xref: /dflybsd-src/sys/vm/vm_object.c (revision abf21138fc9d6b9536faf556858abf264f704f26)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object);
101 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 					     int pagerflags);
103 static void	vm_object_lock_init(vm_object_t);
104 static void	vm_object_hold_wait(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_getpooltoken(obj);
176 }
177 
178 void
179 vm_object_unlock(vm_object_t obj)
180 {
181 	lwkt_relpooltoken(obj);
182 }
183 
184 static __inline void
185 vm_object_assert_held(vm_object_t obj)
186 {
187 	ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup(obj));
188 }
189 
190 void
191 #ifndef DEBUG_LOCKS
192 vm_object_hold(vm_object_t obj)
193 #else
194 debugvm_object_hold(vm_object_t obj, char *file, int line)
195 #endif
196 {
197 	if (obj == NULL)
198 		return;
199 
200 	/*
201 	 * Object must be held (object allocation is stable due to callers
202 	 * context, typically already holding the token on a parent object)
203 	 * prior to potentially blocking on the lock, otherwise the object
204 	 * can get ripped away from us.
205 	 */
206 	refcount_acquire(&obj->hold_count);
207 	vm_object_lock(obj);
208 
209 #if defined(DEBUG_LOCKS)
210 	int i;
211 
212 	i = ffs(~obj->debug_hold_bitmap) - 1;
213 	if (i == -1) {
214 		kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
215 		obj->debug_hold_ovfl = 1;
216 	}
217 
218 	obj->debug_hold_bitmap |= (1 << i);
219 	obj->debug_hold_thrs[i] = curthread;
220 	obj->debug_hold_file[i] = file;
221 	obj->debug_hold_line[i] = line;
222 #endif
223 }
224 
225 void
226 vm_object_drop(vm_object_t obj)
227 {
228 	if (obj == NULL)
229 		return;
230 
231 #if defined(DEBUG_LOCKS)
232 	int found = 0;
233 	int i;
234 
235 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
236 		if ((obj->debug_hold_bitmap & (1 << i)) &&
237 		    (obj->debug_hold_thrs[i] == curthread)) {
238 			obj->debug_hold_bitmap &= ~(1 << i);
239 			obj->debug_hold_thrs[i] = NULL;
240 			obj->debug_hold_file[i] = NULL;
241 			obj->debug_hold_line[i] = 0;
242 			found = 1;
243 			break;
244 		}
245 	}
246 
247 	if (found == 0 && obj->debug_hold_ovfl == 0)
248 		panic("vm_object: attempt to drop hold on non-self-held obj");
249 #endif
250 
251 	/*
252 	 * The lock is a pool token, keep holding it across potential
253 	 * wakeups to interlock the tsleep/wakeup.
254 	 */
255 	if (refcount_release(&obj->hold_count))
256 		wakeup(obj);
257 	vm_object_unlock(obj);
258 }
259 
260 /*
261  * This can only be called while the caller holds the object
262  * with the OBJ_DEAD interlock.  Since there are no refs this
263  * is the only thing preventing an object destruction race.
264  */
265 static void
266 vm_object_hold_wait(vm_object_t obj)
267 {
268 	vm_object_lock(obj);
269 
270 #if defined(DEBUG_LOCKS)
271 	int i;
272 
273 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
274 		if ((obj->debug_hold_bitmap & (1 << i)) &&
275 		    (obj->debug_hold_thrs[i] == curthread))  {
276 			kprintf("vm_object %p: self-hold in at %s:%d\n", obj,
277 				obj->debug_hold_file[i], obj->debug_hold_line[i]);
278 			panic("vm_object: self-hold in terminate or collapse");
279 		}
280 	}
281 #endif
282 
283 	while (obj->hold_count)
284 		tsleep(obj, 0, "vmobjhld", 0);
285 
286 	vm_object_unlock(obj);
287 }
288 
289 
290 /*
291  * Initialize a freshly allocated object
292  *
293  * Used only by vm_object_allocate() and zinitna().
294  *
295  * No requirements.
296  */
297 void
298 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
299 {
300 	int incr;
301 
302 	RB_INIT(&object->rb_memq);
303 	LIST_INIT(&object->shadow_head);
304 
305 	object->type = type;
306 	object->size = size;
307 	object->ref_count = 1;
308 	object->hold_count = 0;
309 	object->flags = 0;
310 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
311 		vm_object_set_flag(object, OBJ_ONEMAPPING);
312 	object->paging_in_progress = 0;
313 	object->resident_page_count = 0;
314 	object->agg_pv_list_count = 0;
315 	object->shadow_count = 0;
316 	object->pg_color = next_index;
317 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
318 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
319 	else
320 		incr = size;
321 	next_index = (next_index + incr) & PQ_L2_MASK;
322 	object->handle = NULL;
323 	object->backing_object = NULL;
324 	object->backing_object_offset = (vm_ooffset_t) 0;
325 
326 	object->generation++;
327 	object->swblock_count = 0;
328 	RB_INIT(&object->swblock_root);
329 	vm_object_lock_init(object);
330 
331 	lwkt_gettoken(&vmobj_token);
332 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
333 	vm_object_count++;
334 	lwkt_reltoken(&vmobj_token);
335 }
336 
337 /*
338  * Initialize the VM objects module.
339  *
340  * Called from the low level boot code only.
341  */
342 void
343 vm_object_init(void)
344 {
345 	TAILQ_INIT(&vm_object_list);
346 
347 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
348 			    &kernel_object);
349 
350 	obj_zone = &obj_zone_store;
351 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
352 		vm_objects_init, VM_OBJECTS_INIT);
353 }
354 
355 void
356 vm_object_init2(void)
357 {
358 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
359 }
360 
361 /*
362  * Allocate and return a new object of the specified type and size.
363  *
364  * No requirements.
365  */
366 vm_object_t
367 vm_object_allocate(objtype_t type, vm_pindex_t size)
368 {
369 	vm_object_t result;
370 
371 	result = (vm_object_t) zalloc(obj_zone);
372 
373 	_vm_object_allocate(type, size, result);
374 
375 	return (result);
376 }
377 
378 /*
379  * Add an additional reference to a vm_object.
380  *
381  * Object passed by caller must be stable or caller must already
382  * hold vmobj_token to avoid races.
383  */
384 void
385 vm_object_reference(vm_object_t object)
386 {
387 	lwkt_gettoken(&vmobj_token);
388 	vm_object_hold(object);
389 	vm_object_reference_locked(object);
390 	vm_object_drop(object);
391 	lwkt_reltoken(&vmobj_token);
392 }
393 
394 void
395 vm_object_reference_locked(vm_object_t object)
396 {
397 	if (object) {
398 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
399 		/*NOTYET*/
400 		/*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
401 		object->ref_count++;
402 		if (object->type == OBJT_VNODE) {
403 			vref(object->handle);
404 			/* XXX what if the vnode is being destroyed? */
405 		}
406 	}
407 }
408 
409 /*
410  * Dereference an object and its underlying vnode.
411  *
412  * The caller must hold vmobj_token.
413  * The object must be locked but not held.  This function will eat the lock.
414  */
415 static void
416 vm_object_vndeallocate(vm_object_t object)
417 {
418 	struct vnode *vp = (struct vnode *) object->handle;
419 
420 	KASSERT(object->type == OBJT_VNODE,
421 	    ("vm_object_vndeallocate: not a vnode object"));
422 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
423 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
424 #ifdef INVARIANTS
425 	if (object->ref_count == 0) {
426 		vprint("vm_object_vndeallocate", vp);
427 		panic("vm_object_vndeallocate: bad object reference count");
428 	}
429 #endif
430 
431 	object->ref_count--;
432 	if (object->ref_count == 0)
433 		vclrflags(vp, VTEXT);
434 	vm_object_unlock(object);
435 	vrele(vp);
436 }
437 
438 /*
439  * Release a reference to the specified object, gained either through a
440  * vm_object_allocate or a vm_object_reference call.  When all references
441  * are gone, storage associated with this object may be relinquished.
442  *
443  * The caller does not have to hold the object locked but must have control
444  * over the reference in question in order to guarantee that the object
445  * does not get ripped out from under us.
446  */
447 void
448 vm_object_deallocate(vm_object_t object)
449 {
450 	lwkt_gettoken(&vmobj_token);
451 	vm_object_deallocate_locked(object);
452 	lwkt_reltoken(&vmobj_token);
453 }
454 
455 void
456 vm_object_deallocate_locked(vm_object_t object)
457 {
458 	vm_object_t temp;
459 
460 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
461 
462 	if (object)
463 		vm_object_lock(object);
464 
465 	while (object != NULL) {
466 		if (object->type == OBJT_VNODE) {
467 			vm_object_vndeallocate(object);
468 			/* vndeallocate ate the lock */
469 			break;
470 		}
471 
472 		if (object->ref_count == 0) {
473 			panic("vm_object_deallocate: object deallocated "
474 			      "too many times: %d", object->type);
475 		}
476 		if (object->ref_count > 2) {
477 			object->ref_count--;
478 			vm_object_unlock(object);
479 			break;
480 		}
481 
482 		/*
483 		 * We currently need the vm_token from this point on, and
484 		 * we must recheck ref_count after acquiring it.
485 		 */
486 		lwkt_gettoken(&vm_token);
487 
488 		if (object->ref_count > 2) {
489 			object->ref_count--;
490 			lwkt_reltoken(&vm_token);
491 			vm_object_unlock(object);
492 			break;
493 		}
494 
495 		/*
496 		 * Here on ref_count of one or two, which are special cases for
497 		 * objects.
498 		 *
499 		 * Nominal ref_count > 1 case if the second ref is not from
500 		 * a shadow.
501 		 */
502 		if (object->ref_count == 2 && object->shadow_count == 0) {
503 			vm_object_set_flag(object, OBJ_ONEMAPPING);
504 			object->ref_count--;
505 			lwkt_reltoken(&vm_token);
506 			vm_object_unlock(object);
507 			break;
508 		}
509 
510 		/*
511 		 * If the second ref is from a shadow we chain along it
512 		 * if object's handle is exhausted.
513 		 *
514 		 * We have to decrement object->ref_count before potentially
515 		 * collapsing the first shadow object or the collapse code
516 		 * will not be able to handle the degenerate case.
517 		 */
518 		if (object->ref_count == 2 && object->shadow_count == 1) {
519 			object->ref_count--;
520 			if (object->handle == NULL &&
521 			    (object->type == OBJT_DEFAULT ||
522 			     object->type == OBJT_SWAP)) {
523 				temp = LIST_FIRST(&object->shadow_head);
524 				KASSERT(temp != NULL,
525 					("vm_object_deallocate: ref_count: "
526 					"%d, shadow_count: %d",
527 					object->ref_count,
528 					object->shadow_count));
529 				lwkt_reltoken(&vm_token);
530 				vm_object_lock(temp);
531 
532 				if ((temp->handle == NULL) &&
533 				    (temp->type == OBJT_DEFAULT ||
534 				     temp->type == OBJT_SWAP)) {
535 					/*
536 					 * Special case, must handle ref_count
537 					 * manually to avoid recursion.
538 					 */
539 					temp->ref_count++;
540 					vm_object_lock_swap();
541 
542 					while (
543 						temp->paging_in_progress ||
544 						object->paging_in_progress
545 					) {
546 						vm_object_pip_wait(temp,
547 								   "objde1");
548 						vm_object_pip_wait(object,
549 								   "objde2");
550 					}
551 
552 					if (temp->ref_count == 1) {
553 						temp->ref_count--;
554 						vm_object_unlock(object);
555 						object = temp;
556 						goto doterm;
557 					}
558 
559 					lwkt_gettoken(&vm_token);
560 					vm_object_collapse(temp);
561 					lwkt_reltoken(&vm_token);
562 					vm_object_unlock(object);
563 					object = temp;
564 					continue;
565 				}
566 				vm_object_unlock(temp);
567 			} else {
568 				lwkt_reltoken(&vm_token);
569 			}
570 			vm_object_unlock(object);
571 			break;
572 		}
573 
574 		/*
575 		 * Normal dereferencing path
576 		 */
577 		object->ref_count--;
578 		if (object->ref_count != 0) {
579 			lwkt_reltoken(&vm_token);
580 			vm_object_unlock(object);
581 			break;
582 		}
583 
584 		/*
585 		 * Termination path
586 		 *
587 		 * We may have to loop to resolve races if we block getting
588 		 * temp's lock.  If temp is non NULL we have to swap the
589 		 * lock order so the original object lock as at the top
590 		 * of the lock heap.
591 		 */
592 		lwkt_reltoken(&vm_token);
593 doterm:
594 		while ((temp = object->backing_object) != NULL) {
595 			vm_object_lock(temp);
596 			if (temp == object->backing_object)
597 				break;
598 			vm_object_unlock(temp);
599 		}
600 		if (temp) {
601 			LIST_REMOVE(object, shadow_list);
602 			temp->shadow_count--;
603 			temp->generation++;
604 			object->backing_object = NULL;
605 			vm_object_lock_swap();
606 		}
607 
608 		/*
609 		 * Don't double-terminate, we could be in a termination
610 		 * recursion due to the terminate having to sync data
611 		 * to disk.
612 		 */
613 		if ((object->flags & OBJ_DEAD) == 0) {
614 			vm_object_terminate(object);
615 			/* termination ate the object lock */
616 		} else {
617 			vm_object_unlock(object);
618 		}
619 		object = temp;
620 	}
621 }
622 
623 /*
624  * Destroy the specified object, freeing up related resources.
625  *
626  * The object must have zero references.
627  *
628  * The caller must be holding vmobj_token and properly interlock with
629  * OBJ_DEAD (at the moment).
630  *
631  * The caller must have locked the object only, and not be holding it.
632  * This function will eat the caller's lock on the object.
633  */
634 static int vm_object_terminate_callback(vm_page_t p, void *data);
635 
636 void
637 vm_object_terminate(vm_object_t object)
638 {
639 	/*
640 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
641 	 * able to safely block.
642 	 */
643 	KKASSERT((object->flags & OBJ_DEAD) == 0);
644 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
645 	vm_object_set_flag(object, OBJ_DEAD);
646 
647 	/*
648 	 * Wait for the pageout daemon to be done with the object
649 	 */
650 	vm_object_pip_wait(object, "objtrm1");
651 
652 	KASSERT(!object->paging_in_progress,
653 		("vm_object_terminate: pageout in progress"));
654 
655 	/*
656 	 * Clean and free the pages, as appropriate. All references to the
657 	 * object are gone, so we don't need to lock it.
658 	 */
659 	if (object->type == OBJT_VNODE) {
660 		struct vnode *vp;
661 
662 		/*
663 		 * Clean pages and flush buffers.
664 		 */
665 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
666 
667 		vp = (struct vnode *) object->handle;
668 		vinvalbuf(vp, V_SAVE, 0, 0);
669 	}
670 
671 	/*
672 	 * Wait for any I/O to complete, after which there had better not
673 	 * be any references left on the object.
674 	 */
675 	vm_object_pip_wait(object, "objtrm2");
676 
677 	if (object->ref_count != 0) {
678 		panic("vm_object_terminate: object with references, "
679 		      "ref_count=%d", object->ref_count);
680 	}
681 
682 	/*
683 	 * Now free any remaining pages. For internal objects, this also
684 	 * removes them from paging queues. Don't free wired pages, just
685 	 * remove them from the object.
686 	 */
687 	lwkt_gettoken(&vm_token);
688 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
689 				vm_object_terminate_callback, NULL);
690 	lwkt_reltoken(&vm_token);
691 
692 	/*
693 	 * Let the pager know object is dead.
694 	 */
695 	vm_pager_deallocate(object);
696 
697 	/*
698 	 * Wait for the object hold count to hit zero, clean out pages as
699 	 * we go.
700 	 */
701 	lwkt_gettoken(&vm_token);
702 	for (;;) {
703 		vm_object_hold_wait(object);
704 		if (RB_ROOT(&object->rb_memq) == NULL)
705 			break;
706 		kprintf("vm_object_terminate: Warning, object %p "
707 			"still has %d pages\n",
708 			object, object->resident_page_count);
709 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
710 					vm_object_terminate_callback, NULL);
711 	}
712 	lwkt_reltoken(&vm_token);
713 
714 	/*
715 	 * There had better not be any pages left
716 	 */
717 	KKASSERT(object->resident_page_count == 0);
718 
719 	/*
720 	 * Remove the object from the global object list.
721 	 *
722 	 * (we are holding vmobj_token)
723 	 */
724 	TAILQ_REMOVE(&vm_object_list, object, object_list);
725 	vm_object_count--;
726 	vm_object_dead_wakeup(object);
727 	vm_object_unlock(object);
728 
729 	if (object->ref_count != 0) {
730 		panic("vm_object_terminate2: object with references, "
731 		      "ref_count=%d", object->ref_count);
732 	}
733 
734 	/*
735 	 * Free the space for the object.
736 	 */
737 	zfree(obj_zone, object);
738 }
739 
740 /*
741  * The caller must hold vm_token.
742  */
743 static int
744 vm_object_terminate_callback(vm_page_t p, void *data __unused)
745 {
746 	if (p->busy || (p->flags & PG_BUSY))
747 		panic("vm_object_terminate: freeing busy page %p", p);
748 	if (p->wire_count == 0) {
749 		vm_page_busy(p);
750 		vm_page_free(p);
751 		mycpu->gd_cnt.v_pfree++;
752 	} else {
753 		if (p->queue != PQ_NONE)
754 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
755 		vm_page_busy(p);
756 		vm_page_remove(p);
757 		vm_page_wakeup(p);
758 	}
759 	return(0);
760 }
761 
762 /*
763  * The object is dead but still has an object<->pager association.  Sleep
764  * and return.  The caller typically retests the association in a loop.
765  *
766  * Must be called with the vmobj_token held.
767  */
768 void
769 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
770 {
771 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
772 	if (object->handle) {
773 		vm_object_set_flag(object, OBJ_DEADWNT);
774 		tsleep(object, 0, wmesg, 0);
775 		/* object may be invalid after this point */
776 	}
777 }
778 
779 /*
780  * Wakeup anyone waiting for the object<->pager disassociation on
781  * a dead object.
782  *
783  * Must be called with the vmobj_token held.
784  */
785 void
786 vm_object_dead_wakeup(vm_object_t object)
787 {
788 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
789 	if (object->flags & OBJ_DEADWNT) {
790 		vm_object_clear_flag(object, OBJ_DEADWNT);
791 		wakeup(object);
792 	}
793 }
794 
795 /*
796  * Clean all dirty pages in the specified range of object.  Leaves page
797  * on whatever queue it is currently on.   If NOSYNC is set then do not
798  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
799  * leaving the object dirty.
800  *
801  * When stuffing pages asynchronously, allow clustering.  XXX we need a
802  * synchronous clustering mode implementation.
803  *
804  * Odd semantics: if start == end, we clean everything.
805  *
806  * The object must be locked? XXX
807  */
808 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
809 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
810 
811 void
812 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
813 		     int flags)
814 {
815 	struct rb_vm_page_scan_info info;
816 	struct vnode *vp;
817 	int wholescan;
818 	int pagerflags;
819 	int curgeneration;
820 
821 	vm_object_hold(object);
822 	if (object->type != OBJT_VNODE ||
823 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
824 		vm_object_drop(object);
825 		return;
826 	}
827 
828 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
829 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
830 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
831 
832 	vp = object->handle;
833 
834 	/*
835 	 * Interlock other major object operations.  This allows us to
836 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
837 	 */
838 	vm_object_set_flag(object, OBJ_CLEANING);
839 
840 	/*
841 	 * Handle 'entire object' case
842 	 */
843 	info.start_pindex = start;
844 	if (end == 0) {
845 		info.end_pindex = object->size - 1;
846 	} else {
847 		info.end_pindex = end - 1;
848 	}
849 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
850 	info.limit = flags;
851 	info.pagerflags = pagerflags;
852 	info.object = object;
853 
854 	/*
855 	 * If cleaning the entire object do a pass to mark the pages read-only.
856 	 * If everything worked out ok, clear OBJ_WRITEABLE and
857 	 * OBJ_MIGHTBEDIRTY.
858 	 */
859 	if (wholescan) {
860 		info.error = 0;
861 		lwkt_gettoken(&vm_token);
862 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
863 					vm_object_page_clean_pass1, &info);
864 		lwkt_reltoken(&vm_token);
865 		if (info.error == 0) {
866 			vm_object_clear_flag(object,
867 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
868 			if (object->type == OBJT_VNODE &&
869 			    (vp = (struct vnode *)object->handle) != NULL) {
870 				if (vp->v_flag & VOBJDIRTY)
871 					vclrflags(vp, VOBJDIRTY);
872 			}
873 		}
874 	}
875 
876 	/*
877 	 * Do a pass to clean all the dirty pages we find.
878 	 */
879 	do {
880 		info.error = 0;
881 		curgeneration = object->generation;
882 		lwkt_gettoken(&vm_token);
883 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
884 					vm_object_page_clean_pass2, &info);
885 		lwkt_reltoken(&vm_token);
886 	} while (info.error || curgeneration != object->generation);
887 
888 	vm_object_clear_flag(object, OBJ_CLEANING);
889 	vm_object_drop(object);
890 }
891 
892 /*
893  * The caller must hold vm_token.
894  */
895 static
896 int
897 vm_object_page_clean_pass1(struct vm_page *p, void *data)
898 {
899 	struct rb_vm_page_scan_info *info = data;
900 
901 	vm_page_flag_set(p, PG_CLEANCHK);
902 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
903 		info->error = 1;
904 	else
905 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
906 	return(0);
907 }
908 
909 /*
910  * The caller must hold vm_token.
911  */
912 static
913 int
914 vm_object_page_clean_pass2(struct vm_page *p, void *data)
915 {
916 	struct rb_vm_page_scan_info *info = data;
917 	int n;
918 
919 	/*
920 	 * Do not mess with pages that were inserted after we started
921 	 * the cleaning pass.
922 	 */
923 	if ((p->flags & PG_CLEANCHK) == 0)
924 		return(0);
925 
926 	/*
927 	 * Before wasting time traversing the pmaps, check for trivial
928 	 * cases where the page cannot be dirty.
929 	 */
930 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
931 		KKASSERT((p->dirty & p->valid) == 0);
932 		return(0);
933 	}
934 
935 	/*
936 	 * Check whether the page is dirty or not.  The page has been set
937 	 * to be read-only so the check will not race a user dirtying the
938 	 * page.
939 	 */
940 	vm_page_test_dirty(p);
941 	if ((p->dirty & p->valid) == 0) {
942 		vm_page_flag_clear(p, PG_CLEANCHK);
943 		return(0);
944 	}
945 
946 	/*
947 	 * If we have been asked to skip nosync pages and this is a
948 	 * nosync page, skip it.  Note that the object flags were
949 	 * not cleared in this case (because pass1 will have returned an
950 	 * error), so we do not have to set them.
951 	 */
952 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
953 		vm_page_flag_clear(p, PG_CLEANCHK);
954 		return(0);
955 	}
956 
957 	/*
958 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
959 	 * the pages that get successfully flushed.  Set info->error if
960 	 * we raced an object modification.
961 	 */
962 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
963 	if (n == 0)
964 		info->error = 1;
965 	return(0);
966 }
967 
968 /*
969  * Collect the specified page and nearby pages and flush them out.
970  * The number of pages flushed is returned.
971  *
972  * The caller must hold vm_token.
973  */
974 static int
975 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
976 {
977 	int runlen;
978 	int maxf;
979 	int chkb;
980 	int maxb;
981 	int i;
982 	int curgeneration;
983 	vm_pindex_t pi;
984 	vm_page_t maf[vm_pageout_page_count];
985 	vm_page_t mab[vm_pageout_page_count];
986 	vm_page_t ma[vm_pageout_page_count];
987 
988 	curgeneration = object->generation;
989 
990 	pi = p->pindex;
991 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
992 		if (object->generation != curgeneration) {
993 			return(0);
994 		}
995 	}
996 	KKASSERT(p->object == object && p->pindex == pi);
997 
998 	maxf = 0;
999 	for(i = 1; i < vm_pageout_page_count; i++) {
1000 		vm_page_t tp;
1001 
1002 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
1003 			if ((tp->flags & PG_BUSY) ||
1004 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1005 				 (tp->flags & PG_CLEANCHK) == 0) ||
1006 				(tp->busy != 0))
1007 				break;
1008 			if((tp->queue - tp->pc) == PQ_CACHE) {
1009 				vm_page_flag_clear(tp, PG_CLEANCHK);
1010 				break;
1011 			}
1012 			vm_page_test_dirty(tp);
1013 			if ((tp->dirty & tp->valid) == 0) {
1014 				vm_page_flag_clear(tp, PG_CLEANCHK);
1015 				break;
1016 			}
1017 			maf[ i - 1 ] = tp;
1018 			maxf++;
1019 			continue;
1020 		}
1021 		break;
1022 	}
1023 
1024 	maxb = 0;
1025 	chkb = vm_pageout_page_count -  maxf;
1026 	if (chkb) {
1027 		for(i = 1; i < chkb;i++) {
1028 			vm_page_t tp;
1029 
1030 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
1031 				if ((tp->flags & PG_BUSY) ||
1032 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1033 					 (tp->flags & PG_CLEANCHK) == 0) ||
1034 					(tp->busy != 0))
1035 					break;
1036 				if((tp->queue - tp->pc) == PQ_CACHE) {
1037 					vm_page_flag_clear(tp, PG_CLEANCHK);
1038 					break;
1039 				}
1040 				vm_page_test_dirty(tp);
1041 				if ((tp->dirty & tp->valid) == 0) {
1042 					vm_page_flag_clear(tp, PG_CLEANCHK);
1043 					break;
1044 				}
1045 				mab[ i - 1 ] = tp;
1046 				maxb++;
1047 				continue;
1048 			}
1049 			break;
1050 		}
1051 	}
1052 
1053 	for(i = 0; i < maxb; i++) {
1054 		int index = (maxb - i) - 1;
1055 		ma[index] = mab[i];
1056 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1057 	}
1058 	vm_page_flag_clear(p, PG_CLEANCHK);
1059 	ma[maxb] = p;
1060 	for(i = 0; i < maxf; i++) {
1061 		int index = (maxb + i) + 1;
1062 		ma[index] = maf[i];
1063 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1064 	}
1065 	runlen = maxb + maxf + 1;
1066 
1067 	vm_pageout_flush(ma, runlen, pagerflags);
1068 	for (i = 0; i < runlen; i++) {
1069 		if (ma[i]->valid & ma[i]->dirty) {
1070 			vm_page_protect(ma[i], VM_PROT_READ);
1071 			vm_page_flag_set(ma[i], PG_CLEANCHK);
1072 
1073 			/*
1074 			 * maxf will end up being the actual number of pages
1075 			 * we wrote out contiguously, non-inclusive of the
1076 			 * first page.  We do not count look-behind pages.
1077 			 */
1078 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1079 				maxf = i - maxb - 1;
1080 		}
1081 	}
1082 	return(maxf + 1);
1083 }
1084 
1085 /*
1086  * Same as vm_object_pmap_copy, except range checking really
1087  * works, and is meant for small sections of an object.
1088  *
1089  * This code protects resident pages by making them read-only
1090  * and is typically called on a fork or split when a page
1091  * is converted to copy-on-write.
1092  *
1093  * NOTE: If the page is already at VM_PROT_NONE, calling
1094  * vm_page_protect will have no effect.
1095  */
1096 void
1097 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1098 {
1099 	vm_pindex_t idx;
1100 	vm_page_t p;
1101 
1102 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1103 		return;
1104 
1105 	/*
1106 	 * spl protection needed to prevent races between the lookup,
1107 	 * an interrupt unbusy/free, and our protect call.
1108 	 */
1109 	lwkt_gettoken(&vm_token);
1110 	for (idx = start; idx < end; idx++) {
1111 		p = vm_page_lookup(object, idx);
1112 		if (p == NULL)
1113 			continue;
1114 		vm_page_protect(p, VM_PROT_READ);
1115 	}
1116 	lwkt_reltoken(&vm_token);
1117 }
1118 
1119 /*
1120  * Removes all physical pages in the specified object range from all
1121  * physical maps.
1122  *
1123  * The object must *not* be locked.
1124  */
1125 
1126 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1127 
1128 void
1129 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1130 {
1131 	struct rb_vm_page_scan_info info;
1132 
1133 	if (object == NULL)
1134 		return;
1135 	info.start_pindex = start;
1136 	info.end_pindex = end - 1;
1137 
1138 	lwkt_gettoken(&vm_token);
1139 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1140 				vm_object_pmap_remove_callback, &info);
1141 	if (start == 0 && end == object->size)
1142 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1143 	lwkt_reltoken(&vm_token);
1144 }
1145 
1146 /*
1147  * The caller must hold vm_token.
1148  */
1149 static int
1150 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1151 {
1152 	vm_page_protect(p, VM_PROT_NONE);
1153 	return(0);
1154 }
1155 
1156 /*
1157  * Implements the madvise function at the object/page level.
1158  *
1159  * MADV_WILLNEED	(any object)
1160  *
1161  *	Activate the specified pages if they are resident.
1162  *
1163  * MADV_DONTNEED	(any object)
1164  *
1165  *	Deactivate the specified pages if they are resident.
1166  *
1167  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1168  *
1169  *	Deactivate and clean the specified pages if they are
1170  *	resident.  This permits the process to reuse the pages
1171  *	without faulting or the kernel to reclaim the pages
1172  *	without I/O.
1173  *
1174  * No requirements.
1175  */
1176 void
1177 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1178 {
1179 	vm_pindex_t end, tpindex;
1180 	vm_object_t tobject;
1181 	vm_page_t m;
1182 
1183 	if (object == NULL)
1184 		return;
1185 
1186 	end = pindex + count;
1187 
1188 	lwkt_gettoken(&vm_token);
1189 
1190 	/*
1191 	 * Locate and adjust resident pages
1192 	 */
1193 	for (; pindex < end; pindex += 1) {
1194 relookup:
1195 		tobject = object;
1196 		tpindex = pindex;
1197 shadowlookup:
1198 		/*
1199 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1200 		 * and those pages must be OBJ_ONEMAPPING.
1201 		 */
1202 		if (advise == MADV_FREE) {
1203 			if ((tobject->type != OBJT_DEFAULT &&
1204 			     tobject->type != OBJT_SWAP) ||
1205 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1206 				continue;
1207 			}
1208 		}
1209 
1210 		/*
1211 		 * spl protection is required to avoid a race between the
1212 		 * lookup, an interrupt unbusy/free, and our busy check.
1213 		 */
1214 
1215 		m = vm_page_lookup(tobject, tpindex);
1216 
1217 		if (m == NULL) {
1218 			/*
1219 			 * There may be swap even if there is no backing page
1220 			 */
1221 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1222 				swap_pager_freespace(tobject, tpindex, 1);
1223 
1224 			/*
1225 			 * next object
1226 			 */
1227 			if (tobject->backing_object == NULL)
1228 				continue;
1229 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1230 			tobject = tobject->backing_object;
1231 			goto shadowlookup;
1232 		}
1233 
1234 		/*
1235 		 * If the page is busy or not in a normal active state,
1236 		 * we skip it.  If the page is not managed there are no
1237 		 * page queues to mess with.  Things can break if we mess
1238 		 * with pages in any of the below states.
1239 		 */
1240 		if (
1241 		    m->hold_count ||
1242 		    m->wire_count ||
1243 		    (m->flags & PG_UNMANAGED) ||
1244 		    m->valid != VM_PAGE_BITS_ALL
1245 		) {
1246 			continue;
1247 		}
1248 
1249  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1250   			goto relookup;
1251 		}
1252 		vm_page_busy(m);
1253 
1254 		/*
1255 		 * Theoretically once a page is known not to be busy, an
1256 		 * interrupt cannot come along and rip it out from under us.
1257 		 */
1258 
1259 		if (advise == MADV_WILLNEED) {
1260 			vm_page_activate(m);
1261 		} else if (advise == MADV_DONTNEED) {
1262 			vm_page_dontneed(m);
1263 		} else if (advise == MADV_FREE) {
1264 			/*
1265 			 * Mark the page clean.  This will allow the page
1266 			 * to be freed up by the system.  However, such pages
1267 			 * are often reused quickly by malloc()/free()
1268 			 * so we do not do anything that would cause
1269 			 * a page fault if we can help it.
1270 			 *
1271 			 * Specifically, we do not try to actually free
1272 			 * the page now nor do we try to put it in the
1273 			 * cache (which would cause a page fault on reuse).
1274 			 *
1275 			 * But we do make the page is freeable as we
1276 			 * can without actually taking the step of unmapping
1277 			 * it.
1278 			 */
1279 			pmap_clear_modify(m);
1280 			m->dirty = 0;
1281 			m->act_count = 0;
1282 			vm_page_dontneed(m);
1283 			if (tobject->type == OBJT_SWAP)
1284 				swap_pager_freespace(tobject, tpindex, 1);
1285 		}
1286 		vm_page_wakeup(m);
1287 	}
1288 	lwkt_reltoken(&vm_token);
1289 }
1290 
1291 /*
1292  * Create a new object which is backed by the specified existing object
1293  * range.  The source object reference is deallocated.
1294  *
1295  * The new object and offset into that object are returned in the source
1296  * parameters.
1297  *
1298  * No other requirements.
1299  */
1300 void
1301 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1302 {
1303 	vm_object_t source;
1304 	vm_object_t result;
1305 
1306 	source = *object;
1307 
1308 	/*
1309 	 * Don't create the new object if the old object isn't shared.
1310 	 */
1311 	lwkt_gettoken(&vm_token);
1312 
1313 	if (source != NULL &&
1314 	    source->ref_count == 1 &&
1315 	    source->handle == NULL &&
1316 	    (source->type == OBJT_DEFAULT ||
1317 	     source->type == OBJT_SWAP)) {
1318 		lwkt_reltoken(&vm_token);
1319 		return;
1320 	}
1321 
1322 	/*
1323 	 * Allocate a new object with the given length
1324 	 */
1325 
1326 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1327 		panic("vm_object_shadow: no object for shadowing");
1328 
1329 	/*
1330 	 * The new object shadows the source object, adding a reference to it.
1331 	 * Our caller changes his reference to point to the new object,
1332 	 * removing a reference to the source object.  Net result: no change
1333 	 * of reference count.
1334 	 *
1335 	 * Try to optimize the result object's page color when shadowing
1336 	 * in order to maintain page coloring consistency in the combined
1337 	 * shadowed object.
1338 	 */
1339 	result->backing_object = source;
1340 	if (source) {
1341 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1342 		source->shadow_count++;
1343 		source->generation++;
1344 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1345 	}
1346 
1347 	/*
1348 	 * Store the offset into the source object, and fix up the offset into
1349 	 * the new object.
1350 	 */
1351 	result->backing_object_offset = *offset;
1352 	lwkt_reltoken(&vm_token);
1353 
1354 	/*
1355 	 * Return the new things
1356 	 */
1357 	*offset = 0;
1358 	*object = result;
1359 }
1360 
1361 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1362 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1363 #define	OBSC_COLLAPSE_WAIT	0x0004
1364 
1365 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1366 
1367 /*
1368  * The caller must hold vm_token.
1369  */
1370 static __inline int
1371 vm_object_backing_scan(vm_object_t object, int op)
1372 {
1373 	struct rb_vm_page_scan_info info;
1374 	vm_object_t backing_object;
1375 
1376 	backing_object = object->backing_object;
1377 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1378 
1379 	/*
1380 	 * Initial conditions
1381 	 */
1382 
1383 	if (op & OBSC_TEST_ALL_SHADOWED) {
1384 		/*
1385 		 * We do not want to have to test for the existence of
1386 		 * swap pages in the backing object.  XXX but with the
1387 		 * new swapper this would be pretty easy to do.
1388 		 *
1389 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1390 		 * been ZFOD faulted yet?  If we do not test for this, the
1391 		 * shadow test may succeed! XXX
1392 		 */
1393 		if (backing_object->type != OBJT_DEFAULT) {
1394 			return(0);
1395 		}
1396 	}
1397 	if (op & OBSC_COLLAPSE_WAIT) {
1398 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1399 		vm_object_set_flag(backing_object, OBJ_DEAD);
1400 	}
1401 
1402 	/*
1403 	 * Our scan.   We have to retry if a negative error code is returned,
1404 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1405 	 * the scan had to be stopped because the parent does not completely
1406 	 * shadow the child.
1407 	 */
1408 	info.object = object;
1409 	info.backing_object = backing_object;
1410 	info.limit = op;
1411 	do {
1412 		info.error = 1;
1413 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1414 					vm_object_backing_scan_callback,
1415 					&info);
1416 	} while (info.error < 0);
1417 
1418 	return(info.error);
1419 }
1420 
1421 /*
1422  * The caller must hold vm_token.
1423  */
1424 static int
1425 vm_object_backing_scan_callback(vm_page_t p, void *data)
1426 {
1427 	struct rb_vm_page_scan_info *info = data;
1428 	vm_object_t backing_object;
1429 	vm_object_t object;
1430 	vm_pindex_t new_pindex;
1431 	vm_pindex_t backing_offset_index;
1432 	int op;
1433 
1434 	new_pindex = p->pindex - info->backing_offset_index;
1435 	op = info->limit;
1436 	object = info->object;
1437 	backing_object = info->backing_object;
1438 	backing_offset_index = info->backing_offset_index;
1439 
1440 	if (op & OBSC_TEST_ALL_SHADOWED) {
1441 		vm_page_t pp;
1442 
1443 		/*
1444 		 * Ignore pages outside the parent object's range
1445 		 * and outside the parent object's mapping of the
1446 		 * backing object.
1447 		 *
1448 		 * note that we do not busy the backing object's
1449 		 * page.
1450 		 */
1451 		if (
1452 		    p->pindex < backing_offset_index ||
1453 		    new_pindex >= object->size
1454 		) {
1455 			return(0);
1456 		}
1457 
1458 		/*
1459 		 * See if the parent has the page or if the parent's
1460 		 * object pager has the page.  If the parent has the
1461 		 * page but the page is not valid, the parent's
1462 		 * object pager must have the page.
1463 		 *
1464 		 * If this fails, the parent does not completely shadow
1465 		 * the object and we might as well give up now.
1466 		 */
1467 
1468 		pp = vm_page_lookup(object, new_pindex);
1469 		if ((pp == NULL || pp->valid == 0) &&
1470 		    !vm_pager_has_page(object, new_pindex)
1471 		) {
1472 			info->error = 0;	/* problemo */
1473 			return(-1);		/* stop the scan */
1474 		}
1475 	}
1476 
1477 	/*
1478 	 * Check for busy page
1479 	 */
1480 
1481 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1482 		vm_page_t pp;
1483 
1484 		if (op & OBSC_COLLAPSE_NOWAIT) {
1485 			if (
1486 			    (p->flags & PG_BUSY) ||
1487 			    !p->valid ||
1488 			    p->hold_count ||
1489 			    p->wire_count ||
1490 			    p->busy
1491 			) {
1492 				return(0);
1493 			}
1494 		} else if (op & OBSC_COLLAPSE_WAIT) {
1495 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1496 				/*
1497 				 * If we slept, anything could have
1498 				 * happened.   Ask that the scan be restarted.
1499 				 *
1500 				 * Since the object is marked dead, the
1501 				 * backing offset should not have changed.
1502 				 */
1503 				info->error = -1;
1504 				return(-1);
1505 			}
1506 		}
1507 
1508 		/*
1509 		 * Busy the page
1510 		 */
1511 		vm_page_busy(p);
1512 
1513 		KASSERT(
1514 		    p->object == backing_object,
1515 		    ("vm_object_qcollapse(): object mismatch")
1516 		);
1517 
1518 		/*
1519 		 * Destroy any associated swap
1520 		 */
1521 		if (backing_object->type == OBJT_SWAP)
1522 			swap_pager_freespace(backing_object, p->pindex, 1);
1523 
1524 		if (
1525 		    p->pindex < backing_offset_index ||
1526 		    new_pindex >= object->size
1527 		) {
1528 			/*
1529 			 * Page is out of the parent object's range, we
1530 			 * can simply destroy it.
1531 			 */
1532 			vm_page_protect(p, VM_PROT_NONE);
1533 			vm_page_free(p);
1534 			return(0);
1535 		}
1536 
1537 		pp = vm_page_lookup(object, new_pindex);
1538 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1539 			/*
1540 			 * page already exists in parent OR swap exists
1541 			 * for this location in the parent.  Destroy
1542 			 * the original page from the backing object.
1543 			 *
1544 			 * Leave the parent's page alone
1545 			 */
1546 			vm_page_protect(p, VM_PROT_NONE);
1547 			vm_page_free(p);
1548 			return(0);
1549 		}
1550 
1551 		/*
1552 		 * Page does not exist in parent, rename the
1553 		 * page from the backing object to the main object.
1554 		 *
1555 		 * If the page was mapped to a process, it can remain
1556 		 * mapped through the rename.
1557 		 */
1558 		if ((p->queue - p->pc) == PQ_CACHE)
1559 			vm_page_deactivate(p);
1560 
1561 		vm_page_rename(p, object, new_pindex);
1562 		/* page automatically made dirty by rename */
1563 	}
1564 	return(0);
1565 }
1566 
1567 /*
1568  * This version of collapse allows the operation to occur earlier and
1569  * when paging_in_progress is true for an object...  This is not a complete
1570  * operation, but should plug 99.9% of the rest of the leaks.
1571  *
1572  * The caller must hold vm_token and vmobj_token.
1573  * (only called from vm_object_collapse)
1574  */
1575 static void
1576 vm_object_qcollapse(vm_object_t object)
1577 {
1578 	vm_object_t backing_object = object->backing_object;
1579 
1580 	if (backing_object->ref_count != 1)
1581 		return;
1582 
1583 	backing_object->ref_count += 2;
1584 
1585 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1586 
1587 	backing_object->ref_count -= 2;
1588 }
1589 
1590 /*
1591  * Collapse an object with the object backing it.  Pages in the backing
1592  * object are moved into the parent, and the backing object is deallocated.
1593  *
1594  * The caller must hold (object).
1595  */
1596 void
1597 vm_object_collapse(vm_object_t object)
1598 {
1599 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1600 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1601 	vm_object_assert_held(object);
1602 
1603 	while (TRUE) {
1604 		vm_object_t backing_object;
1605 
1606 		/*
1607 		 * Verify that the conditions are right for collapse:
1608 		 *
1609 		 * The object exists and the backing object exists.
1610 		 */
1611 		if (object == NULL)
1612 			break;
1613 
1614 		if ((backing_object = object->backing_object) == NULL)
1615 			break;
1616 
1617 		vm_object_hold(backing_object);
1618 		if (backing_object != object->backing_object) {
1619 			vm_object_drop(backing_object);
1620 			continue;
1621 		}
1622 
1623 		/*
1624 		 * we check the backing object first, because it is most likely
1625 		 * not collapsable.
1626 		 */
1627 		if (backing_object->handle != NULL ||
1628 		    (backing_object->type != OBJT_DEFAULT &&
1629 		     backing_object->type != OBJT_SWAP) ||
1630 		    (backing_object->flags & OBJ_DEAD) ||
1631 		    object->handle != NULL ||
1632 		    (object->type != OBJT_DEFAULT &&
1633 		     object->type != OBJT_SWAP) ||
1634 		    (object->flags & OBJ_DEAD)) {
1635 			vm_object_drop(backing_object);
1636 			break;
1637 		}
1638 
1639 		if (
1640 		    object->paging_in_progress != 0 ||
1641 		    backing_object->paging_in_progress != 0
1642 		) {
1643 			vm_object_drop(backing_object);
1644 			vm_object_qcollapse(object);
1645 			break;
1646 		}
1647 
1648 		/*
1649 		 * We know that we can either collapse the backing object (if
1650 		 * the parent is the only reference to it) or (perhaps) have
1651 		 * the parent bypass the object if the parent happens to shadow
1652 		 * all the resident pages in the entire backing object.
1653 		 *
1654 		 * This is ignoring pager-backed pages such as swap pages.
1655 		 * vm_object_backing_scan fails the shadowing test in this
1656 		 * case.
1657 		 */
1658 
1659 		if (backing_object->ref_count == 1) {
1660 			/*
1661 			 * If there is exactly one reference to the backing
1662 			 * object, we can collapse it into the parent.
1663 			 */
1664 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1665 
1666 			/*
1667 			 * Move the pager from backing_object to object.
1668 			 */
1669 			if (backing_object->type == OBJT_SWAP) {
1670 				vm_object_pip_add(backing_object, 1);
1671 
1672 				/*
1673 				 * scrap the paging_offset junk and do a
1674 				 * discrete copy.  This also removes major
1675 				 * assumptions about how the swap-pager
1676 				 * works from where it doesn't belong.  The
1677 				 * new swapper is able to optimize the
1678 				 * destroy-source case.
1679 				 */
1680 
1681 				vm_object_pip_add(object, 1);
1682 				swap_pager_copy(
1683 				    backing_object,
1684 				    object,
1685 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1686 				vm_object_pip_wakeup(object);
1687 
1688 				vm_object_pip_wakeup(backing_object);
1689 			}
1690 			/*
1691 			 * Object now shadows whatever backing_object did.
1692 			 * Note that the reference to
1693 			 * backing_object->backing_object moves from within
1694 			 * backing_object to within object.
1695 			 */
1696 
1697 			LIST_REMOVE(object, shadow_list);
1698 			object->backing_object->shadow_count--;
1699 			object->backing_object->generation++;
1700 			if (backing_object->backing_object) {
1701 				LIST_REMOVE(backing_object, shadow_list);
1702 				backing_object->backing_object->shadow_count--;
1703 				backing_object->backing_object->generation++;
1704 			}
1705 			object->backing_object = backing_object->backing_object;
1706 			if (object->backing_object) {
1707 				LIST_INSERT_HEAD(
1708 				    &object->backing_object->shadow_head,
1709 				    object,
1710 				    shadow_list
1711 				);
1712 				object->backing_object->shadow_count++;
1713 				object->backing_object->generation++;
1714 			}
1715 
1716 			object->backing_object_offset +=
1717 			    backing_object->backing_object_offset;
1718 
1719 			/*
1720 			 * Discard backing_object.
1721 			 *
1722 			 * Since the backing object has no pages, no pager left,
1723 			 * and no object references within it, all that is
1724 			 * necessary is to dispose of it.
1725 			 */
1726 
1727 			KASSERT(backing_object->ref_count == 1,
1728 				("backing_object %p was somehow "
1729 				 "re-referenced during collapse!",
1730 				 backing_object));
1731 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1732 				("backing_object %p somehow has left "
1733 				 "over pages during collapse!",
1734 				 backing_object));
1735 
1736 			/*
1737 			 * Wait for hold count to hit zero
1738 			 */
1739 			vm_object_drop(backing_object);
1740 			vm_object_hold_wait(backing_object);
1741 
1742 			/* (we are holding vmobj_token) */
1743 			TAILQ_REMOVE(&vm_object_list, backing_object,
1744 				     object_list);
1745 			--backing_object->ref_count;	/* safety/debug */
1746 			vm_object_count--;
1747 
1748 			zfree(obj_zone, backing_object);
1749 
1750 			object_collapses++;
1751 		} else {
1752 			vm_object_t new_backing_object;
1753 
1754 			/*
1755 			 * If we do not entirely shadow the backing object,
1756 			 * there is nothing we can do so we give up.
1757 			 */
1758 
1759 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1760 				vm_object_drop(backing_object);
1761 				break;
1762 			}
1763 
1764 			/*
1765 			 * Make the parent shadow the next object in the
1766 			 * chain.  Deallocating backing_object will not remove
1767 			 * it, since its reference count is at least 2.
1768 			 */
1769 
1770 			LIST_REMOVE(object, shadow_list);
1771 			backing_object->shadow_count--;
1772 			backing_object->generation++;
1773 
1774 			new_backing_object = backing_object->backing_object;
1775 			if ((object->backing_object = new_backing_object) != NULL) {
1776 				vm_object_reference(new_backing_object);
1777 				LIST_INSERT_HEAD(
1778 				    &new_backing_object->shadow_head,
1779 				    object,
1780 				    shadow_list
1781 				);
1782 				new_backing_object->shadow_count++;
1783 				new_backing_object->generation++;
1784 				object->backing_object_offset +=
1785 					backing_object->backing_object_offset;
1786 			}
1787 
1788 			/*
1789 			 * Drop the reference count on backing_object. Since
1790 			 * its ref_count was at least 2, it will not vanish;
1791 			 * so we don't need to call vm_object_deallocate, but
1792 			 * we do anyway.
1793 			 */
1794 			vm_object_drop(backing_object);
1795 			vm_object_deallocate_locked(backing_object);
1796 			object_bypasses++;
1797 		}
1798 
1799 		/*
1800 		 * Try again with this object's new backing object.
1801 		 */
1802 	}
1803 }
1804 
1805 /*
1806  * Removes all physical pages in the specified object range from the
1807  * object's list of pages.
1808  *
1809  * No requirements.
1810  */
1811 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1812 
1813 void
1814 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1815 		      boolean_t clean_only)
1816 {
1817 	struct rb_vm_page_scan_info info;
1818 	int all;
1819 
1820 	/*
1821 	 * Degenerate cases and assertions
1822 	 */
1823 	lwkt_gettoken(&vm_token);
1824 	if (object == NULL ||
1825 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1826 		lwkt_reltoken(&vm_token);
1827 		return;
1828 	}
1829 	KASSERT(object->type != OBJT_PHYS,
1830 		("attempt to remove pages from a physical object"));
1831 
1832 	/*
1833 	 * Indicate that paging is occuring on the object
1834 	 */
1835 	vm_object_pip_add(object, 1);
1836 
1837 	/*
1838 	 * Figure out the actual removal range and whether we are removing
1839 	 * the entire contents of the object or not.  If removing the entire
1840 	 * contents, be sure to get all pages, even those that might be
1841 	 * beyond the end of the object.
1842 	 */
1843 	info.start_pindex = start;
1844 	if (end == 0)
1845 		info.end_pindex = (vm_pindex_t)-1;
1846 	else
1847 		info.end_pindex = end - 1;
1848 	info.limit = clean_only;
1849 	all = (start == 0 && info.end_pindex >= object->size - 1);
1850 
1851 	/*
1852 	 * Loop until we are sure we have gotten them all.
1853 	 */
1854 	do {
1855 		info.error = 0;
1856 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1857 					vm_object_page_remove_callback, &info);
1858 	} while (info.error);
1859 
1860 	/*
1861 	 * Remove any related swap if throwing away pages, or for
1862 	 * non-swap objects (the swap is a clean copy in that case).
1863 	 */
1864 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1865 		if (all)
1866 			swap_pager_freespace_all(object);
1867 		else
1868 			swap_pager_freespace(object, info.start_pindex,
1869 			     info.end_pindex - info.start_pindex + 1);
1870 	}
1871 
1872 	/*
1873 	 * Cleanup
1874 	 */
1875 	vm_object_pip_wakeup(object);
1876 	lwkt_reltoken(&vm_token);
1877 }
1878 
1879 /*
1880  * The caller must hold vm_token.
1881  */
1882 static int
1883 vm_object_page_remove_callback(vm_page_t p, void *data)
1884 {
1885 	struct rb_vm_page_scan_info *info = data;
1886 
1887 	/*
1888 	 * Wired pages cannot be destroyed, but they can be invalidated
1889 	 * and we do so if clean_only (limit) is not set.
1890 	 *
1891 	 * WARNING!  The page may be wired due to being part of a buffer
1892 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1893 	 *	     This is fine as part of a truncation but VFSs must be
1894 	 *	     sure to fix the buffer up when re-extending the file.
1895 	 */
1896 	if (p->wire_count != 0) {
1897 		vm_page_protect(p, VM_PROT_NONE);
1898 		if (info->limit == 0)
1899 			p->valid = 0;
1900 		return(0);
1901 	}
1902 
1903 	/*
1904 	 * The busy flags are only cleared at
1905 	 * interrupt -- minimize the spl transitions
1906 	 */
1907 
1908 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1909 		info->error = 1;
1910 		return(0);
1911 	}
1912 
1913 	/*
1914 	 * limit is our clean_only flag.  If set and the page is dirty, do
1915 	 * not free it.  If set and the page is being held by someone, do
1916 	 * not free it.
1917 	 */
1918 	if (info->limit && p->valid) {
1919 		vm_page_test_dirty(p);
1920 		if (p->valid & p->dirty)
1921 			return(0);
1922 		if (p->hold_count)
1923 			return(0);
1924 	}
1925 
1926 	/*
1927 	 * Destroy the page
1928 	 */
1929 	vm_page_busy(p);
1930 	vm_page_protect(p, VM_PROT_NONE);
1931 	vm_page_free(p);
1932 	return(0);
1933 }
1934 
1935 /*
1936  * Coalesces two objects backing up adjoining regions of memory into a
1937  * single object.
1938  *
1939  * returns TRUE if objects were combined.
1940  *
1941  * NOTE: Only works at the moment if the second object is NULL -
1942  *	 if it's not, which object do we lock first?
1943  *
1944  * Parameters:
1945  *	prev_object	First object to coalesce
1946  *	prev_offset	Offset into prev_object
1947  *	next_object	Second object into coalesce
1948  *	next_offset	Offset into next_object
1949  *
1950  *	prev_size	Size of reference to prev_object
1951  *	next_size	Size of reference to next_object
1952  *
1953  * The caller must hold vm_token and vmobj_token.
1954  *
1955  * The caller does not need to hold (prev_object) but must have a stable
1956  * pointer to it (typically by holding the vm_map locked).
1957  */
1958 boolean_t
1959 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1960 		   vm_size_t prev_size, vm_size_t next_size)
1961 {
1962 	vm_pindex_t next_pindex;
1963 
1964 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1965 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1966 
1967 	if (prev_object == NULL) {
1968 		return (TRUE);
1969 	}
1970 
1971 	vm_object_hold(prev_object);
1972 
1973 	if (prev_object->type != OBJT_DEFAULT &&
1974 	    prev_object->type != OBJT_SWAP) {
1975 		vm_object_drop(prev_object);
1976 		return (FALSE);
1977 	}
1978 
1979 	/*
1980 	 * Try to collapse the object first
1981 	 */
1982 	vm_object_collapse(prev_object);
1983 
1984 	/*
1985 	 * Can't coalesce if: . more than one reference . paged out . shadows
1986 	 * another object . has a copy elsewhere (any of which mean that the
1987 	 * pages not mapped to prev_entry may be in use anyway)
1988 	 */
1989 
1990 	if (prev_object->backing_object != NULL) {
1991 		vm_object_drop(prev_object);
1992 		return (FALSE);
1993 	}
1994 
1995 	prev_size >>= PAGE_SHIFT;
1996 	next_size >>= PAGE_SHIFT;
1997 	next_pindex = prev_pindex + prev_size;
1998 
1999 	if ((prev_object->ref_count > 1) &&
2000 	    (prev_object->size != next_pindex)) {
2001 		vm_object_drop(prev_object);
2002 		return (FALSE);
2003 	}
2004 
2005 	/*
2006 	 * Remove any pages that may still be in the object from a previous
2007 	 * deallocation.
2008 	 */
2009 	if (next_pindex < prev_object->size) {
2010 		vm_object_page_remove(prev_object,
2011 				      next_pindex,
2012 				      next_pindex + next_size, FALSE);
2013 		if (prev_object->type == OBJT_SWAP)
2014 			swap_pager_freespace(prev_object,
2015 					     next_pindex, next_size);
2016 	}
2017 
2018 	/*
2019 	 * Extend the object if necessary.
2020 	 */
2021 	if (next_pindex + next_size > prev_object->size)
2022 		prev_object->size = next_pindex + next_size;
2023 
2024 	vm_object_drop(prev_object);
2025 	return (TRUE);
2026 }
2027 
2028 /*
2029  * Make the object writable and flag is being possibly dirty.
2030  *
2031  * No requirements.
2032  */
2033 void
2034 vm_object_set_writeable_dirty(vm_object_t object)
2035 {
2036 	struct vnode *vp;
2037 
2038 	lwkt_gettoken(&vm_token);
2039 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2040 	if (object->type == OBJT_VNODE &&
2041 	    (vp = (struct vnode *)object->handle) != NULL) {
2042 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2043 			vsetflags(vp, VOBJDIRTY);
2044 		}
2045 	}
2046 	lwkt_reltoken(&vm_token);
2047 }
2048 
2049 #include "opt_ddb.h"
2050 #ifdef DDB
2051 #include <sys/kernel.h>
2052 
2053 #include <sys/cons.h>
2054 
2055 #include <ddb/ddb.h>
2056 
2057 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2058 				       vm_map_entry_t entry);
2059 static int	vm_object_in_map (vm_object_t object);
2060 
2061 /*
2062  * The caller must hold vm_token.
2063  */
2064 static int
2065 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2066 {
2067 	vm_map_t tmpm;
2068 	vm_map_entry_t tmpe;
2069 	vm_object_t obj;
2070 	int entcount;
2071 
2072 	if (map == 0)
2073 		return 0;
2074 	if (entry == 0) {
2075 		tmpe = map->header.next;
2076 		entcount = map->nentries;
2077 		while (entcount-- && (tmpe != &map->header)) {
2078 			if( _vm_object_in_map(map, object, tmpe)) {
2079 				return 1;
2080 			}
2081 			tmpe = tmpe->next;
2082 		}
2083 		return (0);
2084 	}
2085 	switch(entry->maptype) {
2086 	case VM_MAPTYPE_SUBMAP:
2087 		tmpm = entry->object.sub_map;
2088 		tmpe = tmpm->header.next;
2089 		entcount = tmpm->nentries;
2090 		while (entcount-- && tmpe != &tmpm->header) {
2091 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2092 				return 1;
2093 			}
2094 			tmpe = tmpe->next;
2095 		}
2096 		break;
2097 	case VM_MAPTYPE_NORMAL:
2098 	case VM_MAPTYPE_VPAGETABLE:
2099 		obj = entry->object.vm_object;
2100 		while (obj) {
2101 			if (obj == object)
2102 				return 1;
2103 			obj = obj->backing_object;
2104 		}
2105 		break;
2106 	default:
2107 		break;
2108 	}
2109 	return 0;
2110 }
2111 
2112 static int vm_object_in_map_callback(struct proc *p, void *data);
2113 
2114 struct vm_object_in_map_info {
2115 	vm_object_t object;
2116 	int rv;
2117 };
2118 
2119 /*
2120  * Debugging only
2121  */
2122 static int
2123 vm_object_in_map(vm_object_t object)
2124 {
2125 	struct vm_object_in_map_info info;
2126 
2127 	info.rv = 0;
2128 	info.object = object;
2129 
2130 	allproc_scan(vm_object_in_map_callback, &info);
2131 	if (info.rv)
2132 		return 1;
2133 	if( _vm_object_in_map(&kernel_map, object, 0))
2134 		return 1;
2135 	if( _vm_object_in_map(&pager_map, object, 0))
2136 		return 1;
2137 	if( _vm_object_in_map(&buffer_map, object, 0))
2138 		return 1;
2139 	return 0;
2140 }
2141 
2142 /*
2143  * Debugging only
2144  */
2145 static int
2146 vm_object_in_map_callback(struct proc *p, void *data)
2147 {
2148 	struct vm_object_in_map_info *info = data;
2149 
2150 	if (p->p_vmspace) {
2151 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2152 			info->rv = 1;
2153 			return -1;
2154 		}
2155 	}
2156 	return (0);
2157 }
2158 
2159 DB_SHOW_COMMAND(vmochk, vm_object_check)
2160 {
2161 	vm_object_t object;
2162 
2163 	/*
2164 	 * make sure that internal objs are in a map somewhere
2165 	 * and none have zero ref counts.
2166 	 */
2167 	for (object = TAILQ_FIRST(&vm_object_list);
2168 			object != NULL;
2169 			object = TAILQ_NEXT(object, object_list)) {
2170 		if (object->type == OBJT_MARKER)
2171 			continue;
2172 		if (object->handle == NULL &&
2173 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2174 			if (object->ref_count == 0) {
2175 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2176 					(long)object->size);
2177 			}
2178 			if (!vm_object_in_map(object)) {
2179 				db_printf(
2180 			"vmochk: internal obj is not in a map: "
2181 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2182 				    object->ref_count, (u_long)object->size,
2183 				    (u_long)object->size,
2184 				    (void *)object->backing_object);
2185 			}
2186 		}
2187 	}
2188 }
2189 
2190 /*
2191  * Debugging only
2192  */
2193 DB_SHOW_COMMAND(object, vm_object_print_static)
2194 {
2195 	/* XXX convert args. */
2196 	vm_object_t object = (vm_object_t)addr;
2197 	boolean_t full = have_addr;
2198 
2199 	vm_page_t p;
2200 
2201 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2202 #define	count	was_count
2203 
2204 	int count;
2205 
2206 	if (object == NULL)
2207 		return;
2208 
2209 	db_iprintf(
2210 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2211 	    object, (int)object->type, (u_long)object->size,
2212 	    object->resident_page_count, object->ref_count, object->flags);
2213 	/*
2214 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2215 	 */
2216 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2217 	    object->shadow_count,
2218 	    object->backing_object ? object->backing_object->ref_count : 0,
2219 	    object->backing_object, (long)object->backing_object_offset);
2220 
2221 	if (!full)
2222 		return;
2223 
2224 	db_indent += 2;
2225 	count = 0;
2226 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2227 		if (count == 0)
2228 			db_iprintf("memory:=");
2229 		else if (count == 6) {
2230 			db_printf("\n");
2231 			db_iprintf(" ...");
2232 			count = 0;
2233 		} else
2234 			db_printf(",");
2235 		count++;
2236 
2237 		db_printf("(off=0x%lx,page=0x%lx)",
2238 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2239 	}
2240 	if (count != 0)
2241 		db_printf("\n");
2242 	db_indent -= 2;
2243 }
2244 
2245 /* XXX. */
2246 #undef count
2247 
2248 /*
2249  * XXX need this non-static entry for calling from vm_map_print.
2250  *
2251  * Debugging only
2252  */
2253 void
2254 vm_object_print(/* db_expr_t */ long addr,
2255 		boolean_t have_addr,
2256 		/* db_expr_t */ long count,
2257 		char *modif)
2258 {
2259 	vm_object_print_static(addr, have_addr, count, modif);
2260 }
2261 
2262 /*
2263  * Debugging only
2264  */
2265 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2266 {
2267 	vm_object_t object;
2268 	int nl = 0;
2269 	int c;
2270 	for (object = TAILQ_FIRST(&vm_object_list);
2271 			object != NULL;
2272 			object = TAILQ_NEXT(object, object_list)) {
2273 		vm_pindex_t idx, fidx;
2274 		vm_pindex_t osize;
2275 		vm_paddr_t pa = -1, padiff;
2276 		int rcount;
2277 		vm_page_t m;
2278 
2279 		if (object->type == OBJT_MARKER)
2280 			continue;
2281 		db_printf("new object: %p\n", (void *)object);
2282 		if ( nl > 18) {
2283 			c = cngetc();
2284 			if (c != ' ')
2285 				return;
2286 			nl = 0;
2287 		}
2288 		nl++;
2289 		rcount = 0;
2290 		fidx = 0;
2291 		osize = object->size;
2292 		if (osize > 128)
2293 			osize = 128;
2294 		for (idx = 0; idx < osize; idx++) {
2295 			m = vm_page_lookup(object, idx);
2296 			if (m == NULL) {
2297 				if (rcount) {
2298 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2299 						(long)fidx, rcount, (long)pa);
2300 					if ( nl > 18) {
2301 						c = cngetc();
2302 						if (c != ' ')
2303 							return;
2304 						nl = 0;
2305 					}
2306 					nl++;
2307 					rcount = 0;
2308 				}
2309 				continue;
2310 			}
2311 
2312 
2313 			if (rcount &&
2314 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2315 				++rcount;
2316 				continue;
2317 			}
2318 			if (rcount) {
2319 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2320 				padiff >>= PAGE_SHIFT;
2321 				padiff &= PQ_L2_MASK;
2322 				if (padiff == 0) {
2323 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2324 					++rcount;
2325 					continue;
2326 				}
2327 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2328 					(long)fidx, rcount, (long)pa);
2329 				db_printf("pd(%ld)\n", (long)padiff);
2330 				if ( nl > 18) {
2331 					c = cngetc();
2332 					if (c != ' ')
2333 						return;
2334 					nl = 0;
2335 				}
2336 				nl++;
2337 			}
2338 			fidx = idx;
2339 			pa = VM_PAGE_TO_PHYS(m);
2340 			rcount = 1;
2341 		}
2342 		if (rcount) {
2343 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2344 				(long)fidx, rcount, (long)pa);
2345 			if ( nl > 18) {
2346 				c = cngetc();
2347 				if (c != ' ')
2348 					return;
2349 				nl = 0;
2350 			}
2351 			nl++;
2352 		}
2353 	}
2354 }
2355 #endif /* DDB */
2356