1 /* 2 * Copyright (c) 1991, 1993, 2013 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/proc.h> /* for curproc, pageproc */ 70 #include <sys/thread.h> 71 #include <sys/vnode.h> 72 #include <sys/vmmeter.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/refcount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_pager.h> 87 #include <vm/swap_pager.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/vm_zone.h> 91 92 #include <vm/vm_page2.h> 93 94 #include <machine/specialreg.h> 95 96 #define EASY_SCAN_FACTOR 8 97 98 static void vm_object_qcollapse(vm_object_t object, 99 vm_object_t backing_object); 100 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 101 int pagerflags); 102 static void vm_object_lock_init(vm_object_t); 103 104 105 /* 106 * Virtual memory objects maintain the actual data 107 * associated with allocated virtual memory. A given 108 * page of memory exists within exactly one object. 109 * 110 * An object is only deallocated when all "references" 111 * are given up. Only one "reference" to a given 112 * region of an object should be writeable. 113 * 114 * Associated with each object is a list of all resident 115 * memory pages belonging to that object; this list is 116 * maintained by the "vm_page" module, and locked by the object's 117 * lock. 118 * 119 * Each object also records a "pager" routine which is 120 * used to retrieve (and store) pages to the proper backing 121 * storage. In addition, objects may be backed by other 122 * objects from which they were virtual-copied. 123 * 124 * The only items within the object structure which are 125 * modified after time of creation are: 126 * reference count locked by object's lock 127 * pager routine locked by object's lock 128 * 129 */ 130 131 struct object_q vm_object_list; /* locked by vmobj_token */ 132 struct vm_object kernel_object; 133 134 static long vm_object_count; /* locked by vmobj_token */ 135 136 static long object_collapses; 137 static long object_bypasses; 138 static int next_index; 139 static vm_zone_t obj_zone; 140 static struct vm_zone obj_zone_store; 141 #define VM_OBJECTS_INIT 256 142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 143 144 /* 145 * Misc low level routines 146 */ 147 static void 148 vm_object_lock_init(vm_object_t obj) 149 { 150 #if defined(DEBUG_LOCKS) 151 int i; 152 153 obj->debug_hold_bitmap = 0; 154 obj->debug_hold_ovfl = 0; 155 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 156 obj->debug_hold_thrs[i] = NULL; 157 obj->debug_hold_file[i] = NULL; 158 obj->debug_hold_line[i] = 0; 159 } 160 #endif 161 } 162 163 void 164 vm_object_lock_swap(void) 165 { 166 lwkt_token_swap(); 167 } 168 169 void 170 vm_object_lock(vm_object_t obj) 171 { 172 lwkt_gettoken(&obj->token); 173 } 174 175 /* 176 * Returns TRUE on sucesss 177 */ 178 static int 179 vm_object_lock_try(vm_object_t obj) 180 { 181 return(lwkt_trytoken(&obj->token)); 182 } 183 184 void 185 vm_object_lock_shared(vm_object_t obj) 186 { 187 lwkt_gettoken_shared(&obj->token); 188 } 189 190 void 191 vm_object_unlock(vm_object_t obj) 192 { 193 lwkt_reltoken(&obj->token); 194 } 195 196 void 197 vm_object_upgrade(vm_object_t obj) 198 { 199 lwkt_reltoken(&obj->token); 200 lwkt_gettoken(&obj->token); 201 } 202 203 void 204 vm_object_downgrade(vm_object_t obj) 205 { 206 lwkt_reltoken(&obj->token); 207 lwkt_gettoken_shared(&obj->token); 208 } 209 210 static __inline void 211 vm_object_assert_held(vm_object_t obj) 212 { 213 ASSERT_LWKT_TOKEN_HELD(&obj->token); 214 } 215 216 void 217 #ifndef DEBUG_LOCKS 218 vm_object_hold(vm_object_t obj) 219 #else 220 debugvm_object_hold(vm_object_t obj, char *file, int line) 221 #endif 222 { 223 KKASSERT(obj != NULL); 224 225 /* 226 * Object must be held (object allocation is stable due to callers 227 * context, typically already holding the token on a parent object) 228 * prior to potentially blocking on the lock, otherwise the object 229 * can get ripped away from us. 230 */ 231 refcount_acquire(&obj->hold_count); 232 vm_object_lock(obj); 233 234 #if defined(DEBUG_LOCKS) 235 int i; 236 u_int mask; 237 238 for (;;) { 239 mask = ~obj->debug_hold_bitmap; 240 cpu_ccfence(); 241 if (mask == 0xFFFFFFFFU) { 242 if (obj->debug_hold_ovfl == 0) 243 obj->debug_hold_ovfl = 1; 244 break; 245 } 246 i = ffs(mask) - 1; 247 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 248 ~mask | (1 << i))) { 249 obj->debug_hold_bitmap |= (1 << i); 250 obj->debug_hold_thrs[i] = curthread; 251 obj->debug_hold_file[i] = file; 252 obj->debug_hold_line[i] = line; 253 break; 254 } 255 } 256 #endif 257 } 258 259 int 260 #ifndef DEBUG_LOCKS 261 vm_object_hold_try(vm_object_t obj) 262 #else 263 debugvm_object_hold_try(vm_object_t obj, char *file, int line) 264 #endif 265 { 266 KKASSERT(obj != NULL); 267 268 /* 269 * Object must be held (object allocation is stable due to callers 270 * context, typically already holding the token on a parent object) 271 * prior to potentially blocking on the lock, otherwise the object 272 * can get ripped away from us. 273 */ 274 refcount_acquire(&obj->hold_count); 275 if (vm_object_lock_try(obj) == 0) { 276 if (refcount_release(&obj->hold_count)) { 277 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) 278 zfree(obj_zone, obj); 279 } 280 return(0); 281 } 282 283 #if defined(DEBUG_LOCKS) 284 int i; 285 u_int mask; 286 287 for (;;) { 288 mask = ~obj->debug_hold_bitmap; 289 cpu_ccfence(); 290 if (mask == 0xFFFFFFFFU) { 291 if (obj->debug_hold_ovfl == 0) 292 obj->debug_hold_ovfl = 1; 293 break; 294 } 295 i = ffs(mask) - 1; 296 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 297 ~mask | (1 << i))) { 298 obj->debug_hold_bitmap |= (1 << i); 299 obj->debug_hold_thrs[i] = curthread; 300 obj->debug_hold_file[i] = file; 301 obj->debug_hold_line[i] = line; 302 break; 303 } 304 } 305 #endif 306 return(1); 307 } 308 309 void 310 #ifndef DEBUG_LOCKS 311 vm_object_hold_shared(vm_object_t obj) 312 #else 313 debugvm_object_hold_shared(vm_object_t obj, char *file, int line) 314 #endif 315 { 316 KKASSERT(obj != NULL); 317 318 /* 319 * Object must be held (object allocation is stable due to callers 320 * context, typically already holding the token on a parent object) 321 * prior to potentially blocking on the lock, otherwise the object 322 * can get ripped away from us. 323 */ 324 refcount_acquire(&obj->hold_count); 325 vm_object_lock_shared(obj); 326 327 #if defined(DEBUG_LOCKS) 328 int i; 329 u_int mask; 330 331 for (;;) { 332 mask = ~obj->debug_hold_bitmap; 333 cpu_ccfence(); 334 if (mask == 0xFFFFFFFFU) { 335 if (obj->debug_hold_ovfl == 0) 336 obj->debug_hold_ovfl = 1; 337 break; 338 } 339 i = ffs(mask) - 1; 340 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 341 ~mask | (1 << i))) { 342 obj->debug_hold_bitmap |= (1 << i); 343 obj->debug_hold_thrs[i] = curthread; 344 obj->debug_hold_file[i] = file; 345 obj->debug_hold_line[i] = line; 346 break; 347 } 348 } 349 #endif 350 } 351 352 #if 0 353 354 /* 355 * Obtain either a shared or exclusive lock on VM object 356 * based on whether this is a terminal vnode object or not. 357 */ 358 int 359 #ifndef DEBUG_LOCKS 360 vm_object_hold_maybe_shared(vm_object_t obj) 361 #else 362 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line) 363 #endif 364 { 365 if (vm_shared_fault && 366 obj->type == OBJT_VNODE && 367 obj->backing_object == NULL) { 368 vm_object_hold_shared(obj); 369 return(1); 370 } else { 371 vm_object_hold(obj); 372 return(0); 373 } 374 } 375 376 #endif 377 378 /* 379 * Drop the token and hold_count on the object. 380 * 381 * WARNING! Token might be shared. 382 */ 383 void 384 vm_object_drop(vm_object_t obj) 385 { 386 if (obj == NULL) 387 return; 388 389 #if defined(DEBUG_LOCKS) 390 int found = 0; 391 int i; 392 393 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 394 if ((obj->debug_hold_bitmap & (1 << i)) && 395 (obj->debug_hold_thrs[i] == curthread)) { 396 obj->debug_hold_bitmap &= ~(1 << i); 397 obj->debug_hold_thrs[i] = NULL; 398 obj->debug_hold_file[i] = NULL; 399 obj->debug_hold_line[i] = 0; 400 found = 1; 401 break; 402 } 403 } 404 405 if (found == 0 && obj->debug_hold_ovfl == 0) 406 panic("vm_object: attempt to drop hold on non-self-held obj"); 407 #endif 408 409 /* 410 * No new holders should be possible once we drop hold_count 1->0 as 411 * there is no longer any way to reference the object. 412 */ 413 KKASSERT(obj->hold_count > 0); 414 if (refcount_release(&obj->hold_count)) { 415 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) { 416 vm_object_unlock(obj); 417 zfree(obj_zone, obj); 418 } else { 419 vm_object_unlock(obj); 420 } 421 } else { 422 vm_object_unlock(obj); 423 } 424 } 425 426 /* 427 * Initialize a freshly allocated object, returning a held object. 428 * 429 * Used only by vm_object_allocate() and zinitna(). 430 * 431 * No requirements. 432 */ 433 void 434 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 435 { 436 int incr; 437 438 RB_INIT(&object->rb_memq); 439 LIST_INIT(&object->shadow_head); 440 lwkt_token_init(&object->token, "vmobj"); 441 442 object->type = type; 443 object->size = size; 444 object->ref_count = 1; 445 object->memattr = VM_MEMATTR_DEFAULT; 446 object->hold_count = 0; 447 object->flags = 0; 448 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 449 vm_object_set_flag(object, OBJ_ONEMAPPING); 450 object->paging_in_progress = 0; 451 object->resident_page_count = 0; 452 object->agg_pv_list_count = 0; 453 object->shadow_count = 0; 454 /* cpu localization twist */ 455 object->pg_color = (int)(intptr_t)curthread; 456 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 457 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 458 else 459 incr = size; 460 next_index = (next_index + incr) & PQ_L2_MASK; 461 object->handle = NULL; 462 object->backing_object = NULL; 463 object->backing_object_offset = (vm_ooffset_t)0; 464 465 object->generation++; 466 object->swblock_count = 0; 467 RB_INIT(&object->swblock_root); 468 vm_object_lock_init(object); 469 pmap_object_init(object); 470 471 vm_object_hold(object); 472 lwkt_gettoken(&vmobj_token); 473 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 474 vm_object_count++; 475 lwkt_reltoken(&vmobj_token); 476 } 477 478 /* 479 * Initialize the VM objects module. 480 * 481 * Called from the low level boot code only. 482 */ 483 void 484 vm_object_init(void) 485 { 486 TAILQ_INIT(&vm_object_list); 487 488 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 489 &kernel_object); 490 vm_object_drop(&kernel_object); 491 492 obj_zone = &obj_zone_store; 493 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 494 vm_objects_init, VM_OBJECTS_INIT); 495 } 496 497 void 498 vm_object_init2(void) 499 { 500 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 501 } 502 503 /* 504 * Allocate and return a new object of the specified type and size. 505 * 506 * No requirements. 507 */ 508 vm_object_t 509 vm_object_allocate(objtype_t type, vm_pindex_t size) 510 { 511 vm_object_t result; 512 513 result = (vm_object_t) zalloc(obj_zone); 514 515 _vm_object_allocate(type, size, result); 516 vm_object_drop(result); 517 518 return (result); 519 } 520 521 /* 522 * This version returns a held object, allowing further atomic initialization 523 * of the object. 524 */ 525 vm_object_t 526 vm_object_allocate_hold(objtype_t type, vm_pindex_t size) 527 { 528 vm_object_t result; 529 530 result = (vm_object_t) zalloc(obj_zone); 531 532 _vm_object_allocate(type, size, result); 533 534 return (result); 535 } 536 537 /* 538 * Add an additional reference to a vm_object. The object must already be 539 * held. The original non-lock version is no longer supported. The object 540 * must NOT be chain locked by anyone at the time the reference is added. 541 * 542 * Referencing a chain-locked object can blow up the fairly sensitive 543 * ref_count and shadow_count tests in the deallocator. Most callers 544 * will call vm_object_chain_wait() prior to calling 545 * vm_object_reference_locked() to avoid the case. 546 * 547 * The object must be held, but may be held shared if desired (hence why 548 * we use an atomic op). 549 */ 550 void 551 vm_object_reference_locked(vm_object_t object) 552 { 553 KKASSERT(object != NULL); 554 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 555 KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0); 556 atomic_add_int(&object->ref_count, 1); 557 if (object->type == OBJT_VNODE) { 558 vref(object->handle); 559 /* XXX what if the vnode is being destroyed? */ 560 } 561 } 562 563 /* 564 * This version is only allowed for vnode objects. 565 */ 566 void 567 vm_object_reference_quick(vm_object_t object) 568 { 569 KKASSERT(object->type == OBJT_VNODE); 570 atomic_add_int(&object->ref_count, 1); 571 vref(object->handle); 572 } 573 574 /* 575 * Object OBJ_CHAINLOCK lock handling. 576 * 577 * The caller can chain-lock backing objects recursively and then 578 * use vm_object_chain_release_all() to undo the whole chain. 579 * 580 * Chain locks are used to prevent collapses and are only applicable 581 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 582 * on other object types are ignored. This is also important because 583 * it allows e.g. the vnode underlying a memory mapping to take concurrent 584 * faults. 585 * 586 * The object must usually be held on entry, though intermediate 587 * objects need not be held on release. The object must be held exclusively, 588 * NOT shared. Note that the prefault path checks the shared state and 589 * avoids using the chain functions. 590 */ 591 void 592 vm_object_chain_wait(vm_object_t object, int shared) 593 { 594 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 595 for (;;) { 596 uint32_t chainlk = object->chainlk; 597 598 cpu_ccfence(); 599 if (shared) { 600 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) { 601 tsleep_interlock(object, 0); 602 if (atomic_cmpset_int(&object->chainlk, 603 chainlk, 604 chainlk | CHAINLK_WAIT)) { 605 tsleep(object, PINTERLOCKED, 606 "objchns", 0); 607 } 608 /* retry */ 609 } else { 610 break; 611 } 612 /* retry */ 613 } else { 614 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) { 615 tsleep_interlock(object, 0); 616 if (atomic_cmpset_int(&object->chainlk, 617 chainlk, 618 chainlk | CHAINLK_WAIT)) 619 { 620 tsleep(object, PINTERLOCKED, 621 "objchnx", 0); 622 } 623 /* retry */ 624 } else { 625 if (atomic_cmpset_int(&object->chainlk, 626 chainlk, 627 chainlk & ~CHAINLK_WAIT)) 628 { 629 if (chainlk & CHAINLK_WAIT) 630 wakeup(object); 631 break; 632 } 633 /* retry */ 634 } 635 } 636 /* retry */ 637 } 638 } 639 640 void 641 vm_object_chain_acquire(vm_object_t object, int shared) 642 { 643 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) 644 return; 645 if (vm_shared_fault == 0) 646 shared = 0; 647 648 for (;;) { 649 uint32_t chainlk = object->chainlk; 650 651 cpu_ccfence(); 652 if (shared) { 653 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) { 654 tsleep_interlock(object, 0); 655 if (atomic_cmpset_int(&object->chainlk, 656 chainlk, 657 chainlk | CHAINLK_WAIT)) { 658 tsleep(object, PINTERLOCKED, 659 "objchns", 0); 660 } 661 /* retry */ 662 } else if (atomic_cmpset_int(&object->chainlk, 663 chainlk, chainlk + 1)) { 664 break; 665 } 666 /* retry */ 667 } else { 668 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) { 669 tsleep_interlock(object, 0); 670 if (atomic_cmpset_int(&object->chainlk, 671 chainlk, 672 chainlk | 673 CHAINLK_WAIT | 674 CHAINLK_EXCLREQ)) { 675 tsleep(object, PINTERLOCKED, 676 "objchnx", 0); 677 } 678 /* retry */ 679 } else { 680 if (atomic_cmpset_int(&object->chainlk, 681 chainlk, 682 (chainlk | CHAINLK_EXCL) & 683 ~(CHAINLK_EXCLREQ | 684 CHAINLK_WAIT))) { 685 if (chainlk & CHAINLK_WAIT) 686 wakeup(object); 687 break; 688 } 689 /* retry */ 690 } 691 } 692 /* retry */ 693 } 694 } 695 696 void 697 vm_object_chain_release(vm_object_t object) 698 { 699 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/ 700 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) 701 return; 702 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL)); 703 for (;;) { 704 uint32_t chainlk = object->chainlk; 705 706 cpu_ccfence(); 707 if (chainlk & CHAINLK_MASK) { 708 if ((chainlk & CHAINLK_MASK) == 1 && 709 atomic_cmpset_int(&object->chainlk, 710 chainlk, 711 (chainlk - 1) & ~CHAINLK_WAIT)) { 712 if (chainlk & CHAINLK_WAIT) 713 wakeup(object); 714 break; 715 } 716 if ((chainlk & CHAINLK_MASK) > 1 && 717 atomic_cmpset_int(&object->chainlk, 718 chainlk, chainlk - 1)) { 719 break; 720 } 721 /* retry */ 722 } else { 723 KKASSERT(chainlk & CHAINLK_EXCL); 724 if (atomic_cmpset_int(&object->chainlk, 725 chainlk, 726 chainlk & ~(CHAINLK_EXCL | 727 CHAINLK_WAIT))) { 728 if (chainlk & CHAINLK_WAIT) 729 wakeup(object); 730 break; 731 } 732 } 733 } 734 } 735 736 /* 737 * Release the chain from first_object through and including stopobj. 738 * The caller is typically holding the first and last object locked 739 * (shared or exclusive) to prevent destruction races. 740 * 741 * We release stopobj first as an optimization as this object is most 742 * likely to be shared across multiple processes. 743 */ 744 void 745 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 746 { 747 vm_object_t backing_object; 748 vm_object_t object; 749 750 vm_object_chain_release(stopobj); 751 object = first_object; 752 753 while (object != stopobj) { 754 KKASSERT(object); 755 #if 0 756 /* shouldn't need this since chain is held */ 757 if (object != first_object) 758 vm_object_hold(object); 759 #endif 760 backing_object = object->backing_object; 761 vm_object_chain_release(object); 762 #if 0 763 if (object != first_object) 764 vm_object_drop(object); 765 #endif 766 object = backing_object; 767 } 768 } 769 770 /* 771 * Dereference an object and its underlying vnode. 772 * 773 * The object must be held exclusively and will remain held on return. 774 * (We don't need an atomic op due to the exclusivity). 775 */ 776 static void 777 vm_object_vndeallocate(vm_object_t object) 778 { 779 struct vnode *vp = (struct vnode *) object->handle; 780 781 KASSERT(object->type == OBJT_VNODE, 782 ("vm_object_vndeallocate: not a vnode object")); 783 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 784 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 785 #ifdef INVARIANTS 786 if (object->ref_count == 0) { 787 vprint("vm_object_vndeallocate", vp); 788 panic("vm_object_vndeallocate: bad object reference count"); 789 } 790 #endif 791 atomic_add_int(&object->ref_count, -1); 792 if (object->ref_count == 0) 793 vclrflags(vp, VTEXT); 794 vrele(vp); 795 } 796 797 /* 798 * Release a reference to the specified object, gained either through a 799 * vm_object_allocate or a vm_object_reference call. When all references 800 * are gone, storage associated with this object may be relinquished. 801 * 802 * The caller does not have to hold the object locked but must have control 803 * over the reference in question in order to guarantee that the object 804 * does not get ripped out from under us. 805 * 806 * XXX Currently all deallocations require an exclusive lock. 807 */ 808 void 809 vm_object_deallocate(vm_object_t object) 810 { 811 struct vnode *vp; 812 int count; 813 814 if (object == NULL) 815 return; 816 for (;;) { 817 count = object->ref_count; 818 cpu_ccfence(); 819 820 /* 821 * If decrementing the count enters into special handling 822 * territory (0, 1, or 2) we have to do it the hard way. 823 * Fortunate though, objects with only a few refs like this 824 * are not likely to be heavily contended anyway. 825 */ 826 if (count <= 3) { 827 vm_object_hold(object); 828 vm_object_deallocate_locked(object); 829 vm_object_drop(object); 830 break; 831 } 832 833 /* 834 * Try to decrement ref_count without acquiring a hold on 835 * the object. This is particularly important for the exec*() 836 * and exit*() code paths because the program binary may 837 * have a great deal of sharing and an exclusive lock will 838 * crowbar performance in those circumstances. 839 */ 840 if (object->type == OBJT_VNODE) { 841 vp = (struct vnode *)object->handle; 842 if (atomic_cmpset_int(&object->ref_count, 843 count, count - 1)) { 844 vrele(vp); 845 break; 846 } 847 /* retry */ 848 } else { 849 if (atomic_cmpset_int(&object->ref_count, 850 count, count - 1)) { 851 break; 852 } 853 /* retry */ 854 } 855 /* retry */ 856 } 857 } 858 859 void 860 vm_object_deallocate_locked(vm_object_t object) 861 { 862 struct vm_object_dealloc_list *dlist = NULL; 863 struct vm_object_dealloc_list *dtmp; 864 vm_object_t temp; 865 int must_drop = 0; 866 867 /* 868 * We may chain deallocate object, but additional objects may 869 * collect on the dlist which also have to be deallocated. We 870 * must avoid a recursion, vm_object chains can get deep. 871 */ 872 again: 873 while (object != NULL) { 874 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token); 875 #if 0 876 /* 877 * Don't rip a ref_count out from under an object undergoing 878 * collapse, it will confuse the collapse code. 879 */ 880 vm_object_chain_wait(object); 881 #endif 882 if (object->type == OBJT_VNODE) { 883 vm_object_vndeallocate(object); 884 break; 885 } 886 887 if (object->ref_count == 0) { 888 panic("vm_object_deallocate: object deallocated " 889 "too many times: %d", object->type); 890 } 891 if (object->ref_count > 2) { 892 atomic_add_int(&object->ref_count, -1); 893 break; 894 } 895 896 /* 897 * Here on ref_count of one or two, which are special cases for 898 * objects. 899 * 900 * Nominal ref_count > 1 case if the second ref is not from 901 * a shadow. 902 * 903 * (ONEMAPPING only applies to DEFAULT AND SWAP objects) 904 */ 905 if (object->ref_count == 2 && object->shadow_count == 0) { 906 if (object->type == OBJT_DEFAULT || 907 object->type == OBJT_SWAP) { 908 vm_object_set_flag(object, OBJ_ONEMAPPING); 909 } 910 atomic_add_int(&object->ref_count, -1); 911 break; 912 } 913 914 /* 915 * If the second ref is from a shadow we chain along it 916 * upwards if object's handle is exhausted. 917 * 918 * We have to decrement object->ref_count before potentially 919 * collapsing the first shadow object or the collapse code 920 * will not be able to handle the degenerate case to remove 921 * object. However, if we do it too early the object can 922 * get ripped out from under us. 923 */ 924 if (object->ref_count == 2 && object->shadow_count == 1 && 925 object->handle == NULL && (object->type == OBJT_DEFAULT || 926 object->type == OBJT_SWAP)) { 927 temp = LIST_FIRST(&object->shadow_head); 928 KKASSERT(temp != NULL); 929 vm_object_hold(temp); 930 931 /* 932 * Wait for any paging to complete so the collapse 933 * doesn't (or isn't likely to) qcollapse. pip 934 * waiting must occur before we acquire the 935 * chainlock. 936 */ 937 while ( 938 temp->paging_in_progress || 939 object->paging_in_progress 940 ) { 941 vm_object_pip_wait(temp, "objde1"); 942 vm_object_pip_wait(object, "objde2"); 943 } 944 945 /* 946 * If the parent is locked we have to give up, as 947 * otherwise we would be acquiring locks in the 948 * wrong order and potentially deadlock. 949 */ 950 if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) { 951 vm_object_drop(temp); 952 goto skip; 953 } 954 vm_object_chain_acquire(temp, 0); 955 956 /* 957 * Recheck/retry after the hold and the paging 958 * wait, both of which can block us. 959 */ 960 if (object->ref_count != 2 || 961 object->shadow_count != 1 || 962 object->handle || 963 LIST_FIRST(&object->shadow_head) != temp || 964 (object->type != OBJT_DEFAULT && 965 object->type != OBJT_SWAP)) { 966 vm_object_chain_release(temp); 967 vm_object_drop(temp); 968 continue; 969 } 970 971 /* 972 * We can safely drop object's ref_count now. 973 */ 974 KKASSERT(object->ref_count == 2); 975 atomic_add_int(&object->ref_count, -1); 976 977 /* 978 * If our single parent is not collapseable just 979 * decrement ref_count (2->1) and stop. 980 */ 981 if (temp->handle || (temp->type != OBJT_DEFAULT && 982 temp->type != OBJT_SWAP)) { 983 vm_object_chain_release(temp); 984 vm_object_drop(temp); 985 break; 986 } 987 988 /* 989 * At this point we have already dropped object's 990 * ref_count so it is possible for a race to 991 * deallocate obj out from under us. Any collapse 992 * will re-check the situation. We must not block 993 * until we are able to collapse. 994 * 995 * Bump temp's ref_count to avoid an unwanted 996 * degenerate recursion (can't call 997 * vm_object_reference_locked() because it asserts 998 * that CHAINLOCK is not set). 999 */ 1000 atomic_add_int(&temp->ref_count, 1); 1001 KKASSERT(temp->ref_count > 1); 1002 1003 /* 1004 * Collapse temp, then deallocate the extra ref 1005 * formally. 1006 */ 1007 vm_object_collapse(temp, &dlist); 1008 vm_object_chain_release(temp); 1009 if (must_drop) { 1010 vm_object_lock_swap(); 1011 vm_object_drop(object); 1012 } 1013 object = temp; 1014 must_drop = 1; 1015 continue; 1016 } 1017 1018 /* 1019 * Drop the ref and handle termination on the 1->0 transition. 1020 * We may have blocked above so we have to recheck. 1021 */ 1022 skip: 1023 KKASSERT(object->ref_count != 0); 1024 if (object->ref_count >= 2) { 1025 atomic_add_int(&object->ref_count, -1); 1026 break; 1027 } 1028 KKASSERT(object->ref_count == 1); 1029 1030 /* 1031 * 1->0 transition. Chain through the backing_object. 1032 * Maintain the ref until we've located the backing object, 1033 * then re-check. 1034 */ 1035 while ((temp = object->backing_object) != NULL) { 1036 vm_object_hold(temp); 1037 if (temp == object->backing_object) 1038 break; 1039 vm_object_drop(temp); 1040 } 1041 1042 /* 1043 * 1->0 transition verified, retry if ref_count is no longer 1044 * 1. Otherwise disconnect the backing_object (temp) and 1045 * clean up. 1046 */ 1047 if (object->ref_count != 1) { 1048 vm_object_drop(temp); 1049 continue; 1050 } 1051 1052 /* 1053 * It shouldn't be possible for the object to be chain locked 1054 * if we're removing the last ref on it. 1055 */ 1056 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0); 1057 1058 if (temp) { 1059 if (object->flags & OBJ_ONSHADOW) { 1060 LIST_REMOVE(object, shadow_list); 1061 temp->shadow_count--; 1062 temp->generation++; 1063 vm_object_clear_flag(object, OBJ_ONSHADOW); 1064 } 1065 object->backing_object = NULL; 1066 } 1067 1068 atomic_add_int(&object->ref_count, -1); 1069 if ((object->flags & OBJ_DEAD) == 0) 1070 vm_object_terminate(object); 1071 if (must_drop && temp) 1072 vm_object_lock_swap(); 1073 if (must_drop) 1074 vm_object_drop(object); 1075 object = temp; 1076 must_drop = 1; 1077 } 1078 if (must_drop && object) 1079 vm_object_drop(object); 1080 1081 /* 1082 * Additional tail recursion on dlist. Avoid a recursion. Objects 1083 * on the dlist have a hold count but are not locked. 1084 */ 1085 if ((dtmp = dlist) != NULL) { 1086 dlist = dtmp->next; 1087 object = dtmp->object; 1088 kfree(dtmp, M_TEMP); 1089 1090 vm_object_lock(object); /* already held, add lock */ 1091 must_drop = 1; /* and we're responsible for it */ 1092 goto again; 1093 } 1094 } 1095 1096 /* 1097 * Destroy the specified object, freeing up related resources. 1098 * 1099 * The object must have zero references. 1100 * 1101 * The object must held. The caller is responsible for dropping the object 1102 * after terminate returns. Terminate does NOT drop the object. 1103 */ 1104 static int vm_object_terminate_callback(vm_page_t p, void *data); 1105 1106 void 1107 vm_object_terminate(vm_object_t object) 1108 { 1109 /* 1110 * Make sure no one uses us. Once we set OBJ_DEAD we should be 1111 * able to safely block. 1112 */ 1113 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1114 KKASSERT((object->flags & OBJ_DEAD) == 0); 1115 vm_object_set_flag(object, OBJ_DEAD); 1116 1117 /* 1118 * Wait for the pageout daemon to be done with the object 1119 */ 1120 vm_object_pip_wait(object, "objtrm1"); 1121 1122 KASSERT(!object->paging_in_progress, 1123 ("vm_object_terminate: pageout in progress")); 1124 1125 /* 1126 * Clean and free the pages, as appropriate. All references to the 1127 * object are gone, so we don't need to lock it. 1128 */ 1129 if (object->type == OBJT_VNODE) { 1130 struct vnode *vp; 1131 1132 /* 1133 * Clean pages and flush buffers. 1134 * 1135 * NOTE! TMPFS buffer flushes do not typically flush the 1136 * actual page to swap as this would be highly 1137 * inefficient, and normal filesystems usually wrap 1138 * page flushes with buffer cache buffers. 1139 * 1140 * To deal with this we have to call vinvalbuf() both 1141 * before and after the vm_object_page_clean(). 1142 */ 1143 vp = (struct vnode *) object->handle; 1144 vinvalbuf(vp, V_SAVE, 0, 0); 1145 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 1146 vinvalbuf(vp, V_SAVE, 0, 0); 1147 } 1148 1149 /* 1150 * Wait for any I/O to complete, after which there had better not 1151 * be any references left on the object. 1152 */ 1153 vm_object_pip_wait(object, "objtrm2"); 1154 1155 if (object->ref_count != 0) { 1156 panic("vm_object_terminate: object with references, " 1157 "ref_count=%d", object->ref_count); 1158 } 1159 1160 /* 1161 * Cleanup any shared pmaps associated with this object. 1162 */ 1163 pmap_object_free(object); 1164 1165 /* 1166 * Now free any remaining pages. For internal objects, this also 1167 * removes them from paging queues. Don't free wired pages, just 1168 * remove them from the object. 1169 */ 1170 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 1171 vm_object_terminate_callback, NULL); 1172 1173 /* 1174 * Let the pager know object is dead. 1175 */ 1176 vm_pager_deallocate(object); 1177 1178 /* 1179 * Wait for the object hold count to hit 1, clean out pages as 1180 * we go. vmobj_token interlocks any race conditions that might 1181 * pick the object up from the vm_object_list after we have cleared 1182 * rb_memq. 1183 */ 1184 for (;;) { 1185 if (RB_ROOT(&object->rb_memq) == NULL) 1186 break; 1187 kprintf("vm_object_terminate: Warning, object %p " 1188 "still has %d pages\n", 1189 object, object->resident_page_count); 1190 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 1191 vm_object_terminate_callback, NULL); 1192 } 1193 1194 /* 1195 * There had better not be any pages left 1196 */ 1197 KKASSERT(object->resident_page_count == 0); 1198 1199 /* 1200 * Remove the object from the global object list. 1201 */ 1202 lwkt_gettoken(&vmobj_token); 1203 TAILQ_REMOVE(&vm_object_list, object, object_list); 1204 vm_object_count--; 1205 lwkt_reltoken(&vmobj_token); 1206 vm_object_dead_wakeup(object); 1207 1208 if (object->ref_count != 0) { 1209 panic("vm_object_terminate2: object with references, " 1210 "ref_count=%d", object->ref_count); 1211 } 1212 1213 /* 1214 * NOTE: The object hold_count is at least 1, so we cannot zfree() 1215 * the object here. See vm_object_drop(). 1216 */ 1217 } 1218 1219 /* 1220 * The caller must hold the object. 1221 */ 1222 static int 1223 vm_object_terminate_callback(vm_page_t p, void *data __unused) 1224 { 1225 vm_object_t object; 1226 1227 object = p->object; 1228 vm_page_busy_wait(p, TRUE, "vmpgtrm"); 1229 if (object != p->object) { 1230 kprintf("vm_object_terminate: Warning: Encountered " 1231 "busied page %p on queue %d\n", p, p->queue); 1232 vm_page_wakeup(p); 1233 } else if (p->wire_count == 0) { 1234 /* 1235 * NOTE: p->dirty and PG_NEED_COMMIT are ignored. 1236 */ 1237 vm_page_free(p); 1238 mycpu->gd_cnt.v_pfree++; 1239 } else { 1240 if (p->queue != PQ_NONE) 1241 kprintf("vm_object_terminate: Warning: Encountered " 1242 "wired page %p on queue %d\n", p, p->queue); 1243 vm_page_remove(p); 1244 vm_page_wakeup(p); 1245 } 1246 lwkt_yield(); 1247 return(0); 1248 } 1249 1250 /* 1251 * The object is dead but still has an object<->pager association. Sleep 1252 * and return. The caller typically retests the association in a loop. 1253 * 1254 * The caller must hold the object. 1255 */ 1256 void 1257 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 1258 { 1259 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1260 if (object->handle) { 1261 vm_object_set_flag(object, OBJ_DEADWNT); 1262 tsleep(object, 0, wmesg, 0); 1263 /* object may be invalid after this point */ 1264 } 1265 } 1266 1267 /* 1268 * Wakeup anyone waiting for the object<->pager disassociation on 1269 * a dead object. 1270 * 1271 * The caller must hold the object. 1272 */ 1273 void 1274 vm_object_dead_wakeup(vm_object_t object) 1275 { 1276 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1277 if (object->flags & OBJ_DEADWNT) { 1278 vm_object_clear_flag(object, OBJ_DEADWNT); 1279 wakeup(object); 1280 } 1281 } 1282 1283 /* 1284 * Clean all dirty pages in the specified range of object. Leaves page 1285 * on whatever queue it is currently on. If NOSYNC is set then do not 1286 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 1287 * leaving the object dirty. 1288 * 1289 * When stuffing pages asynchronously, allow clustering. XXX we need a 1290 * synchronous clustering mode implementation. 1291 * 1292 * Odd semantics: if start == end, we clean everything. 1293 * 1294 * The object must be locked? XXX 1295 */ 1296 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 1297 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 1298 1299 void 1300 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1301 int flags) 1302 { 1303 struct rb_vm_page_scan_info info; 1304 struct vnode *vp; 1305 int wholescan; 1306 int pagerflags; 1307 int generation; 1308 1309 vm_object_hold(object); 1310 if (object->type != OBJT_VNODE || 1311 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 1312 vm_object_drop(object); 1313 return; 1314 } 1315 1316 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 1317 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1318 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 1319 1320 vp = object->handle; 1321 1322 /* 1323 * Interlock other major object operations. This allows us to 1324 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 1325 */ 1326 vm_object_set_flag(object, OBJ_CLEANING); 1327 1328 /* 1329 * Handle 'entire object' case 1330 */ 1331 info.start_pindex = start; 1332 if (end == 0) { 1333 info.end_pindex = object->size - 1; 1334 } else { 1335 info.end_pindex = end - 1; 1336 } 1337 wholescan = (start == 0 && info.end_pindex == object->size - 1); 1338 info.limit = flags; 1339 info.pagerflags = pagerflags; 1340 info.object = object; 1341 1342 /* 1343 * If cleaning the entire object do a pass to mark the pages read-only. 1344 * If everything worked out ok, clear OBJ_WRITEABLE and 1345 * OBJ_MIGHTBEDIRTY. 1346 */ 1347 if (wholescan) { 1348 info.error = 0; 1349 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1350 vm_object_page_clean_pass1, &info); 1351 if (info.error == 0) { 1352 vm_object_clear_flag(object, 1353 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1354 if (object->type == OBJT_VNODE && 1355 (vp = (struct vnode *)object->handle) != NULL) { 1356 if (vp->v_mount && 1357 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) { 1358 vclrobjdirty(vp); 1359 } else { 1360 vclrflags(vp, VOBJDIRTY); 1361 } 1362 } 1363 } 1364 } 1365 1366 /* 1367 * Do a pass to clean all the dirty pages we find. 1368 */ 1369 do { 1370 info.error = 0; 1371 generation = object->generation; 1372 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1373 vm_object_page_clean_pass2, &info); 1374 } while (info.error || generation != object->generation); 1375 1376 vm_object_clear_flag(object, OBJ_CLEANING); 1377 vm_object_drop(object); 1378 } 1379 1380 /* 1381 * The caller must hold the object. 1382 */ 1383 static 1384 int 1385 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1386 { 1387 struct rb_vm_page_scan_info *info = data; 1388 1389 vm_page_flag_set(p, PG_CLEANCHK); 1390 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1391 info->error = 1; 1392 } else if (vm_page_busy_try(p, FALSE) == 0) { 1393 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1394 vm_page_wakeup(p); 1395 } else { 1396 info->error = 1; 1397 } 1398 lwkt_yield(); 1399 return(0); 1400 } 1401 1402 /* 1403 * The caller must hold the object 1404 */ 1405 static 1406 int 1407 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1408 { 1409 struct rb_vm_page_scan_info *info = data; 1410 int generation; 1411 1412 /* 1413 * Do not mess with pages that were inserted after we started 1414 * the cleaning pass. 1415 */ 1416 if ((p->flags & PG_CLEANCHK) == 0) 1417 goto done; 1418 1419 generation = info->object->generation; 1420 vm_page_busy_wait(p, TRUE, "vpcwai"); 1421 if (p->object != info->object || 1422 info->object->generation != generation) { 1423 info->error = 1; 1424 vm_page_wakeup(p); 1425 goto done; 1426 } 1427 1428 /* 1429 * Before wasting time traversing the pmaps, check for trivial 1430 * cases where the page cannot be dirty. 1431 */ 1432 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1433 KKASSERT((p->dirty & p->valid) == 0 && 1434 (p->flags & PG_NEED_COMMIT) == 0); 1435 vm_page_wakeup(p); 1436 goto done; 1437 } 1438 1439 /* 1440 * Check whether the page is dirty or not. The page has been set 1441 * to be read-only so the check will not race a user dirtying the 1442 * page. 1443 */ 1444 vm_page_test_dirty(p); 1445 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) { 1446 vm_page_flag_clear(p, PG_CLEANCHK); 1447 vm_page_wakeup(p); 1448 goto done; 1449 } 1450 1451 /* 1452 * If we have been asked to skip nosync pages and this is a 1453 * nosync page, skip it. Note that the object flags were 1454 * not cleared in this case (because pass1 will have returned an 1455 * error), so we do not have to set them. 1456 */ 1457 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1458 vm_page_flag_clear(p, PG_CLEANCHK); 1459 vm_page_wakeup(p); 1460 goto done; 1461 } 1462 1463 /* 1464 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1465 * the pages that get successfully flushed. Set info->error if 1466 * we raced an object modification. 1467 */ 1468 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1469 vm_wait_nominal(); 1470 done: 1471 lwkt_yield(); 1472 return(0); 1473 } 1474 1475 /* 1476 * Collect the specified page and nearby pages and flush them out. 1477 * The number of pages flushed is returned. The passed page is busied 1478 * by the caller and we are responsible for its disposition. 1479 * 1480 * The caller must hold the object. 1481 */ 1482 static void 1483 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1484 { 1485 int error; 1486 int is; 1487 int ib; 1488 int i; 1489 int page_base; 1490 vm_pindex_t pi; 1491 vm_page_t ma[BLIST_MAX_ALLOC]; 1492 1493 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1494 1495 pi = p->pindex; 1496 page_base = pi % BLIST_MAX_ALLOC; 1497 ma[page_base] = p; 1498 ib = page_base - 1; 1499 is = page_base + 1; 1500 1501 while (ib >= 0) { 1502 vm_page_t tp; 1503 1504 tp = vm_page_lookup_busy_try(object, pi - page_base + ib, 1505 TRUE, &error); 1506 if (error) 1507 break; 1508 if (tp == NULL) 1509 break; 1510 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1511 (tp->flags & PG_CLEANCHK) == 0) { 1512 vm_page_wakeup(tp); 1513 break; 1514 } 1515 if ((tp->queue - tp->pc) == PQ_CACHE) { 1516 vm_page_flag_clear(tp, PG_CLEANCHK); 1517 vm_page_wakeup(tp); 1518 break; 1519 } 1520 vm_page_test_dirty(tp); 1521 if ((tp->dirty & tp->valid) == 0 && 1522 (tp->flags & PG_NEED_COMMIT) == 0) { 1523 vm_page_flag_clear(tp, PG_CLEANCHK); 1524 vm_page_wakeup(tp); 1525 break; 1526 } 1527 ma[ib] = tp; 1528 --ib; 1529 } 1530 ++ib; /* fixup */ 1531 1532 while (is < BLIST_MAX_ALLOC && 1533 pi - page_base + is < object->size) { 1534 vm_page_t tp; 1535 1536 tp = vm_page_lookup_busy_try(object, pi - page_base + is, 1537 TRUE, &error); 1538 if (error) 1539 break; 1540 if (tp == NULL) 1541 break; 1542 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1543 (tp->flags & PG_CLEANCHK) == 0) { 1544 vm_page_wakeup(tp); 1545 break; 1546 } 1547 if ((tp->queue - tp->pc) == PQ_CACHE) { 1548 vm_page_flag_clear(tp, PG_CLEANCHK); 1549 vm_page_wakeup(tp); 1550 break; 1551 } 1552 vm_page_test_dirty(tp); 1553 if ((tp->dirty & tp->valid) == 0 && 1554 (tp->flags & PG_NEED_COMMIT) == 0) { 1555 vm_page_flag_clear(tp, PG_CLEANCHK); 1556 vm_page_wakeup(tp); 1557 break; 1558 } 1559 ma[is] = tp; 1560 ++is; 1561 } 1562 1563 /* 1564 * All pages in the ma[] array are busied now 1565 */ 1566 for (i = ib; i < is; ++i) { 1567 vm_page_flag_clear(ma[i], PG_CLEANCHK); 1568 vm_page_hold(ma[i]); /* XXX need this any more? */ 1569 } 1570 vm_pageout_flush(&ma[ib], is - ib, pagerflags); 1571 for (i = ib; i < is; ++i) /* XXX need this any more? */ 1572 vm_page_unhold(ma[i]); 1573 } 1574 1575 /* 1576 * Same as vm_object_pmap_copy, except range checking really 1577 * works, and is meant for small sections of an object. 1578 * 1579 * This code protects resident pages by making them read-only 1580 * and is typically called on a fork or split when a page 1581 * is converted to copy-on-write. 1582 * 1583 * NOTE: If the page is already at VM_PROT_NONE, calling 1584 * vm_page_protect will have no effect. 1585 */ 1586 void 1587 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1588 { 1589 vm_pindex_t idx; 1590 vm_page_t p; 1591 1592 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1593 return; 1594 1595 vm_object_hold(object); 1596 for (idx = start; idx < end; idx++) { 1597 p = vm_page_lookup(object, idx); 1598 if (p == NULL) 1599 continue; 1600 vm_page_protect(p, VM_PROT_READ); 1601 } 1602 vm_object_drop(object); 1603 } 1604 1605 /* 1606 * Removes all physical pages in the specified object range from all 1607 * physical maps. 1608 * 1609 * The object must *not* be locked. 1610 */ 1611 1612 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1613 1614 void 1615 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1616 { 1617 struct rb_vm_page_scan_info info; 1618 1619 if (object == NULL) 1620 return; 1621 info.start_pindex = start; 1622 info.end_pindex = end - 1; 1623 1624 vm_object_hold(object); 1625 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1626 vm_object_pmap_remove_callback, &info); 1627 if (start == 0 && end == object->size) 1628 vm_object_clear_flag(object, OBJ_WRITEABLE); 1629 vm_object_drop(object); 1630 } 1631 1632 /* 1633 * The caller must hold the object 1634 */ 1635 static int 1636 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1637 { 1638 vm_page_protect(p, VM_PROT_NONE); 1639 return(0); 1640 } 1641 1642 /* 1643 * Implements the madvise function at the object/page level. 1644 * 1645 * MADV_WILLNEED (any object) 1646 * 1647 * Activate the specified pages if they are resident. 1648 * 1649 * MADV_DONTNEED (any object) 1650 * 1651 * Deactivate the specified pages if they are resident. 1652 * 1653 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1654 * 1655 * Deactivate and clean the specified pages if they are 1656 * resident. This permits the process to reuse the pages 1657 * without faulting or the kernel to reclaim the pages 1658 * without I/O. 1659 * 1660 * No requirements. 1661 */ 1662 void 1663 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1664 { 1665 vm_pindex_t end, tpindex; 1666 vm_object_t tobject; 1667 vm_object_t xobj; 1668 vm_page_t m; 1669 int error; 1670 1671 if (object == NULL) 1672 return; 1673 1674 end = pindex + count; 1675 1676 vm_object_hold(object); 1677 tobject = object; 1678 1679 /* 1680 * Locate and adjust resident pages 1681 */ 1682 for (; pindex < end; pindex += 1) { 1683 relookup: 1684 if (tobject != object) 1685 vm_object_drop(tobject); 1686 tobject = object; 1687 tpindex = pindex; 1688 shadowlookup: 1689 /* 1690 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1691 * and those pages must be OBJ_ONEMAPPING. 1692 */ 1693 if (advise == MADV_FREE) { 1694 if ((tobject->type != OBJT_DEFAULT && 1695 tobject->type != OBJT_SWAP) || 1696 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1697 continue; 1698 } 1699 } 1700 1701 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1702 1703 if (error) { 1704 vm_page_sleep_busy(m, TRUE, "madvpo"); 1705 goto relookup; 1706 } 1707 if (m == NULL) { 1708 /* 1709 * There may be swap even if there is no backing page 1710 */ 1711 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1712 swap_pager_freespace(tobject, tpindex, 1); 1713 1714 /* 1715 * next object 1716 */ 1717 while ((xobj = tobject->backing_object) != NULL) { 1718 KKASSERT(xobj != object); 1719 vm_object_hold(xobj); 1720 if (xobj == tobject->backing_object) 1721 break; 1722 vm_object_drop(xobj); 1723 } 1724 if (xobj == NULL) 1725 continue; 1726 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1727 if (tobject != object) { 1728 vm_object_lock_swap(); 1729 vm_object_drop(tobject); 1730 } 1731 tobject = xobj; 1732 goto shadowlookup; 1733 } 1734 1735 /* 1736 * If the page is not in a normal active state, we skip it. 1737 * If the page is not managed there are no page queues to 1738 * mess with. Things can break if we mess with pages in 1739 * any of the below states. 1740 */ 1741 if (m->wire_count || 1742 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 1743 m->valid != VM_PAGE_BITS_ALL 1744 ) { 1745 vm_page_wakeup(m); 1746 continue; 1747 } 1748 1749 /* 1750 * Theoretically once a page is known not to be busy, an 1751 * interrupt cannot come along and rip it out from under us. 1752 */ 1753 1754 if (advise == MADV_WILLNEED) { 1755 vm_page_activate(m); 1756 } else if (advise == MADV_DONTNEED) { 1757 vm_page_dontneed(m); 1758 } else if (advise == MADV_FREE) { 1759 /* 1760 * Mark the page clean. This will allow the page 1761 * to be freed up by the system. However, such pages 1762 * are often reused quickly by malloc()/free() 1763 * so we do not do anything that would cause 1764 * a page fault if we can help it. 1765 * 1766 * Specifically, we do not try to actually free 1767 * the page now nor do we try to put it in the 1768 * cache (which would cause a page fault on reuse). 1769 * 1770 * But we do make the page is freeable as we 1771 * can without actually taking the step of unmapping 1772 * it. 1773 */ 1774 pmap_clear_modify(m); 1775 m->dirty = 0; 1776 m->act_count = 0; 1777 vm_page_dontneed(m); 1778 if (tobject->type == OBJT_SWAP) 1779 swap_pager_freespace(tobject, tpindex, 1); 1780 } 1781 vm_page_wakeup(m); 1782 } 1783 if (tobject != object) 1784 vm_object_drop(tobject); 1785 vm_object_drop(object); 1786 } 1787 1788 /* 1789 * Create a new object which is backed by the specified existing object 1790 * range. Replace the pointer and offset that was pointing at the existing 1791 * object with the pointer/offset for the new object. 1792 * 1793 * No other requirements. 1794 */ 1795 void 1796 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1797 int addref) 1798 { 1799 vm_object_t source; 1800 vm_object_t result; 1801 int useshadowlist; 1802 1803 source = *objectp; 1804 1805 /* 1806 * Don't create the new object if the old object isn't shared. 1807 * We have to chain wait before adding the reference to avoid 1808 * racing a collapse or deallocation. 1809 * 1810 * Add the additional ref to source here to avoid racing a later 1811 * collapse or deallocation. Clear the ONEMAPPING flag whether 1812 * addref is TRUE or not in this case because the original object 1813 * will be shadowed. 1814 */ 1815 useshadowlist = 0; 1816 if (source) { 1817 if (source->type != OBJT_VNODE) { 1818 useshadowlist = 1; 1819 vm_object_hold(source); 1820 vm_object_chain_wait(source, 0); 1821 if (source->ref_count == 1 && 1822 source->handle == NULL && 1823 (source->type == OBJT_DEFAULT || 1824 source->type == OBJT_SWAP)) { 1825 if (addref) { 1826 vm_object_reference_locked(source); 1827 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1828 } 1829 vm_object_drop(source); 1830 return; 1831 } 1832 vm_object_reference_locked(source); 1833 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1834 } else { 1835 vm_object_reference_quick(source); 1836 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1837 } 1838 } 1839 1840 /* 1841 * Allocate a new object with the given length. The new object 1842 * is returned referenced but we may have to add another one. 1843 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1844 * (typically because the caller is about to clone a vm_map_entry). 1845 * 1846 * The source object currently has an extra reference to prevent 1847 * collapses into it while we mess with its shadow list, which 1848 * we will remove later in this routine. 1849 */ 1850 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1851 panic("vm_object_shadow: no object for shadowing"); 1852 vm_object_hold(result); 1853 if (addref) { 1854 vm_object_reference_locked(result); 1855 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1856 } 1857 1858 /* 1859 * The new object shadows the source object. Chain wait before 1860 * adjusting shadow_count or the shadow list to avoid races. 1861 * 1862 * Try to optimize the result object's page color when shadowing 1863 * in order to maintain page coloring consistency in the combined 1864 * shadowed object. 1865 * 1866 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS 1867 */ 1868 KKASSERT(result->backing_object == NULL); 1869 result->backing_object = source; 1870 if (source) { 1871 if (useshadowlist) { 1872 vm_object_chain_wait(source, 0); 1873 LIST_INSERT_HEAD(&source->shadow_head, 1874 result, shadow_list); 1875 source->shadow_count++; 1876 source->generation++; 1877 vm_object_set_flag(result, OBJ_ONSHADOW); 1878 } 1879 /* cpu localization twist */ 1880 result->pg_color = (int)(intptr_t)curthread; 1881 } 1882 1883 /* 1884 * Adjust the return storage. Drop the ref on source before 1885 * returning. 1886 */ 1887 result->backing_object_offset = *offset; 1888 vm_object_drop(result); 1889 *offset = 0; 1890 if (source) { 1891 if (useshadowlist) { 1892 vm_object_deallocate_locked(source); 1893 vm_object_drop(source); 1894 } else { 1895 vm_object_deallocate(source); 1896 } 1897 } 1898 1899 /* 1900 * Return the new things 1901 */ 1902 *objectp = result; 1903 } 1904 1905 #define OBSC_TEST_ALL_SHADOWED 0x0001 1906 #define OBSC_COLLAPSE_NOWAIT 0x0002 1907 #define OBSC_COLLAPSE_WAIT 0x0004 1908 1909 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1910 1911 /* 1912 * The caller must hold the object. 1913 */ 1914 static __inline int 1915 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1916 { 1917 struct rb_vm_page_scan_info info; 1918 1919 vm_object_assert_held(object); 1920 vm_object_assert_held(backing_object); 1921 1922 KKASSERT(backing_object == object->backing_object); 1923 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1924 1925 /* 1926 * Initial conditions 1927 */ 1928 if (op & OBSC_TEST_ALL_SHADOWED) { 1929 /* 1930 * We do not want to have to test for the existence of 1931 * swap pages in the backing object. XXX but with the 1932 * new swapper this would be pretty easy to do. 1933 * 1934 * XXX what about anonymous MAP_SHARED memory that hasn't 1935 * been ZFOD faulted yet? If we do not test for this, the 1936 * shadow test may succeed! XXX 1937 */ 1938 if (backing_object->type != OBJT_DEFAULT) 1939 return(0); 1940 } 1941 if (op & OBSC_COLLAPSE_WAIT) { 1942 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1943 vm_object_set_flag(backing_object, OBJ_DEAD); 1944 lwkt_gettoken(&vmobj_token); 1945 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1946 vm_object_count--; 1947 lwkt_reltoken(&vmobj_token); 1948 vm_object_dead_wakeup(backing_object); 1949 } 1950 1951 /* 1952 * Our scan. We have to retry if a negative error code is returned, 1953 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1954 * the scan had to be stopped because the parent does not completely 1955 * shadow the child. 1956 */ 1957 info.object = object; 1958 info.backing_object = backing_object; 1959 info.limit = op; 1960 do { 1961 info.error = 1; 1962 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1963 vm_object_backing_scan_callback, 1964 &info); 1965 } while (info.error < 0); 1966 1967 return(info.error); 1968 } 1969 1970 /* 1971 * The caller must hold the object. 1972 */ 1973 static int 1974 vm_object_backing_scan_callback(vm_page_t p, void *data) 1975 { 1976 struct rb_vm_page_scan_info *info = data; 1977 vm_object_t backing_object; 1978 vm_object_t object; 1979 vm_pindex_t pindex; 1980 vm_pindex_t new_pindex; 1981 vm_pindex_t backing_offset_index; 1982 int op; 1983 1984 pindex = p->pindex; 1985 new_pindex = pindex - info->backing_offset_index; 1986 op = info->limit; 1987 object = info->object; 1988 backing_object = info->backing_object; 1989 backing_offset_index = info->backing_offset_index; 1990 1991 if (op & OBSC_TEST_ALL_SHADOWED) { 1992 vm_page_t pp; 1993 1994 /* 1995 * Ignore pages outside the parent object's range 1996 * and outside the parent object's mapping of the 1997 * backing object. 1998 * 1999 * note that we do not busy the backing object's 2000 * page. 2001 */ 2002 if (pindex < backing_offset_index || 2003 new_pindex >= object->size 2004 ) { 2005 return(0); 2006 } 2007 2008 /* 2009 * See if the parent has the page or if the parent's 2010 * object pager has the page. If the parent has the 2011 * page but the page is not valid, the parent's 2012 * object pager must have the page. 2013 * 2014 * If this fails, the parent does not completely shadow 2015 * the object and we might as well give up now. 2016 */ 2017 pp = vm_page_lookup(object, new_pindex); 2018 if ((pp == NULL || pp->valid == 0) && 2019 !vm_pager_has_page(object, new_pindex) 2020 ) { 2021 info->error = 0; /* problemo */ 2022 return(-1); /* stop the scan */ 2023 } 2024 } 2025 2026 /* 2027 * Check for busy page. Note that we may have lost (p) when we 2028 * possibly blocked above. 2029 */ 2030 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 2031 vm_page_t pp; 2032 2033 if (vm_page_busy_try(p, TRUE)) { 2034 if (op & OBSC_COLLAPSE_NOWAIT) { 2035 return(0); 2036 } else { 2037 /* 2038 * If we slept, anything could have 2039 * happened. Ask that the scan be restarted. 2040 * 2041 * Since the object is marked dead, the 2042 * backing offset should not have changed. 2043 */ 2044 vm_page_sleep_busy(p, TRUE, "vmocol"); 2045 info->error = -1; 2046 return(-1); 2047 } 2048 } 2049 2050 /* 2051 * If (p) is no longer valid restart the scan. 2052 */ 2053 if (p->object != backing_object || p->pindex != pindex) { 2054 kprintf("vm_object_backing_scan: Warning: page " 2055 "%p ripped out from under us\n", p); 2056 vm_page_wakeup(p); 2057 info->error = -1; 2058 return(-1); 2059 } 2060 2061 if (op & OBSC_COLLAPSE_NOWAIT) { 2062 if (p->valid == 0 || 2063 p->wire_count || 2064 (p->flags & PG_NEED_COMMIT)) { 2065 vm_page_wakeup(p); 2066 return(0); 2067 } 2068 } else { 2069 /* XXX what if p->valid == 0 , hold_count, etc? */ 2070 } 2071 2072 KASSERT( 2073 p->object == backing_object, 2074 ("vm_object_qcollapse(): object mismatch") 2075 ); 2076 2077 /* 2078 * Destroy any associated swap 2079 */ 2080 if (backing_object->type == OBJT_SWAP) 2081 swap_pager_freespace(backing_object, p->pindex, 1); 2082 2083 if ( 2084 p->pindex < backing_offset_index || 2085 new_pindex >= object->size 2086 ) { 2087 /* 2088 * Page is out of the parent object's range, we 2089 * can simply destroy it. 2090 */ 2091 vm_page_protect(p, VM_PROT_NONE); 2092 vm_page_free(p); 2093 return(0); 2094 } 2095 2096 pp = vm_page_lookup(object, new_pindex); 2097 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 2098 /* 2099 * page already exists in parent OR swap exists 2100 * for this location in the parent. Destroy 2101 * the original page from the backing object. 2102 * 2103 * Leave the parent's page alone 2104 */ 2105 vm_page_protect(p, VM_PROT_NONE); 2106 vm_page_free(p); 2107 return(0); 2108 } 2109 2110 /* 2111 * Page does not exist in parent, rename the 2112 * page from the backing object to the main object. 2113 * 2114 * If the page was mapped to a process, it can remain 2115 * mapped through the rename. 2116 */ 2117 if ((p->queue - p->pc) == PQ_CACHE) 2118 vm_page_deactivate(p); 2119 2120 vm_page_rename(p, object, new_pindex); 2121 vm_page_wakeup(p); 2122 /* page automatically made dirty by rename */ 2123 } 2124 return(0); 2125 } 2126 2127 /* 2128 * This version of collapse allows the operation to occur earlier and 2129 * when paging_in_progress is true for an object... This is not a complete 2130 * operation, but should plug 99.9% of the rest of the leaks. 2131 * 2132 * The caller must hold the object and backing_object and both must be 2133 * chainlocked. 2134 * 2135 * (only called from vm_object_collapse) 2136 */ 2137 static void 2138 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 2139 { 2140 if (backing_object->ref_count == 1) { 2141 atomic_add_int(&backing_object->ref_count, 2); 2142 vm_object_backing_scan(object, backing_object, 2143 OBSC_COLLAPSE_NOWAIT); 2144 atomic_add_int(&backing_object->ref_count, -2); 2145 } 2146 } 2147 2148 /* 2149 * Collapse an object with the object backing it. Pages in the backing 2150 * object are moved into the parent, and the backing object is deallocated. 2151 * Any conflict is resolved in favor of the parent's existing pages. 2152 * 2153 * object must be held and chain-locked on call. 2154 * 2155 * The caller must have an extra ref on object to prevent a race from 2156 * destroying it during the collapse. 2157 */ 2158 void 2159 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 2160 { 2161 struct vm_object_dealloc_list *dlist = NULL; 2162 vm_object_t backing_object; 2163 2164 /* 2165 * Only one thread is attempting a collapse at any given moment. 2166 * There are few restrictions for (object) that callers of this 2167 * function check so reentrancy is likely. 2168 */ 2169 KKASSERT(object != NULL); 2170 vm_object_assert_held(object); 2171 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL)); 2172 2173 for (;;) { 2174 vm_object_t bbobj; 2175 int dodealloc; 2176 2177 /* 2178 * We can only collapse a DEFAULT/SWAP object with a 2179 * DEFAULT/SWAP object. 2180 */ 2181 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) { 2182 backing_object = NULL; 2183 break; 2184 } 2185 2186 backing_object = object->backing_object; 2187 if (backing_object == NULL) 2188 break; 2189 if (backing_object->type != OBJT_DEFAULT && 2190 backing_object->type != OBJT_SWAP) { 2191 backing_object = NULL; 2192 break; 2193 } 2194 2195 /* 2196 * Hold the backing_object and check for races 2197 */ 2198 vm_object_hold(backing_object); 2199 if (backing_object != object->backing_object || 2200 (backing_object->type != OBJT_DEFAULT && 2201 backing_object->type != OBJT_SWAP)) { 2202 vm_object_drop(backing_object); 2203 continue; 2204 } 2205 2206 /* 2207 * Chain-lock the backing object too because if we 2208 * successfully merge its pages into the top object we 2209 * will collapse backing_object->backing_object as the 2210 * new backing_object. Re-check that it is still our 2211 * backing object. 2212 */ 2213 vm_object_chain_acquire(backing_object, 0); 2214 if (backing_object != object->backing_object) { 2215 vm_object_chain_release(backing_object); 2216 vm_object_drop(backing_object); 2217 continue; 2218 } 2219 2220 /* 2221 * we check the backing object first, because it is most likely 2222 * not collapsable. 2223 */ 2224 if (backing_object->handle != NULL || 2225 (backing_object->type != OBJT_DEFAULT && 2226 backing_object->type != OBJT_SWAP) || 2227 (backing_object->flags & OBJ_DEAD) || 2228 object->handle != NULL || 2229 (object->type != OBJT_DEFAULT && 2230 object->type != OBJT_SWAP) || 2231 (object->flags & OBJ_DEAD)) { 2232 break; 2233 } 2234 2235 /* 2236 * If paging is in progress we can't do a normal collapse. 2237 */ 2238 if ( 2239 object->paging_in_progress != 0 || 2240 backing_object->paging_in_progress != 0 2241 ) { 2242 vm_object_qcollapse(object, backing_object); 2243 break; 2244 } 2245 2246 /* 2247 * We know that we can either collapse the backing object (if 2248 * the parent is the only reference to it) or (perhaps) have 2249 * the parent bypass the object if the parent happens to shadow 2250 * all the resident pages in the entire backing object. 2251 * 2252 * This is ignoring pager-backed pages such as swap pages. 2253 * vm_object_backing_scan fails the shadowing test in this 2254 * case. 2255 */ 2256 if (backing_object->ref_count == 1) { 2257 /* 2258 * If there is exactly one reference to the backing 2259 * object, we can collapse it into the parent. 2260 */ 2261 KKASSERT(object->backing_object == backing_object); 2262 vm_object_backing_scan(object, backing_object, 2263 OBSC_COLLAPSE_WAIT); 2264 2265 /* 2266 * Move the pager from backing_object to object. 2267 */ 2268 if (backing_object->type == OBJT_SWAP) { 2269 vm_object_pip_add(backing_object, 1); 2270 2271 /* 2272 * scrap the paging_offset junk and do a 2273 * discrete copy. This also removes major 2274 * assumptions about how the swap-pager 2275 * works from where it doesn't belong. The 2276 * new swapper is able to optimize the 2277 * destroy-source case. 2278 */ 2279 vm_object_pip_add(object, 1); 2280 swap_pager_copy(backing_object, object, 2281 OFF_TO_IDX(object->backing_object_offset), 2282 TRUE); 2283 vm_object_pip_wakeup(object); 2284 vm_object_pip_wakeup(backing_object); 2285 } 2286 2287 /* 2288 * Object now shadows whatever backing_object did. 2289 * Remove object from backing_object's shadow_list. 2290 */ 2291 KKASSERT(object->backing_object == backing_object); 2292 if (object->flags & OBJ_ONSHADOW) { 2293 LIST_REMOVE(object, shadow_list); 2294 backing_object->shadow_count--; 2295 backing_object->generation++; 2296 vm_object_clear_flag(object, OBJ_ONSHADOW); 2297 } 2298 2299 /* 2300 * backing_object->backing_object moves from within 2301 * backing_object to within object. 2302 * 2303 * OBJT_VNODE bbobj's should have empty shadow lists. 2304 */ 2305 while ((bbobj = backing_object->backing_object) != NULL) { 2306 if (bbobj->type == OBJT_VNODE) 2307 vm_object_hold_shared(bbobj); 2308 else 2309 vm_object_hold(bbobj); 2310 if (bbobj == backing_object->backing_object) 2311 break; 2312 vm_object_drop(bbobj); 2313 } 2314 if (bbobj) { 2315 if (backing_object->flags & OBJ_ONSHADOW) { 2316 /* not locked exclusively if vnode */ 2317 KKASSERT(bbobj->type != OBJT_VNODE); 2318 LIST_REMOVE(backing_object, 2319 shadow_list); 2320 bbobj->shadow_count--; 2321 bbobj->generation++; 2322 vm_object_clear_flag(backing_object, 2323 OBJ_ONSHADOW); 2324 } 2325 backing_object->backing_object = NULL; 2326 } 2327 object->backing_object = bbobj; 2328 if (bbobj) { 2329 if (bbobj->type != OBJT_VNODE) { 2330 LIST_INSERT_HEAD(&bbobj->shadow_head, 2331 object, shadow_list); 2332 bbobj->shadow_count++; 2333 bbobj->generation++; 2334 vm_object_set_flag(object, 2335 OBJ_ONSHADOW); 2336 } 2337 } 2338 2339 object->backing_object_offset += 2340 backing_object->backing_object_offset; 2341 2342 vm_object_drop(bbobj); 2343 2344 /* 2345 * Discard the old backing_object. Nothing should be 2346 * able to ref it, other than a vm_map_split(), 2347 * and vm_map_split() will stall on our chain lock. 2348 * And we control the parent so it shouldn't be 2349 * possible for it to go away either. 2350 * 2351 * Since the backing object has no pages, no pager 2352 * left, and no object references within it, all 2353 * that is necessary is to dispose of it. 2354 */ 2355 KASSERT(backing_object->ref_count == 1, 2356 ("backing_object %p was somehow " 2357 "re-referenced during collapse!", 2358 backing_object)); 2359 KASSERT(RB_EMPTY(&backing_object->rb_memq), 2360 ("backing_object %p somehow has left " 2361 "over pages during collapse!", 2362 backing_object)); 2363 2364 /* 2365 * The object can be destroyed. 2366 * 2367 * XXX just fall through and dodealloc instead 2368 * of forcing destruction? 2369 */ 2370 atomic_add_int(&backing_object->ref_count, -1); 2371 if ((backing_object->flags & OBJ_DEAD) == 0) 2372 vm_object_terminate(backing_object); 2373 object_collapses++; 2374 dodealloc = 0; 2375 } else { 2376 /* 2377 * If we do not entirely shadow the backing object, 2378 * there is nothing we can do so we give up. 2379 */ 2380 if (vm_object_backing_scan(object, backing_object, 2381 OBSC_TEST_ALL_SHADOWED) == 0) { 2382 break; 2383 } 2384 2385 /* 2386 * bbobj is backing_object->backing_object. Since 2387 * object completely shadows backing_object we can 2388 * bypass it and become backed by bbobj instead. 2389 * 2390 * The shadow list for vnode backing objects is not 2391 * used and a shared hold is allowed. 2392 */ 2393 while ((bbobj = backing_object->backing_object) != NULL) { 2394 if (bbobj->type == OBJT_VNODE) 2395 vm_object_hold_shared(bbobj); 2396 else 2397 vm_object_hold(bbobj); 2398 if (bbobj == backing_object->backing_object) 2399 break; 2400 vm_object_drop(bbobj); 2401 } 2402 2403 /* 2404 * Make object shadow bbobj instead of backing_object. 2405 * Remove object from backing_object's shadow list. 2406 * 2407 * Deallocating backing_object will not remove 2408 * it, since its reference count is at least 2. 2409 */ 2410 KKASSERT(object->backing_object == backing_object); 2411 if (object->flags & OBJ_ONSHADOW) { 2412 LIST_REMOVE(object, shadow_list); 2413 backing_object->shadow_count--; 2414 backing_object->generation++; 2415 vm_object_clear_flag(object, OBJ_ONSHADOW); 2416 } 2417 2418 /* 2419 * Add a ref to bbobj, bbobj now shadows object. 2420 * 2421 * NOTE: backing_object->backing_object still points 2422 * to bbobj. That relationship remains intact 2423 * because backing_object has > 1 ref, so 2424 * someone else is pointing to it (hence why 2425 * we can't collapse it into object and can 2426 * only handle the all-shadowed bypass case). 2427 */ 2428 if (bbobj) { 2429 if (bbobj->type != OBJT_VNODE) { 2430 vm_object_chain_wait(bbobj, 0); 2431 vm_object_reference_locked(bbobj); 2432 LIST_INSERT_HEAD(&bbobj->shadow_head, 2433 object, shadow_list); 2434 bbobj->shadow_count++; 2435 bbobj->generation++; 2436 vm_object_set_flag(object, 2437 OBJ_ONSHADOW); 2438 } else { 2439 vm_object_reference_quick(bbobj); 2440 } 2441 object->backing_object_offset += 2442 backing_object->backing_object_offset; 2443 object->backing_object = bbobj; 2444 vm_object_drop(bbobj); 2445 } else { 2446 object->backing_object = NULL; 2447 } 2448 2449 /* 2450 * Drop the reference count on backing_object. To 2451 * handle ref_count races properly we can't assume 2452 * that the ref_count is still at least 2 so we 2453 * have to actually call vm_object_deallocate() 2454 * (after clearing the chainlock). 2455 */ 2456 object_bypasses++; 2457 dodealloc = 1; 2458 } 2459 2460 /* 2461 * Ok, we want to loop on the new object->bbobj association, 2462 * possibly collapsing it further. However if dodealloc is 2463 * non-zero we have to deallocate the backing_object which 2464 * itself can potentially undergo a collapse, creating a 2465 * recursion depth issue with the LWKT token subsystem. 2466 * 2467 * In the case where we must deallocate the backing_object 2468 * it is possible now that the backing_object has a single 2469 * shadow count on some other object (not represented here 2470 * as yet), since it no longer shadows us. Thus when we 2471 * call vm_object_deallocate() it may attempt to collapse 2472 * itself into its remaining parent. 2473 */ 2474 if (dodealloc) { 2475 struct vm_object_dealloc_list *dtmp; 2476 2477 vm_object_chain_release(backing_object); 2478 vm_object_unlock(backing_object); 2479 /* backing_object remains held */ 2480 2481 /* 2482 * Auto-deallocation list for caller convenience. 2483 */ 2484 if (dlistp == NULL) 2485 dlistp = &dlist; 2486 2487 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2488 dtmp->object = backing_object; 2489 dtmp->next = *dlistp; 2490 *dlistp = dtmp; 2491 } else { 2492 vm_object_chain_release(backing_object); 2493 vm_object_drop(backing_object); 2494 } 2495 /* backing_object = NULL; not needed */ 2496 /* loop */ 2497 } 2498 2499 /* 2500 * Clean up any left over backing_object 2501 */ 2502 if (backing_object) { 2503 vm_object_chain_release(backing_object); 2504 vm_object_drop(backing_object); 2505 } 2506 2507 /* 2508 * Clean up any auto-deallocation list. This is a convenience 2509 * for top-level callers so they don't have to pass &dlist. 2510 * Do not clean up any caller-passed dlistp, the caller will 2511 * do that. 2512 */ 2513 if (dlist) 2514 vm_object_deallocate_list(&dlist); 2515 2516 } 2517 2518 /* 2519 * vm_object_collapse() may collect additional objects in need of 2520 * deallocation. This routine deallocates these objects. The 2521 * deallocation itself can trigger additional collapses (which the 2522 * deallocate function takes care of). This procedure is used to 2523 * reduce procedural recursion since these vm_object shadow chains 2524 * can become quite long. 2525 */ 2526 void 2527 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2528 { 2529 struct vm_object_dealloc_list *dlist; 2530 2531 while ((dlist = *dlistp) != NULL) { 2532 *dlistp = dlist->next; 2533 vm_object_lock(dlist->object); 2534 vm_object_deallocate_locked(dlist->object); 2535 vm_object_drop(dlist->object); 2536 kfree(dlist, M_TEMP); 2537 } 2538 } 2539 2540 /* 2541 * Removes all physical pages in the specified object range from the 2542 * object's list of pages. 2543 * 2544 * No requirements. 2545 */ 2546 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2547 2548 void 2549 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2550 boolean_t clean_only) 2551 { 2552 struct rb_vm_page_scan_info info; 2553 int all; 2554 2555 /* 2556 * Degenerate cases and assertions 2557 */ 2558 vm_object_hold(object); 2559 if (object == NULL || 2560 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2561 vm_object_drop(object); 2562 return; 2563 } 2564 KASSERT(object->type != OBJT_PHYS, 2565 ("attempt to remove pages from a physical object")); 2566 2567 /* 2568 * Indicate that paging is occuring on the object 2569 */ 2570 vm_object_pip_add(object, 1); 2571 2572 /* 2573 * Figure out the actual removal range and whether we are removing 2574 * the entire contents of the object or not. If removing the entire 2575 * contents, be sure to get all pages, even those that might be 2576 * beyond the end of the object. 2577 */ 2578 info.start_pindex = start; 2579 if (end == 0) 2580 info.end_pindex = (vm_pindex_t)-1; 2581 else 2582 info.end_pindex = end - 1; 2583 info.limit = clean_only; 2584 all = (start == 0 && info.end_pindex >= object->size - 1); 2585 2586 /* 2587 * Loop until we are sure we have gotten them all. 2588 */ 2589 do { 2590 info.error = 0; 2591 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2592 vm_object_page_remove_callback, &info); 2593 } while (info.error); 2594 2595 /* 2596 * Remove any related swap if throwing away pages, or for 2597 * non-swap objects (the swap is a clean copy in that case). 2598 */ 2599 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2600 if (all) 2601 swap_pager_freespace_all(object); 2602 else 2603 swap_pager_freespace(object, info.start_pindex, 2604 info.end_pindex - info.start_pindex + 1); 2605 } 2606 2607 /* 2608 * Cleanup 2609 */ 2610 vm_object_pip_wakeup(object); 2611 vm_object_drop(object); 2612 } 2613 2614 /* 2615 * The caller must hold the object 2616 */ 2617 static int 2618 vm_object_page_remove_callback(vm_page_t p, void *data) 2619 { 2620 struct rb_vm_page_scan_info *info = data; 2621 2622 if (vm_page_busy_try(p, TRUE)) { 2623 vm_page_sleep_busy(p, TRUE, "vmopar"); 2624 info->error = 1; 2625 return(0); 2626 } 2627 2628 /* 2629 * Wired pages cannot be destroyed, but they can be invalidated 2630 * and we do so if clean_only (limit) is not set. 2631 * 2632 * WARNING! The page may be wired due to being part of a buffer 2633 * cache buffer, and the buffer might be marked B_CACHE. 2634 * This is fine as part of a truncation but VFSs must be 2635 * sure to fix the buffer up when re-extending the file. 2636 * 2637 * NOTE! PG_NEED_COMMIT is ignored. 2638 */ 2639 if (p->wire_count != 0) { 2640 vm_page_protect(p, VM_PROT_NONE); 2641 if (info->limit == 0) 2642 p->valid = 0; 2643 vm_page_wakeup(p); 2644 return(0); 2645 } 2646 2647 /* 2648 * limit is our clean_only flag. If set and the page is dirty or 2649 * requires a commit, do not free it. If set and the page is being 2650 * held by someone, do not free it. 2651 */ 2652 if (info->limit && p->valid) { 2653 vm_page_test_dirty(p); 2654 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) { 2655 vm_page_wakeup(p); 2656 return(0); 2657 } 2658 #if 0 2659 if (p->hold_count) { 2660 vm_page_wakeup(p); 2661 return(0); 2662 } 2663 #endif 2664 } 2665 2666 /* 2667 * Destroy the page 2668 */ 2669 vm_page_protect(p, VM_PROT_NONE); 2670 vm_page_free(p); 2671 return(0); 2672 } 2673 2674 /* 2675 * Coalesces two objects backing up adjoining regions of memory into a 2676 * single object. 2677 * 2678 * returns TRUE if objects were combined. 2679 * 2680 * NOTE: Only works at the moment if the second object is NULL - 2681 * if it's not, which object do we lock first? 2682 * 2683 * Parameters: 2684 * prev_object First object to coalesce 2685 * prev_offset Offset into prev_object 2686 * next_object Second object into coalesce 2687 * next_offset Offset into next_object 2688 * 2689 * prev_size Size of reference to prev_object 2690 * next_size Size of reference to next_object 2691 * 2692 * The caller does not need to hold (prev_object) but must have a stable 2693 * pointer to it (typically by holding the vm_map locked). 2694 */ 2695 boolean_t 2696 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2697 vm_size_t prev_size, vm_size_t next_size) 2698 { 2699 vm_pindex_t next_pindex; 2700 2701 if (prev_object == NULL) 2702 return (TRUE); 2703 2704 vm_object_hold(prev_object); 2705 2706 if (prev_object->type != OBJT_DEFAULT && 2707 prev_object->type != OBJT_SWAP) { 2708 vm_object_drop(prev_object); 2709 return (FALSE); 2710 } 2711 2712 /* 2713 * Try to collapse the object first 2714 */ 2715 vm_object_chain_acquire(prev_object, 0); 2716 vm_object_collapse(prev_object, NULL); 2717 2718 /* 2719 * Can't coalesce if: . more than one reference . paged out . shadows 2720 * another object . has a copy elsewhere (any of which mean that the 2721 * pages not mapped to prev_entry may be in use anyway) 2722 */ 2723 2724 if (prev_object->backing_object != NULL) { 2725 vm_object_chain_release(prev_object); 2726 vm_object_drop(prev_object); 2727 return (FALSE); 2728 } 2729 2730 prev_size >>= PAGE_SHIFT; 2731 next_size >>= PAGE_SHIFT; 2732 next_pindex = prev_pindex + prev_size; 2733 2734 if ((prev_object->ref_count > 1) && 2735 (prev_object->size != next_pindex)) { 2736 vm_object_chain_release(prev_object); 2737 vm_object_drop(prev_object); 2738 return (FALSE); 2739 } 2740 2741 /* 2742 * Remove any pages that may still be in the object from a previous 2743 * deallocation. 2744 */ 2745 if (next_pindex < prev_object->size) { 2746 vm_object_page_remove(prev_object, 2747 next_pindex, 2748 next_pindex + next_size, FALSE); 2749 if (prev_object->type == OBJT_SWAP) 2750 swap_pager_freespace(prev_object, 2751 next_pindex, next_size); 2752 } 2753 2754 /* 2755 * Extend the object if necessary. 2756 */ 2757 if (next_pindex + next_size > prev_object->size) 2758 prev_object->size = next_pindex + next_size; 2759 2760 vm_object_chain_release(prev_object); 2761 vm_object_drop(prev_object); 2762 return (TRUE); 2763 } 2764 2765 /* 2766 * Make the object writable and flag is being possibly dirty. 2767 * 2768 * The object might not be held (or might be held but held shared), 2769 * the related vnode is probably not held either. Object and vnode are 2770 * stable by virtue of the vm_page busied by the caller preventing 2771 * destruction. 2772 * 2773 * If the related mount is flagged MNTK_THR_SYNC we need to call 2774 * vsetobjdirty(). Filesystems using this option usually shortcut 2775 * synchronization by only scanning the syncer list. 2776 */ 2777 void 2778 vm_object_set_writeable_dirty(vm_object_t object) 2779 { 2780 struct vnode *vp; 2781 2782 /*vm_object_assert_held(object);*/ 2783 /* 2784 * Avoid contention in vm fault path by checking the state before 2785 * issuing an atomic op on it. 2786 */ 2787 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) != 2788 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) { 2789 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2790 } 2791 if (object->type == OBJT_VNODE && 2792 (vp = (struct vnode *)object->handle) != NULL) { 2793 if ((vp->v_flag & VOBJDIRTY) == 0) { 2794 if (vp->v_mount && 2795 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) { 2796 vsetobjdirty(vp); 2797 } else { 2798 vsetflags(vp, VOBJDIRTY); 2799 } 2800 } 2801 } 2802 } 2803 2804 #include "opt_ddb.h" 2805 #ifdef DDB 2806 #include <sys/kernel.h> 2807 2808 #include <sys/cons.h> 2809 2810 #include <ddb/ddb.h> 2811 2812 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2813 vm_map_entry_t entry); 2814 static int vm_object_in_map (vm_object_t object); 2815 2816 /* 2817 * The caller must hold the object. 2818 */ 2819 static int 2820 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2821 { 2822 vm_map_t tmpm; 2823 vm_map_entry_t tmpe; 2824 vm_object_t obj, nobj; 2825 int entcount; 2826 2827 if (map == 0) 2828 return 0; 2829 if (entry == 0) { 2830 tmpe = map->header.next; 2831 entcount = map->nentries; 2832 while (entcount-- && (tmpe != &map->header)) { 2833 if( _vm_object_in_map(map, object, tmpe)) { 2834 return 1; 2835 } 2836 tmpe = tmpe->next; 2837 } 2838 return (0); 2839 } 2840 switch(entry->maptype) { 2841 case VM_MAPTYPE_SUBMAP: 2842 tmpm = entry->object.sub_map; 2843 tmpe = tmpm->header.next; 2844 entcount = tmpm->nentries; 2845 while (entcount-- && tmpe != &tmpm->header) { 2846 if( _vm_object_in_map(tmpm, object, tmpe)) { 2847 return 1; 2848 } 2849 tmpe = tmpe->next; 2850 } 2851 break; 2852 case VM_MAPTYPE_NORMAL: 2853 case VM_MAPTYPE_VPAGETABLE: 2854 obj = entry->object.vm_object; 2855 while (obj) { 2856 if (obj == object) { 2857 if (obj != entry->object.vm_object) 2858 vm_object_drop(obj); 2859 return 1; 2860 } 2861 while ((nobj = obj->backing_object) != NULL) { 2862 vm_object_hold(nobj); 2863 if (nobj == obj->backing_object) 2864 break; 2865 vm_object_drop(nobj); 2866 } 2867 if (obj != entry->object.vm_object) { 2868 if (nobj) 2869 vm_object_lock_swap(); 2870 vm_object_drop(obj); 2871 } 2872 obj = nobj; 2873 } 2874 break; 2875 default: 2876 break; 2877 } 2878 return 0; 2879 } 2880 2881 static int vm_object_in_map_callback(struct proc *p, void *data); 2882 2883 struct vm_object_in_map_info { 2884 vm_object_t object; 2885 int rv; 2886 }; 2887 2888 /* 2889 * Debugging only 2890 */ 2891 static int 2892 vm_object_in_map(vm_object_t object) 2893 { 2894 struct vm_object_in_map_info info; 2895 2896 info.rv = 0; 2897 info.object = object; 2898 2899 allproc_scan(vm_object_in_map_callback, &info); 2900 if (info.rv) 2901 return 1; 2902 if( _vm_object_in_map(&kernel_map, object, 0)) 2903 return 1; 2904 if( _vm_object_in_map(&pager_map, object, 0)) 2905 return 1; 2906 if( _vm_object_in_map(&buffer_map, object, 0)) 2907 return 1; 2908 return 0; 2909 } 2910 2911 /* 2912 * Debugging only 2913 */ 2914 static int 2915 vm_object_in_map_callback(struct proc *p, void *data) 2916 { 2917 struct vm_object_in_map_info *info = data; 2918 2919 if (p->p_vmspace) { 2920 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2921 info->rv = 1; 2922 return -1; 2923 } 2924 } 2925 return (0); 2926 } 2927 2928 DB_SHOW_COMMAND(vmochk, vm_object_check) 2929 { 2930 vm_object_t object; 2931 2932 /* 2933 * make sure that internal objs are in a map somewhere 2934 * and none have zero ref counts. 2935 */ 2936 for (object = TAILQ_FIRST(&vm_object_list); 2937 object != NULL; 2938 object = TAILQ_NEXT(object, object_list)) { 2939 if (object->type == OBJT_MARKER) 2940 continue; 2941 if (object->handle == NULL && 2942 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2943 if (object->ref_count == 0) { 2944 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2945 (long)object->size); 2946 } 2947 if (!vm_object_in_map(object)) { 2948 db_printf( 2949 "vmochk: internal obj is not in a map: " 2950 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2951 object->ref_count, (u_long)object->size, 2952 (u_long)object->size, 2953 (void *)object->backing_object); 2954 } 2955 } 2956 } 2957 } 2958 2959 /* 2960 * Debugging only 2961 */ 2962 DB_SHOW_COMMAND(object, vm_object_print_static) 2963 { 2964 /* XXX convert args. */ 2965 vm_object_t object = (vm_object_t)addr; 2966 boolean_t full = have_addr; 2967 2968 vm_page_t p; 2969 2970 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2971 #define count was_count 2972 2973 int count; 2974 2975 if (object == NULL) 2976 return; 2977 2978 db_iprintf( 2979 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2980 object, (int)object->type, (u_long)object->size, 2981 object->resident_page_count, object->ref_count, object->flags); 2982 /* 2983 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2984 */ 2985 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2986 object->shadow_count, 2987 object->backing_object ? object->backing_object->ref_count : 0, 2988 object->backing_object, (long)object->backing_object_offset); 2989 2990 if (!full) 2991 return; 2992 2993 db_indent += 2; 2994 count = 0; 2995 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2996 if (count == 0) 2997 db_iprintf("memory:="); 2998 else if (count == 6) { 2999 db_printf("\n"); 3000 db_iprintf(" ..."); 3001 count = 0; 3002 } else 3003 db_printf(","); 3004 count++; 3005 3006 db_printf("(off=0x%lx,page=0x%lx)", 3007 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 3008 } 3009 if (count != 0) 3010 db_printf("\n"); 3011 db_indent -= 2; 3012 } 3013 3014 /* XXX. */ 3015 #undef count 3016 3017 /* 3018 * XXX need this non-static entry for calling from vm_map_print. 3019 * 3020 * Debugging only 3021 */ 3022 void 3023 vm_object_print(/* db_expr_t */ long addr, 3024 boolean_t have_addr, 3025 /* db_expr_t */ long count, 3026 char *modif) 3027 { 3028 vm_object_print_static(addr, have_addr, count, modif); 3029 } 3030 3031 /* 3032 * Debugging only 3033 */ 3034 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 3035 { 3036 vm_object_t object; 3037 int nl = 0; 3038 int c; 3039 for (object = TAILQ_FIRST(&vm_object_list); 3040 object != NULL; 3041 object = TAILQ_NEXT(object, object_list)) { 3042 vm_pindex_t idx, fidx; 3043 vm_pindex_t osize; 3044 vm_paddr_t pa = -1, padiff; 3045 int rcount; 3046 vm_page_t m; 3047 3048 if (object->type == OBJT_MARKER) 3049 continue; 3050 db_printf("new object: %p\n", (void *)object); 3051 if ( nl > 18) { 3052 c = cngetc(); 3053 if (c != ' ') 3054 return; 3055 nl = 0; 3056 } 3057 nl++; 3058 rcount = 0; 3059 fidx = 0; 3060 osize = object->size; 3061 if (osize > 128) 3062 osize = 128; 3063 for (idx = 0; idx < osize; idx++) { 3064 m = vm_page_lookup(object, idx); 3065 if (m == NULL) { 3066 if (rcount) { 3067 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 3068 (long)fidx, rcount, (long)pa); 3069 if ( nl > 18) { 3070 c = cngetc(); 3071 if (c != ' ') 3072 return; 3073 nl = 0; 3074 } 3075 nl++; 3076 rcount = 0; 3077 } 3078 continue; 3079 } 3080 3081 3082 if (rcount && 3083 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 3084 ++rcount; 3085 continue; 3086 } 3087 if (rcount) { 3088 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 3089 padiff >>= PAGE_SHIFT; 3090 padiff &= PQ_L2_MASK; 3091 if (padiff == 0) { 3092 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 3093 ++rcount; 3094 continue; 3095 } 3096 db_printf(" index(%ld)run(%d)pa(0x%lx)", 3097 (long)fidx, rcount, (long)pa); 3098 db_printf("pd(%ld)\n", (long)padiff); 3099 if ( nl > 18) { 3100 c = cngetc(); 3101 if (c != ' ') 3102 return; 3103 nl = 0; 3104 } 3105 nl++; 3106 } 3107 fidx = idx; 3108 pa = VM_PAGE_TO_PHYS(m); 3109 rcount = 1; 3110 } 3111 if (rcount) { 3112 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 3113 (long)fidx, rcount, (long)pa); 3114 if ( nl > 18) { 3115 c = cngetc(); 3116 if (c != ' ') 3117 return; 3118 nl = 0; 3119 } 3120 nl++; 3121 } 3122 } 3123 } 3124 #endif /* DDB */ 3125