1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 67 */ 68 69 /* 70 * Virtual memory object module. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> /* for curproc, pageproc */ 76 #include <sys/thread.h> 77 #include <sys/vnode.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/mount.h> 81 #include <sys/kernel.h> 82 #include <sys/sysctl.h> 83 #include <sys/refcount.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_zone.h> 97 98 #define EASY_SCAN_FACTOR 8 99 100 static void vm_object_qcollapse(vm_object_t object, 101 vm_object_t backing_object); 102 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 103 int pagerflags); 104 static void vm_object_lock_init(vm_object_t); 105 106 107 /* 108 * Virtual memory objects maintain the actual data 109 * associated with allocated virtual memory. A given 110 * page of memory exists within exactly one object. 111 * 112 * An object is only deallocated when all "references" 113 * are given up. Only one "reference" to a given 114 * region of an object should be writeable. 115 * 116 * Associated with each object is a list of all resident 117 * memory pages belonging to that object; this list is 118 * maintained by the "vm_page" module, and locked by the object's 119 * lock. 120 * 121 * Each object also records a "pager" routine which is 122 * used to retrieve (and store) pages to the proper backing 123 * storage. In addition, objects may be backed by other 124 * objects from which they were virtual-copied. 125 * 126 * The only items within the object structure which are 127 * modified after time of creation are: 128 * reference count locked by object's lock 129 * pager routine locked by object's lock 130 * 131 */ 132 133 struct object_q vm_object_list; /* locked by vmobj_token */ 134 struct vm_object kernel_object; 135 136 static long vm_object_count; /* locked by vmobj_token */ 137 extern int vm_pageout_page_count; 138 139 static long object_collapses; 140 static long object_bypasses; 141 static int next_index; 142 static vm_zone_t obj_zone; 143 static struct vm_zone obj_zone_store; 144 #define VM_OBJECTS_INIT 256 145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 146 147 /* 148 * Misc low level routines 149 */ 150 static void 151 vm_object_lock_init(vm_object_t obj) 152 { 153 #if defined(DEBUG_LOCKS) 154 int i; 155 156 obj->debug_hold_bitmap = 0; 157 obj->debug_hold_ovfl = 0; 158 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 159 obj->debug_hold_thrs[i] = NULL; 160 obj->debug_hold_file[i] = NULL; 161 obj->debug_hold_line[i] = 0; 162 } 163 #endif 164 } 165 166 void 167 vm_object_lock_swap(void) 168 { 169 lwkt_token_swap(); 170 } 171 172 void 173 vm_object_lock(vm_object_t obj) 174 { 175 lwkt_gettoken(&obj->token); 176 } 177 178 /* 179 * Returns TRUE on sucesss 180 */ 181 static int 182 vm_object_lock_try(vm_object_t obj) 183 { 184 return(lwkt_trytoken(&obj->token)); 185 } 186 187 void 188 vm_object_lock_shared(vm_object_t obj) 189 { 190 lwkt_gettoken_shared(&obj->token); 191 } 192 193 void 194 vm_object_unlock(vm_object_t obj) 195 { 196 lwkt_reltoken(&obj->token); 197 } 198 199 static __inline void 200 vm_object_assert_held(vm_object_t obj) 201 { 202 ASSERT_LWKT_TOKEN_HELD(&obj->token); 203 } 204 205 void 206 #ifndef DEBUG_LOCKS 207 vm_object_hold(vm_object_t obj) 208 #else 209 debugvm_object_hold(vm_object_t obj, char *file, int line) 210 #endif 211 { 212 KKASSERT(obj != NULL); 213 214 /* 215 * Object must be held (object allocation is stable due to callers 216 * context, typically already holding the token on a parent object) 217 * prior to potentially blocking on the lock, otherwise the object 218 * can get ripped away from us. 219 */ 220 refcount_acquire(&obj->hold_count); 221 vm_object_lock(obj); 222 223 #if defined(DEBUG_LOCKS) 224 int i; 225 u_int mask; 226 227 for (;;) { 228 mask = ~obj->debug_hold_bitmap; 229 cpu_ccfence(); 230 if (mask == 0xFFFFFFFFU) { 231 if (obj->debug_hold_ovfl == 0) 232 obj->debug_hold_ovfl = 1; 233 break; 234 } 235 i = ffs(mask) - 1; 236 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 237 ~mask | (1 << i))) { 238 obj->debug_hold_bitmap |= (1 << i); 239 obj->debug_hold_thrs[i] = curthread; 240 obj->debug_hold_file[i] = file; 241 obj->debug_hold_line[i] = line; 242 break; 243 } 244 } 245 #endif 246 } 247 248 int 249 #ifndef DEBUG_LOCKS 250 vm_object_hold_try(vm_object_t obj) 251 #else 252 debugvm_object_hold_try(vm_object_t obj, char *file, int line) 253 #endif 254 { 255 KKASSERT(obj != NULL); 256 257 /* 258 * Object must be held (object allocation is stable due to callers 259 * context, typically already holding the token on a parent object) 260 * prior to potentially blocking on the lock, otherwise the object 261 * can get ripped away from us. 262 */ 263 refcount_acquire(&obj->hold_count); 264 if (vm_object_lock_try(obj) == 0) { 265 if (refcount_release(&obj->hold_count)) { 266 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) 267 zfree(obj_zone, obj); 268 } 269 return(0); 270 } 271 272 #if defined(DEBUG_LOCKS) 273 int i; 274 u_int mask; 275 276 for (;;) { 277 mask = ~obj->debug_hold_bitmap; 278 cpu_ccfence(); 279 if (mask == 0xFFFFFFFFU) { 280 if (obj->debug_hold_ovfl == 0) 281 obj->debug_hold_ovfl = 1; 282 break; 283 } 284 i = ffs(mask) - 1; 285 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 286 ~mask | (1 << i))) { 287 obj->debug_hold_bitmap |= (1 << i); 288 obj->debug_hold_thrs[i] = curthread; 289 obj->debug_hold_file[i] = file; 290 obj->debug_hold_line[i] = line; 291 break; 292 } 293 } 294 #endif 295 return(1); 296 } 297 298 void 299 #ifndef DEBUG_LOCKS 300 vm_object_hold_shared(vm_object_t obj) 301 #else 302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line) 303 #endif 304 { 305 KKASSERT(obj != NULL); 306 307 /* 308 * Object must be held (object allocation is stable due to callers 309 * context, typically already holding the token on a parent object) 310 * prior to potentially blocking on the lock, otherwise the object 311 * can get ripped away from us. 312 */ 313 refcount_acquire(&obj->hold_count); 314 vm_object_lock_shared(obj); 315 316 #if defined(DEBUG_LOCKS) 317 int i; 318 u_int mask; 319 320 for (;;) { 321 mask = ~obj->debug_hold_bitmap; 322 cpu_ccfence(); 323 if (mask == 0xFFFFFFFFU) { 324 if (obj->debug_hold_ovfl == 0) 325 obj->debug_hold_ovfl = 1; 326 break; 327 } 328 i = ffs(mask) - 1; 329 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 330 ~mask | (1 << i))) { 331 obj->debug_hold_bitmap |= (1 << i); 332 obj->debug_hold_thrs[i] = curthread; 333 obj->debug_hold_file[i] = file; 334 obj->debug_hold_line[i] = line; 335 break; 336 } 337 } 338 #endif 339 } 340 341 /* 342 * Drop the token and hold_count on the object. 343 */ 344 void 345 vm_object_drop(vm_object_t obj) 346 { 347 if (obj == NULL) 348 return; 349 350 #if defined(DEBUG_LOCKS) 351 int found = 0; 352 int i; 353 354 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 355 if ((obj->debug_hold_bitmap & (1 << i)) && 356 (obj->debug_hold_thrs[i] == curthread)) { 357 obj->debug_hold_bitmap &= ~(1 << i); 358 obj->debug_hold_thrs[i] = NULL; 359 obj->debug_hold_file[i] = NULL; 360 obj->debug_hold_line[i] = 0; 361 found = 1; 362 break; 363 } 364 } 365 366 if (found == 0 && obj->debug_hold_ovfl == 0) 367 panic("vm_object: attempt to drop hold on non-self-held obj"); 368 #endif 369 370 /* 371 * No new holders should be possible once we drop hold_count 1->0 as 372 * there is no longer any way to reference the object. 373 */ 374 KKASSERT(obj->hold_count > 0); 375 if (refcount_release(&obj->hold_count)) { 376 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) { 377 vm_object_unlock(obj); 378 zfree(obj_zone, obj); 379 } else { 380 vm_object_unlock(obj); 381 } 382 } else { 383 vm_object_unlock(obj); 384 } 385 } 386 387 /* 388 * Initialize a freshly allocated object, returning a held object. 389 * 390 * Used only by vm_object_allocate() and zinitna(). 391 * 392 * No requirements. 393 */ 394 void 395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 396 { 397 int incr; 398 399 RB_INIT(&object->rb_memq); 400 LIST_INIT(&object->shadow_head); 401 lwkt_token_init(&object->token, "vmobj"); 402 403 object->type = type; 404 object->size = size; 405 object->ref_count = 1; 406 object->hold_count = 0; 407 object->flags = 0; 408 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 409 vm_object_set_flag(object, OBJ_ONEMAPPING); 410 object->paging_in_progress = 0; 411 object->resident_page_count = 0; 412 object->agg_pv_list_count = 0; 413 object->shadow_count = 0; 414 #ifdef SMP 415 /* cpu localization twist */ 416 object->pg_color = (int)(intptr_t)curthread; 417 #else 418 object->pg_color = next_index; 419 #endif 420 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 421 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 422 else 423 incr = size; 424 next_index = (next_index + incr) & PQ_L2_MASK; 425 object->handle = NULL; 426 object->backing_object = NULL; 427 object->backing_object_offset = (vm_ooffset_t)0; 428 429 object->generation++; 430 object->swblock_count = 0; 431 RB_INIT(&object->swblock_root); 432 vm_object_lock_init(object); 433 pmap_object_init(object); 434 435 vm_object_hold(object); 436 lwkt_gettoken(&vmobj_token); 437 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 438 vm_object_count++; 439 lwkt_reltoken(&vmobj_token); 440 } 441 442 /* 443 * Initialize the VM objects module. 444 * 445 * Called from the low level boot code only. 446 */ 447 void 448 vm_object_init(void) 449 { 450 TAILQ_INIT(&vm_object_list); 451 452 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 453 &kernel_object); 454 vm_object_drop(&kernel_object); 455 456 obj_zone = &obj_zone_store; 457 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 458 vm_objects_init, VM_OBJECTS_INIT); 459 } 460 461 void 462 vm_object_init2(void) 463 { 464 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 465 } 466 467 /* 468 * Allocate and return a new object of the specified type and size. 469 * 470 * No requirements. 471 */ 472 vm_object_t 473 vm_object_allocate(objtype_t type, vm_pindex_t size) 474 { 475 vm_object_t result; 476 477 result = (vm_object_t) zalloc(obj_zone); 478 479 _vm_object_allocate(type, size, result); 480 vm_object_drop(result); 481 482 return (result); 483 } 484 485 /* 486 * This version returns a held object, allowing further atomic initialization 487 * of the object. 488 */ 489 vm_object_t 490 vm_object_allocate_hold(objtype_t type, vm_pindex_t size) 491 { 492 vm_object_t result; 493 494 result = (vm_object_t) zalloc(obj_zone); 495 496 _vm_object_allocate(type, size, result); 497 498 return (result); 499 } 500 501 /* 502 * Add an additional reference to a vm_object. The object must already be 503 * held. The original non-lock version is no longer supported. The object 504 * must NOT be chain locked by anyone at the time the reference is added. 505 * 506 * Referencing a chain-locked object can blow up the fairly sensitive 507 * ref_count and shadow_count tests in the deallocator. Most callers 508 * will call vm_object_chain_wait() prior to calling 509 * vm_object_reference_locked() to avoid the case. 510 * 511 * The object must be held. 512 */ 513 void 514 vm_object_reference_locked(vm_object_t object) 515 { 516 KKASSERT(object != NULL); 517 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 518 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 519 object->ref_count++; 520 if (object->type == OBJT_VNODE) { 521 vref(object->handle); 522 /* XXX what if the vnode is being destroyed? */ 523 } 524 } 525 526 /* 527 * Object OBJ_CHAINLOCK lock handling. 528 * 529 * The caller can chain-lock backing objects recursively and then 530 * use vm_object_chain_release_all() to undo the whole chain. 531 * 532 * Chain locks are used to prevent collapses and are only applicable 533 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 534 * on other object types are ignored. This is also important because 535 * it allows e.g. the vnode underlying a memory mapping to take concurrent 536 * faults. 537 * 538 * The object must usually be held on entry, though intermediate 539 * objects need not be held on release. 540 */ 541 void 542 vm_object_chain_wait(vm_object_t object) 543 { 544 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 545 while (object->flags & OBJ_CHAINLOCK) { 546 vm_object_set_flag(object, OBJ_CHAINWANT); 547 tsleep(object, 0, "objchain", 0); 548 } 549 } 550 551 void 552 vm_object_chain_acquire(vm_object_t object) 553 { 554 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 555 vm_object_chain_wait(object); 556 vm_object_set_flag(object, OBJ_CHAINLOCK); 557 } 558 } 559 560 void 561 vm_object_chain_release(vm_object_t object) 562 { 563 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 564 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 565 KKASSERT(object->flags & OBJ_CHAINLOCK); 566 if (object->flags & OBJ_CHAINWANT) { 567 vm_object_clear_flag(object, 568 OBJ_CHAINLOCK | OBJ_CHAINWANT); 569 wakeup(object); 570 } else { 571 vm_object_clear_flag(object, OBJ_CHAINLOCK); 572 } 573 } 574 } 575 576 /* 577 * This releases the entire chain of objects from first_object to and 578 * including stopobj, flowing through object->backing_object. 579 * 580 * We release stopobj first as an optimization as this object is most 581 * likely to be shared across multiple processes. 582 */ 583 void 584 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 585 { 586 vm_object_t backing_object; 587 vm_object_t object; 588 589 vm_object_chain_release(stopobj); 590 object = first_object; 591 592 while (object != stopobj) { 593 KKASSERT(object); 594 if (object != first_object) 595 vm_object_hold(object); 596 backing_object = object->backing_object; 597 vm_object_chain_release(object); 598 if (object != first_object) 599 vm_object_drop(object); 600 object = backing_object; 601 } 602 } 603 604 /* 605 * Dereference an object and its underlying vnode. 606 * 607 * The object must be held and will be held on return. 608 */ 609 static void 610 vm_object_vndeallocate(vm_object_t object) 611 { 612 struct vnode *vp = (struct vnode *) object->handle; 613 614 KASSERT(object->type == OBJT_VNODE, 615 ("vm_object_vndeallocate: not a vnode object")); 616 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 617 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 618 #ifdef INVARIANTS 619 if (object->ref_count == 0) { 620 vprint("vm_object_vndeallocate", vp); 621 panic("vm_object_vndeallocate: bad object reference count"); 622 } 623 #endif 624 object->ref_count--; 625 if (object->ref_count == 0) 626 vclrflags(vp, VTEXT); 627 vrele(vp); 628 } 629 630 /* 631 * Release a reference to the specified object, gained either through a 632 * vm_object_allocate or a vm_object_reference call. When all references 633 * are gone, storage associated with this object may be relinquished. 634 * 635 * The caller does not have to hold the object locked but must have control 636 * over the reference in question in order to guarantee that the object 637 * does not get ripped out from under us. 638 */ 639 void 640 vm_object_deallocate(vm_object_t object) 641 { 642 if (object) { 643 vm_object_hold(object); 644 vm_object_deallocate_locked(object); 645 vm_object_drop(object); 646 } 647 } 648 649 void 650 vm_object_deallocate_locked(vm_object_t object) 651 { 652 struct vm_object_dealloc_list *dlist = NULL; 653 struct vm_object_dealloc_list *dtmp; 654 vm_object_t temp; 655 int must_drop = 0; 656 657 /* 658 * We may chain deallocate object, but additional objects may 659 * collect on the dlist which also have to be deallocated. We 660 * must avoid a recursion, vm_object chains can get deep. 661 */ 662 again: 663 while (object != NULL) { 664 #if 0 665 /* 666 * Don't rip a ref_count out from under an object undergoing 667 * collapse, it will confuse the collapse code. 668 */ 669 vm_object_chain_wait(object); 670 #endif 671 if (object->type == OBJT_VNODE) { 672 vm_object_vndeallocate(object); 673 break; 674 } 675 676 if (object->ref_count == 0) { 677 panic("vm_object_deallocate: object deallocated " 678 "too many times: %d", object->type); 679 } 680 if (object->ref_count > 2) { 681 object->ref_count--; 682 break; 683 } 684 685 /* 686 * Here on ref_count of one or two, which are special cases for 687 * objects. 688 * 689 * Nominal ref_count > 1 case if the second ref is not from 690 * a shadow. 691 */ 692 if (object->ref_count == 2 && object->shadow_count == 0) { 693 vm_object_set_flag(object, OBJ_ONEMAPPING); 694 object->ref_count--; 695 break; 696 } 697 698 /* 699 * If the second ref is from a shadow we chain along it 700 * upwards if object's handle is exhausted. 701 * 702 * We have to decrement object->ref_count before potentially 703 * collapsing the first shadow object or the collapse code 704 * will not be able to handle the degenerate case to remove 705 * object. However, if we do it too early the object can 706 * get ripped out from under us. 707 */ 708 if (object->ref_count == 2 && object->shadow_count == 1 && 709 object->handle == NULL && (object->type == OBJT_DEFAULT || 710 object->type == OBJT_SWAP)) { 711 temp = LIST_FIRST(&object->shadow_head); 712 KKASSERT(temp != NULL); 713 vm_object_hold(temp); 714 715 /* 716 * Wait for any paging to complete so the collapse 717 * doesn't (or isn't likely to) qcollapse. pip 718 * waiting must occur before we acquire the 719 * chainlock. 720 */ 721 while ( 722 temp->paging_in_progress || 723 object->paging_in_progress 724 ) { 725 vm_object_pip_wait(temp, "objde1"); 726 vm_object_pip_wait(object, "objde2"); 727 } 728 729 /* 730 * If the parent is locked we have to give up, as 731 * otherwise we would be acquiring locks in the 732 * wrong order and potentially deadlock. 733 */ 734 if (temp->flags & OBJ_CHAINLOCK) { 735 vm_object_drop(temp); 736 goto skip; 737 } 738 vm_object_chain_acquire(temp); 739 740 /* 741 * Recheck/retry after the hold and the paging 742 * wait, both of which can block us. 743 */ 744 if (object->ref_count != 2 || 745 object->shadow_count != 1 || 746 object->handle || 747 LIST_FIRST(&object->shadow_head) != temp || 748 (object->type != OBJT_DEFAULT && 749 object->type != OBJT_SWAP)) { 750 vm_object_chain_release(temp); 751 vm_object_drop(temp); 752 continue; 753 } 754 755 /* 756 * We can safely drop object's ref_count now. 757 */ 758 KKASSERT(object->ref_count == 2); 759 object->ref_count--; 760 761 /* 762 * If our single parent is not collapseable just 763 * decrement ref_count (2->1) and stop. 764 */ 765 if (temp->handle || (temp->type != OBJT_DEFAULT && 766 temp->type != OBJT_SWAP)) { 767 vm_object_chain_release(temp); 768 vm_object_drop(temp); 769 break; 770 } 771 772 /* 773 * At this point we have already dropped object's 774 * ref_count so it is possible for a race to 775 * deallocate obj out from under us. Any collapse 776 * will re-check the situation. We must not block 777 * until we are able to collapse. 778 * 779 * Bump temp's ref_count to avoid an unwanted 780 * degenerate recursion (can't call 781 * vm_object_reference_locked() because it asserts 782 * that CHAINLOCK is not set). 783 */ 784 temp->ref_count++; 785 KKASSERT(temp->ref_count > 1); 786 787 /* 788 * Collapse temp, then deallocate the extra ref 789 * formally. 790 */ 791 vm_object_collapse(temp, &dlist); 792 vm_object_chain_release(temp); 793 if (must_drop) { 794 vm_object_lock_swap(); 795 vm_object_drop(object); 796 } 797 object = temp; 798 must_drop = 1; 799 continue; 800 } 801 802 /* 803 * Drop the ref and handle termination on the 1->0 transition. 804 * We may have blocked above so we have to recheck. 805 */ 806 skip: 807 KKASSERT(object->ref_count != 0); 808 if (object->ref_count >= 2) { 809 object->ref_count--; 810 break; 811 } 812 KKASSERT(object->ref_count == 1); 813 814 /* 815 * 1->0 transition. Chain through the backing_object. 816 * Maintain the ref until we've located the backing object, 817 * then re-check. 818 */ 819 while ((temp = object->backing_object) != NULL) { 820 vm_object_hold(temp); 821 if (temp == object->backing_object) 822 break; 823 vm_object_drop(temp); 824 } 825 826 /* 827 * 1->0 transition verified, retry if ref_count is no longer 828 * 1. Otherwise disconnect the backing_object (temp) and 829 * clean up. 830 */ 831 if (object->ref_count != 1) { 832 vm_object_drop(temp); 833 continue; 834 } 835 836 /* 837 * It shouldn't be possible for the object to be chain locked 838 * if we're removing the last ref on it. 839 */ 840 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 841 842 if (temp) { 843 LIST_REMOVE(object, shadow_list); 844 temp->shadow_count--; 845 temp->generation++; 846 object->backing_object = NULL; 847 } 848 849 --object->ref_count; 850 if ((object->flags & OBJ_DEAD) == 0) 851 vm_object_terminate(object); 852 if (must_drop && temp) 853 vm_object_lock_swap(); 854 if (must_drop) 855 vm_object_drop(object); 856 object = temp; 857 must_drop = 1; 858 } 859 if (must_drop && object) 860 vm_object_drop(object); 861 862 /* 863 * Additional tail recursion on dlist. Avoid a recursion. Objects 864 * on the dlist have a hold count but are not locked. 865 */ 866 if ((dtmp = dlist) != NULL) { 867 dlist = dtmp->next; 868 object = dtmp->object; 869 kfree(dtmp, M_TEMP); 870 871 vm_object_lock(object); /* already held, add lock */ 872 must_drop = 1; /* and we're responsible for it */ 873 goto again; 874 } 875 } 876 877 /* 878 * Destroy the specified object, freeing up related resources. 879 * 880 * The object must have zero references. 881 * 882 * The object must held. The caller is responsible for dropping the object 883 * after terminate returns. Terminate does NOT drop the object. 884 */ 885 static int vm_object_terminate_callback(vm_page_t p, void *data); 886 887 void 888 vm_object_terminate(vm_object_t object) 889 { 890 /* 891 * Make sure no one uses us. Once we set OBJ_DEAD we should be 892 * able to safely block. 893 */ 894 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 895 KKASSERT((object->flags & OBJ_DEAD) == 0); 896 vm_object_set_flag(object, OBJ_DEAD); 897 898 /* 899 * Wait for the pageout daemon to be done with the object 900 */ 901 vm_object_pip_wait(object, "objtrm1"); 902 903 KASSERT(!object->paging_in_progress, 904 ("vm_object_terminate: pageout in progress")); 905 906 /* 907 * Clean and free the pages, as appropriate. All references to the 908 * object are gone, so we don't need to lock it. 909 */ 910 if (object->type == OBJT_VNODE) { 911 struct vnode *vp; 912 913 /* 914 * Clean pages and flush buffers. 915 */ 916 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 917 918 vp = (struct vnode *) object->handle; 919 vinvalbuf(vp, V_SAVE, 0, 0); 920 } 921 922 /* 923 * Wait for any I/O to complete, after which there had better not 924 * be any references left on the object. 925 */ 926 vm_object_pip_wait(object, "objtrm2"); 927 928 if (object->ref_count != 0) { 929 panic("vm_object_terminate: object with references, " 930 "ref_count=%d", object->ref_count); 931 } 932 933 /* 934 * Cleanup any shared pmaps associated with this object. 935 */ 936 pmap_object_free(object); 937 938 /* 939 * Now free any remaining pages. For internal objects, this also 940 * removes them from paging queues. Don't free wired pages, just 941 * remove them from the object. 942 */ 943 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 944 vm_object_terminate_callback, NULL); 945 946 /* 947 * Let the pager know object is dead. 948 */ 949 vm_pager_deallocate(object); 950 951 /* 952 * Wait for the object hold count to hit 1, clean out pages as 953 * we go. vmobj_token interlocks any race conditions that might 954 * pick the object up from the vm_object_list after we have cleared 955 * rb_memq. 956 */ 957 for (;;) { 958 if (RB_ROOT(&object->rb_memq) == NULL) 959 break; 960 kprintf("vm_object_terminate: Warning, object %p " 961 "still has %d pages\n", 962 object, object->resident_page_count); 963 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 964 vm_object_terminate_callback, NULL); 965 } 966 967 /* 968 * There had better not be any pages left 969 */ 970 KKASSERT(object->resident_page_count == 0); 971 972 /* 973 * Remove the object from the global object list. 974 */ 975 lwkt_gettoken(&vmobj_token); 976 TAILQ_REMOVE(&vm_object_list, object, object_list); 977 vm_object_count--; 978 lwkt_reltoken(&vmobj_token); 979 vm_object_dead_wakeup(object); 980 981 if (object->ref_count != 0) { 982 panic("vm_object_terminate2: object with references, " 983 "ref_count=%d", object->ref_count); 984 } 985 986 /* 987 * NOTE: The object hold_count is at least 1, so we cannot zfree() 988 * the object here. See vm_object_drop(). 989 */ 990 } 991 992 /* 993 * The caller must hold the object. 994 */ 995 static int 996 vm_object_terminate_callback(vm_page_t p, void *data __unused) 997 { 998 vm_object_t object; 999 1000 object = p->object; 1001 vm_page_busy_wait(p, TRUE, "vmpgtrm"); 1002 if (object != p->object) { 1003 kprintf("vm_object_terminate: Warning: Encountered " 1004 "busied page %p on queue %d\n", p, p->queue); 1005 vm_page_wakeup(p); 1006 } else if (p->wire_count == 0) { 1007 /* 1008 * NOTE: PG_NEED_COMMIT is ignored. 1009 */ 1010 vm_page_free(p); 1011 mycpu->gd_cnt.v_pfree++; 1012 } else { 1013 if (p->queue != PQ_NONE) 1014 kprintf("vm_object_terminate: Warning: Encountered " 1015 "wired page %p on queue %d\n", p, p->queue); 1016 vm_page_remove(p); 1017 vm_page_wakeup(p); 1018 } 1019 lwkt_yield(); 1020 return(0); 1021 } 1022 1023 /* 1024 * The object is dead but still has an object<->pager association. Sleep 1025 * and return. The caller typically retests the association in a loop. 1026 * 1027 * The caller must hold the object. 1028 */ 1029 void 1030 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 1031 { 1032 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1033 if (object->handle) { 1034 vm_object_set_flag(object, OBJ_DEADWNT); 1035 tsleep(object, 0, wmesg, 0); 1036 /* object may be invalid after this point */ 1037 } 1038 } 1039 1040 /* 1041 * Wakeup anyone waiting for the object<->pager disassociation on 1042 * a dead object. 1043 * 1044 * The caller must hold the object. 1045 */ 1046 void 1047 vm_object_dead_wakeup(vm_object_t object) 1048 { 1049 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1050 if (object->flags & OBJ_DEADWNT) { 1051 vm_object_clear_flag(object, OBJ_DEADWNT); 1052 wakeup(object); 1053 } 1054 } 1055 1056 /* 1057 * Clean all dirty pages in the specified range of object. Leaves page 1058 * on whatever queue it is currently on. If NOSYNC is set then do not 1059 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 1060 * leaving the object dirty. 1061 * 1062 * When stuffing pages asynchronously, allow clustering. XXX we need a 1063 * synchronous clustering mode implementation. 1064 * 1065 * Odd semantics: if start == end, we clean everything. 1066 * 1067 * The object must be locked? XXX 1068 */ 1069 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 1070 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 1071 1072 void 1073 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1074 int flags) 1075 { 1076 struct rb_vm_page_scan_info info; 1077 struct vnode *vp; 1078 int wholescan; 1079 int pagerflags; 1080 int generation; 1081 1082 vm_object_hold(object); 1083 if (object->type != OBJT_VNODE || 1084 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 1085 vm_object_drop(object); 1086 return; 1087 } 1088 1089 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 1090 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1091 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 1092 1093 vp = object->handle; 1094 1095 /* 1096 * Interlock other major object operations. This allows us to 1097 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 1098 */ 1099 vm_object_set_flag(object, OBJ_CLEANING); 1100 1101 /* 1102 * Handle 'entire object' case 1103 */ 1104 info.start_pindex = start; 1105 if (end == 0) { 1106 info.end_pindex = object->size - 1; 1107 } else { 1108 info.end_pindex = end - 1; 1109 } 1110 wholescan = (start == 0 && info.end_pindex == object->size - 1); 1111 info.limit = flags; 1112 info.pagerflags = pagerflags; 1113 info.object = object; 1114 1115 /* 1116 * If cleaning the entire object do a pass to mark the pages read-only. 1117 * If everything worked out ok, clear OBJ_WRITEABLE and 1118 * OBJ_MIGHTBEDIRTY. 1119 */ 1120 if (wholescan) { 1121 info.error = 0; 1122 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1123 vm_object_page_clean_pass1, &info); 1124 if (info.error == 0) { 1125 vm_object_clear_flag(object, 1126 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1127 if (object->type == OBJT_VNODE && 1128 (vp = (struct vnode *)object->handle) != NULL) { 1129 if (vp->v_flag & VOBJDIRTY) 1130 vclrflags(vp, VOBJDIRTY); 1131 } 1132 } 1133 } 1134 1135 /* 1136 * Do a pass to clean all the dirty pages we find. 1137 */ 1138 do { 1139 info.error = 0; 1140 generation = object->generation; 1141 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1142 vm_object_page_clean_pass2, &info); 1143 } while (info.error || generation != object->generation); 1144 1145 vm_object_clear_flag(object, OBJ_CLEANING); 1146 vm_object_drop(object); 1147 } 1148 1149 /* 1150 * The caller must hold the object. 1151 */ 1152 static 1153 int 1154 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1155 { 1156 struct rb_vm_page_scan_info *info = data; 1157 1158 vm_page_flag_set(p, PG_CLEANCHK); 1159 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1160 info->error = 1; 1161 } else if (vm_page_busy_try(p, FALSE) == 0) { 1162 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1163 vm_page_wakeup(p); 1164 } else { 1165 info->error = 1; 1166 } 1167 lwkt_yield(); 1168 return(0); 1169 } 1170 1171 /* 1172 * The caller must hold the object 1173 */ 1174 static 1175 int 1176 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1177 { 1178 struct rb_vm_page_scan_info *info = data; 1179 int generation; 1180 1181 /* 1182 * Do not mess with pages that were inserted after we started 1183 * the cleaning pass. 1184 */ 1185 if ((p->flags & PG_CLEANCHK) == 0) 1186 goto done; 1187 1188 generation = info->object->generation; 1189 vm_page_busy_wait(p, TRUE, "vpcwai"); 1190 if (p->object != info->object || 1191 info->object->generation != generation) { 1192 info->error = 1; 1193 vm_page_wakeup(p); 1194 goto done; 1195 } 1196 1197 /* 1198 * Before wasting time traversing the pmaps, check for trivial 1199 * cases where the page cannot be dirty. 1200 */ 1201 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1202 KKASSERT((p->dirty & p->valid) == 0); 1203 vm_page_wakeup(p); 1204 goto done; 1205 } 1206 1207 /* 1208 * Check whether the page is dirty or not. The page has been set 1209 * to be read-only so the check will not race a user dirtying the 1210 * page. 1211 */ 1212 vm_page_test_dirty(p); 1213 if ((p->dirty & p->valid) == 0) { 1214 vm_page_flag_clear(p, PG_CLEANCHK); 1215 vm_page_wakeup(p); 1216 goto done; 1217 } 1218 1219 /* 1220 * If we have been asked to skip nosync pages and this is a 1221 * nosync page, skip it. Note that the object flags were 1222 * not cleared in this case (because pass1 will have returned an 1223 * error), so we do not have to set them. 1224 */ 1225 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1226 vm_page_flag_clear(p, PG_CLEANCHK); 1227 vm_page_wakeup(p); 1228 goto done; 1229 } 1230 1231 /* 1232 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1233 * the pages that get successfully flushed. Set info->error if 1234 * we raced an object modification. 1235 */ 1236 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1237 vm_wait_nominal(); 1238 done: 1239 lwkt_yield(); 1240 return(0); 1241 } 1242 1243 /* 1244 * Collect the specified page and nearby pages and flush them out. 1245 * The number of pages flushed is returned. The passed page is busied 1246 * by the caller and we are responsible for its disposition. 1247 * 1248 * The caller must hold the object. 1249 */ 1250 static void 1251 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1252 { 1253 int runlen; 1254 int error; 1255 int maxf; 1256 int chkb; 1257 int maxb; 1258 int i; 1259 vm_pindex_t pi; 1260 vm_page_t maf[vm_pageout_page_count]; 1261 vm_page_t mab[vm_pageout_page_count]; 1262 vm_page_t ma[vm_pageout_page_count]; 1263 1264 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1265 1266 pi = p->pindex; 1267 1268 maxf = 0; 1269 for(i = 1; i < vm_pageout_page_count; i++) { 1270 vm_page_t tp; 1271 1272 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error); 1273 if (error) 1274 break; 1275 if (tp == NULL) 1276 break; 1277 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1278 (tp->flags & PG_CLEANCHK) == 0) { 1279 vm_page_wakeup(tp); 1280 break; 1281 } 1282 if ((tp->queue - tp->pc) == PQ_CACHE) { 1283 vm_page_flag_clear(tp, PG_CLEANCHK); 1284 vm_page_wakeup(tp); 1285 break; 1286 } 1287 vm_page_test_dirty(tp); 1288 if ((tp->dirty & tp->valid) == 0) { 1289 vm_page_flag_clear(tp, PG_CLEANCHK); 1290 vm_page_wakeup(tp); 1291 break; 1292 } 1293 maf[i - 1] = tp; 1294 maxf++; 1295 } 1296 1297 maxb = 0; 1298 chkb = vm_pageout_page_count - maxf; 1299 /* 1300 * NOTE: chkb can be 0 1301 */ 1302 for(i = 1; chkb && i < chkb; i++) { 1303 vm_page_t tp; 1304 1305 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error); 1306 if (error) 1307 break; 1308 if (tp == NULL) 1309 break; 1310 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1311 (tp->flags & PG_CLEANCHK) == 0) { 1312 vm_page_wakeup(tp); 1313 break; 1314 } 1315 if ((tp->queue - tp->pc) == PQ_CACHE) { 1316 vm_page_flag_clear(tp, PG_CLEANCHK); 1317 vm_page_wakeup(tp); 1318 break; 1319 } 1320 vm_page_test_dirty(tp); 1321 if ((tp->dirty & tp->valid) == 0) { 1322 vm_page_flag_clear(tp, PG_CLEANCHK); 1323 vm_page_wakeup(tp); 1324 break; 1325 } 1326 mab[i - 1] = tp; 1327 maxb++; 1328 } 1329 1330 /* 1331 * All pages in the maf[] and mab[] array are busied. 1332 */ 1333 for (i = 0; i < maxb; i++) { 1334 int index = (maxb - i) - 1; 1335 ma[index] = mab[i]; 1336 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1337 } 1338 vm_page_flag_clear(p, PG_CLEANCHK); 1339 ma[maxb] = p; 1340 for(i = 0; i < maxf; i++) { 1341 int index = (maxb + i) + 1; 1342 ma[index] = maf[i]; 1343 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1344 } 1345 runlen = maxb + maxf + 1; 1346 1347 for (i = 0; i < runlen; i++) 1348 vm_page_hold(ma[i]); 1349 1350 vm_pageout_flush(ma, runlen, pagerflags); 1351 1352 /* 1353 * WARNING: Related pages are still held but the BUSY was inherited 1354 * by the pageout I/O, so the pages might not be busy any 1355 * more. We cannot re-protect the page without waiting 1356 * for the I/O to complete and then busying it again. 1357 */ 1358 for (i = 0; i < runlen; i++) { 1359 if (ma[i]->valid & ma[i]->dirty) { 1360 /*vm_page_protect(ma[i], VM_PROT_READ);*/ 1361 vm_page_flag_set(ma[i], PG_CLEANCHK); 1362 1363 /* 1364 * maxf will end up being the actual number of pages 1365 * we wrote out contiguously, non-inclusive of the 1366 * first page. We do not count look-behind pages. 1367 */ 1368 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 1369 maxf = i - maxb - 1; 1370 } 1371 vm_page_unhold(ma[i]); 1372 } 1373 /*return(maxf + 1);*/ 1374 } 1375 1376 /* 1377 * Same as vm_object_pmap_copy, except range checking really 1378 * works, and is meant for small sections of an object. 1379 * 1380 * This code protects resident pages by making them read-only 1381 * and is typically called on a fork or split when a page 1382 * is converted to copy-on-write. 1383 * 1384 * NOTE: If the page is already at VM_PROT_NONE, calling 1385 * vm_page_protect will have no effect. 1386 */ 1387 void 1388 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1389 { 1390 vm_pindex_t idx; 1391 vm_page_t p; 1392 1393 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1394 return; 1395 1396 vm_object_hold(object); 1397 for (idx = start; idx < end; idx++) { 1398 p = vm_page_lookup(object, idx); 1399 if (p == NULL) 1400 continue; 1401 vm_page_protect(p, VM_PROT_READ); 1402 } 1403 vm_object_drop(object); 1404 } 1405 1406 /* 1407 * Removes all physical pages in the specified object range from all 1408 * physical maps. 1409 * 1410 * The object must *not* be locked. 1411 */ 1412 1413 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1414 1415 void 1416 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1417 { 1418 struct rb_vm_page_scan_info info; 1419 1420 if (object == NULL) 1421 return; 1422 info.start_pindex = start; 1423 info.end_pindex = end - 1; 1424 1425 vm_object_hold(object); 1426 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1427 vm_object_pmap_remove_callback, &info); 1428 if (start == 0 && end == object->size) 1429 vm_object_clear_flag(object, OBJ_WRITEABLE); 1430 vm_object_drop(object); 1431 } 1432 1433 /* 1434 * The caller must hold the object 1435 */ 1436 static int 1437 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1438 { 1439 vm_page_protect(p, VM_PROT_NONE); 1440 return(0); 1441 } 1442 1443 /* 1444 * Implements the madvise function at the object/page level. 1445 * 1446 * MADV_WILLNEED (any object) 1447 * 1448 * Activate the specified pages if they are resident. 1449 * 1450 * MADV_DONTNEED (any object) 1451 * 1452 * Deactivate the specified pages if they are resident. 1453 * 1454 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1455 * 1456 * Deactivate and clean the specified pages if they are 1457 * resident. This permits the process to reuse the pages 1458 * without faulting or the kernel to reclaim the pages 1459 * without I/O. 1460 * 1461 * No requirements. 1462 */ 1463 void 1464 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1465 { 1466 vm_pindex_t end, tpindex; 1467 vm_object_t tobject; 1468 vm_object_t xobj; 1469 vm_page_t m; 1470 int error; 1471 1472 if (object == NULL) 1473 return; 1474 1475 end = pindex + count; 1476 1477 vm_object_hold(object); 1478 tobject = object; 1479 1480 /* 1481 * Locate and adjust resident pages 1482 */ 1483 for (; pindex < end; pindex += 1) { 1484 relookup: 1485 if (tobject != object) 1486 vm_object_drop(tobject); 1487 tobject = object; 1488 tpindex = pindex; 1489 shadowlookup: 1490 /* 1491 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1492 * and those pages must be OBJ_ONEMAPPING. 1493 */ 1494 if (advise == MADV_FREE) { 1495 if ((tobject->type != OBJT_DEFAULT && 1496 tobject->type != OBJT_SWAP) || 1497 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1498 continue; 1499 } 1500 } 1501 1502 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1503 1504 if (error) { 1505 vm_page_sleep_busy(m, TRUE, "madvpo"); 1506 goto relookup; 1507 } 1508 if (m == NULL) { 1509 /* 1510 * There may be swap even if there is no backing page 1511 */ 1512 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1513 swap_pager_freespace(tobject, tpindex, 1); 1514 1515 /* 1516 * next object 1517 */ 1518 while ((xobj = tobject->backing_object) != NULL) { 1519 KKASSERT(xobj != object); 1520 vm_object_hold(xobj); 1521 if (xobj == tobject->backing_object) 1522 break; 1523 vm_object_drop(xobj); 1524 } 1525 if (xobj == NULL) 1526 continue; 1527 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1528 if (tobject != object) { 1529 vm_object_lock_swap(); 1530 vm_object_drop(tobject); 1531 } 1532 tobject = xobj; 1533 goto shadowlookup; 1534 } 1535 1536 /* 1537 * If the page is not in a normal active state, we skip it. 1538 * If the page is not managed there are no page queues to 1539 * mess with. Things can break if we mess with pages in 1540 * any of the below states. 1541 */ 1542 if (m->wire_count || 1543 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 1544 m->valid != VM_PAGE_BITS_ALL 1545 ) { 1546 vm_page_wakeup(m); 1547 continue; 1548 } 1549 1550 /* 1551 * Theoretically once a page is known not to be busy, an 1552 * interrupt cannot come along and rip it out from under us. 1553 */ 1554 1555 if (advise == MADV_WILLNEED) { 1556 vm_page_activate(m); 1557 } else if (advise == MADV_DONTNEED) { 1558 vm_page_dontneed(m); 1559 } else if (advise == MADV_FREE) { 1560 /* 1561 * Mark the page clean. This will allow the page 1562 * to be freed up by the system. However, such pages 1563 * are often reused quickly by malloc()/free() 1564 * so we do not do anything that would cause 1565 * a page fault if we can help it. 1566 * 1567 * Specifically, we do not try to actually free 1568 * the page now nor do we try to put it in the 1569 * cache (which would cause a page fault on reuse). 1570 * 1571 * But we do make the page is freeable as we 1572 * can without actually taking the step of unmapping 1573 * it. 1574 */ 1575 pmap_clear_modify(m); 1576 m->dirty = 0; 1577 m->act_count = 0; 1578 vm_page_dontneed(m); 1579 if (tobject->type == OBJT_SWAP) 1580 swap_pager_freespace(tobject, tpindex, 1); 1581 } 1582 vm_page_wakeup(m); 1583 } 1584 if (tobject != object) 1585 vm_object_drop(tobject); 1586 vm_object_drop(object); 1587 } 1588 1589 /* 1590 * Create a new object which is backed by the specified existing object 1591 * range. Replace the pointer and offset that was pointing at the existing 1592 * object with the pointer/offset for the new object. 1593 * 1594 * No other requirements. 1595 */ 1596 void 1597 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1598 int addref) 1599 { 1600 vm_object_t source; 1601 vm_object_t result; 1602 1603 source = *objectp; 1604 1605 /* 1606 * Don't create the new object if the old object isn't shared. 1607 * We have to chain wait before adding the reference to avoid 1608 * racing a collapse or deallocation. 1609 * 1610 * Add the additional ref to source here to avoid racing a later 1611 * collapse or deallocation. Clear the ONEMAPPING flag whether 1612 * addref is TRUE or not in this case because the original object 1613 * will be shadowed. 1614 */ 1615 if (source) { 1616 vm_object_hold(source); 1617 vm_object_chain_wait(source); 1618 if (source->ref_count == 1 && 1619 source->handle == NULL && 1620 (source->type == OBJT_DEFAULT || 1621 source->type == OBJT_SWAP)) { 1622 vm_object_drop(source); 1623 if (addref) { 1624 vm_object_reference_locked(source); 1625 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1626 } 1627 return; 1628 } 1629 vm_object_reference_locked(source); 1630 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1631 } 1632 1633 /* 1634 * Allocate a new object with the given length. The new object 1635 * is returned referenced but we may have to add another one. 1636 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1637 * (typically because the caller is about to clone a vm_map_entry). 1638 * 1639 * The source object currently has an extra reference to prevent 1640 * collapses into it while we mess with its shadow list, which 1641 * we will remove later in this routine. 1642 */ 1643 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1644 panic("vm_object_shadow: no object for shadowing"); 1645 vm_object_hold(result); 1646 if (addref) { 1647 vm_object_reference_locked(result); 1648 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1649 } 1650 1651 /* 1652 * The new object shadows the source object. Chain wait before 1653 * adjusting shadow_count or the shadow list to avoid races. 1654 * 1655 * Try to optimize the result object's page color when shadowing 1656 * in order to maintain page coloring consistency in the combined 1657 * shadowed object. 1658 */ 1659 KKASSERT(result->backing_object == NULL); 1660 result->backing_object = source; 1661 if (source) { 1662 vm_object_chain_wait(source); 1663 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1664 source->shadow_count++; 1665 source->generation++; 1666 #ifdef SMP 1667 /* cpu localization twist */ 1668 result->pg_color = (int)(intptr_t)curthread; 1669 #else 1670 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1671 PQ_L2_MASK; 1672 #endif 1673 } 1674 1675 /* 1676 * Adjust the return storage. Drop the ref on source before 1677 * returning. 1678 */ 1679 result->backing_object_offset = *offset; 1680 vm_object_drop(result); 1681 *offset = 0; 1682 if (source) { 1683 vm_object_deallocate_locked(source); 1684 vm_object_drop(source); 1685 } 1686 1687 /* 1688 * Return the new things 1689 */ 1690 *objectp = result; 1691 } 1692 1693 #define OBSC_TEST_ALL_SHADOWED 0x0001 1694 #define OBSC_COLLAPSE_NOWAIT 0x0002 1695 #define OBSC_COLLAPSE_WAIT 0x0004 1696 1697 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1698 1699 /* 1700 * The caller must hold the object. 1701 */ 1702 static __inline int 1703 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1704 { 1705 struct rb_vm_page_scan_info info; 1706 1707 vm_object_assert_held(object); 1708 vm_object_assert_held(backing_object); 1709 1710 KKASSERT(backing_object == object->backing_object); 1711 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1712 1713 /* 1714 * Initial conditions 1715 */ 1716 if (op & OBSC_TEST_ALL_SHADOWED) { 1717 /* 1718 * We do not want to have to test for the existence of 1719 * swap pages in the backing object. XXX but with the 1720 * new swapper this would be pretty easy to do. 1721 * 1722 * XXX what about anonymous MAP_SHARED memory that hasn't 1723 * been ZFOD faulted yet? If we do not test for this, the 1724 * shadow test may succeed! XXX 1725 */ 1726 if (backing_object->type != OBJT_DEFAULT) 1727 return(0); 1728 } 1729 if (op & OBSC_COLLAPSE_WAIT) { 1730 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1731 vm_object_set_flag(backing_object, OBJ_DEAD); 1732 lwkt_gettoken(&vmobj_token); 1733 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1734 vm_object_count--; 1735 lwkt_reltoken(&vmobj_token); 1736 vm_object_dead_wakeup(backing_object); 1737 } 1738 1739 /* 1740 * Our scan. We have to retry if a negative error code is returned, 1741 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1742 * the scan had to be stopped because the parent does not completely 1743 * shadow the child. 1744 */ 1745 info.object = object; 1746 info.backing_object = backing_object; 1747 info.limit = op; 1748 do { 1749 info.error = 1; 1750 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1751 vm_object_backing_scan_callback, 1752 &info); 1753 } while (info.error < 0); 1754 1755 return(info.error); 1756 } 1757 1758 /* 1759 * The caller must hold the object. 1760 */ 1761 static int 1762 vm_object_backing_scan_callback(vm_page_t p, void *data) 1763 { 1764 struct rb_vm_page_scan_info *info = data; 1765 vm_object_t backing_object; 1766 vm_object_t object; 1767 vm_pindex_t pindex; 1768 vm_pindex_t new_pindex; 1769 vm_pindex_t backing_offset_index; 1770 int op; 1771 1772 pindex = p->pindex; 1773 new_pindex = pindex - info->backing_offset_index; 1774 op = info->limit; 1775 object = info->object; 1776 backing_object = info->backing_object; 1777 backing_offset_index = info->backing_offset_index; 1778 1779 if (op & OBSC_TEST_ALL_SHADOWED) { 1780 vm_page_t pp; 1781 1782 /* 1783 * Ignore pages outside the parent object's range 1784 * and outside the parent object's mapping of the 1785 * backing object. 1786 * 1787 * note that we do not busy the backing object's 1788 * page. 1789 */ 1790 if (pindex < backing_offset_index || 1791 new_pindex >= object->size 1792 ) { 1793 return(0); 1794 } 1795 1796 /* 1797 * See if the parent has the page or if the parent's 1798 * object pager has the page. If the parent has the 1799 * page but the page is not valid, the parent's 1800 * object pager must have the page. 1801 * 1802 * If this fails, the parent does not completely shadow 1803 * the object and we might as well give up now. 1804 */ 1805 pp = vm_page_lookup(object, new_pindex); 1806 if ((pp == NULL || pp->valid == 0) && 1807 !vm_pager_has_page(object, new_pindex) 1808 ) { 1809 info->error = 0; /* problemo */ 1810 return(-1); /* stop the scan */ 1811 } 1812 } 1813 1814 /* 1815 * Check for busy page. Note that we may have lost (p) when we 1816 * possibly blocked above. 1817 */ 1818 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1819 vm_page_t pp; 1820 1821 if (vm_page_busy_try(p, TRUE)) { 1822 if (op & OBSC_COLLAPSE_NOWAIT) { 1823 return(0); 1824 } else { 1825 /* 1826 * If we slept, anything could have 1827 * happened. Ask that the scan be restarted. 1828 * 1829 * Since the object is marked dead, the 1830 * backing offset should not have changed. 1831 */ 1832 vm_page_sleep_busy(p, TRUE, "vmocol"); 1833 info->error = -1; 1834 return(-1); 1835 } 1836 } 1837 1838 /* 1839 * If (p) is no longer valid restart the scan. 1840 */ 1841 if (p->object != backing_object || p->pindex != pindex) { 1842 kprintf("vm_object_backing_scan: Warning: page " 1843 "%p ripped out from under us\n", p); 1844 vm_page_wakeup(p); 1845 info->error = -1; 1846 return(-1); 1847 } 1848 1849 if (op & OBSC_COLLAPSE_NOWAIT) { 1850 if (p->valid == 0 || 1851 p->wire_count || 1852 (p->flags & PG_NEED_COMMIT)) { 1853 vm_page_wakeup(p); 1854 return(0); 1855 } 1856 } else { 1857 /* XXX what if p->valid == 0 , hold_count, etc? */ 1858 } 1859 1860 KASSERT( 1861 p->object == backing_object, 1862 ("vm_object_qcollapse(): object mismatch") 1863 ); 1864 1865 /* 1866 * Destroy any associated swap 1867 */ 1868 if (backing_object->type == OBJT_SWAP) 1869 swap_pager_freespace(backing_object, p->pindex, 1); 1870 1871 if ( 1872 p->pindex < backing_offset_index || 1873 new_pindex >= object->size 1874 ) { 1875 /* 1876 * Page is out of the parent object's range, we 1877 * can simply destroy it. 1878 */ 1879 vm_page_protect(p, VM_PROT_NONE); 1880 vm_page_free(p); 1881 return(0); 1882 } 1883 1884 pp = vm_page_lookup(object, new_pindex); 1885 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 1886 /* 1887 * page already exists in parent OR swap exists 1888 * for this location in the parent. Destroy 1889 * the original page from the backing object. 1890 * 1891 * Leave the parent's page alone 1892 */ 1893 vm_page_protect(p, VM_PROT_NONE); 1894 vm_page_free(p); 1895 return(0); 1896 } 1897 1898 /* 1899 * Page does not exist in parent, rename the 1900 * page from the backing object to the main object. 1901 * 1902 * If the page was mapped to a process, it can remain 1903 * mapped through the rename. 1904 */ 1905 if ((p->queue - p->pc) == PQ_CACHE) 1906 vm_page_deactivate(p); 1907 1908 vm_page_rename(p, object, new_pindex); 1909 vm_page_wakeup(p); 1910 /* page automatically made dirty by rename */ 1911 } 1912 return(0); 1913 } 1914 1915 /* 1916 * This version of collapse allows the operation to occur earlier and 1917 * when paging_in_progress is true for an object... This is not a complete 1918 * operation, but should plug 99.9% of the rest of the leaks. 1919 * 1920 * The caller must hold the object and backing_object and both must be 1921 * chainlocked. 1922 * 1923 * (only called from vm_object_collapse) 1924 */ 1925 static void 1926 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 1927 { 1928 if (backing_object->ref_count == 1) { 1929 backing_object->ref_count += 2; 1930 vm_object_backing_scan(object, backing_object, 1931 OBSC_COLLAPSE_NOWAIT); 1932 backing_object->ref_count -= 2; 1933 } 1934 } 1935 1936 /* 1937 * Collapse an object with the object backing it. Pages in the backing 1938 * object are moved into the parent, and the backing object is deallocated. 1939 * Any conflict is resolved in favor of the parent's existing pages. 1940 * 1941 * object must be held and chain-locked on call. 1942 * 1943 * The caller must have an extra ref on object to prevent a race from 1944 * destroying it during the collapse. 1945 */ 1946 void 1947 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 1948 { 1949 struct vm_object_dealloc_list *dlist = NULL; 1950 vm_object_t backing_object; 1951 1952 /* 1953 * Only one thread is attempting a collapse at any given moment. 1954 * There are few restrictions for (object) that callers of this 1955 * function check so reentrancy is likely. 1956 */ 1957 KKASSERT(object != NULL); 1958 vm_object_assert_held(object); 1959 KKASSERT(object->flags & OBJ_CHAINLOCK); 1960 1961 for (;;) { 1962 vm_object_t bbobj; 1963 int dodealloc; 1964 1965 /* 1966 * We have to hold the backing object, check races. 1967 */ 1968 while ((backing_object = object->backing_object) != NULL) { 1969 vm_object_hold(backing_object); 1970 if (backing_object == object->backing_object) 1971 break; 1972 vm_object_drop(backing_object); 1973 } 1974 1975 /* 1976 * No backing object? Nothing to collapse then. 1977 */ 1978 if (backing_object == NULL) 1979 break; 1980 1981 /* 1982 * You can't collapse with a non-default/non-swap object. 1983 */ 1984 if (backing_object->type != OBJT_DEFAULT && 1985 backing_object->type != OBJT_SWAP) { 1986 vm_object_drop(backing_object); 1987 backing_object = NULL; 1988 break; 1989 } 1990 1991 /* 1992 * Chain-lock the backing object too because if we 1993 * successfully merge its pages into the top object we 1994 * will collapse backing_object->backing_object as the 1995 * new backing_object. Re-check that it is still our 1996 * backing object. 1997 */ 1998 vm_object_chain_acquire(backing_object); 1999 if (backing_object != object->backing_object) { 2000 vm_object_chain_release(backing_object); 2001 vm_object_drop(backing_object); 2002 continue; 2003 } 2004 2005 /* 2006 * we check the backing object first, because it is most likely 2007 * not collapsable. 2008 */ 2009 if (backing_object->handle != NULL || 2010 (backing_object->type != OBJT_DEFAULT && 2011 backing_object->type != OBJT_SWAP) || 2012 (backing_object->flags & OBJ_DEAD) || 2013 object->handle != NULL || 2014 (object->type != OBJT_DEFAULT && 2015 object->type != OBJT_SWAP) || 2016 (object->flags & OBJ_DEAD)) { 2017 break; 2018 } 2019 2020 /* 2021 * If paging is in progress we can't do a normal collapse. 2022 */ 2023 if ( 2024 object->paging_in_progress != 0 || 2025 backing_object->paging_in_progress != 0 2026 ) { 2027 vm_object_qcollapse(object, backing_object); 2028 break; 2029 } 2030 2031 /* 2032 * We know that we can either collapse the backing object (if 2033 * the parent is the only reference to it) or (perhaps) have 2034 * the parent bypass the object if the parent happens to shadow 2035 * all the resident pages in the entire backing object. 2036 * 2037 * This is ignoring pager-backed pages such as swap pages. 2038 * vm_object_backing_scan fails the shadowing test in this 2039 * case. 2040 */ 2041 if (backing_object->ref_count == 1) { 2042 /* 2043 * If there is exactly one reference to the backing 2044 * object, we can collapse it into the parent. 2045 */ 2046 KKASSERT(object->backing_object == backing_object); 2047 vm_object_backing_scan(object, backing_object, 2048 OBSC_COLLAPSE_WAIT); 2049 2050 /* 2051 * Move the pager from backing_object to object. 2052 */ 2053 if (backing_object->type == OBJT_SWAP) { 2054 vm_object_pip_add(backing_object, 1); 2055 2056 /* 2057 * scrap the paging_offset junk and do a 2058 * discrete copy. This also removes major 2059 * assumptions about how the swap-pager 2060 * works from where it doesn't belong. The 2061 * new swapper is able to optimize the 2062 * destroy-source case. 2063 */ 2064 vm_object_pip_add(object, 1); 2065 swap_pager_copy(backing_object, object, 2066 OFF_TO_IDX(object->backing_object_offset), 2067 TRUE); 2068 vm_object_pip_wakeup(object); 2069 vm_object_pip_wakeup(backing_object); 2070 } 2071 2072 /* 2073 * Object now shadows whatever backing_object did. 2074 * Remove object from backing_object's shadow_list. 2075 */ 2076 LIST_REMOVE(object, shadow_list); 2077 KKASSERT(object->backing_object == backing_object); 2078 backing_object->shadow_count--; 2079 backing_object->generation++; 2080 2081 /* 2082 * backing_object->backing_object moves from within 2083 * backing_object to within object. 2084 */ 2085 while ((bbobj = backing_object->backing_object) != NULL) { 2086 vm_object_hold(bbobj); 2087 if (bbobj == backing_object->backing_object) 2088 break; 2089 vm_object_drop(bbobj); 2090 } 2091 if (bbobj) { 2092 LIST_REMOVE(backing_object, shadow_list); 2093 bbobj->shadow_count--; 2094 bbobj->generation++; 2095 backing_object->backing_object = NULL; 2096 } 2097 object->backing_object = bbobj; 2098 if (bbobj) { 2099 LIST_INSERT_HEAD(&bbobj->shadow_head, 2100 object, shadow_list); 2101 bbobj->shadow_count++; 2102 bbobj->generation++; 2103 } 2104 2105 object->backing_object_offset += 2106 backing_object->backing_object_offset; 2107 2108 vm_object_drop(bbobj); 2109 2110 /* 2111 * Discard the old backing_object. Nothing should be 2112 * able to ref it, other than a vm_map_split(), 2113 * and vm_map_split() will stall on our chain lock. 2114 * And we control the parent so it shouldn't be 2115 * possible for it to go away either. 2116 * 2117 * Since the backing object has no pages, no pager 2118 * left, and no object references within it, all 2119 * that is necessary is to dispose of it. 2120 */ 2121 KASSERT(backing_object->ref_count == 1, 2122 ("backing_object %p was somehow " 2123 "re-referenced during collapse!", 2124 backing_object)); 2125 KASSERT(RB_EMPTY(&backing_object->rb_memq), 2126 ("backing_object %p somehow has left " 2127 "over pages during collapse!", 2128 backing_object)); 2129 2130 /* 2131 * The object can be destroyed. 2132 * 2133 * XXX just fall through and dodealloc instead 2134 * of forcing destruction? 2135 */ 2136 --backing_object->ref_count; 2137 if ((backing_object->flags & OBJ_DEAD) == 0) 2138 vm_object_terminate(backing_object); 2139 object_collapses++; 2140 dodealloc = 0; 2141 } else { 2142 /* 2143 * If we do not entirely shadow the backing object, 2144 * there is nothing we can do so we give up. 2145 */ 2146 if (vm_object_backing_scan(object, backing_object, 2147 OBSC_TEST_ALL_SHADOWED) == 0) { 2148 break; 2149 } 2150 2151 /* 2152 * bbobj is backing_object->backing_object. Since 2153 * object completely shadows backing_object we can 2154 * bypass it and become backed by bbobj instead. 2155 */ 2156 while ((bbobj = backing_object->backing_object) != NULL) { 2157 vm_object_hold(bbobj); 2158 if (bbobj == backing_object->backing_object) 2159 break; 2160 vm_object_drop(bbobj); 2161 } 2162 2163 /* 2164 * Make object shadow bbobj instead of backing_object. 2165 * Remove object from backing_object's shadow list. 2166 * 2167 * Deallocating backing_object will not remove 2168 * it, since its reference count is at least 2. 2169 */ 2170 KKASSERT(object->backing_object == backing_object); 2171 LIST_REMOVE(object, shadow_list); 2172 backing_object->shadow_count--; 2173 backing_object->generation++; 2174 2175 /* 2176 * Add a ref to bbobj, bbobj now shadows object. 2177 * 2178 * NOTE: backing_object->backing_object still points 2179 * to bbobj. That relationship remains intact 2180 * because backing_object has > 1 ref, so 2181 * someone else is pointing to it (hence why 2182 * we can't collapse it into object and can 2183 * only handle the all-shadowed bypass case). 2184 */ 2185 if (bbobj) { 2186 vm_object_chain_wait(bbobj); 2187 vm_object_reference_locked(bbobj); 2188 LIST_INSERT_HEAD(&bbobj->shadow_head, 2189 object, shadow_list); 2190 bbobj->shadow_count++; 2191 bbobj->generation++; 2192 object->backing_object_offset += 2193 backing_object->backing_object_offset; 2194 object->backing_object = bbobj; 2195 vm_object_drop(bbobj); 2196 } else { 2197 object->backing_object = NULL; 2198 } 2199 2200 /* 2201 * Drop the reference count on backing_object. To 2202 * handle ref_count races properly we can't assume 2203 * that the ref_count is still at least 2 so we 2204 * have to actually call vm_object_deallocate() 2205 * (after clearing the chainlock). 2206 */ 2207 object_bypasses++; 2208 dodealloc = 1; 2209 } 2210 2211 /* 2212 * Ok, we want to loop on the new object->bbobj association, 2213 * possibly collapsing it further. However if dodealloc is 2214 * non-zero we have to deallocate the backing_object which 2215 * itself can potentially undergo a collapse, creating a 2216 * recursion depth issue with the LWKT token subsystem. 2217 * 2218 * In the case where we must deallocate the backing_object 2219 * it is possible now that the backing_object has a single 2220 * shadow count on some other object (not represented here 2221 * as yet), since it no longer shadows us. Thus when we 2222 * call vm_object_deallocate() it may attempt to collapse 2223 * itself into its remaining parent. 2224 */ 2225 if (dodealloc) { 2226 struct vm_object_dealloc_list *dtmp; 2227 2228 vm_object_chain_release(backing_object); 2229 vm_object_unlock(backing_object); 2230 /* backing_object remains held */ 2231 2232 /* 2233 * Auto-deallocation list for caller convenience. 2234 */ 2235 if (dlistp == NULL) 2236 dlistp = &dlist; 2237 2238 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2239 dtmp->object = backing_object; 2240 dtmp->next = *dlistp; 2241 *dlistp = dtmp; 2242 } else { 2243 vm_object_chain_release(backing_object); 2244 vm_object_drop(backing_object); 2245 } 2246 /* backing_object = NULL; not needed */ 2247 /* loop */ 2248 } 2249 2250 /* 2251 * Clean up any left over backing_object 2252 */ 2253 if (backing_object) { 2254 vm_object_chain_release(backing_object); 2255 vm_object_drop(backing_object); 2256 } 2257 2258 /* 2259 * Clean up any auto-deallocation list. This is a convenience 2260 * for top-level callers so they don't have to pass &dlist. 2261 * Do not clean up any caller-passed dlistp, the caller will 2262 * do that. 2263 */ 2264 if (dlist) 2265 vm_object_deallocate_list(&dlist); 2266 2267 } 2268 2269 /* 2270 * vm_object_collapse() may collect additional objects in need of 2271 * deallocation. This routine deallocates these objects. The 2272 * deallocation itself can trigger additional collapses (which the 2273 * deallocate function takes care of). This procedure is used to 2274 * reduce procedural recursion since these vm_object shadow chains 2275 * can become quite long. 2276 */ 2277 void 2278 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2279 { 2280 struct vm_object_dealloc_list *dlist; 2281 2282 while ((dlist = *dlistp) != NULL) { 2283 *dlistp = dlist->next; 2284 vm_object_lock(dlist->object); 2285 vm_object_deallocate_locked(dlist->object); 2286 vm_object_drop(dlist->object); 2287 kfree(dlist, M_TEMP); 2288 } 2289 } 2290 2291 /* 2292 * Removes all physical pages in the specified object range from the 2293 * object's list of pages. 2294 * 2295 * No requirements. 2296 */ 2297 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2298 2299 void 2300 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2301 boolean_t clean_only) 2302 { 2303 struct rb_vm_page_scan_info info; 2304 int all; 2305 2306 /* 2307 * Degenerate cases and assertions 2308 */ 2309 vm_object_hold(object); 2310 if (object == NULL || 2311 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2312 vm_object_drop(object); 2313 return; 2314 } 2315 KASSERT(object->type != OBJT_PHYS, 2316 ("attempt to remove pages from a physical object")); 2317 2318 /* 2319 * Indicate that paging is occuring on the object 2320 */ 2321 vm_object_pip_add(object, 1); 2322 2323 /* 2324 * Figure out the actual removal range and whether we are removing 2325 * the entire contents of the object or not. If removing the entire 2326 * contents, be sure to get all pages, even those that might be 2327 * beyond the end of the object. 2328 */ 2329 info.start_pindex = start; 2330 if (end == 0) 2331 info.end_pindex = (vm_pindex_t)-1; 2332 else 2333 info.end_pindex = end - 1; 2334 info.limit = clean_only; 2335 all = (start == 0 && info.end_pindex >= object->size - 1); 2336 2337 /* 2338 * Loop until we are sure we have gotten them all. 2339 */ 2340 do { 2341 info.error = 0; 2342 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2343 vm_object_page_remove_callback, &info); 2344 } while (info.error); 2345 2346 /* 2347 * Remove any related swap if throwing away pages, or for 2348 * non-swap objects (the swap is a clean copy in that case). 2349 */ 2350 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2351 if (all) 2352 swap_pager_freespace_all(object); 2353 else 2354 swap_pager_freespace(object, info.start_pindex, 2355 info.end_pindex - info.start_pindex + 1); 2356 } 2357 2358 /* 2359 * Cleanup 2360 */ 2361 vm_object_pip_wakeup(object); 2362 vm_object_drop(object); 2363 } 2364 2365 /* 2366 * The caller must hold the object 2367 */ 2368 static int 2369 vm_object_page_remove_callback(vm_page_t p, void *data) 2370 { 2371 struct rb_vm_page_scan_info *info = data; 2372 2373 if (vm_page_busy_try(p, TRUE)) { 2374 vm_page_sleep_busy(p, TRUE, "vmopar"); 2375 info->error = 1; 2376 return(0); 2377 } 2378 2379 /* 2380 * Wired pages cannot be destroyed, but they can be invalidated 2381 * and we do so if clean_only (limit) is not set. 2382 * 2383 * WARNING! The page may be wired due to being part of a buffer 2384 * cache buffer, and the buffer might be marked B_CACHE. 2385 * This is fine as part of a truncation but VFSs must be 2386 * sure to fix the buffer up when re-extending the file. 2387 * 2388 * NOTE! PG_NEED_COMMIT is ignored. 2389 */ 2390 if (p->wire_count != 0) { 2391 vm_page_protect(p, VM_PROT_NONE); 2392 if (info->limit == 0) 2393 p->valid = 0; 2394 vm_page_wakeup(p); 2395 return(0); 2396 } 2397 2398 /* 2399 * limit is our clean_only flag. If set and the page is dirty, do 2400 * not free it. If set and the page is being held by someone, do 2401 * not free it. 2402 */ 2403 if (info->limit && p->valid) { 2404 vm_page_test_dirty(p); 2405 if (p->valid & p->dirty) { 2406 vm_page_wakeup(p); 2407 return(0); 2408 } 2409 #if 0 2410 if (p->hold_count) { 2411 vm_page_wakeup(p); 2412 return(0); 2413 } 2414 #endif 2415 } 2416 2417 /* 2418 * Destroy the page 2419 */ 2420 vm_page_protect(p, VM_PROT_NONE); 2421 vm_page_free(p); 2422 return(0); 2423 } 2424 2425 /* 2426 * Coalesces two objects backing up adjoining regions of memory into a 2427 * single object. 2428 * 2429 * returns TRUE if objects were combined. 2430 * 2431 * NOTE: Only works at the moment if the second object is NULL - 2432 * if it's not, which object do we lock first? 2433 * 2434 * Parameters: 2435 * prev_object First object to coalesce 2436 * prev_offset Offset into prev_object 2437 * next_object Second object into coalesce 2438 * next_offset Offset into next_object 2439 * 2440 * prev_size Size of reference to prev_object 2441 * next_size Size of reference to next_object 2442 * 2443 * The caller does not need to hold (prev_object) but must have a stable 2444 * pointer to it (typically by holding the vm_map locked). 2445 */ 2446 boolean_t 2447 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2448 vm_size_t prev_size, vm_size_t next_size) 2449 { 2450 vm_pindex_t next_pindex; 2451 2452 if (prev_object == NULL) 2453 return (TRUE); 2454 2455 vm_object_hold(prev_object); 2456 2457 if (prev_object->type != OBJT_DEFAULT && 2458 prev_object->type != OBJT_SWAP) { 2459 vm_object_drop(prev_object); 2460 return (FALSE); 2461 } 2462 2463 /* 2464 * Try to collapse the object first 2465 */ 2466 vm_object_chain_acquire(prev_object); 2467 vm_object_collapse(prev_object, NULL); 2468 2469 /* 2470 * Can't coalesce if: . more than one reference . paged out . shadows 2471 * another object . has a copy elsewhere (any of which mean that the 2472 * pages not mapped to prev_entry may be in use anyway) 2473 */ 2474 2475 if (prev_object->backing_object != NULL) { 2476 vm_object_chain_release(prev_object); 2477 vm_object_drop(prev_object); 2478 return (FALSE); 2479 } 2480 2481 prev_size >>= PAGE_SHIFT; 2482 next_size >>= PAGE_SHIFT; 2483 next_pindex = prev_pindex + prev_size; 2484 2485 if ((prev_object->ref_count > 1) && 2486 (prev_object->size != next_pindex)) { 2487 vm_object_chain_release(prev_object); 2488 vm_object_drop(prev_object); 2489 return (FALSE); 2490 } 2491 2492 /* 2493 * Remove any pages that may still be in the object from a previous 2494 * deallocation. 2495 */ 2496 if (next_pindex < prev_object->size) { 2497 vm_object_page_remove(prev_object, 2498 next_pindex, 2499 next_pindex + next_size, FALSE); 2500 if (prev_object->type == OBJT_SWAP) 2501 swap_pager_freespace(prev_object, 2502 next_pindex, next_size); 2503 } 2504 2505 /* 2506 * Extend the object if necessary. 2507 */ 2508 if (next_pindex + next_size > prev_object->size) 2509 prev_object->size = next_pindex + next_size; 2510 2511 vm_object_chain_release(prev_object); 2512 vm_object_drop(prev_object); 2513 return (TRUE); 2514 } 2515 2516 /* 2517 * Make the object writable and flag is being possibly dirty. 2518 * 2519 * The caller must hold the object. XXX called from vm_page_dirty(), 2520 * There is currently no requirement to hold the object. 2521 */ 2522 void 2523 vm_object_set_writeable_dirty(vm_object_t object) 2524 { 2525 struct vnode *vp; 2526 2527 /*vm_object_assert_held(object);*/ 2528 /* 2529 * Avoid contention in vm fault path by checking the state before 2530 * issuing an atomic op on it. 2531 */ 2532 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) != 2533 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) { 2534 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2535 } 2536 if (object->type == OBJT_VNODE && 2537 (vp = (struct vnode *)object->handle) != NULL) { 2538 if ((vp->v_flag & VOBJDIRTY) == 0) { 2539 vsetflags(vp, VOBJDIRTY); 2540 } 2541 } 2542 } 2543 2544 #include "opt_ddb.h" 2545 #ifdef DDB 2546 #include <sys/kernel.h> 2547 2548 #include <sys/cons.h> 2549 2550 #include <ddb/ddb.h> 2551 2552 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2553 vm_map_entry_t entry); 2554 static int vm_object_in_map (vm_object_t object); 2555 2556 /* 2557 * The caller must hold the object. 2558 */ 2559 static int 2560 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2561 { 2562 vm_map_t tmpm; 2563 vm_map_entry_t tmpe; 2564 vm_object_t obj, nobj; 2565 int entcount; 2566 2567 if (map == 0) 2568 return 0; 2569 if (entry == 0) { 2570 tmpe = map->header.next; 2571 entcount = map->nentries; 2572 while (entcount-- && (tmpe != &map->header)) { 2573 if( _vm_object_in_map(map, object, tmpe)) { 2574 return 1; 2575 } 2576 tmpe = tmpe->next; 2577 } 2578 return (0); 2579 } 2580 switch(entry->maptype) { 2581 case VM_MAPTYPE_SUBMAP: 2582 tmpm = entry->object.sub_map; 2583 tmpe = tmpm->header.next; 2584 entcount = tmpm->nentries; 2585 while (entcount-- && tmpe != &tmpm->header) { 2586 if( _vm_object_in_map(tmpm, object, tmpe)) { 2587 return 1; 2588 } 2589 tmpe = tmpe->next; 2590 } 2591 break; 2592 case VM_MAPTYPE_NORMAL: 2593 case VM_MAPTYPE_VPAGETABLE: 2594 obj = entry->object.vm_object; 2595 while (obj) { 2596 if (obj == object) { 2597 if (obj != entry->object.vm_object) 2598 vm_object_drop(obj); 2599 return 1; 2600 } 2601 while ((nobj = obj->backing_object) != NULL) { 2602 vm_object_hold(nobj); 2603 if (nobj == obj->backing_object) 2604 break; 2605 vm_object_drop(nobj); 2606 } 2607 if (obj != entry->object.vm_object) { 2608 if (nobj) 2609 vm_object_lock_swap(); 2610 vm_object_drop(obj); 2611 } 2612 obj = nobj; 2613 } 2614 break; 2615 default: 2616 break; 2617 } 2618 return 0; 2619 } 2620 2621 static int vm_object_in_map_callback(struct proc *p, void *data); 2622 2623 struct vm_object_in_map_info { 2624 vm_object_t object; 2625 int rv; 2626 }; 2627 2628 /* 2629 * Debugging only 2630 */ 2631 static int 2632 vm_object_in_map(vm_object_t object) 2633 { 2634 struct vm_object_in_map_info info; 2635 2636 info.rv = 0; 2637 info.object = object; 2638 2639 allproc_scan(vm_object_in_map_callback, &info); 2640 if (info.rv) 2641 return 1; 2642 if( _vm_object_in_map(&kernel_map, object, 0)) 2643 return 1; 2644 if( _vm_object_in_map(&pager_map, object, 0)) 2645 return 1; 2646 if( _vm_object_in_map(&buffer_map, object, 0)) 2647 return 1; 2648 return 0; 2649 } 2650 2651 /* 2652 * Debugging only 2653 */ 2654 static int 2655 vm_object_in_map_callback(struct proc *p, void *data) 2656 { 2657 struct vm_object_in_map_info *info = data; 2658 2659 if (p->p_vmspace) { 2660 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2661 info->rv = 1; 2662 return -1; 2663 } 2664 } 2665 return (0); 2666 } 2667 2668 DB_SHOW_COMMAND(vmochk, vm_object_check) 2669 { 2670 vm_object_t object; 2671 2672 /* 2673 * make sure that internal objs are in a map somewhere 2674 * and none have zero ref counts. 2675 */ 2676 for (object = TAILQ_FIRST(&vm_object_list); 2677 object != NULL; 2678 object = TAILQ_NEXT(object, object_list)) { 2679 if (object->type == OBJT_MARKER) 2680 continue; 2681 if (object->handle == NULL && 2682 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2683 if (object->ref_count == 0) { 2684 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2685 (long)object->size); 2686 } 2687 if (!vm_object_in_map(object)) { 2688 db_printf( 2689 "vmochk: internal obj is not in a map: " 2690 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2691 object->ref_count, (u_long)object->size, 2692 (u_long)object->size, 2693 (void *)object->backing_object); 2694 } 2695 } 2696 } 2697 } 2698 2699 /* 2700 * Debugging only 2701 */ 2702 DB_SHOW_COMMAND(object, vm_object_print_static) 2703 { 2704 /* XXX convert args. */ 2705 vm_object_t object = (vm_object_t)addr; 2706 boolean_t full = have_addr; 2707 2708 vm_page_t p; 2709 2710 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2711 #define count was_count 2712 2713 int count; 2714 2715 if (object == NULL) 2716 return; 2717 2718 db_iprintf( 2719 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2720 object, (int)object->type, (u_long)object->size, 2721 object->resident_page_count, object->ref_count, object->flags); 2722 /* 2723 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2724 */ 2725 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2726 object->shadow_count, 2727 object->backing_object ? object->backing_object->ref_count : 0, 2728 object->backing_object, (long)object->backing_object_offset); 2729 2730 if (!full) 2731 return; 2732 2733 db_indent += 2; 2734 count = 0; 2735 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2736 if (count == 0) 2737 db_iprintf("memory:="); 2738 else if (count == 6) { 2739 db_printf("\n"); 2740 db_iprintf(" ..."); 2741 count = 0; 2742 } else 2743 db_printf(","); 2744 count++; 2745 2746 db_printf("(off=0x%lx,page=0x%lx)", 2747 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 2748 } 2749 if (count != 0) 2750 db_printf("\n"); 2751 db_indent -= 2; 2752 } 2753 2754 /* XXX. */ 2755 #undef count 2756 2757 /* 2758 * XXX need this non-static entry for calling from vm_map_print. 2759 * 2760 * Debugging only 2761 */ 2762 void 2763 vm_object_print(/* db_expr_t */ long addr, 2764 boolean_t have_addr, 2765 /* db_expr_t */ long count, 2766 char *modif) 2767 { 2768 vm_object_print_static(addr, have_addr, count, modif); 2769 } 2770 2771 /* 2772 * Debugging only 2773 */ 2774 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2775 { 2776 vm_object_t object; 2777 int nl = 0; 2778 int c; 2779 for (object = TAILQ_FIRST(&vm_object_list); 2780 object != NULL; 2781 object = TAILQ_NEXT(object, object_list)) { 2782 vm_pindex_t idx, fidx; 2783 vm_pindex_t osize; 2784 vm_paddr_t pa = -1, padiff; 2785 int rcount; 2786 vm_page_t m; 2787 2788 if (object->type == OBJT_MARKER) 2789 continue; 2790 db_printf("new object: %p\n", (void *)object); 2791 if ( nl > 18) { 2792 c = cngetc(); 2793 if (c != ' ') 2794 return; 2795 nl = 0; 2796 } 2797 nl++; 2798 rcount = 0; 2799 fidx = 0; 2800 osize = object->size; 2801 if (osize > 128) 2802 osize = 128; 2803 for (idx = 0; idx < osize; idx++) { 2804 m = vm_page_lookup(object, idx); 2805 if (m == NULL) { 2806 if (rcount) { 2807 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2808 (long)fidx, rcount, (long)pa); 2809 if ( nl > 18) { 2810 c = cngetc(); 2811 if (c != ' ') 2812 return; 2813 nl = 0; 2814 } 2815 nl++; 2816 rcount = 0; 2817 } 2818 continue; 2819 } 2820 2821 2822 if (rcount && 2823 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2824 ++rcount; 2825 continue; 2826 } 2827 if (rcount) { 2828 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2829 padiff >>= PAGE_SHIFT; 2830 padiff &= PQ_L2_MASK; 2831 if (padiff == 0) { 2832 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2833 ++rcount; 2834 continue; 2835 } 2836 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2837 (long)fidx, rcount, (long)pa); 2838 db_printf("pd(%ld)\n", (long)padiff); 2839 if ( nl > 18) { 2840 c = cngetc(); 2841 if (c != ' ') 2842 return; 2843 nl = 0; 2844 } 2845 nl++; 2846 } 2847 fidx = idx; 2848 pa = VM_PAGE_TO_PHYS(m); 2849 rcount = 1; 2850 } 2851 if (rcount) { 2852 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2853 (long)fidx, rcount, (long)pa); 2854 if ( nl > 18) { 2855 c = cngetc(); 2856 if (c != ' ') 2857 return; 2858 nl = 0; 2859 } 2860 nl++; 2861 } 2862 } 2863 } 2864 #endif /* DDB */ 2865