xref: /dflybsd-src/sys/vm/vm_object.c (revision a563ca70e68142ccf7f50a6f129665fd8cb66d98)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object,
101 				    vm_object_t backing_object);
102 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103 					     int pagerflags);
104 static void	vm_object_lock_init(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_gettoken(&obj->token);
176 }
177 
178 void
179 vm_object_lock_shared(vm_object_t obj)
180 {
181 	lwkt_gettoken_shared(&obj->token);
182 }
183 
184 void
185 vm_object_unlock(vm_object_t obj)
186 {
187 	lwkt_reltoken(&obj->token);
188 }
189 
190 static __inline void
191 vm_object_assert_held(vm_object_t obj)
192 {
193 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
194 }
195 
196 void
197 #ifndef DEBUG_LOCKS
198 vm_object_hold(vm_object_t obj)
199 #else
200 debugvm_object_hold(vm_object_t obj, char *file, int line)
201 #endif
202 {
203 	KKASSERT(obj != NULL);
204 
205 	/*
206 	 * Object must be held (object allocation is stable due to callers
207 	 * context, typically already holding the token on a parent object)
208 	 * prior to potentially blocking on the lock, otherwise the object
209 	 * can get ripped away from us.
210 	 */
211 	refcount_acquire(&obj->hold_count);
212 	vm_object_lock(obj);
213 
214 #if defined(DEBUG_LOCKS)
215 	int i;
216 	u_int mask;
217 
218 	for (;;) {
219 		mask = ~obj->debug_hold_bitmap;
220 		cpu_ccfence();
221 		if (mask == 0xFFFFFFFFU) {
222 			if (obj->debug_hold_ovfl == 0)
223 				obj->debug_hold_ovfl = 1;
224 			break;
225 		}
226 		i = ffs(mask) - 1;
227 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
228 				      ~mask | (1 << i))) {
229 			obj->debug_hold_bitmap |= (1 << i);
230 			obj->debug_hold_thrs[i] = curthread;
231 			obj->debug_hold_file[i] = file;
232 			obj->debug_hold_line[i] = line;
233 			break;
234 		}
235 	}
236 #endif
237 }
238 
239 void
240 #ifndef DEBUG_LOCKS
241 vm_object_hold_shared(vm_object_t obj)
242 #else
243 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
244 #endif
245 {
246 	KKASSERT(obj != NULL);
247 
248 	/*
249 	 * Object must be held (object allocation is stable due to callers
250 	 * context, typically already holding the token on a parent object)
251 	 * prior to potentially blocking on the lock, otherwise the object
252 	 * can get ripped away from us.
253 	 */
254 	refcount_acquire(&obj->hold_count);
255 	vm_object_lock_shared(obj);
256 
257 #if defined(DEBUG_LOCKS)
258 	int i;
259 	u_int mask;
260 
261 	for (;;) {
262 		mask = ~obj->debug_hold_bitmap;
263 		cpu_ccfence();
264 		if (mask == 0xFFFFFFFFU) {
265 			if (obj->debug_hold_ovfl == 0)
266 				obj->debug_hold_ovfl = 1;
267 			break;
268 		}
269 		i = ffs(mask) - 1;
270 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
271 				      ~mask | (1 << i))) {
272 			obj->debug_hold_bitmap |= (1 << i);
273 			obj->debug_hold_thrs[i] = curthread;
274 			obj->debug_hold_file[i] = file;
275 			obj->debug_hold_line[i] = line;
276 			break;
277 		}
278 	}
279 #endif
280 }
281 
282 /*
283  * Drop the token and hold_count on the object.
284  */
285 void
286 vm_object_drop(vm_object_t obj)
287 {
288 	if (obj == NULL)
289 		return;
290 
291 #if defined(DEBUG_LOCKS)
292 	int found = 0;
293 	int i;
294 
295 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
296 		if ((obj->debug_hold_bitmap & (1 << i)) &&
297 		    (obj->debug_hold_thrs[i] == curthread)) {
298 			obj->debug_hold_bitmap &= ~(1 << i);
299 			obj->debug_hold_thrs[i] = NULL;
300 			obj->debug_hold_file[i] = NULL;
301 			obj->debug_hold_line[i] = 0;
302 			found = 1;
303 			break;
304 		}
305 	}
306 
307 	if (found == 0 && obj->debug_hold_ovfl == 0)
308 		panic("vm_object: attempt to drop hold on non-self-held obj");
309 #endif
310 
311 	/*
312 	 * No new holders should be possible once we drop hold_count 1->0 as
313 	 * there is no longer any way to reference the object.
314 	 */
315 	KKASSERT(obj->hold_count > 0);
316 	if (refcount_release(&obj->hold_count)) {
317 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
318 			vm_object_unlock(obj);
319 			zfree(obj_zone, obj);
320 		} else {
321 			vm_object_unlock(obj);
322 		}
323 	} else {
324 		vm_object_unlock(obj);
325 	}
326 }
327 
328 /*
329  * Initialize a freshly allocated object
330  *
331  * Used only by vm_object_allocate() and zinitna().
332  *
333  * No requirements.
334  */
335 void
336 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
337 {
338 	int incr;
339 
340 	RB_INIT(&object->rb_memq);
341 	LIST_INIT(&object->shadow_head);
342 	lwkt_token_init(&object->token, "vmobj");
343 
344 	object->type = type;
345 	object->size = size;
346 	object->ref_count = 1;
347 	object->hold_count = 0;
348 	object->flags = 0;
349 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
350 		vm_object_set_flag(object, OBJ_ONEMAPPING);
351 	object->paging_in_progress = 0;
352 	object->resident_page_count = 0;
353 	object->agg_pv_list_count = 0;
354 	object->shadow_count = 0;
355 #ifdef SMP
356 	/* cpu localization twist */
357 	object->pg_color = (int)(intptr_t)curthread;
358 #else
359 	object->pg_color = next_index;
360 #endif
361 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
362 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
363 	else
364 		incr = size;
365 	next_index = (next_index + incr) & PQ_L2_MASK;
366 	object->handle = NULL;
367 	object->backing_object = NULL;
368 	object->backing_object_offset = (vm_ooffset_t)0;
369 
370 	object->generation++;
371 	object->swblock_count = 0;
372 	RB_INIT(&object->swblock_root);
373 	vm_object_lock_init(object);
374 
375 	lwkt_gettoken(&vmobj_token);
376 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
377 	vm_object_count++;
378 	lwkt_reltoken(&vmobj_token);
379 }
380 
381 /*
382  * Initialize the VM objects module.
383  *
384  * Called from the low level boot code only.
385  */
386 void
387 vm_object_init(void)
388 {
389 	TAILQ_INIT(&vm_object_list);
390 
391 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
392 			    &kernel_object);
393 
394 	obj_zone = &obj_zone_store;
395 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
396 		vm_objects_init, VM_OBJECTS_INIT);
397 }
398 
399 void
400 vm_object_init2(void)
401 {
402 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
403 }
404 
405 /*
406  * Allocate and return a new object of the specified type and size.
407  *
408  * No requirements.
409  */
410 vm_object_t
411 vm_object_allocate(objtype_t type, vm_pindex_t size)
412 {
413 	vm_object_t result;
414 
415 	result = (vm_object_t) zalloc(obj_zone);
416 
417 	_vm_object_allocate(type, size, result);
418 
419 	return (result);
420 }
421 
422 /*
423  * Add an additional reference to a vm_object.  The object must already be
424  * held.  The original non-lock version is no longer supported.  The object
425  * must NOT be chain locked by anyone at the time the reference is added.
426  *
427  * Referencing a chain-locked object can blow up the fairly sensitive
428  * ref_count and shadow_count tests in the deallocator.  Most callers
429  * will call vm_object_chain_wait() prior to calling
430  * vm_object_reference_locked() to avoid the case.
431  *
432  * The object must be held.
433  */
434 void
435 vm_object_reference_locked(vm_object_t object)
436 {
437 	KKASSERT(object != NULL);
438 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
439 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
440 	object->ref_count++;
441 	if (object->type == OBJT_VNODE) {
442 		vref(object->handle);
443 		/* XXX what if the vnode is being destroyed? */
444 	}
445 }
446 
447 /*
448  * Object OBJ_CHAINLOCK lock handling.
449  *
450  * The caller can chain-lock backing objects recursively and then
451  * use vm_object_chain_release_all() to undo the whole chain.
452  *
453  * Chain locks are used to prevent collapses and are only applicable
454  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
455  * on other object types are ignored.  This is also important because
456  * it allows e.g. the vnode underlying a memory mapping to take concurrent
457  * faults.
458  *
459  * The object must usually be held on entry, though intermediate
460  * objects need not be held on release.
461  */
462 void
463 vm_object_chain_wait(vm_object_t object)
464 {
465 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
466 	while (object->flags & OBJ_CHAINLOCK) {
467 		vm_object_set_flag(object, OBJ_CHAINWANT);
468 		tsleep(object, 0, "objchain", 0);
469 	}
470 }
471 
472 void
473 vm_object_chain_acquire(vm_object_t object)
474 {
475 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
476 		vm_object_chain_wait(object);
477 		vm_object_set_flag(object, OBJ_CHAINLOCK);
478 	}
479 }
480 
481 void
482 vm_object_chain_release(vm_object_t object)
483 {
484 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
485 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
486 		KKASSERT(object->flags & OBJ_CHAINLOCK);
487 		if (object->flags & OBJ_CHAINWANT) {
488 			vm_object_clear_flag(object,
489 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
490 			wakeup(object);
491 		} else {
492 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
493 		}
494 	}
495 }
496 
497 /*
498  * This releases the entire chain of objects from first_object to and
499  * including stopobj, flowing through object->backing_object.
500  *
501  * We release stopobj first as an optimization as this object is most
502  * likely to be shared across multiple processes.
503  */
504 void
505 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
506 {
507 	vm_object_t backing_object;
508 	vm_object_t object;
509 
510 	vm_object_chain_release(stopobj);
511 	object = first_object;
512 
513 	while (object != stopobj) {
514 		KKASSERT(object);
515 		if (object != first_object)
516 			vm_object_hold(object);
517 		backing_object = object->backing_object;
518 		vm_object_chain_release(object);
519 		if (object != first_object)
520 			vm_object_drop(object);
521 		object = backing_object;
522 	}
523 }
524 
525 /*
526  * Dereference an object and its underlying vnode.
527  *
528  * The object must be held and will be held on return.
529  */
530 static void
531 vm_object_vndeallocate(vm_object_t object)
532 {
533 	struct vnode *vp = (struct vnode *) object->handle;
534 
535 	KASSERT(object->type == OBJT_VNODE,
536 	    ("vm_object_vndeallocate: not a vnode object"));
537 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
538 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
539 #ifdef INVARIANTS
540 	if (object->ref_count == 0) {
541 		vprint("vm_object_vndeallocate", vp);
542 		panic("vm_object_vndeallocate: bad object reference count");
543 	}
544 #endif
545 	object->ref_count--;
546 	if (object->ref_count == 0)
547 		vclrflags(vp, VTEXT);
548 	vrele(vp);
549 }
550 
551 /*
552  * Release a reference to the specified object, gained either through a
553  * vm_object_allocate or a vm_object_reference call.  When all references
554  * are gone, storage associated with this object may be relinquished.
555  *
556  * The caller does not have to hold the object locked but must have control
557  * over the reference in question in order to guarantee that the object
558  * does not get ripped out from under us.
559  */
560 void
561 vm_object_deallocate(vm_object_t object)
562 {
563 	if (object) {
564 		vm_object_hold(object);
565 		vm_object_deallocate_locked(object);
566 		vm_object_drop(object);
567 	}
568 }
569 
570 void
571 vm_object_deallocate_locked(vm_object_t object)
572 {
573 	struct vm_object_dealloc_list *dlist = NULL;
574 	struct vm_object_dealloc_list *dtmp;
575 	vm_object_t temp;
576 	int must_drop = 0;
577 
578 	/*
579 	 * We may chain deallocate object, but additional objects may
580 	 * collect on the dlist which also have to be deallocated.  We
581 	 * must avoid a recursion, vm_object chains can get deep.
582 	 */
583 again:
584 	while (object != NULL) {
585 #if 0
586 		/*
587 		 * Don't rip a ref_count out from under an object undergoing
588 		 * collapse, it will confuse the collapse code.
589 		 */
590 		vm_object_chain_wait(object);
591 #endif
592 		if (object->type == OBJT_VNODE) {
593 			vm_object_vndeallocate(object);
594 			break;
595 		}
596 
597 		if (object->ref_count == 0) {
598 			panic("vm_object_deallocate: object deallocated "
599 			      "too many times: %d", object->type);
600 		}
601 		if (object->ref_count > 2) {
602 			object->ref_count--;
603 			break;
604 		}
605 
606 		/*
607 		 * Here on ref_count of one or two, which are special cases for
608 		 * objects.
609 		 *
610 		 * Nominal ref_count > 1 case if the second ref is not from
611 		 * a shadow.
612 		 */
613 		if (object->ref_count == 2 && object->shadow_count == 0) {
614 			vm_object_set_flag(object, OBJ_ONEMAPPING);
615 			object->ref_count--;
616 			break;
617 		}
618 
619 		/*
620 		 * If the second ref is from a shadow we chain along it
621 		 * upwards if object's handle is exhausted.
622 		 *
623 		 * We have to decrement object->ref_count before potentially
624 		 * collapsing the first shadow object or the collapse code
625 		 * will not be able to handle the degenerate case to remove
626 		 * object.  However, if we do it too early the object can
627 		 * get ripped out from under us.
628 		 */
629 		if (object->ref_count == 2 && object->shadow_count == 1 &&
630 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
631 					       object->type == OBJT_SWAP)) {
632 			temp = LIST_FIRST(&object->shadow_head);
633 			KKASSERT(temp != NULL);
634 			vm_object_hold(temp);
635 
636 			/*
637 			 * Wait for any paging to complete so the collapse
638 			 * doesn't (or isn't likely to) qcollapse.  pip
639 			 * waiting must occur before we acquire the
640 			 * chainlock.
641 			 */
642 			while (
643 				temp->paging_in_progress ||
644 				object->paging_in_progress
645 			) {
646 				vm_object_pip_wait(temp, "objde1");
647 				vm_object_pip_wait(object, "objde2");
648 			}
649 
650 			/*
651 			 * If the parent is locked we have to give up, as
652 			 * otherwise we would be acquiring locks in the
653 			 * wrong order and potentially deadlock.
654 			 */
655 			if (temp->flags & OBJ_CHAINLOCK) {
656 				vm_object_drop(temp);
657 				goto skip;
658 			}
659 			vm_object_chain_acquire(temp);
660 
661 			/*
662 			 * Recheck/retry after the hold and the paging
663 			 * wait, both of which can block us.
664 			 */
665 			if (object->ref_count != 2 ||
666 			    object->shadow_count != 1 ||
667 			    object->handle ||
668 			    LIST_FIRST(&object->shadow_head) != temp ||
669 			    (object->type != OBJT_DEFAULT &&
670 			     object->type != OBJT_SWAP)) {
671 				vm_object_chain_release(temp);
672 				vm_object_drop(temp);
673 				continue;
674 			}
675 
676 			/*
677 			 * We can safely drop object's ref_count now.
678 			 */
679 			KKASSERT(object->ref_count == 2);
680 			object->ref_count--;
681 
682 			/*
683 			 * If our single parent is not collapseable just
684 			 * decrement ref_count (2->1) and stop.
685 			 */
686 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
687 					     temp->type != OBJT_SWAP)) {
688 				vm_object_chain_release(temp);
689 				vm_object_drop(temp);
690 				break;
691 			}
692 
693 			/*
694 			 * At this point we have already dropped object's
695 			 * ref_count so it is possible for a race to
696 			 * deallocate obj out from under us.  Any collapse
697 			 * will re-check the situation.  We must not block
698 			 * until we are able to collapse.
699 			 *
700 			 * Bump temp's ref_count to avoid an unwanted
701 			 * degenerate recursion (can't call
702 			 * vm_object_reference_locked() because it asserts
703 			 * that CHAINLOCK is not set).
704 			 */
705 			temp->ref_count++;
706 			KKASSERT(temp->ref_count > 1);
707 
708 			/*
709 			 * Collapse temp, then deallocate the extra ref
710 			 * formally.
711 			 */
712 			vm_object_collapse(temp, &dlist);
713 			vm_object_chain_release(temp);
714 			if (must_drop) {
715 				vm_object_lock_swap();
716 				vm_object_drop(object);
717 			}
718 			object = temp;
719 			must_drop = 1;
720 			continue;
721 		}
722 
723 		/*
724 		 * Drop the ref and handle termination on the 1->0 transition.
725 		 * We may have blocked above so we have to recheck.
726 		 */
727 skip:
728 		KKASSERT(object->ref_count != 0);
729 		if (object->ref_count >= 2) {
730 			object->ref_count--;
731 			break;
732 		}
733 		KKASSERT(object->ref_count == 1);
734 
735 		/*
736 		 * 1->0 transition.  Chain through the backing_object.
737 		 * Maintain the ref until we've located the backing object,
738 		 * then re-check.
739 		 */
740 		while ((temp = object->backing_object) != NULL) {
741 			vm_object_hold(temp);
742 			if (temp == object->backing_object)
743 				break;
744 			vm_object_drop(temp);
745 		}
746 
747 		/*
748 		 * 1->0 transition verified, retry if ref_count is no longer
749 		 * 1.  Otherwise disconnect the backing_object (temp) and
750 		 * clean up.
751 		 */
752 		if (object->ref_count != 1) {
753 			vm_object_drop(temp);
754 			continue;
755 		}
756 
757 		/*
758 		 * It shouldn't be possible for the object to be chain locked
759 		 * if we're removing the last ref on it.
760 		 */
761 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
762 
763 		if (temp) {
764 			LIST_REMOVE(object, shadow_list);
765 			temp->shadow_count--;
766 			temp->generation++;
767 			object->backing_object = NULL;
768 		}
769 
770 		--object->ref_count;
771 		if ((object->flags & OBJ_DEAD) == 0)
772 			vm_object_terminate(object);
773 		if (must_drop && temp)
774 			vm_object_lock_swap();
775 		if (must_drop)
776 			vm_object_drop(object);
777 		object = temp;
778 		must_drop = 1;
779 	}
780 	if (must_drop && object)
781 		vm_object_drop(object);
782 
783 	/*
784 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
785 	 * on the dlist have a hold count but are not locked.
786 	 */
787 	if ((dtmp = dlist) != NULL) {
788 		dlist = dtmp->next;
789 		object = dtmp->object;
790 		kfree(dtmp, M_TEMP);
791 
792 		vm_object_lock(object);	/* already held, add lock */
793 		must_drop = 1;		/* and we're responsible for it */
794 		goto again;
795 	}
796 }
797 
798 /*
799  * Destroy the specified object, freeing up related resources.
800  *
801  * The object must have zero references.
802  *
803  * The object must held.  The caller is responsible for dropping the object
804  * after terminate returns.  Terminate does NOT drop the object.
805  */
806 static int vm_object_terminate_callback(vm_page_t p, void *data);
807 
808 void
809 vm_object_terminate(vm_object_t object)
810 {
811 	/*
812 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
813 	 * able to safely block.
814 	 */
815 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
816 	KKASSERT((object->flags & OBJ_DEAD) == 0);
817 	vm_object_set_flag(object, OBJ_DEAD);
818 
819 	/*
820 	 * Wait for the pageout daemon to be done with the object
821 	 */
822 	vm_object_pip_wait(object, "objtrm1");
823 
824 	KASSERT(!object->paging_in_progress,
825 		("vm_object_terminate: pageout in progress"));
826 
827 	/*
828 	 * Clean and free the pages, as appropriate. All references to the
829 	 * object are gone, so we don't need to lock it.
830 	 */
831 	if (object->type == OBJT_VNODE) {
832 		struct vnode *vp;
833 
834 		/*
835 		 * Clean pages and flush buffers.
836 		 */
837 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
838 
839 		vp = (struct vnode *) object->handle;
840 		vinvalbuf(vp, V_SAVE, 0, 0);
841 	}
842 
843 	/*
844 	 * Wait for any I/O to complete, after which there had better not
845 	 * be any references left on the object.
846 	 */
847 	vm_object_pip_wait(object, "objtrm2");
848 
849 	if (object->ref_count != 0) {
850 		panic("vm_object_terminate: object with references, "
851 		      "ref_count=%d", object->ref_count);
852 	}
853 
854 	/*
855 	 * Now free any remaining pages. For internal objects, this also
856 	 * removes them from paging queues. Don't free wired pages, just
857 	 * remove them from the object.
858 	 */
859 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
860 				vm_object_terminate_callback, NULL);
861 
862 	/*
863 	 * Let the pager know object is dead.
864 	 */
865 	vm_pager_deallocate(object);
866 
867 	/*
868 	 * Wait for the object hold count to hit 1, clean out pages as
869 	 * we go.  vmobj_token interlocks any race conditions that might
870 	 * pick the object up from the vm_object_list after we have cleared
871 	 * rb_memq.
872 	 */
873 	for (;;) {
874 		if (RB_ROOT(&object->rb_memq) == NULL)
875 			break;
876 		kprintf("vm_object_terminate: Warning, object %p "
877 			"still has %d pages\n",
878 			object, object->resident_page_count);
879 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
880 					vm_object_terminate_callback, NULL);
881 	}
882 
883 	/*
884 	 * There had better not be any pages left
885 	 */
886 	KKASSERT(object->resident_page_count == 0);
887 
888 	/*
889 	 * Remove the object from the global object list.
890 	 */
891 	lwkt_gettoken(&vmobj_token);
892 	TAILQ_REMOVE(&vm_object_list, object, object_list);
893 	vm_object_count--;
894 	lwkt_reltoken(&vmobj_token);
895 	vm_object_dead_wakeup(object);
896 
897 	if (object->ref_count != 0) {
898 		panic("vm_object_terminate2: object with references, "
899 		      "ref_count=%d", object->ref_count);
900 	}
901 
902 	/*
903 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
904 	 *	 the object here.  See vm_object_drop().
905 	 */
906 }
907 
908 /*
909  * The caller must hold the object.
910  */
911 static int
912 vm_object_terminate_callback(vm_page_t p, void *data __unused)
913 {
914 	vm_object_t object;
915 
916 	object = p->object;
917 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
918 	if (object != p->object) {
919 		kprintf("vm_object_terminate: Warning: Encountered "
920 			"busied page %p on queue %d\n", p, p->queue);
921 		vm_page_wakeup(p);
922 	} else if (p->wire_count == 0) {
923 		vm_page_free(p);
924 		mycpu->gd_cnt.v_pfree++;
925 	} else {
926 		if (p->queue != PQ_NONE)
927 			kprintf("vm_object_terminate: Warning: Encountered "
928 				"wired page %p on queue %d\n", p, p->queue);
929 		vm_page_remove(p);
930 		vm_page_wakeup(p);
931 	}
932 	lwkt_yield();
933 	return(0);
934 }
935 
936 /*
937  * The object is dead but still has an object<->pager association.  Sleep
938  * and return.  The caller typically retests the association in a loop.
939  *
940  * The caller must hold the object.
941  */
942 void
943 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
944 {
945 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
946 	if (object->handle) {
947 		vm_object_set_flag(object, OBJ_DEADWNT);
948 		tsleep(object, 0, wmesg, 0);
949 		/* object may be invalid after this point */
950 	}
951 }
952 
953 /*
954  * Wakeup anyone waiting for the object<->pager disassociation on
955  * a dead object.
956  *
957  * The caller must hold the object.
958  */
959 void
960 vm_object_dead_wakeup(vm_object_t object)
961 {
962 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
963 	if (object->flags & OBJ_DEADWNT) {
964 		vm_object_clear_flag(object, OBJ_DEADWNT);
965 		wakeup(object);
966 	}
967 }
968 
969 /*
970  * Clean all dirty pages in the specified range of object.  Leaves page
971  * on whatever queue it is currently on.   If NOSYNC is set then do not
972  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
973  * leaving the object dirty.
974  *
975  * When stuffing pages asynchronously, allow clustering.  XXX we need a
976  * synchronous clustering mode implementation.
977  *
978  * Odd semantics: if start == end, we clean everything.
979  *
980  * The object must be locked? XXX
981  */
982 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
983 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
984 
985 void
986 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
987 		     int flags)
988 {
989 	struct rb_vm_page_scan_info info;
990 	struct vnode *vp;
991 	int wholescan;
992 	int pagerflags;
993 	int generation;
994 
995 	vm_object_hold(object);
996 	if (object->type != OBJT_VNODE ||
997 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
998 		vm_object_drop(object);
999 		return;
1000 	}
1001 
1002 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1003 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1004 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1005 
1006 	vp = object->handle;
1007 
1008 	/*
1009 	 * Interlock other major object operations.  This allows us to
1010 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1011 	 */
1012 	vm_object_set_flag(object, OBJ_CLEANING);
1013 
1014 	/*
1015 	 * Handle 'entire object' case
1016 	 */
1017 	info.start_pindex = start;
1018 	if (end == 0) {
1019 		info.end_pindex = object->size - 1;
1020 	} else {
1021 		info.end_pindex = end - 1;
1022 	}
1023 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1024 	info.limit = flags;
1025 	info.pagerflags = pagerflags;
1026 	info.object = object;
1027 
1028 	/*
1029 	 * If cleaning the entire object do a pass to mark the pages read-only.
1030 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1031 	 * OBJ_MIGHTBEDIRTY.
1032 	 */
1033 	if (wholescan) {
1034 		info.error = 0;
1035 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1036 					vm_object_page_clean_pass1, &info);
1037 		if (info.error == 0) {
1038 			vm_object_clear_flag(object,
1039 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1040 			if (object->type == OBJT_VNODE &&
1041 			    (vp = (struct vnode *)object->handle) != NULL) {
1042 				if (vp->v_flag & VOBJDIRTY)
1043 					vclrflags(vp, VOBJDIRTY);
1044 			}
1045 		}
1046 	}
1047 
1048 	/*
1049 	 * Do a pass to clean all the dirty pages we find.
1050 	 */
1051 	do {
1052 		info.error = 0;
1053 		generation = object->generation;
1054 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1055 					vm_object_page_clean_pass2, &info);
1056 	} while (info.error || generation != object->generation);
1057 
1058 	vm_object_clear_flag(object, OBJ_CLEANING);
1059 	vm_object_drop(object);
1060 }
1061 
1062 /*
1063  * The caller must hold the object.
1064  */
1065 static
1066 int
1067 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1068 {
1069 	struct rb_vm_page_scan_info *info = data;
1070 
1071 	vm_page_flag_set(p, PG_CLEANCHK);
1072 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1073 		info->error = 1;
1074 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1075 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1076 		vm_page_wakeup(p);
1077 	} else {
1078 		info->error = 1;
1079 	}
1080 	lwkt_yield();
1081 	return(0);
1082 }
1083 
1084 /*
1085  * The caller must hold the object
1086  */
1087 static
1088 int
1089 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1090 {
1091 	struct rb_vm_page_scan_info *info = data;
1092 	int generation;
1093 
1094 	/*
1095 	 * Do not mess with pages that were inserted after we started
1096 	 * the cleaning pass.
1097 	 */
1098 	if ((p->flags & PG_CLEANCHK) == 0)
1099 		goto done;
1100 
1101 	generation = info->object->generation;
1102 	vm_page_busy_wait(p, TRUE, "vpcwai");
1103 	if (p->object != info->object ||
1104 	    info->object->generation != generation) {
1105 		info->error = 1;
1106 		vm_page_wakeup(p);
1107 		goto done;
1108 	}
1109 
1110 	/*
1111 	 * Before wasting time traversing the pmaps, check for trivial
1112 	 * cases where the page cannot be dirty.
1113 	 */
1114 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1115 		KKASSERT((p->dirty & p->valid) == 0);
1116 		vm_page_wakeup(p);
1117 		goto done;
1118 	}
1119 
1120 	/*
1121 	 * Check whether the page is dirty or not.  The page has been set
1122 	 * to be read-only so the check will not race a user dirtying the
1123 	 * page.
1124 	 */
1125 	vm_page_test_dirty(p);
1126 	if ((p->dirty & p->valid) == 0) {
1127 		vm_page_flag_clear(p, PG_CLEANCHK);
1128 		vm_page_wakeup(p);
1129 		goto done;
1130 	}
1131 
1132 	/*
1133 	 * If we have been asked to skip nosync pages and this is a
1134 	 * nosync page, skip it.  Note that the object flags were
1135 	 * not cleared in this case (because pass1 will have returned an
1136 	 * error), so we do not have to set them.
1137 	 */
1138 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1139 		vm_page_flag_clear(p, PG_CLEANCHK);
1140 		vm_page_wakeup(p);
1141 		goto done;
1142 	}
1143 
1144 	/*
1145 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1146 	 * the pages that get successfully flushed.  Set info->error if
1147 	 * we raced an object modification.
1148 	 */
1149 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1150 done:
1151 	lwkt_yield();
1152 	return(0);
1153 }
1154 
1155 /*
1156  * Collect the specified page and nearby pages and flush them out.
1157  * The number of pages flushed is returned.  The passed page is busied
1158  * by the caller and we are responsible for its disposition.
1159  *
1160  * The caller must hold the object.
1161  */
1162 static int
1163 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1164 {
1165 	int runlen;
1166 	int error;
1167 	int maxf;
1168 	int chkb;
1169 	int maxb;
1170 	int i;
1171 	vm_pindex_t pi;
1172 	vm_page_t maf[vm_pageout_page_count];
1173 	vm_page_t mab[vm_pageout_page_count];
1174 	vm_page_t ma[vm_pageout_page_count];
1175 
1176 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1177 
1178 	pi = p->pindex;
1179 
1180 	maxf = 0;
1181 	for(i = 1; i < vm_pageout_page_count; i++) {
1182 		vm_page_t tp;
1183 
1184 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1185 		if (error)
1186 			break;
1187 		if (tp == NULL)
1188 			break;
1189 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1190 		    (tp->flags & PG_CLEANCHK) == 0) {
1191 			vm_page_wakeup(tp);
1192 			break;
1193 		}
1194 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1195 			vm_page_flag_clear(tp, PG_CLEANCHK);
1196 			vm_page_wakeup(tp);
1197 			break;
1198 		}
1199 		vm_page_test_dirty(tp);
1200 		if ((tp->dirty & tp->valid) == 0) {
1201 			vm_page_flag_clear(tp, PG_CLEANCHK);
1202 			vm_page_wakeup(tp);
1203 			break;
1204 		}
1205 		maf[i - 1] = tp;
1206 		maxf++;
1207 	}
1208 
1209 	maxb = 0;
1210 	chkb = vm_pageout_page_count -  maxf;
1211 	/*
1212 	 * NOTE: chkb can be 0
1213 	 */
1214 	for(i = 1; chkb && i < chkb; i++) {
1215 		vm_page_t tp;
1216 
1217 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1218 		if (error)
1219 			break;
1220 		if (tp == NULL)
1221 			break;
1222 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1223 		    (tp->flags & PG_CLEANCHK) == 0) {
1224 			vm_page_wakeup(tp);
1225 			break;
1226 		}
1227 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1228 			vm_page_flag_clear(tp, PG_CLEANCHK);
1229 			vm_page_wakeup(tp);
1230 			break;
1231 		}
1232 		vm_page_test_dirty(tp);
1233 		if ((tp->dirty & tp->valid) == 0) {
1234 			vm_page_flag_clear(tp, PG_CLEANCHK);
1235 			vm_page_wakeup(tp);
1236 			break;
1237 		}
1238 		mab[i - 1] = tp;
1239 		maxb++;
1240 	}
1241 
1242 	/*
1243 	 * All pages in the maf[] and mab[] array are busied.
1244 	 */
1245 	for (i = 0; i < maxb; i++) {
1246 		int index = (maxb - i) - 1;
1247 		ma[index] = mab[i];
1248 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1249 	}
1250 	vm_page_flag_clear(p, PG_CLEANCHK);
1251 	ma[maxb] = p;
1252 	for(i = 0; i < maxf; i++) {
1253 		int index = (maxb + i) + 1;
1254 		ma[index] = maf[i];
1255 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1256 	}
1257 	runlen = maxb + maxf + 1;
1258 
1259 	for (i = 0; i < runlen; i++)
1260 		vm_page_hold(ma[i]);
1261 
1262 	vm_pageout_flush(ma, runlen, pagerflags);
1263 
1264 	for (i = 0; i < runlen; i++) {
1265 		if (ma[i]->valid & ma[i]->dirty) {
1266 			vm_page_protect(ma[i], VM_PROT_READ);
1267 			vm_page_flag_set(ma[i], PG_CLEANCHK);
1268 
1269 			/*
1270 			 * maxf will end up being the actual number of pages
1271 			 * we wrote out contiguously, non-inclusive of the
1272 			 * first page.  We do not count look-behind pages.
1273 			 */
1274 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1275 				maxf = i - maxb - 1;
1276 		}
1277 		vm_page_unhold(ma[i]);
1278 	}
1279 	return(maxf + 1);
1280 }
1281 
1282 /*
1283  * Same as vm_object_pmap_copy, except range checking really
1284  * works, and is meant for small sections of an object.
1285  *
1286  * This code protects resident pages by making them read-only
1287  * and is typically called on a fork or split when a page
1288  * is converted to copy-on-write.
1289  *
1290  * NOTE: If the page is already at VM_PROT_NONE, calling
1291  * vm_page_protect will have no effect.
1292  */
1293 void
1294 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1295 {
1296 	vm_pindex_t idx;
1297 	vm_page_t p;
1298 
1299 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1300 		return;
1301 
1302 	vm_object_hold(object);
1303 	for (idx = start; idx < end; idx++) {
1304 		p = vm_page_lookup(object, idx);
1305 		if (p == NULL)
1306 			continue;
1307 		vm_page_protect(p, VM_PROT_READ);
1308 	}
1309 	vm_object_drop(object);
1310 }
1311 
1312 /*
1313  * Removes all physical pages in the specified object range from all
1314  * physical maps.
1315  *
1316  * The object must *not* be locked.
1317  */
1318 
1319 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1320 
1321 void
1322 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1323 {
1324 	struct rb_vm_page_scan_info info;
1325 
1326 	if (object == NULL)
1327 		return;
1328 	info.start_pindex = start;
1329 	info.end_pindex = end - 1;
1330 
1331 	vm_object_hold(object);
1332 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1333 				vm_object_pmap_remove_callback, &info);
1334 	if (start == 0 && end == object->size)
1335 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1336 	vm_object_drop(object);
1337 }
1338 
1339 /*
1340  * The caller must hold the object
1341  */
1342 static int
1343 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1344 {
1345 	vm_page_protect(p, VM_PROT_NONE);
1346 	return(0);
1347 }
1348 
1349 /*
1350  * Implements the madvise function at the object/page level.
1351  *
1352  * MADV_WILLNEED	(any object)
1353  *
1354  *	Activate the specified pages if they are resident.
1355  *
1356  * MADV_DONTNEED	(any object)
1357  *
1358  *	Deactivate the specified pages if they are resident.
1359  *
1360  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1361  *
1362  *	Deactivate and clean the specified pages if they are
1363  *	resident.  This permits the process to reuse the pages
1364  *	without faulting or the kernel to reclaim the pages
1365  *	without I/O.
1366  *
1367  * No requirements.
1368  */
1369 void
1370 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1371 {
1372 	vm_pindex_t end, tpindex;
1373 	vm_object_t tobject;
1374 	vm_object_t xobj;
1375 	vm_page_t m;
1376 	int error;
1377 
1378 	if (object == NULL)
1379 		return;
1380 
1381 	end = pindex + count;
1382 
1383 	vm_object_hold(object);
1384 	tobject = object;
1385 
1386 	/*
1387 	 * Locate and adjust resident pages
1388 	 */
1389 	for (; pindex < end; pindex += 1) {
1390 relookup:
1391 		if (tobject != object)
1392 			vm_object_drop(tobject);
1393 		tobject = object;
1394 		tpindex = pindex;
1395 shadowlookup:
1396 		/*
1397 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1398 		 * and those pages must be OBJ_ONEMAPPING.
1399 		 */
1400 		if (advise == MADV_FREE) {
1401 			if ((tobject->type != OBJT_DEFAULT &&
1402 			     tobject->type != OBJT_SWAP) ||
1403 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1404 				continue;
1405 			}
1406 		}
1407 
1408 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1409 
1410 		if (error) {
1411 			vm_page_sleep_busy(m, TRUE, "madvpo");
1412 			goto relookup;
1413 		}
1414 		if (m == NULL) {
1415 			/*
1416 			 * There may be swap even if there is no backing page
1417 			 */
1418 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1419 				swap_pager_freespace(tobject, tpindex, 1);
1420 
1421 			/*
1422 			 * next object
1423 			 */
1424 			while ((xobj = tobject->backing_object) != NULL) {
1425 				KKASSERT(xobj != object);
1426 				vm_object_hold(xobj);
1427 				if (xobj == tobject->backing_object)
1428 					break;
1429 				vm_object_drop(xobj);
1430 			}
1431 			if (xobj == NULL)
1432 				continue;
1433 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1434 			if (tobject != object) {
1435 				vm_object_lock_swap();
1436 				vm_object_drop(tobject);
1437 			}
1438 			tobject = xobj;
1439 			goto shadowlookup;
1440 		}
1441 
1442 		/*
1443 		 * If the page is not in a normal active state, we skip it.
1444 		 * If the page is not managed there are no page queues to
1445 		 * mess with.  Things can break if we mess with pages in
1446 		 * any of the below states.
1447 		 */
1448 		if (
1449 		    /*m->hold_count ||*/
1450 		    m->wire_count ||
1451 		    (m->flags & PG_UNMANAGED) ||
1452 		    m->valid != VM_PAGE_BITS_ALL
1453 		) {
1454 			vm_page_wakeup(m);
1455 			continue;
1456 		}
1457 
1458 		/*
1459 		 * Theoretically once a page is known not to be busy, an
1460 		 * interrupt cannot come along and rip it out from under us.
1461 		 */
1462 
1463 		if (advise == MADV_WILLNEED) {
1464 			vm_page_activate(m);
1465 		} else if (advise == MADV_DONTNEED) {
1466 			vm_page_dontneed(m);
1467 		} else if (advise == MADV_FREE) {
1468 			/*
1469 			 * Mark the page clean.  This will allow the page
1470 			 * to be freed up by the system.  However, such pages
1471 			 * are often reused quickly by malloc()/free()
1472 			 * so we do not do anything that would cause
1473 			 * a page fault if we can help it.
1474 			 *
1475 			 * Specifically, we do not try to actually free
1476 			 * the page now nor do we try to put it in the
1477 			 * cache (which would cause a page fault on reuse).
1478 			 *
1479 			 * But we do make the page is freeable as we
1480 			 * can without actually taking the step of unmapping
1481 			 * it.
1482 			 */
1483 			pmap_clear_modify(m);
1484 			m->dirty = 0;
1485 			m->act_count = 0;
1486 			vm_page_dontneed(m);
1487 			if (tobject->type == OBJT_SWAP)
1488 				swap_pager_freespace(tobject, tpindex, 1);
1489 		}
1490 		vm_page_wakeup(m);
1491 	}
1492 	if (tobject != object)
1493 		vm_object_drop(tobject);
1494 	vm_object_drop(object);
1495 }
1496 
1497 /*
1498  * Create a new object which is backed by the specified existing object
1499  * range.  Replace the pointer and offset that was pointing at the existing
1500  * object with the pointer/offset for the new object.
1501  *
1502  * No other requirements.
1503  */
1504 void
1505 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1506 		 int addref)
1507 {
1508 	vm_object_t source;
1509 	vm_object_t result;
1510 
1511 	source = *objectp;
1512 
1513 	/*
1514 	 * Don't create the new object if the old object isn't shared.
1515 	 * We have to chain wait before adding the reference to avoid
1516 	 * racing a collapse or deallocation.
1517 	 *
1518 	 * Add the additional ref to source here to avoid racing a later
1519 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1520 	 * addref is TRUE or not in this case because the original object
1521 	 * will be shadowed.
1522 	 */
1523 	if (source) {
1524 		vm_object_hold(source);
1525 		vm_object_chain_wait(source);
1526 		if (source->ref_count == 1 &&
1527 		    source->handle == NULL &&
1528 		    (source->type == OBJT_DEFAULT ||
1529 		     source->type == OBJT_SWAP)) {
1530 			vm_object_drop(source);
1531 			if (addref) {
1532 				vm_object_reference_locked(source);
1533 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1534 			}
1535 			return;
1536 		}
1537 		vm_object_reference_locked(source);
1538 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1539 	}
1540 
1541 	/*
1542 	 * Allocate a new object with the given length.  The new object
1543 	 * is returned referenced but we may have to add another one.
1544 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1545 	 * (typically because the caller is about to clone a vm_map_entry).
1546 	 *
1547 	 * The source object currently has an extra reference to prevent
1548 	 * collapses into it while we mess with its shadow list, which
1549 	 * we will remove later in this routine.
1550 	 */
1551 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1552 		panic("vm_object_shadow: no object for shadowing");
1553 	vm_object_hold(result);
1554 	if (addref) {
1555 		vm_object_reference_locked(result);
1556 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1557 	}
1558 
1559 	/*
1560 	 * The new object shadows the source object.  Chain wait before
1561 	 * adjusting shadow_count or the shadow list to avoid races.
1562 	 *
1563 	 * Try to optimize the result object's page color when shadowing
1564 	 * in order to maintain page coloring consistency in the combined
1565 	 * shadowed object.
1566 	 */
1567 	KKASSERT(result->backing_object == NULL);
1568 	result->backing_object = source;
1569 	if (source) {
1570 		vm_object_chain_wait(source);
1571 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1572 		source->shadow_count++;
1573 		source->generation++;
1574 #ifdef SMP
1575 		/* cpu localization twist */
1576 		result->pg_color = (int)(intptr_t)curthread;
1577 #else
1578 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1579 				   PQ_L2_MASK;
1580 #endif
1581 	}
1582 
1583 	/*
1584 	 * Adjust the return storage.  Drop the ref on source before
1585 	 * returning.
1586 	 */
1587 	result->backing_object_offset = *offset;
1588 	vm_object_drop(result);
1589 	*offset = 0;
1590 	if (source) {
1591 		vm_object_deallocate_locked(source);
1592 		vm_object_drop(source);
1593 	}
1594 
1595 	/*
1596 	 * Return the new things
1597 	 */
1598 	*objectp = result;
1599 }
1600 
1601 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1602 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1603 #define	OBSC_COLLAPSE_WAIT	0x0004
1604 
1605 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1606 
1607 /*
1608  * The caller must hold the object.
1609  */
1610 static __inline int
1611 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1612 {
1613 	struct rb_vm_page_scan_info info;
1614 
1615 	vm_object_assert_held(object);
1616 	vm_object_assert_held(backing_object);
1617 
1618 	KKASSERT(backing_object == object->backing_object);
1619 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1620 
1621 	/*
1622 	 * Initial conditions
1623 	 */
1624 	if (op & OBSC_TEST_ALL_SHADOWED) {
1625 		/*
1626 		 * We do not want to have to test for the existence of
1627 		 * swap pages in the backing object.  XXX but with the
1628 		 * new swapper this would be pretty easy to do.
1629 		 *
1630 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1631 		 * been ZFOD faulted yet?  If we do not test for this, the
1632 		 * shadow test may succeed! XXX
1633 		 */
1634 		if (backing_object->type != OBJT_DEFAULT)
1635 			return(0);
1636 	}
1637 	if (op & OBSC_COLLAPSE_WAIT) {
1638 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1639 		vm_object_set_flag(backing_object, OBJ_DEAD);
1640 		lwkt_gettoken(&vmobj_token);
1641 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1642 		vm_object_count--;
1643 		lwkt_reltoken(&vmobj_token);
1644 		vm_object_dead_wakeup(backing_object);
1645 	}
1646 
1647 	/*
1648 	 * Our scan.   We have to retry if a negative error code is returned,
1649 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1650 	 * the scan had to be stopped because the parent does not completely
1651 	 * shadow the child.
1652 	 */
1653 	info.object = object;
1654 	info.backing_object = backing_object;
1655 	info.limit = op;
1656 	do {
1657 		info.error = 1;
1658 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1659 					vm_object_backing_scan_callback,
1660 					&info);
1661 	} while (info.error < 0);
1662 
1663 	return(info.error);
1664 }
1665 
1666 /*
1667  * The caller must hold the object.
1668  */
1669 static int
1670 vm_object_backing_scan_callback(vm_page_t p, void *data)
1671 {
1672 	struct rb_vm_page_scan_info *info = data;
1673 	vm_object_t backing_object;
1674 	vm_object_t object;
1675 	vm_pindex_t pindex;
1676 	vm_pindex_t new_pindex;
1677 	vm_pindex_t backing_offset_index;
1678 	int op;
1679 
1680 	pindex = p->pindex;
1681 	new_pindex = pindex - info->backing_offset_index;
1682 	op = info->limit;
1683 	object = info->object;
1684 	backing_object = info->backing_object;
1685 	backing_offset_index = info->backing_offset_index;
1686 
1687 	if (op & OBSC_TEST_ALL_SHADOWED) {
1688 		vm_page_t pp;
1689 
1690 		/*
1691 		 * Ignore pages outside the parent object's range
1692 		 * and outside the parent object's mapping of the
1693 		 * backing object.
1694 		 *
1695 		 * note that we do not busy the backing object's
1696 		 * page.
1697 		 */
1698 		if (pindex < backing_offset_index ||
1699 		    new_pindex >= object->size
1700 		) {
1701 			return(0);
1702 		}
1703 
1704 		/*
1705 		 * See if the parent has the page or if the parent's
1706 		 * object pager has the page.  If the parent has the
1707 		 * page but the page is not valid, the parent's
1708 		 * object pager must have the page.
1709 		 *
1710 		 * If this fails, the parent does not completely shadow
1711 		 * the object and we might as well give up now.
1712 		 */
1713 		pp = vm_page_lookup(object, new_pindex);
1714 		if ((pp == NULL || pp->valid == 0) &&
1715 		    !vm_pager_has_page(object, new_pindex)
1716 		) {
1717 			info->error = 0;	/* problemo */
1718 			return(-1);		/* stop the scan */
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * Check for busy page.  Note that we may have lost (p) when we
1724 	 * possibly blocked above.
1725 	 */
1726 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1727 		vm_page_t pp;
1728 
1729 		if (vm_page_busy_try(p, TRUE)) {
1730 			if (op & OBSC_COLLAPSE_NOWAIT) {
1731 				return(0);
1732 			} else {
1733 				/*
1734 				 * If we slept, anything could have
1735 				 * happened.   Ask that the scan be restarted.
1736 				 *
1737 				 * Since the object is marked dead, the
1738 				 * backing offset should not have changed.
1739 				 */
1740 				vm_page_sleep_busy(p, TRUE, "vmocol");
1741 				info->error = -1;
1742 				return(-1);
1743 			}
1744 		}
1745 
1746 		/*
1747 		 * If (p) is no longer valid restart the scan.
1748 		 */
1749 		if (p->object != backing_object || p->pindex != pindex) {
1750 			kprintf("vm_object_backing_scan: Warning: page "
1751 				"%p ripped out from under us\n", p);
1752 			vm_page_wakeup(p);
1753 			info->error = -1;
1754 			return(-1);
1755 		}
1756 
1757 		if (op & OBSC_COLLAPSE_NOWAIT) {
1758 			if (p->valid == 0 /*|| p->hold_count*/ ||
1759 			    p->wire_count) {
1760 				vm_page_wakeup(p);
1761 				return(0);
1762 			}
1763 		} else {
1764 			/* XXX what if p->valid == 0 , hold_count, etc? */
1765 		}
1766 
1767 		KASSERT(
1768 		    p->object == backing_object,
1769 		    ("vm_object_qcollapse(): object mismatch")
1770 		);
1771 
1772 		/*
1773 		 * Destroy any associated swap
1774 		 */
1775 		if (backing_object->type == OBJT_SWAP)
1776 			swap_pager_freespace(backing_object, p->pindex, 1);
1777 
1778 		if (
1779 		    p->pindex < backing_offset_index ||
1780 		    new_pindex >= object->size
1781 		) {
1782 			/*
1783 			 * Page is out of the parent object's range, we
1784 			 * can simply destroy it.
1785 			 */
1786 			vm_page_protect(p, VM_PROT_NONE);
1787 			vm_page_free(p);
1788 			return(0);
1789 		}
1790 
1791 		pp = vm_page_lookup(object, new_pindex);
1792 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1793 			/*
1794 			 * page already exists in parent OR swap exists
1795 			 * for this location in the parent.  Destroy
1796 			 * the original page from the backing object.
1797 			 *
1798 			 * Leave the parent's page alone
1799 			 */
1800 			vm_page_protect(p, VM_PROT_NONE);
1801 			vm_page_free(p);
1802 			return(0);
1803 		}
1804 
1805 		/*
1806 		 * Page does not exist in parent, rename the
1807 		 * page from the backing object to the main object.
1808 		 *
1809 		 * If the page was mapped to a process, it can remain
1810 		 * mapped through the rename.
1811 		 */
1812 		if ((p->queue - p->pc) == PQ_CACHE)
1813 			vm_page_deactivate(p);
1814 
1815 		vm_page_rename(p, object, new_pindex);
1816 		vm_page_wakeup(p);
1817 		/* page automatically made dirty by rename */
1818 	}
1819 	return(0);
1820 }
1821 
1822 /*
1823  * This version of collapse allows the operation to occur earlier and
1824  * when paging_in_progress is true for an object...  This is not a complete
1825  * operation, but should plug 99.9% of the rest of the leaks.
1826  *
1827  * The caller must hold the object and backing_object and both must be
1828  * chainlocked.
1829  *
1830  * (only called from vm_object_collapse)
1831  */
1832 static void
1833 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1834 {
1835 	if (backing_object->ref_count == 1) {
1836 		backing_object->ref_count += 2;
1837 		vm_object_backing_scan(object, backing_object,
1838 				       OBSC_COLLAPSE_NOWAIT);
1839 		backing_object->ref_count -= 2;
1840 	}
1841 }
1842 
1843 /*
1844  * Collapse an object with the object backing it.  Pages in the backing
1845  * object are moved into the parent, and the backing object is deallocated.
1846  * Any conflict is resolved in favor of the parent's existing pages.
1847  *
1848  * object must be held and chain-locked on call.
1849  *
1850  * The caller must have an extra ref on object to prevent a race from
1851  * destroying it during the collapse.
1852  */
1853 void
1854 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1855 {
1856 	struct vm_object_dealloc_list *dlist = NULL;
1857 	vm_object_t backing_object;
1858 
1859 	/*
1860 	 * Only one thread is attempting a collapse at any given moment.
1861 	 * There are few restrictions for (object) that callers of this
1862 	 * function check so reentrancy is likely.
1863 	 */
1864 	KKASSERT(object != NULL);
1865 	vm_object_assert_held(object);
1866 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1867 
1868 	for (;;) {
1869 		vm_object_t bbobj;
1870 		int dodealloc;
1871 
1872 		/*
1873 		 * We have to hold the backing object, check races.
1874 		 */
1875 		while ((backing_object = object->backing_object) != NULL) {
1876 			vm_object_hold(backing_object);
1877 			if (backing_object == object->backing_object)
1878 				break;
1879 			vm_object_drop(backing_object);
1880 		}
1881 
1882 		/*
1883 		 * No backing object?  Nothing to collapse then.
1884 		 */
1885 		if (backing_object == NULL)
1886 			break;
1887 
1888 		/*
1889 		 * You can't collapse with a non-default/non-swap object.
1890 		 */
1891 		if (backing_object->type != OBJT_DEFAULT &&
1892 		    backing_object->type != OBJT_SWAP) {
1893 			vm_object_drop(backing_object);
1894 			backing_object = NULL;
1895 			break;
1896 		}
1897 
1898 		/*
1899 		 * Chain-lock the backing object too because if we
1900 		 * successfully merge its pages into the top object we
1901 		 * will collapse backing_object->backing_object as the
1902 		 * new backing_object.  Re-check that it is still our
1903 		 * backing object.
1904 		 */
1905 		vm_object_chain_acquire(backing_object);
1906 		if (backing_object != object->backing_object) {
1907 			vm_object_chain_release(backing_object);
1908 			vm_object_drop(backing_object);
1909 			continue;
1910 		}
1911 
1912 		/*
1913 		 * we check the backing object first, because it is most likely
1914 		 * not collapsable.
1915 		 */
1916 		if (backing_object->handle != NULL ||
1917 		    (backing_object->type != OBJT_DEFAULT &&
1918 		     backing_object->type != OBJT_SWAP) ||
1919 		    (backing_object->flags & OBJ_DEAD) ||
1920 		    object->handle != NULL ||
1921 		    (object->type != OBJT_DEFAULT &&
1922 		     object->type != OBJT_SWAP) ||
1923 		    (object->flags & OBJ_DEAD)) {
1924 			break;
1925 		}
1926 
1927 		/*
1928 		 * If paging is in progress we can't do a normal collapse.
1929 		 */
1930 		if (
1931 		    object->paging_in_progress != 0 ||
1932 		    backing_object->paging_in_progress != 0
1933 		) {
1934 			vm_object_qcollapse(object, backing_object);
1935 			break;
1936 		}
1937 
1938 		/*
1939 		 * We know that we can either collapse the backing object (if
1940 		 * the parent is the only reference to it) or (perhaps) have
1941 		 * the parent bypass the object if the parent happens to shadow
1942 		 * all the resident pages in the entire backing object.
1943 		 *
1944 		 * This is ignoring pager-backed pages such as swap pages.
1945 		 * vm_object_backing_scan fails the shadowing test in this
1946 		 * case.
1947 		 */
1948 		if (backing_object->ref_count == 1) {
1949 			/*
1950 			 * If there is exactly one reference to the backing
1951 			 * object, we can collapse it into the parent.
1952 			 */
1953 			KKASSERT(object->backing_object == backing_object);
1954 			vm_object_backing_scan(object, backing_object,
1955 					       OBSC_COLLAPSE_WAIT);
1956 
1957 			/*
1958 			 * Move the pager from backing_object to object.
1959 			 */
1960 			if (backing_object->type == OBJT_SWAP) {
1961 				vm_object_pip_add(backing_object, 1);
1962 
1963 				/*
1964 				 * scrap the paging_offset junk and do a
1965 				 * discrete copy.  This also removes major
1966 				 * assumptions about how the swap-pager
1967 				 * works from where it doesn't belong.  The
1968 				 * new swapper is able to optimize the
1969 				 * destroy-source case.
1970 				 */
1971 				vm_object_pip_add(object, 1);
1972 				swap_pager_copy(backing_object, object,
1973 				    OFF_TO_IDX(object->backing_object_offset),
1974 				    TRUE);
1975 				vm_object_pip_wakeup(object);
1976 				vm_object_pip_wakeup(backing_object);
1977 			}
1978 
1979 			/*
1980 			 * Object now shadows whatever backing_object did.
1981 			 * Remove object from backing_object's shadow_list.
1982 			 */
1983 			LIST_REMOVE(object, shadow_list);
1984 			KKASSERT(object->backing_object == backing_object);
1985 			backing_object->shadow_count--;
1986 			backing_object->generation++;
1987 
1988 			/*
1989 			 * backing_object->backing_object moves from within
1990 			 * backing_object to within object.
1991 			 */
1992 			while ((bbobj = backing_object->backing_object) != NULL) {
1993 				vm_object_hold(bbobj);
1994 				if (bbobj == backing_object->backing_object)
1995 					break;
1996 				vm_object_drop(bbobj);
1997 			}
1998 			if (bbobj) {
1999 				LIST_REMOVE(backing_object, shadow_list);
2000 				bbobj->shadow_count--;
2001 				bbobj->generation++;
2002 				backing_object->backing_object = NULL;
2003 			}
2004 			object->backing_object = bbobj;
2005 			if (bbobj) {
2006 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2007 						 object, shadow_list);
2008 				bbobj->shadow_count++;
2009 				bbobj->generation++;
2010 			}
2011 
2012 			object->backing_object_offset +=
2013 				backing_object->backing_object_offset;
2014 
2015 			vm_object_drop(bbobj);
2016 
2017 			/*
2018 			 * Discard the old backing_object.  Nothing should be
2019 			 * able to ref it, other than a vm_map_split(),
2020 			 * and vm_map_split() will stall on our chain lock.
2021 			 * And we control the parent so it shouldn't be
2022 			 * possible for it to go away either.
2023 			 *
2024 			 * Since the backing object has no pages, no pager
2025 			 * left, and no object references within it, all
2026 			 * that is necessary is to dispose of it.
2027 			 */
2028 			KASSERT(backing_object->ref_count == 1,
2029 				("backing_object %p was somehow "
2030 				 "re-referenced during collapse!",
2031 				 backing_object));
2032 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2033 				("backing_object %p somehow has left "
2034 				 "over pages during collapse!",
2035 				 backing_object));
2036 
2037 			/*
2038 			 * The object can be destroyed.
2039 			 *
2040 			 * XXX just fall through and dodealloc instead
2041 			 *     of forcing destruction?
2042 			 */
2043 			--backing_object->ref_count;
2044 			if ((backing_object->flags & OBJ_DEAD) == 0)
2045 				vm_object_terminate(backing_object);
2046 			object_collapses++;
2047 			dodealloc = 0;
2048 		} else {
2049 			/*
2050 			 * If we do not entirely shadow the backing object,
2051 			 * there is nothing we can do so we give up.
2052 			 */
2053 			if (vm_object_backing_scan(object, backing_object,
2054 						OBSC_TEST_ALL_SHADOWED) == 0) {
2055 				break;
2056 			}
2057 
2058 			/*
2059 			 * bbobj is backing_object->backing_object.  Since
2060 			 * object completely shadows backing_object we can
2061 			 * bypass it and become backed by bbobj instead.
2062 			 */
2063 			while ((bbobj = backing_object->backing_object) != NULL) {
2064 				vm_object_hold(bbobj);
2065 				if (bbobj == backing_object->backing_object)
2066 					break;
2067 				vm_object_drop(bbobj);
2068 			}
2069 
2070 			/*
2071 			 * Make object shadow bbobj instead of backing_object.
2072 			 * Remove object from backing_object's shadow list.
2073 			 *
2074 			 * Deallocating backing_object will not remove
2075 			 * it, since its reference count is at least 2.
2076 			 */
2077 			KKASSERT(object->backing_object == backing_object);
2078 			LIST_REMOVE(object, shadow_list);
2079 			backing_object->shadow_count--;
2080 			backing_object->generation++;
2081 
2082 			/*
2083 			 * Add a ref to bbobj, bbobj now shadows object.
2084 			 *
2085 			 * NOTE: backing_object->backing_object still points
2086 			 *	 to bbobj.  That relationship remains intact
2087 			 *	 because backing_object has > 1 ref, so
2088 			 *	 someone else is pointing to it (hence why
2089 			 *	 we can't collapse it into object and can
2090 			 *	 only handle the all-shadowed bypass case).
2091 			 */
2092 			if (bbobj) {
2093 				vm_object_chain_wait(bbobj);
2094 				vm_object_reference_locked(bbobj);
2095 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2096 						 object, shadow_list);
2097 				bbobj->shadow_count++;
2098 				bbobj->generation++;
2099 				object->backing_object_offset +=
2100 					backing_object->backing_object_offset;
2101 				object->backing_object = bbobj;
2102 				vm_object_drop(bbobj);
2103 			} else {
2104 				object->backing_object = NULL;
2105 			}
2106 
2107 			/*
2108 			 * Drop the reference count on backing_object.  To
2109 			 * handle ref_count races properly we can't assume
2110 			 * that the ref_count is still at least 2 so we
2111 			 * have to actually call vm_object_deallocate()
2112 			 * (after clearing the chainlock).
2113 			 */
2114 			object_bypasses++;
2115 			dodealloc = 1;
2116 		}
2117 
2118 		/*
2119 		 * Ok, we want to loop on the new object->bbobj association,
2120 		 * possibly collapsing it further.  However if dodealloc is
2121 		 * non-zero we have to deallocate the backing_object which
2122 		 * itself can potentially undergo a collapse, creating a
2123 		 * recursion depth issue with the LWKT token subsystem.
2124 		 *
2125 		 * In the case where we must deallocate the backing_object
2126 		 * it is possible now that the backing_object has a single
2127 		 * shadow count on some other object (not represented here
2128 		 * as yet), since it no longer shadows us.  Thus when we
2129 		 * call vm_object_deallocate() it may attempt to collapse
2130 		 * itself into its remaining parent.
2131 		 */
2132 		if (dodealloc) {
2133 			struct vm_object_dealloc_list *dtmp;
2134 
2135 			vm_object_chain_release(backing_object);
2136 			vm_object_unlock(backing_object);
2137 			/* backing_object remains held */
2138 
2139 			/*
2140 			 * Auto-deallocation list for caller convenience.
2141 			 */
2142 			if (dlistp == NULL)
2143 				dlistp = &dlist;
2144 
2145 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2146 			dtmp->object = backing_object;
2147 			dtmp->next = *dlistp;
2148 			*dlistp = dtmp;
2149 		} else {
2150 			vm_object_chain_release(backing_object);
2151 			vm_object_drop(backing_object);
2152 		}
2153 		/* backing_object = NULL; not needed */
2154 		/* loop */
2155 	}
2156 
2157 	/*
2158 	 * Clean up any left over backing_object
2159 	 */
2160 	if (backing_object) {
2161 		vm_object_chain_release(backing_object);
2162 		vm_object_drop(backing_object);
2163 	}
2164 
2165 	/*
2166 	 * Clean up any auto-deallocation list.  This is a convenience
2167 	 * for top-level callers so they don't have to pass &dlist.
2168 	 * Do not clean up any caller-passed dlistp, the caller will
2169 	 * do that.
2170 	 */
2171 	if (dlist)
2172 		vm_object_deallocate_list(&dlist);
2173 
2174 }
2175 
2176 /*
2177  * vm_object_collapse() may collect additional objects in need of
2178  * deallocation.  This routine deallocates these objects.  The
2179  * deallocation itself can trigger additional collapses (which the
2180  * deallocate function takes care of).  This procedure is used to
2181  * reduce procedural recursion since these vm_object shadow chains
2182  * can become quite long.
2183  */
2184 void
2185 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2186 {
2187 	struct vm_object_dealloc_list *dlist;
2188 
2189 	while ((dlist = *dlistp) != NULL) {
2190 		*dlistp = dlist->next;
2191 		vm_object_lock(dlist->object);
2192 		vm_object_deallocate_locked(dlist->object);
2193 		vm_object_drop(dlist->object);
2194 		kfree(dlist, M_TEMP);
2195 	}
2196 }
2197 
2198 /*
2199  * Removes all physical pages in the specified object range from the
2200  * object's list of pages.
2201  *
2202  * No requirements.
2203  */
2204 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2205 
2206 void
2207 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2208 		      boolean_t clean_only)
2209 {
2210 	struct rb_vm_page_scan_info info;
2211 	int all;
2212 
2213 	/*
2214 	 * Degenerate cases and assertions
2215 	 */
2216 	vm_object_hold(object);
2217 	if (object == NULL ||
2218 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2219 		vm_object_drop(object);
2220 		return;
2221 	}
2222 	KASSERT(object->type != OBJT_PHYS,
2223 		("attempt to remove pages from a physical object"));
2224 
2225 	/*
2226 	 * Indicate that paging is occuring on the object
2227 	 */
2228 	vm_object_pip_add(object, 1);
2229 
2230 	/*
2231 	 * Figure out the actual removal range and whether we are removing
2232 	 * the entire contents of the object or not.  If removing the entire
2233 	 * contents, be sure to get all pages, even those that might be
2234 	 * beyond the end of the object.
2235 	 */
2236 	info.start_pindex = start;
2237 	if (end == 0)
2238 		info.end_pindex = (vm_pindex_t)-1;
2239 	else
2240 		info.end_pindex = end - 1;
2241 	info.limit = clean_only;
2242 	all = (start == 0 && info.end_pindex >= object->size - 1);
2243 
2244 	/*
2245 	 * Loop until we are sure we have gotten them all.
2246 	 */
2247 	do {
2248 		info.error = 0;
2249 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2250 					vm_object_page_remove_callback, &info);
2251 	} while (info.error);
2252 
2253 	/*
2254 	 * Remove any related swap if throwing away pages, or for
2255 	 * non-swap objects (the swap is a clean copy in that case).
2256 	 */
2257 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2258 		if (all)
2259 			swap_pager_freespace_all(object);
2260 		else
2261 			swap_pager_freespace(object, info.start_pindex,
2262 			     info.end_pindex - info.start_pindex + 1);
2263 	}
2264 
2265 	/*
2266 	 * Cleanup
2267 	 */
2268 	vm_object_pip_wakeup(object);
2269 	vm_object_drop(object);
2270 }
2271 
2272 /*
2273  * The caller must hold the object
2274  */
2275 static int
2276 vm_object_page_remove_callback(vm_page_t p, void *data)
2277 {
2278 	struct rb_vm_page_scan_info *info = data;
2279 
2280 	if (vm_page_busy_try(p, TRUE)) {
2281 		vm_page_sleep_busy(p, TRUE, "vmopar");
2282 		info->error = 1;
2283 		return(0);
2284 	}
2285 
2286 	/*
2287 	 * Wired pages cannot be destroyed, but they can be invalidated
2288 	 * and we do so if clean_only (limit) is not set.
2289 	 *
2290 	 * WARNING!  The page may be wired due to being part of a buffer
2291 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2292 	 *	     This is fine as part of a truncation but VFSs must be
2293 	 *	     sure to fix the buffer up when re-extending the file.
2294 	 */
2295 	if (p->wire_count != 0) {
2296 		vm_page_protect(p, VM_PROT_NONE);
2297 		if (info->limit == 0)
2298 			p->valid = 0;
2299 		vm_page_wakeup(p);
2300 		return(0);
2301 	}
2302 
2303 	/*
2304 	 * limit is our clean_only flag.  If set and the page is dirty, do
2305 	 * not free it.  If set and the page is being held by someone, do
2306 	 * not free it.
2307 	 */
2308 	if (info->limit && p->valid) {
2309 		vm_page_test_dirty(p);
2310 		if (p->valid & p->dirty) {
2311 			vm_page_wakeup(p);
2312 			return(0);
2313 		}
2314 #if 0
2315 		if (p->hold_count) {
2316 			vm_page_wakeup(p);
2317 			return(0);
2318 		}
2319 #endif
2320 	}
2321 
2322 	/*
2323 	 * Destroy the page
2324 	 */
2325 	vm_page_protect(p, VM_PROT_NONE);
2326 	vm_page_free(p);
2327 	return(0);
2328 }
2329 
2330 /*
2331  * Coalesces two objects backing up adjoining regions of memory into a
2332  * single object.
2333  *
2334  * returns TRUE if objects were combined.
2335  *
2336  * NOTE: Only works at the moment if the second object is NULL -
2337  *	 if it's not, which object do we lock first?
2338  *
2339  * Parameters:
2340  *	prev_object	First object to coalesce
2341  *	prev_offset	Offset into prev_object
2342  *	next_object	Second object into coalesce
2343  *	next_offset	Offset into next_object
2344  *
2345  *	prev_size	Size of reference to prev_object
2346  *	next_size	Size of reference to next_object
2347  *
2348  * The caller does not need to hold (prev_object) but must have a stable
2349  * pointer to it (typically by holding the vm_map locked).
2350  */
2351 boolean_t
2352 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2353 		   vm_size_t prev_size, vm_size_t next_size)
2354 {
2355 	vm_pindex_t next_pindex;
2356 
2357 	if (prev_object == NULL)
2358 		return (TRUE);
2359 
2360 	vm_object_hold(prev_object);
2361 
2362 	if (prev_object->type != OBJT_DEFAULT &&
2363 	    prev_object->type != OBJT_SWAP) {
2364 		vm_object_drop(prev_object);
2365 		return (FALSE);
2366 	}
2367 
2368 	/*
2369 	 * Try to collapse the object first
2370 	 */
2371 	vm_object_chain_acquire(prev_object);
2372 	vm_object_collapse(prev_object, NULL);
2373 
2374 	/*
2375 	 * Can't coalesce if: . more than one reference . paged out . shadows
2376 	 * another object . has a copy elsewhere (any of which mean that the
2377 	 * pages not mapped to prev_entry may be in use anyway)
2378 	 */
2379 
2380 	if (prev_object->backing_object != NULL) {
2381 		vm_object_chain_release(prev_object);
2382 		vm_object_drop(prev_object);
2383 		return (FALSE);
2384 	}
2385 
2386 	prev_size >>= PAGE_SHIFT;
2387 	next_size >>= PAGE_SHIFT;
2388 	next_pindex = prev_pindex + prev_size;
2389 
2390 	if ((prev_object->ref_count > 1) &&
2391 	    (prev_object->size != next_pindex)) {
2392 		vm_object_chain_release(prev_object);
2393 		vm_object_drop(prev_object);
2394 		return (FALSE);
2395 	}
2396 
2397 	/*
2398 	 * Remove any pages that may still be in the object from a previous
2399 	 * deallocation.
2400 	 */
2401 	if (next_pindex < prev_object->size) {
2402 		vm_object_page_remove(prev_object,
2403 				      next_pindex,
2404 				      next_pindex + next_size, FALSE);
2405 		if (prev_object->type == OBJT_SWAP)
2406 			swap_pager_freespace(prev_object,
2407 					     next_pindex, next_size);
2408 	}
2409 
2410 	/*
2411 	 * Extend the object if necessary.
2412 	 */
2413 	if (next_pindex + next_size > prev_object->size)
2414 		prev_object->size = next_pindex + next_size;
2415 
2416 	vm_object_chain_release(prev_object);
2417 	vm_object_drop(prev_object);
2418 	return (TRUE);
2419 }
2420 
2421 /*
2422  * Make the object writable and flag is being possibly dirty.
2423  *
2424  * The caller must hold the object. XXX called from vm_page_dirty(),
2425  * There is currently no requirement to hold the object.
2426  */
2427 void
2428 vm_object_set_writeable_dirty(vm_object_t object)
2429 {
2430 	struct vnode *vp;
2431 
2432 	/*vm_object_assert_held(object);*/
2433 	/*
2434 	 * Avoid contention in vm fault path by checking the state before
2435 	 * issuing an atomic op on it.
2436 	 */
2437 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2438 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2439 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2440 	}
2441 	if (object->type == OBJT_VNODE &&
2442 	    (vp = (struct vnode *)object->handle) != NULL) {
2443 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2444 			vsetflags(vp, VOBJDIRTY);
2445 		}
2446 	}
2447 }
2448 
2449 #include "opt_ddb.h"
2450 #ifdef DDB
2451 #include <sys/kernel.h>
2452 
2453 #include <sys/cons.h>
2454 
2455 #include <ddb/ddb.h>
2456 
2457 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2458 				       vm_map_entry_t entry);
2459 static int	vm_object_in_map (vm_object_t object);
2460 
2461 /*
2462  * The caller must hold the object.
2463  */
2464 static int
2465 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2466 {
2467 	vm_map_t tmpm;
2468 	vm_map_entry_t tmpe;
2469 	vm_object_t obj, nobj;
2470 	int entcount;
2471 
2472 	if (map == 0)
2473 		return 0;
2474 	if (entry == 0) {
2475 		tmpe = map->header.next;
2476 		entcount = map->nentries;
2477 		while (entcount-- && (tmpe != &map->header)) {
2478 			if( _vm_object_in_map(map, object, tmpe)) {
2479 				return 1;
2480 			}
2481 			tmpe = tmpe->next;
2482 		}
2483 		return (0);
2484 	}
2485 	switch(entry->maptype) {
2486 	case VM_MAPTYPE_SUBMAP:
2487 		tmpm = entry->object.sub_map;
2488 		tmpe = tmpm->header.next;
2489 		entcount = tmpm->nentries;
2490 		while (entcount-- && tmpe != &tmpm->header) {
2491 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2492 				return 1;
2493 			}
2494 			tmpe = tmpe->next;
2495 		}
2496 		break;
2497 	case VM_MAPTYPE_NORMAL:
2498 	case VM_MAPTYPE_VPAGETABLE:
2499 		obj = entry->object.vm_object;
2500 		while (obj) {
2501 			if (obj == object) {
2502 				if (obj != entry->object.vm_object)
2503 					vm_object_drop(obj);
2504 				return 1;
2505 			}
2506 			while ((nobj = obj->backing_object) != NULL) {
2507 				vm_object_hold(nobj);
2508 				if (nobj == obj->backing_object)
2509 					break;
2510 				vm_object_drop(nobj);
2511 			}
2512 			if (obj != entry->object.vm_object) {
2513 				if (nobj)
2514 					vm_object_lock_swap();
2515 				vm_object_drop(obj);
2516 			}
2517 			obj = nobj;
2518 		}
2519 		break;
2520 	default:
2521 		break;
2522 	}
2523 	return 0;
2524 }
2525 
2526 static int vm_object_in_map_callback(struct proc *p, void *data);
2527 
2528 struct vm_object_in_map_info {
2529 	vm_object_t object;
2530 	int rv;
2531 };
2532 
2533 /*
2534  * Debugging only
2535  */
2536 static int
2537 vm_object_in_map(vm_object_t object)
2538 {
2539 	struct vm_object_in_map_info info;
2540 
2541 	info.rv = 0;
2542 	info.object = object;
2543 
2544 	allproc_scan(vm_object_in_map_callback, &info);
2545 	if (info.rv)
2546 		return 1;
2547 	if( _vm_object_in_map(&kernel_map, object, 0))
2548 		return 1;
2549 	if( _vm_object_in_map(&pager_map, object, 0))
2550 		return 1;
2551 	if( _vm_object_in_map(&buffer_map, object, 0))
2552 		return 1;
2553 	return 0;
2554 }
2555 
2556 /*
2557  * Debugging only
2558  */
2559 static int
2560 vm_object_in_map_callback(struct proc *p, void *data)
2561 {
2562 	struct vm_object_in_map_info *info = data;
2563 
2564 	if (p->p_vmspace) {
2565 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2566 			info->rv = 1;
2567 			return -1;
2568 		}
2569 	}
2570 	return (0);
2571 }
2572 
2573 DB_SHOW_COMMAND(vmochk, vm_object_check)
2574 {
2575 	vm_object_t object;
2576 
2577 	/*
2578 	 * make sure that internal objs are in a map somewhere
2579 	 * and none have zero ref counts.
2580 	 */
2581 	for (object = TAILQ_FIRST(&vm_object_list);
2582 			object != NULL;
2583 			object = TAILQ_NEXT(object, object_list)) {
2584 		if (object->type == OBJT_MARKER)
2585 			continue;
2586 		if (object->handle == NULL &&
2587 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2588 			if (object->ref_count == 0) {
2589 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2590 					(long)object->size);
2591 			}
2592 			if (!vm_object_in_map(object)) {
2593 				db_printf(
2594 			"vmochk: internal obj is not in a map: "
2595 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2596 				    object->ref_count, (u_long)object->size,
2597 				    (u_long)object->size,
2598 				    (void *)object->backing_object);
2599 			}
2600 		}
2601 	}
2602 }
2603 
2604 /*
2605  * Debugging only
2606  */
2607 DB_SHOW_COMMAND(object, vm_object_print_static)
2608 {
2609 	/* XXX convert args. */
2610 	vm_object_t object = (vm_object_t)addr;
2611 	boolean_t full = have_addr;
2612 
2613 	vm_page_t p;
2614 
2615 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2616 #define	count	was_count
2617 
2618 	int count;
2619 
2620 	if (object == NULL)
2621 		return;
2622 
2623 	db_iprintf(
2624 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2625 	    object, (int)object->type, (u_long)object->size,
2626 	    object->resident_page_count, object->ref_count, object->flags);
2627 	/*
2628 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2629 	 */
2630 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2631 	    object->shadow_count,
2632 	    object->backing_object ? object->backing_object->ref_count : 0,
2633 	    object->backing_object, (long)object->backing_object_offset);
2634 
2635 	if (!full)
2636 		return;
2637 
2638 	db_indent += 2;
2639 	count = 0;
2640 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2641 		if (count == 0)
2642 			db_iprintf("memory:=");
2643 		else if (count == 6) {
2644 			db_printf("\n");
2645 			db_iprintf(" ...");
2646 			count = 0;
2647 		} else
2648 			db_printf(",");
2649 		count++;
2650 
2651 		db_printf("(off=0x%lx,page=0x%lx)",
2652 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2653 	}
2654 	if (count != 0)
2655 		db_printf("\n");
2656 	db_indent -= 2;
2657 }
2658 
2659 /* XXX. */
2660 #undef count
2661 
2662 /*
2663  * XXX need this non-static entry for calling from vm_map_print.
2664  *
2665  * Debugging only
2666  */
2667 void
2668 vm_object_print(/* db_expr_t */ long addr,
2669 		boolean_t have_addr,
2670 		/* db_expr_t */ long count,
2671 		char *modif)
2672 {
2673 	vm_object_print_static(addr, have_addr, count, modif);
2674 }
2675 
2676 /*
2677  * Debugging only
2678  */
2679 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2680 {
2681 	vm_object_t object;
2682 	int nl = 0;
2683 	int c;
2684 	for (object = TAILQ_FIRST(&vm_object_list);
2685 			object != NULL;
2686 			object = TAILQ_NEXT(object, object_list)) {
2687 		vm_pindex_t idx, fidx;
2688 		vm_pindex_t osize;
2689 		vm_paddr_t pa = -1, padiff;
2690 		int rcount;
2691 		vm_page_t m;
2692 
2693 		if (object->type == OBJT_MARKER)
2694 			continue;
2695 		db_printf("new object: %p\n", (void *)object);
2696 		if ( nl > 18) {
2697 			c = cngetc();
2698 			if (c != ' ')
2699 				return;
2700 			nl = 0;
2701 		}
2702 		nl++;
2703 		rcount = 0;
2704 		fidx = 0;
2705 		osize = object->size;
2706 		if (osize > 128)
2707 			osize = 128;
2708 		for (idx = 0; idx < osize; idx++) {
2709 			m = vm_page_lookup(object, idx);
2710 			if (m == NULL) {
2711 				if (rcount) {
2712 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2713 						(long)fidx, rcount, (long)pa);
2714 					if ( nl > 18) {
2715 						c = cngetc();
2716 						if (c != ' ')
2717 							return;
2718 						nl = 0;
2719 					}
2720 					nl++;
2721 					rcount = 0;
2722 				}
2723 				continue;
2724 			}
2725 
2726 
2727 			if (rcount &&
2728 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2729 				++rcount;
2730 				continue;
2731 			}
2732 			if (rcount) {
2733 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2734 				padiff >>= PAGE_SHIFT;
2735 				padiff &= PQ_L2_MASK;
2736 				if (padiff == 0) {
2737 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2738 					++rcount;
2739 					continue;
2740 				}
2741 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2742 					(long)fidx, rcount, (long)pa);
2743 				db_printf("pd(%ld)\n", (long)padiff);
2744 				if ( nl > 18) {
2745 					c = cngetc();
2746 					if (c != ' ')
2747 						return;
2748 					nl = 0;
2749 				}
2750 				nl++;
2751 			}
2752 			fidx = idx;
2753 			pa = VM_PAGE_TO_PHYS(m);
2754 			rcount = 1;
2755 		}
2756 		if (rcount) {
2757 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2758 				(long)fidx, rcount, (long)pa);
2759 			if ( nl > 18) {
2760 				c = cngetc();
2761 				if (c != ' ')
2762 					return;
2763 				nl = 0;
2764 			}
2765 			nl++;
2766 		}
2767 	}
2768 }
2769 #endif /* DDB */
2770