xref: /dflybsd-src/sys/vm/vm_object.c (revision c666f28aa7c82e205ee3709528b79a41e8cc5308)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object,
101 				    vm_object_t backing_object);
102 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103 					     int pagerflags);
104 static void	vm_object_lock_init(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_gettoken(&obj->token);
176 }
177 
178 /*
179  * Returns TRUE on sucesss
180  */
181 static int
182 vm_object_lock_try(vm_object_t obj)
183 {
184 	return(lwkt_trytoken(&obj->token));
185 }
186 
187 void
188 vm_object_lock_shared(vm_object_t obj)
189 {
190 	lwkt_gettoken_shared(&obj->token);
191 }
192 
193 void
194 vm_object_unlock(vm_object_t obj)
195 {
196 	lwkt_reltoken(&obj->token);
197 }
198 
199 static __inline void
200 vm_object_assert_held(vm_object_t obj)
201 {
202 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
203 }
204 
205 void
206 #ifndef DEBUG_LOCKS
207 vm_object_hold(vm_object_t obj)
208 #else
209 debugvm_object_hold(vm_object_t obj, char *file, int line)
210 #endif
211 {
212 	KKASSERT(obj != NULL);
213 
214 	/*
215 	 * Object must be held (object allocation is stable due to callers
216 	 * context, typically already holding the token on a parent object)
217 	 * prior to potentially blocking on the lock, otherwise the object
218 	 * can get ripped away from us.
219 	 */
220 	refcount_acquire(&obj->hold_count);
221 	vm_object_lock(obj);
222 
223 #if defined(DEBUG_LOCKS)
224 	int i;
225 	u_int mask;
226 
227 	for (;;) {
228 		mask = ~obj->debug_hold_bitmap;
229 		cpu_ccfence();
230 		if (mask == 0xFFFFFFFFU) {
231 			if (obj->debug_hold_ovfl == 0)
232 				obj->debug_hold_ovfl = 1;
233 			break;
234 		}
235 		i = ffs(mask) - 1;
236 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
237 				      ~mask | (1 << i))) {
238 			obj->debug_hold_bitmap |= (1 << i);
239 			obj->debug_hold_thrs[i] = curthread;
240 			obj->debug_hold_file[i] = file;
241 			obj->debug_hold_line[i] = line;
242 			break;
243 		}
244 	}
245 #endif
246 }
247 
248 int
249 #ifndef DEBUG_LOCKS
250 vm_object_hold_try(vm_object_t obj)
251 #else
252 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
253 #endif
254 {
255 	KKASSERT(obj != NULL);
256 
257 	/*
258 	 * Object must be held (object allocation is stable due to callers
259 	 * context, typically already holding the token on a parent object)
260 	 * prior to potentially blocking on the lock, otherwise the object
261 	 * can get ripped away from us.
262 	 */
263 	refcount_acquire(&obj->hold_count);
264 	if (vm_object_lock_try(obj) == 0) {
265 		if (refcount_release(&obj->hold_count)) {
266 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
267 				zfree(obj_zone, obj);
268 		}
269 		return(0);
270 	}
271 
272 #if defined(DEBUG_LOCKS)
273 	int i;
274 	u_int mask;
275 
276 	for (;;) {
277 		mask = ~obj->debug_hold_bitmap;
278 		cpu_ccfence();
279 		if (mask == 0xFFFFFFFFU) {
280 			if (obj->debug_hold_ovfl == 0)
281 				obj->debug_hold_ovfl = 1;
282 			break;
283 		}
284 		i = ffs(mask) - 1;
285 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
286 				      ~mask | (1 << i))) {
287 			obj->debug_hold_bitmap |= (1 << i);
288 			obj->debug_hold_thrs[i] = curthread;
289 			obj->debug_hold_file[i] = file;
290 			obj->debug_hold_line[i] = line;
291 			break;
292 		}
293 	}
294 #endif
295 	return(1);
296 }
297 
298 void
299 #ifndef DEBUG_LOCKS
300 vm_object_hold_shared(vm_object_t obj)
301 #else
302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
303 #endif
304 {
305 	KKASSERT(obj != NULL);
306 
307 	/*
308 	 * Object must be held (object allocation is stable due to callers
309 	 * context, typically already holding the token on a parent object)
310 	 * prior to potentially blocking on the lock, otherwise the object
311 	 * can get ripped away from us.
312 	 */
313 	refcount_acquire(&obj->hold_count);
314 	vm_object_lock_shared(obj);
315 
316 #if defined(DEBUG_LOCKS)
317 	int i;
318 	u_int mask;
319 
320 	for (;;) {
321 		mask = ~obj->debug_hold_bitmap;
322 		cpu_ccfence();
323 		if (mask == 0xFFFFFFFFU) {
324 			if (obj->debug_hold_ovfl == 0)
325 				obj->debug_hold_ovfl = 1;
326 			break;
327 		}
328 		i = ffs(mask) - 1;
329 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
330 				      ~mask | (1 << i))) {
331 			obj->debug_hold_bitmap |= (1 << i);
332 			obj->debug_hold_thrs[i] = curthread;
333 			obj->debug_hold_file[i] = file;
334 			obj->debug_hold_line[i] = line;
335 			break;
336 		}
337 	}
338 #endif
339 }
340 
341 /*
342  * Drop the token and hold_count on the object.
343  */
344 void
345 vm_object_drop(vm_object_t obj)
346 {
347 	if (obj == NULL)
348 		return;
349 
350 #if defined(DEBUG_LOCKS)
351 	int found = 0;
352 	int i;
353 
354 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
355 		if ((obj->debug_hold_bitmap & (1 << i)) &&
356 		    (obj->debug_hold_thrs[i] == curthread)) {
357 			obj->debug_hold_bitmap &= ~(1 << i);
358 			obj->debug_hold_thrs[i] = NULL;
359 			obj->debug_hold_file[i] = NULL;
360 			obj->debug_hold_line[i] = 0;
361 			found = 1;
362 			break;
363 		}
364 	}
365 
366 	if (found == 0 && obj->debug_hold_ovfl == 0)
367 		panic("vm_object: attempt to drop hold on non-self-held obj");
368 #endif
369 
370 	/*
371 	 * No new holders should be possible once we drop hold_count 1->0 as
372 	 * there is no longer any way to reference the object.
373 	 */
374 	KKASSERT(obj->hold_count > 0);
375 	if (refcount_release(&obj->hold_count)) {
376 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
377 			vm_object_unlock(obj);
378 			zfree(obj_zone, obj);
379 		} else {
380 			vm_object_unlock(obj);
381 		}
382 	} else {
383 		vm_object_unlock(obj);
384 	}
385 }
386 
387 /*
388  * Initialize a freshly allocated object, returning a held object.
389  *
390  * Used only by vm_object_allocate() and zinitna().
391  *
392  * No requirements.
393  */
394 void
395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
396 {
397 	int incr;
398 
399 	RB_INIT(&object->rb_memq);
400 	LIST_INIT(&object->shadow_head);
401 	lwkt_token_init(&object->token, "vmobj");
402 
403 	object->type = type;
404 	object->size = size;
405 	object->ref_count = 1;
406 	object->hold_count = 0;
407 	object->flags = 0;
408 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
409 		vm_object_set_flag(object, OBJ_ONEMAPPING);
410 	object->paging_in_progress = 0;
411 	object->resident_page_count = 0;
412 	object->agg_pv_list_count = 0;
413 	object->shadow_count = 0;
414 #ifdef SMP
415 	/* cpu localization twist */
416 	object->pg_color = (int)(intptr_t)curthread;
417 #else
418 	object->pg_color = next_index;
419 #endif
420 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
421 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
422 	else
423 		incr = size;
424 	next_index = (next_index + incr) & PQ_L2_MASK;
425 	object->handle = NULL;
426 	object->backing_object = NULL;
427 	object->backing_object_offset = (vm_ooffset_t)0;
428 
429 	object->generation++;
430 	object->swblock_count = 0;
431 	RB_INIT(&object->swblock_root);
432 	vm_object_lock_init(object);
433 	pmap_object_init(object);
434 
435 	vm_object_hold(object);
436 	lwkt_gettoken(&vmobj_token);
437 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
438 	vm_object_count++;
439 	lwkt_reltoken(&vmobj_token);
440 }
441 
442 /*
443  * Initialize the VM objects module.
444  *
445  * Called from the low level boot code only.
446  */
447 void
448 vm_object_init(void)
449 {
450 	TAILQ_INIT(&vm_object_list);
451 
452 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
453 			    &kernel_object);
454 	vm_object_drop(&kernel_object);
455 
456 	obj_zone = &obj_zone_store;
457 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
458 		vm_objects_init, VM_OBJECTS_INIT);
459 }
460 
461 void
462 vm_object_init2(void)
463 {
464 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
465 }
466 
467 /*
468  * Allocate and return a new object of the specified type and size.
469  *
470  * No requirements.
471  */
472 vm_object_t
473 vm_object_allocate(objtype_t type, vm_pindex_t size)
474 {
475 	vm_object_t result;
476 
477 	result = (vm_object_t) zalloc(obj_zone);
478 
479 	_vm_object_allocate(type, size, result);
480 	vm_object_drop(result);
481 
482 	return (result);
483 }
484 
485 /*
486  * This version returns a held object, allowing further atomic initialization
487  * of the object.
488  */
489 vm_object_t
490 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
491 {
492 	vm_object_t result;
493 
494 	result = (vm_object_t) zalloc(obj_zone);
495 
496 	_vm_object_allocate(type, size, result);
497 
498 	return (result);
499 }
500 
501 /*
502  * Add an additional reference to a vm_object.  The object must already be
503  * held.  The original non-lock version is no longer supported.  The object
504  * must NOT be chain locked by anyone at the time the reference is added.
505  *
506  * Referencing a chain-locked object can blow up the fairly sensitive
507  * ref_count and shadow_count tests in the deallocator.  Most callers
508  * will call vm_object_chain_wait() prior to calling
509  * vm_object_reference_locked() to avoid the case.
510  *
511  * The object must be held.
512  */
513 void
514 vm_object_reference_locked(vm_object_t object)
515 {
516 	KKASSERT(object != NULL);
517 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
518 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
519 	object->ref_count++;
520 	if (object->type == OBJT_VNODE) {
521 		vref(object->handle);
522 		/* XXX what if the vnode is being destroyed? */
523 	}
524 }
525 
526 /*
527  * Object OBJ_CHAINLOCK lock handling.
528  *
529  * The caller can chain-lock backing objects recursively and then
530  * use vm_object_chain_release_all() to undo the whole chain.
531  *
532  * Chain locks are used to prevent collapses and are only applicable
533  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
534  * on other object types are ignored.  This is also important because
535  * it allows e.g. the vnode underlying a memory mapping to take concurrent
536  * faults.
537  *
538  * The object must usually be held on entry, though intermediate
539  * objects need not be held on release.
540  */
541 void
542 vm_object_chain_wait(vm_object_t object)
543 {
544 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
545 	while (object->flags & OBJ_CHAINLOCK) {
546 		vm_object_set_flag(object, OBJ_CHAINWANT);
547 		tsleep(object, 0, "objchain", 0);
548 	}
549 }
550 
551 void
552 vm_object_chain_acquire(vm_object_t object)
553 {
554 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
555 		vm_object_chain_wait(object);
556 		vm_object_set_flag(object, OBJ_CHAINLOCK);
557 	}
558 }
559 
560 void
561 vm_object_chain_release(vm_object_t object)
562 {
563 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
564 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
565 		KKASSERT(object->flags & OBJ_CHAINLOCK);
566 		if (object->flags & OBJ_CHAINWANT) {
567 			vm_object_clear_flag(object,
568 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
569 			wakeup(object);
570 		} else {
571 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
572 		}
573 	}
574 }
575 
576 /*
577  * This releases the entire chain of objects from first_object to and
578  * including stopobj, flowing through object->backing_object.
579  *
580  * We release stopobj first as an optimization as this object is most
581  * likely to be shared across multiple processes.
582  */
583 void
584 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
585 {
586 	vm_object_t backing_object;
587 	vm_object_t object;
588 
589 	vm_object_chain_release(stopobj);
590 	object = first_object;
591 
592 	while (object != stopobj) {
593 		KKASSERT(object);
594 		if (object != first_object)
595 			vm_object_hold(object);
596 		backing_object = object->backing_object;
597 		vm_object_chain_release(object);
598 		if (object != first_object)
599 			vm_object_drop(object);
600 		object = backing_object;
601 	}
602 }
603 
604 /*
605  * Dereference an object and its underlying vnode.
606  *
607  * The object must be held and will be held on return.
608  */
609 static void
610 vm_object_vndeallocate(vm_object_t object)
611 {
612 	struct vnode *vp = (struct vnode *) object->handle;
613 
614 	KASSERT(object->type == OBJT_VNODE,
615 	    ("vm_object_vndeallocate: not a vnode object"));
616 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
617 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
618 #ifdef INVARIANTS
619 	if (object->ref_count == 0) {
620 		vprint("vm_object_vndeallocate", vp);
621 		panic("vm_object_vndeallocate: bad object reference count");
622 	}
623 #endif
624 	object->ref_count--;
625 	if (object->ref_count == 0)
626 		vclrflags(vp, VTEXT);
627 	vrele(vp);
628 }
629 
630 /*
631  * Release a reference to the specified object, gained either through a
632  * vm_object_allocate or a vm_object_reference call.  When all references
633  * are gone, storage associated with this object may be relinquished.
634  *
635  * The caller does not have to hold the object locked but must have control
636  * over the reference in question in order to guarantee that the object
637  * does not get ripped out from under us.
638  */
639 void
640 vm_object_deallocate(vm_object_t object)
641 {
642 	if (object) {
643 		vm_object_hold(object);
644 		vm_object_deallocate_locked(object);
645 		vm_object_drop(object);
646 	}
647 }
648 
649 void
650 vm_object_deallocate_locked(vm_object_t object)
651 {
652 	struct vm_object_dealloc_list *dlist = NULL;
653 	struct vm_object_dealloc_list *dtmp;
654 	vm_object_t temp;
655 	int must_drop = 0;
656 
657 	/*
658 	 * We may chain deallocate object, but additional objects may
659 	 * collect on the dlist which also have to be deallocated.  We
660 	 * must avoid a recursion, vm_object chains can get deep.
661 	 */
662 again:
663 	while (object != NULL) {
664 #if 0
665 		/*
666 		 * Don't rip a ref_count out from under an object undergoing
667 		 * collapse, it will confuse the collapse code.
668 		 */
669 		vm_object_chain_wait(object);
670 #endif
671 		if (object->type == OBJT_VNODE) {
672 			vm_object_vndeallocate(object);
673 			break;
674 		}
675 
676 		if (object->ref_count == 0) {
677 			panic("vm_object_deallocate: object deallocated "
678 			      "too many times: %d", object->type);
679 		}
680 		if (object->ref_count > 2) {
681 			object->ref_count--;
682 			break;
683 		}
684 
685 		/*
686 		 * Here on ref_count of one or two, which are special cases for
687 		 * objects.
688 		 *
689 		 * Nominal ref_count > 1 case if the second ref is not from
690 		 * a shadow.
691 		 */
692 		if (object->ref_count == 2 && object->shadow_count == 0) {
693 			vm_object_set_flag(object, OBJ_ONEMAPPING);
694 			object->ref_count--;
695 			break;
696 		}
697 
698 		/*
699 		 * If the second ref is from a shadow we chain along it
700 		 * upwards if object's handle is exhausted.
701 		 *
702 		 * We have to decrement object->ref_count before potentially
703 		 * collapsing the first shadow object or the collapse code
704 		 * will not be able to handle the degenerate case to remove
705 		 * object.  However, if we do it too early the object can
706 		 * get ripped out from under us.
707 		 */
708 		if (object->ref_count == 2 && object->shadow_count == 1 &&
709 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
710 					       object->type == OBJT_SWAP)) {
711 			temp = LIST_FIRST(&object->shadow_head);
712 			KKASSERT(temp != NULL);
713 			vm_object_hold(temp);
714 
715 			/*
716 			 * Wait for any paging to complete so the collapse
717 			 * doesn't (or isn't likely to) qcollapse.  pip
718 			 * waiting must occur before we acquire the
719 			 * chainlock.
720 			 */
721 			while (
722 				temp->paging_in_progress ||
723 				object->paging_in_progress
724 			) {
725 				vm_object_pip_wait(temp, "objde1");
726 				vm_object_pip_wait(object, "objde2");
727 			}
728 
729 			/*
730 			 * If the parent is locked we have to give up, as
731 			 * otherwise we would be acquiring locks in the
732 			 * wrong order and potentially deadlock.
733 			 */
734 			if (temp->flags & OBJ_CHAINLOCK) {
735 				vm_object_drop(temp);
736 				goto skip;
737 			}
738 			vm_object_chain_acquire(temp);
739 
740 			/*
741 			 * Recheck/retry after the hold and the paging
742 			 * wait, both of which can block us.
743 			 */
744 			if (object->ref_count != 2 ||
745 			    object->shadow_count != 1 ||
746 			    object->handle ||
747 			    LIST_FIRST(&object->shadow_head) != temp ||
748 			    (object->type != OBJT_DEFAULT &&
749 			     object->type != OBJT_SWAP)) {
750 				vm_object_chain_release(temp);
751 				vm_object_drop(temp);
752 				continue;
753 			}
754 
755 			/*
756 			 * We can safely drop object's ref_count now.
757 			 */
758 			KKASSERT(object->ref_count == 2);
759 			object->ref_count--;
760 
761 			/*
762 			 * If our single parent is not collapseable just
763 			 * decrement ref_count (2->1) and stop.
764 			 */
765 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
766 					     temp->type != OBJT_SWAP)) {
767 				vm_object_chain_release(temp);
768 				vm_object_drop(temp);
769 				break;
770 			}
771 
772 			/*
773 			 * At this point we have already dropped object's
774 			 * ref_count so it is possible for a race to
775 			 * deallocate obj out from under us.  Any collapse
776 			 * will re-check the situation.  We must not block
777 			 * until we are able to collapse.
778 			 *
779 			 * Bump temp's ref_count to avoid an unwanted
780 			 * degenerate recursion (can't call
781 			 * vm_object_reference_locked() because it asserts
782 			 * that CHAINLOCK is not set).
783 			 */
784 			temp->ref_count++;
785 			KKASSERT(temp->ref_count > 1);
786 
787 			/*
788 			 * Collapse temp, then deallocate the extra ref
789 			 * formally.
790 			 */
791 			vm_object_collapse(temp, &dlist);
792 			vm_object_chain_release(temp);
793 			if (must_drop) {
794 				vm_object_lock_swap();
795 				vm_object_drop(object);
796 			}
797 			object = temp;
798 			must_drop = 1;
799 			continue;
800 		}
801 
802 		/*
803 		 * Drop the ref and handle termination on the 1->0 transition.
804 		 * We may have blocked above so we have to recheck.
805 		 */
806 skip:
807 		KKASSERT(object->ref_count != 0);
808 		if (object->ref_count >= 2) {
809 			object->ref_count--;
810 			break;
811 		}
812 		KKASSERT(object->ref_count == 1);
813 
814 		/*
815 		 * 1->0 transition.  Chain through the backing_object.
816 		 * Maintain the ref until we've located the backing object,
817 		 * then re-check.
818 		 */
819 		while ((temp = object->backing_object) != NULL) {
820 			vm_object_hold(temp);
821 			if (temp == object->backing_object)
822 				break;
823 			vm_object_drop(temp);
824 		}
825 
826 		/*
827 		 * 1->0 transition verified, retry if ref_count is no longer
828 		 * 1.  Otherwise disconnect the backing_object (temp) and
829 		 * clean up.
830 		 */
831 		if (object->ref_count != 1) {
832 			vm_object_drop(temp);
833 			continue;
834 		}
835 
836 		/*
837 		 * It shouldn't be possible for the object to be chain locked
838 		 * if we're removing the last ref on it.
839 		 */
840 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
841 
842 		if (temp) {
843 			LIST_REMOVE(object, shadow_list);
844 			temp->shadow_count--;
845 			temp->generation++;
846 			object->backing_object = NULL;
847 		}
848 
849 		--object->ref_count;
850 		if ((object->flags & OBJ_DEAD) == 0)
851 			vm_object_terminate(object);
852 		if (must_drop && temp)
853 			vm_object_lock_swap();
854 		if (must_drop)
855 			vm_object_drop(object);
856 		object = temp;
857 		must_drop = 1;
858 	}
859 	if (must_drop && object)
860 		vm_object_drop(object);
861 
862 	/*
863 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
864 	 * on the dlist have a hold count but are not locked.
865 	 */
866 	if ((dtmp = dlist) != NULL) {
867 		dlist = dtmp->next;
868 		object = dtmp->object;
869 		kfree(dtmp, M_TEMP);
870 
871 		vm_object_lock(object);	/* already held, add lock */
872 		must_drop = 1;		/* and we're responsible for it */
873 		goto again;
874 	}
875 }
876 
877 /*
878  * Destroy the specified object, freeing up related resources.
879  *
880  * The object must have zero references.
881  *
882  * The object must held.  The caller is responsible for dropping the object
883  * after terminate returns.  Terminate does NOT drop the object.
884  */
885 static int vm_object_terminate_callback(vm_page_t p, void *data);
886 
887 void
888 vm_object_terminate(vm_object_t object)
889 {
890 	/*
891 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
892 	 * able to safely block.
893 	 */
894 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
895 	KKASSERT((object->flags & OBJ_DEAD) == 0);
896 	vm_object_set_flag(object, OBJ_DEAD);
897 
898 	/*
899 	 * Wait for the pageout daemon to be done with the object
900 	 */
901 	vm_object_pip_wait(object, "objtrm1");
902 
903 	KASSERT(!object->paging_in_progress,
904 		("vm_object_terminate: pageout in progress"));
905 
906 	/*
907 	 * Clean and free the pages, as appropriate. All references to the
908 	 * object are gone, so we don't need to lock it.
909 	 */
910 	if (object->type == OBJT_VNODE) {
911 		struct vnode *vp;
912 
913 		/*
914 		 * Clean pages and flush buffers.
915 		 */
916 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
917 
918 		vp = (struct vnode *) object->handle;
919 		vinvalbuf(vp, V_SAVE, 0, 0);
920 	}
921 
922 	/*
923 	 * Wait for any I/O to complete, after which there had better not
924 	 * be any references left on the object.
925 	 */
926 	vm_object_pip_wait(object, "objtrm2");
927 
928 	if (object->ref_count != 0) {
929 		panic("vm_object_terminate: object with references, "
930 		      "ref_count=%d", object->ref_count);
931 	}
932 
933 	/*
934 	 * Cleanup any shared pmaps associated with this object.
935 	 */
936 	pmap_object_free(object);
937 
938 	/*
939 	 * Now free any remaining pages. For internal objects, this also
940 	 * removes them from paging queues. Don't free wired pages, just
941 	 * remove them from the object.
942 	 */
943 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
944 				vm_object_terminate_callback, NULL);
945 
946 	/*
947 	 * Let the pager know object is dead.
948 	 */
949 	vm_pager_deallocate(object);
950 
951 	/*
952 	 * Wait for the object hold count to hit 1, clean out pages as
953 	 * we go.  vmobj_token interlocks any race conditions that might
954 	 * pick the object up from the vm_object_list after we have cleared
955 	 * rb_memq.
956 	 */
957 	for (;;) {
958 		if (RB_ROOT(&object->rb_memq) == NULL)
959 			break;
960 		kprintf("vm_object_terminate: Warning, object %p "
961 			"still has %d pages\n",
962 			object, object->resident_page_count);
963 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
964 					vm_object_terminate_callback, NULL);
965 	}
966 
967 	/*
968 	 * There had better not be any pages left
969 	 */
970 	KKASSERT(object->resident_page_count == 0);
971 
972 	/*
973 	 * Remove the object from the global object list.
974 	 */
975 	lwkt_gettoken(&vmobj_token);
976 	TAILQ_REMOVE(&vm_object_list, object, object_list);
977 	vm_object_count--;
978 	lwkt_reltoken(&vmobj_token);
979 	vm_object_dead_wakeup(object);
980 
981 	if (object->ref_count != 0) {
982 		panic("vm_object_terminate2: object with references, "
983 		      "ref_count=%d", object->ref_count);
984 	}
985 
986 	/*
987 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
988 	 *	 the object here.  See vm_object_drop().
989 	 */
990 }
991 
992 /*
993  * The caller must hold the object.
994  */
995 static int
996 vm_object_terminate_callback(vm_page_t p, void *data __unused)
997 {
998 	vm_object_t object;
999 
1000 	object = p->object;
1001 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1002 	if (object != p->object) {
1003 		kprintf("vm_object_terminate: Warning: Encountered "
1004 			"busied page %p on queue %d\n", p, p->queue);
1005 		vm_page_wakeup(p);
1006 	} else if (p->wire_count == 0) {
1007 		/*
1008 		 * NOTE: PG_NEED_COMMIT is ignored.
1009 		 */
1010 		vm_page_free(p);
1011 		mycpu->gd_cnt.v_pfree++;
1012 	} else {
1013 		if (p->queue != PQ_NONE)
1014 			kprintf("vm_object_terminate: Warning: Encountered "
1015 				"wired page %p on queue %d\n", p, p->queue);
1016 		vm_page_remove(p);
1017 		vm_page_wakeup(p);
1018 	}
1019 	lwkt_yield();
1020 	return(0);
1021 }
1022 
1023 /*
1024  * The object is dead but still has an object<->pager association.  Sleep
1025  * and return.  The caller typically retests the association in a loop.
1026  *
1027  * The caller must hold the object.
1028  */
1029 void
1030 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1031 {
1032 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1033 	if (object->handle) {
1034 		vm_object_set_flag(object, OBJ_DEADWNT);
1035 		tsleep(object, 0, wmesg, 0);
1036 		/* object may be invalid after this point */
1037 	}
1038 }
1039 
1040 /*
1041  * Wakeup anyone waiting for the object<->pager disassociation on
1042  * a dead object.
1043  *
1044  * The caller must hold the object.
1045  */
1046 void
1047 vm_object_dead_wakeup(vm_object_t object)
1048 {
1049 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1050 	if (object->flags & OBJ_DEADWNT) {
1051 		vm_object_clear_flag(object, OBJ_DEADWNT);
1052 		wakeup(object);
1053 	}
1054 }
1055 
1056 /*
1057  * Clean all dirty pages in the specified range of object.  Leaves page
1058  * on whatever queue it is currently on.   If NOSYNC is set then do not
1059  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1060  * leaving the object dirty.
1061  *
1062  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1063  * synchronous clustering mode implementation.
1064  *
1065  * Odd semantics: if start == end, we clean everything.
1066  *
1067  * The object must be locked? XXX
1068  */
1069 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1070 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1071 
1072 void
1073 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1074 		     int flags)
1075 {
1076 	struct rb_vm_page_scan_info info;
1077 	struct vnode *vp;
1078 	int wholescan;
1079 	int pagerflags;
1080 	int generation;
1081 
1082 	vm_object_hold(object);
1083 	if (object->type != OBJT_VNODE ||
1084 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1085 		vm_object_drop(object);
1086 		return;
1087 	}
1088 
1089 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1090 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1091 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1092 
1093 	vp = object->handle;
1094 
1095 	/*
1096 	 * Interlock other major object operations.  This allows us to
1097 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1098 	 */
1099 	vm_object_set_flag(object, OBJ_CLEANING);
1100 
1101 	/*
1102 	 * Handle 'entire object' case
1103 	 */
1104 	info.start_pindex = start;
1105 	if (end == 0) {
1106 		info.end_pindex = object->size - 1;
1107 	} else {
1108 		info.end_pindex = end - 1;
1109 	}
1110 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1111 	info.limit = flags;
1112 	info.pagerflags = pagerflags;
1113 	info.object = object;
1114 
1115 	/*
1116 	 * If cleaning the entire object do a pass to mark the pages read-only.
1117 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1118 	 * OBJ_MIGHTBEDIRTY.
1119 	 */
1120 	if (wholescan) {
1121 		info.error = 0;
1122 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1123 					vm_object_page_clean_pass1, &info);
1124 		if (info.error == 0) {
1125 			vm_object_clear_flag(object,
1126 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1127 			if (object->type == OBJT_VNODE &&
1128 			    (vp = (struct vnode *)object->handle) != NULL) {
1129 				if (vp->v_flag & VOBJDIRTY)
1130 					vclrflags(vp, VOBJDIRTY);
1131 			}
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Do a pass to clean all the dirty pages we find.
1137 	 */
1138 	do {
1139 		info.error = 0;
1140 		generation = object->generation;
1141 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1142 					vm_object_page_clean_pass2, &info);
1143 	} while (info.error || generation != object->generation);
1144 
1145 	vm_object_clear_flag(object, OBJ_CLEANING);
1146 	vm_object_drop(object);
1147 }
1148 
1149 /*
1150  * The caller must hold the object.
1151  */
1152 static
1153 int
1154 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1155 {
1156 	struct rb_vm_page_scan_info *info = data;
1157 
1158 	vm_page_flag_set(p, PG_CLEANCHK);
1159 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1160 		info->error = 1;
1161 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1162 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1163 		vm_page_wakeup(p);
1164 	} else {
1165 		info->error = 1;
1166 	}
1167 	lwkt_yield();
1168 	return(0);
1169 }
1170 
1171 /*
1172  * The caller must hold the object
1173  */
1174 static
1175 int
1176 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1177 {
1178 	struct rb_vm_page_scan_info *info = data;
1179 	int generation;
1180 
1181 	/*
1182 	 * Do not mess with pages that were inserted after we started
1183 	 * the cleaning pass.
1184 	 */
1185 	if ((p->flags & PG_CLEANCHK) == 0)
1186 		goto done;
1187 
1188 	generation = info->object->generation;
1189 	vm_page_busy_wait(p, TRUE, "vpcwai");
1190 	if (p->object != info->object ||
1191 	    info->object->generation != generation) {
1192 		info->error = 1;
1193 		vm_page_wakeup(p);
1194 		goto done;
1195 	}
1196 
1197 	/*
1198 	 * Before wasting time traversing the pmaps, check for trivial
1199 	 * cases where the page cannot be dirty.
1200 	 */
1201 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1202 		KKASSERT((p->dirty & p->valid) == 0);
1203 		vm_page_wakeup(p);
1204 		goto done;
1205 	}
1206 
1207 	/*
1208 	 * Check whether the page is dirty or not.  The page has been set
1209 	 * to be read-only so the check will not race a user dirtying the
1210 	 * page.
1211 	 */
1212 	vm_page_test_dirty(p);
1213 	if ((p->dirty & p->valid) == 0) {
1214 		vm_page_flag_clear(p, PG_CLEANCHK);
1215 		vm_page_wakeup(p);
1216 		goto done;
1217 	}
1218 
1219 	/*
1220 	 * If we have been asked to skip nosync pages and this is a
1221 	 * nosync page, skip it.  Note that the object flags were
1222 	 * not cleared in this case (because pass1 will have returned an
1223 	 * error), so we do not have to set them.
1224 	 */
1225 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1226 		vm_page_flag_clear(p, PG_CLEANCHK);
1227 		vm_page_wakeup(p);
1228 		goto done;
1229 	}
1230 
1231 	/*
1232 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1233 	 * the pages that get successfully flushed.  Set info->error if
1234 	 * we raced an object modification.
1235 	 */
1236 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1237 	vm_wait_nominal();
1238 done:
1239 	lwkt_yield();
1240 	return(0);
1241 }
1242 
1243 /*
1244  * Collect the specified page and nearby pages and flush them out.
1245  * The number of pages flushed is returned.  The passed page is busied
1246  * by the caller and we are responsible for its disposition.
1247  *
1248  * The caller must hold the object.
1249  */
1250 static void
1251 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1252 {
1253 	int runlen;
1254 	int error;
1255 	int maxf;
1256 	int chkb;
1257 	int maxb;
1258 	int i;
1259 	vm_pindex_t pi;
1260 	vm_page_t maf[vm_pageout_page_count];
1261 	vm_page_t mab[vm_pageout_page_count];
1262 	vm_page_t ma[vm_pageout_page_count];
1263 
1264 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1265 
1266 	pi = p->pindex;
1267 
1268 	maxf = 0;
1269 	for(i = 1; i < vm_pageout_page_count; i++) {
1270 		vm_page_t tp;
1271 
1272 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1273 		if (error)
1274 			break;
1275 		if (tp == NULL)
1276 			break;
1277 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1278 		    (tp->flags & PG_CLEANCHK) == 0) {
1279 			vm_page_wakeup(tp);
1280 			break;
1281 		}
1282 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1283 			vm_page_flag_clear(tp, PG_CLEANCHK);
1284 			vm_page_wakeup(tp);
1285 			break;
1286 		}
1287 		vm_page_test_dirty(tp);
1288 		if ((tp->dirty & tp->valid) == 0) {
1289 			vm_page_flag_clear(tp, PG_CLEANCHK);
1290 			vm_page_wakeup(tp);
1291 			break;
1292 		}
1293 		maf[i - 1] = tp;
1294 		maxf++;
1295 	}
1296 
1297 	maxb = 0;
1298 	chkb = vm_pageout_page_count -  maxf;
1299 	/*
1300 	 * NOTE: chkb can be 0
1301 	 */
1302 	for(i = 1; chkb && i < chkb; i++) {
1303 		vm_page_t tp;
1304 
1305 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1306 		if (error)
1307 			break;
1308 		if (tp == NULL)
1309 			break;
1310 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1311 		    (tp->flags & PG_CLEANCHK) == 0) {
1312 			vm_page_wakeup(tp);
1313 			break;
1314 		}
1315 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1316 			vm_page_flag_clear(tp, PG_CLEANCHK);
1317 			vm_page_wakeup(tp);
1318 			break;
1319 		}
1320 		vm_page_test_dirty(tp);
1321 		if ((tp->dirty & tp->valid) == 0) {
1322 			vm_page_flag_clear(tp, PG_CLEANCHK);
1323 			vm_page_wakeup(tp);
1324 			break;
1325 		}
1326 		mab[i - 1] = tp;
1327 		maxb++;
1328 	}
1329 
1330 	/*
1331 	 * All pages in the maf[] and mab[] array are busied.
1332 	 */
1333 	for (i = 0; i < maxb; i++) {
1334 		int index = (maxb - i) - 1;
1335 		ma[index] = mab[i];
1336 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1337 	}
1338 	vm_page_flag_clear(p, PG_CLEANCHK);
1339 	ma[maxb] = p;
1340 	for(i = 0; i < maxf; i++) {
1341 		int index = (maxb + i) + 1;
1342 		ma[index] = maf[i];
1343 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1344 	}
1345 	runlen = maxb + maxf + 1;
1346 
1347 	for (i = 0; i < runlen; i++)
1348 		vm_page_hold(ma[i]);
1349 
1350 	vm_pageout_flush(ma, runlen, pagerflags);
1351 
1352 	/*
1353 	 * WARNING: Related pages are still held but the BUSY was inherited
1354 	 *	    by the pageout I/O, so the pages might not be busy any
1355 	 *	    more.  We cannot re-protect the page without waiting
1356 	 *	    for the I/O to complete and then busying it again.
1357 	 */
1358 	for (i = 0; i < runlen; i++) {
1359 		if (ma[i]->valid & ma[i]->dirty) {
1360 			/*vm_page_protect(ma[i], VM_PROT_READ);*/
1361 			vm_page_flag_set(ma[i], PG_CLEANCHK);
1362 
1363 			/*
1364 			 * maxf will end up being the actual number of pages
1365 			 * we wrote out contiguously, non-inclusive of the
1366 			 * first page.  We do not count look-behind pages.
1367 			 */
1368 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1369 				maxf = i - maxb - 1;
1370 		}
1371 		vm_page_unhold(ma[i]);
1372 	}
1373 	/*return(maxf + 1);*/
1374 }
1375 
1376 /*
1377  * Same as vm_object_pmap_copy, except range checking really
1378  * works, and is meant for small sections of an object.
1379  *
1380  * This code protects resident pages by making them read-only
1381  * and is typically called on a fork or split when a page
1382  * is converted to copy-on-write.
1383  *
1384  * NOTE: If the page is already at VM_PROT_NONE, calling
1385  * vm_page_protect will have no effect.
1386  */
1387 void
1388 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1389 {
1390 	vm_pindex_t idx;
1391 	vm_page_t p;
1392 
1393 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1394 		return;
1395 
1396 	vm_object_hold(object);
1397 	for (idx = start; idx < end; idx++) {
1398 		p = vm_page_lookup(object, idx);
1399 		if (p == NULL)
1400 			continue;
1401 		vm_page_protect(p, VM_PROT_READ);
1402 	}
1403 	vm_object_drop(object);
1404 }
1405 
1406 /*
1407  * Removes all physical pages in the specified object range from all
1408  * physical maps.
1409  *
1410  * The object must *not* be locked.
1411  */
1412 
1413 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1414 
1415 void
1416 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1417 {
1418 	struct rb_vm_page_scan_info info;
1419 
1420 	if (object == NULL)
1421 		return;
1422 	info.start_pindex = start;
1423 	info.end_pindex = end - 1;
1424 
1425 	vm_object_hold(object);
1426 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1427 				vm_object_pmap_remove_callback, &info);
1428 	if (start == 0 && end == object->size)
1429 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1430 	vm_object_drop(object);
1431 }
1432 
1433 /*
1434  * The caller must hold the object
1435  */
1436 static int
1437 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1438 {
1439 	vm_page_protect(p, VM_PROT_NONE);
1440 	return(0);
1441 }
1442 
1443 /*
1444  * Implements the madvise function at the object/page level.
1445  *
1446  * MADV_WILLNEED	(any object)
1447  *
1448  *	Activate the specified pages if they are resident.
1449  *
1450  * MADV_DONTNEED	(any object)
1451  *
1452  *	Deactivate the specified pages if they are resident.
1453  *
1454  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1455  *
1456  *	Deactivate and clean the specified pages if they are
1457  *	resident.  This permits the process to reuse the pages
1458  *	without faulting or the kernel to reclaim the pages
1459  *	without I/O.
1460  *
1461  * No requirements.
1462  */
1463 void
1464 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1465 {
1466 	vm_pindex_t end, tpindex;
1467 	vm_object_t tobject;
1468 	vm_object_t xobj;
1469 	vm_page_t m;
1470 	int error;
1471 
1472 	if (object == NULL)
1473 		return;
1474 
1475 	end = pindex + count;
1476 
1477 	vm_object_hold(object);
1478 	tobject = object;
1479 
1480 	/*
1481 	 * Locate and adjust resident pages
1482 	 */
1483 	for (; pindex < end; pindex += 1) {
1484 relookup:
1485 		if (tobject != object)
1486 			vm_object_drop(tobject);
1487 		tobject = object;
1488 		tpindex = pindex;
1489 shadowlookup:
1490 		/*
1491 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1492 		 * and those pages must be OBJ_ONEMAPPING.
1493 		 */
1494 		if (advise == MADV_FREE) {
1495 			if ((tobject->type != OBJT_DEFAULT &&
1496 			     tobject->type != OBJT_SWAP) ||
1497 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1498 				continue;
1499 			}
1500 		}
1501 
1502 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1503 
1504 		if (error) {
1505 			vm_page_sleep_busy(m, TRUE, "madvpo");
1506 			goto relookup;
1507 		}
1508 		if (m == NULL) {
1509 			/*
1510 			 * There may be swap even if there is no backing page
1511 			 */
1512 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1513 				swap_pager_freespace(tobject, tpindex, 1);
1514 
1515 			/*
1516 			 * next object
1517 			 */
1518 			while ((xobj = tobject->backing_object) != NULL) {
1519 				KKASSERT(xobj != object);
1520 				vm_object_hold(xobj);
1521 				if (xobj == tobject->backing_object)
1522 					break;
1523 				vm_object_drop(xobj);
1524 			}
1525 			if (xobj == NULL)
1526 				continue;
1527 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1528 			if (tobject != object) {
1529 				vm_object_lock_swap();
1530 				vm_object_drop(tobject);
1531 			}
1532 			tobject = xobj;
1533 			goto shadowlookup;
1534 		}
1535 
1536 		/*
1537 		 * If the page is not in a normal active state, we skip it.
1538 		 * If the page is not managed there are no page queues to
1539 		 * mess with.  Things can break if we mess with pages in
1540 		 * any of the below states.
1541 		 */
1542 		if (m->wire_count ||
1543 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1544 		    m->valid != VM_PAGE_BITS_ALL
1545 		) {
1546 			vm_page_wakeup(m);
1547 			continue;
1548 		}
1549 
1550 		/*
1551 		 * Theoretically once a page is known not to be busy, an
1552 		 * interrupt cannot come along and rip it out from under us.
1553 		 */
1554 
1555 		if (advise == MADV_WILLNEED) {
1556 			vm_page_activate(m);
1557 		} else if (advise == MADV_DONTNEED) {
1558 			vm_page_dontneed(m);
1559 		} else if (advise == MADV_FREE) {
1560 			/*
1561 			 * Mark the page clean.  This will allow the page
1562 			 * to be freed up by the system.  However, such pages
1563 			 * are often reused quickly by malloc()/free()
1564 			 * so we do not do anything that would cause
1565 			 * a page fault if we can help it.
1566 			 *
1567 			 * Specifically, we do not try to actually free
1568 			 * the page now nor do we try to put it in the
1569 			 * cache (which would cause a page fault on reuse).
1570 			 *
1571 			 * But we do make the page is freeable as we
1572 			 * can without actually taking the step of unmapping
1573 			 * it.
1574 			 */
1575 			pmap_clear_modify(m);
1576 			m->dirty = 0;
1577 			m->act_count = 0;
1578 			vm_page_dontneed(m);
1579 			if (tobject->type == OBJT_SWAP)
1580 				swap_pager_freespace(tobject, tpindex, 1);
1581 		}
1582 		vm_page_wakeup(m);
1583 	}
1584 	if (tobject != object)
1585 		vm_object_drop(tobject);
1586 	vm_object_drop(object);
1587 }
1588 
1589 /*
1590  * Create a new object which is backed by the specified existing object
1591  * range.  Replace the pointer and offset that was pointing at the existing
1592  * object with the pointer/offset for the new object.
1593  *
1594  * No other requirements.
1595  */
1596 void
1597 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1598 		 int addref)
1599 {
1600 	vm_object_t source;
1601 	vm_object_t result;
1602 
1603 	source = *objectp;
1604 
1605 	/*
1606 	 * Don't create the new object if the old object isn't shared.
1607 	 * We have to chain wait before adding the reference to avoid
1608 	 * racing a collapse or deallocation.
1609 	 *
1610 	 * Add the additional ref to source here to avoid racing a later
1611 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1612 	 * addref is TRUE or not in this case because the original object
1613 	 * will be shadowed.
1614 	 */
1615 	if (source) {
1616 		vm_object_hold(source);
1617 		vm_object_chain_wait(source);
1618 		if (source->ref_count == 1 &&
1619 		    source->handle == NULL &&
1620 		    (source->type == OBJT_DEFAULT ||
1621 		     source->type == OBJT_SWAP)) {
1622 			vm_object_drop(source);
1623 			if (addref) {
1624 				vm_object_reference_locked(source);
1625 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1626 			}
1627 			return;
1628 		}
1629 		vm_object_reference_locked(source);
1630 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1631 	}
1632 
1633 	/*
1634 	 * Allocate a new object with the given length.  The new object
1635 	 * is returned referenced but we may have to add another one.
1636 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1637 	 * (typically because the caller is about to clone a vm_map_entry).
1638 	 *
1639 	 * The source object currently has an extra reference to prevent
1640 	 * collapses into it while we mess with its shadow list, which
1641 	 * we will remove later in this routine.
1642 	 */
1643 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1644 		panic("vm_object_shadow: no object for shadowing");
1645 	vm_object_hold(result);
1646 	if (addref) {
1647 		vm_object_reference_locked(result);
1648 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1649 	}
1650 
1651 	/*
1652 	 * The new object shadows the source object.  Chain wait before
1653 	 * adjusting shadow_count or the shadow list to avoid races.
1654 	 *
1655 	 * Try to optimize the result object's page color when shadowing
1656 	 * in order to maintain page coloring consistency in the combined
1657 	 * shadowed object.
1658 	 */
1659 	KKASSERT(result->backing_object == NULL);
1660 	result->backing_object = source;
1661 	if (source) {
1662 		vm_object_chain_wait(source);
1663 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1664 		source->shadow_count++;
1665 		source->generation++;
1666 #ifdef SMP
1667 		/* cpu localization twist */
1668 		result->pg_color = (int)(intptr_t)curthread;
1669 #else
1670 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1671 				   PQ_L2_MASK;
1672 #endif
1673 	}
1674 
1675 	/*
1676 	 * Adjust the return storage.  Drop the ref on source before
1677 	 * returning.
1678 	 */
1679 	result->backing_object_offset = *offset;
1680 	vm_object_drop(result);
1681 	*offset = 0;
1682 	if (source) {
1683 		vm_object_deallocate_locked(source);
1684 		vm_object_drop(source);
1685 	}
1686 
1687 	/*
1688 	 * Return the new things
1689 	 */
1690 	*objectp = result;
1691 }
1692 
1693 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1694 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1695 #define	OBSC_COLLAPSE_WAIT	0x0004
1696 
1697 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1698 
1699 /*
1700  * The caller must hold the object.
1701  */
1702 static __inline int
1703 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1704 {
1705 	struct rb_vm_page_scan_info info;
1706 
1707 	vm_object_assert_held(object);
1708 	vm_object_assert_held(backing_object);
1709 
1710 	KKASSERT(backing_object == object->backing_object);
1711 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1712 
1713 	/*
1714 	 * Initial conditions
1715 	 */
1716 	if (op & OBSC_TEST_ALL_SHADOWED) {
1717 		/*
1718 		 * We do not want to have to test for the existence of
1719 		 * swap pages in the backing object.  XXX but with the
1720 		 * new swapper this would be pretty easy to do.
1721 		 *
1722 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1723 		 * been ZFOD faulted yet?  If we do not test for this, the
1724 		 * shadow test may succeed! XXX
1725 		 */
1726 		if (backing_object->type != OBJT_DEFAULT)
1727 			return(0);
1728 	}
1729 	if (op & OBSC_COLLAPSE_WAIT) {
1730 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1731 		vm_object_set_flag(backing_object, OBJ_DEAD);
1732 		lwkt_gettoken(&vmobj_token);
1733 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1734 		vm_object_count--;
1735 		lwkt_reltoken(&vmobj_token);
1736 		vm_object_dead_wakeup(backing_object);
1737 	}
1738 
1739 	/*
1740 	 * Our scan.   We have to retry if a negative error code is returned,
1741 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1742 	 * the scan had to be stopped because the parent does not completely
1743 	 * shadow the child.
1744 	 */
1745 	info.object = object;
1746 	info.backing_object = backing_object;
1747 	info.limit = op;
1748 	do {
1749 		info.error = 1;
1750 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1751 					vm_object_backing_scan_callback,
1752 					&info);
1753 	} while (info.error < 0);
1754 
1755 	return(info.error);
1756 }
1757 
1758 /*
1759  * The caller must hold the object.
1760  */
1761 static int
1762 vm_object_backing_scan_callback(vm_page_t p, void *data)
1763 {
1764 	struct rb_vm_page_scan_info *info = data;
1765 	vm_object_t backing_object;
1766 	vm_object_t object;
1767 	vm_pindex_t pindex;
1768 	vm_pindex_t new_pindex;
1769 	vm_pindex_t backing_offset_index;
1770 	int op;
1771 
1772 	pindex = p->pindex;
1773 	new_pindex = pindex - info->backing_offset_index;
1774 	op = info->limit;
1775 	object = info->object;
1776 	backing_object = info->backing_object;
1777 	backing_offset_index = info->backing_offset_index;
1778 
1779 	if (op & OBSC_TEST_ALL_SHADOWED) {
1780 		vm_page_t pp;
1781 
1782 		/*
1783 		 * Ignore pages outside the parent object's range
1784 		 * and outside the parent object's mapping of the
1785 		 * backing object.
1786 		 *
1787 		 * note that we do not busy the backing object's
1788 		 * page.
1789 		 */
1790 		if (pindex < backing_offset_index ||
1791 		    new_pindex >= object->size
1792 		) {
1793 			return(0);
1794 		}
1795 
1796 		/*
1797 		 * See if the parent has the page or if the parent's
1798 		 * object pager has the page.  If the parent has the
1799 		 * page but the page is not valid, the parent's
1800 		 * object pager must have the page.
1801 		 *
1802 		 * If this fails, the parent does not completely shadow
1803 		 * the object and we might as well give up now.
1804 		 */
1805 		pp = vm_page_lookup(object, new_pindex);
1806 		if ((pp == NULL || pp->valid == 0) &&
1807 		    !vm_pager_has_page(object, new_pindex)
1808 		) {
1809 			info->error = 0;	/* problemo */
1810 			return(-1);		/* stop the scan */
1811 		}
1812 	}
1813 
1814 	/*
1815 	 * Check for busy page.  Note that we may have lost (p) when we
1816 	 * possibly blocked above.
1817 	 */
1818 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1819 		vm_page_t pp;
1820 
1821 		if (vm_page_busy_try(p, TRUE)) {
1822 			if (op & OBSC_COLLAPSE_NOWAIT) {
1823 				return(0);
1824 			} else {
1825 				/*
1826 				 * If we slept, anything could have
1827 				 * happened.   Ask that the scan be restarted.
1828 				 *
1829 				 * Since the object is marked dead, the
1830 				 * backing offset should not have changed.
1831 				 */
1832 				vm_page_sleep_busy(p, TRUE, "vmocol");
1833 				info->error = -1;
1834 				return(-1);
1835 			}
1836 		}
1837 
1838 		/*
1839 		 * If (p) is no longer valid restart the scan.
1840 		 */
1841 		if (p->object != backing_object || p->pindex != pindex) {
1842 			kprintf("vm_object_backing_scan: Warning: page "
1843 				"%p ripped out from under us\n", p);
1844 			vm_page_wakeup(p);
1845 			info->error = -1;
1846 			return(-1);
1847 		}
1848 
1849 		if (op & OBSC_COLLAPSE_NOWAIT) {
1850 			if (p->valid == 0 ||
1851 			    p->wire_count ||
1852 			    (p->flags & PG_NEED_COMMIT)) {
1853 				vm_page_wakeup(p);
1854 				return(0);
1855 			}
1856 		} else {
1857 			/* XXX what if p->valid == 0 , hold_count, etc? */
1858 		}
1859 
1860 		KASSERT(
1861 		    p->object == backing_object,
1862 		    ("vm_object_qcollapse(): object mismatch")
1863 		);
1864 
1865 		/*
1866 		 * Destroy any associated swap
1867 		 */
1868 		if (backing_object->type == OBJT_SWAP)
1869 			swap_pager_freespace(backing_object, p->pindex, 1);
1870 
1871 		if (
1872 		    p->pindex < backing_offset_index ||
1873 		    new_pindex >= object->size
1874 		) {
1875 			/*
1876 			 * Page is out of the parent object's range, we
1877 			 * can simply destroy it.
1878 			 */
1879 			vm_page_protect(p, VM_PROT_NONE);
1880 			vm_page_free(p);
1881 			return(0);
1882 		}
1883 
1884 		pp = vm_page_lookup(object, new_pindex);
1885 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1886 			/*
1887 			 * page already exists in parent OR swap exists
1888 			 * for this location in the parent.  Destroy
1889 			 * the original page from the backing object.
1890 			 *
1891 			 * Leave the parent's page alone
1892 			 */
1893 			vm_page_protect(p, VM_PROT_NONE);
1894 			vm_page_free(p);
1895 			return(0);
1896 		}
1897 
1898 		/*
1899 		 * Page does not exist in parent, rename the
1900 		 * page from the backing object to the main object.
1901 		 *
1902 		 * If the page was mapped to a process, it can remain
1903 		 * mapped through the rename.
1904 		 */
1905 		if ((p->queue - p->pc) == PQ_CACHE)
1906 			vm_page_deactivate(p);
1907 
1908 		vm_page_rename(p, object, new_pindex);
1909 		vm_page_wakeup(p);
1910 		/* page automatically made dirty by rename */
1911 	}
1912 	return(0);
1913 }
1914 
1915 /*
1916  * This version of collapse allows the operation to occur earlier and
1917  * when paging_in_progress is true for an object...  This is not a complete
1918  * operation, but should plug 99.9% of the rest of the leaks.
1919  *
1920  * The caller must hold the object and backing_object and both must be
1921  * chainlocked.
1922  *
1923  * (only called from vm_object_collapse)
1924  */
1925 static void
1926 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1927 {
1928 	if (backing_object->ref_count == 1) {
1929 		backing_object->ref_count += 2;
1930 		vm_object_backing_scan(object, backing_object,
1931 				       OBSC_COLLAPSE_NOWAIT);
1932 		backing_object->ref_count -= 2;
1933 	}
1934 }
1935 
1936 /*
1937  * Collapse an object with the object backing it.  Pages in the backing
1938  * object are moved into the parent, and the backing object is deallocated.
1939  * Any conflict is resolved in favor of the parent's existing pages.
1940  *
1941  * object must be held and chain-locked on call.
1942  *
1943  * The caller must have an extra ref on object to prevent a race from
1944  * destroying it during the collapse.
1945  */
1946 void
1947 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1948 {
1949 	struct vm_object_dealloc_list *dlist = NULL;
1950 	vm_object_t backing_object;
1951 
1952 	/*
1953 	 * Only one thread is attempting a collapse at any given moment.
1954 	 * There are few restrictions for (object) that callers of this
1955 	 * function check so reentrancy is likely.
1956 	 */
1957 	KKASSERT(object != NULL);
1958 	vm_object_assert_held(object);
1959 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1960 
1961 	for (;;) {
1962 		vm_object_t bbobj;
1963 		int dodealloc;
1964 
1965 		/*
1966 		 * We have to hold the backing object, check races.
1967 		 */
1968 		while ((backing_object = object->backing_object) != NULL) {
1969 			vm_object_hold(backing_object);
1970 			if (backing_object == object->backing_object)
1971 				break;
1972 			vm_object_drop(backing_object);
1973 		}
1974 
1975 		/*
1976 		 * No backing object?  Nothing to collapse then.
1977 		 */
1978 		if (backing_object == NULL)
1979 			break;
1980 
1981 		/*
1982 		 * You can't collapse with a non-default/non-swap object.
1983 		 */
1984 		if (backing_object->type != OBJT_DEFAULT &&
1985 		    backing_object->type != OBJT_SWAP) {
1986 			vm_object_drop(backing_object);
1987 			backing_object = NULL;
1988 			break;
1989 		}
1990 
1991 		/*
1992 		 * Chain-lock the backing object too because if we
1993 		 * successfully merge its pages into the top object we
1994 		 * will collapse backing_object->backing_object as the
1995 		 * new backing_object.  Re-check that it is still our
1996 		 * backing object.
1997 		 */
1998 		vm_object_chain_acquire(backing_object);
1999 		if (backing_object != object->backing_object) {
2000 			vm_object_chain_release(backing_object);
2001 			vm_object_drop(backing_object);
2002 			continue;
2003 		}
2004 
2005 		/*
2006 		 * we check the backing object first, because it is most likely
2007 		 * not collapsable.
2008 		 */
2009 		if (backing_object->handle != NULL ||
2010 		    (backing_object->type != OBJT_DEFAULT &&
2011 		     backing_object->type != OBJT_SWAP) ||
2012 		    (backing_object->flags & OBJ_DEAD) ||
2013 		    object->handle != NULL ||
2014 		    (object->type != OBJT_DEFAULT &&
2015 		     object->type != OBJT_SWAP) ||
2016 		    (object->flags & OBJ_DEAD)) {
2017 			break;
2018 		}
2019 
2020 		/*
2021 		 * If paging is in progress we can't do a normal collapse.
2022 		 */
2023 		if (
2024 		    object->paging_in_progress != 0 ||
2025 		    backing_object->paging_in_progress != 0
2026 		) {
2027 			vm_object_qcollapse(object, backing_object);
2028 			break;
2029 		}
2030 
2031 		/*
2032 		 * We know that we can either collapse the backing object (if
2033 		 * the parent is the only reference to it) or (perhaps) have
2034 		 * the parent bypass the object if the parent happens to shadow
2035 		 * all the resident pages in the entire backing object.
2036 		 *
2037 		 * This is ignoring pager-backed pages such as swap pages.
2038 		 * vm_object_backing_scan fails the shadowing test in this
2039 		 * case.
2040 		 */
2041 		if (backing_object->ref_count == 1) {
2042 			/*
2043 			 * If there is exactly one reference to the backing
2044 			 * object, we can collapse it into the parent.
2045 			 */
2046 			KKASSERT(object->backing_object == backing_object);
2047 			vm_object_backing_scan(object, backing_object,
2048 					       OBSC_COLLAPSE_WAIT);
2049 
2050 			/*
2051 			 * Move the pager from backing_object to object.
2052 			 */
2053 			if (backing_object->type == OBJT_SWAP) {
2054 				vm_object_pip_add(backing_object, 1);
2055 
2056 				/*
2057 				 * scrap the paging_offset junk and do a
2058 				 * discrete copy.  This also removes major
2059 				 * assumptions about how the swap-pager
2060 				 * works from where it doesn't belong.  The
2061 				 * new swapper is able to optimize the
2062 				 * destroy-source case.
2063 				 */
2064 				vm_object_pip_add(object, 1);
2065 				swap_pager_copy(backing_object, object,
2066 				    OFF_TO_IDX(object->backing_object_offset),
2067 				    TRUE);
2068 				vm_object_pip_wakeup(object);
2069 				vm_object_pip_wakeup(backing_object);
2070 			}
2071 
2072 			/*
2073 			 * Object now shadows whatever backing_object did.
2074 			 * Remove object from backing_object's shadow_list.
2075 			 */
2076 			LIST_REMOVE(object, shadow_list);
2077 			KKASSERT(object->backing_object == backing_object);
2078 			backing_object->shadow_count--;
2079 			backing_object->generation++;
2080 
2081 			/*
2082 			 * backing_object->backing_object moves from within
2083 			 * backing_object to within object.
2084 			 */
2085 			while ((bbobj = backing_object->backing_object) != NULL) {
2086 				vm_object_hold(bbobj);
2087 				if (bbobj == backing_object->backing_object)
2088 					break;
2089 				vm_object_drop(bbobj);
2090 			}
2091 			if (bbobj) {
2092 				LIST_REMOVE(backing_object, shadow_list);
2093 				bbobj->shadow_count--;
2094 				bbobj->generation++;
2095 				backing_object->backing_object = NULL;
2096 			}
2097 			object->backing_object = bbobj;
2098 			if (bbobj) {
2099 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2100 						 object, shadow_list);
2101 				bbobj->shadow_count++;
2102 				bbobj->generation++;
2103 			}
2104 
2105 			object->backing_object_offset +=
2106 				backing_object->backing_object_offset;
2107 
2108 			vm_object_drop(bbobj);
2109 
2110 			/*
2111 			 * Discard the old backing_object.  Nothing should be
2112 			 * able to ref it, other than a vm_map_split(),
2113 			 * and vm_map_split() will stall on our chain lock.
2114 			 * And we control the parent so it shouldn't be
2115 			 * possible for it to go away either.
2116 			 *
2117 			 * Since the backing object has no pages, no pager
2118 			 * left, and no object references within it, all
2119 			 * that is necessary is to dispose of it.
2120 			 */
2121 			KASSERT(backing_object->ref_count == 1,
2122 				("backing_object %p was somehow "
2123 				 "re-referenced during collapse!",
2124 				 backing_object));
2125 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2126 				("backing_object %p somehow has left "
2127 				 "over pages during collapse!",
2128 				 backing_object));
2129 
2130 			/*
2131 			 * The object can be destroyed.
2132 			 *
2133 			 * XXX just fall through and dodealloc instead
2134 			 *     of forcing destruction?
2135 			 */
2136 			--backing_object->ref_count;
2137 			if ((backing_object->flags & OBJ_DEAD) == 0)
2138 				vm_object_terminate(backing_object);
2139 			object_collapses++;
2140 			dodealloc = 0;
2141 		} else {
2142 			/*
2143 			 * If we do not entirely shadow the backing object,
2144 			 * there is nothing we can do so we give up.
2145 			 */
2146 			if (vm_object_backing_scan(object, backing_object,
2147 						OBSC_TEST_ALL_SHADOWED) == 0) {
2148 				break;
2149 			}
2150 
2151 			/*
2152 			 * bbobj is backing_object->backing_object.  Since
2153 			 * object completely shadows backing_object we can
2154 			 * bypass it and become backed by bbobj instead.
2155 			 */
2156 			while ((bbobj = backing_object->backing_object) != NULL) {
2157 				vm_object_hold(bbobj);
2158 				if (bbobj == backing_object->backing_object)
2159 					break;
2160 				vm_object_drop(bbobj);
2161 			}
2162 
2163 			/*
2164 			 * Make object shadow bbobj instead of backing_object.
2165 			 * Remove object from backing_object's shadow list.
2166 			 *
2167 			 * Deallocating backing_object will not remove
2168 			 * it, since its reference count is at least 2.
2169 			 */
2170 			KKASSERT(object->backing_object == backing_object);
2171 			LIST_REMOVE(object, shadow_list);
2172 			backing_object->shadow_count--;
2173 			backing_object->generation++;
2174 
2175 			/*
2176 			 * Add a ref to bbobj, bbobj now shadows object.
2177 			 *
2178 			 * NOTE: backing_object->backing_object still points
2179 			 *	 to bbobj.  That relationship remains intact
2180 			 *	 because backing_object has > 1 ref, so
2181 			 *	 someone else is pointing to it (hence why
2182 			 *	 we can't collapse it into object and can
2183 			 *	 only handle the all-shadowed bypass case).
2184 			 */
2185 			if (bbobj) {
2186 				vm_object_chain_wait(bbobj);
2187 				vm_object_reference_locked(bbobj);
2188 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2189 						 object, shadow_list);
2190 				bbobj->shadow_count++;
2191 				bbobj->generation++;
2192 				object->backing_object_offset +=
2193 					backing_object->backing_object_offset;
2194 				object->backing_object = bbobj;
2195 				vm_object_drop(bbobj);
2196 			} else {
2197 				object->backing_object = NULL;
2198 			}
2199 
2200 			/*
2201 			 * Drop the reference count on backing_object.  To
2202 			 * handle ref_count races properly we can't assume
2203 			 * that the ref_count is still at least 2 so we
2204 			 * have to actually call vm_object_deallocate()
2205 			 * (after clearing the chainlock).
2206 			 */
2207 			object_bypasses++;
2208 			dodealloc = 1;
2209 		}
2210 
2211 		/*
2212 		 * Ok, we want to loop on the new object->bbobj association,
2213 		 * possibly collapsing it further.  However if dodealloc is
2214 		 * non-zero we have to deallocate the backing_object which
2215 		 * itself can potentially undergo a collapse, creating a
2216 		 * recursion depth issue with the LWKT token subsystem.
2217 		 *
2218 		 * In the case where we must deallocate the backing_object
2219 		 * it is possible now that the backing_object has a single
2220 		 * shadow count on some other object (not represented here
2221 		 * as yet), since it no longer shadows us.  Thus when we
2222 		 * call vm_object_deallocate() it may attempt to collapse
2223 		 * itself into its remaining parent.
2224 		 */
2225 		if (dodealloc) {
2226 			struct vm_object_dealloc_list *dtmp;
2227 
2228 			vm_object_chain_release(backing_object);
2229 			vm_object_unlock(backing_object);
2230 			/* backing_object remains held */
2231 
2232 			/*
2233 			 * Auto-deallocation list for caller convenience.
2234 			 */
2235 			if (dlistp == NULL)
2236 				dlistp = &dlist;
2237 
2238 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2239 			dtmp->object = backing_object;
2240 			dtmp->next = *dlistp;
2241 			*dlistp = dtmp;
2242 		} else {
2243 			vm_object_chain_release(backing_object);
2244 			vm_object_drop(backing_object);
2245 		}
2246 		/* backing_object = NULL; not needed */
2247 		/* loop */
2248 	}
2249 
2250 	/*
2251 	 * Clean up any left over backing_object
2252 	 */
2253 	if (backing_object) {
2254 		vm_object_chain_release(backing_object);
2255 		vm_object_drop(backing_object);
2256 	}
2257 
2258 	/*
2259 	 * Clean up any auto-deallocation list.  This is a convenience
2260 	 * for top-level callers so they don't have to pass &dlist.
2261 	 * Do not clean up any caller-passed dlistp, the caller will
2262 	 * do that.
2263 	 */
2264 	if (dlist)
2265 		vm_object_deallocate_list(&dlist);
2266 
2267 }
2268 
2269 /*
2270  * vm_object_collapse() may collect additional objects in need of
2271  * deallocation.  This routine deallocates these objects.  The
2272  * deallocation itself can trigger additional collapses (which the
2273  * deallocate function takes care of).  This procedure is used to
2274  * reduce procedural recursion since these vm_object shadow chains
2275  * can become quite long.
2276  */
2277 void
2278 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2279 {
2280 	struct vm_object_dealloc_list *dlist;
2281 
2282 	while ((dlist = *dlistp) != NULL) {
2283 		*dlistp = dlist->next;
2284 		vm_object_lock(dlist->object);
2285 		vm_object_deallocate_locked(dlist->object);
2286 		vm_object_drop(dlist->object);
2287 		kfree(dlist, M_TEMP);
2288 	}
2289 }
2290 
2291 /*
2292  * Removes all physical pages in the specified object range from the
2293  * object's list of pages.
2294  *
2295  * No requirements.
2296  */
2297 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2298 
2299 void
2300 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2301 		      boolean_t clean_only)
2302 {
2303 	struct rb_vm_page_scan_info info;
2304 	int all;
2305 
2306 	/*
2307 	 * Degenerate cases and assertions
2308 	 */
2309 	vm_object_hold(object);
2310 	if (object == NULL ||
2311 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2312 		vm_object_drop(object);
2313 		return;
2314 	}
2315 	KASSERT(object->type != OBJT_PHYS,
2316 		("attempt to remove pages from a physical object"));
2317 
2318 	/*
2319 	 * Indicate that paging is occuring on the object
2320 	 */
2321 	vm_object_pip_add(object, 1);
2322 
2323 	/*
2324 	 * Figure out the actual removal range and whether we are removing
2325 	 * the entire contents of the object or not.  If removing the entire
2326 	 * contents, be sure to get all pages, even those that might be
2327 	 * beyond the end of the object.
2328 	 */
2329 	info.start_pindex = start;
2330 	if (end == 0)
2331 		info.end_pindex = (vm_pindex_t)-1;
2332 	else
2333 		info.end_pindex = end - 1;
2334 	info.limit = clean_only;
2335 	all = (start == 0 && info.end_pindex >= object->size - 1);
2336 
2337 	/*
2338 	 * Loop until we are sure we have gotten them all.
2339 	 */
2340 	do {
2341 		info.error = 0;
2342 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2343 					vm_object_page_remove_callback, &info);
2344 	} while (info.error);
2345 
2346 	/*
2347 	 * Remove any related swap if throwing away pages, or for
2348 	 * non-swap objects (the swap is a clean copy in that case).
2349 	 */
2350 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2351 		if (all)
2352 			swap_pager_freespace_all(object);
2353 		else
2354 			swap_pager_freespace(object, info.start_pindex,
2355 			     info.end_pindex - info.start_pindex + 1);
2356 	}
2357 
2358 	/*
2359 	 * Cleanup
2360 	 */
2361 	vm_object_pip_wakeup(object);
2362 	vm_object_drop(object);
2363 }
2364 
2365 /*
2366  * The caller must hold the object
2367  */
2368 static int
2369 vm_object_page_remove_callback(vm_page_t p, void *data)
2370 {
2371 	struct rb_vm_page_scan_info *info = data;
2372 
2373 	if (vm_page_busy_try(p, TRUE)) {
2374 		vm_page_sleep_busy(p, TRUE, "vmopar");
2375 		info->error = 1;
2376 		return(0);
2377 	}
2378 
2379 	/*
2380 	 * Wired pages cannot be destroyed, but they can be invalidated
2381 	 * and we do so if clean_only (limit) is not set.
2382 	 *
2383 	 * WARNING!  The page may be wired due to being part of a buffer
2384 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2385 	 *	     This is fine as part of a truncation but VFSs must be
2386 	 *	     sure to fix the buffer up when re-extending the file.
2387 	 *
2388 	 * NOTE!     PG_NEED_COMMIT is ignored.
2389 	 */
2390 	if (p->wire_count != 0) {
2391 		vm_page_protect(p, VM_PROT_NONE);
2392 		if (info->limit == 0)
2393 			p->valid = 0;
2394 		vm_page_wakeup(p);
2395 		return(0);
2396 	}
2397 
2398 	/*
2399 	 * limit is our clean_only flag.  If set and the page is dirty, do
2400 	 * not free it.  If set and the page is being held by someone, do
2401 	 * not free it.
2402 	 */
2403 	if (info->limit && p->valid) {
2404 		vm_page_test_dirty(p);
2405 		if (p->valid & p->dirty) {
2406 			vm_page_wakeup(p);
2407 			return(0);
2408 		}
2409 #if 0
2410 		if (p->hold_count) {
2411 			vm_page_wakeup(p);
2412 			return(0);
2413 		}
2414 #endif
2415 	}
2416 
2417 	/*
2418 	 * Destroy the page
2419 	 */
2420 	vm_page_protect(p, VM_PROT_NONE);
2421 	vm_page_free(p);
2422 	return(0);
2423 }
2424 
2425 /*
2426  * Coalesces two objects backing up adjoining regions of memory into a
2427  * single object.
2428  *
2429  * returns TRUE if objects were combined.
2430  *
2431  * NOTE: Only works at the moment if the second object is NULL -
2432  *	 if it's not, which object do we lock first?
2433  *
2434  * Parameters:
2435  *	prev_object	First object to coalesce
2436  *	prev_offset	Offset into prev_object
2437  *	next_object	Second object into coalesce
2438  *	next_offset	Offset into next_object
2439  *
2440  *	prev_size	Size of reference to prev_object
2441  *	next_size	Size of reference to next_object
2442  *
2443  * The caller does not need to hold (prev_object) but must have a stable
2444  * pointer to it (typically by holding the vm_map locked).
2445  */
2446 boolean_t
2447 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2448 		   vm_size_t prev_size, vm_size_t next_size)
2449 {
2450 	vm_pindex_t next_pindex;
2451 
2452 	if (prev_object == NULL)
2453 		return (TRUE);
2454 
2455 	vm_object_hold(prev_object);
2456 
2457 	if (prev_object->type != OBJT_DEFAULT &&
2458 	    prev_object->type != OBJT_SWAP) {
2459 		vm_object_drop(prev_object);
2460 		return (FALSE);
2461 	}
2462 
2463 	/*
2464 	 * Try to collapse the object first
2465 	 */
2466 	vm_object_chain_acquire(prev_object);
2467 	vm_object_collapse(prev_object, NULL);
2468 
2469 	/*
2470 	 * Can't coalesce if: . more than one reference . paged out . shadows
2471 	 * another object . has a copy elsewhere (any of which mean that the
2472 	 * pages not mapped to prev_entry may be in use anyway)
2473 	 */
2474 
2475 	if (prev_object->backing_object != NULL) {
2476 		vm_object_chain_release(prev_object);
2477 		vm_object_drop(prev_object);
2478 		return (FALSE);
2479 	}
2480 
2481 	prev_size >>= PAGE_SHIFT;
2482 	next_size >>= PAGE_SHIFT;
2483 	next_pindex = prev_pindex + prev_size;
2484 
2485 	if ((prev_object->ref_count > 1) &&
2486 	    (prev_object->size != next_pindex)) {
2487 		vm_object_chain_release(prev_object);
2488 		vm_object_drop(prev_object);
2489 		return (FALSE);
2490 	}
2491 
2492 	/*
2493 	 * Remove any pages that may still be in the object from a previous
2494 	 * deallocation.
2495 	 */
2496 	if (next_pindex < prev_object->size) {
2497 		vm_object_page_remove(prev_object,
2498 				      next_pindex,
2499 				      next_pindex + next_size, FALSE);
2500 		if (prev_object->type == OBJT_SWAP)
2501 			swap_pager_freespace(prev_object,
2502 					     next_pindex, next_size);
2503 	}
2504 
2505 	/*
2506 	 * Extend the object if necessary.
2507 	 */
2508 	if (next_pindex + next_size > prev_object->size)
2509 		prev_object->size = next_pindex + next_size;
2510 
2511 	vm_object_chain_release(prev_object);
2512 	vm_object_drop(prev_object);
2513 	return (TRUE);
2514 }
2515 
2516 /*
2517  * Make the object writable and flag is being possibly dirty.
2518  *
2519  * The caller must hold the object. XXX called from vm_page_dirty(),
2520  * There is currently no requirement to hold the object.
2521  */
2522 void
2523 vm_object_set_writeable_dirty(vm_object_t object)
2524 {
2525 	struct vnode *vp;
2526 
2527 	/*vm_object_assert_held(object);*/
2528 	/*
2529 	 * Avoid contention in vm fault path by checking the state before
2530 	 * issuing an atomic op on it.
2531 	 */
2532 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2533 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2534 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2535 	}
2536 	if (object->type == OBJT_VNODE &&
2537 	    (vp = (struct vnode *)object->handle) != NULL) {
2538 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2539 			vsetflags(vp, VOBJDIRTY);
2540 		}
2541 	}
2542 }
2543 
2544 #include "opt_ddb.h"
2545 #ifdef DDB
2546 #include <sys/kernel.h>
2547 
2548 #include <sys/cons.h>
2549 
2550 #include <ddb/ddb.h>
2551 
2552 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2553 				       vm_map_entry_t entry);
2554 static int	vm_object_in_map (vm_object_t object);
2555 
2556 /*
2557  * The caller must hold the object.
2558  */
2559 static int
2560 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2561 {
2562 	vm_map_t tmpm;
2563 	vm_map_entry_t tmpe;
2564 	vm_object_t obj, nobj;
2565 	int entcount;
2566 
2567 	if (map == 0)
2568 		return 0;
2569 	if (entry == 0) {
2570 		tmpe = map->header.next;
2571 		entcount = map->nentries;
2572 		while (entcount-- && (tmpe != &map->header)) {
2573 			if( _vm_object_in_map(map, object, tmpe)) {
2574 				return 1;
2575 			}
2576 			tmpe = tmpe->next;
2577 		}
2578 		return (0);
2579 	}
2580 	switch(entry->maptype) {
2581 	case VM_MAPTYPE_SUBMAP:
2582 		tmpm = entry->object.sub_map;
2583 		tmpe = tmpm->header.next;
2584 		entcount = tmpm->nentries;
2585 		while (entcount-- && tmpe != &tmpm->header) {
2586 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2587 				return 1;
2588 			}
2589 			tmpe = tmpe->next;
2590 		}
2591 		break;
2592 	case VM_MAPTYPE_NORMAL:
2593 	case VM_MAPTYPE_VPAGETABLE:
2594 		obj = entry->object.vm_object;
2595 		while (obj) {
2596 			if (obj == object) {
2597 				if (obj != entry->object.vm_object)
2598 					vm_object_drop(obj);
2599 				return 1;
2600 			}
2601 			while ((nobj = obj->backing_object) != NULL) {
2602 				vm_object_hold(nobj);
2603 				if (nobj == obj->backing_object)
2604 					break;
2605 				vm_object_drop(nobj);
2606 			}
2607 			if (obj != entry->object.vm_object) {
2608 				if (nobj)
2609 					vm_object_lock_swap();
2610 				vm_object_drop(obj);
2611 			}
2612 			obj = nobj;
2613 		}
2614 		break;
2615 	default:
2616 		break;
2617 	}
2618 	return 0;
2619 }
2620 
2621 static int vm_object_in_map_callback(struct proc *p, void *data);
2622 
2623 struct vm_object_in_map_info {
2624 	vm_object_t object;
2625 	int rv;
2626 };
2627 
2628 /*
2629  * Debugging only
2630  */
2631 static int
2632 vm_object_in_map(vm_object_t object)
2633 {
2634 	struct vm_object_in_map_info info;
2635 
2636 	info.rv = 0;
2637 	info.object = object;
2638 
2639 	allproc_scan(vm_object_in_map_callback, &info);
2640 	if (info.rv)
2641 		return 1;
2642 	if( _vm_object_in_map(&kernel_map, object, 0))
2643 		return 1;
2644 	if( _vm_object_in_map(&pager_map, object, 0))
2645 		return 1;
2646 	if( _vm_object_in_map(&buffer_map, object, 0))
2647 		return 1;
2648 	return 0;
2649 }
2650 
2651 /*
2652  * Debugging only
2653  */
2654 static int
2655 vm_object_in_map_callback(struct proc *p, void *data)
2656 {
2657 	struct vm_object_in_map_info *info = data;
2658 
2659 	if (p->p_vmspace) {
2660 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2661 			info->rv = 1;
2662 			return -1;
2663 		}
2664 	}
2665 	return (0);
2666 }
2667 
2668 DB_SHOW_COMMAND(vmochk, vm_object_check)
2669 {
2670 	vm_object_t object;
2671 
2672 	/*
2673 	 * make sure that internal objs are in a map somewhere
2674 	 * and none have zero ref counts.
2675 	 */
2676 	for (object = TAILQ_FIRST(&vm_object_list);
2677 			object != NULL;
2678 			object = TAILQ_NEXT(object, object_list)) {
2679 		if (object->type == OBJT_MARKER)
2680 			continue;
2681 		if (object->handle == NULL &&
2682 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2683 			if (object->ref_count == 0) {
2684 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2685 					(long)object->size);
2686 			}
2687 			if (!vm_object_in_map(object)) {
2688 				db_printf(
2689 			"vmochk: internal obj is not in a map: "
2690 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2691 				    object->ref_count, (u_long)object->size,
2692 				    (u_long)object->size,
2693 				    (void *)object->backing_object);
2694 			}
2695 		}
2696 	}
2697 }
2698 
2699 /*
2700  * Debugging only
2701  */
2702 DB_SHOW_COMMAND(object, vm_object_print_static)
2703 {
2704 	/* XXX convert args. */
2705 	vm_object_t object = (vm_object_t)addr;
2706 	boolean_t full = have_addr;
2707 
2708 	vm_page_t p;
2709 
2710 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2711 #define	count	was_count
2712 
2713 	int count;
2714 
2715 	if (object == NULL)
2716 		return;
2717 
2718 	db_iprintf(
2719 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2720 	    object, (int)object->type, (u_long)object->size,
2721 	    object->resident_page_count, object->ref_count, object->flags);
2722 	/*
2723 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2724 	 */
2725 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2726 	    object->shadow_count,
2727 	    object->backing_object ? object->backing_object->ref_count : 0,
2728 	    object->backing_object, (long)object->backing_object_offset);
2729 
2730 	if (!full)
2731 		return;
2732 
2733 	db_indent += 2;
2734 	count = 0;
2735 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2736 		if (count == 0)
2737 			db_iprintf("memory:=");
2738 		else if (count == 6) {
2739 			db_printf("\n");
2740 			db_iprintf(" ...");
2741 			count = 0;
2742 		} else
2743 			db_printf(",");
2744 		count++;
2745 
2746 		db_printf("(off=0x%lx,page=0x%lx)",
2747 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2748 	}
2749 	if (count != 0)
2750 		db_printf("\n");
2751 	db_indent -= 2;
2752 }
2753 
2754 /* XXX. */
2755 #undef count
2756 
2757 /*
2758  * XXX need this non-static entry for calling from vm_map_print.
2759  *
2760  * Debugging only
2761  */
2762 void
2763 vm_object_print(/* db_expr_t */ long addr,
2764 		boolean_t have_addr,
2765 		/* db_expr_t */ long count,
2766 		char *modif)
2767 {
2768 	vm_object_print_static(addr, have_addr, count, modif);
2769 }
2770 
2771 /*
2772  * Debugging only
2773  */
2774 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2775 {
2776 	vm_object_t object;
2777 	int nl = 0;
2778 	int c;
2779 	for (object = TAILQ_FIRST(&vm_object_list);
2780 			object != NULL;
2781 			object = TAILQ_NEXT(object, object_list)) {
2782 		vm_pindex_t idx, fidx;
2783 		vm_pindex_t osize;
2784 		vm_paddr_t pa = -1, padiff;
2785 		int rcount;
2786 		vm_page_t m;
2787 
2788 		if (object->type == OBJT_MARKER)
2789 			continue;
2790 		db_printf("new object: %p\n", (void *)object);
2791 		if ( nl > 18) {
2792 			c = cngetc();
2793 			if (c != ' ')
2794 				return;
2795 			nl = 0;
2796 		}
2797 		nl++;
2798 		rcount = 0;
2799 		fidx = 0;
2800 		osize = object->size;
2801 		if (osize > 128)
2802 			osize = 128;
2803 		for (idx = 0; idx < osize; idx++) {
2804 			m = vm_page_lookup(object, idx);
2805 			if (m == NULL) {
2806 				if (rcount) {
2807 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2808 						(long)fidx, rcount, (long)pa);
2809 					if ( nl > 18) {
2810 						c = cngetc();
2811 						if (c != ' ')
2812 							return;
2813 						nl = 0;
2814 					}
2815 					nl++;
2816 					rcount = 0;
2817 				}
2818 				continue;
2819 			}
2820 
2821 
2822 			if (rcount &&
2823 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2824 				++rcount;
2825 				continue;
2826 			}
2827 			if (rcount) {
2828 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2829 				padiff >>= PAGE_SHIFT;
2830 				padiff &= PQ_L2_MASK;
2831 				if (padiff == 0) {
2832 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2833 					++rcount;
2834 					continue;
2835 				}
2836 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2837 					(long)fidx, rcount, (long)pa);
2838 				db_printf("pd(%ld)\n", (long)padiff);
2839 				if ( nl > 18) {
2840 					c = cngetc();
2841 					if (c != ' ')
2842 						return;
2843 					nl = 0;
2844 				}
2845 				nl++;
2846 			}
2847 			fidx = idx;
2848 			pa = VM_PAGE_TO_PHYS(m);
2849 			rcount = 1;
2850 		}
2851 		if (rcount) {
2852 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2853 				(long)fidx, rcount, (long)pa);
2854 			if ( nl > 18) {
2855 				c = cngetc();
2856 				if (c != ' ')
2857 					return;
2858 				nl = 0;
2859 			}
2860 			nl++;
2861 		}
2862 	}
2863 }
2864 #endif /* DDB */
2865