1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 67 */ 68 69 /* 70 * Virtual memory object module. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> /* for curproc, pageproc */ 76 #include <sys/thread.h> 77 #include <sys/vnode.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/mount.h> 81 #include <sys/kernel.h> 82 #include <sys/sysctl.h> 83 #include <sys/refcount.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_zone.h> 97 98 #define EASY_SCAN_FACTOR 8 99 100 static void vm_object_qcollapse(vm_object_t object, 101 vm_object_t backing_object); 102 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 103 int pagerflags); 104 static void vm_object_lock_init(vm_object_t); 105 106 107 /* 108 * Virtual memory objects maintain the actual data 109 * associated with allocated virtual memory. A given 110 * page of memory exists within exactly one object. 111 * 112 * An object is only deallocated when all "references" 113 * are given up. Only one "reference" to a given 114 * region of an object should be writeable. 115 * 116 * Associated with each object is a list of all resident 117 * memory pages belonging to that object; this list is 118 * maintained by the "vm_page" module, and locked by the object's 119 * lock. 120 * 121 * Each object also records a "pager" routine which is 122 * used to retrieve (and store) pages to the proper backing 123 * storage. In addition, objects may be backed by other 124 * objects from which they were virtual-copied. 125 * 126 * The only items within the object structure which are 127 * modified after time of creation are: 128 * reference count locked by object's lock 129 * pager routine locked by object's lock 130 * 131 */ 132 133 struct object_q vm_object_list; /* locked by vmobj_token */ 134 struct vm_object kernel_object; 135 136 static long vm_object_count; /* locked by vmobj_token */ 137 extern int vm_pageout_page_count; 138 139 static long object_collapses; 140 static long object_bypasses; 141 static int next_index; 142 static vm_zone_t obj_zone; 143 static struct vm_zone obj_zone_store; 144 #define VM_OBJECTS_INIT 256 145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 146 147 /* 148 * Misc low level routines 149 */ 150 static void 151 vm_object_lock_init(vm_object_t obj) 152 { 153 #if defined(DEBUG_LOCKS) 154 int i; 155 156 obj->debug_hold_bitmap = 0; 157 obj->debug_hold_ovfl = 0; 158 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 159 obj->debug_hold_thrs[i] = NULL; 160 obj->debug_hold_file[i] = NULL; 161 obj->debug_hold_line[i] = 0; 162 } 163 #endif 164 } 165 166 void 167 vm_object_lock_swap(void) 168 { 169 lwkt_token_swap(); 170 } 171 172 void 173 vm_object_lock(vm_object_t obj) 174 { 175 lwkt_getpooltoken(obj); 176 } 177 178 void 179 vm_object_unlock(vm_object_t obj) 180 { 181 lwkt_relpooltoken(obj); 182 } 183 184 static __inline void 185 vm_object_assert_held(vm_object_t obj) 186 { 187 ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup(obj)); 188 } 189 190 void 191 #ifndef DEBUG_LOCKS 192 vm_object_hold(vm_object_t obj) 193 #else 194 debugvm_object_hold(vm_object_t obj, char *file, int line) 195 #endif 196 { 197 KKASSERT(obj != NULL); 198 199 /* 200 * Object must be held (object allocation is stable due to callers 201 * context, typically already holding the token on a parent object) 202 * prior to potentially blocking on the lock, otherwise the object 203 * can get ripped away from us. 204 */ 205 refcount_acquire(&obj->hold_count); 206 vm_object_lock(obj); 207 208 #if defined(DEBUG_LOCKS) 209 int i; 210 211 i = ffs(~obj->debug_hold_bitmap) - 1; 212 if (i == -1) { 213 kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE"); 214 obj->debug_hold_ovfl = 1; 215 } 216 217 obj->debug_hold_bitmap |= (1 << i); 218 obj->debug_hold_thrs[i] = curthread; 219 obj->debug_hold_file[i] = file; 220 obj->debug_hold_line[i] = line; 221 #endif 222 } 223 224 /* 225 * Drop the token and hold_count on the object. 226 */ 227 void 228 vm_object_drop(vm_object_t obj) 229 { 230 if (obj == NULL) 231 return; 232 233 #if defined(DEBUG_LOCKS) 234 int found = 0; 235 int i; 236 237 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 238 if ((obj->debug_hold_bitmap & (1 << i)) && 239 (obj->debug_hold_thrs[i] == curthread)) { 240 obj->debug_hold_bitmap &= ~(1 << i); 241 obj->debug_hold_thrs[i] = NULL; 242 obj->debug_hold_file[i] = NULL; 243 obj->debug_hold_line[i] = 0; 244 found = 1; 245 break; 246 } 247 } 248 249 if (found == 0 && obj->debug_hold_ovfl == 0) 250 panic("vm_object: attempt to drop hold on non-self-held obj"); 251 #endif 252 253 /* 254 * The lock is a pool token, no new holders should be possible once 255 * we drop hold_count 1->0 as there is no longer any way to reference 256 * the object. 257 */ 258 if (refcount_release(&obj->hold_count)) { 259 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) 260 zfree(obj_zone, obj); 261 } 262 vm_object_unlock(obj); /* uses pool token, ok to call on freed obj */ 263 } 264 265 /* 266 * Initialize a freshly allocated object 267 * 268 * Used only by vm_object_allocate() and zinitna(). 269 * 270 * No requirements. 271 */ 272 void 273 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 274 { 275 int incr; 276 277 RB_INIT(&object->rb_memq); 278 LIST_INIT(&object->shadow_head); 279 280 object->type = type; 281 object->size = size; 282 object->ref_count = 1; 283 object->hold_count = 0; 284 object->flags = 0; 285 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 286 vm_object_set_flag(object, OBJ_ONEMAPPING); 287 object->paging_in_progress = 0; 288 object->resident_page_count = 0; 289 object->agg_pv_list_count = 0; 290 object->shadow_count = 0; 291 #ifdef SMP 292 /* cpu localization twist */ 293 object->pg_color = (int)(intptr_t)curthread; 294 #else 295 object->pg_color = next_index; 296 #endif 297 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 298 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 299 else 300 incr = size; 301 next_index = (next_index + incr) & PQ_L2_MASK; 302 object->handle = NULL; 303 object->backing_object = NULL; 304 object->backing_object_offset = (vm_ooffset_t)0; 305 306 object->generation++; 307 object->swblock_count = 0; 308 RB_INIT(&object->swblock_root); 309 vm_object_lock_init(object); 310 311 lwkt_gettoken(&vmobj_token); 312 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 313 vm_object_count++; 314 lwkt_reltoken(&vmobj_token); 315 } 316 317 /* 318 * Initialize the VM objects module. 319 * 320 * Called from the low level boot code only. 321 */ 322 void 323 vm_object_init(void) 324 { 325 TAILQ_INIT(&vm_object_list); 326 327 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 328 &kernel_object); 329 330 obj_zone = &obj_zone_store; 331 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 332 vm_objects_init, VM_OBJECTS_INIT); 333 } 334 335 void 336 vm_object_init2(void) 337 { 338 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 339 } 340 341 /* 342 * Allocate and return a new object of the specified type and size. 343 * 344 * No requirements. 345 */ 346 vm_object_t 347 vm_object_allocate(objtype_t type, vm_pindex_t size) 348 { 349 vm_object_t result; 350 351 result = (vm_object_t) zalloc(obj_zone); 352 353 _vm_object_allocate(type, size, result); 354 355 return (result); 356 } 357 358 /* 359 * Add an additional reference to a vm_object. The object must already be 360 * held. The original non-lock version is no longer supported. The object 361 * must NOT be chain locked by anyone at the time the reference is added. 362 * 363 * Referencing a chain-locked object can blow up the fairly sensitive 364 * ref_count and shadow_count tests in the deallocator. Most callers 365 * will call vm_object_chain_wait() prior to calling 366 * vm_object_reference_locked() to avoid the case. 367 * 368 * The object must be held. 369 */ 370 void 371 vm_object_reference_locked(vm_object_t object) 372 { 373 KKASSERT(object != NULL); 374 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 375 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 376 object->ref_count++; 377 if (object->type == OBJT_VNODE) { 378 vref(object->handle); 379 /* XXX what if the vnode is being destroyed? */ 380 } 381 } 382 383 /* 384 * Object OBJ_CHAINLOCK lock handling. 385 * 386 * The caller can chain-lock backing objects recursively and then 387 * use vm_object_chain_release_all() to undo the whole chain. 388 * 389 * Chain locks are used to prevent collapses and are only applicable 390 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 391 * on other object types are ignored. This is also important because 392 * it allows e.g. the vnode underlying a memory mapping to take concurrent 393 * faults. 394 * 395 * The object must usually be held on entry, though intermediate 396 * objects need not be held on release. 397 */ 398 void 399 vm_object_chain_wait(vm_object_t object) 400 { 401 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 402 while (object->flags & OBJ_CHAINLOCK) { 403 vm_object_set_flag(object, OBJ_CHAINWANT); 404 tsleep(object, 0, "objchain", 0); 405 } 406 } 407 408 void 409 vm_object_chain_acquire(vm_object_t object) 410 { 411 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 412 vm_object_chain_wait(object); 413 vm_object_set_flag(object, OBJ_CHAINLOCK); 414 } 415 } 416 417 void 418 vm_object_chain_release(vm_object_t object) 419 { 420 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 421 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 422 KKASSERT(object->flags & OBJ_CHAINLOCK); 423 if (object->flags & OBJ_CHAINWANT) { 424 vm_object_clear_flag(object, 425 OBJ_CHAINLOCK | OBJ_CHAINWANT); 426 wakeup(object); 427 } else { 428 vm_object_clear_flag(object, OBJ_CHAINLOCK); 429 } 430 } 431 } 432 433 /* 434 * This releases the entire chain of objects from first_object to and 435 * including stopobj, flowing through object->backing_object. 436 * 437 * We release stopobj first as an optimization as this object is most 438 * likely to be shared across multiple processes. 439 */ 440 void 441 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 442 { 443 vm_object_t backing_object; 444 vm_object_t object; 445 446 vm_object_chain_release(stopobj); 447 object = first_object; 448 449 while (object != stopobj) { 450 KKASSERT(object); 451 if (object != first_object) 452 vm_object_hold(object); 453 backing_object = object->backing_object; 454 vm_object_chain_release(object); 455 if (object != first_object) 456 vm_object_drop(object); 457 object = backing_object; 458 } 459 } 460 461 /* 462 * Dereference an object and its underlying vnode. 463 * 464 * The object must be held and will be held on return. 465 */ 466 static void 467 vm_object_vndeallocate(vm_object_t object) 468 { 469 struct vnode *vp = (struct vnode *) object->handle; 470 471 KASSERT(object->type == OBJT_VNODE, 472 ("vm_object_vndeallocate: not a vnode object")); 473 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 474 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 475 #ifdef INVARIANTS 476 if (object->ref_count == 0) { 477 vprint("vm_object_vndeallocate", vp); 478 panic("vm_object_vndeallocate: bad object reference count"); 479 } 480 #endif 481 object->ref_count--; 482 if (object->ref_count == 0) 483 vclrflags(vp, VTEXT); 484 vrele(vp); 485 } 486 487 /* 488 * Release a reference to the specified object, gained either through a 489 * vm_object_allocate or a vm_object_reference call. When all references 490 * are gone, storage associated with this object may be relinquished. 491 * 492 * The caller does not have to hold the object locked but must have control 493 * over the reference in question in order to guarantee that the object 494 * does not get ripped out from under us. 495 */ 496 void 497 vm_object_deallocate(vm_object_t object) 498 { 499 if (object) { 500 vm_object_hold(object); 501 vm_object_deallocate_locked(object); 502 vm_object_drop(object); 503 } 504 } 505 506 void 507 vm_object_deallocate_locked(vm_object_t object) 508 { 509 struct vm_object_dealloc_list *dlist = NULL; 510 struct vm_object_dealloc_list *dtmp; 511 vm_object_t temp; 512 int must_drop = 0; 513 514 /* 515 * We may chain deallocate object, but additional objects may 516 * collect on the dlist which also have to be deallocated. We 517 * must avoid a recursion, vm_object chains can get deep. 518 */ 519 again: 520 while (object != NULL) { 521 #if 0 522 /* 523 * Don't rip a ref_count out from under an object undergoing 524 * collapse, it will confuse the collapse code. 525 */ 526 vm_object_chain_wait(object); 527 #endif 528 if (object->type == OBJT_VNODE) { 529 vm_object_vndeallocate(object); 530 break; 531 } 532 533 if (object->ref_count == 0) { 534 panic("vm_object_deallocate: object deallocated " 535 "too many times: %d", object->type); 536 } 537 if (object->ref_count > 2) { 538 object->ref_count--; 539 break; 540 } 541 542 /* 543 * Here on ref_count of one or two, which are special cases for 544 * objects. 545 * 546 * Nominal ref_count > 1 case if the second ref is not from 547 * a shadow. 548 */ 549 if (object->ref_count == 2 && object->shadow_count == 0) { 550 vm_object_set_flag(object, OBJ_ONEMAPPING); 551 object->ref_count--; 552 break; 553 } 554 555 /* 556 * If the second ref is from a shadow we chain along it 557 * upwards if object's handle is exhausted. 558 * 559 * We have to decrement object->ref_count before potentially 560 * collapsing the first shadow object or the collapse code 561 * will not be able to handle the degenerate case to remove 562 * object. However, if we do it too early the object can 563 * get ripped out from under us. 564 */ 565 if (object->ref_count == 2 && object->shadow_count == 1 && 566 object->handle == NULL && (object->type == OBJT_DEFAULT || 567 object->type == OBJT_SWAP)) { 568 temp = LIST_FIRST(&object->shadow_head); 569 KKASSERT(temp != NULL); 570 vm_object_hold(temp); 571 572 /* 573 * Wait for any paging to complete so the collapse 574 * doesn't (or isn't likely to) qcollapse. pip 575 * waiting must occur before we acquire the 576 * chainlock. 577 */ 578 while ( 579 temp->paging_in_progress || 580 object->paging_in_progress 581 ) { 582 vm_object_pip_wait(temp, "objde1"); 583 vm_object_pip_wait(object, "objde2"); 584 } 585 586 /* 587 * If the parent is locked we have to give up, as 588 * otherwise we would be acquiring locks in the 589 * wrong order and potentially deadlock. 590 */ 591 if (temp->flags & OBJ_CHAINLOCK) { 592 vm_object_drop(temp); 593 goto skip; 594 } 595 vm_object_chain_acquire(temp); 596 597 /* 598 * Recheck/retry after the hold and the paging 599 * wait, both of which can block us. 600 */ 601 if (object->ref_count != 2 || 602 object->shadow_count != 1 || 603 object->handle || 604 LIST_FIRST(&object->shadow_head) != temp || 605 (object->type != OBJT_DEFAULT && 606 object->type != OBJT_SWAP)) { 607 vm_object_chain_release(temp); 608 vm_object_drop(temp); 609 continue; 610 } 611 612 /* 613 * We can safely drop object's ref_count now. 614 */ 615 KKASSERT(object->ref_count == 2); 616 object->ref_count--; 617 618 /* 619 * If our single parent is not collapseable just 620 * decrement ref_count (2->1) and stop. 621 */ 622 if (temp->handle || (temp->type != OBJT_DEFAULT && 623 temp->type != OBJT_SWAP)) { 624 vm_object_chain_release(temp); 625 vm_object_drop(temp); 626 break; 627 } 628 629 /* 630 * At this point we have already dropped object's 631 * ref_count so it is possible for a race to 632 * deallocate obj out from under us. Any collapse 633 * will re-check the situation. We must not block 634 * until we are able to collapse. 635 * 636 * Bump temp's ref_count to avoid an unwanted 637 * degenerate recursion (can't call 638 * vm_object_reference_locked() because it asserts 639 * that CHAINLOCK is not set). 640 */ 641 temp->ref_count++; 642 KKASSERT(temp->ref_count > 1); 643 644 /* 645 * Collapse temp, then deallocate the extra ref 646 * formally. 647 */ 648 vm_object_collapse(temp, &dlist); 649 vm_object_chain_release(temp); 650 if (must_drop) { 651 vm_object_lock_swap(); 652 vm_object_drop(object); 653 } 654 object = temp; 655 must_drop = 1; 656 continue; 657 } 658 659 /* 660 * Drop the ref and handle termination on the 1->0 transition. 661 * We may have blocked above so we have to recheck. 662 */ 663 skip: 664 KKASSERT(object->ref_count != 0); 665 if (object->ref_count >= 2) { 666 object->ref_count--; 667 break; 668 } 669 KKASSERT(object->ref_count == 1); 670 671 /* 672 * 1->0 transition. Chain through the backing_object. 673 * Maintain the ref until we've located the backing object, 674 * then re-check. 675 */ 676 while ((temp = object->backing_object) != NULL) { 677 vm_object_hold(temp); 678 if (temp == object->backing_object) 679 break; 680 vm_object_drop(temp); 681 } 682 683 /* 684 * 1->0 transition verified, retry if ref_count is no longer 685 * 1. Otherwise disconnect the backing_object (temp) and 686 * clean up. 687 */ 688 if (object->ref_count != 1) { 689 vm_object_drop(temp); 690 continue; 691 } 692 693 /* 694 * It shouldn't be possible for the object to be chain locked 695 * if we're removing the last ref on it. 696 */ 697 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 698 699 if (temp) { 700 LIST_REMOVE(object, shadow_list); 701 temp->shadow_count--; 702 temp->generation++; 703 object->backing_object = NULL; 704 } 705 706 --object->ref_count; 707 if ((object->flags & OBJ_DEAD) == 0) 708 vm_object_terminate(object); 709 if (must_drop && temp) 710 vm_object_lock_swap(); 711 if (must_drop) 712 vm_object_drop(object); 713 object = temp; 714 must_drop = 1; 715 } 716 if (must_drop && object) 717 vm_object_drop(object); 718 719 /* 720 * Additional tail recursion on dlist. Avoid a recursion. Objects 721 * on the dlist have a hold count but are not locked. 722 */ 723 if ((dtmp = dlist) != NULL) { 724 dlist = dtmp->next; 725 object = dtmp->object; 726 kfree(dtmp, M_TEMP); 727 728 vm_object_lock(object); /* already held, add lock */ 729 must_drop = 1; /* and we're responsible for it */ 730 goto again; 731 } 732 } 733 734 /* 735 * Destroy the specified object, freeing up related resources. 736 * 737 * The object must have zero references. 738 * 739 * The object must held. The caller is responsible for dropping the object 740 * after terminate returns. Terminate does NOT drop the object. 741 */ 742 static int vm_object_terminate_callback(vm_page_t p, void *data); 743 744 void 745 vm_object_terminate(vm_object_t object) 746 { 747 /* 748 * Make sure no one uses us. Once we set OBJ_DEAD we should be 749 * able to safely block. 750 */ 751 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 752 KKASSERT((object->flags & OBJ_DEAD) == 0); 753 vm_object_set_flag(object, OBJ_DEAD); 754 755 /* 756 * Wait for the pageout daemon to be done with the object 757 */ 758 vm_object_pip_wait(object, "objtrm1"); 759 760 KASSERT(!object->paging_in_progress, 761 ("vm_object_terminate: pageout in progress")); 762 763 /* 764 * Clean and free the pages, as appropriate. All references to the 765 * object are gone, so we don't need to lock it. 766 */ 767 if (object->type == OBJT_VNODE) { 768 struct vnode *vp; 769 770 /* 771 * Clean pages and flush buffers. 772 */ 773 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 774 775 vp = (struct vnode *) object->handle; 776 vinvalbuf(vp, V_SAVE, 0, 0); 777 } 778 779 /* 780 * Wait for any I/O to complete, after which there had better not 781 * be any references left on the object. 782 */ 783 vm_object_pip_wait(object, "objtrm2"); 784 785 if (object->ref_count != 0) { 786 panic("vm_object_terminate: object with references, " 787 "ref_count=%d", object->ref_count); 788 } 789 790 /* 791 * Now free any remaining pages. For internal objects, this also 792 * removes them from paging queues. Don't free wired pages, just 793 * remove them from the object. 794 */ 795 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 796 vm_object_terminate_callback, NULL); 797 798 /* 799 * Let the pager know object is dead. 800 */ 801 vm_pager_deallocate(object); 802 803 /* 804 * Wait for the object hold count to hit 1, clean out pages as 805 * we go. vmobj_token interlocks any race conditions that might 806 * pick the object up from the vm_object_list after we have cleared 807 * rb_memq. 808 */ 809 for (;;) { 810 if (RB_ROOT(&object->rb_memq) == NULL) 811 break; 812 kprintf("vm_object_terminate: Warning, object %p " 813 "still has %d pages\n", 814 object, object->resident_page_count); 815 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 816 vm_object_terminate_callback, NULL); 817 } 818 819 /* 820 * There had better not be any pages left 821 */ 822 KKASSERT(object->resident_page_count == 0); 823 824 /* 825 * Remove the object from the global object list. 826 */ 827 lwkt_gettoken(&vmobj_token); 828 TAILQ_REMOVE(&vm_object_list, object, object_list); 829 vm_object_count--; 830 lwkt_reltoken(&vmobj_token); 831 vm_object_dead_wakeup(object); 832 833 if (object->ref_count != 0) { 834 panic("vm_object_terminate2: object with references, " 835 "ref_count=%d", object->ref_count); 836 } 837 838 /* 839 * NOTE: The object hold_count is at least 1, so we cannot zfree() 840 * the object here. See vm_object_drop(). 841 */ 842 } 843 844 /* 845 * The caller must hold the object. 846 */ 847 static int 848 vm_object_terminate_callback(vm_page_t p, void *data __unused) 849 { 850 vm_object_t object; 851 852 object = p->object; 853 vm_page_busy_wait(p, FALSE, "vmpgtrm"); 854 if (object != p->object) { 855 kprintf("vm_object_terminate: Warning: Encountered " 856 "busied page %p on queue %d\n", p, p->queue); 857 vm_page_wakeup(p); 858 } else if (p->wire_count == 0) { 859 vm_page_free(p); 860 mycpu->gd_cnt.v_pfree++; 861 } else { 862 if (p->queue != PQ_NONE) 863 kprintf("vm_object_terminate: Warning: Encountered " 864 "wired page %p on queue %d\n", p, p->queue); 865 vm_page_remove(p); 866 vm_page_wakeup(p); 867 } 868 lwkt_yield(); 869 return(0); 870 } 871 872 /* 873 * The object is dead but still has an object<->pager association. Sleep 874 * and return. The caller typically retests the association in a loop. 875 * 876 * The caller must hold the object. 877 */ 878 void 879 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 880 { 881 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 882 if (object->handle) { 883 vm_object_set_flag(object, OBJ_DEADWNT); 884 tsleep(object, 0, wmesg, 0); 885 /* object may be invalid after this point */ 886 } 887 } 888 889 /* 890 * Wakeup anyone waiting for the object<->pager disassociation on 891 * a dead object. 892 * 893 * The caller must hold the object. 894 */ 895 void 896 vm_object_dead_wakeup(vm_object_t object) 897 { 898 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 899 if (object->flags & OBJ_DEADWNT) { 900 vm_object_clear_flag(object, OBJ_DEADWNT); 901 wakeup(object); 902 } 903 } 904 905 /* 906 * Clean all dirty pages in the specified range of object. Leaves page 907 * on whatever queue it is currently on. If NOSYNC is set then do not 908 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 909 * leaving the object dirty. 910 * 911 * When stuffing pages asynchronously, allow clustering. XXX we need a 912 * synchronous clustering mode implementation. 913 * 914 * Odd semantics: if start == end, we clean everything. 915 * 916 * The object must be locked? XXX 917 */ 918 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 919 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 920 921 void 922 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 923 int flags) 924 { 925 struct rb_vm_page_scan_info info; 926 struct vnode *vp; 927 int wholescan; 928 int pagerflags; 929 int generation; 930 931 vm_object_hold(object); 932 if (object->type != OBJT_VNODE || 933 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 934 vm_object_drop(object); 935 return; 936 } 937 938 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 939 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 940 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 941 942 vp = object->handle; 943 944 /* 945 * Interlock other major object operations. This allows us to 946 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 947 */ 948 vm_object_set_flag(object, OBJ_CLEANING); 949 950 /* 951 * Handle 'entire object' case 952 */ 953 info.start_pindex = start; 954 if (end == 0) { 955 info.end_pindex = object->size - 1; 956 } else { 957 info.end_pindex = end - 1; 958 } 959 wholescan = (start == 0 && info.end_pindex == object->size - 1); 960 info.limit = flags; 961 info.pagerflags = pagerflags; 962 info.object = object; 963 964 /* 965 * If cleaning the entire object do a pass to mark the pages read-only. 966 * If everything worked out ok, clear OBJ_WRITEABLE and 967 * OBJ_MIGHTBEDIRTY. 968 */ 969 if (wholescan) { 970 info.error = 0; 971 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 972 vm_object_page_clean_pass1, &info); 973 if (info.error == 0) { 974 vm_object_clear_flag(object, 975 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 976 if (object->type == OBJT_VNODE && 977 (vp = (struct vnode *)object->handle) != NULL) { 978 if (vp->v_flag & VOBJDIRTY) 979 vclrflags(vp, VOBJDIRTY); 980 } 981 } 982 } 983 984 /* 985 * Do a pass to clean all the dirty pages we find. 986 */ 987 do { 988 info.error = 0; 989 generation = object->generation; 990 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 991 vm_object_page_clean_pass2, &info); 992 } while (info.error || generation != object->generation); 993 994 vm_object_clear_flag(object, OBJ_CLEANING); 995 vm_object_drop(object); 996 } 997 998 /* 999 * The caller must hold the object. 1000 */ 1001 static 1002 int 1003 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1004 { 1005 struct rb_vm_page_scan_info *info = data; 1006 1007 vm_page_flag_set(p, PG_CLEANCHK); 1008 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1009 info->error = 1; 1010 } else if (vm_page_busy_try(p, FALSE) == 0) { 1011 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1012 vm_page_wakeup(p); 1013 } else { 1014 info->error = 1; 1015 } 1016 lwkt_yield(); 1017 return(0); 1018 } 1019 1020 /* 1021 * The caller must hold the object 1022 */ 1023 static 1024 int 1025 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1026 { 1027 struct rb_vm_page_scan_info *info = data; 1028 int generation; 1029 1030 /* 1031 * Do not mess with pages that were inserted after we started 1032 * the cleaning pass. 1033 */ 1034 if ((p->flags & PG_CLEANCHK) == 0) 1035 goto done; 1036 1037 generation = info->object->generation; 1038 vm_page_busy_wait(p, TRUE, "vpcwai"); 1039 if (p->object != info->object || 1040 info->object->generation != generation) { 1041 info->error = 1; 1042 vm_page_wakeup(p); 1043 goto done; 1044 } 1045 1046 /* 1047 * Before wasting time traversing the pmaps, check for trivial 1048 * cases where the page cannot be dirty. 1049 */ 1050 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1051 KKASSERT((p->dirty & p->valid) == 0); 1052 vm_page_wakeup(p); 1053 goto done; 1054 } 1055 1056 /* 1057 * Check whether the page is dirty or not. The page has been set 1058 * to be read-only so the check will not race a user dirtying the 1059 * page. 1060 */ 1061 vm_page_test_dirty(p); 1062 if ((p->dirty & p->valid) == 0) { 1063 vm_page_flag_clear(p, PG_CLEANCHK); 1064 vm_page_wakeup(p); 1065 goto done; 1066 } 1067 1068 /* 1069 * If we have been asked to skip nosync pages and this is a 1070 * nosync page, skip it. Note that the object flags were 1071 * not cleared in this case (because pass1 will have returned an 1072 * error), so we do not have to set them. 1073 */ 1074 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1075 vm_page_flag_clear(p, PG_CLEANCHK); 1076 vm_page_wakeup(p); 1077 goto done; 1078 } 1079 1080 /* 1081 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1082 * the pages that get successfully flushed. Set info->error if 1083 * we raced an object modification. 1084 */ 1085 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1086 done: 1087 lwkt_yield(); 1088 return(0); 1089 } 1090 1091 /* 1092 * Collect the specified page and nearby pages and flush them out. 1093 * The number of pages flushed is returned. The passed page is busied 1094 * by the caller and we are responsible for its disposition. 1095 * 1096 * The caller must hold the object. 1097 */ 1098 static int 1099 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1100 { 1101 int runlen; 1102 int error; 1103 int maxf; 1104 int chkb; 1105 int maxb; 1106 int i; 1107 vm_pindex_t pi; 1108 vm_page_t maf[vm_pageout_page_count]; 1109 vm_page_t mab[vm_pageout_page_count]; 1110 vm_page_t ma[vm_pageout_page_count]; 1111 1112 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1113 1114 pi = p->pindex; 1115 1116 maxf = 0; 1117 for(i = 1; i < vm_pageout_page_count; i++) { 1118 vm_page_t tp; 1119 1120 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error); 1121 if (error) 1122 break; 1123 if (tp == NULL) 1124 break; 1125 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1126 (tp->flags & PG_CLEANCHK) == 0) { 1127 vm_page_wakeup(tp); 1128 break; 1129 } 1130 if ((tp->queue - tp->pc) == PQ_CACHE) { 1131 vm_page_flag_clear(tp, PG_CLEANCHK); 1132 vm_page_wakeup(tp); 1133 break; 1134 } 1135 vm_page_test_dirty(tp); 1136 if ((tp->dirty & tp->valid) == 0) { 1137 vm_page_flag_clear(tp, PG_CLEANCHK); 1138 vm_page_wakeup(tp); 1139 break; 1140 } 1141 maf[i - 1] = tp; 1142 maxf++; 1143 } 1144 1145 maxb = 0; 1146 chkb = vm_pageout_page_count - maxf; 1147 /* 1148 * NOTE: chkb can be 0 1149 */ 1150 for(i = 1; chkb && i < chkb; i++) { 1151 vm_page_t tp; 1152 1153 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error); 1154 if (error) 1155 break; 1156 if (tp == NULL) 1157 break; 1158 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1159 (tp->flags & PG_CLEANCHK) == 0) { 1160 vm_page_wakeup(tp); 1161 break; 1162 } 1163 if ((tp->queue - tp->pc) == PQ_CACHE) { 1164 vm_page_flag_clear(tp, PG_CLEANCHK); 1165 vm_page_wakeup(tp); 1166 break; 1167 } 1168 vm_page_test_dirty(tp); 1169 if ((tp->dirty & tp->valid) == 0) { 1170 vm_page_flag_clear(tp, PG_CLEANCHK); 1171 vm_page_wakeup(tp); 1172 break; 1173 } 1174 mab[i - 1] = tp; 1175 maxb++; 1176 } 1177 1178 /* 1179 * All pages in the maf[] and mab[] array are busied. 1180 */ 1181 for (i = 0; i < maxb; i++) { 1182 int index = (maxb - i) - 1; 1183 ma[index] = mab[i]; 1184 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1185 } 1186 vm_page_flag_clear(p, PG_CLEANCHK); 1187 ma[maxb] = p; 1188 for(i = 0; i < maxf; i++) { 1189 int index = (maxb + i) + 1; 1190 ma[index] = maf[i]; 1191 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1192 } 1193 runlen = maxb + maxf + 1; 1194 1195 for (i = 0; i < runlen; i++) 1196 vm_page_hold(ma[i]); 1197 1198 vm_pageout_flush(ma, runlen, pagerflags); 1199 1200 for (i = 0; i < runlen; i++) { 1201 if (ma[i]->valid & ma[i]->dirty) { 1202 vm_page_protect(ma[i], VM_PROT_READ); 1203 vm_page_flag_set(ma[i], PG_CLEANCHK); 1204 1205 /* 1206 * maxf will end up being the actual number of pages 1207 * we wrote out contiguously, non-inclusive of the 1208 * first page. We do not count look-behind pages. 1209 */ 1210 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 1211 maxf = i - maxb - 1; 1212 } 1213 vm_page_unhold(ma[i]); 1214 } 1215 return(maxf + 1); 1216 } 1217 1218 /* 1219 * Same as vm_object_pmap_copy, except range checking really 1220 * works, and is meant for small sections of an object. 1221 * 1222 * This code protects resident pages by making them read-only 1223 * and is typically called on a fork or split when a page 1224 * is converted to copy-on-write. 1225 * 1226 * NOTE: If the page is already at VM_PROT_NONE, calling 1227 * vm_page_protect will have no effect. 1228 */ 1229 void 1230 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1231 { 1232 vm_pindex_t idx; 1233 vm_page_t p; 1234 1235 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1236 return; 1237 1238 vm_object_hold(object); 1239 for (idx = start; idx < end; idx++) { 1240 p = vm_page_lookup(object, idx); 1241 if (p == NULL) 1242 continue; 1243 vm_page_protect(p, VM_PROT_READ); 1244 } 1245 vm_object_drop(object); 1246 } 1247 1248 /* 1249 * Removes all physical pages in the specified object range from all 1250 * physical maps. 1251 * 1252 * The object must *not* be locked. 1253 */ 1254 1255 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1256 1257 void 1258 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1259 { 1260 struct rb_vm_page_scan_info info; 1261 1262 if (object == NULL) 1263 return; 1264 info.start_pindex = start; 1265 info.end_pindex = end - 1; 1266 1267 vm_object_hold(object); 1268 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1269 vm_object_pmap_remove_callback, &info); 1270 if (start == 0 && end == object->size) 1271 vm_object_clear_flag(object, OBJ_WRITEABLE); 1272 vm_object_drop(object); 1273 } 1274 1275 /* 1276 * The caller must hold the object 1277 */ 1278 static int 1279 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1280 { 1281 vm_page_protect(p, VM_PROT_NONE); 1282 return(0); 1283 } 1284 1285 /* 1286 * Implements the madvise function at the object/page level. 1287 * 1288 * MADV_WILLNEED (any object) 1289 * 1290 * Activate the specified pages if they are resident. 1291 * 1292 * MADV_DONTNEED (any object) 1293 * 1294 * Deactivate the specified pages if they are resident. 1295 * 1296 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1297 * 1298 * Deactivate and clean the specified pages if they are 1299 * resident. This permits the process to reuse the pages 1300 * without faulting or the kernel to reclaim the pages 1301 * without I/O. 1302 * 1303 * No requirements. 1304 */ 1305 void 1306 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1307 { 1308 vm_pindex_t end, tpindex; 1309 vm_object_t tobject; 1310 vm_object_t xobj; 1311 vm_page_t m; 1312 int error; 1313 1314 if (object == NULL) 1315 return; 1316 1317 end = pindex + count; 1318 1319 vm_object_hold(object); 1320 tobject = object; 1321 1322 /* 1323 * Locate and adjust resident pages 1324 */ 1325 for (; pindex < end; pindex += 1) { 1326 relookup: 1327 if (tobject != object) 1328 vm_object_drop(tobject); 1329 tobject = object; 1330 tpindex = pindex; 1331 shadowlookup: 1332 /* 1333 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1334 * and those pages must be OBJ_ONEMAPPING. 1335 */ 1336 if (advise == MADV_FREE) { 1337 if ((tobject->type != OBJT_DEFAULT && 1338 tobject->type != OBJT_SWAP) || 1339 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1340 continue; 1341 } 1342 } 1343 1344 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1345 1346 if (error) { 1347 vm_page_sleep_busy(m, TRUE, "madvpo"); 1348 goto relookup; 1349 } 1350 if (m == NULL) { 1351 /* 1352 * There may be swap even if there is no backing page 1353 */ 1354 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1355 swap_pager_freespace(tobject, tpindex, 1); 1356 1357 /* 1358 * next object 1359 */ 1360 while ((xobj = tobject->backing_object) != NULL) { 1361 KKASSERT(xobj != object); 1362 vm_object_hold(xobj); 1363 if (xobj == tobject->backing_object) 1364 break; 1365 vm_object_drop(xobj); 1366 } 1367 if (xobj == NULL) 1368 continue; 1369 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1370 if (tobject != object) { 1371 vm_object_lock_swap(); 1372 vm_object_drop(tobject); 1373 } 1374 tobject = xobj; 1375 goto shadowlookup; 1376 } 1377 1378 /* 1379 * If the page is not in a normal active state, we skip it. 1380 * If the page is not managed there are no page queues to 1381 * mess with. Things can break if we mess with pages in 1382 * any of the below states. 1383 */ 1384 if ( 1385 /*m->hold_count ||*/ 1386 m->wire_count || 1387 (m->flags & PG_UNMANAGED) || 1388 m->valid != VM_PAGE_BITS_ALL 1389 ) { 1390 vm_page_wakeup(m); 1391 continue; 1392 } 1393 1394 /* 1395 * Theoretically once a page is known not to be busy, an 1396 * interrupt cannot come along and rip it out from under us. 1397 */ 1398 1399 if (advise == MADV_WILLNEED) { 1400 vm_page_activate(m); 1401 } else if (advise == MADV_DONTNEED) { 1402 vm_page_dontneed(m); 1403 } else if (advise == MADV_FREE) { 1404 /* 1405 * Mark the page clean. This will allow the page 1406 * to be freed up by the system. However, such pages 1407 * are often reused quickly by malloc()/free() 1408 * so we do not do anything that would cause 1409 * a page fault if we can help it. 1410 * 1411 * Specifically, we do not try to actually free 1412 * the page now nor do we try to put it in the 1413 * cache (which would cause a page fault on reuse). 1414 * 1415 * But we do make the page is freeable as we 1416 * can without actually taking the step of unmapping 1417 * it. 1418 */ 1419 pmap_clear_modify(m); 1420 m->dirty = 0; 1421 m->act_count = 0; 1422 vm_page_dontneed(m); 1423 if (tobject->type == OBJT_SWAP) 1424 swap_pager_freespace(tobject, tpindex, 1); 1425 } 1426 vm_page_wakeup(m); 1427 } 1428 if (tobject != object) 1429 vm_object_drop(tobject); 1430 vm_object_drop(object); 1431 } 1432 1433 /* 1434 * Create a new object which is backed by the specified existing object 1435 * range. Replace the pointer and offset that was pointing at the existing 1436 * object with the pointer/offset for the new object. 1437 * 1438 * No other requirements. 1439 */ 1440 void 1441 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1442 int addref) 1443 { 1444 vm_object_t source; 1445 vm_object_t result; 1446 1447 source = *objectp; 1448 1449 /* 1450 * Don't create the new object if the old object isn't shared. 1451 * We have to chain wait before adding the reference to avoid 1452 * racing a collapse or deallocation. 1453 * 1454 * Add the additional ref to source here to avoid racing a later 1455 * collapse or deallocation. Clear the ONEMAPPING flag whether 1456 * addref is TRUE or not in this case because the original object 1457 * will be shadowed. 1458 */ 1459 if (source) { 1460 vm_object_hold(source); 1461 vm_object_chain_wait(source); 1462 if (source->ref_count == 1 && 1463 source->handle == NULL && 1464 (source->type == OBJT_DEFAULT || 1465 source->type == OBJT_SWAP)) { 1466 vm_object_drop(source); 1467 if (addref) { 1468 vm_object_reference_locked(source); 1469 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1470 } 1471 return; 1472 } 1473 vm_object_reference_locked(source); 1474 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1475 } 1476 1477 /* 1478 * Allocate a new object with the given length. The new object 1479 * is returned referenced but we may have to add another one. 1480 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1481 * (typically because the caller is about to clone a vm_map_entry). 1482 * 1483 * The source object currently has an extra reference to prevent 1484 * collapses into it while we mess with its shadow list, which 1485 * we will remove later in this routine. 1486 */ 1487 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1488 panic("vm_object_shadow: no object for shadowing"); 1489 vm_object_hold(result); 1490 if (addref) { 1491 vm_object_reference_locked(result); 1492 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1493 } 1494 1495 /* 1496 * The new object shadows the source object. Chain wait before 1497 * adjusting shadow_count or the shadow list to avoid races. 1498 * 1499 * Try to optimize the result object's page color when shadowing 1500 * in order to maintain page coloring consistency in the combined 1501 * shadowed object. 1502 */ 1503 KKASSERT(result->backing_object == NULL); 1504 result->backing_object = source; 1505 if (source) { 1506 vm_object_chain_wait(source); 1507 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1508 source->shadow_count++; 1509 source->generation++; 1510 #ifdef SMP 1511 /* cpu localization twist */ 1512 result->pg_color = (int)(intptr_t)curthread; 1513 #else 1514 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1515 PQ_L2_MASK; 1516 #endif 1517 } 1518 1519 /* 1520 * Adjust the return storage. Drop the ref on source before 1521 * returning. 1522 */ 1523 result->backing_object_offset = *offset; 1524 vm_object_drop(result); 1525 *offset = 0; 1526 if (source) { 1527 vm_object_deallocate_locked(source); 1528 vm_object_drop(source); 1529 } 1530 1531 /* 1532 * Return the new things 1533 */ 1534 *objectp = result; 1535 } 1536 1537 #define OBSC_TEST_ALL_SHADOWED 0x0001 1538 #define OBSC_COLLAPSE_NOWAIT 0x0002 1539 #define OBSC_COLLAPSE_WAIT 0x0004 1540 1541 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1542 1543 /* 1544 * The caller must hold the object. 1545 */ 1546 static __inline int 1547 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1548 { 1549 struct rb_vm_page_scan_info info; 1550 1551 vm_object_assert_held(object); 1552 vm_object_assert_held(backing_object); 1553 1554 KKASSERT(backing_object == object->backing_object); 1555 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1556 1557 /* 1558 * Initial conditions 1559 */ 1560 if (op & OBSC_TEST_ALL_SHADOWED) { 1561 /* 1562 * We do not want to have to test for the existence of 1563 * swap pages in the backing object. XXX but with the 1564 * new swapper this would be pretty easy to do. 1565 * 1566 * XXX what about anonymous MAP_SHARED memory that hasn't 1567 * been ZFOD faulted yet? If we do not test for this, the 1568 * shadow test may succeed! XXX 1569 */ 1570 if (backing_object->type != OBJT_DEFAULT) 1571 return(0); 1572 } 1573 if (op & OBSC_COLLAPSE_WAIT) { 1574 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1575 vm_object_set_flag(backing_object, OBJ_DEAD); 1576 lwkt_gettoken(&vmobj_token); 1577 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1578 vm_object_count--; 1579 lwkt_reltoken(&vmobj_token); 1580 vm_object_dead_wakeup(backing_object); 1581 } 1582 1583 /* 1584 * Our scan. We have to retry if a negative error code is returned, 1585 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1586 * the scan had to be stopped because the parent does not completely 1587 * shadow the child. 1588 */ 1589 info.object = object; 1590 info.backing_object = backing_object; 1591 info.limit = op; 1592 do { 1593 info.error = 1; 1594 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1595 vm_object_backing_scan_callback, 1596 &info); 1597 } while (info.error < 0); 1598 1599 return(info.error); 1600 } 1601 1602 /* 1603 * The caller must hold the object. 1604 */ 1605 static int 1606 vm_object_backing_scan_callback(vm_page_t p, void *data) 1607 { 1608 struct rb_vm_page_scan_info *info = data; 1609 vm_object_t backing_object; 1610 vm_object_t object; 1611 vm_pindex_t new_pindex; 1612 vm_pindex_t backing_offset_index; 1613 int op; 1614 1615 new_pindex = p->pindex - info->backing_offset_index; 1616 op = info->limit; 1617 object = info->object; 1618 backing_object = info->backing_object; 1619 backing_offset_index = info->backing_offset_index; 1620 1621 if (op & OBSC_TEST_ALL_SHADOWED) { 1622 vm_page_t pp; 1623 1624 /* 1625 * Ignore pages outside the parent object's range 1626 * and outside the parent object's mapping of the 1627 * backing object. 1628 * 1629 * note that we do not busy the backing object's 1630 * page. 1631 */ 1632 if ( 1633 p->pindex < backing_offset_index || 1634 new_pindex >= object->size 1635 ) { 1636 return(0); 1637 } 1638 1639 /* 1640 * See if the parent has the page or if the parent's 1641 * object pager has the page. If the parent has the 1642 * page but the page is not valid, the parent's 1643 * object pager must have the page. 1644 * 1645 * If this fails, the parent does not completely shadow 1646 * the object and we might as well give up now. 1647 */ 1648 1649 pp = vm_page_lookup(object, new_pindex); 1650 if ((pp == NULL || pp->valid == 0) && 1651 !vm_pager_has_page(object, new_pindex) 1652 ) { 1653 info->error = 0; /* problemo */ 1654 return(-1); /* stop the scan */ 1655 } 1656 } 1657 1658 /* 1659 * Check for busy page 1660 */ 1661 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1662 vm_page_t pp; 1663 1664 if (vm_page_busy_try(p, TRUE)) { 1665 if (op & OBSC_COLLAPSE_NOWAIT) { 1666 return(0); 1667 } else { 1668 /* 1669 * If we slept, anything could have 1670 * happened. Ask that the scan be restarted. 1671 * 1672 * Since the object is marked dead, the 1673 * backing offset should not have changed. 1674 */ 1675 vm_page_sleep_busy(p, TRUE, "vmocol"); 1676 info->error = -1; 1677 return(-1); 1678 } 1679 } 1680 if (op & OBSC_COLLAPSE_NOWAIT) { 1681 if (p->valid == 0 /*|| p->hold_count*/ || 1682 p->wire_count) { 1683 vm_page_wakeup(p); 1684 return(0); 1685 } 1686 } else { 1687 /* XXX what if p->valid == 0 , hold_count, etc? */ 1688 } 1689 1690 KASSERT( 1691 p->object == backing_object, 1692 ("vm_object_qcollapse(): object mismatch") 1693 ); 1694 1695 /* 1696 * Destroy any associated swap 1697 */ 1698 if (backing_object->type == OBJT_SWAP) 1699 swap_pager_freespace(backing_object, p->pindex, 1); 1700 1701 if ( 1702 p->pindex < backing_offset_index || 1703 new_pindex >= object->size 1704 ) { 1705 /* 1706 * Page is out of the parent object's range, we 1707 * can simply destroy it. 1708 */ 1709 vm_page_protect(p, VM_PROT_NONE); 1710 vm_page_free(p); 1711 return(0); 1712 } 1713 1714 pp = vm_page_lookup(object, new_pindex); 1715 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 1716 /* 1717 * page already exists in parent OR swap exists 1718 * for this location in the parent. Destroy 1719 * the original page from the backing object. 1720 * 1721 * Leave the parent's page alone 1722 */ 1723 vm_page_protect(p, VM_PROT_NONE); 1724 vm_page_free(p); 1725 return(0); 1726 } 1727 1728 /* 1729 * Page does not exist in parent, rename the 1730 * page from the backing object to the main object. 1731 * 1732 * If the page was mapped to a process, it can remain 1733 * mapped through the rename. 1734 */ 1735 if ((p->queue - p->pc) == PQ_CACHE) 1736 vm_page_deactivate(p); 1737 1738 vm_page_rename(p, object, new_pindex); 1739 vm_page_wakeup(p); 1740 /* page automatically made dirty by rename */ 1741 } 1742 return(0); 1743 } 1744 1745 /* 1746 * This version of collapse allows the operation to occur earlier and 1747 * when paging_in_progress is true for an object... This is not a complete 1748 * operation, but should plug 99.9% of the rest of the leaks. 1749 * 1750 * The caller must hold the object and backing_object and both must be 1751 * chainlocked. 1752 * 1753 * (only called from vm_object_collapse) 1754 */ 1755 static void 1756 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 1757 { 1758 if (backing_object->ref_count == 1) { 1759 backing_object->ref_count += 2; 1760 vm_object_backing_scan(object, backing_object, 1761 OBSC_COLLAPSE_NOWAIT); 1762 backing_object->ref_count -= 2; 1763 } 1764 } 1765 1766 /* 1767 * Collapse an object with the object backing it. Pages in the backing 1768 * object are moved into the parent, and the backing object is deallocated. 1769 * Any conflict is resolved in favor of the parent's existing pages. 1770 * 1771 * object must be held and chain-locked on call. 1772 * 1773 * The caller must have an extra ref on object to prevent a race from 1774 * destroying it during the collapse. 1775 */ 1776 void 1777 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 1778 { 1779 struct vm_object_dealloc_list *dlist = NULL; 1780 vm_object_t backing_object; 1781 1782 /* 1783 * Only one thread is attempting a collapse at any given moment. 1784 * There are few restrictions for (object) that callers of this 1785 * function check so reentrancy is likely. 1786 */ 1787 KKASSERT(object != NULL); 1788 vm_object_assert_held(object); 1789 KKASSERT(object->flags & OBJ_CHAINLOCK); 1790 1791 for (;;) { 1792 vm_object_t bbobj; 1793 int dodealloc; 1794 1795 /* 1796 * We have to hold the backing object, check races. 1797 */ 1798 while ((backing_object = object->backing_object) != NULL) { 1799 vm_object_hold(backing_object); 1800 if (backing_object == object->backing_object) 1801 break; 1802 vm_object_drop(backing_object); 1803 } 1804 1805 /* 1806 * No backing object? Nothing to collapse then. 1807 */ 1808 if (backing_object == NULL) 1809 break; 1810 1811 /* 1812 * You can't collapse with a non-default/non-swap object. 1813 */ 1814 if (backing_object->type != OBJT_DEFAULT && 1815 backing_object->type != OBJT_SWAP) { 1816 vm_object_drop(backing_object); 1817 backing_object = NULL; 1818 break; 1819 } 1820 1821 /* 1822 * Chain-lock the backing object too because if we 1823 * successfully merge its pages into the top object we 1824 * will collapse backing_object->backing_object as the 1825 * new backing_object. Re-check that it is still our 1826 * backing object. 1827 */ 1828 vm_object_chain_acquire(backing_object); 1829 if (backing_object != object->backing_object) { 1830 vm_object_chain_release(backing_object); 1831 vm_object_drop(backing_object); 1832 continue; 1833 } 1834 1835 /* 1836 * we check the backing object first, because it is most likely 1837 * not collapsable. 1838 */ 1839 if (backing_object->handle != NULL || 1840 (backing_object->type != OBJT_DEFAULT && 1841 backing_object->type != OBJT_SWAP) || 1842 (backing_object->flags & OBJ_DEAD) || 1843 object->handle != NULL || 1844 (object->type != OBJT_DEFAULT && 1845 object->type != OBJT_SWAP) || 1846 (object->flags & OBJ_DEAD)) { 1847 break; 1848 } 1849 1850 /* 1851 * If paging is in progress we can't do a normal collapse. 1852 */ 1853 if ( 1854 object->paging_in_progress != 0 || 1855 backing_object->paging_in_progress != 0 1856 ) { 1857 vm_object_qcollapse(object, backing_object); 1858 break; 1859 } 1860 1861 /* 1862 * We know that we can either collapse the backing object (if 1863 * the parent is the only reference to it) or (perhaps) have 1864 * the parent bypass the object if the parent happens to shadow 1865 * all the resident pages in the entire backing object. 1866 * 1867 * This is ignoring pager-backed pages such as swap pages. 1868 * vm_object_backing_scan fails the shadowing test in this 1869 * case. 1870 */ 1871 if (backing_object->ref_count == 1) { 1872 /* 1873 * If there is exactly one reference to the backing 1874 * object, we can collapse it into the parent. 1875 */ 1876 KKASSERT(object->backing_object == backing_object); 1877 vm_object_backing_scan(object, backing_object, 1878 OBSC_COLLAPSE_WAIT); 1879 1880 /* 1881 * Move the pager from backing_object to object. 1882 */ 1883 if (backing_object->type == OBJT_SWAP) { 1884 vm_object_pip_add(backing_object, 1); 1885 1886 /* 1887 * scrap the paging_offset junk and do a 1888 * discrete copy. This also removes major 1889 * assumptions about how the swap-pager 1890 * works from where it doesn't belong. The 1891 * new swapper is able to optimize the 1892 * destroy-source case. 1893 */ 1894 vm_object_pip_add(object, 1); 1895 swap_pager_copy(backing_object, object, 1896 OFF_TO_IDX(object->backing_object_offset), 1897 TRUE); 1898 vm_object_pip_wakeup(object); 1899 vm_object_pip_wakeup(backing_object); 1900 } 1901 1902 /* 1903 * Object now shadows whatever backing_object did. 1904 * Remove object from backing_object's shadow_list. 1905 */ 1906 LIST_REMOVE(object, shadow_list); 1907 KKASSERT(object->backing_object == backing_object); 1908 backing_object->shadow_count--; 1909 backing_object->generation++; 1910 1911 /* 1912 * backing_object->backing_object moves from within 1913 * backing_object to within object. 1914 */ 1915 while ((bbobj = backing_object->backing_object) != NULL) { 1916 vm_object_hold(bbobj); 1917 if (bbobj == backing_object->backing_object) 1918 break; 1919 vm_object_drop(bbobj); 1920 } 1921 if (bbobj) { 1922 LIST_REMOVE(backing_object, shadow_list); 1923 bbobj->shadow_count--; 1924 bbobj->generation++; 1925 backing_object->backing_object = NULL; 1926 } 1927 object->backing_object = bbobj; 1928 if (bbobj) { 1929 LIST_INSERT_HEAD(&bbobj->shadow_head, 1930 object, shadow_list); 1931 bbobj->shadow_count++; 1932 bbobj->generation++; 1933 } 1934 1935 object->backing_object_offset += 1936 backing_object->backing_object_offset; 1937 1938 vm_object_drop(bbobj); 1939 1940 /* 1941 * Discard the old backing_object. Nothing should be 1942 * able to ref it, other than a vm_map_split(), 1943 * and vm_map_split() will stall on our chain lock. 1944 * And we control the parent so it shouldn't be 1945 * possible for it to go away either. 1946 * 1947 * Since the backing object has no pages, no pager 1948 * left, and no object references within it, all 1949 * that is necessary is to dispose of it. 1950 */ 1951 KASSERT(backing_object->ref_count == 1, 1952 ("backing_object %p was somehow " 1953 "re-referenced during collapse!", 1954 backing_object)); 1955 KASSERT(RB_EMPTY(&backing_object->rb_memq), 1956 ("backing_object %p somehow has left " 1957 "over pages during collapse!", 1958 backing_object)); 1959 1960 /* 1961 * The object can be destroyed. 1962 * 1963 * XXX just fall through and dodealloc instead 1964 * of forcing destruction? 1965 */ 1966 --backing_object->ref_count; 1967 if ((backing_object->flags & OBJ_DEAD) == 0) 1968 vm_object_terminate(backing_object); 1969 object_collapses++; 1970 dodealloc = 0; 1971 } else { 1972 /* 1973 * If we do not entirely shadow the backing object, 1974 * there is nothing we can do so we give up. 1975 */ 1976 if (vm_object_backing_scan(object, backing_object, 1977 OBSC_TEST_ALL_SHADOWED) == 0) { 1978 break; 1979 } 1980 1981 /* 1982 * bbobj is backing_object->backing_object. Since 1983 * object completely shadows backing_object we can 1984 * bypass it and become backed by bbobj instead. 1985 */ 1986 while ((bbobj = backing_object->backing_object) != NULL) { 1987 vm_object_hold(bbobj); 1988 if (bbobj == backing_object->backing_object) 1989 break; 1990 vm_object_drop(bbobj); 1991 } 1992 1993 /* 1994 * Make object shadow bbobj instead of backing_object. 1995 * Remove object from backing_object's shadow list. 1996 * 1997 * Deallocating backing_object will not remove 1998 * it, since its reference count is at least 2. 1999 */ 2000 KKASSERT(object->backing_object == backing_object); 2001 LIST_REMOVE(object, shadow_list); 2002 backing_object->shadow_count--; 2003 backing_object->generation++; 2004 2005 /* 2006 * Add a ref to bbobj, bbobj now shadows object. 2007 * 2008 * NOTE: backing_object->backing_object still points 2009 * to bbobj. That relationship remains intact 2010 * because backing_object has > 1 ref, so 2011 * someone else is pointing to it (hence why 2012 * we can't collapse it into object and can 2013 * only handle the all-shadowed bypass case). 2014 */ 2015 if (bbobj) { 2016 vm_object_chain_wait(bbobj); 2017 vm_object_reference_locked(bbobj); 2018 LIST_INSERT_HEAD(&bbobj->shadow_head, 2019 object, shadow_list); 2020 bbobj->shadow_count++; 2021 bbobj->generation++; 2022 object->backing_object_offset += 2023 backing_object->backing_object_offset; 2024 object->backing_object = bbobj; 2025 vm_object_drop(bbobj); 2026 } else { 2027 object->backing_object = NULL; 2028 } 2029 2030 /* 2031 * Drop the reference count on backing_object. To 2032 * handle ref_count races properly we can't assume 2033 * that the ref_count is still at least 2 so we 2034 * have to actually call vm_object_deallocate() 2035 * (after clearing the chainlock). 2036 */ 2037 object_bypasses++; 2038 dodealloc = 1; 2039 } 2040 2041 /* 2042 * Ok, we want to loop on the new object->bbobj association, 2043 * possibly collapsing it further. However if dodealloc is 2044 * non-zero we have to deallocate the backing_object which 2045 * itself can potentially undergo a collapse, creating a 2046 * recursion depth issue with the LWKT token subsystem. 2047 * 2048 * In the case where we must deallocate the backing_object 2049 * it is possible now that the backing_object has a single 2050 * shadow count on some other object (not represented here 2051 * as yet), since it no longer shadows us. Thus when we 2052 * call vm_object_deallocate() it may attempt to collapse 2053 * itself into its remaining parent. 2054 */ 2055 if (dodealloc) { 2056 struct vm_object_dealloc_list *dtmp; 2057 2058 vm_object_chain_release(backing_object); 2059 vm_object_unlock(backing_object); 2060 /* backing_object remains held */ 2061 2062 /* 2063 * Auto-deallocation list for caller convenience. 2064 */ 2065 if (dlistp == NULL) 2066 dlistp = &dlist; 2067 2068 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2069 dtmp->object = backing_object; 2070 dtmp->next = *dlistp; 2071 *dlistp = dtmp; 2072 } else { 2073 vm_object_chain_release(backing_object); 2074 vm_object_drop(backing_object); 2075 } 2076 /* backing_object = NULL; not needed */ 2077 /* loop */ 2078 } 2079 2080 /* 2081 * Clean up any left over backing_object 2082 */ 2083 if (backing_object) { 2084 vm_object_chain_release(backing_object); 2085 vm_object_drop(backing_object); 2086 } 2087 2088 /* 2089 * Clean up any auto-deallocation list. This is a convenience 2090 * for top-level callers so they don't have to pass &dlist. 2091 * Do not clean up any caller-passed dlistp, the caller will 2092 * do that. 2093 */ 2094 if (dlist) 2095 vm_object_deallocate_list(&dlist); 2096 2097 } 2098 2099 /* 2100 * vm_object_collapse() may collect additional objects in need of 2101 * deallocation. This routine deallocates these objects. The 2102 * deallocation itself can trigger additional collapses (which the 2103 * deallocate function takes care of). This procedure is used to 2104 * reduce procedural recursion since these vm_object shadow chains 2105 * can become quite long. 2106 */ 2107 void 2108 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2109 { 2110 struct vm_object_dealloc_list *dlist; 2111 2112 while ((dlist = *dlistp) != NULL) { 2113 *dlistp = dlist->next; 2114 vm_object_lock(dlist->object); 2115 vm_object_deallocate_locked(dlist->object); 2116 vm_object_drop(dlist->object); 2117 kfree(dlist, M_TEMP); 2118 } 2119 } 2120 2121 /* 2122 * Removes all physical pages in the specified object range from the 2123 * object's list of pages. 2124 * 2125 * No requirements. 2126 */ 2127 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2128 2129 void 2130 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2131 boolean_t clean_only) 2132 { 2133 struct rb_vm_page_scan_info info; 2134 int all; 2135 2136 /* 2137 * Degenerate cases and assertions 2138 */ 2139 vm_object_hold(object); 2140 if (object == NULL || 2141 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2142 vm_object_drop(object); 2143 return; 2144 } 2145 KASSERT(object->type != OBJT_PHYS, 2146 ("attempt to remove pages from a physical object")); 2147 2148 /* 2149 * Indicate that paging is occuring on the object 2150 */ 2151 vm_object_pip_add(object, 1); 2152 2153 /* 2154 * Figure out the actual removal range and whether we are removing 2155 * the entire contents of the object or not. If removing the entire 2156 * contents, be sure to get all pages, even those that might be 2157 * beyond the end of the object. 2158 */ 2159 info.start_pindex = start; 2160 if (end == 0) 2161 info.end_pindex = (vm_pindex_t)-1; 2162 else 2163 info.end_pindex = end - 1; 2164 info.limit = clean_only; 2165 all = (start == 0 && info.end_pindex >= object->size - 1); 2166 2167 /* 2168 * Loop until we are sure we have gotten them all. 2169 */ 2170 do { 2171 info.error = 0; 2172 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2173 vm_object_page_remove_callback, &info); 2174 } while (info.error); 2175 2176 /* 2177 * Remove any related swap if throwing away pages, or for 2178 * non-swap objects (the swap is a clean copy in that case). 2179 */ 2180 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2181 if (all) 2182 swap_pager_freespace_all(object); 2183 else 2184 swap_pager_freespace(object, info.start_pindex, 2185 info.end_pindex - info.start_pindex + 1); 2186 } 2187 2188 /* 2189 * Cleanup 2190 */ 2191 vm_object_pip_wakeup(object); 2192 vm_object_drop(object); 2193 } 2194 2195 /* 2196 * The caller must hold the object 2197 */ 2198 static int 2199 vm_object_page_remove_callback(vm_page_t p, void *data) 2200 { 2201 struct rb_vm_page_scan_info *info = data; 2202 2203 if (vm_page_busy_try(p, TRUE)) { 2204 vm_page_sleep_busy(p, TRUE, "vmopar"); 2205 info->error = 1; 2206 return(0); 2207 } 2208 2209 /* 2210 * Wired pages cannot be destroyed, but they can be invalidated 2211 * and we do so if clean_only (limit) is not set. 2212 * 2213 * WARNING! The page may be wired due to being part of a buffer 2214 * cache buffer, and the buffer might be marked B_CACHE. 2215 * This is fine as part of a truncation but VFSs must be 2216 * sure to fix the buffer up when re-extending the file. 2217 */ 2218 if (p->wire_count != 0) { 2219 vm_page_protect(p, VM_PROT_NONE); 2220 if (info->limit == 0) 2221 p->valid = 0; 2222 vm_page_wakeup(p); 2223 return(0); 2224 } 2225 2226 /* 2227 * limit is our clean_only flag. If set and the page is dirty, do 2228 * not free it. If set and the page is being held by someone, do 2229 * not free it. 2230 */ 2231 if (info->limit && p->valid) { 2232 vm_page_test_dirty(p); 2233 if (p->valid & p->dirty) { 2234 vm_page_wakeup(p); 2235 return(0); 2236 } 2237 #if 0 2238 if (p->hold_count) { 2239 vm_page_wakeup(p); 2240 return(0); 2241 } 2242 #endif 2243 } 2244 2245 /* 2246 * Destroy the page 2247 */ 2248 vm_page_protect(p, VM_PROT_NONE); 2249 vm_page_free(p); 2250 return(0); 2251 } 2252 2253 /* 2254 * Coalesces two objects backing up adjoining regions of memory into a 2255 * single object. 2256 * 2257 * returns TRUE if objects were combined. 2258 * 2259 * NOTE: Only works at the moment if the second object is NULL - 2260 * if it's not, which object do we lock first? 2261 * 2262 * Parameters: 2263 * prev_object First object to coalesce 2264 * prev_offset Offset into prev_object 2265 * next_object Second object into coalesce 2266 * next_offset Offset into next_object 2267 * 2268 * prev_size Size of reference to prev_object 2269 * next_size Size of reference to next_object 2270 * 2271 * The caller does not need to hold (prev_object) but must have a stable 2272 * pointer to it (typically by holding the vm_map locked). 2273 */ 2274 boolean_t 2275 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2276 vm_size_t prev_size, vm_size_t next_size) 2277 { 2278 vm_pindex_t next_pindex; 2279 2280 if (prev_object == NULL) 2281 return (TRUE); 2282 2283 vm_object_hold(prev_object); 2284 2285 if (prev_object->type != OBJT_DEFAULT && 2286 prev_object->type != OBJT_SWAP) { 2287 vm_object_drop(prev_object); 2288 return (FALSE); 2289 } 2290 2291 /* 2292 * Try to collapse the object first 2293 */ 2294 vm_object_chain_acquire(prev_object); 2295 vm_object_collapse(prev_object, NULL); 2296 2297 /* 2298 * Can't coalesce if: . more than one reference . paged out . shadows 2299 * another object . has a copy elsewhere (any of which mean that the 2300 * pages not mapped to prev_entry may be in use anyway) 2301 */ 2302 2303 if (prev_object->backing_object != NULL) { 2304 vm_object_chain_release(prev_object); 2305 vm_object_drop(prev_object); 2306 return (FALSE); 2307 } 2308 2309 prev_size >>= PAGE_SHIFT; 2310 next_size >>= PAGE_SHIFT; 2311 next_pindex = prev_pindex + prev_size; 2312 2313 if ((prev_object->ref_count > 1) && 2314 (prev_object->size != next_pindex)) { 2315 vm_object_chain_release(prev_object); 2316 vm_object_drop(prev_object); 2317 return (FALSE); 2318 } 2319 2320 /* 2321 * Remove any pages that may still be in the object from a previous 2322 * deallocation. 2323 */ 2324 if (next_pindex < prev_object->size) { 2325 vm_object_page_remove(prev_object, 2326 next_pindex, 2327 next_pindex + next_size, FALSE); 2328 if (prev_object->type == OBJT_SWAP) 2329 swap_pager_freespace(prev_object, 2330 next_pindex, next_size); 2331 } 2332 2333 /* 2334 * Extend the object if necessary. 2335 */ 2336 if (next_pindex + next_size > prev_object->size) 2337 prev_object->size = next_pindex + next_size; 2338 2339 vm_object_chain_release(prev_object); 2340 vm_object_drop(prev_object); 2341 return (TRUE); 2342 } 2343 2344 /* 2345 * Make the object writable and flag is being possibly dirty. 2346 * 2347 * The caller must hold the object. XXX called from vm_page_dirty(), 2348 * There is currently no requirement to hold the object. 2349 */ 2350 void 2351 vm_object_set_writeable_dirty(vm_object_t object) 2352 { 2353 struct vnode *vp; 2354 2355 /*vm_object_assert_held(object);*/ 2356 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2357 if (object->type == OBJT_VNODE && 2358 (vp = (struct vnode *)object->handle) != NULL) { 2359 if ((vp->v_flag & VOBJDIRTY) == 0) { 2360 vsetflags(vp, VOBJDIRTY); 2361 } 2362 } 2363 } 2364 2365 #include "opt_ddb.h" 2366 #ifdef DDB 2367 #include <sys/kernel.h> 2368 2369 #include <sys/cons.h> 2370 2371 #include <ddb/ddb.h> 2372 2373 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2374 vm_map_entry_t entry); 2375 static int vm_object_in_map (vm_object_t object); 2376 2377 /* 2378 * The caller must hold the object. 2379 */ 2380 static int 2381 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2382 { 2383 vm_map_t tmpm; 2384 vm_map_entry_t tmpe; 2385 vm_object_t obj, nobj; 2386 int entcount; 2387 2388 if (map == 0) 2389 return 0; 2390 if (entry == 0) { 2391 tmpe = map->header.next; 2392 entcount = map->nentries; 2393 while (entcount-- && (tmpe != &map->header)) { 2394 if( _vm_object_in_map(map, object, tmpe)) { 2395 return 1; 2396 } 2397 tmpe = tmpe->next; 2398 } 2399 return (0); 2400 } 2401 switch(entry->maptype) { 2402 case VM_MAPTYPE_SUBMAP: 2403 tmpm = entry->object.sub_map; 2404 tmpe = tmpm->header.next; 2405 entcount = tmpm->nentries; 2406 while (entcount-- && tmpe != &tmpm->header) { 2407 if( _vm_object_in_map(tmpm, object, tmpe)) { 2408 return 1; 2409 } 2410 tmpe = tmpe->next; 2411 } 2412 break; 2413 case VM_MAPTYPE_NORMAL: 2414 case VM_MAPTYPE_VPAGETABLE: 2415 obj = entry->object.vm_object; 2416 while (obj) { 2417 if (obj == object) { 2418 if (obj != entry->object.vm_object) 2419 vm_object_drop(obj); 2420 return 1; 2421 } 2422 while ((nobj = obj->backing_object) != NULL) { 2423 vm_object_hold(nobj); 2424 if (nobj == obj->backing_object) 2425 break; 2426 vm_object_drop(nobj); 2427 } 2428 if (obj != entry->object.vm_object) { 2429 if (nobj) 2430 vm_object_lock_swap(); 2431 vm_object_drop(obj); 2432 } 2433 obj = nobj; 2434 } 2435 break; 2436 default: 2437 break; 2438 } 2439 return 0; 2440 } 2441 2442 static int vm_object_in_map_callback(struct proc *p, void *data); 2443 2444 struct vm_object_in_map_info { 2445 vm_object_t object; 2446 int rv; 2447 }; 2448 2449 /* 2450 * Debugging only 2451 */ 2452 static int 2453 vm_object_in_map(vm_object_t object) 2454 { 2455 struct vm_object_in_map_info info; 2456 2457 info.rv = 0; 2458 info.object = object; 2459 2460 allproc_scan(vm_object_in_map_callback, &info); 2461 if (info.rv) 2462 return 1; 2463 if( _vm_object_in_map(&kernel_map, object, 0)) 2464 return 1; 2465 if( _vm_object_in_map(&pager_map, object, 0)) 2466 return 1; 2467 if( _vm_object_in_map(&buffer_map, object, 0)) 2468 return 1; 2469 return 0; 2470 } 2471 2472 /* 2473 * Debugging only 2474 */ 2475 static int 2476 vm_object_in_map_callback(struct proc *p, void *data) 2477 { 2478 struct vm_object_in_map_info *info = data; 2479 2480 if (p->p_vmspace) { 2481 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2482 info->rv = 1; 2483 return -1; 2484 } 2485 } 2486 return (0); 2487 } 2488 2489 DB_SHOW_COMMAND(vmochk, vm_object_check) 2490 { 2491 vm_object_t object; 2492 2493 /* 2494 * make sure that internal objs are in a map somewhere 2495 * and none have zero ref counts. 2496 */ 2497 for (object = TAILQ_FIRST(&vm_object_list); 2498 object != NULL; 2499 object = TAILQ_NEXT(object, object_list)) { 2500 if (object->type == OBJT_MARKER) 2501 continue; 2502 if (object->handle == NULL && 2503 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2504 if (object->ref_count == 0) { 2505 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2506 (long)object->size); 2507 } 2508 if (!vm_object_in_map(object)) { 2509 db_printf( 2510 "vmochk: internal obj is not in a map: " 2511 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2512 object->ref_count, (u_long)object->size, 2513 (u_long)object->size, 2514 (void *)object->backing_object); 2515 } 2516 } 2517 } 2518 } 2519 2520 /* 2521 * Debugging only 2522 */ 2523 DB_SHOW_COMMAND(object, vm_object_print_static) 2524 { 2525 /* XXX convert args. */ 2526 vm_object_t object = (vm_object_t)addr; 2527 boolean_t full = have_addr; 2528 2529 vm_page_t p; 2530 2531 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2532 #define count was_count 2533 2534 int count; 2535 2536 if (object == NULL) 2537 return; 2538 2539 db_iprintf( 2540 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2541 object, (int)object->type, (u_long)object->size, 2542 object->resident_page_count, object->ref_count, object->flags); 2543 /* 2544 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2545 */ 2546 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2547 object->shadow_count, 2548 object->backing_object ? object->backing_object->ref_count : 0, 2549 object->backing_object, (long)object->backing_object_offset); 2550 2551 if (!full) 2552 return; 2553 2554 db_indent += 2; 2555 count = 0; 2556 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2557 if (count == 0) 2558 db_iprintf("memory:="); 2559 else if (count == 6) { 2560 db_printf("\n"); 2561 db_iprintf(" ..."); 2562 count = 0; 2563 } else 2564 db_printf(","); 2565 count++; 2566 2567 db_printf("(off=0x%lx,page=0x%lx)", 2568 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 2569 } 2570 if (count != 0) 2571 db_printf("\n"); 2572 db_indent -= 2; 2573 } 2574 2575 /* XXX. */ 2576 #undef count 2577 2578 /* 2579 * XXX need this non-static entry for calling from vm_map_print. 2580 * 2581 * Debugging only 2582 */ 2583 void 2584 vm_object_print(/* db_expr_t */ long addr, 2585 boolean_t have_addr, 2586 /* db_expr_t */ long count, 2587 char *modif) 2588 { 2589 vm_object_print_static(addr, have_addr, count, modif); 2590 } 2591 2592 /* 2593 * Debugging only 2594 */ 2595 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2596 { 2597 vm_object_t object; 2598 int nl = 0; 2599 int c; 2600 for (object = TAILQ_FIRST(&vm_object_list); 2601 object != NULL; 2602 object = TAILQ_NEXT(object, object_list)) { 2603 vm_pindex_t idx, fidx; 2604 vm_pindex_t osize; 2605 vm_paddr_t pa = -1, padiff; 2606 int rcount; 2607 vm_page_t m; 2608 2609 if (object->type == OBJT_MARKER) 2610 continue; 2611 db_printf("new object: %p\n", (void *)object); 2612 if ( nl > 18) { 2613 c = cngetc(); 2614 if (c != ' ') 2615 return; 2616 nl = 0; 2617 } 2618 nl++; 2619 rcount = 0; 2620 fidx = 0; 2621 osize = object->size; 2622 if (osize > 128) 2623 osize = 128; 2624 for (idx = 0; idx < osize; idx++) { 2625 m = vm_page_lookup(object, idx); 2626 if (m == NULL) { 2627 if (rcount) { 2628 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2629 (long)fidx, rcount, (long)pa); 2630 if ( nl > 18) { 2631 c = cngetc(); 2632 if (c != ' ') 2633 return; 2634 nl = 0; 2635 } 2636 nl++; 2637 rcount = 0; 2638 } 2639 continue; 2640 } 2641 2642 2643 if (rcount && 2644 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2645 ++rcount; 2646 continue; 2647 } 2648 if (rcount) { 2649 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2650 padiff >>= PAGE_SHIFT; 2651 padiff &= PQ_L2_MASK; 2652 if (padiff == 0) { 2653 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2654 ++rcount; 2655 continue; 2656 } 2657 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2658 (long)fidx, rcount, (long)pa); 2659 db_printf("pd(%ld)\n", (long)padiff); 2660 if ( nl > 18) { 2661 c = cngetc(); 2662 if (c != ' ') 2663 return; 2664 nl = 0; 2665 } 2666 nl++; 2667 } 2668 fidx = idx; 2669 pa = VM_PAGE_TO_PHYS(m); 2670 rcount = 1; 2671 } 2672 if (rcount) { 2673 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2674 (long)fidx, rcount, (long)pa); 2675 if ( nl > 18) { 2676 c = cngetc(); 2677 if (c != ' ') 2678 return; 2679 nl = 0; 2680 } 2681 nl++; 2682 } 2683 } 2684 } 2685 #endif /* DDB */ 2686