are gone, so we don't need to lock it.
766 	 */
767 	if (object->type == OBJT_VNODE) {
768 		struct vnode *vp;
769 
770 		/*
771 		 * Clean pages and flush buffers.
772 		 */
773 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
774 
775 		vp = (struct vnode *) object->handle;
776 		vinvalbuf(vp, V_SAVE, 0, 0);
777 	}
778 
779 	/*
780 	 * Wait for any I/O to complete, after which there had better not
781 	 * be any references left on the object.
782 	 */
783 	vm_object_pip_wait(object, "objtrm2");
784 
785 	if (object->ref_count != 0) {
786 		panic("vm_object_terminate: object with references, "
787 		      "ref_count=%d", object->ref_count);
788 	}
789 
790 	/*
791 	 * Now free any remaining pages. For internal objects, this also
792 	 * removes them from paging queues. Don't free wired pages, just
793 	 * remove them from the object.
794 	 */
795 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
796 				vm_object_terminate_callback, NULL);
797 
798 	/*
799 	 * Let the pager know object is dead.
800 	 */
801 	vm_pager_deallocate(object);
802 
803 	/*
804 	 * Wait for the object hold count to hit 1, clean out pages as
805 	 * we go.  vmobj_token interlocks any race conditions that might
806 	 * pick the object up from the vm_object_list after we have cleared
807 	 * rb_memq.
808 	 */
809 	for (;;) {
810 		if (RB_ROOT(&object->rb_memq) == NULL)
811 			break;
812 		kprintf("vm_object_terminate: Warning, object %p "
813 			"still has %d pages\n",
814 			object, object->resident_page_count);
815 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
816 					vm_object_terminate_callback, NULL);
817 	}
818 
819 	/*
820 	 * There had better not be any pages left
821 	 */
822 	KKASSERT(object->resident_page_count == 0);
823 
824 	/*
825 	 * Remove the object from the global object list.
826 	 */
827 	lwkt_gettoken(&vmobj_token);
828 	TAILQ_REMOVE(&vm_object_list, object, object_list);
829 	vm_object_count--;
830 	lwkt_reltoken(&vmobj_token);
831 	vm_object_dead_wakeup(object);
832 
833 	if (object->ref_count != 0) {
834 		panic("vm_object_terminate2: object with references, "
835 		      "ref_count=%d", object->ref_count);
836 	}
837 
838 	/*
839 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
840 	 *	 the object here.  See vm_object_drop().
841 	 */
842 }
843 
844 /*
845  * The caller must hold the object.
846  */
847 static int
848 vm_object_terminate_callback(vm_page_t p, void *data __unused)
849 {
850 	vm_object_t object;
851 
852 	object = p->object;
853 	vm_page_busy_wait(p, FALSE, "vmpgtrm");
854 	if (object != p->object) {
855 		kprintf("vm_object_terminate: Warning: Encountered "
856 			"busied page %p on queue %d\n", p, p->queue);
857 		vm_page_wakeup(p);
858 	} else if (p->wire_count == 0) {
859 		vm_page_free(p);
860 		mycpu->gd_cnt.v_pfree++;
861 	} else {
862 		if (p->queue != PQ_NONE)
863 			kprintf("vm_object_terminate: Warning: Encountered "
864 				"wired page %p on queue %d\n", p, p->queue);
865 		vm_page_remove(p);
866 		vm_page_wakeup(p);
867 	}
868 	lwkt_yield();
869 	return(0);
870 }
871 
872 /*
873  * The object is dead but still has an object<->pager association.  Sleep
874  * and return.  The caller typically retests the association in a loop.
875  *
876  * The caller must hold the object.
877  */
878 void
879 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
880 {
881 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
882 	if (object->handle) {
883 		vm_object_set_flag(object, OBJ_DEADWNT);
884 		tsleep(object, 0, wmesg, 0);
885 		/* object may be invalid after this point */
886 	}
887 }
888 
889 /*
890  * Wakeup anyone waiting for the object<->pager disassociation on
891  * a dead object.
892  *
893  * The caller must hold the object.
894  */
895 void
896 vm_object_dead_wakeup(vm_object_t object)
897 {
898 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
899 	if (object->flags & OBJ_DEADWNT) {
900 		vm_object_clear_flag(object, OBJ_DEADWNT);
901 		wakeup(object);
902 	}
903 }
904 
905 /*
906  * Clean all dirty pages in the specified range of object.  Leaves page
907  * on whatever queue it is currently on.   If NOSYNC is set then do not
908  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
909  * leaving the object dirty.
910  *
911  * When stuffing pages asynchronously, allow clustering.  XXX we need a
912  * synchronous clustering mode implementation.
913  *
914  * Odd semantics: if start == end, we clean everything.
915  *
916  * The object must be locked? XXX
917  */
918 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
919 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
920 
921 void
922 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
923 		     int flags)
924 {
925 	struct rb_vm_page_scan_info info;
926 	struct vnode *vp;
927 	int wholescan;
928 	int pagerflags;
929 	int generation;
930 
931 	vm_object_hold(object);
932 	if (object->type != OBJT_VNODE ||
933 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
934 		vm_object_drop(object);
935 		return;
936 	}
937 
938 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
939 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
940 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
941 
942 	vp = object->handle;
943 
944 	/*
945 	 * Interlock other major object operations.  This allows us to
946 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
947 	 */
948 	vm_object_set_flag(object, OBJ_CLEANING);
949 
950 	/*
951 	 * Handle 'entire object' case
952 	 */
953 	info.start_pindex = start;
954 	if (end == 0) {
955 		info.end_pindex = object->size - 1;
956 	} else {
957 		info.end_pindex = end - 1;
958 	}
959 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
960 	info.limit = flags;
961 	info.pagerflags = pagerflags;
962 	info.object = object;
963 
964 	/*
965 	 * If cleaning the entire object do a pass to mark the pages read-only.
966 	 * If everything worked out ok, clear OBJ_WRITEABLE and
967 	 * OBJ_MIGHTBEDIRTY.
968 	 */
969 	if (wholescan) {
970 		info.error = 0;
971 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
972 					vm_object_page_clean_pass1, &info);
973 		if (info.error == 0) {
974 			vm_object_clear_flag(object,
975 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
976 			if (object->type == OBJT_VNODE &&
977 			    (vp = (struct vnode *)object->handle) != NULL) {
978 				if (vp->v_flag & VOBJDIRTY)
979 					vclrflags(vp, VOBJDIRTY);
980 			}
981 		}
982 	}
983 
984 	/*
985 	 * Do a pass to clean all the dirty pages we find.
986 	 */
987 	do {
988 		info.error = 0;
989 		generation = object->generation;
990 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
991 					vm_object_page_clean_pass2, &info);
992 	} while (info.error || generation != object->generation);
993 
994 	vm_object_clear_flag(object, OBJ_CLEANING);
995 	vm_object_drop(object);
996 }
997 
998 /*
999  * The caller must hold the object.
1000  */
1001 static
1002 int
1003 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1004 {
1005 	struct rb_vm_page_scan_info *info = data;
1006 
1007 	vm_page_flag_set(p, PG_CLEANCHK);
1008 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1009 		info->error = 1;
1010 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1011 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1012 		vm_page_wakeup(p);
1013 	} else {
1014 		info->error = 1;
1015 	}
1016 	lwkt_yield();
1017 	return(0);
1018 }
1019 
1020 /*
1021  * The caller must hold the object
1022  */
1023 static
1024 int
1025 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1026 {
1027 	struct rb_vm_page_scan_info *info = data;
1028 	int generation;
1029 
1030 	/*
1031 	 * Do not mess with pages that were inserted after we started
1032 	 * the cleaning pass.
1033 	 */
1034 	if ((p->flags & PG_CLEANCHK) == 0)
1035 		goto done;
1036 
1037 	generation = info->object->generation;
1038 	vm_page_busy_wait(p, TRUE, "vpcwai");
1039 	if (p->object != info->object ||
1040 	    info->object->generation != generation) {
1041 		info->error = 1;
1042 		vm_page_wakeup(p);
1043 		goto done;
1044 	}
1045 
1046 	/*
1047 	 * Before wasting time traversing the pmaps, check for trivial
1048 	 * cases where the page cannot be dirty.
1049 	 */
1050 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1051 		KKASSERT((p->dirty & p->valid) == 0);
1052 		vm_page_wakeup(p);
1053 		goto done;
1054 	}
1055 
1056 	/*
1057 	 * Check whether the page is dirty or not.  The page has been set
1058 	 * to be read-only so the check will not race a user dirtying the
1059 	 * page.
1060 	 */
1061 	vm_page_test_dirty(p);
1062 	if ((p->dirty & p->valid) == 0) {
1063 		vm_page_flag_clear(p, PG_CLEANCHK);
1064 		vm_page_wakeup(p);
1065 		goto done;
1066 	}
1067 
1068 	/*
1069 	 * If we have been asked to skip nosync pages and this is a
1070 	 * nosync page, skip it.  Note that the object flags were
1071 	 * not cleared in this case (because pass1 will have returned an
1072 	 * error), so we do not have to set them.
1073 	 */
1074 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1075 		vm_page_flag_clear(p, PG_CLEANCHK);
1076 		vm_page_wakeup(p);
1077 		goto done;
1078 	}
1079 
1080 	/*
1081 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1082 	 * the pages that get successfully flushed.  Set info->error if
1083 	 * we raced an object modification.
1084 	 */
1085 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1086 done:
1087 	lwkt_yield();
1088 	return(0);
1089 }
1090 
1091 /*
1092  * Collect the specified page and nearby pages and flush them out.
1093  * The number of pages flushed is returned.  The passed page is busied
1094  * by the caller and we are responsible for its disposition.
1095  *
1096  * The caller must hold the object.
1097  */
1098 static int
1099 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1100 {
1101 	int runlen;
1102 	int error;
1103 	int maxf;
1104 	int chkb;
1105 	int maxb;
1106 	int i;
1107 	vm_pindex_t pi;
1108 	vm_page_t maf[vm_pageout_page_count];
1109 	vm_page_t mab[vm_pageout_page_count];
1110 	vm_page_t ma[vm_pageout_page_count];
1111 
1112 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1113 
1114 	pi = p->pindex;
1115 
1116 	maxf = 0;
1117 	for(i = 1; i < vm_pageout_page_count; i++) {
1118 		vm_page_t tp;
1119 
1120 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1121 		if (error)
1122 			break;
1123 		if (tp == NULL)
1124 			break;
1125 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1126 		    (tp->flags & PG_CLEANCHK) == 0) {
1127 			vm_page_wakeup(tp);
1128 			break;
1129 		}
1130 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1131 			vm_page_flag_clear(tp, PG_CLEANCHK);
1132 			vm_page_wakeup(tp);
1133 			break;
1134 		}
1135 		vm_page_test_dirty(tp);
1136 		if ((tp->dirty & tp->valid) == 0) {
1137 			vm_page_flag_clear(tp, PG_CLEANCHK);
1138 			vm_page_wakeup(tp);
1139 			break;
1140 		}
1141 		maf[i - 1] = tp;
1142 		maxf++;
1143 	}
1144 
1145 	maxb = 0;
1146 	chkb = vm_pageout_page_count -  maxf;
1147 	/*
1148 	 * NOTE: chkb can be 0
1149 	 */
1150 	for(i = 1; chkb && i < chkb; i++) {
1151 		vm_page_t tp;
1152 
1153 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1154 		if (error)
1155 			break;
1156 		if (tp == NULL)
1157 			break;
1158 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1159 		    (tp->flags & PG_CLEANCHK) == 0) {
1160 			vm_page_wakeup(tp);
1161 			break;
1162 		}
1163 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1164 			vm_page_flag_clear(tp, PG_CLEANCHK);
1165 			vm_page_wakeup(tp);
1166 			break;
1167 		}
1168 		vm_page_test_dirty(tp);
1169 		if ((tp->dirty & tp->valid) == 0) {
1170 			vm_page_flag_clear(tp, PG_CLEANCHK);
1171 			vm_page_wakeup(tp);
1172 			break;
1173 		}
1174 		mab[i - 1] = tp;
1175 		maxb++;
1176 	}
1177 
1178 	/*
1179 	 * All pages in the maf[] and mab[] array are busied.
1180 	 */
1181 	for (i = 0; i < maxb; i++) {
1182 		int index = (maxb - i) - 1;
1183 		ma[index] = mab[i];
1184 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1185 	}
1186 	vm_page_flag_clear(p, PG_CLEANCHK);
1187 	ma[maxb] = p;
1188 	for(i = 0; i < maxf; i++) {
1189 		int index = (maxb + i) + 1;
1190 		ma[index] = maf[i];
1191 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1192 	}
1193 	runlen = maxb + maxf + 1;
1194 
1195 	for (i = 0; i < runlen; i++)
1196 		vm_page_hold(ma[i]);
1197 
1198 	vm_pageout_flush(ma, runlen, pagerflags);
1199 
1200 	for (i = 0; i < runlen; i++) {
1201 		if (ma[i]->valid & ma[i]->dirty) {
1202 			vm_page_protect(ma[i], VM_PROT_READ);
1203 			vm_page_flag_set(ma[i], PG_CLEANCHK);
1204 
1205 			/*
1206 			 * maxf will end up being the actual number of pages
1207 			 * we wrote out contiguously, non-inclusive of the
1208 			 * first page.  We do not count look-behind pages.
1209 			 */
1210 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1211 				maxf = i - maxb - 1;
1212 		}
1213 		vm_page_unhold(ma[i]);
1214 	}
1215 	return(maxf + 1);
1216 }
1217 
1218 /*
1219  * Same as vm_object_pmap_copy, except range checking really
1220  * works, and is meant for small sections of an object.
1221  *
1222  * This code protects resident pages by making them read-only
1223  * and is typically called on a fork or split when a page
1224  * is converted to copy-on-write.
1225  *
1226  * NOTE: If the page is already at VM_PROT_NONE, calling
1227  * vm_page_protect will have no effect.
1228  */
1229 void
1230 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1231 {
1232 	vm_pindex_t idx;
1233 	vm_page_t p;
1234 
1235 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1236 		return;
1237 
1238 	vm_object_hold(object);
1239 	for (idx = start; idx < end; idx++) {
1240 		p = vm_page_lookup(object, idx);
1241 		if (p == NULL)
1242 			continue;
1243 		vm_page_protect(p, VM_PROT_READ);
1244 	}
1245 	vm_object_drop(object);
1246 }
1247 
1248 /*
1249  * Removes all physical pages in the specified object range from all
1250  * physical maps.
1251  *
1252  * The object must *not* be locked.
1253  */
1254 
1255 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1256 
1257 void
1258 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1259 {
1260 	struct rb_vm_page_scan_info info;
1261 
1262 	if (object == NULL)
1263 		return;
1264 	info.start_pindex = start;
1265 	info.end_pindex = end - 1;
1266 
1267 	vm_object_hold(object);
1268 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1269 				vm_object_pmap_remove_callback, &info);
1270 	if (start == 0 && end == object->size)
1271 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1272 	vm_object_drop(object);
1273 }
1274 
1275 /*
1276  * The caller must hold the object
1277  */
1278 static int
1279 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1280 {
1281 	vm_page_protect(p, VM_PROT_NONE);
1282 	return(0);
1283 }
1284 
1285 /*
1286  * Implements the madvise function at the object/page level.
1287  *
1288  * MADV_WILLNEED	(any object)
1289  *
1290  *	Activate the specified pages if they are resident.
1291  *
1292  * MADV_DONTNEED	(any object)
1293  *
1294  *	Deactivate the specified pages if they are resident.
1295  *
1296  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1297  *
1298  *	Deactivate and clean the specified pages if they are
1299  *	resident.  This permits the process to reuse the pages
1300  *	without faulting or the kernel to reclaim the pages
1301  *	without I/O.
1302  *
1303  * No requirements.
1304  */
1305 void
1306 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1307 {
1308 	vm_pindex_t end, tpindex;
1309 	vm_object_t tobject;
1310 	vm_object_t xobj;
1311 	vm_page_t m;
1312 	int error;
1313 
1314 	if (object == NULL)
1315 		return;
1316 
1317 	end = pindex + count;
1318 
1319 	vm_object_hold(object);
1320 	tobject = object;
1321 
1322 	/*
1323 	 * Locate and adjust resident pages
1324 	 */
1325 	for (; pindex < end; pindex += 1) {
1326 relookup:
1327 		if (tobject != object)
1328 			vm_object_drop(tobject);
1329 		tobject = object;
1330 		tpindex = pindex;
1331 shadowlookup:
1332 		/*
1333 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1334 		 * and those pages must be OBJ_ONEMAPPING.
1335 		 */
1336 		if (advise == MADV_FREE) {
1337 			if ((tobject->type != OBJT_DEFAULT &&
1338 			     tobject->type != OBJT_SWAP) ||
1339 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1340 				continue;
1341 			}
1342 		}
1343 
1344 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1345 
1346 		if (error) {
1347 			vm_page_sleep_busy(m, TRUE, "madvpo");
1348 			goto relookup;
1349 		}
1350 		if (m == NULL) {
1351 			/*
1352 			 * There may be swap even if there is no backing page
1353 			 */
1354 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1355 				swap_pager_freespace(tobject, tpindex, 1);
1356 
1357 			/*
1358 			 * next object
1359 			 */
1360 			while ((xobj = tobject->backing_object) != NULL) {
1361 				KKASSERT(xobj != object);
1362 				vm_object_hold(xobj);
1363 				if (xobj == tobject->backing_object)
1364 					break;
1365 				vm_object_drop(xobj);
1366 			}
1367 			if (xobj == NULL)
1368 				continue;
1369 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1370 			if (tobject != object) {
1371 				vm_object_lock_swap();
1372 				vm_object_drop(tobject);
1373 			}
1374 			tobject = xobj;
1375 			goto shadowlookup;
1376 		}
1377 
1378 		/*
1379 		 * If the page is not in a normal active state, we skip it.
1380 		 * If the page is not managed there are no page queues to
1381 		 * mess with.  Things can break if we mess with pages in
1382 		 * any of the below states.
1383 		 */
1384 		if (
1385 		    /*m->hold_count ||*/
1386 		    m->wire_count ||
1387 		    (m->flags & PG_UNMANAGED) ||
1388 		    m->valid != VM_PAGE_BITS_ALL
1389 		) {
1390 			vm_page_wakeup(m);
1391 			continue;
1392 		}
1393 
1394 		/*
1395 		 * Theoretically once a page is known not to be busy, an
1396 		 * interrupt cannot come along and rip it out from under us.
1397 		 */
1398 
1399 		if (advise == MADV_WILLNEED) {
1400 			vm_page_activate(m);
1401 		} else if (advise == MADV_DONTNEED) {
1402 			vm_page_dontneed(m);
1403 		} else if (advise == MADV_FREE) {
1404 			/*
1405 			 * Mark the page clean.  This will allow the page
1406 			 * to be freed up by the system.  However, such pages
1407 			 * are often reused quickly by malloc()/free()
1408 			 * so we do not do anything that would cause
1409 			 * a page fault if we can help it.
1410 			 *
1411 			 * Specifically, we do not try to actually free
1412 			 * the page now nor do we try to put it in the
1413 			 * cache (which would cause a page fault on reuse).
1414 			 *
1415 			 * But we do make the page is freeable as we
1416 			 * can without actually taking the step of unmapping
1417 			 * it.
1418 			 */
1419 			pmap_clear_modify(m);
1420 			m->dirty = 0;
1421 			m->act_count = 0;
1422 			vm_page_dontneed(m);
1423 			if (tobject->type == OBJT_SWAP)
1424 				swap_pager_freespace(tobject, tpindex, 1);
1425 		}
1426 		vm_page_wakeup(m);
1427 	}
1428 	if (tobject != object)
1429 		vm_object_drop(tobject);
1430 	vm_object_drop(object);
1431 }
1432 
1433 /*
1434  * Create a new object which is backed by the specified existing object
1435  * range.  Replace the pointer and offset that was pointing at the existing
1436  * object with the pointer/offset for the new object.
1437  *
1438  * No other requirements.
1439  */
1440 void
1441 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1442 		 int addref)
1443 {
1444 	vm_object_t source;
1445 	vm_object_t result;
1446 
1447 	source = *objectp;
1448 
1449 	/*
1450 	 * Don't create the new object if the old object isn't shared.
1451 	 * We have to chain wait before adding the reference to avoid
1452 	 * racing a collapse or deallocation.
1453 	 *
1454 	 * Add the additional ref to source here to avoid racing a later
1455 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1456 	 * addref is TRUE or not in this case because the original object
1457 	 * will be shadowed.
1458 	 */
1459 	if (source) {
1460 		vm_object_hold(source);
1461 		vm_object_chain_wait(source);
1462 		if (source->ref_count == 1 &&
1463 		    source->handle == NULL &&
1464 		    (source->type == OBJT_DEFAULT ||
1465 		     source->type == OBJT_SWAP)) {
1466 			vm_object_drop(source);
1467 			if (addref) {
1468 				vm_object_reference_locked(source);
1469 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1470 			}
1471 			return;
1472 		}
1473 		vm_object_reference_locked(source);
1474 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1475 	}
1476 
1477 	/*
1478 	 * Allocate a new object with the given length.  The new object
1479 	 * is returned referenced but we may have to add another one.
1480 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1481 	 * (typically because the caller is about to clone a vm_map_entry).
1482 	 *
1483 	 * The source object currently has an extra reference to prevent
1484 	 * collapses into it while we mess with its shadow list, which
1485 	 * we will remove later in this routine.
1486 	 */
1487 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1488 		panic("vm_object_shadow: no object for shadowing");
1489 	vm_object_hold(result);
1490 	if (addref) {
1491 		vm_object_reference_locked(result);
1492 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1493 	}
1494 
1495 	/*
1496 	 * The new object shadows the source object.  Chain wait before
1497 	 * adjusting shadow_count or the shadow list to avoid races.
1498 	 *
1499 	 * Try to optimize the result object's page color when shadowing
1500 	 * in order to maintain page coloring consistency in the combined
1501 	 * shadowed object.
1502 	 */
1503 	KKASSERT(result->backing_object == NULL);
1504 	result->backing_object = source;
1505 	if (source) {
1506 		vm_object_chain_wait(source);
1507 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1508 		source->shadow_count++;
1509 		source->generation++;
1510 #ifdef SMP
1511 		/* cpu localization twist */
1512 		result->pg_color = (int)(intptr_t)curthread;
1513 #else
1514 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1515 				   PQ_L2_MASK;
1516 #endif
1517 	}
1518 
1519 	/*
1520 	 * Adjust the return storage.  Drop the ref on source before
1521 	 * returning.
1522 	 */
1523 	result->backing_object_offset = *offset;
1524 	vm_object_drop(result);
1525 	*offset = 0;
1526 	if (source) {
1527 		vm_object_deallocate_locked(source);
1528 		vm_object_drop(source);
1529 	}
1530 
1531 	/*
1532 	 * Return the new things
1533 	 */
1534 	*objectp = result;
1535 }
1536 
1537 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1538 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1539 #define	OBSC_COLLAPSE_WAIT	0x0004
1540 
1541 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1542 
1543 /*
1544  * The caller must hold the object.
1545  */
1546 static __inline int
1547 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1548 {
1549 	struct rb_vm_page_scan_info info;
1550 
1551 	vm_object_assert_held(object);
1552 	vm_object_assert_held(backing_object);
1553 
1554 	KKASSERT(backing_object == object->backing_object);
1555 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1556 
1557 	/*
1558 	 * Initial conditions
1559 	 */
1560 	if (op & OBSC_TEST_ALL_SHADOWED) {
1561 		/*
1562 		 * We do not want to have to test for the existence of
1563 		 * swap pages in the backing object.  XXX but with the
1564 		 * new swapper this would be pretty easy to do.
1565 		 *
1566 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1567 		 * been ZFOD faulted yet?  If we do not test for this, the
1568 		 * shadow test may succeed! XXX
1569 		 */
1570 		if (backing_object->type != OBJT_DEFAULT)
1571 			return(0);
1572 	}
1573 	if (op & OBSC_COLLAPSE_WAIT) {
1574 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1575 		vm_object_set_flag(backing_object, OBJ_DEAD);
1576 		lwkt_gettoken(&vmobj_token);
1577 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1578 		vm_object_count--;
1579 		lwkt_reltoken(&vmobj_token);
1580 		vm_object_dead_wakeup(backing_object);
1581 	}
1582 
1583 	/*
1584 	 * Our scan.   We have to retry if a negative error code is returned,
1585 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1586 	 * the scan had to be stopped because the parent does not completely
1587 	 * shadow the child.
1588 	 */
1589 	info.object = object;
1590 	info.backing_object = backing_object;
1591 	info.limit = op;
1592 	do {
1593 		info.error = 1;
1594 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1595 					vm_object_backing_scan_callback,
1596 					&info);
1597 	} while (info.error < 0);
1598 
1599 	return(info.error);
1600 }
1601 
1602 /*
1603  * The caller must hold the object.
1604  */
1605 static int
1606 vm_object_backing_scan_callback(vm_page_t p, void *data)
1607 {
1608 	struct rb_vm_page_scan_info *info = data;
1609 	vm_object_t backing_object;
1610 	vm_object_t object;
1611 	vm_pindex_t new_pindex;
1612 	vm_pindex_t backing_offset_index;
1613 	int op;
1614 
1615 	new_pindex = p->pindex - info->backing_offset_index;
1616 	op = info->limit;
1617 	object = info->object;
1618 	backing_object = info->backing_object;
1619 	backing_offset_index = info->backing_offset_index;
1620 
1621 	if (op & OBSC_TEST_ALL_SHADOWED) {
1622 		vm_page_t pp;
1623 
1624 		/*
1625 		 * Ignore pages outside the parent object's range
1626 		 * and outside the parent object's mapping of the
1627 		 * backing object.
1628 		 *
1629 		 * note that we do not busy the backing object's
1630 		 * page.
1631 		 */
1632 		if (
1633 		    p->pindex < backing_offset_index ||
1634 		    new_pindex >= object->size
1635 		) {
1636 			return(0);
1637 		}
1638 
1639 		/*
1640 		 * See if the parent has the page or if the parent's
1641 		 * object pager has the page.  If the parent has the
1642 		 * page but the page is not valid, the parent's
1643 		 * object pager must have the page.
1644 		 *
1645 		 * If this fails, the parent does not completely shadow
1646 		 * the object and we might as well give up now.
1647 		 */
1648 
1649 		pp = vm_page_lookup(object, new_pindex);
1650 		if ((pp == NULL || pp->valid == 0) &&
1651 		    !vm_pager_has_page(object, new_pindex)
1652 		) {
1653 			info->error = 0;	/* problemo */
1654 			return(-1);		/* stop the scan */
1655 		}
1656 	}
1657 
1658 	/*
1659 	 * Check for busy page
1660 	 */
1661 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1662 		vm_page_t pp;
1663 
1664 		if (vm_page_busy_try(p, TRUE)) {
1665 			if (op & OBSC_COLLAPSE_NOWAIT) {
1666 				return(0);
1667 			} else {
1668 				/*
1669 				 * If we slept, anything could have
1670 				 * happened.   Ask that the scan be restarted.
1671 				 *
1672 				 * Since the object is marked dead, the
1673 				 * backing offset should not have changed.
1674 				 */
1675 				vm_page_sleep_busy(p, TRUE, "vmocol");
1676 				info->error = -1;
1677 				return(-1);
1678 			}
1679 		}
1680 		if (op & OBSC_COLLAPSE_NOWAIT) {
1681 			if (p->valid == 0 /*|| p->hold_count*/ ||
1682 			    p->wire_count) {
1683 				vm_page_wakeup(p);
1684 				return(0);
1685 			}
1686 		} else {
1687 			/* XXX what if p->valid == 0 , hold_count, etc? */
1688 		}
1689 
1690 		KASSERT(
1691 		    p->object == backing_object,
1692 		    ("vm_object_qcollapse(): object mismatch")
1693 		);
1694 
1695 		/*
1696 		 * Destroy any associated swap
1697 		 */
1698 		if (backing_object->type == OBJT_SWAP)
1699 			swap_pager_freespace(backing_object, p->pindex, 1);
1700 
1701 		if (
1702 		    p->pindex < backing_offset_index ||
1703 		    new_pindex >= object->size
1704 		) {
1705 			/*
1706 			 * Page is out of the parent object's range, we
1707 			 * can simply destroy it.
1708 			 */
1709 			vm_page_protect(p, VM_PROT_NONE);
1710 			vm_page_free(p);
1711 			return(0);
1712 		}
1713 
1714 		pp = vm_page_lookup(object, new_pindex);
1715 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1716 			/*
1717 			 * page already exists in parent OR swap exists
1718 			 * for this location in the parent.  Destroy
1719 			 * the original page from the backing object.
1720 			 *
1721 			 * Leave the parent's page alone
1722 			 */
1723 			vm_page_protect(p, VM_PROT_NONE);
1724 			vm_page_free(p);
1725 			return(0);
1726 		}
1727 
1728 		/*
1729 		 * Page does not exist in parent, rename the
1730 		 * page from the backing object to the main object.
1731 		 *
1732 		 * If the page was mapped to a process, it can remain
1733 		 * mapped through the rename.
1734 		 */
1735 		if ((p->queue - p->pc) == PQ_CACHE)
1736 			vm_page_deactivate(p);
1737 
1738 		vm_page_rename(p, object, new_pindex);
1739 		vm_page_wakeup(p);
1740 		/* page automatically made dirty by rename */
1741 	}
1742 	return(0);
1743 }
1744 
1745 /*
1746  * This version of collapse allows the operation to occur earlier and
1747  * when paging_in_progress is true for an object...  This is not a complete
1748  * operation, but should plug 99.9% of the rest of the leaks.
1749  *
1750  * The caller must hold the object and backing_object and both must be
1751  * chainlocked.
1752  *
1753  * (only called from vm_object_collapse)
1754  */
1755 static void
1756 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1757 {
1758 	if (backing_object->ref_count == 1) {
1759 		backing_object->ref_count += 2;
1760 		vm_object_backing_scan(object, backing_object,
1761 				       OBSC_COLLAPSE_NOWAIT);
1762 		backing_object->ref_count -= 2;
1763 	}
1764 }
1765 
1766 /*
1767  * Collapse an object with the object backing it.  Pages in the backing
1768  * object are moved into the parent, and the backing object is deallocated.
1769  * Any conflict is resolved in favor of the parent's existing pages.
1770  *
1771  * object must be held and chain-locked on call.
1772  *
1773  * The caller must have an extra ref on object to prevent a race from
1774  * destroying it during the collapse.
1775  */
1776 void
1777 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1778 {
1779 	struct vm_object_dealloc_list *dlist = NULL;
1780 	vm_object_t backing_object;
1781 
1782 	/*
1783 	 * Only one thread is attempting a collapse at any given moment.
1784 	 * There are few restrictions for (object) that callers of this
1785 	 * function check so reentrancy is likely.
1786 	 */
1787 	KKASSERT(object != NULL);
1788 	vm_object_assert_held(object);
1789 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1790 
1791 	for (;;) {
1792 		vm_object_t bbobj;
1793 		int dodealloc;
1794 
1795 		/*
1796 		 * We have to hold the backing object, check races.
1797 		 */
1798 		while ((backing_object = object->backing_object) != NULL) {
1799 			vm_object_hold(backing_object);
1800 			if (backing_object == object->backing_object)
1801 				break;
1802 			vm_object_drop(backing_object);
1803 		}
1804 
1805 		/*
1806 		 * No backing object?  Nothing to collapse then.
1807 		 */
1808 		if (backing_object == NULL)
1809 			break;
1810 
1811 		/*
1812 		 * You can't collapse with a non-default/non-swap object.
1813 		 */
1814 		if (backing_object->type != OBJT_DEFAULT &&
1815 		    backing_object->type != OBJT_SWAP) {
1816 			vm_object_drop(backing_object);
1817 			backing_object = NULL;
1818 			break;
1819 		}
1820 
1821 		/*
1822 		 * Chain-lock the backing object too because if we
1823 		 * successfully merge its pages into the top object we
1824 		 * will collapse backing_object->backing_object as the
1825 		 * new backing_object.  Re-check that it is still our
1826 		 * backing object.
1827 		 */
1828 		vm_object_chain_acquire(backing_object);
1829 		if (backing_object != object->backing_object) {
1830 			vm_object_chain_release(backing_object);
1831 			vm_object_drop(backing_object);
1832 			continue;
1833 		}
1834 
1835 		/*
1836 		 * we check the backing object first, because it is most likely
1837 		 * not collapsable.
1838 		 */
1839 		if (backing_object->handle != NULL ||
1840 		    (backing_object->type != OBJT_DEFAULT &&
1841 		     backing_object->type != OBJT_SWAP) ||
1842 		    (backing_object->flags & OBJ_DEAD) ||
1843 		    object->handle != NULL ||
1844 		    (object->type != OBJT_DEFAULT &&
1845 		     object->type != OBJT_SWAP) ||
1846 		    (object->flags & OBJ_DEAD)) {
1847 			break;
1848 		}
1849 
1850 		/*
1851 		 * If paging is in progress we can't do a normal collapse.
1852 		 */
1853 		if (
1854 		    object->paging_in_progress != 0 ||
1855 		    backing_object->paging_in_progress != 0
1856 		) {
1857 			vm_object_qcollapse(object, backing_object);
1858 			break;
1859 		}
1860 
1861 		/*
1862 		 * We know that we can either collapse the backing object (if
1863 		 * the parent is the only reference to it) or (perhaps) have
1864 		 * the parent bypass the object if the parent happens to shadow
1865 		 * all the resident pages in the entire backing object.
1866 		 *
1867 		 * This is ignoring pager-backed pages such as swap pages.
1868 		 * vm_object_backing_scan fails the shadowing test in this
1869 		 * case.
1870 		 */
1871 		if (backing_object->ref_count == 1) {
1872 			/*
1873 			 * If there is exactly one reference to the backing
1874 			 * object, we can collapse it into the parent.
1875 			 */
1876 			KKASSERT(object->backing_object == backing_object);
1877 			vm_object_backing_scan(object, backing_object,
1878 					       OBSC_COLLAPSE_WAIT);
1879 
1880 			/*
1881 			 * Move the pager from backing_object to object.
1882 			 */
1883 			if (backing_object->type == OBJT_SWAP) {
1884 				vm_object_pip_add(backing_object, 1);
1885 
1886 				/*
1887 				 * scrap the paging_offset junk and do a
1888 				 * discrete copy.  This also removes major
1889 				 * assumptions about how the swap-pager
1890 				 * works from where it doesn't belong.  The
1891 				 * new swapper is able to optimize the
1892 				 * destroy-source case.
1893 				 */
1894 				vm_object_pip_add(object, 1);
1895 				swap_pager_copy(backing_object, object,
1896 				    OFF_TO_IDX(object->backing_object_offset),
1897 				    TRUE);
1898 				vm_object_pip_wakeup(object);
1899 				vm_object_pip_wakeup(backing_object);
1900 			}
1901 
1902 			/*
1903 			 * Object now shadows whatever backing_object did.
1904 			 * Remove object from backing_object's shadow_list.
1905 			 */
1906 			LIST_REMOVE(object, shadow_list);
1907 			KKASSERT(object->backing_object == backing_object);
1908 			backing_object->shadow_count--;
1909 			backing_object->generation++;
1910 
1911 			/*
1912 			 * backing_object->backing_object moves from within
1913 			 * backing_object to within object.
1914 			 */
1915 			while ((bbobj = backing_object->backing_object) != NULL) {
1916 				vm_object_hold(bbobj);
1917 				if (bbobj == backing_object->backing_object)
1918 					break;
1919 				vm_object_drop(bbobj);
1920 			}
1921 			if (bbobj) {
1922 				LIST_REMOVE(backing_object, shadow_list);
1923 				bbobj->shadow_count--;
1924 				bbobj->generation++;
1925 				backing_object->backing_object = NULL;
1926 			}
1927 			object->backing_object = bbobj;
1928 			if (bbobj) {
1929 				LIST_INSERT_HEAD(&bbobj->shadow_head,
1930 						 object, shadow_list);
1931 				bbobj->shadow_count++;
1932 				bbobj->generation++;
1933 			}
1934 
1935 			object->backing_object_offset +=
1936 				backing_object->backing_object_offset;
1937 
1938 			vm_object_drop(bbobj);
1939 
1940 			/*
1941 			 * Discard the old backing_object.  Nothing should be
1942 			 * able to ref it, other than a vm_map_split(),
1943 			 * and vm_map_split() will stall on our chain lock.
1944 			 * And we control the parent so it shouldn't be
1945 			 * possible for it to go away either.
1946 			 *
1947 			 * Since the backing object has no pages, no pager
1948 			 * left, and no object references within it, all
1949 			 * that is necessary is to dispose of it.
1950 			 */
1951 			KASSERT(backing_object->ref_count == 1,
1952 				("backing_object %p was somehow "
1953 				 "re-referenced during collapse!",
1954 				 backing_object));
1955 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1956 				("backing_object %p somehow has left "
1957 				 "over pages during collapse!",
1958 				 backing_object));
1959 
1960 			/*
1961 			 * The object can be destroyed.
1962 			 *
1963 			 * XXX just fall through and dodealloc instead
1964 			 *     of forcing destruction?
1965 			 */
1966 			--backing_object->ref_count;
1967 			if ((backing_object->flags & OBJ_DEAD) == 0)
1968 				vm_object_terminate(backing_object);
1969 			object_collapses++;
1970 			dodealloc = 0;
1971 		} else {
1972 			/*
1973 			 * If we do not entirely shadow the backing object,
1974 			 * there is nothing we can do so we give up.
1975 			 */
1976 			if (vm_object_backing_scan(object, backing_object,
1977 						OBSC_TEST_ALL_SHADOWED) == 0) {
1978 				break;
1979 			}
1980 
1981 			/*
1982 			 * bbobj is backing_object->backing_object.  Since
1983 			 * object completely shadows backing_object we can
1984 			 * bypass it and become backed by bbobj instead.
1985 			 */
1986 			while ((bbobj = backing_object->backing_object) != NULL) {
1987 				vm_object_hold(bbobj);
1988 				if (bbobj == backing_object->backing_object)
1989 					break;
1990 				vm_object_drop(bbobj);
1991 			}
1992 
1993 			/*
1994 			 * Make object shadow bbobj instead of backing_object.
1995 			 * Remove object from backing_object's shadow list.
1996 			 *
1997 			 * Deallocating backing_object will not remove
1998 			 * it, since its reference count is at least 2.
1999 			 */
2000 			KKASSERT(object->backing_object == backing_object);
2001 			LIST_REMOVE(object, shadow_list);
2002 			backing_object->shadow_count--;
2003 			backing_object->generation++;
2004 
2005 			/*
2006 			 * Add a ref to bbobj, bbobj now shadows object.
2007 			 *
2008 			 * NOTE: backing_object->backing_object still points
2009 			 *	 to bbobj.  That relationship remains intact
2010 			 *	 because backing_object has > 1 ref, so
2011 			 *	 someone else is pointing to it (hence why
2012 			 *	 we can't collapse it into object and can
2013 			 *	 only handle the all-shadowed bypass case).
2014 			 */
2015 			if (bbobj) {
2016 				vm_object_chain_wait(bbobj);
2017 				vm_object_reference_locked(bbobj);
2018 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2019 						 object, shadow_list);
2020 				bbobj->shadow_count++;
2021 				bbobj->generation++;
2022 				object->backing_object_offset +=
2023 					backing_object->backing_object_offset;
2024 				object->backing_object = bbobj;
2025 				vm_object_drop(bbobj);
2026 			} else {
2027 				object->backing_object = NULL;
2028 			}
2029 
2030 			/*
2031 			 * Drop the reference count on backing_object.  To
2032 			 * handle ref_count races properly we can't assume
2033 			 * that the ref_count is still at least 2 so we
2034 			 * have to actually call vm_object_deallocate()
2035 			 * (after clearing the chainlock).
2036 			 */
2037 			object_bypasses++;
2038 			dodealloc = 1;
2039 		}
2040 
2041 		/*
2042 		 * Ok, we want to loop on the new object->bbobj association,
2043 		 * possibly collapsing it further.  However if dodealloc is
2044 		 * non-zero we have to deallocate the backing_object which
2045 		 * itself can potentially undergo a collapse, creating a
2046 		 * recursion depth issue with the LWKT token subsystem.
2047 		 *
2048 		 * In the case where we must deallocate the backing_object
2049 		 * it is possible now that the backing_object has a single
2050 		 * shadow count on some other object (not represented here
2051 		 * as yet), since it no longer shadows us.  Thus when we
2052 		 * call vm_object_deallocate() it may attempt to collapse
2053 		 * itself into its remaining parent.
2054 		 */
2055 		if (dodealloc) {
2056 			struct vm_object_dealloc_list *dtmp;
2057 
2058 			vm_object_chain_release(backing_object);
2059 			vm_object_unlock(backing_object);
2060 			/* backing_object remains held */
2061 
2062 			/*
2063 			 * Auto-deallocation list for caller convenience.
2064 			 */
2065 			if (dlistp == NULL)
2066 				dlistp = &dlist;
2067 
2068 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2069 			dtmp->object = backing_object;
2070 			dtmp->next = *dlistp;
2071 			*dlistp = dtmp;
2072 		} else {
2073 			vm_object_chain_release(backing_object);
2074 			vm_object_drop(backing_object);
2075 		}
2076 		/* backing_object = NULL; not needed */
2077 		/* loop */
2078 	}
2079 
2080 	/*
2081 	 * Clean up any left over backing_object
2082 	 */
2083 	if (backing_object) {
2084 		vm_object_chain_release(backing_object);
2085 		vm_object_drop(backing_object);
2086 	}
2087 
2088 	/*
2089 	 * Clean up any auto-deallocation list.  This is a convenience
2090 	 * for top-level callers so they don't have to pass &dlist.
2091 	 * Do not clean up any caller-passed dlistp, the caller will
2092 	 * do that.
2093 	 */
2094 	if (dlist)
2095 		vm_object_deallocate_list(&dlist);
2096 
2097 }
2098 
2099 /*
2100  * vm_object_collapse() may collect additional objects in need of
2101  * deallocation.  This routine deallocates these objects.  The
2102  * deallocation itself can trigger additional collapses (which the
2103  * deallocate function takes care of).  This procedure is used to
2104  * reduce procedural recursion since these vm_object shadow chains
2105  * can become quite long.
2106  */
2107 void
2108 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2109 {
2110 	struct vm_object_dealloc_list *dlist;
2111 
2112 	while ((dlist = *dlistp) != NULL) {
2113 		*dlistp = dlist->next;
2114 		vm_object_lock(dlist->object);
2115 		vm_object_deallocate_locked(dlist->object);
2116 		vm_object_drop(dlist->object);
2117 		kfree(dlist, M_TEMP);
2118 	}
2119 }
2120 
2121 /*
2122  * Removes all physical pages in the specified object range from the
2123  * object's list of pages.
2124  *
2125  * No requirements.
2126  */
2127 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2128 
2129 void
2130 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2131 		      boolean_t clean_only)
2132 {
2133 	struct rb_vm_page_scan_info info;
2134 	int all;
2135 
2136 	/*
2137 	 * Degenerate cases and assertions
2138 	 */
2139 	vm_object_hold(object);
2140 	if (object == NULL ||
2141 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2142 		vm_object_drop(object);
2143 		return;
2144 	}
2145 	KASSERT(object->type != OBJT_PHYS,
2146 		("attempt to remove pages from a physical object"));
2147 
2148 	/*
2149 	 * Indicate that paging is occuring on the object
2150 	 */
2151 	vm_object_pip_add(object, 1);
2152 
2153 	/*
2154 	 * Figure out the actual removal range and whether we are removing
2155 	 * the entire contents of the object or not.  If removing the entire
2156 	 * contents, be sure to get all pages, even those that might be
2157 	 * beyond the end of the object.
2158 	 */
2159 	info.start_pindex = start;
2160 	if (end == 0)
2161 		info.end_pindex = (vm_pindex_t)-1;
2162 	else
2163 		info.end_pindex = end - 1;
2164 	info.limit = clean_only;
2165 	all = (start == 0 && info.end_pindex >= object->size - 1);
2166 
2167 	/*
2168 	 * Loop until we are sure we have gotten them all.
2169 	 */
2170 	do {
2171 		info.error = 0;
2172 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2173 					vm_object_page_remove_callback, &info);
2174 	} while (info.error);
2175 
2176 	/*
2177 	 * Remove any related swap if throwing away pages, or for
2178 	 * non-swap objects (the swap is a clean copy in that case).
2179 	 */
2180 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2181 		if (all)
2182 			swap_pager_freespace_all(object);
2183 		else
2184 			swap_pager_freespace(object, info.start_pindex,
2185 			     info.end_pindex - info.start_pindex + 1);
2186 	}
2187 
2188 	/*
2189 	 * Cleanup
2190 	 */
2191 	vm_object_pip_wakeup(object);
2192 	vm_object_drop(object);
2193 }
2194 
2195 /*
2196  * The caller must hold the object
2197  */
2198 static int
2199 vm_object_page_remove_callback(vm_page_t p, void *data)
2200 {
2201 	struct rb_vm_page_scan_info *info = data;
2202 
2203 	if (vm_page_busy_try(p, TRUE)) {
2204 		vm_page_sleep_busy(p, TRUE, "vmopar");
2205 		info->error = 1;
2206 		return(0);
2207 	}
2208 
2209 	/*
2210 	 * Wired pages cannot be destroyed, but they can be invalidated
2211 	 * and we do so if clean_only (limit) is not set.
2212 	 *
2213 	 * WARNING!  The page may be wired due to being part of a buffer
2214 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2215 	 *	     This is fine as part of a truncation but VFSs must be
2216 	 *	     sure to fix the buffer up when re-extending the file.
2217 	 */
2218 	if (p->wire_count != 0) {
2219 		vm_page_protect(p, VM_PROT_NONE);
2220 		if (info->limit == 0)
2221 			p->valid = 0;
2222 		vm_page_wakeup(p);
2223 		return(0);
2224 	}
2225 
2226 	/*
2227 	 * limit is our clean_only flag.  If set and the page is dirty, do
2228 	 * not free it.  If set and the page is being held by someone, do
2229 	 * not free it.
2230 	 */
2231 	if (info->limit && p->valid) {
2232 		vm_page_test_dirty(p);
2233 		if (p->valid & p->dirty) {
2234 			vm_page_wakeup(p);
2235 			return(0);
2236 		}
2237 #if 0
2238 		if (p->hold_count) {
2239 			vm_page_wakeup(p);
2240 			return(0);
2241 		}
2242 #endif
2243 	}
2244 
2245 	/*
2246 	 * Destroy the page
2247 	 */
2248 	vm_page_protect(p, VM_PROT_NONE);
2249 	vm_page_free(p);
2250 	return(0);
2251 }
2252 
2253 /*
2254  * Coalesces two objects backing up adjoining regions of memory into a
2255  * single object.
2256  *
2257  * returns TRUE if objects were combined.
2258  *
2259  * NOTE: Only works at the moment if the second object is NULL -
2260  *	 if it's not, which object do we lock first?
2261  *
2262  * Parameters:
2263  *	prev_object	First object to coalesce
2264  *	prev_offset	Offset into prev_object
2265  *	next_object	Second object into coalesce
2266  *	next_offset	Offset into next_object
2267  *
2268  *	prev_size	Size of reference to prev_object
2269  *	next_size	Size of reference to next_object
2270  *
2271  * The caller does not need to hold (prev_object) but must have a stable
2272  * pointer to it (typically by holding the vm_map locked).
2273  */
2274 boolean_t
2275 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2276 		   vm_size_t prev_size, vm_size_t next_size)
2277 {
2278 	vm_pindex_t next_pindex;
2279 
2280 	if (prev_object == NULL)
2281 		return (TRUE);
2282 
2283 	vm_object_hold(prev_object);
2284 
2285 	if (prev_object->type != OBJT_DEFAULT &&
2286 	    prev_object->type != OBJT_SWAP) {
2287 		vm_object_drop(prev_object);
2288 		return (FALSE);
2289 	}
2290 
2291 	/*
2292 	 * Try to collapse the object first
2293 	 */
2294 	vm_object_chain_acquire(prev_object);
2295 	vm_object_collapse(prev_object, NULL);
2296 
2297 	/*
2298 	 * Can't coalesce if: . more than one reference . paged out . shadows
2299 	 * another object . has a copy elsewhere (any of which mean that the
2300 	 * pages not mapped to prev_entry may be in use anyway)
2301 	 */
2302 
2303 	if (prev_object->backing_object != NULL) {
2304 		vm_object_chain_release(prev_object);
2305 		vm_object_drop(prev_object);
2306 		return (FALSE);
2307 	}
2308 
2309 	prev_size >>= PAGE_SHIFT;
2310 	next_size >>= PAGE_SHIFT;
2311 	next_pindex = prev_pindex + prev_size;
2312 
2313 	if ((prev_object->ref_count > 1) &&
2314 	    (prev_object->size != next_pindex)) {
2315 		vm_object_chain_release(prev_object);
2316 		vm_object_drop(prev_object);
2317 		return (FALSE);
2318 	}
2319 
2320 	/*
2321 	 * Remove any pages that may still be in the object from a previous
2322 	 * deallocation.
2323 	 */
2324 	if (next_pindex < prev_object->size) {
2325 		vm_object_page_remove(prev_object,
2326 				      next_pindex,
2327 				      next_pindex + next_size, FALSE);
2328 		if (prev_object->type == OBJT_SWAP)
2329 			swap_pager_freespace(prev_object,
2330 					     next_pindex, next_size);
2331 	}
2332 
2333 	/*
2334 	 * Extend the object if necessary.
2335 	 */
2336 	if (next_pindex + next_size > prev_object->size)
2337 		prev_object->size = next_pindex + next_size;
2338 
2339 	vm_object_chain_release(prev_object);
2340 	vm_object_drop(prev_object);
2341 	return (TRUE);
2342 }
2343 
2344 /*
2345  * Make the object writable and flag is being possibly dirty.
2346  *
2347  * The caller must hold the object. XXX called from vm_page_dirty(),
2348  * There is currently no requirement to hold the object.
2349  */
2350 void
2351 vm_object_set_writeable_dirty(vm_object_t object)
2352 {
2353 	struct vnode *vp;
2354 
2355 	/*vm_object_assert_held(object);*/
2356 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2357 	if (object->type == OBJT_VNODE &&
2358 	    (vp = (struct vnode *)object->handle) != NULL) {
2359 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2360 			vsetflags(vp, VOBJDIRTY);
2361 		}
2362 	}
2363 }
2364 
2365 #include "opt_ddb.h"
2366 #ifdef DDB
2367 #include <sys/kernel.h>
2368 
2369 #include <sys/cons.h>
2370 
2371 #include <ddb/ddb.h>
2372 
2373 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2374 				       vm_map_entry_t entry);
2375 static int	vm_object_in_map (vm_object_t object);
2376 
2377 /*
2378  * The caller must hold the object.
2379  */
2380 static int
2381 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2382 {
2383 	vm_map_t tmpm;
2384 	vm_map_entry_t tmpe;
2385 	vm_object_t obj, nobj;
2386 	int entcount;
2387 
2388 	if (map == 0)
2389 		return 0;
2390 	if (entry == 0) {
2391 		tmpe = map->header.next;
2392 		entcount = map->nentries;
2393 		while (entcount-- && (tmpe != &map->header)) {
2394 			if( _vm_object_in_map(map, object, tmpe)) {
2395 				return 1;
2396 			}
2397 			tmpe = tmpe->next;
2398 		}
2399 		return (0);
2400 	}
2401 	switch(entry->maptype) {
2402 	case VM_MAPTYPE_SUBMAP:
2403 		tmpm = entry->object.sub_map;
2404 		tmpe = tmpm->header.next;
2405 		entcount = tmpm->nentries;
2406 		while (entcount-- && tmpe != &tmpm->header) {
2407 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2408 				return 1;
2409 			}
2410 			tmpe = tmpe->next;
2411 		}
2412 		break;
2413 	case VM_MAPTYPE_NORMAL:
2414 	case VM_MAPTYPE_VPAGETABLE:
2415 		obj = entry->object.vm_object;
2416 		while (obj) {
2417 			if (obj == object) {
2418 				if (obj != entry->object.vm_object)
2419 					vm_object_drop(obj);
2420 				return 1;
2421 			}
2422 			while ((nobj = obj->backing_object) != NULL) {
2423 				vm_object_hold(nobj);
2424 				if (nobj == obj->backing_object)
2425 					break;
2426 				vm_object_drop(nobj);
2427 			}
2428 			if (obj != entry->object.vm_object) {
2429 				if (nobj)
2430 					vm_object_lock_swap();
2431 				vm_object_drop(obj);
2432 			}
2433 			obj = nobj;
2434 		}
2435 		break;
2436 	default:
2437 		break;
2438 	}
2439 	return 0;
2440 }
2441 
2442 static int vm_object_in_map_callback(struct proc *p, void *data);
2443 
2444 struct vm_object_in_map_info {
2445 	vm_object_t object;
2446 	int rv;
2447 };
2448 
2449 /*
2450  * Debugging only
2451  */
2452 static int
2453 vm_object_in_map(vm_object_t object)
2454 {
2455 	struct vm_object_in_map_info info;
2456 
2457 	info.rv = 0;
2458 	info.object = object;
2459 
2460 	allproc_scan(vm_object_in_map_callback, &info);
2461 	if (info.rv)
2462 		return 1;
2463 	if( _vm_object_in_map(&kernel_map, object, 0))
2464 		return 1;
2465 	if( _vm_object_in_map(&pager_map, object, 0))
2466 		return 1;
2467 	if( _vm_object_in_map(&buffer_map, object, 0))
2468 		return 1;
2469 	return 0;
2470 }
2471 
2472 /*
2473  * Debugging only
2474  */
2475 static int
2476 vm_object_in_map_callback(struct proc *p, void *data)
2477 {
2478 	struct vm_object_in_map_info *info = data;
2479 
2480 	if (p->p_vmspace) {
2481 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2482 			info->rv = 1;
2483 			return -1;
2484 		}
2485 	}
2486 	return (0);
2487 }
2488 
2489 DB_SHOW_COMMAND(vmochk, vm_object_check)
2490 {
2491 	vm_object_t object;
2492 
2493 	/*
2494 	 * make sure that internal objs are in a map somewhere
2495 	 * and none have zero ref counts.
2496 	 */
2497 	for (object = TAILQ_FIRST(&vm_object_list);
2498 			object != NULL;
2499 			object = TAILQ_NEXT(object, object_list)) {
2500 		if (object->type == OBJT_MARKER)
2501 			continue;
2502 		if (object->handle == NULL &&
2503 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2504 			if (object->ref_count == 0) {
2505 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2506 					(long)object->size);
2507 			}
2508 			if (!vm_object_in_map(object)) {
2509 				db_printf(
2510 			"vmochk: internal obj is not in a map: "
2511 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2512 				    object->ref_count, (u_long)object->size,
2513 				    (u_long)object->size,
2514 				    (void *)object->backing_object);
2515 			}
2516 		}
2517 	}
2518 }
2519 
2520 /*
2521  * Debugging only
2522  */
2523 DB_SHOW_COMMAND(object, vm_object_print_static)
2524 {
2525 	/* XXX convert args. */
2526 	vm_object_t object = (vm_object_t)addr;
2527 	boolean_t full = have_addr;
2528 
2529 	vm_page_t p;
2530 
2531 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2532 #define	count	was_count
2533 
2534 	int count;
2535 
2536 	if (object == NULL)
2537 		return;
2538 
2539 	db_iprintf(
2540 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2541 	    object, (int)object->type, (u_long)object->size,
2542 	    object->resident_page_count, object->ref_count, object->flags);
2543 	/*
2544 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2545 	 */
2546 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2547 	    object->shadow_count,
2548 	    object->backing_object ? object->backing_object->ref_count : 0,
2549 	    object->backing_object, (long)object->backing_object_offset);
2550 
2551 	if (!full)
2552 		return;
2553 
2554 	db_indent += 2;
2555 	count = 0;
2556 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2557 		if (count == 0)
2558 			db_iprintf("memory:=");
2559 		else if (count == 6) {
2560 			db_printf("\n");
2561 			db_iprintf(" ...");
2562 			count = 0;
2563 		} else
2564 			db_printf(",");
2565 		count++;
2566 
2567 		db_printf("(off=0x%lx,page=0x%lx)",
2568 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2569 	}
2570 	if (count != 0)
2571 		db_printf("\n");
2572 	db_indent -= 2;
2573 }
2574 
2575 /* XXX. */
2576 #undef count
2577 
2578 /*
2579  * XXX need this non-static entry for calling from vm_map_print.
2580  *
2581  * Debugging only
2582  */
2583 void
2584 vm_object_print(/* db_expr_t */ long addr,
2585 		boolean_t have_addr,
2586 		/* db_expr_t */ long count,
2587 		char *modif)
2588 {
2589 	vm_object_print_static(addr, have_addr, count, modif);
2590 }
2591 
2592 /*
2593  * Debugging only
2594  */
2595 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2596 {
2597 	vm_object_t object;
2598 	int nl = 0;
2599 	int c;
2600 	for (object = TAILQ_FIRST(&vm_object_list);
2601 			object != NULL;
2602 			object = TAILQ_NEXT(object, object_list)) {
2603 		vm_pindex_t idx, fidx;
2604 		vm_pindex_t osize;
2605 		vm_paddr_t pa = -1, padiff;
2606 		int rcount;
2607 		vm_page_t m;
2608 
2609 		if (object->type == OBJT_MARKER)
2610 			continue;
2611 		db_printf("new object: %p\n", (void *)object);
2612 		if ( nl > 18) {
2613 			c = cngetc();
2614 			if (c != ' ')
2615 				return;
2616 			nl = 0;
2617 		}
2618 		nl++;
2619 		rcount = 0;
2620 		fidx = 0;
2621 		osize = object->size;
2622 		if (osize > 128)
2623 			osize = 128;
2624 		for (idx = 0; idx < osize; idx++) {
2625 			m = vm_page_lookup(object, idx);
2626 			if (m == NULL) {
2627 				if (rcount) {
2628 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2629 						(long)fidx, rcount, (long)pa);
2630 					if ( nl > 18) {
2631 						c = cngetc();
2632 						if (c != ' ')
2633 							return;
2634 						nl = 0;
2635 					}
2636 					nl++;
2637 					rcount = 0;
2638 				}
2639 				continue;
2640 			}
2641 
2642 
2643 			if (rcount &&
2644 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2645 				++rcount;
2646 				continue;
2647 			}
2648 			if (rcount) {
2649 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2650 				padiff >>= PAGE_SHIFT;
2651 				padiff &= PQ_L2_MASK;
2652 				if (padiff == 0) {
2653 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2654 					++rcount;
2655 					continue;
2656 				}
2657 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2658 					(long)fidx, rcount, (long)pa);
2659 				db_printf("pd(%ld)\n", (long)padiff);
2660 				if ( nl > 18) {
2661 					c = cngetc();
2662 					if (c != ' ')
2663 						return;
2664 					nl = 0;
2665 				}
2666 				nl++;
2667 			}
2668 			fidx = idx;
2669 			pa = VM_PAGE_TO_PHYS(m);
2670 			rcount = 1;
2671 		}
2672 		if (rcount) {
2673 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2674 				(long)fidx, rcount, (long)pa);
2675 			if ( nl > 18) {
2676 				c = cngetc();
2677 				if (c != ' ')
2678 					return;
2679 				nl = 0;
2680 			}
2681 			nl++;
2682 		}
2683 	}
2684 }
2685 #endif /* DDB */
2686