xref: /dflybsd-src/sys/vm/vm_object.c (revision b08327b74ec33fb870bb54bf3841dae1c4932a12)
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #include <machine/specialreg.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 
105 /*
106  *	Virtual memory objects maintain the actual data
107  *	associated with allocated virtual memory.  A given
108  *	page of memory exists within exactly one object.
109  *
110  *	An object is only deallocated when all "references"
111  *	are given up.  Only one "reference" to a given
112  *	region of an object should be writeable.
113  *
114  *	Associated with each object is a list of all resident
115  *	memory pages belonging to that object; this list is
116  *	maintained by the "vm_page" module, and locked by the object's
117  *	lock.
118  *
119  *	Each object also records a "pager" routine which is
120  *	used to retrieve (and store) pages to the proper backing
121  *	storage.  In addition, objects may be backed by other
122  *	objects from which they were virtual-copied.
123  *
124  *	The only items within the object structure which are
125  *	modified after time of creation are:
126  *		reference count		locked by object's lock
127  *		pager routine		locked by object's lock
128  *
129  */
130 
131 struct vm_object kernel_object;
132 
133 static long vm_object_count;
134 
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 #define VM_OBJECTS_INIT 256
141 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 
143 struct object_q vm_object_lists[VMOBJ_HSIZE];
144 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
145 
146 /*
147  * Misc low level routines
148  */
149 static void
150 vm_object_lock_init(vm_object_t obj)
151 {
152 #if defined(DEBUG_LOCKS)
153 	int i;
154 
155 	obj->debug_hold_bitmap = 0;
156 	obj->debug_hold_ovfl = 0;
157 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
158 		obj->debug_hold_thrs[i] = NULL;
159 		obj->debug_hold_file[i] = NULL;
160 		obj->debug_hold_line[i] = 0;
161 	}
162 #endif
163 }
164 
165 void
166 vm_object_lock_swap(void)
167 {
168 	lwkt_token_swap();
169 }
170 
171 void
172 vm_object_lock(vm_object_t obj)
173 {
174 	lwkt_gettoken(&obj->token);
175 }
176 
177 /*
178  * Returns TRUE on sucesss
179  */
180 static int
181 vm_object_lock_try(vm_object_t obj)
182 {
183 	return(lwkt_trytoken(&obj->token));
184 }
185 
186 void
187 vm_object_lock_shared(vm_object_t obj)
188 {
189 	lwkt_gettoken_shared(&obj->token);
190 }
191 
192 void
193 vm_object_unlock(vm_object_t obj)
194 {
195 	lwkt_reltoken(&obj->token);
196 }
197 
198 void
199 vm_object_upgrade(vm_object_t obj)
200 {
201 	lwkt_reltoken(&obj->token);
202 	lwkt_gettoken(&obj->token);
203 }
204 
205 void
206 vm_object_downgrade(vm_object_t obj)
207 {
208 	lwkt_reltoken(&obj->token);
209 	lwkt_gettoken_shared(&obj->token);
210 }
211 
212 static __inline void
213 vm_object_assert_held(vm_object_t obj)
214 {
215 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
216 }
217 
218 void
219 #ifndef DEBUG_LOCKS
220 vm_object_hold(vm_object_t obj)
221 #else
222 debugvm_object_hold(vm_object_t obj, char *file, int line)
223 #endif
224 {
225 	KKASSERT(obj != NULL);
226 
227 	/*
228 	 * Object must be held (object allocation is stable due to callers
229 	 * context, typically already holding the token on a parent object)
230 	 * prior to potentially blocking on the lock, otherwise the object
231 	 * can get ripped away from us.
232 	 */
233 	refcount_acquire(&obj->hold_count);
234 	vm_object_lock(obj);
235 
236 #if defined(DEBUG_LOCKS)
237 	int i;
238 	u_int mask;
239 
240 	for (;;) {
241 		mask = ~obj->debug_hold_bitmap;
242 		cpu_ccfence();
243 		if (mask == 0xFFFFFFFFU) {
244 			if (obj->debug_hold_ovfl == 0)
245 				obj->debug_hold_ovfl = 1;
246 			break;
247 		}
248 		i = ffs(mask) - 1;
249 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
250 				      ~mask | (1 << i))) {
251 			obj->debug_hold_bitmap |= (1 << i);
252 			obj->debug_hold_thrs[i] = curthread;
253 			obj->debug_hold_file[i] = file;
254 			obj->debug_hold_line[i] = line;
255 			break;
256 		}
257 	}
258 #endif
259 }
260 
261 int
262 #ifndef DEBUG_LOCKS
263 vm_object_hold_try(vm_object_t obj)
264 #else
265 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
266 #endif
267 {
268 	KKASSERT(obj != NULL);
269 
270 	/*
271 	 * Object must be held (object allocation is stable due to callers
272 	 * context, typically already holding the token on a parent object)
273 	 * prior to potentially blocking on the lock, otherwise the object
274 	 * can get ripped away from us.
275 	 */
276 	refcount_acquire(&obj->hold_count);
277 	if (vm_object_lock_try(obj) == 0) {
278 		if (refcount_release(&obj->hold_count)) {
279 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
280 				zfree(obj_zone, obj);
281 		}
282 		return(0);
283 	}
284 
285 #if defined(DEBUG_LOCKS)
286 	int i;
287 	u_int mask;
288 
289 	for (;;) {
290 		mask = ~obj->debug_hold_bitmap;
291 		cpu_ccfence();
292 		if (mask == 0xFFFFFFFFU) {
293 			if (obj->debug_hold_ovfl == 0)
294 				obj->debug_hold_ovfl = 1;
295 			break;
296 		}
297 		i = ffs(mask) - 1;
298 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
299 				      ~mask | (1 << i))) {
300 			obj->debug_hold_bitmap |= (1 << i);
301 			obj->debug_hold_thrs[i] = curthread;
302 			obj->debug_hold_file[i] = file;
303 			obj->debug_hold_line[i] = line;
304 			break;
305 		}
306 	}
307 #endif
308 	return(1);
309 }
310 
311 void
312 #ifndef DEBUG_LOCKS
313 vm_object_hold_shared(vm_object_t obj)
314 #else
315 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
316 #endif
317 {
318 	KKASSERT(obj != NULL);
319 
320 	/*
321 	 * Object must be held (object allocation is stable due to callers
322 	 * context, typically already holding the token on a parent object)
323 	 * prior to potentially blocking on the lock, otherwise the object
324 	 * can get ripped away from us.
325 	 */
326 	refcount_acquire(&obj->hold_count);
327 	vm_object_lock_shared(obj);
328 
329 #if defined(DEBUG_LOCKS)
330 	int i;
331 	u_int mask;
332 
333 	for (;;) {
334 		mask = ~obj->debug_hold_bitmap;
335 		cpu_ccfence();
336 		if (mask == 0xFFFFFFFFU) {
337 			if (obj->debug_hold_ovfl == 0)
338 				obj->debug_hold_ovfl = 1;
339 			break;
340 		}
341 		i = ffs(mask) - 1;
342 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
343 				      ~mask | (1 << i))) {
344 			obj->debug_hold_bitmap |= (1 << i);
345 			obj->debug_hold_thrs[i] = curthread;
346 			obj->debug_hold_file[i] = file;
347 			obj->debug_hold_line[i] = line;
348 			break;
349 		}
350 	}
351 #endif
352 }
353 
354 /*
355  * Drop the token and hold_count on the object.
356  *
357  * WARNING! Token might be shared.
358  */
359 void
360 vm_object_drop(vm_object_t obj)
361 {
362 	if (obj == NULL)
363 		return;
364 
365 #if defined(DEBUG_LOCKS)
366 	int found = 0;
367 	int i;
368 
369 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
370 		if ((obj->debug_hold_bitmap & (1 << i)) &&
371 		    (obj->debug_hold_thrs[i] == curthread)) {
372 			obj->debug_hold_bitmap &= ~(1 << i);
373 			obj->debug_hold_thrs[i] = NULL;
374 			obj->debug_hold_file[i] = NULL;
375 			obj->debug_hold_line[i] = 0;
376 			found = 1;
377 			break;
378 		}
379 	}
380 
381 	if (found == 0 && obj->debug_hold_ovfl == 0)
382 		panic("vm_object: attempt to drop hold on non-self-held obj");
383 #endif
384 
385 	/*
386 	 * No new holders should be possible once we drop hold_count 1->0 as
387 	 * there is no longer any way to reference the object.
388 	 */
389 	KKASSERT(obj->hold_count > 0);
390 	if (refcount_release(&obj->hold_count)) {
391 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
392 			vm_object_unlock(obj);
393 			zfree(obj_zone, obj);
394 		} else {
395 			vm_object_unlock(obj);
396 		}
397 	} else {
398 		vm_object_unlock(obj);
399 	}
400 }
401 
402 /*
403  * Initialize a freshly allocated object, returning a held object.
404  *
405  * Used only by vm_object_allocate() and zinitna().
406  *
407  * No requirements.
408  */
409 void
410 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
411 {
412 	int incr;
413 	int n;
414 
415 	RB_INIT(&object->rb_memq);
416 	LIST_INIT(&object->shadow_head);
417 	lwkt_token_init(&object->token, "vmobj");
418 
419 	object->type = type;
420 	object->size = size;
421 	object->ref_count = 1;
422 	object->memattr = VM_MEMATTR_DEFAULT;
423 	object->hold_count = 0;
424 	object->flags = 0;
425 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
426 		vm_object_set_flag(object, OBJ_ONEMAPPING);
427 	object->paging_in_progress = 0;
428 	object->resident_page_count = 0;
429 	object->agg_pv_list_count = 0;
430 	object->shadow_count = 0;
431 	/* cpu localization twist */
432 	object->pg_color = (int)(intptr_t)curthread;
433 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
434 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
435 	else
436 		incr = size;
437 	next_index = (next_index + incr) & PQ_L2_MASK;
438 	object->handle = NULL;
439 	object->backing_object = NULL;
440 	object->backing_object_offset = (vm_ooffset_t)0;
441 
442 	object->generation++;
443 	object->swblock_count = 0;
444 	RB_INIT(&object->swblock_root);
445 	vm_object_lock_init(object);
446 	pmap_object_init(object);
447 
448 	vm_object_hold(object);
449 
450 	n = VMOBJ_HASH(object);
451 	atomic_add_long(&vm_object_count, 1);
452 	lwkt_gettoken(&vmobj_tokens[n]);
453 	TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
454 	lwkt_reltoken(&vmobj_tokens[n]);
455 }
456 
457 /*
458  * Initialize the VM objects module.
459  *
460  * Called from the low level boot code only.
461  */
462 void
463 vm_object_init(void)
464 {
465 	int i;
466 
467 	for (i = 0; i < VMOBJ_HSIZE; ++i) {
468 		TAILQ_INIT(&vm_object_lists[i]);
469 		lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
470 	}
471 
472 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
473 			    &kernel_object);
474 	vm_object_drop(&kernel_object);
475 
476 	obj_zone = &obj_zone_store;
477 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
478 		vm_objects_init, VM_OBJECTS_INIT);
479 }
480 
481 void
482 vm_object_init2(void)
483 {
484 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
485 }
486 
487 /*
488  * Allocate and return a new object of the specified type and size.
489  *
490  * No requirements.
491  */
492 vm_object_t
493 vm_object_allocate(objtype_t type, vm_pindex_t size)
494 {
495 	vm_object_t result;
496 
497 	result = (vm_object_t) zalloc(obj_zone);
498 
499 	_vm_object_allocate(type, size, result);
500 	vm_object_drop(result);
501 
502 	return (result);
503 }
504 
505 /*
506  * This version returns a held object, allowing further atomic initialization
507  * of the object.
508  */
509 vm_object_t
510 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
511 {
512 	vm_object_t result;
513 
514 	result = (vm_object_t) zalloc(obj_zone);
515 
516 	_vm_object_allocate(type, size, result);
517 
518 	return (result);
519 }
520 
521 /*
522  * Add an additional reference to a vm_object.  The object must already be
523  * held.  The original non-lock version is no longer supported.  The object
524  * must NOT be chain locked by anyone at the time the reference is added.
525  *
526  * Referencing a chain-locked object can blow up the fairly sensitive
527  * ref_count and shadow_count tests in the deallocator.  Most callers
528  * will call vm_object_chain_wait() prior to calling
529  * vm_object_reference_locked() to avoid the case.
530  *
531  * The object must be held, but may be held shared if desired (hence why
532  * we use an atomic op).
533  */
534 void
535 vm_object_reference_locked(vm_object_t object)
536 {
537 	KKASSERT(object != NULL);
538 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
539 	KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
540 	atomic_add_int(&object->ref_count, 1);
541 	if (object->type == OBJT_VNODE) {
542 		vref(object->handle);
543 		/* XXX what if the vnode is being destroyed? */
544 	}
545 }
546 
547 /*
548  * This version is only allowed for vnode objects.
549  */
550 void
551 vm_object_reference_quick(vm_object_t object)
552 {
553 	KKASSERT(object->type == OBJT_VNODE);
554 	atomic_add_int(&object->ref_count, 1);
555 	vref(object->handle);
556 }
557 
558 /*
559  * Object OBJ_CHAINLOCK lock handling.
560  *
561  * The caller can chain-lock backing objects recursively and then
562  * use vm_object_chain_release_all() to undo the whole chain.
563  *
564  * Chain locks are used to prevent collapses and are only applicable
565  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
566  * on other object types are ignored.  This is also important because
567  * it allows e.g. the vnode underlying a memory mapping to take concurrent
568  * faults.
569  *
570  * The object must usually be held on entry, though intermediate
571  * objects need not be held on release.  The object must be held exclusively,
572  * NOT shared.  Note that the prefault path checks the shared state and
573  * avoids using the chain functions.
574  */
575 void
576 vm_object_chain_wait(vm_object_t object, int shared)
577 {
578 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
579 	for (;;) {
580 		uint32_t chainlk = object->chainlk;
581 
582 		cpu_ccfence();
583 		if (shared) {
584 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
585 				tsleep_interlock(object, 0);
586 				if (atomic_cmpset_int(&object->chainlk,
587 						      chainlk,
588 						      chainlk | CHAINLK_WAIT)) {
589 					tsleep(object, PINTERLOCKED,
590 					       "objchns", 0);
591 				}
592 				/* retry */
593 			} else {
594 				break;
595 			}
596 			/* retry */
597 		} else {
598 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
599 				tsleep_interlock(object, 0);
600 				if (atomic_cmpset_int(&object->chainlk,
601 						      chainlk,
602 						      chainlk | CHAINLK_WAIT))
603 				{
604 					tsleep(object, PINTERLOCKED,
605 					       "objchnx", 0);
606 				}
607 				/* retry */
608 			} else {
609 				if (atomic_cmpset_int(&object->chainlk,
610 						      chainlk,
611 						      chainlk & ~CHAINLK_WAIT))
612 				{
613 					if (chainlk & CHAINLK_WAIT)
614 						wakeup(object);
615 					break;
616 				}
617 				/* retry */
618 			}
619 		}
620 		/* retry */
621 	}
622 }
623 
624 void
625 vm_object_chain_acquire(vm_object_t object, int shared)
626 {
627 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
628 		return;
629 	if (vm_shared_fault == 0)
630 		shared = 0;
631 
632 	for (;;) {
633 		uint32_t chainlk = object->chainlk;
634 
635 		cpu_ccfence();
636 		if (shared) {
637 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
638 				tsleep_interlock(object, 0);
639 				if (atomic_cmpset_int(&object->chainlk,
640 						      chainlk,
641 						      chainlk | CHAINLK_WAIT)) {
642 					tsleep(object, PINTERLOCKED,
643 					       "objchns", 0);
644 				}
645 				/* retry */
646 			} else if (atomic_cmpset_int(&object->chainlk,
647 					      chainlk, chainlk + 1)) {
648 				break;
649 			}
650 			/* retry */
651 		} else {
652 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
653 				tsleep_interlock(object, 0);
654 				if (atomic_cmpset_int(&object->chainlk,
655 						      chainlk,
656 						      chainlk |
657 						       CHAINLK_WAIT |
658 						       CHAINLK_EXCLREQ)) {
659 					tsleep(object, PINTERLOCKED,
660 					       "objchnx", 0);
661 				}
662 				/* retry */
663 			} else {
664 				if (atomic_cmpset_int(&object->chainlk,
665 						      chainlk,
666 						      (chainlk | CHAINLK_EXCL) &
667 						      ~(CHAINLK_EXCLREQ |
668 							CHAINLK_WAIT))) {
669 					if (chainlk & CHAINLK_WAIT)
670 						wakeup(object);
671 					break;
672 				}
673 				/* retry */
674 			}
675 		}
676 		/* retry */
677 	}
678 }
679 
680 void
681 vm_object_chain_release(vm_object_t object)
682 {
683 	/*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
684 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
685 		return;
686 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
687 	for (;;) {
688 		uint32_t chainlk = object->chainlk;
689 
690 		cpu_ccfence();
691 		if (chainlk & CHAINLK_MASK) {
692 			if ((chainlk & CHAINLK_MASK) == 1 &&
693 			    atomic_cmpset_int(&object->chainlk,
694 					      chainlk,
695 					      (chainlk - 1) & ~CHAINLK_WAIT)) {
696 				if (chainlk & CHAINLK_WAIT)
697 					wakeup(object);
698 				break;
699 			}
700 			if ((chainlk & CHAINLK_MASK) > 1 &&
701 			    atomic_cmpset_int(&object->chainlk,
702 					      chainlk, chainlk - 1)) {
703 				break;
704 			}
705 			/* retry */
706 		} else {
707 			KKASSERT(chainlk & CHAINLK_EXCL);
708 			if (atomic_cmpset_int(&object->chainlk,
709 					      chainlk,
710 					      chainlk & ~(CHAINLK_EXCL |
711 							  CHAINLK_WAIT))) {
712 				if (chainlk & CHAINLK_WAIT)
713 					wakeup(object);
714 				break;
715 			}
716 		}
717 	}
718 }
719 
720 /*
721  * Release the chain from first_object through and including stopobj.
722  * The caller is typically holding the first and last object locked
723  * (shared or exclusive) to prevent destruction races.
724  *
725  * We release stopobj first as an optimization as this object is most
726  * likely to be shared across multiple processes.
727  */
728 void
729 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
730 {
731 	vm_object_t backing_object;
732 	vm_object_t object;
733 
734 	vm_object_chain_release(stopobj);
735 	object = first_object;
736 
737 	while (object != stopobj) {
738 		KKASSERT(object);
739 		backing_object = object->backing_object;
740 		vm_object_chain_release(object);
741 		object = backing_object;
742 	}
743 }
744 
745 /*
746  * Dereference an object and its underlying vnode.  The object may be
747  * held shared.  On return the object will remain held.
748  *
749  * This function may return a vnode in *vpp which the caller must release
750  * after the caller drops its own lock.  If vpp is NULL, we assume that
751  * the caller was holding an exclusive lock on the object and we vrele()
752  * the vp ourselves.
753  */
754 static void
755 vm_object_vndeallocate(vm_object_t object, struct vnode **vpp)
756 {
757 	struct vnode *vp = (struct vnode *) object->handle;
758 
759 	KASSERT(object->type == OBJT_VNODE,
760 	    ("vm_object_vndeallocate: not a vnode object"));
761 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
762 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
763 #ifdef INVARIANTS
764 	if (object->ref_count == 0) {
765 		vprint("vm_object_vndeallocate", vp);
766 		panic("vm_object_vndeallocate: bad object reference count");
767 	}
768 #endif
769 	for (;;) {
770 		int count = object->ref_count;
771 		cpu_ccfence();
772 		if (count == 1) {
773 			vm_object_upgrade(object);
774 			if (atomic_cmpset_int(&object->ref_count, count, 0)) {
775 				vclrflags(vp, VTEXT);
776 				break;
777 			}
778 		} else {
779 			if (atomic_cmpset_int(&object->ref_count,
780 					      count, count - 1)) {
781 				break;
782 			}
783 		}
784 		/* retry */
785 	}
786 
787 	/*
788 	 * vrele or return the vp to vrele.  We can only safely vrele(vp)
789 	 * if the object was locked exclusively.  But there are two races
790 	 * here.
791 	 *
792 	 * We had to upgrade the object above to safely clear VTEXT
793 	 * but the alternative path where the shared lock is retained
794 	 * can STILL race to 0 in other paths and cause our own vrele()
795 	 * to terminate the vnode.  We can't allow that if the VM object
796 	 * is still locked shared.
797 	 */
798 	if (vpp)
799 		*vpp = vp;
800 	else
801 		vrele(vp);
802 }
803 
804 /*
805  * Release a reference to the specified object, gained either through a
806  * vm_object_allocate or a vm_object_reference call.  When all references
807  * are gone, storage associated with this object may be relinquished.
808  *
809  * The caller does not have to hold the object locked but must have control
810  * over the reference in question in order to guarantee that the object
811  * does not get ripped out from under us.
812  *
813  * XXX Currently all deallocations require an exclusive lock.
814  */
815 void
816 vm_object_deallocate(vm_object_t object)
817 {
818 	struct vnode *vp;
819 	int count;
820 
821 	if (object == NULL)
822 		return;
823 	for (;;) {
824 		count = object->ref_count;
825 		cpu_ccfence();
826 
827 		/*
828 		 * If decrementing the count enters into special handling
829 		 * territory (0, 1, or 2) we have to do it the hard way.
830 		 * Fortunate though, objects with only a few refs like this
831 		 * are not likely to be heavily contended anyway.
832 		 *
833 		 * For vnode objects we only care about 1->0 transitions.
834 		 */
835 		if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
836 			vm_object_hold(object);
837 			vm_object_deallocate_locked(object);
838 			vm_object_drop(object);
839 			break;
840 		}
841 
842 		/*
843 		 * Try to decrement ref_count without acquiring a hold on
844 		 * the object.  This is particularly important for the exec*()
845 		 * and exit*() code paths because the program binary may
846 		 * have a great deal of sharing and an exclusive lock will
847 		 * crowbar performance in those circumstances.
848 		 */
849 		if (object->type == OBJT_VNODE) {
850 			vp = (struct vnode *)object->handle;
851 			if (atomic_cmpset_int(&object->ref_count,
852 					      count, count - 1)) {
853 				vrele(vp);
854 				break;
855 			}
856 			/* retry */
857 		} else {
858 			if (atomic_cmpset_int(&object->ref_count,
859 					      count, count - 1)) {
860 				break;
861 			}
862 			/* retry */
863 		}
864 		/* retry */
865 	}
866 }
867 
868 void
869 vm_object_deallocate_locked(vm_object_t object)
870 {
871 	struct vm_object_dealloc_list *dlist = NULL;
872 	struct vm_object_dealloc_list *dtmp;
873 	vm_object_t temp;
874 	int must_drop = 0;
875 
876 	/*
877 	 * We may chain deallocate object, but additional objects may
878 	 * collect on the dlist which also have to be deallocated.  We
879 	 * must avoid a recursion, vm_object chains can get deep.
880 	 */
881 
882 again:
883 	while (object != NULL) {
884 		/*
885 		 * vnode case, caller either locked the object exclusively
886 		 * or this is a recursion with must_drop != 0 and the vnode
887 		 * object will be locked shared.
888 		 *
889 		 * If locked shared we have to drop the object before we can
890 		 * call vrele() or risk a shared/exclusive livelock.
891 		 */
892 		if (object->type == OBJT_VNODE) {
893 			ASSERT_LWKT_TOKEN_HELD(&object->token);
894 			if (must_drop) {
895 				struct vnode *tmp_vp;
896 
897 				vm_object_vndeallocate(object, &tmp_vp);
898 				vm_object_drop(object);
899 				must_drop = 0;
900 				object = NULL;
901 				vrele(tmp_vp);
902 			} else {
903 				vm_object_vndeallocate(object, NULL);
904 			}
905 			break;
906 		}
907 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
908 
909 		/*
910 		 * Normal case (object is locked exclusively)
911 		 */
912 		if (object->ref_count == 0) {
913 			panic("vm_object_deallocate: object deallocated "
914 			      "too many times: %d", object->type);
915 		}
916 		if (object->ref_count > 2) {
917 			atomic_add_int(&object->ref_count, -1);
918 			break;
919 		}
920 
921 		/*
922 		 * Here on ref_count of one or two, which are special cases for
923 		 * objects.
924 		 *
925 		 * Nominal ref_count > 1 case if the second ref is not from
926 		 * a shadow.
927 		 *
928 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
929 		 */
930 		if (object->ref_count == 2 && object->shadow_count == 0) {
931 			if (object->type == OBJT_DEFAULT ||
932 			    object->type == OBJT_SWAP) {
933 				vm_object_set_flag(object, OBJ_ONEMAPPING);
934 			}
935 			atomic_add_int(&object->ref_count, -1);
936 			break;
937 		}
938 
939 		/*
940 		 * If the second ref is from a shadow we chain along it
941 		 * upwards if object's handle is exhausted.
942 		 *
943 		 * We have to decrement object->ref_count before potentially
944 		 * collapsing the first shadow object or the collapse code
945 		 * will not be able to handle the degenerate case to remove
946 		 * object.  However, if we do it too early the object can
947 		 * get ripped out from under us.
948 		 */
949 		if (object->ref_count == 2 && object->shadow_count == 1 &&
950 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
951 					       object->type == OBJT_SWAP)) {
952 			temp = LIST_FIRST(&object->shadow_head);
953 			KKASSERT(temp != NULL);
954 			vm_object_hold(temp);
955 
956 			/*
957 			 * Wait for any paging to complete so the collapse
958 			 * doesn't (or isn't likely to) qcollapse.  pip
959 			 * waiting must occur before we acquire the
960 			 * chainlock.
961 			 */
962 			while (
963 				temp->paging_in_progress ||
964 				object->paging_in_progress
965 			) {
966 				vm_object_pip_wait(temp, "objde1");
967 				vm_object_pip_wait(object, "objde2");
968 			}
969 
970 			/*
971 			 * If the parent is locked we have to give up, as
972 			 * otherwise we would be acquiring locks in the
973 			 * wrong order and potentially deadlock.
974 			 */
975 			if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
976 				vm_object_drop(temp);
977 				goto skip;
978 			}
979 			vm_object_chain_acquire(temp, 0);
980 
981 			/*
982 			 * Recheck/retry after the hold and the paging
983 			 * wait, both of which can block us.
984 			 */
985 			if (object->ref_count != 2 ||
986 			    object->shadow_count != 1 ||
987 			    object->handle ||
988 			    LIST_FIRST(&object->shadow_head) != temp ||
989 			    (object->type != OBJT_DEFAULT &&
990 			     object->type != OBJT_SWAP)) {
991 				vm_object_chain_release(temp);
992 				vm_object_drop(temp);
993 				continue;
994 			}
995 
996 			/*
997 			 * We can safely drop object's ref_count now.
998 			 */
999 			KKASSERT(object->ref_count == 2);
1000 			atomic_add_int(&object->ref_count, -1);
1001 
1002 			/*
1003 			 * If our single parent is not collapseable just
1004 			 * decrement ref_count (2->1) and stop.
1005 			 */
1006 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
1007 					     temp->type != OBJT_SWAP)) {
1008 				vm_object_chain_release(temp);
1009 				vm_object_drop(temp);
1010 				break;
1011 			}
1012 
1013 			/*
1014 			 * At this point we have already dropped object's
1015 			 * ref_count so it is possible for a race to
1016 			 * deallocate obj out from under us.  Any collapse
1017 			 * will re-check the situation.  We must not block
1018 			 * until we are able to collapse.
1019 			 *
1020 			 * Bump temp's ref_count to avoid an unwanted
1021 			 * degenerate recursion (can't call
1022 			 * vm_object_reference_locked() because it asserts
1023 			 * that CHAINLOCK is not set).
1024 			 */
1025 			atomic_add_int(&temp->ref_count, 1);
1026 			KKASSERT(temp->ref_count > 1);
1027 
1028 			/*
1029 			 * Collapse temp, then deallocate the extra ref
1030 			 * formally.
1031 			 */
1032 			vm_object_collapse(temp, &dlist);
1033 			vm_object_chain_release(temp);
1034 			if (must_drop) {
1035 				vm_object_lock_swap();
1036 				vm_object_drop(object);
1037 			}
1038 			object = temp;
1039 			must_drop = 1;
1040 			continue;
1041 		}
1042 
1043 		/*
1044 		 * Drop the ref and handle termination on the 1->0 transition.
1045 		 * We may have blocked above so we have to recheck.
1046 		 */
1047 skip:
1048 		KKASSERT(object->ref_count != 0);
1049 		if (object->ref_count >= 2) {
1050 			atomic_add_int(&object->ref_count, -1);
1051 			break;
1052 		}
1053 		KKASSERT(object->ref_count == 1);
1054 
1055 		/*
1056 		 * 1->0 transition.  Chain through the backing_object.
1057 		 * Maintain the ref until we've located the backing object,
1058 		 * then re-check.
1059 		 */
1060 		while ((temp = object->backing_object) != NULL) {
1061 			if (temp->type == OBJT_VNODE)
1062 				vm_object_hold_shared(temp);
1063 			else
1064 				vm_object_hold(temp);
1065 			if (temp == object->backing_object)
1066 				break;
1067 			vm_object_drop(temp);
1068 		}
1069 
1070 		/*
1071 		 * 1->0 transition verified, retry if ref_count is no longer
1072 		 * 1.  Otherwise disconnect the backing_object (temp) and
1073 		 * clean up.
1074 		 */
1075 		if (object->ref_count != 1) {
1076 			vm_object_drop(temp);
1077 			continue;
1078 		}
1079 
1080 		/*
1081 		 * It shouldn't be possible for the object to be chain locked
1082 		 * if we're removing the last ref on it.
1083 		 */
1084 		KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1085 
1086 		if (temp) {
1087 			if (object->flags & OBJ_ONSHADOW) {
1088 				LIST_REMOVE(object, shadow_list);
1089 				temp->shadow_count--;
1090 				temp->generation++;
1091 				vm_object_clear_flag(object, OBJ_ONSHADOW);
1092 			}
1093 			object->backing_object = NULL;
1094 		}
1095 
1096 		atomic_add_int(&object->ref_count, -1);
1097 		if ((object->flags & OBJ_DEAD) == 0)
1098 			vm_object_terminate(object);
1099 		if (must_drop && temp)
1100 			vm_object_lock_swap();
1101 		if (must_drop)
1102 			vm_object_drop(object);
1103 		object = temp;
1104 		must_drop = 1;
1105 	}
1106 
1107 	if (must_drop && object)
1108 		vm_object_drop(object);
1109 
1110 	/*
1111 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1112 	 * on the dlist have a hold count but are not locked.
1113 	 */
1114 	if ((dtmp = dlist) != NULL) {
1115 		dlist = dtmp->next;
1116 		object = dtmp->object;
1117 		kfree(dtmp, M_TEMP);
1118 
1119 		vm_object_lock(object);	/* already held, add lock */
1120 		must_drop = 1;		/* and we're responsible for it */
1121 		goto again;
1122 	}
1123 }
1124 
1125 /*
1126  * Destroy the specified object, freeing up related resources.
1127  *
1128  * The object must have zero references.
1129  *
1130  * The object must held.  The caller is responsible for dropping the object
1131  * after terminate returns.  Terminate does NOT drop the object.
1132  */
1133 static int vm_object_terminate_callback(vm_page_t p, void *data);
1134 
1135 void
1136 vm_object_terminate(vm_object_t object)
1137 {
1138 	int n;
1139 
1140 	/*
1141 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1142 	 * able to safely block.
1143 	 */
1144 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1145 	KKASSERT((object->flags & OBJ_DEAD) == 0);
1146 	vm_object_set_flag(object, OBJ_DEAD);
1147 
1148 	/*
1149 	 * Wait for the pageout daemon to be done with the object
1150 	 */
1151 	vm_object_pip_wait(object, "objtrm1");
1152 
1153 	KASSERT(!object->paging_in_progress,
1154 		("vm_object_terminate: pageout in progress"));
1155 
1156 	/*
1157 	 * Clean and free the pages, as appropriate. All references to the
1158 	 * object are gone, so we don't need to lock it.
1159 	 */
1160 	if (object->type == OBJT_VNODE) {
1161 		struct vnode *vp;
1162 
1163 		/*
1164 		 * Clean pages and flush buffers.
1165 		 *
1166 		 * NOTE!  TMPFS buffer flushes do not typically flush the
1167 		 *	  actual page to swap as this would be highly
1168 		 *	  inefficient, and normal filesystems usually wrap
1169 		 *	  page flushes with buffer cache buffers.
1170 		 *
1171 		 *	  To deal with this we have to call vinvalbuf() both
1172 		 *	  before and after the vm_object_page_clean().
1173 		 */
1174 		vp = (struct vnode *) object->handle;
1175 		vinvalbuf(vp, V_SAVE, 0, 0);
1176 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1177 		vinvalbuf(vp, V_SAVE, 0, 0);
1178 	}
1179 
1180 	/*
1181 	 * Wait for any I/O to complete, after which there had better not
1182 	 * be any references left on the object.
1183 	 */
1184 	vm_object_pip_wait(object, "objtrm2");
1185 
1186 	if (object->ref_count != 0) {
1187 		panic("vm_object_terminate: object with references, "
1188 		      "ref_count=%d", object->ref_count);
1189 	}
1190 
1191 	/*
1192 	 * Cleanup any shared pmaps associated with this object.
1193 	 */
1194 	pmap_object_free(object);
1195 
1196 	/*
1197 	 * Now free any remaining pages. For internal objects, this also
1198 	 * removes them from paging queues. Don't free wired pages, just
1199 	 * remove them from the object.
1200 	 */
1201 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1202 				vm_object_terminate_callback, NULL);
1203 
1204 	/*
1205 	 * Let the pager know object is dead.
1206 	 */
1207 	vm_pager_deallocate(object);
1208 
1209 	/*
1210 	 * Wait for the object hold count to hit 1, clean out pages as
1211 	 * we go.  vmobj_token interlocks any race conditions that might
1212 	 * pick the object up from the vm_object_list after we have cleared
1213 	 * rb_memq.
1214 	 */
1215 	for (;;) {
1216 		if (RB_ROOT(&object->rb_memq) == NULL)
1217 			break;
1218 		kprintf("vm_object_terminate: Warning, object %p "
1219 			"still has %d pages\n",
1220 			object, object->resident_page_count);
1221 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1222 					vm_object_terminate_callback, NULL);
1223 	}
1224 
1225 	/*
1226 	 * There had better not be any pages left
1227 	 */
1228 	KKASSERT(object->resident_page_count == 0);
1229 
1230 	/*
1231 	 * Remove the object from the global object list.
1232 	 */
1233 	n = VMOBJ_HASH(object);
1234 	lwkt_gettoken(&vmobj_tokens[n]);
1235 	TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1236 	lwkt_reltoken(&vmobj_tokens[n]);
1237 	atomic_add_long(&vm_object_count, -1);
1238 
1239 	if (object->ref_count != 0) {
1240 		panic("vm_object_terminate2: object with references, "
1241 		      "ref_count=%d", object->ref_count);
1242 	}
1243 
1244 	/*
1245 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1246 	 *	 the object here.  See vm_object_drop().
1247 	 */
1248 }
1249 
1250 /*
1251  * The caller must hold the object.
1252  */
1253 static int
1254 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1255 {
1256 	vm_object_t object;
1257 
1258 	object = p->object;
1259 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1260 	if (object != p->object) {
1261 		kprintf("vm_object_terminate: Warning: Encountered "
1262 			"busied page %p on queue %d\n", p, p->queue);
1263 		vm_page_wakeup(p);
1264 	} else if (p->wire_count == 0) {
1265 		/*
1266 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1267 		 */
1268 		vm_page_free(p);
1269 		mycpu->gd_cnt.v_pfree++;
1270 	} else {
1271 		if (p->queue != PQ_NONE)
1272 			kprintf("vm_object_terminate: Warning: Encountered "
1273 				"wired page %p on queue %d\n", p, p->queue);
1274 		vm_page_remove(p);
1275 		vm_page_wakeup(p);
1276 	}
1277 	lwkt_yield();
1278 	return(0);
1279 }
1280 
1281 /*
1282  * Clean all dirty pages in the specified range of object.  Leaves page
1283  * on whatever queue it is currently on.   If NOSYNC is set then do not
1284  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1285  * leaving the object dirty.
1286  *
1287  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1288  * synchronous clustering mode implementation.
1289  *
1290  * Odd semantics: if start == end, we clean everything.
1291  *
1292  * The object must be locked? XXX
1293  */
1294 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1295 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1296 
1297 void
1298 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1299 		     int flags)
1300 {
1301 	struct rb_vm_page_scan_info info;
1302 	struct vnode *vp;
1303 	int wholescan;
1304 	int pagerflags;
1305 	int generation;
1306 
1307 	vm_object_hold(object);
1308 	if (object->type != OBJT_VNODE ||
1309 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1310 		vm_object_drop(object);
1311 		return;
1312 	}
1313 
1314 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1315 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1316 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1317 
1318 	vp = object->handle;
1319 
1320 	/*
1321 	 * Interlock other major object operations.  This allows us to
1322 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1323 	 */
1324 	vm_object_set_flag(object, OBJ_CLEANING);
1325 
1326 	/*
1327 	 * Handle 'entire object' case
1328 	 */
1329 	info.start_pindex = start;
1330 	if (end == 0) {
1331 		info.end_pindex = object->size - 1;
1332 	} else {
1333 		info.end_pindex = end - 1;
1334 	}
1335 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1336 	info.limit = flags;
1337 	info.pagerflags = pagerflags;
1338 	info.object = object;
1339 
1340 	/*
1341 	 * If cleaning the entire object do a pass to mark the pages read-only.
1342 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1343 	 * OBJ_MIGHTBEDIRTY.
1344 	 */
1345 	if (wholescan) {
1346 		info.error = 0;
1347 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1348 					vm_object_page_clean_pass1, &info);
1349 		if (info.error == 0) {
1350 			vm_object_clear_flag(object,
1351 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1352 			if (object->type == OBJT_VNODE &&
1353 			    (vp = (struct vnode *)object->handle) != NULL) {
1354 				if (vp->v_mount &&
1355 				    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
1356 					vclrobjdirty(vp);
1357 				} else {
1358 					vclrflags(vp, VOBJDIRTY);
1359 				}
1360 			}
1361 		}
1362 	}
1363 
1364 	/*
1365 	 * Do a pass to clean all the dirty pages we find.
1366 	 */
1367 	do {
1368 		info.error = 0;
1369 		generation = object->generation;
1370 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1371 					vm_object_page_clean_pass2, &info);
1372 	} while (info.error || generation != object->generation);
1373 
1374 	vm_object_clear_flag(object, OBJ_CLEANING);
1375 	vm_object_drop(object);
1376 }
1377 
1378 /*
1379  * The caller must hold the object.
1380  */
1381 static
1382 int
1383 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1384 {
1385 	struct rb_vm_page_scan_info *info = data;
1386 
1387 	vm_page_flag_set(p, PG_CLEANCHK);
1388 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1389 		info->error = 1;
1390 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1391 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1392 		vm_page_wakeup(p);
1393 	} else {
1394 		info->error = 1;
1395 	}
1396 	lwkt_yield();
1397 	return(0);
1398 }
1399 
1400 /*
1401  * The caller must hold the object
1402  */
1403 static
1404 int
1405 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1406 {
1407 	struct rb_vm_page_scan_info *info = data;
1408 	int generation;
1409 
1410 	/*
1411 	 * Do not mess with pages that were inserted after we started
1412 	 * the cleaning pass.
1413 	 */
1414 	if ((p->flags & PG_CLEANCHK) == 0)
1415 		goto done;
1416 
1417 	generation = info->object->generation;
1418 	vm_page_busy_wait(p, TRUE, "vpcwai");
1419 	if (p->object != info->object ||
1420 	    info->object->generation != generation) {
1421 		info->error = 1;
1422 		vm_page_wakeup(p);
1423 		goto done;
1424 	}
1425 
1426 	/*
1427 	 * Before wasting time traversing the pmaps, check for trivial
1428 	 * cases where the page cannot be dirty.
1429 	 */
1430 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1431 		KKASSERT((p->dirty & p->valid) == 0 &&
1432 			 (p->flags & PG_NEED_COMMIT) == 0);
1433 		vm_page_wakeup(p);
1434 		goto done;
1435 	}
1436 
1437 	/*
1438 	 * Check whether the page is dirty or not.  The page has been set
1439 	 * to be read-only so the check will not race a user dirtying the
1440 	 * page.
1441 	 */
1442 	vm_page_test_dirty(p);
1443 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1444 		vm_page_flag_clear(p, PG_CLEANCHK);
1445 		vm_page_wakeup(p);
1446 		goto done;
1447 	}
1448 
1449 	/*
1450 	 * If we have been asked to skip nosync pages and this is a
1451 	 * nosync page, skip it.  Note that the object flags were
1452 	 * not cleared in this case (because pass1 will have returned an
1453 	 * error), so we do not have to set them.
1454 	 */
1455 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1456 		vm_page_flag_clear(p, PG_CLEANCHK);
1457 		vm_page_wakeup(p);
1458 		goto done;
1459 	}
1460 
1461 	/*
1462 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1463 	 * the pages that get successfully flushed.  Set info->error if
1464 	 * we raced an object modification.
1465 	 */
1466 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1467 	vm_wait_nominal();
1468 done:
1469 	lwkt_yield();
1470 	return(0);
1471 }
1472 
1473 /*
1474  * Collect the specified page and nearby pages and flush them out.
1475  * The number of pages flushed is returned.  The passed page is busied
1476  * by the caller and we are responsible for its disposition.
1477  *
1478  * The caller must hold the object.
1479  */
1480 static void
1481 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1482 {
1483 	int error;
1484 	int is;
1485 	int ib;
1486 	int i;
1487 	int page_base;
1488 	vm_pindex_t pi;
1489 	vm_page_t ma[BLIST_MAX_ALLOC];
1490 
1491 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1492 
1493 	pi = p->pindex;
1494 	page_base = pi % BLIST_MAX_ALLOC;
1495 	ma[page_base] = p;
1496 	ib = page_base - 1;
1497 	is = page_base + 1;
1498 
1499 	while (ib >= 0) {
1500 		vm_page_t tp;
1501 
1502 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1503 					     TRUE, &error);
1504 		if (error)
1505 			break;
1506 		if (tp == NULL)
1507 			break;
1508 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1509 		    (tp->flags & PG_CLEANCHK) == 0) {
1510 			vm_page_wakeup(tp);
1511 			break;
1512 		}
1513 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1514 			vm_page_flag_clear(tp, PG_CLEANCHK);
1515 			vm_page_wakeup(tp);
1516 			break;
1517 		}
1518 		vm_page_test_dirty(tp);
1519 		if ((tp->dirty & tp->valid) == 0 &&
1520 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1521 			vm_page_flag_clear(tp, PG_CLEANCHK);
1522 			vm_page_wakeup(tp);
1523 			break;
1524 		}
1525 		ma[ib] = tp;
1526 		--ib;
1527 	}
1528 	++ib;	/* fixup */
1529 
1530 	while (is < BLIST_MAX_ALLOC &&
1531 	       pi - page_base + is < object->size) {
1532 		vm_page_t tp;
1533 
1534 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1535 					     TRUE, &error);
1536 		if (error)
1537 			break;
1538 		if (tp == NULL)
1539 			break;
1540 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1541 		    (tp->flags & PG_CLEANCHK) == 0) {
1542 			vm_page_wakeup(tp);
1543 			break;
1544 		}
1545 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1546 			vm_page_flag_clear(tp, PG_CLEANCHK);
1547 			vm_page_wakeup(tp);
1548 			break;
1549 		}
1550 		vm_page_test_dirty(tp);
1551 		if ((tp->dirty & tp->valid) == 0 &&
1552 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1553 			vm_page_flag_clear(tp, PG_CLEANCHK);
1554 			vm_page_wakeup(tp);
1555 			break;
1556 		}
1557 		ma[is] = tp;
1558 		++is;
1559 	}
1560 
1561 	/*
1562 	 * All pages in the ma[] array are busied now
1563 	 */
1564 	for (i = ib; i < is; ++i) {
1565 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1566 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1567 	}
1568 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1569 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1570 		vm_page_unhold(ma[i]);
1571 }
1572 
1573 /*
1574  * Same as vm_object_pmap_copy, except range checking really
1575  * works, and is meant for small sections of an object.
1576  *
1577  * This code protects resident pages by making them read-only
1578  * and is typically called on a fork or split when a page
1579  * is converted to copy-on-write.
1580  *
1581  * NOTE: If the page is already at VM_PROT_NONE, calling
1582  * vm_page_protect will have no effect.
1583  */
1584 void
1585 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1586 {
1587 	vm_pindex_t idx;
1588 	vm_page_t p;
1589 
1590 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1591 		return;
1592 
1593 	vm_object_hold(object);
1594 	for (idx = start; idx < end; idx++) {
1595 		p = vm_page_lookup(object, idx);
1596 		if (p == NULL)
1597 			continue;
1598 		vm_page_protect(p, VM_PROT_READ);
1599 	}
1600 	vm_object_drop(object);
1601 }
1602 
1603 /*
1604  * Removes all physical pages in the specified object range from all
1605  * physical maps.
1606  *
1607  * The object must *not* be locked.
1608  */
1609 
1610 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1611 
1612 void
1613 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1614 {
1615 	struct rb_vm_page_scan_info info;
1616 
1617 	if (object == NULL)
1618 		return;
1619 	info.start_pindex = start;
1620 	info.end_pindex = end - 1;
1621 
1622 	vm_object_hold(object);
1623 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1624 				vm_object_pmap_remove_callback, &info);
1625 	if (start == 0 && end == object->size)
1626 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1627 	vm_object_drop(object);
1628 }
1629 
1630 /*
1631  * The caller must hold the object
1632  */
1633 static int
1634 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1635 {
1636 	vm_page_protect(p, VM_PROT_NONE);
1637 	return(0);
1638 }
1639 
1640 /*
1641  * Implements the madvise function at the object/page level.
1642  *
1643  * MADV_WILLNEED	(any object)
1644  *
1645  *	Activate the specified pages if they are resident.
1646  *
1647  * MADV_DONTNEED	(any object)
1648  *
1649  *	Deactivate the specified pages if they are resident.
1650  *
1651  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1652  *
1653  *	Deactivate and clean the specified pages if they are
1654  *	resident.  This permits the process to reuse the pages
1655  *	without faulting or the kernel to reclaim the pages
1656  *	without I/O.
1657  *
1658  * No requirements.
1659  */
1660 void
1661 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1662 {
1663 	vm_pindex_t end, tpindex;
1664 	vm_object_t tobject;
1665 	vm_object_t xobj;
1666 	vm_page_t m;
1667 	int error;
1668 
1669 	if (object == NULL)
1670 		return;
1671 
1672 	end = pindex + count;
1673 
1674 	vm_object_hold(object);
1675 	tobject = object;
1676 
1677 	/*
1678 	 * Locate and adjust resident pages
1679 	 */
1680 	for (; pindex < end; pindex += 1) {
1681 relookup:
1682 		if (tobject != object)
1683 			vm_object_drop(tobject);
1684 		tobject = object;
1685 		tpindex = pindex;
1686 shadowlookup:
1687 		/*
1688 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1689 		 * and those pages must be OBJ_ONEMAPPING.
1690 		 */
1691 		if (advise == MADV_FREE) {
1692 			if ((tobject->type != OBJT_DEFAULT &&
1693 			     tobject->type != OBJT_SWAP) ||
1694 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1695 				continue;
1696 			}
1697 		}
1698 
1699 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1700 
1701 		if (error) {
1702 			vm_page_sleep_busy(m, TRUE, "madvpo");
1703 			goto relookup;
1704 		}
1705 		if (m == NULL) {
1706 			/*
1707 			 * There may be swap even if there is no backing page
1708 			 */
1709 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1710 				swap_pager_freespace(tobject, tpindex, 1);
1711 
1712 			/*
1713 			 * next object
1714 			 */
1715 			while ((xobj = tobject->backing_object) != NULL) {
1716 				KKASSERT(xobj != object);
1717 				vm_object_hold(xobj);
1718 				if (xobj == tobject->backing_object)
1719 					break;
1720 				vm_object_drop(xobj);
1721 			}
1722 			if (xobj == NULL)
1723 				continue;
1724 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1725 			if (tobject != object) {
1726 				vm_object_lock_swap();
1727 				vm_object_drop(tobject);
1728 			}
1729 			tobject = xobj;
1730 			goto shadowlookup;
1731 		}
1732 
1733 		/*
1734 		 * If the page is not in a normal active state, we skip it.
1735 		 * If the page is not managed there are no page queues to
1736 		 * mess with.  Things can break if we mess with pages in
1737 		 * any of the below states.
1738 		 */
1739 		if (m->wire_count ||
1740 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1741 		    m->valid != VM_PAGE_BITS_ALL
1742 		) {
1743 			vm_page_wakeup(m);
1744 			continue;
1745 		}
1746 
1747 		/*
1748 		 * Theoretically once a page is known not to be busy, an
1749 		 * interrupt cannot come along and rip it out from under us.
1750 		 */
1751 
1752 		if (advise == MADV_WILLNEED) {
1753 			vm_page_activate(m);
1754 		} else if (advise == MADV_DONTNEED) {
1755 			vm_page_dontneed(m);
1756 		} else if (advise == MADV_FREE) {
1757 			/*
1758 			 * Mark the page clean.  This will allow the page
1759 			 * to be freed up by the system.  However, such pages
1760 			 * are often reused quickly by malloc()/free()
1761 			 * so we do not do anything that would cause
1762 			 * a page fault if we can help it.
1763 			 *
1764 			 * Specifically, we do not try to actually free
1765 			 * the page now nor do we try to put it in the
1766 			 * cache (which would cause a page fault on reuse).
1767 			 *
1768 			 * But we do make the page is freeable as we
1769 			 * can without actually taking the step of unmapping
1770 			 * it.
1771 			 */
1772 			pmap_clear_modify(m);
1773 			m->dirty = 0;
1774 			m->act_count = 0;
1775 			vm_page_dontneed(m);
1776 			if (tobject->type == OBJT_SWAP)
1777 				swap_pager_freespace(tobject, tpindex, 1);
1778 		}
1779 		vm_page_wakeup(m);
1780 	}
1781 	if (tobject != object)
1782 		vm_object_drop(tobject);
1783 	vm_object_drop(object);
1784 }
1785 
1786 /*
1787  * Create a new object which is backed by the specified existing object
1788  * range.  Replace the pointer and offset that was pointing at the existing
1789  * object with the pointer/offset for the new object.
1790  *
1791  * No other requirements.
1792  */
1793 void
1794 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1795 		 int addref)
1796 {
1797 	vm_object_t source;
1798 	vm_object_t result;
1799 	int useshadowlist;
1800 
1801 	source = *objectp;
1802 
1803 	/*
1804 	 * Don't create the new object if the old object isn't shared.
1805 	 * We have to chain wait before adding the reference to avoid
1806 	 * racing a collapse or deallocation.
1807 	 *
1808 	 * Add the additional ref to source here to avoid racing a later
1809 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1810 	 * addref is TRUE or not in this case because the original object
1811 	 * will be shadowed.
1812 	 */
1813 	useshadowlist = 0;
1814 	if (source) {
1815 		if (source->type != OBJT_VNODE) {
1816 			useshadowlist = 1;
1817 			vm_object_hold(source);
1818 			vm_object_chain_wait(source, 0);
1819 			if (source->ref_count == 1 &&
1820 			    source->handle == NULL &&
1821 			    (source->type == OBJT_DEFAULT ||
1822 			     source->type == OBJT_SWAP)) {
1823 				if (addref) {
1824 					vm_object_reference_locked(source);
1825 					vm_object_clear_flag(source, OBJ_ONEMAPPING);
1826 				}
1827 				vm_object_drop(source);
1828 				return;
1829 			}
1830 			vm_object_reference_locked(source);
1831 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1832 		} else {
1833 			vm_object_reference_quick(source);
1834 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1835 		}
1836 	}
1837 
1838 	/*
1839 	 * Allocate a new object with the given length.  The new object
1840 	 * is returned referenced but we may have to add another one.
1841 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1842 	 * (typically because the caller is about to clone a vm_map_entry).
1843 	 *
1844 	 * The source object currently has an extra reference to prevent
1845 	 * collapses into it while we mess with its shadow list, which
1846 	 * we will remove later in this routine.
1847 	 */
1848 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1849 		panic("vm_object_shadow: no object for shadowing");
1850 	vm_object_hold(result);
1851 	if (addref) {
1852 		vm_object_reference_locked(result);
1853 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1854 	}
1855 
1856 	/*
1857 	 * The new object shadows the source object.  Chain wait before
1858 	 * adjusting shadow_count or the shadow list to avoid races.
1859 	 *
1860 	 * Try to optimize the result object's page color when shadowing
1861 	 * in order to maintain page coloring consistency in the combined
1862 	 * shadowed object.
1863 	 *
1864 	 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1865 	 */
1866 	KKASSERT(result->backing_object == NULL);
1867 	result->backing_object = source;
1868 	if (source) {
1869 		if (useshadowlist) {
1870 			vm_object_chain_wait(source, 0);
1871 			LIST_INSERT_HEAD(&source->shadow_head,
1872 					 result, shadow_list);
1873 			source->shadow_count++;
1874 			source->generation++;
1875 			vm_object_set_flag(result, OBJ_ONSHADOW);
1876 		}
1877 		/* cpu localization twist */
1878 		result->pg_color = (int)(intptr_t)curthread;
1879 	}
1880 
1881 	/*
1882 	 * Adjust the return storage.  Drop the ref on source before
1883 	 * returning.
1884 	 */
1885 	result->backing_object_offset = *offset;
1886 	vm_object_drop(result);
1887 	*offset = 0;
1888 	if (source) {
1889 		if (useshadowlist) {
1890 			vm_object_deallocate_locked(source);
1891 			vm_object_drop(source);
1892 		} else {
1893 			vm_object_deallocate(source);
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * Return the new things
1899 	 */
1900 	*objectp = result;
1901 }
1902 
1903 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1904 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1905 #define	OBSC_COLLAPSE_WAIT	0x0004
1906 
1907 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1908 
1909 /*
1910  * The caller must hold the object.
1911  */
1912 static __inline int
1913 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1914 {
1915 	struct rb_vm_page_scan_info info;
1916 	int n;
1917 
1918 	vm_object_assert_held(object);
1919 	vm_object_assert_held(backing_object);
1920 
1921 	KKASSERT(backing_object == object->backing_object);
1922 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1923 
1924 	/*
1925 	 * Initial conditions
1926 	 */
1927 	if (op & OBSC_TEST_ALL_SHADOWED) {
1928 		/*
1929 		 * We do not want to have to test for the existence of
1930 		 * swap pages in the backing object.  XXX but with the
1931 		 * new swapper this would be pretty easy to do.
1932 		 *
1933 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1934 		 * been ZFOD faulted yet?  If we do not test for this, the
1935 		 * shadow test may succeed! XXX
1936 		 */
1937 		if (backing_object->type != OBJT_DEFAULT)
1938 			return(0);
1939 	}
1940 	if (op & OBSC_COLLAPSE_WAIT) {
1941 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1942 		vm_object_set_flag(backing_object, OBJ_DEAD);
1943 
1944 		n = VMOBJ_HASH(backing_object);
1945 		lwkt_gettoken(&vmobj_tokens[n]);
1946 		TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
1947 		lwkt_reltoken(&vmobj_tokens[n]);
1948 		atomic_add_long(&vm_object_count, -1);
1949 	}
1950 
1951 	/*
1952 	 * Our scan.   We have to retry if a negative error code is returned,
1953 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1954 	 * the scan had to be stopped because the parent does not completely
1955 	 * shadow the child.
1956 	 */
1957 	info.object = object;
1958 	info.backing_object = backing_object;
1959 	info.limit = op;
1960 	do {
1961 		info.error = 1;
1962 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1963 					vm_object_backing_scan_callback,
1964 					&info);
1965 	} while (info.error < 0);
1966 
1967 	return(info.error);
1968 }
1969 
1970 /*
1971  * The caller must hold the object.
1972  */
1973 static int
1974 vm_object_backing_scan_callback(vm_page_t p, void *data)
1975 {
1976 	struct rb_vm_page_scan_info *info = data;
1977 	vm_object_t backing_object;
1978 	vm_object_t object;
1979 	vm_pindex_t pindex;
1980 	vm_pindex_t new_pindex;
1981 	vm_pindex_t backing_offset_index;
1982 	int op;
1983 
1984 	pindex = p->pindex;
1985 	new_pindex = pindex - info->backing_offset_index;
1986 	op = info->limit;
1987 	object = info->object;
1988 	backing_object = info->backing_object;
1989 	backing_offset_index = info->backing_offset_index;
1990 
1991 	if (op & OBSC_TEST_ALL_SHADOWED) {
1992 		vm_page_t pp;
1993 
1994 		/*
1995 		 * Ignore pages outside the parent object's range
1996 		 * and outside the parent object's mapping of the
1997 		 * backing object.
1998 		 *
1999 		 * note that we do not busy the backing object's
2000 		 * page.
2001 		 */
2002 		if (pindex < backing_offset_index ||
2003 		    new_pindex >= object->size
2004 		) {
2005 			return(0);
2006 		}
2007 
2008 		/*
2009 		 * See if the parent has the page or if the parent's
2010 		 * object pager has the page.  If the parent has the
2011 		 * page but the page is not valid, the parent's
2012 		 * object pager must have the page.
2013 		 *
2014 		 * If this fails, the parent does not completely shadow
2015 		 * the object and we might as well give up now.
2016 		 */
2017 		pp = vm_page_lookup(object, new_pindex);
2018 		if ((pp == NULL || pp->valid == 0) &&
2019 		    !vm_pager_has_page(object, new_pindex)
2020 		) {
2021 			info->error = 0;	/* problemo */
2022 			return(-1);		/* stop the scan */
2023 		}
2024 	}
2025 
2026 	/*
2027 	 * Check for busy page.  Note that we may have lost (p) when we
2028 	 * possibly blocked above.
2029 	 */
2030 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2031 		vm_page_t pp;
2032 
2033 		if (vm_page_busy_try(p, TRUE)) {
2034 			if (op & OBSC_COLLAPSE_NOWAIT) {
2035 				return(0);
2036 			} else {
2037 				/*
2038 				 * If we slept, anything could have
2039 				 * happened.   Ask that the scan be restarted.
2040 				 *
2041 				 * Since the object is marked dead, the
2042 				 * backing offset should not have changed.
2043 				 */
2044 				vm_page_sleep_busy(p, TRUE, "vmocol");
2045 				info->error = -1;
2046 				return(-1);
2047 			}
2048 		}
2049 
2050 		/*
2051 		 * If (p) is no longer valid restart the scan.
2052 		 */
2053 		if (p->object != backing_object || p->pindex != pindex) {
2054 			kprintf("vm_object_backing_scan: Warning: page "
2055 				"%p ripped out from under us\n", p);
2056 			vm_page_wakeup(p);
2057 			info->error = -1;
2058 			return(-1);
2059 		}
2060 
2061 		if (op & OBSC_COLLAPSE_NOWAIT) {
2062 			if (p->valid == 0 ||
2063 			    p->wire_count ||
2064 			    (p->flags & PG_NEED_COMMIT)) {
2065 				vm_page_wakeup(p);
2066 				return(0);
2067 			}
2068 		} else {
2069 			/* XXX what if p->valid == 0 , hold_count, etc? */
2070 		}
2071 
2072 		KASSERT(
2073 		    p->object == backing_object,
2074 		    ("vm_object_qcollapse(): object mismatch")
2075 		);
2076 
2077 		/*
2078 		 * Destroy any associated swap
2079 		 */
2080 		if (backing_object->type == OBJT_SWAP)
2081 			swap_pager_freespace(backing_object, p->pindex, 1);
2082 
2083 		if (
2084 		    p->pindex < backing_offset_index ||
2085 		    new_pindex >= object->size
2086 		) {
2087 			/*
2088 			 * Page is out of the parent object's range, we
2089 			 * can simply destroy it.
2090 			 */
2091 			vm_page_protect(p, VM_PROT_NONE);
2092 			vm_page_free(p);
2093 			return(0);
2094 		}
2095 
2096 		pp = vm_page_lookup(object, new_pindex);
2097 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2098 			/*
2099 			 * page already exists in parent OR swap exists
2100 			 * for this location in the parent.  Destroy
2101 			 * the original page from the backing object.
2102 			 *
2103 			 * Leave the parent's page alone
2104 			 */
2105 			vm_page_protect(p, VM_PROT_NONE);
2106 			vm_page_free(p);
2107 			return(0);
2108 		}
2109 
2110 		/*
2111 		 * Page does not exist in parent, rename the
2112 		 * page from the backing object to the main object.
2113 		 *
2114 		 * If the page was mapped to a process, it can remain
2115 		 * mapped through the rename.
2116 		 */
2117 		if ((p->queue - p->pc) == PQ_CACHE)
2118 			vm_page_deactivate(p);
2119 
2120 		vm_page_rename(p, object, new_pindex);
2121 		vm_page_wakeup(p);
2122 		/* page automatically made dirty by rename */
2123 	}
2124 	return(0);
2125 }
2126 
2127 /*
2128  * This version of collapse allows the operation to occur earlier and
2129  * when paging_in_progress is true for an object...  This is not a complete
2130  * operation, but should plug 99.9% of the rest of the leaks.
2131  *
2132  * The caller must hold the object and backing_object and both must be
2133  * chainlocked.
2134  *
2135  * (only called from vm_object_collapse)
2136  */
2137 static void
2138 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2139 {
2140 	if (backing_object->ref_count == 1) {
2141 		atomic_add_int(&backing_object->ref_count, 2);
2142 		vm_object_backing_scan(object, backing_object,
2143 				       OBSC_COLLAPSE_NOWAIT);
2144 		atomic_add_int(&backing_object->ref_count, -2);
2145 	}
2146 }
2147 
2148 /*
2149  * Collapse an object with the object backing it.  Pages in the backing
2150  * object are moved into the parent, and the backing object is deallocated.
2151  * Any conflict is resolved in favor of the parent's existing pages.
2152  *
2153  * object must be held and chain-locked on call.
2154  *
2155  * The caller must have an extra ref on object to prevent a race from
2156  * destroying it during the collapse.
2157  */
2158 void
2159 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2160 {
2161 	struct vm_object_dealloc_list *dlist = NULL;
2162 	vm_object_t backing_object;
2163 
2164 	/*
2165 	 * Only one thread is attempting a collapse at any given moment.
2166 	 * There are few restrictions for (object) that callers of this
2167 	 * function check so reentrancy is likely.
2168 	 */
2169 	KKASSERT(object != NULL);
2170 	vm_object_assert_held(object);
2171 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2172 
2173 	for (;;) {
2174 		vm_object_t bbobj;
2175 		int dodealloc;
2176 
2177 		/*
2178 		 * We can only collapse a DEFAULT/SWAP object with a
2179 		 * DEFAULT/SWAP object.
2180 		 */
2181 		if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2182 			backing_object = NULL;
2183 			break;
2184 		}
2185 
2186 		backing_object = object->backing_object;
2187 		if (backing_object == NULL)
2188 			break;
2189 		if (backing_object->type != OBJT_DEFAULT &&
2190 		    backing_object->type != OBJT_SWAP) {
2191 			backing_object = NULL;
2192 			break;
2193 		}
2194 
2195 		/*
2196 		 * Hold the backing_object and check for races
2197 		 */
2198 		vm_object_hold(backing_object);
2199 		if (backing_object != object->backing_object ||
2200 		    (backing_object->type != OBJT_DEFAULT &&
2201 		     backing_object->type != OBJT_SWAP)) {
2202 			vm_object_drop(backing_object);
2203 			continue;
2204 		}
2205 
2206 		/*
2207 		 * Chain-lock the backing object too because if we
2208 		 * successfully merge its pages into the top object we
2209 		 * will collapse backing_object->backing_object as the
2210 		 * new backing_object.  Re-check that it is still our
2211 		 * backing object.
2212 		 */
2213 		vm_object_chain_acquire(backing_object, 0);
2214 		if (backing_object != object->backing_object) {
2215 			vm_object_chain_release(backing_object);
2216 			vm_object_drop(backing_object);
2217 			continue;
2218 		}
2219 
2220 		/*
2221 		 * we check the backing object first, because it is most likely
2222 		 * not collapsable.
2223 		 */
2224 		if (backing_object->handle != NULL ||
2225 		    (backing_object->type != OBJT_DEFAULT &&
2226 		     backing_object->type != OBJT_SWAP) ||
2227 		    (backing_object->flags & OBJ_DEAD) ||
2228 		    object->handle != NULL ||
2229 		    (object->type != OBJT_DEFAULT &&
2230 		     object->type != OBJT_SWAP) ||
2231 		    (object->flags & OBJ_DEAD)) {
2232 			break;
2233 		}
2234 
2235 		/*
2236 		 * If paging is in progress we can't do a normal collapse.
2237 		 */
2238 		if (
2239 		    object->paging_in_progress != 0 ||
2240 		    backing_object->paging_in_progress != 0
2241 		) {
2242 			vm_object_qcollapse(object, backing_object);
2243 			break;
2244 		}
2245 
2246 		/*
2247 		 * We know that we can either collapse the backing object (if
2248 		 * the parent is the only reference to it) or (perhaps) have
2249 		 * the parent bypass the object if the parent happens to shadow
2250 		 * all the resident pages in the entire backing object.
2251 		 *
2252 		 * This is ignoring pager-backed pages such as swap pages.
2253 		 * vm_object_backing_scan fails the shadowing test in this
2254 		 * case.
2255 		 */
2256 		if (backing_object->ref_count == 1) {
2257 			/*
2258 			 * If there is exactly one reference to the backing
2259 			 * object, we can collapse it into the parent.
2260 			 */
2261 			KKASSERT(object->backing_object == backing_object);
2262 			vm_object_backing_scan(object, backing_object,
2263 					       OBSC_COLLAPSE_WAIT);
2264 
2265 			/*
2266 			 * Move the pager from backing_object to object.
2267 			 */
2268 			if (backing_object->type == OBJT_SWAP) {
2269 				vm_object_pip_add(backing_object, 1);
2270 
2271 				/*
2272 				 * scrap the paging_offset junk and do a
2273 				 * discrete copy.  This also removes major
2274 				 * assumptions about how the swap-pager
2275 				 * works from where it doesn't belong.  The
2276 				 * new swapper is able to optimize the
2277 				 * destroy-source case.
2278 				 */
2279 				vm_object_pip_add(object, 1);
2280 				swap_pager_copy(backing_object, object,
2281 				    OFF_TO_IDX(object->backing_object_offset),
2282 				    TRUE);
2283 				vm_object_pip_wakeup(object);
2284 				vm_object_pip_wakeup(backing_object);
2285 			}
2286 
2287 			/*
2288 			 * Object now shadows whatever backing_object did.
2289 			 * Remove object from backing_object's shadow_list.
2290 			 */
2291 			KKASSERT(object->backing_object == backing_object);
2292 			if (object->flags & OBJ_ONSHADOW) {
2293 				LIST_REMOVE(object, shadow_list);
2294 				backing_object->shadow_count--;
2295 				backing_object->generation++;
2296 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2297 			}
2298 
2299 			/*
2300 			 * backing_object->backing_object moves from within
2301 			 * backing_object to within object.
2302 			 *
2303 			 * OBJT_VNODE bbobj's should have empty shadow lists.
2304 			 */
2305 			while ((bbobj = backing_object->backing_object) != NULL) {
2306 				if (bbobj->type == OBJT_VNODE)
2307 					vm_object_hold_shared(bbobj);
2308 				else
2309 					vm_object_hold(bbobj);
2310 				if (bbobj == backing_object->backing_object)
2311 					break;
2312 				vm_object_drop(bbobj);
2313 			}
2314 			if (bbobj) {
2315 				if (backing_object->flags & OBJ_ONSHADOW) {
2316 					/* not locked exclusively if vnode */
2317 					KKASSERT(bbobj->type != OBJT_VNODE);
2318 					LIST_REMOVE(backing_object,
2319 						    shadow_list);
2320 					bbobj->shadow_count--;
2321 					bbobj->generation++;
2322 					vm_object_clear_flag(backing_object,
2323 							     OBJ_ONSHADOW);
2324 				}
2325 				backing_object->backing_object = NULL;
2326 			}
2327 			object->backing_object = bbobj;
2328 			if (bbobj) {
2329 				if (bbobj->type != OBJT_VNODE) {
2330 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2331 							 object, shadow_list);
2332 					bbobj->shadow_count++;
2333 					bbobj->generation++;
2334 					vm_object_set_flag(object,
2335 							   OBJ_ONSHADOW);
2336 				}
2337 			}
2338 
2339 			object->backing_object_offset +=
2340 				backing_object->backing_object_offset;
2341 
2342 			vm_object_drop(bbobj);
2343 
2344 			/*
2345 			 * Discard the old backing_object.  Nothing should be
2346 			 * able to ref it, other than a vm_map_split(),
2347 			 * and vm_map_split() will stall on our chain lock.
2348 			 * And we control the parent so it shouldn't be
2349 			 * possible for it to go away either.
2350 			 *
2351 			 * Since the backing object has no pages, no pager
2352 			 * left, and no object references within it, all
2353 			 * that is necessary is to dispose of it.
2354 			 */
2355 			KASSERT(backing_object->ref_count == 1,
2356 				("backing_object %p was somehow "
2357 				 "re-referenced during collapse!",
2358 				 backing_object));
2359 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2360 				("backing_object %p somehow has left "
2361 				 "over pages during collapse!",
2362 				 backing_object));
2363 
2364 			/*
2365 			 * The object can be destroyed.
2366 			 *
2367 			 * XXX just fall through and dodealloc instead
2368 			 *     of forcing destruction?
2369 			 */
2370 			atomic_add_int(&backing_object->ref_count, -1);
2371 			if ((backing_object->flags & OBJ_DEAD) == 0)
2372 				vm_object_terminate(backing_object);
2373 			object_collapses++;
2374 			dodealloc = 0;
2375 		} else {
2376 			/*
2377 			 * If we do not entirely shadow the backing object,
2378 			 * there is nothing we can do so we give up.
2379 			 */
2380 			if (vm_object_backing_scan(object, backing_object,
2381 						OBSC_TEST_ALL_SHADOWED) == 0) {
2382 				break;
2383 			}
2384 
2385 			/*
2386 			 * bbobj is backing_object->backing_object.  Since
2387 			 * object completely shadows backing_object we can
2388 			 * bypass it and become backed by bbobj instead.
2389 			 *
2390 			 * The shadow list for vnode backing objects is not
2391 			 * used and a shared hold is allowed.
2392 			 */
2393 			while ((bbobj = backing_object->backing_object) != NULL) {
2394 				if (bbobj->type == OBJT_VNODE)
2395 					vm_object_hold_shared(bbobj);
2396 				else
2397 					vm_object_hold(bbobj);
2398 				if (bbobj == backing_object->backing_object)
2399 					break;
2400 				vm_object_drop(bbobj);
2401 			}
2402 
2403 			/*
2404 			 * Make object shadow bbobj instead of backing_object.
2405 			 * Remove object from backing_object's shadow list.
2406 			 *
2407 			 * Deallocating backing_object will not remove
2408 			 * it, since its reference count is at least 2.
2409 			 */
2410 			KKASSERT(object->backing_object == backing_object);
2411 			if (object->flags & OBJ_ONSHADOW) {
2412 				LIST_REMOVE(object, shadow_list);
2413 				backing_object->shadow_count--;
2414 				backing_object->generation++;
2415 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2416 			}
2417 
2418 			/*
2419 			 * Add a ref to bbobj, bbobj now shadows object.
2420 			 *
2421 			 * NOTE: backing_object->backing_object still points
2422 			 *	 to bbobj.  That relationship remains intact
2423 			 *	 because backing_object has > 1 ref, so
2424 			 *	 someone else is pointing to it (hence why
2425 			 *	 we can't collapse it into object and can
2426 			 *	 only handle the all-shadowed bypass case).
2427 			 */
2428 			if (bbobj) {
2429 				if (bbobj->type != OBJT_VNODE) {
2430 					vm_object_chain_wait(bbobj, 0);
2431 					vm_object_reference_locked(bbobj);
2432 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2433 							 object, shadow_list);
2434 					bbobj->shadow_count++;
2435 					bbobj->generation++;
2436 					vm_object_set_flag(object,
2437 							   OBJ_ONSHADOW);
2438 				} else {
2439 					vm_object_reference_quick(bbobj);
2440 				}
2441 				object->backing_object_offset +=
2442 					backing_object->backing_object_offset;
2443 				object->backing_object = bbobj;
2444 				vm_object_drop(bbobj);
2445 			} else {
2446 				object->backing_object = NULL;
2447 			}
2448 
2449 			/*
2450 			 * Drop the reference count on backing_object.  To
2451 			 * handle ref_count races properly we can't assume
2452 			 * that the ref_count is still at least 2 so we
2453 			 * have to actually call vm_object_deallocate()
2454 			 * (after clearing the chainlock).
2455 			 */
2456 			object_bypasses++;
2457 			dodealloc = 1;
2458 		}
2459 
2460 		/*
2461 		 * Ok, we want to loop on the new object->bbobj association,
2462 		 * possibly collapsing it further.  However if dodealloc is
2463 		 * non-zero we have to deallocate the backing_object which
2464 		 * itself can potentially undergo a collapse, creating a
2465 		 * recursion depth issue with the LWKT token subsystem.
2466 		 *
2467 		 * In the case where we must deallocate the backing_object
2468 		 * it is possible now that the backing_object has a single
2469 		 * shadow count on some other object (not represented here
2470 		 * as yet), since it no longer shadows us.  Thus when we
2471 		 * call vm_object_deallocate() it may attempt to collapse
2472 		 * itself into its remaining parent.
2473 		 */
2474 		if (dodealloc) {
2475 			struct vm_object_dealloc_list *dtmp;
2476 
2477 			vm_object_chain_release(backing_object);
2478 			vm_object_unlock(backing_object);
2479 			/* backing_object remains held */
2480 
2481 			/*
2482 			 * Auto-deallocation list for caller convenience.
2483 			 */
2484 			if (dlistp == NULL)
2485 				dlistp = &dlist;
2486 
2487 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2488 			dtmp->object = backing_object;
2489 			dtmp->next = *dlistp;
2490 			*dlistp = dtmp;
2491 		} else {
2492 			vm_object_chain_release(backing_object);
2493 			vm_object_drop(backing_object);
2494 		}
2495 		/* backing_object = NULL; not needed */
2496 		/* loop */
2497 	}
2498 
2499 	/*
2500 	 * Clean up any left over backing_object
2501 	 */
2502 	if (backing_object) {
2503 		vm_object_chain_release(backing_object);
2504 		vm_object_drop(backing_object);
2505 	}
2506 
2507 	/*
2508 	 * Clean up any auto-deallocation list.  This is a convenience
2509 	 * for top-level callers so they don't have to pass &dlist.
2510 	 * Do not clean up any caller-passed dlistp, the caller will
2511 	 * do that.
2512 	 */
2513 	if (dlist)
2514 		vm_object_deallocate_list(&dlist);
2515 
2516 }
2517 
2518 /*
2519  * vm_object_collapse() may collect additional objects in need of
2520  * deallocation.  This routine deallocates these objects.  The
2521  * deallocation itself can trigger additional collapses (which the
2522  * deallocate function takes care of).  This procedure is used to
2523  * reduce procedural recursion since these vm_object shadow chains
2524  * can become quite long.
2525  */
2526 void
2527 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2528 {
2529 	struct vm_object_dealloc_list *dlist;
2530 
2531 	while ((dlist = *dlistp) != NULL) {
2532 		*dlistp = dlist->next;
2533 		vm_object_lock(dlist->object);
2534 		vm_object_deallocate_locked(dlist->object);
2535 		vm_object_drop(dlist->object);
2536 		kfree(dlist, M_TEMP);
2537 	}
2538 }
2539 
2540 /*
2541  * Removes all physical pages in the specified object range from the
2542  * object's list of pages.
2543  *
2544  * No requirements.
2545  */
2546 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2547 
2548 void
2549 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2550 		      boolean_t clean_only)
2551 {
2552 	struct rb_vm_page_scan_info info;
2553 	int all;
2554 
2555 	/*
2556 	 * Degenerate cases and assertions
2557 	 */
2558 	vm_object_hold(object);
2559 	if (object == NULL ||
2560 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2561 		vm_object_drop(object);
2562 		return;
2563 	}
2564 	KASSERT(object->type != OBJT_PHYS,
2565 		("attempt to remove pages from a physical object"));
2566 
2567 	/*
2568 	 * Indicate that paging is occuring on the object
2569 	 */
2570 	vm_object_pip_add(object, 1);
2571 
2572 	/*
2573 	 * Figure out the actual removal range and whether we are removing
2574 	 * the entire contents of the object or not.  If removing the entire
2575 	 * contents, be sure to get all pages, even those that might be
2576 	 * beyond the end of the object.
2577 	 */
2578 	info.start_pindex = start;
2579 	if (end == 0)
2580 		info.end_pindex = (vm_pindex_t)-1;
2581 	else
2582 		info.end_pindex = end - 1;
2583 	info.limit = clean_only;
2584 	all = (start == 0 && info.end_pindex >= object->size - 1);
2585 
2586 	/*
2587 	 * Loop until we are sure we have gotten them all.
2588 	 */
2589 	do {
2590 		info.error = 0;
2591 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2592 					vm_object_page_remove_callback, &info);
2593 	} while (info.error);
2594 
2595 	/*
2596 	 * Remove any related swap if throwing away pages, or for
2597 	 * non-swap objects (the swap is a clean copy in that case).
2598 	 */
2599 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2600 		if (all)
2601 			swap_pager_freespace_all(object);
2602 		else
2603 			swap_pager_freespace(object, info.start_pindex,
2604 			     info.end_pindex - info.start_pindex + 1);
2605 	}
2606 
2607 	/*
2608 	 * Cleanup
2609 	 */
2610 	vm_object_pip_wakeup(object);
2611 	vm_object_drop(object);
2612 }
2613 
2614 /*
2615  * The caller must hold the object
2616  */
2617 static int
2618 vm_object_page_remove_callback(vm_page_t p, void *data)
2619 {
2620 	struct rb_vm_page_scan_info *info = data;
2621 
2622 	if (vm_page_busy_try(p, TRUE)) {
2623 		vm_page_sleep_busy(p, TRUE, "vmopar");
2624 		info->error = 1;
2625 		return(0);
2626 	}
2627 
2628 	/*
2629 	 * Wired pages cannot be destroyed, but they can be invalidated
2630 	 * and we do so if clean_only (limit) is not set.
2631 	 *
2632 	 * WARNING!  The page may be wired due to being part of a buffer
2633 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2634 	 *	     This is fine as part of a truncation but VFSs must be
2635 	 *	     sure to fix the buffer up when re-extending the file.
2636 	 *
2637 	 * NOTE!     PG_NEED_COMMIT is ignored.
2638 	 */
2639 	if (p->wire_count != 0) {
2640 		vm_page_protect(p, VM_PROT_NONE);
2641 		if (info->limit == 0)
2642 			p->valid = 0;
2643 		vm_page_wakeup(p);
2644 		return(0);
2645 	}
2646 
2647 	/*
2648 	 * limit is our clean_only flag.  If set and the page is dirty or
2649 	 * requires a commit, do not free it.  If set and the page is being
2650 	 * held by someone, do not free it.
2651 	 */
2652 	if (info->limit && p->valid) {
2653 		vm_page_test_dirty(p);
2654 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2655 			vm_page_wakeup(p);
2656 			return(0);
2657 		}
2658 	}
2659 
2660 	/*
2661 	 * Destroy the page
2662 	 */
2663 	vm_page_protect(p, VM_PROT_NONE);
2664 	vm_page_free(p);
2665 	return(0);
2666 }
2667 
2668 /*
2669  * Coalesces two objects backing up adjoining regions of memory into a
2670  * single object.
2671  *
2672  * returns TRUE if objects were combined.
2673  *
2674  * NOTE: Only works at the moment if the second object is NULL -
2675  *	 if it's not, which object do we lock first?
2676  *
2677  * Parameters:
2678  *	prev_object	First object to coalesce
2679  *	prev_offset	Offset into prev_object
2680  *	next_object	Second object into coalesce
2681  *	next_offset	Offset into next_object
2682  *
2683  *	prev_size	Size of reference to prev_object
2684  *	next_size	Size of reference to next_object
2685  *
2686  * The caller does not need to hold (prev_object) but must have a stable
2687  * pointer to it (typically by holding the vm_map locked).
2688  */
2689 boolean_t
2690 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2691 		   vm_size_t prev_size, vm_size_t next_size)
2692 {
2693 	vm_pindex_t next_pindex;
2694 
2695 	if (prev_object == NULL)
2696 		return (TRUE);
2697 
2698 	vm_object_hold(prev_object);
2699 
2700 	if (prev_object->type != OBJT_DEFAULT &&
2701 	    prev_object->type != OBJT_SWAP) {
2702 		vm_object_drop(prev_object);
2703 		return (FALSE);
2704 	}
2705 
2706 	/*
2707 	 * Try to collapse the object first
2708 	 */
2709 	vm_object_chain_acquire(prev_object, 0);
2710 	vm_object_collapse(prev_object, NULL);
2711 
2712 	/*
2713 	 * Can't coalesce if: . more than one reference . paged out . shadows
2714 	 * another object . has a copy elsewhere (any of which mean that the
2715 	 * pages not mapped to prev_entry may be in use anyway)
2716 	 */
2717 
2718 	if (prev_object->backing_object != NULL) {
2719 		vm_object_chain_release(prev_object);
2720 		vm_object_drop(prev_object);
2721 		return (FALSE);
2722 	}
2723 
2724 	prev_size >>= PAGE_SHIFT;
2725 	next_size >>= PAGE_SHIFT;
2726 	next_pindex = prev_pindex + prev_size;
2727 
2728 	if ((prev_object->ref_count > 1) &&
2729 	    (prev_object->size != next_pindex)) {
2730 		vm_object_chain_release(prev_object);
2731 		vm_object_drop(prev_object);
2732 		return (FALSE);
2733 	}
2734 
2735 	/*
2736 	 * Remove any pages that may still be in the object from a previous
2737 	 * deallocation.
2738 	 */
2739 	if (next_pindex < prev_object->size) {
2740 		vm_object_page_remove(prev_object,
2741 				      next_pindex,
2742 				      next_pindex + next_size, FALSE);
2743 		if (prev_object->type == OBJT_SWAP)
2744 			swap_pager_freespace(prev_object,
2745 					     next_pindex, next_size);
2746 	}
2747 
2748 	/*
2749 	 * Extend the object if necessary.
2750 	 */
2751 	if (next_pindex + next_size > prev_object->size)
2752 		prev_object->size = next_pindex + next_size;
2753 
2754 	vm_object_chain_release(prev_object);
2755 	vm_object_drop(prev_object);
2756 	return (TRUE);
2757 }
2758 
2759 /*
2760  * Make the object writable and flag is being possibly dirty.
2761  *
2762  * The object might not be held (or might be held but held shared),
2763  * the related vnode is probably not held either.  Object and vnode are
2764  * stable by virtue of the vm_page busied by the caller preventing
2765  * destruction.
2766  *
2767  * If the related mount is flagged MNTK_THR_SYNC we need to call
2768  * vsetobjdirty().  Filesystems using this option usually shortcut
2769  * synchronization by only scanning the syncer list.
2770  */
2771 void
2772 vm_object_set_writeable_dirty(vm_object_t object)
2773 {
2774 	struct vnode *vp;
2775 
2776 	/*vm_object_assert_held(object);*/
2777 	/*
2778 	 * Avoid contention in vm fault path by checking the state before
2779 	 * issuing an atomic op on it.
2780 	 */
2781 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2782 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2783 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2784 	}
2785 	if (object->type == OBJT_VNODE &&
2786 	    (vp = (struct vnode *)object->handle) != NULL) {
2787 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2788 			if (vp->v_mount &&
2789 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2790 				vsetobjdirty(vp);
2791 			} else {
2792 				vsetflags(vp, VOBJDIRTY);
2793 			}
2794 		}
2795 	}
2796 }
2797 
2798 #include "opt_ddb.h"
2799 #ifdef DDB
2800 #include <sys/kernel.h>
2801 
2802 #include <sys/cons.h>
2803 
2804 #include <ddb/ddb.h>
2805 
2806 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2807 				       vm_map_entry_t entry);
2808 static int	vm_object_in_map (vm_object_t object);
2809 
2810 /*
2811  * The caller must hold the object.
2812  */
2813 static int
2814 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2815 {
2816 	vm_map_t tmpm;
2817 	vm_map_entry_t tmpe;
2818 	vm_object_t obj, nobj;
2819 	int entcount;
2820 
2821 	if (map == 0)
2822 		return 0;
2823 	if (entry == 0) {
2824 		tmpe = map->header.next;
2825 		entcount = map->nentries;
2826 		while (entcount-- && (tmpe != &map->header)) {
2827 			if( _vm_object_in_map(map, object, tmpe)) {
2828 				return 1;
2829 			}
2830 			tmpe = tmpe->next;
2831 		}
2832 		return (0);
2833 	}
2834 	switch(entry->maptype) {
2835 	case VM_MAPTYPE_SUBMAP:
2836 		tmpm = entry->object.sub_map;
2837 		tmpe = tmpm->header.next;
2838 		entcount = tmpm->nentries;
2839 		while (entcount-- && tmpe != &tmpm->header) {
2840 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2841 				return 1;
2842 			}
2843 			tmpe = tmpe->next;
2844 		}
2845 		break;
2846 	case VM_MAPTYPE_NORMAL:
2847 	case VM_MAPTYPE_VPAGETABLE:
2848 		obj = entry->object.vm_object;
2849 		while (obj) {
2850 			if (obj == object) {
2851 				if (obj != entry->object.vm_object)
2852 					vm_object_drop(obj);
2853 				return 1;
2854 			}
2855 			while ((nobj = obj->backing_object) != NULL) {
2856 				vm_object_hold(nobj);
2857 				if (nobj == obj->backing_object)
2858 					break;
2859 				vm_object_drop(nobj);
2860 			}
2861 			if (obj != entry->object.vm_object) {
2862 				if (nobj)
2863 					vm_object_lock_swap();
2864 				vm_object_drop(obj);
2865 			}
2866 			obj = nobj;
2867 		}
2868 		break;
2869 	default:
2870 		break;
2871 	}
2872 	return 0;
2873 }
2874 
2875 static int vm_object_in_map_callback(struct proc *p, void *data);
2876 
2877 struct vm_object_in_map_info {
2878 	vm_object_t object;
2879 	int rv;
2880 };
2881 
2882 /*
2883  * Debugging only
2884  */
2885 static int
2886 vm_object_in_map(vm_object_t object)
2887 {
2888 	struct vm_object_in_map_info info;
2889 
2890 	info.rv = 0;
2891 	info.object = object;
2892 
2893 	allproc_scan(vm_object_in_map_callback, &info);
2894 	if (info.rv)
2895 		return 1;
2896 	if( _vm_object_in_map(&kernel_map, object, 0))
2897 		return 1;
2898 	if( _vm_object_in_map(&pager_map, object, 0))
2899 		return 1;
2900 	if( _vm_object_in_map(&buffer_map, object, 0))
2901 		return 1;
2902 	return 0;
2903 }
2904 
2905 /*
2906  * Debugging only
2907  */
2908 static int
2909 vm_object_in_map_callback(struct proc *p, void *data)
2910 {
2911 	struct vm_object_in_map_info *info = data;
2912 
2913 	if (p->p_vmspace) {
2914 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2915 			info->rv = 1;
2916 			return -1;
2917 		}
2918 	}
2919 	return (0);
2920 }
2921 
2922 DB_SHOW_COMMAND(vmochk, vm_object_check)
2923 {
2924 	vm_object_t object;
2925 	int n;
2926 
2927 	/*
2928 	 * make sure that internal objs are in a map somewhere
2929 	 * and none have zero ref counts.
2930 	 */
2931 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2932 		for (object = TAILQ_FIRST(&vm_object_lists[n]);
2933 				object != NULL;
2934 				object = TAILQ_NEXT(object, object_list)) {
2935 			if (object->type == OBJT_MARKER)
2936 				continue;
2937 			if (object->handle != NULL ||
2938 			    (object->type != OBJT_DEFAULT &&
2939 			     object->type != OBJT_SWAP)) {
2940 				continue;
2941 			}
2942 			if (object->ref_count == 0) {
2943 				db_printf("vmochk: internal obj has "
2944 					  "zero ref count: %ld\n",
2945 					  (long)object->size);
2946 			}
2947 			if (vm_object_in_map(object))
2948 				continue;
2949 			db_printf("vmochk: internal obj is not in a map: "
2950 				  "ref: %d, size: %lu: 0x%lx, "
2951 				  "backing_object: %p\n",
2952 				  object->ref_count, (u_long)object->size,
2953 				  (u_long)object->size,
2954 				  (void *)object->backing_object);
2955 		}
2956 	}
2957 }
2958 
2959 /*
2960  * Debugging only
2961  */
2962 DB_SHOW_COMMAND(object, vm_object_print_static)
2963 {
2964 	/* XXX convert args. */
2965 	vm_object_t object = (vm_object_t)addr;
2966 	boolean_t full = have_addr;
2967 
2968 	vm_page_t p;
2969 
2970 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2971 #define	count	was_count
2972 
2973 	int count;
2974 
2975 	if (object == NULL)
2976 		return;
2977 
2978 	db_iprintf(
2979 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2980 	    object, (int)object->type, (u_long)object->size,
2981 	    object->resident_page_count, object->ref_count, object->flags);
2982 	/*
2983 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2984 	 */
2985 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2986 	    object->shadow_count,
2987 	    object->backing_object ? object->backing_object->ref_count : 0,
2988 	    object->backing_object, (long)object->backing_object_offset);
2989 
2990 	if (!full)
2991 		return;
2992 
2993 	db_indent += 2;
2994 	count = 0;
2995 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2996 		if (count == 0)
2997 			db_iprintf("memory:=");
2998 		else if (count == 6) {
2999 			db_printf("\n");
3000 			db_iprintf(" ...");
3001 			count = 0;
3002 		} else
3003 			db_printf(",");
3004 		count++;
3005 
3006 		db_printf("(off=0x%lx,page=0x%lx)",
3007 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3008 	}
3009 	if (count != 0)
3010 		db_printf("\n");
3011 	db_indent -= 2;
3012 }
3013 
3014 /* XXX. */
3015 #undef count
3016 
3017 /*
3018  * XXX need this non-static entry for calling from vm_map_print.
3019  *
3020  * Debugging only
3021  */
3022 void
3023 vm_object_print(/* db_expr_t */ long addr,
3024 		boolean_t have_addr,
3025 		/* db_expr_t */ long count,
3026 		char *modif)
3027 {
3028 	vm_object_print_static(addr, have_addr, count, modif);
3029 }
3030 
3031 /*
3032  * Debugging only
3033  */
3034 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3035 {
3036 	vm_object_t object;
3037 	int nl = 0;
3038 	int c;
3039 	int n;
3040 
3041 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3042 		for (object = TAILQ_FIRST(&vm_object_lists[n]);
3043 				object != NULL;
3044 				object = TAILQ_NEXT(object, object_list)) {
3045 			vm_pindex_t idx, fidx;
3046 			vm_pindex_t osize;
3047 			vm_paddr_t pa = -1, padiff;
3048 			int rcount;
3049 			vm_page_t m;
3050 
3051 			if (object->type == OBJT_MARKER)
3052 				continue;
3053 			db_printf("new object: %p\n", (void *)object);
3054 			if ( nl > 18) {
3055 				c = cngetc();
3056 				if (c != ' ')
3057 					return;
3058 				nl = 0;
3059 			}
3060 			nl++;
3061 			rcount = 0;
3062 			fidx = 0;
3063 			osize = object->size;
3064 			if (osize > 128)
3065 				osize = 128;
3066 			for (idx = 0; idx < osize; idx++) {
3067 				m = vm_page_lookup(object, idx);
3068 				if (m == NULL) {
3069 					if (rcount) {
3070 						db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3071 							(long)fidx, rcount, (long)pa);
3072 						if ( nl > 18) {
3073 							c = cngetc();
3074 							if (c != ' ')
3075 								return;
3076 							nl = 0;
3077 						}
3078 						nl++;
3079 						rcount = 0;
3080 					}
3081 					continue;
3082 				}
3083 
3084 				if (rcount &&
3085 					(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3086 					++rcount;
3087 					continue;
3088 				}
3089 				if (rcount) {
3090 					padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3091 					padiff >>= PAGE_SHIFT;
3092 					padiff &= PQ_L2_MASK;
3093 					if (padiff == 0) {
3094 						pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3095 						++rcount;
3096 						continue;
3097 					}
3098 					db_printf(" index(%ld)run(%d)pa(0x%lx)",
3099 						(long)fidx, rcount, (long)pa);
3100 					db_printf("pd(%ld)\n", (long)padiff);
3101 					if ( nl > 18) {
3102 						c = cngetc();
3103 						if (c != ' ')
3104 							return;
3105 						nl = 0;
3106 					}
3107 					nl++;
3108 				}
3109 				fidx = idx;
3110 				pa = VM_PAGE_TO_PHYS(m);
3111 				rcount = 1;
3112 			}
3113 			if (rcount) {
3114 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3115 					(long)fidx, rcount, (long)pa);
3116 				if ( nl > 18) {
3117 					c = cngetc();
3118 					if (c != ' ')
3119 						return;
3120 					nl = 0;
3121 				}
3122 				nl++;
3123 			}
3124 		}
3125 	}
3126 }
3127 #endif /* DDB */
3128