1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 67 */ 68 69 /* 70 * Virtual memory object module. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> /* for curproc, pageproc */ 76 #include <sys/thread.h> 77 #include <sys/vnode.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/mount.h> 81 #include <sys/kernel.h> 82 #include <sys/sysctl.h> 83 #include <sys/refcount.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_zone.h> 97 98 #define EASY_SCAN_FACTOR 8 99 100 static void vm_object_qcollapse(vm_object_t object, 101 vm_object_t backing_object); 102 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 103 int pagerflags); 104 static void vm_object_lock_init(vm_object_t); 105 106 107 /* 108 * Virtual memory objects maintain the actual data 109 * associated with allocated virtual memory. A given 110 * page of memory exists within exactly one object. 111 * 112 * An object is only deallocated when all "references" 113 * are given up. Only one "reference" to a given 114 * region of an object should be writeable. 115 * 116 * Associated with each object is a list of all resident 117 * memory pages belonging to that object; this list is 118 * maintained by the "vm_page" module, and locked by the object's 119 * lock. 120 * 121 * Each object also records a "pager" routine which is 122 * used to retrieve (and store) pages to the proper backing 123 * storage. In addition, objects may be backed by other 124 * objects from which they were virtual-copied. 125 * 126 * The only items within the object structure which are 127 * modified after time of creation are: 128 * reference count locked by object's lock 129 * pager routine locked by object's lock 130 * 131 */ 132 133 struct object_q vm_object_list; /* locked by vmobj_token */ 134 struct vm_object kernel_object; 135 136 static long vm_object_count; /* locked by vmobj_token */ 137 extern int vm_pageout_page_count; 138 139 static long object_collapses; 140 static long object_bypasses; 141 static int next_index; 142 static vm_zone_t obj_zone; 143 static struct vm_zone obj_zone_store; 144 #define VM_OBJECTS_INIT 256 145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 146 147 /* 148 * Misc low level routines 149 */ 150 static void 151 vm_object_lock_init(vm_object_t obj) 152 { 153 #if defined(DEBUG_LOCKS) 154 int i; 155 156 obj->debug_hold_bitmap = 0; 157 obj->debug_hold_ovfl = 0; 158 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 159 obj->debug_hold_thrs[i] = NULL; 160 obj->debug_hold_file[i] = NULL; 161 obj->debug_hold_line[i] = 0; 162 } 163 #endif 164 } 165 166 void 167 vm_object_lock_swap(void) 168 { 169 lwkt_token_swap(); 170 } 171 172 void 173 vm_object_lock(vm_object_t obj) 174 { 175 lwkt_gettoken(&obj->token); 176 } 177 178 void 179 vm_object_lock_shared(vm_object_t obj) 180 { 181 lwkt_gettoken_shared(&obj->token); 182 } 183 184 void 185 vm_object_unlock(vm_object_t obj) 186 { 187 lwkt_reltoken(&obj->token); 188 } 189 190 static __inline void 191 vm_object_assert_held(vm_object_t obj) 192 { 193 ASSERT_LWKT_TOKEN_HELD(&obj->token); 194 } 195 196 void 197 #ifndef DEBUG_LOCKS 198 vm_object_hold(vm_object_t obj) 199 #else 200 debugvm_object_hold(vm_object_t obj, char *file, int line) 201 #endif 202 { 203 KKASSERT(obj != NULL); 204 205 /* 206 * Object must be held (object allocation is stable due to callers 207 * context, typically already holding the token on a parent object) 208 * prior to potentially blocking on the lock, otherwise the object 209 * can get ripped away from us. 210 */ 211 refcount_acquire(&obj->hold_count); 212 vm_object_lock(obj); 213 214 #if defined(DEBUG_LOCKS) 215 int i; 216 u_int mask; 217 218 for (;;) { 219 mask = ~obj->debug_hold_bitmap; 220 cpu_ccfence(); 221 if (mask == 0xFFFFFFFFU) { 222 if (obj->debug_hold_ovfl == 0) 223 obj->debug_hold_ovfl = 1; 224 break; 225 } 226 i = ffs(mask) - 1; 227 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 228 ~mask | (1 << i))) { 229 obj->debug_hold_bitmap |= (1 << i); 230 obj->debug_hold_thrs[i] = curthread; 231 obj->debug_hold_file[i] = file; 232 obj->debug_hold_line[i] = line; 233 break; 234 } 235 } 236 #endif 237 } 238 239 void 240 #ifndef DEBUG_LOCKS 241 vm_object_hold_shared(vm_object_t obj) 242 #else 243 debugvm_object_hold_shared(vm_object_t obj, char *file, int line) 244 #endif 245 { 246 KKASSERT(obj != NULL); 247 248 /* 249 * Object must be held (object allocation is stable due to callers 250 * context, typically already holding the token on a parent object) 251 * prior to potentially blocking on the lock, otherwise the object 252 * can get ripped away from us. 253 */ 254 refcount_acquire(&obj->hold_count); 255 vm_object_lock_shared(obj); 256 257 #if defined(DEBUG_LOCKS) 258 int i; 259 u_int mask; 260 261 for (;;) { 262 mask = ~obj->debug_hold_bitmap; 263 cpu_ccfence(); 264 if (mask == 0xFFFFFFFFU) { 265 if (obj->debug_hold_ovfl == 0) 266 obj->debug_hold_ovfl = 1; 267 break; 268 } 269 i = ffs(mask) - 1; 270 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 271 ~mask | (1 << i))) { 272 obj->debug_hold_bitmap |= (1 << i); 273 obj->debug_hold_thrs[i] = curthread; 274 obj->debug_hold_file[i] = file; 275 obj->debug_hold_line[i] = line; 276 break; 277 } 278 } 279 #endif 280 } 281 282 /* 283 * Drop the token and hold_count on the object. 284 */ 285 void 286 vm_object_drop(vm_object_t obj) 287 { 288 if (obj == NULL) 289 return; 290 291 #if defined(DEBUG_LOCKS) 292 int found = 0; 293 int i; 294 295 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 296 if ((obj->debug_hold_bitmap & (1 << i)) && 297 (obj->debug_hold_thrs[i] == curthread)) { 298 obj->debug_hold_bitmap &= ~(1 << i); 299 obj->debug_hold_thrs[i] = NULL; 300 obj->debug_hold_file[i] = NULL; 301 obj->debug_hold_line[i] = 0; 302 found = 1; 303 break; 304 } 305 } 306 307 if (found == 0 && obj->debug_hold_ovfl == 0) 308 panic("vm_object: attempt to drop hold on non-self-held obj"); 309 #endif 310 311 /* 312 * No new holders should be possible once we drop hold_count 1->0 as 313 * there is no longer any way to reference the object. 314 */ 315 KKASSERT(obj->hold_count > 0); 316 if (refcount_release(&obj->hold_count)) { 317 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) { 318 vm_object_unlock(obj); 319 zfree(obj_zone, obj); 320 } else { 321 vm_object_unlock(obj); 322 } 323 } else { 324 vm_object_unlock(obj); 325 } 326 } 327 328 /* 329 * Initialize a freshly allocated object 330 * 331 * Used only by vm_object_allocate() and zinitna(). 332 * 333 * No requirements. 334 */ 335 void 336 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 337 { 338 int incr; 339 340 RB_INIT(&object->rb_memq); 341 LIST_INIT(&object->shadow_head); 342 lwkt_token_init(&object->token, "vmobj"); 343 344 object->type = type; 345 object->size = size; 346 object->ref_count = 1; 347 object->hold_count = 0; 348 object->flags = 0; 349 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 350 vm_object_set_flag(object, OBJ_ONEMAPPING); 351 object->paging_in_progress = 0; 352 object->resident_page_count = 0; 353 object->agg_pv_list_count = 0; 354 object->shadow_count = 0; 355 #ifdef SMP 356 /* cpu localization twist */ 357 object->pg_color = (int)(intptr_t)curthread; 358 #else 359 object->pg_color = next_index; 360 #endif 361 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 362 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 363 else 364 incr = size; 365 next_index = (next_index + incr) & PQ_L2_MASK; 366 object->handle = NULL; 367 object->backing_object = NULL; 368 object->backing_object_offset = (vm_ooffset_t)0; 369 370 object->generation++; 371 object->swblock_count = 0; 372 RB_INIT(&object->swblock_root); 373 vm_object_lock_init(object); 374 375 lwkt_gettoken(&vmobj_token); 376 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 377 vm_object_count++; 378 lwkt_reltoken(&vmobj_token); 379 } 380 381 /* 382 * Initialize the VM objects module. 383 * 384 * Called from the low level boot code only. 385 */ 386 void 387 vm_object_init(void) 388 { 389 TAILQ_INIT(&vm_object_list); 390 391 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 392 &kernel_object); 393 394 obj_zone = &obj_zone_store; 395 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 396 vm_objects_init, VM_OBJECTS_INIT); 397 } 398 399 void 400 vm_object_init2(void) 401 { 402 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 403 } 404 405 /* 406 * Allocate and return a new object of the specified type and size. 407 * 408 * No requirements. 409 */ 410 vm_object_t 411 vm_object_allocate(objtype_t type, vm_pindex_t size) 412 { 413 vm_object_t result; 414 415 result = (vm_object_t) zalloc(obj_zone); 416 417 _vm_object_allocate(type, size, result); 418 419 return (result); 420 } 421 422 /* 423 * Add an additional reference to a vm_object. The object must already be 424 * held. The original non-lock version is no longer supported. The object 425 * must NOT be chain locked by anyone at the time the reference is added. 426 * 427 * Referencing a chain-locked object can blow up the fairly sensitive 428 * ref_count and shadow_count tests in the deallocator. Most callers 429 * will call vm_object_chain_wait() prior to calling 430 * vm_object_reference_locked() to avoid the case. 431 * 432 * The object must be held. 433 */ 434 void 435 vm_object_reference_locked(vm_object_t object) 436 { 437 KKASSERT(object != NULL); 438 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 439 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 440 object->ref_count++; 441 if (object->type == OBJT_VNODE) { 442 vref(object->handle); 443 /* XXX what if the vnode is being destroyed? */ 444 } 445 } 446 447 /* 448 * Object OBJ_CHAINLOCK lock handling. 449 * 450 * The caller can chain-lock backing objects recursively and then 451 * use vm_object_chain_release_all() to undo the whole chain. 452 * 453 * Chain locks are used to prevent collapses and are only applicable 454 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 455 * on other object types are ignored. This is also important because 456 * it allows e.g. the vnode underlying a memory mapping to take concurrent 457 * faults. 458 * 459 * The object must usually be held on entry, though intermediate 460 * objects need not be held on release. 461 */ 462 void 463 vm_object_chain_wait(vm_object_t object) 464 { 465 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 466 while (object->flags & OBJ_CHAINLOCK) { 467 vm_object_set_flag(object, OBJ_CHAINWANT); 468 tsleep(object, 0, "objchain", 0); 469 } 470 } 471 472 void 473 vm_object_chain_acquire(vm_object_t object) 474 { 475 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 476 vm_object_chain_wait(object); 477 vm_object_set_flag(object, OBJ_CHAINLOCK); 478 } 479 } 480 481 void 482 vm_object_chain_release(vm_object_t object) 483 { 484 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 485 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 486 KKASSERT(object->flags & OBJ_CHAINLOCK); 487 if (object->flags & OBJ_CHAINWANT) { 488 vm_object_clear_flag(object, 489 OBJ_CHAINLOCK | OBJ_CHAINWANT); 490 wakeup(object); 491 } else { 492 vm_object_clear_flag(object, OBJ_CHAINLOCK); 493 } 494 } 495 } 496 497 /* 498 * This releases the entire chain of objects from first_object to and 499 * including stopobj, flowing through object->backing_object. 500 * 501 * We release stopobj first as an optimization as this object is most 502 * likely to be shared across multiple processes. 503 */ 504 void 505 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 506 { 507 vm_object_t backing_object; 508 vm_object_t object; 509 510 vm_object_chain_release(stopobj); 511 object = first_object; 512 513 while (object != stopobj) { 514 KKASSERT(object); 515 if (object != first_object) 516 vm_object_hold(object); 517 backing_object = object->backing_object; 518 vm_object_chain_release(object); 519 if (object != first_object) 520 vm_object_drop(object); 521 object = backing_object; 522 } 523 } 524 525 /* 526 * Dereference an object and its underlying vnode. 527 * 528 * The object must be held and will be held on return. 529 */ 530 static void 531 vm_object_vndeallocate(vm_object_t object) 532 { 533 struct vnode *vp = (struct vnode *) object->handle; 534 535 KASSERT(object->type == OBJT_VNODE, 536 ("vm_object_vndeallocate: not a vnode object")); 537 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 538 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 539 #ifdef INVARIANTS 540 if (object->ref_count == 0) { 541 vprint("vm_object_vndeallocate", vp); 542 panic("vm_object_vndeallocate: bad object reference count"); 543 } 544 #endif 545 object->ref_count--; 546 if (object->ref_count == 0) 547 vclrflags(vp, VTEXT); 548 vrele(vp); 549 } 550 551 /* 552 * Release a reference to the specified object, gained either through a 553 * vm_object_allocate or a vm_object_reference call. When all references 554 * are gone, storage associated with this object may be relinquished. 555 * 556 * The caller does not have to hold the object locked but must have control 557 * over the reference in question in order to guarantee that the object 558 * does not get ripped out from under us. 559 */ 560 void 561 vm_object_deallocate(vm_object_t object) 562 { 563 if (object) { 564 vm_object_hold(object); 565 vm_object_deallocate_locked(object); 566 vm_object_drop(object); 567 } 568 } 569 570 void 571 vm_object_deallocate_locked(vm_object_t object) 572 { 573 struct vm_object_dealloc_list *dlist = NULL; 574 struct vm_object_dealloc_list *dtmp; 575 vm_object_t temp; 576 int must_drop = 0; 577 578 /* 579 * We may chain deallocate object, but additional objects may 580 * collect on the dlist which also have to be deallocated. We 581 * must avoid a recursion, vm_object chains can get deep. 582 */ 583 again: 584 while (object != NULL) { 585 #if 0 586 /* 587 * Don't rip a ref_count out from under an object undergoing 588 * collapse, it will confuse the collapse code. 589 */ 590 vm_object_chain_wait(object); 591 #endif 592 if (object->type == OBJT_VNODE) { 593 vm_object_vndeallocate(object); 594 break; 595 } 596 597 if (object->ref_count == 0) { 598 panic("vm_object_deallocate: object deallocated " 599 "too many times: %d", object->type); 600 } 601 if (object->ref_count > 2) { 602 object->ref_count--; 603 break; 604 } 605 606 /* 607 * Here on ref_count of one or two, which are special cases for 608 * objects. 609 * 610 * Nominal ref_count > 1 case if the second ref is not from 611 * a shadow. 612 */ 613 if (object->ref_count == 2 && object->shadow_count == 0) { 614 vm_object_set_flag(object, OBJ_ONEMAPPING); 615 object->ref_count--; 616 break; 617 } 618 619 /* 620 * If the second ref is from a shadow we chain along it 621 * upwards if object's handle is exhausted. 622 * 623 * We have to decrement object->ref_count before potentially 624 * collapsing the first shadow object or the collapse code 625 * will not be able to handle the degenerate case to remove 626 * object. However, if we do it too early the object can 627 * get ripped out from under us. 628 */ 629 if (object->ref_count == 2 && object->shadow_count == 1 && 630 object->handle == NULL && (object->type == OBJT_DEFAULT || 631 object->type == OBJT_SWAP)) { 632 temp = LIST_FIRST(&object->shadow_head); 633 KKASSERT(temp != NULL); 634 vm_object_hold(temp); 635 636 /* 637 * Wait for any paging to complete so the collapse 638 * doesn't (or isn't likely to) qcollapse. pip 639 * waiting must occur before we acquire the 640 * chainlock. 641 */ 642 while ( 643 temp->paging_in_progress || 644 object->paging_in_progress 645 ) { 646 vm_object_pip_wait(temp, "objde1"); 647 vm_object_pip_wait(object, "objde2"); 648 } 649 650 /* 651 * If the parent is locked we have to give up, as 652 * otherwise we would be acquiring locks in the 653 * wrong order and potentially deadlock. 654 */ 655 if (temp->flags & OBJ_CHAINLOCK) { 656 vm_object_drop(temp); 657 goto skip; 658 } 659 vm_object_chain_acquire(temp); 660 661 /* 662 * Recheck/retry after the hold and the paging 663 * wait, both of which can block us. 664 */ 665 if (object->ref_count != 2 || 666 object->shadow_count != 1 || 667 object->handle || 668 LIST_FIRST(&object->shadow_head) != temp || 669 (object->type != OBJT_DEFAULT && 670 object->type != OBJT_SWAP)) { 671 vm_object_chain_release(temp); 672 vm_object_drop(temp); 673 continue; 674 } 675 676 /* 677 * We can safely drop object's ref_count now. 678 */ 679 KKASSERT(object->ref_count == 2); 680 object->ref_count--; 681 682 /* 683 * If our single parent is not collapseable just 684 * decrement ref_count (2->1) and stop. 685 */ 686 if (temp->handle || (temp->type != OBJT_DEFAULT && 687 temp->type != OBJT_SWAP)) { 688 vm_object_chain_release(temp); 689 vm_object_drop(temp); 690 break; 691 } 692 693 /* 694 * At this point we have already dropped object's 695 * ref_count so it is possible for a race to 696 * deallocate obj out from under us. Any collapse 697 * will re-check the situation. We must not block 698 * until we are able to collapse. 699 * 700 * Bump temp's ref_count to avoid an unwanted 701 * degenerate recursion (can't call 702 * vm_object_reference_locked() because it asserts 703 * that CHAINLOCK is not set). 704 */ 705 temp->ref_count++; 706 KKASSERT(temp->ref_count > 1); 707 708 /* 709 * Collapse temp, then deallocate the extra ref 710 * formally. 711 */ 712 vm_object_collapse(temp, &dlist); 713 vm_object_chain_release(temp); 714 if (must_drop) { 715 vm_object_lock_swap(); 716 vm_object_drop(object); 717 } 718 object = temp; 719 must_drop = 1; 720 continue; 721 } 722 723 /* 724 * Drop the ref and handle termination on the 1->0 transition. 725 * We may have blocked above so we have to recheck. 726 */ 727 skip: 728 KKASSERT(object->ref_count != 0); 729 if (object->ref_count >= 2) { 730 object->ref_count--; 731 break; 732 } 733 KKASSERT(object->ref_count == 1); 734 735 /* 736 * 1->0 transition. Chain through the backing_object. 737 * Maintain the ref until we've located the backing object, 738 * then re-check. 739 */ 740 while ((temp = object->backing_object) != NULL) { 741 vm_object_hold(temp); 742 if (temp == object->backing_object) 743 break; 744 vm_object_drop(temp); 745 } 746 747 /* 748 * 1->0 transition verified, retry if ref_count is no longer 749 * 1. Otherwise disconnect the backing_object (temp) and 750 * clean up. 751 */ 752 if (object->ref_count != 1) { 753 vm_object_drop(temp); 754 continue; 755 } 756 757 /* 758 * It shouldn't be possible for the object to be chain locked 759 * if we're removing the last ref on it. 760 */ 761 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 762 763 if (temp) { 764 LIST_REMOVE(object, shadow_list); 765 temp->shadow_count--; 766 temp->generation++; 767 object->backing_object = NULL; 768 } 769 770 --object->ref_count; 771 if ((object->flags & OBJ_DEAD) == 0) 772 vm_object_terminate(object); 773 if (must_drop && temp) 774 vm_object_lock_swap(); 775 if (must_drop) 776 vm_object_drop(object); 777 object = temp; 778 must_drop = 1; 779 } 780 if (must_drop && object) 781 vm_object_drop(object); 782 783 /* 784 * Additional tail recursion on dlist. Avoid a recursion. Objects 785 * on the dlist have a hold count but are not locked. 786 */ 787 if ((dtmp = dlist) != NULL) { 788 dlist = dtmp->next; 789 object = dtmp->object; 790 kfree(dtmp, M_TEMP); 791 792 vm_object_lock(object); /* already held, add lock */ 793 must_drop = 1; /* and we're responsible for it */ 794 goto again; 795 } 796 } 797 798 /* 799 * Destroy the specified object, freeing up related resources. 800 * 801 * The object must have zero references. 802 * 803 * The object must held. The caller is responsible for dropping the object 804 * after terminate returns. Terminate does NOT drop the object. 805 */ 806 static int vm_object_terminate_callback(vm_page_t p, void *data); 807 808 void 809 vm_object_terminate(vm_object_t object) 810 { 811 /* 812 * Make sure no one uses us. Once we set OBJ_DEAD we should be 813 * able to safely block. 814 */ 815 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 816 KKASSERT((object->flags & OBJ_DEAD) == 0); 817 vm_object_set_flag(object, OBJ_DEAD); 818 819 /* 820 * Wait for the pageout daemon to be done with the object 821 */ 822 vm_object_pip_wait(object, "objtrm1"); 823 824 KASSERT(!object->paging_in_progress, 825 ("vm_object_terminate: pageout in progress")); 826 827 /* 828 * Clean and free the pages, as appropriate. All references to the 829 * object are gone, so we don't need to lock it. 830 */ 831 if (object->type == OBJT_VNODE) { 832 struct vnode *vp; 833 834 /* 835 * Clean pages and flush buffers. 836 */ 837 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 838 839 vp = (struct vnode *) object->handle; 840 vinvalbuf(vp, V_SAVE, 0, 0); 841 } 842 843 /* 844 * Wait for any I/O to complete, after which there had better not 845 * be any references left on the object. 846 */ 847 vm_object_pip_wait(object, "objtrm2"); 848 849 if (object->ref_count != 0) { 850 panic("vm_object_terminate: object with references, " 851 "ref_count=%d", object->ref_count); 852 } 853 854 /* 855 * Now free any remaining pages. For internal objects, this also 856 * removes them from paging queues. Don't free wired pages, just 857 * remove them from the object. 858 */ 859 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 860 vm_object_terminate_callback, NULL); 861 862 /* 863 * Let the pager know object is dead. 864 */ 865 vm_pager_deallocate(object); 866 867 /* 868 * Wait for the object hold count to hit 1, clean out pages as 869 * we go. vmobj_token interlocks any race conditions that might 870 * pick the object up from the vm_object_list after we have cleared 871 * rb_memq. 872 */ 873 for (;;) { 874 if (RB_ROOT(&object->rb_memq) == NULL) 875 break; 876 kprintf("vm_object_terminate: Warning, object %p " 877 "still has %d pages\n", 878 object, object->resident_page_count); 879 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 880 vm_object_terminate_callback, NULL); 881 } 882 883 /* 884 * There had better not be any pages left 885 */ 886 KKASSERT(object->resident_page_count == 0); 887 888 /* 889 * Remove the object from the global object list. 890 */ 891 lwkt_gettoken(&vmobj_token); 892 TAILQ_REMOVE(&vm_object_list, object, object_list); 893 vm_object_count--; 894 lwkt_reltoken(&vmobj_token); 895 vm_object_dead_wakeup(object); 896 897 if (object->ref_count != 0) { 898 panic("vm_object_terminate2: object with references, " 899 "ref_count=%d", object->ref_count); 900 } 901 902 /* 903 * NOTE: The object hold_count is at least 1, so we cannot zfree() 904 * the object here. See vm_object_drop(). 905 */ 906 } 907 908 /* 909 * The caller must hold the object. 910 */ 911 static int 912 vm_object_terminate_callback(vm_page_t p, void *data __unused) 913 { 914 vm_object_t object; 915 916 object = p->object; 917 vm_page_busy_wait(p, TRUE, "vmpgtrm"); 918 if (object != p->object) { 919 kprintf("vm_object_terminate: Warning: Encountered " 920 "busied page %p on queue %d\n", p, p->queue); 921 vm_page_wakeup(p); 922 } else if (p->wire_count == 0) { 923 vm_page_free(p); 924 mycpu->gd_cnt.v_pfree++; 925 } else { 926 if (p->queue != PQ_NONE) 927 kprintf("vm_object_terminate: Warning: Encountered " 928 "wired page %p on queue %d\n", p, p->queue); 929 vm_page_remove(p); 930 vm_page_wakeup(p); 931 } 932 lwkt_yield(); 933 return(0); 934 } 935 936 /* 937 * The object is dead but still has an object<->pager association. Sleep 938 * and return. The caller typically retests the association in a loop. 939 * 940 * The caller must hold the object. 941 */ 942 void 943 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 944 { 945 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 946 if (object->handle) { 947 vm_object_set_flag(object, OBJ_DEADWNT); 948 tsleep(object, 0, wmesg, 0); 949 /* object may be invalid after this point */ 950 } 951 } 952 953 /* 954 * Wakeup anyone waiting for the object<->pager disassociation on 955 * a dead object. 956 * 957 * The caller must hold the object. 958 */ 959 void 960 vm_object_dead_wakeup(vm_object_t object) 961 { 962 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 963 if (object->flags & OBJ_DEADWNT) { 964 vm_object_clear_flag(object, OBJ_DEADWNT); 965 wakeup(object); 966 } 967 } 968 969 /* 970 * Clean all dirty pages in the specified range of object. Leaves page 971 * on whatever queue it is currently on. If NOSYNC is set then do not 972 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 973 * leaving the object dirty. 974 * 975 * When stuffing pages asynchronously, allow clustering. XXX we need a 976 * synchronous clustering mode implementation. 977 * 978 * Odd semantics: if start == end, we clean everything. 979 * 980 * The object must be locked? XXX 981 */ 982 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 983 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 984 985 void 986 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 987 int flags) 988 { 989 struct rb_vm_page_scan_info info; 990 struct vnode *vp; 991 int wholescan; 992 int pagerflags; 993 int generation; 994 995 vm_object_hold(object); 996 if (object->type != OBJT_VNODE || 997 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 998 vm_object_drop(object); 999 return; 1000 } 1001 1002 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 1003 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1004 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 1005 1006 vp = object->handle; 1007 1008 /* 1009 * Interlock other major object operations. This allows us to 1010 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 1011 */ 1012 vm_object_set_flag(object, OBJ_CLEANING); 1013 1014 /* 1015 * Handle 'entire object' case 1016 */ 1017 info.start_pindex = start; 1018 if (end == 0) { 1019 info.end_pindex = object->size - 1; 1020 } else { 1021 info.end_pindex = end - 1; 1022 } 1023 wholescan = (start == 0 && info.end_pindex == object->size - 1); 1024 info.limit = flags; 1025 info.pagerflags = pagerflags; 1026 info.object = object; 1027 1028 /* 1029 * If cleaning the entire object do a pass to mark the pages read-only. 1030 * If everything worked out ok, clear OBJ_WRITEABLE and 1031 * OBJ_MIGHTBEDIRTY. 1032 */ 1033 if (wholescan) { 1034 info.error = 0; 1035 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1036 vm_object_page_clean_pass1, &info); 1037 if (info.error == 0) { 1038 vm_object_clear_flag(object, 1039 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1040 if (object->type == OBJT_VNODE && 1041 (vp = (struct vnode *)object->handle) != NULL) { 1042 if (vp->v_flag & VOBJDIRTY) 1043 vclrflags(vp, VOBJDIRTY); 1044 } 1045 } 1046 } 1047 1048 /* 1049 * Do a pass to clean all the dirty pages we find. 1050 */ 1051 do { 1052 info.error = 0; 1053 generation = object->generation; 1054 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1055 vm_object_page_clean_pass2, &info); 1056 } while (info.error || generation != object->generation); 1057 1058 vm_object_clear_flag(object, OBJ_CLEANING); 1059 vm_object_drop(object); 1060 } 1061 1062 /* 1063 * The caller must hold the object. 1064 */ 1065 static 1066 int 1067 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1068 { 1069 struct rb_vm_page_scan_info *info = data; 1070 1071 vm_page_flag_set(p, PG_CLEANCHK); 1072 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1073 info->error = 1; 1074 } else if (vm_page_busy_try(p, FALSE) == 0) { 1075 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1076 vm_page_wakeup(p); 1077 } else { 1078 info->error = 1; 1079 } 1080 lwkt_yield(); 1081 return(0); 1082 } 1083 1084 /* 1085 * The caller must hold the object 1086 */ 1087 static 1088 int 1089 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1090 { 1091 struct rb_vm_page_scan_info *info = data; 1092 int generation; 1093 1094 /* 1095 * Do not mess with pages that were inserted after we started 1096 * the cleaning pass. 1097 */ 1098 if ((p->flags & PG_CLEANCHK) == 0) 1099 goto done; 1100 1101 generation = info->object->generation; 1102 vm_page_busy_wait(p, TRUE, "vpcwai"); 1103 if (p->object != info->object || 1104 info->object->generation != generation) { 1105 info->error = 1; 1106 vm_page_wakeup(p); 1107 goto done; 1108 } 1109 1110 /* 1111 * Before wasting time traversing the pmaps, check for trivial 1112 * cases where the page cannot be dirty. 1113 */ 1114 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1115 KKASSERT((p->dirty & p->valid) == 0); 1116 vm_page_wakeup(p); 1117 goto done; 1118 } 1119 1120 /* 1121 * Check whether the page is dirty or not. The page has been set 1122 * to be read-only so the check will not race a user dirtying the 1123 * page. 1124 */ 1125 vm_page_test_dirty(p); 1126 if ((p->dirty & p->valid) == 0) { 1127 vm_page_flag_clear(p, PG_CLEANCHK); 1128 vm_page_wakeup(p); 1129 goto done; 1130 } 1131 1132 /* 1133 * If we have been asked to skip nosync pages and this is a 1134 * nosync page, skip it. Note that the object flags were 1135 * not cleared in this case (because pass1 will have returned an 1136 * error), so we do not have to set them. 1137 */ 1138 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1139 vm_page_flag_clear(p, PG_CLEANCHK); 1140 vm_page_wakeup(p); 1141 goto done; 1142 } 1143 1144 /* 1145 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1146 * the pages that get successfully flushed. Set info->error if 1147 * we raced an object modification. 1148 */ 1149 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1150 done: 1151 lwkt_yield(); 1152 return(0); 1153 } 1154 1155 /* 1156 * Collect the specified page and nearby pages and flush them out. 1157 * The number of pages flushed is returned. The passed page is busied 1158 * by the caller and we are responsible for its disposition. 1159 * 1160 * The caller must hold the object. 1161 */ 1162 static int 1163 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1164 { 1165 int runlen; 1166 int error; 1167 int maxf; 1168 int chkb; 1169 int maxb; 1170 int i; 1171 vm_pindex_t pi; 1172 vm_page_t maf[vm_pageout_page_count]; 1173 vm_page_t mab[vm_pageout_page_count]; 1174 vm_page_t ma[vm_pageout_page_count]; 1175 1176 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1177 1178 pi = p->pindex; 1179 1180 maxf = 0; 1181 for(i = 1; i < vm_pageout_page_count; i++) { 1182 vm_page_t tp; 1183 1184 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error); 1185 if (error) 1186 break; 1187 if (tp == NULL) 1188 break; 1189 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1190 (tp->flags & PG_CLEANCHK) == 0) { 1191 vm_page_wakeup(tp); 1192 break; 1193 } 1194 if ((tp->queue - tp->pc) == PQ_CACHE) { 1195 vm_page_flag_clear(tp, PG_CLEANCHK); 1196 vm_page_wakeup(tp); 1197 break; 1198 } 1199 vm_page_test_dirty(tp); 1200 if ((tp->dirty & tp->valid) == 0) { 1201 vm_page_flag_clear(tp, PG_CLEANCHK); 1202 vm_page_wakeup(tp); 1203 break; 1204 } 1205 maf[i - 1] = tp; 1206 maxf++; 1207 } 1208 1209 maxb = 0; 1210 chkb = vm_pageout_page_count - maxf; 1211 /* 1212 * NOTE: chkb can be 0 1213 */ 1214 for(i = 1; chkb && i < chkb; i++) { 1215 vm_page_t tp; 1216 1217 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error); 1218 if (error) 1219 break; 1220 if (tp == NULL) 1221 break; 1222 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1223 (tp->flags & PG_CLEANCHK) == 0) { 1224 vm_page_wakeup(tp); 1225 break; 1226 } 1227 if ((tp->queue - tp->pc) == PQ_CACHE) { 1228 vm_page_flag_clear(tp, PG_CLEANCHK); 1229 vm_page_wakeup(tp); 1230 break; 1231 } 1232 vm_page_test_dirty(tp); 1233 if ((tp->dirty & tp->valid) == 0) { 1234 vm_page_flag_clear(tp, PG_CLEANCHK); 1235 vm_page_wakeup(tp); 1236 break; 1237 } 1238 mab[i - 1] = tp; 1239 maxb++; 1240 } 1241 1242 /* 1243 * All pages in the maf[] and mab[] array are busied. 1244 */ 1245 for (i = 0; i < maxb; i++) { 1246 int index = (maxb - i) - 1; 1247 ma[index] = mab[i]; 1248 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1249 } 1250 vm_page_flag_clear(p, PG_CLEANCHK); 1251 ma[maxb] = p; 1252 for(i = 0; i < maxf; i++) { 1253 int index = (maxb + i) + 1; 1254 ma[index] = maf[i]; 1255 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1256 } 1257 runlen = maxb + maxf + 1; 1258 1259 for (i = 0; i < runlen; i++) 1260 vm_page_hold(ma[i]); 1261 1262 vm_pageout_flush(ma, runlen, pagerflags); 1263 1264 for (i = 0; i < runlen; i++) { 1265 if (ma[i]->valid & ma[i]->dirty) { 1266 vm_page_protect(ma[i], VM_PROT_READ); 1267 vm_page_flag_set(ma[i], PG_CLEANCHK); 1268 1269 /* 1270 * maxf will end up being the actual number of pages 1271 * we wrote out contiguously, non-inclusive of the 1272 * first page. We do not count look-behind pages. 1273 */ 1274 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 1275 maxf = i - maxb - 1; 1276 } 1277 vm_page_unhold(ma[i]); 1278 } 1279 return(maxf + 1); 1280 } 1281 1282 /* 1283 * Same as vm_object_pmap_copy, except range checking really 1284 * works, and is meant for small sections of an object. 1285 * 1286 * This code protects resident pages by making them read-only 1287 * and is typically called on a fork or split when a page 1288 * is converted to copy-on-write. 1289 * 1290 * NOTE: If the page is already at VM_PROT_NONE, calling 1291 * vm_page_protect will have no effect. 1292 */ 1293 void 1294 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1295 { 1296 vm_pindex_t idx; 1297 vm_page_t p; 1298 1299 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1300 return; 1301 1302 vm_object_hold(object); 1303 for (idx = start; idx < end; idx++) { 1304 p = vm_page_lookup(object, idx); 1305 if (p == NULL) 1306 continue; 1307 vm_page_protect(p, VM_PROT_READ); 1308 } 1309 vm_object_drop(object); 1310 } 1311 1312 /* 1313 * Removes all physical pages in the specified object range from all 1314 * physical maps. 1315 * 1316 * The object must *not* be locked. 1317 */ 1318 1319 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1320 1321 void 1322 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1323 { 1324 struct rb_vm_page_scan_info info; 1325 1326 if (object == NULL) 1327 return; 1328 info.start_pindex = start; 1329 info.end_pindex = end - 1; 1330 1331 vm_object_hold(object); 1332 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1333 vm_object_pmap_remove_callback, &info); 1334 if (start == 0 && end == object->size) 1335 vm_object_clear_flag(object, OBJ_WRITEABLE); 1336 vm_object_drop(object); 1337 } 1338 1339 /* 1340 * The caller must hold the object 1341 */ 1342 static int 1343 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1344 { 1345 vm_page_protect(p, VM_PROT_NONE); 1346 return(0); 1347 } 1348 1349 /* 1350 * Implements the madvise function at the object/page level. 1351 * 1352 * MADV_WILLNEED (any object) 1353 * 1354 * Activate the specified pages if they are resident. 1355 * 1356 * MADV_DONTNEED (any object) 1357 * 1358 * Deactivate the specified pages if they are resident. 1359 * 1360 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1361 * 1362 * Deactivate and clean the specified pages if they are 1363 * resident. This permits the process to reuse the pages 1364 * without faulting or the kernel to reclaim the pages 1365 * without I/O. 1366 * 1367 * No requirements. 1368 */ 1369 void 1370 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1371 { 1372 vm_pindex_t end, tpindex; 1373 vm_object_t tobject; 1374 vm_object_t xobj; 1375 vm_page_t m; 1376 int error; 1377 1378 if (object == NULL) 1379 return; 1380 1381 end = pindex + count; 1382 1383 vm_object_hold(object); 1384 tobject = object; 1385 1386 /* 1387 * Locate and adjust resident pages 1388 */ 1389 for (; pindex < end; pindex += 1) { 1390 relookup: 1391 if (tobject != object) 1392 vm_object_drop(tobject); 1393 tobject = object; 1394 tpindex = pindex; 1395 shadowlookup: 1396 /* 1397 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1398 * and those pages must be OBJ_ONEMAPPING. 1399 */ 1400 if (advise == MADV_FREE) { 1401 if ((tobject->type != OBJT_DEFAULT && 1402 tobject->type != OBJT_SWAP) || 1403 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1404 continue; 1405 } 1406 } 1407 1408 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1409 1410 if (error) { 1411 vm_page_sleep_busy(m, TRUE, "madvpo"); 1412 goto relookup; 1413 } 1414 if (m == NULL) { 1415 /* 1416 * There may be swap even if there is no backing page 1417 */ 1418 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1419 swap_pager_freespace(tobject, tpindex, 1); 1420 1421 /* 1422 * next object 1423 */ 1424 while ((xobj = tobject->backing_object) != NULL) { 1425 KKASSERT(xobj != object); 1426 vm_object_hold(xobj); 1427 if (xobj == tobject->backing_object) 1428 break; 1429 vm_object_drop(xobj); 1430 } 1431 if (xobj == NULL) 1432 continue; 1433 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1434 if (tobject != object) { 1435 vm_object_lock_swap(); 1436 vm_object_drop(tobject); 1437 } 1438 tobject = xobj; 1439 goto shadowlookup; 1440 } 1441 1442 /* 1443 * If the page is not in a normal active state, we skip it. 1444 * If the page is not managed there are no page queues to 1445 * mess with. Things can break if we mess with pages in 1446 * any of the below states. 1447 */ 1448 if ( 1449 /*m->hold_count ||*/ 1450 m->wire_count || 1451 (m->flags & PG_UNMANAGED) || 1452 m->valid != VM_PAGE_BITS_ALL 1453 ) { 1454 vm_page_wakeup(m); 1455 continue; 1456 } 1457 1458 /* 1459 * Theoretically once a page is known not to be busy, an 1460 * interrupt cannot come along and rip it out from under us. 1461 */ 1462 1463 if (advise == MADV_WILLNEED) { 1464 vm_page_activate(m); 1465 } else if (advise == MADV_DONTNEED) { 1466 vm_page_dontneed(m); 1467 } else if (advise == MADV_FREE) { 1468 /* 1469 * Mark the page clean. This will allow the page 1470 * to be freed up by the system. However, such pages 1471 * are often reused quickly by malloc()/free() 1472 * so we do not do anything that would cause 1473 * a page fault if we can help it. 1474 * 1475 * Specifically, we do not try to actually free 1476 * the page now nor do we try to put it in the 1477 * cache (which would cause a page fault on reuse). 1478 * 1479 * But we do make the page is freeable as we 1480 * can without actually taking the step of unmapping 1481 * it. 1482 */ 1483 pmap_clear_modify(m); 1484 m->dirty = 0; 1485 m->act_count = 0; 1486 vm_page_dontneed(m); 1487 if (tobject->type == OBJT_SWAP) 1488 swap_pager_freespace(tobject, tpindex, 1); 1489 } 1490 vm_page_wakeup(m); 1491 } 1492 if (tobject != object) 1493 vm_object_drop(tobject); 1494 vm_object_drop(object); 1495 } 1496 1497 /* 1498 * Create a new object which is backed by the specified existing object 1499 * range. Replace the pointer and offset that was pointing at the existing 1500 * object with the pointer/offset for the new object. 1501 * 1502 * No other requirements. 1503 */ 1504 void 1505 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1506 int addref) 1507 { 1508 vm_object_t source; 1509 vm_object_t result; 1510 1511 source = *objectp; 1512 1513 /* 1514 * Don't create the new object if the old object isn't shared. 1515 * We have to chain wait before adding the reference to avoid 1516 * racing a collapse or deallocation. 1517 * 1518 * Add the additional ref to source here to avoid racing a later 1519 * collapse or deallocation. Clear the ONEMAPPING flag whether 1520 * addref is TRUE or not in this case because the original object 1521 * will be shadowed. 1522 */ 1523 if (source) { 1524 vm_object_hold(source); 1525 vm_object_chain_wait(source); 1526 if (source->ref_count == 1 && 1527 source->handle == NULL && 1528 (source->type == OBJT_DEFAULT || 1529 source->type == OBJT_SWAP)) { 1530 vm_object_drop(source); 1531 if (addref) { 1532 vm_object_reference_locked(source); 1533 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1534 } 1535 return; 1536 } 1537 vm_object_reference_locked(source); 1538 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1539 } 1540 1541 /* 1542 * Allocate a new object with the given length. The new object 1543 * is returned referenced but we may have to add another one. 1544 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1545 * (typically because the caller is about to clone a vm_map_entry). 1546 * 1547 * The source object currently has an extra reference to prevent 1548 * collapses into it while we mess with its shadow list, which 1549 * we will remove later in this routine. 1550 */ 1551 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1552 panic("vm_object_shadow: no object for shadowing"); 1553 vm_object_hold(result); 1554 if (addref) { 1555 vm_object_reference_locked(result); 1556 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1557 } 1558 1559 /* 1560 * The new object shadows the source object. Chain wait before 1561 * adjusting shadow_count or the shadow list to avoid races. 1562 * 1563 * Try to optimize the result object's page color when shadowing 1564 * in order to maintain page coloring consistency in the combined 1565 * shadowed object. 1566 */ 1567 KKASSERT(result->backing_object == NULL); 1568 result->backing_object = source; 1569 if (source) { 1570 vm_object_chain_wait(source); 1571 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1572 source->shadow_count++; 1573 source->generation++; 1574 #ifdef SMP 1575 /* cpu localization twist */ 1576 result->pg_color = (int)(intptr_t)curthread; 1577 #else 1578 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1579 PQ_L2_MASK; 1580 #endif 1581 } 1582 1583 /* 1584 * Adjust the return storage. Drop the ref on source before 1585 * returning. 1586 */ 1587 result->backing_object_offset = *offset; 1588 vm_object_drop(result); 1589 *offset = 0; 1590 if (source) { 1591 vm_object_deallocate_locked(source); 1592 vm_object_drop(source); 1593 } 1594 1595 /* 1596 * Return the new things 1597 */ 1598 *objectp = result; 1599 } 1600 1601 #define OBSC_TEST_ALL_SHADOWED 0x0001 1602 #define OBSC_COLLAPSE_NOWAIT 0x0002 1603 #define OBSC_COLLAPSE_WAIT 0x0004 1604 1605 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1606 1607 /* 1608 * The caller must hold the object. 1609 */ 1610 static __inline int 1611 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1612 { 1613 struct rb_vm_page_scan_info info; 1614 1615 vm_object_assert_held(object); 1616 vm_object_assert_held(backing_object); 1617 1618 KKASSERT(backing_object == object->backing_object); 1619 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1620 1621 /* 1622 * Initial conditions 1623 */ 1624 if (op & OBSC_TEST_ALL_SHADOWED) { 1625 /* 1626 * We do not want to have to test for the existence of 1627 * swap pages in the backing object. XXX but with the 1628 * new swapper this would be pretty easy to do. 1629 * 1630 * XXX what about anonymous MAP_SHARED memory that hasn't 1631 * been ZFOD faulted yet? If we do not test for this, the 1632 * shadow test may succeed! XXX 1633 */ 1634 if (backing_object->type != OBJT_DEFAULT) 1635 return(0); 1636 } 1637 if (op & OBSC_COLLAPSE_WAIT) { 1638 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1639 vm_object_set_flag(backing_object, OBJ_DEAD); 1640 lwkt_gettoken(&vmobj_token); 1641 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1642 vm_object_count--; 1643 lwkt_reltoken(&vmobj_token); 1644 vm_object_dead_wakeup(backing_object); 1645 } 1646 1647 /* 1648 * Our scan. We have to retry if a negative error code is returned, 1649 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1650 * the scan had to be stopped because the parent does not completely 1651 * shadow the child. 1652 */ 1653 info.object = object; 1654 info.backing_object = backing_object; 1655 info.limit = op; 1656 do { 1657 info.error = 1; 1658 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1659 vm_object_backing_scan_callback, 1660 &info); 1661 } while (info.error < 0); 1662 1663 return(info.error); 1664 } 1665 1666 /* 1667 * The caller must hold the object. 1668 */ 1669 static int 1670 vm_object_backing_scan_callback(vm_page_t p, void *data) 1671 { 1672 struct rb_vm_page_scan_info *info = data; 1673 vm_object_t backing_object; 1674 vm_object_t object; 1675 vm_pindex_t pindex; 1676 vm_pindex_t new_pindex; 1677 vm_pindex_t backing_offset_index; 1678 int op; 1679 1680 pindex = p->pindex; 1681 new_pindex = pindex - info->backing_offset_index; 1682 op = info->limit; 1683 object = info->object; 1684 backing_object = info->backing_object; 1685 backing_offset_index = info->backing_offset_index; 1686 1687 if (op & OBSC_TEST_ALL_SHADOWED) { 1688 vm_page_t pp; 1689 1690 /* 1691 * Ignore pages outside the parent object's range 1692 * and outside the parent object's mapping of the 1693 * backing object. 1694 * 1695 * note that we do not busy the backing object's 1696 * page. 1697 */ 1698 if (pindex < backing_offset_index || 1699 new_pindex >= object->size 1700 ) { 1701 return(0); 1702 } 1703 1704 /* 1705 * See if the parent has the page or if the parent's 1706 * object pager has the page. If the parent has the 1707 * page but the page is not valid, the parent's 1708 * object pager must have the page. 1709 * 1710 * If this fails, the parent does not completely shadow 1711 * the object and we might as well give up now. 1712 */ 1713 pp = vm_page_lookup(object, new_pindex); 1714 if ((pp == NULL || pp->valid == 0) && 1715 !vm_pager_has_page(object, new_pindex) 1716 ) { 1717 info->error = 0; /* problemo */ 1718 return(-1); /* stop the scan */ 1719 } 1720 } 1721 1722 /* 1723 * Check for busy page. Note that we may have lost (p) when we 1724 * possibly blocked above. 1725 */ 1726 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1727 vm_page_t pp; 1728 1729 if (vm_page_busy_try(p, TRUE)) { 1730 if (op & OBSC_COLLAPSE_NOWAIT) { 1731 return(0); 1732 } else { 1733 /* 1734 * If we slept, anything could have 1735 * happened. Ask that the scan be restarted. 1736 * 1737 * Since the object is marked dead, the 1738 * backing offset should not have changed. 1739 */ 1740 vm_page_sleep_busy(p, TRUE, "vmocol"); 1741 info->error = -1; 1742 return(-1); 1743 } 1744 } 1745 1746 /* 1747 * If (p) is no longer valid restart the scan. 1748 */ 1749 if (p->object != backing_object || p->pindex != pindex) { 1750 kprintf("vm_object_backing_scan: Warning: page " 1751 "%p ripped out from under us\n", p); 1752 vm_page_wakeup(p); 1753 info->error = -1; 1754 return(-1); 1755 } 1756 1757 if (op & OBSC_COLLAPSE_NOWAIT) { 1758 if (p->valid == 0 /*|| p->hold_count*/ || 1759 p->wire_count) { 1760 vm_page_wakeup(p); 1761 return(0); 1762 } 1763 } else { 1764 /* XXX what if p->valid == 0 , hold_count, etc? */ 1765 } 1766 1767 KASSERT( 1768 p->object == backing_object, 1769 ("vm_object_qcollapse(): object mismatch") 1770 ); 1771 1772 /* 1773 * Destroy any associated swap 1774 */ 1775 if (backing_object->type == OBJT_SWAP) 1776 swap_pager_freespace(backing_object, p->pindex, 1); 1777 1778 if ( 1779 p->pindex < backing_offset_index || 1780 new_pindex >= object->size 1781 ) { 1782 /* 1783 * Page is out of the parent object's range, we 1784 * can simply destroy it. 1785 */ 1786 vm_page_protect(p, VM_PROT_NONE); 1787 vm_page_free(p); 1788 return(0); 1789 } 1790 1791 pp = vm_page_lookup(object, new_pindex); 1792 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 1793 /* 1794 * page already exists in parent OR swap exists 1795 * for this location in the parent. Destroy 1796 * the original page from the backing object. 1797 * 1798 * Leave the parent's page alone 1799 */ 1800 vm_page_protect(p, VM_PROT_NONE); 1801 vm_page_free(p); 1802 return(0); 1803 } 1804 1805 /* 1806 * Page does not exist in parent, rename the 1807 * page from the backing object to the main object. 1808 * 1809 * If the page was mapped to a process, it can remain 1810 * mapped through the rename. 1811 */ 1812 if ((p->queue - p->pc) == PQ_CACHE) 1813 vm_page_deactivate(p); 1814 1815 vm_page_rename(p, object, new_pindex); 1816 vm_page_wakeup(p); 1817 /* page automatically made dirty by rename */ 1818 } 1819 return(0); 1820 } 1821 1822 /* 1823 * This version of collapse allows the operation to occur earlier and 1824 * when paging_in_progress is true for an object... This is not a complete 1825 * operation, but should plug 99.9% of the rest of the leaks. 1826 * 1827 * The caller must hold the object and backing_object and both must be 1828 * chainlocked. 1829 * 1830 * (only called from vm_object_collapse) 1831 */ 1832 static void 1833 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 1834 { 1835 if (backing_object->ref_count == 1) { 1836 backing_object->ref_count += 2; 1837 vm_object_backing_scan(object, backing_object, 1838 OBSC_COLLAPSE_NOWAIT); 1839 backing_object->ref_count -= 2; 1840 } 1841 } 1842 1843 /* 1844 * Collapse an object with the object backing it. Pages in the backing 1845 * object are moved into the parent, and the backing object is deallocated. 1846 * Any conflict is resolved in favor of the parent's existing pages. 1847 * 1848 * object must be held and chain-locked on call. 1849 * 1850 * The caller must have an extra ref on object to prevent a race from 1851 * destroying it during the collapse. 1852 */ 1853 void 1854 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 1855 { 1856 struct vm_object_dealloc_list *dlist = NULL; 1857 vm_object_t backing_object; 1858 1859 /* 1860 * Only one thread is attempting a collapse at any given moment. 1861 * There are few restrictions for (object) that callers of this 1862 * function check so reentrancy is likely. 1863 */ 1864 KKASSERT(object != NULL); 1865 vm_object_assert_held(object); 1866 KKASSERT(object->flags & OBJ_CHAINLOCK); 1867 1868 for (;;) { 1869 vm_object_t bbobj; 1870 int dodealloc; 1871 1872 /* 1873 * We have to hold the backing object, check races. 1874 */ 1875 while ((backing_object = object->backing_object) != NULL) { 1876 vm_object_hold(backing_object); 1877 if (backing_object == object->backing_object) 1878 break; 1879 vm_object_drop(backing_object); 1880 } 1881 1882 /* 1883 * No backing object? Nothing to collapse then. 1884 */ 1885 if (backing_object == NULL) 1886 break; 1887 1888 /* 1889 * You can't collapse with a non-default/non-swap object. 1890 */ 1891 if (backing_object->type != OBJT_DEFAULT && 1892 backing_object->type != OBJT_SWAP) { 1893 vm_object_drop(backing_object); 1894 backing_object = NULL; 1895 break; 1896 } 1897 1898 /* 1899 * Chain-lock the backing object too because if we 1900 * successfully merge its pages into the top object we 1901 * will collapse backing_object->backing_object as the 1902 * new backing_object. Re-check that it is still our 1903 * backing object. 1904 */ 1905 vm_object_chain_acquire(backing_object); 1906 if (backing_object != object->backing_object) { 1907 vm_object_chain_release(backing_object); 1908 vm_object_drop(backing_object); 1909 continue; 1910 } 1911 1912 /* 1913 * we check the backing object first, because it is most likely 1914 * not collapsable. 1915 */ 1916 if (backing_object->handle != NULL || 1917 (backing_object->type != OBJT_DEFAULT && 1918 backing_object->type != OBJT_SWAP) || 1919 (backing_object->flags & OBJ_DEAD) || 1920 object->handle != NULL || 1921 (object->type != OBJT_DEFAULT && 1922 object->type != OBJT_SWAP) || 1923 (object->flags & OBJ_DEAD)) { 1924 break; 1925 } 1926 1927 /* 1928 * If paging is in progress we can't do a normal collapse. 1929 */ 1930 if ( 1931 object->paging_in_progress != 0 || 1932 backing_object->paging_in_progress != 0 1933 ) { 1934 vm_object_qcollapse(object, backing_object); 1935 break; 1936 } 1937 1938 /* 1939 * We know that we can either collapse the backing object (if 1940 * the parent is the only reference to it) or (perhaps) have 1941 * the parent bypass the object if the parent happens to shadow 1942 * all the resident pages in the entire backing object. 1943 * 1944 * This is ignoring pager-backed pages such as swap pages. 1945 * vm_object_backing_scan fails the shadowing test in this 1946 * case. 1947 */ 1948 if (backing_object->ref_count == 1) { 1949 /* 1950 * If there is exactly one reference to the backing 1951 * object, we can collapse it into the parent. 1952 */ 1953 KKASSERT(object->backing_object == backing_object); 1954 vm_object_backing_scan(object, backing_object, 1955 OBSC_COLLAPSE_WAIT); 1956 1957 /* 1958 * Move the pager from backing_object to object. 1959 */ 1960 if (backing_object->type == OBJT_SWAP) { 1961 vm_object_pip_add(backing_object, 1); 1962 1963 /* 1964 * scrap the paging_offset junk and do a 1965 * discrete copy. This also removes major 1966 * assumptions about how the swap-pager 1967 * works from where it doesn't belong. The 1968 * new swapper is able to optimize the 1969 * destroy-source case. 1970 */ 1971 vm_object_pip_add(object, 1); 1972 swap_pager_copy(backing_object, object, 1973 OFF_TO_IDX(object->backing_object_offset), 1974 TRUE); 1975 vm_object_pip_wakeup(object); 1976 vm_object_pip_wakeup(backing_object); 1977 } 1978 1979 /* 1980 * Object now shadows whatever backing_object did. 1981 * Remove object from backing_object's shadow_list. 1982 */ 1983 LIST_REMOVE(object, shadow_list); 1984 KKASSERT(object->backing_object == backing_object); 1985 backing_object->shadow_count--; 1986 backing_object->generation++; 1987 1988 /* 1989 * backing_object->backing_object moves from within 1990 * backing_object to within object. 1991 */ 1992 while ((bbobj = backing_object->backing_object) != NULL) { 1993 vm_object_hold(bbobj); 1994 if (bbobj == backing_object->backing_object) 1995 break; 1996 vm_object_drop(bbobj); 1997 } 1998 if (bbobj) { 1999 LIST_REMOVE(backing_object, shadow_list); 2000 bbobj->shadow_count--; 2001 bbobj->generation++; 2002 backing_object->backing_object = NULL; 2003 } 2004 object->backing_object = bbobj; 2005 if (bbobj) { 2006 LIST_INSERT_HEAD(&bbobj->shadow_head, 2007 object, shadow_list); 2008 bbobj->shadow_count++; 2009 bbobj->generation++; 2010 } 2011 2012 object->backing_object_offset += 2013 backing_object->backing_object_offset; 2014 2015 vm_object_drop(bbobj); 2016 2017 /* 2018 * Discard the old backing_object. Nothing should be 2019 * able to ref it, other than a vm_map_split(), 2020 * and vm_map_split() will stall on our chain lock. 2021 * And we control the parent so it shouldn't be 2022 * possible for it to go away either. 2023 * 2024 * Since the backing object has no pages, no pager 2025 * left, and no object references within it, all 2026 * that is necessary is to dispose of it. 2027 */ 2028 KASSERT(backing_object->ref_count == 1, 2029 ("backing_object %p was somehow " 2030 "re-referenced during collapse!", 2031 backing_object)); 2032 KASSERT(RB_EMPTY(&backing_object->rb_memq), 2033 ("backing_object %p somehow has left " 2034 "over pages during collapse!", 2035 backing_object)); 2036 2037 /* 2038 * The object can be destroyed. 2039 * 2040 * XXX just fall through and dodealloc instead 2041 * of forcing destruction? 2042 */ 2043 --backing_object->ref_count; 2044 if ((backing_object->flags & OBJ_DEAD) == 0) 2045 vm_object_terminate(backing_object); 2046 object_collapses++; 2047 dodealloc = 0; 2048 } else { 2049 /* 2050 * If we do not entirely shadow the backing object, 2051 * there is nothing we can do so we give up. 2052 */ 2053 if (vm_object_backing_scan(object, backing_object, 2054 OBSC_TEST_ALL_SHADOWED) == 0) { 2055 break; 2056 } 2057 2058 /* 2059 * bbobj is backing_object->backing_object. Since 2060 * object completely shadows backing_object we can 2061 * bypass it and become backed by bbobj instead. 2062 */ 2063 while ((bbobj = backing_object->backing_object) != NULL) { 2064 vm_object_hold(bbobj); 2065 if (bbobj == backing_object->backing_object) 2066 break; 2067 vm_object_drop(bbobj); 2068 } 2069 2070 /* 2071 * Make object shadow bbobj instead of backing_object. 2072 * Remove object from backing_object's shadow list. 2073 * 2074 * Deallocating backing_object will not remove 2075 * it, since its reference count is at least 2. 2076 */ 2077 KKASSERT(object->backing_object == backing_object); 2078 LIST_REMOVE(object, shadow_list); 2079 backing_object->shadow_count--; 2080 backing_object->generation++; 2081 2082 /* 2083 * Add a ref to bbobj, bbobj now shadows object. 2084 * 2085 * NOTE: backing_object->backing_object still points 2086 * to bbobj. That relationship remains intact 2087 * because backing_object has > 1 ref, so 2088 * someone else is pointing to it (hence why 2089 * we can't collapse it into object and can 2090 * only handle the all-shadowed bypass case). 2091 */ 2092 if (bbobj) { 2093 vm_object_chain_wait(bbobj); 2094 vm_object_reference_locked(bbobj); 2095 LIST_INSERT_HEAD(&bbobj->shadow_head, 2096 object, shadow_list); 2097 bbobj->shadow_count++; 2098 bbobj->generation++; 2099 object->backing_object_offset += 2100 backing_object->backing_object_offset; 2101 object->backing_object = bbobj; 2102 vm_object_drop(bbobj); 2103 } else { 2104 object->backing_object = NULL; 2105 } 2106 2107 /* 2108 * Drop the reference count on backing_object. To 2109 * handle ref_count races properly we can't assume 2110 * that the ref_count is still at least 2 so we 2111 * have to actually call vm_object_deallocate() 2112 * (after clearing the chainlock). 2113 */ 2114 object_bypasses++; 2115 dodealloc = 1; 2116 } 2117 2118 /* 2119 * Ok, we want to loop on the new object->bbobj association, 2120 * possibly collapsing it further. However if dodealloc is 2121 * non-zero we have to deallocate the backing_object which 2122 * itself can potentially undergo a collapse, creating a 2123 * recursion depth issue with the LWKT token subsystem. 2124 * 2125 * In the case where we must deallocate the backing_object 2126 * it is possible now that the backing_object has a single 2127 * shadow count on some other object (not represented here 2128 * as yet), since it no longer shadows us. Thus when we 2129 * call vm_object_deallocate() it may attempt to collapse 2130 * itself into its remaining parent. 2131 */ 2132 if (dodealloc) { 2133 struct vm_object_dealloc_list *dtmp; 2134 2135 vm_object_chain_release(backing_object); 2136 vm_object_unlock(backing_object); 2137 /* backing_object remains held */ 2138 2139 /* 2140 * Auto-deallocation list for caller convenience. 2141 */ 2142 if (dlistp == NULL) 2143 dlistp = &dlist; 2144 2145 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2146 dtmp->object = backing_object; 2147 dtmp->next = *dlistp; 2148 *dlistp = dtmp; 2149 } else { 2150 vm_object_chain_release(backing_object); 2151 vm_object_drop(backing_object); 2152 } 2153 /* backing_object = NULL; not needed */ 2154 /* loop */ 2155 } 2156 2157 /* 2158 * Clean up any left over backing_object 2159 */ 2160 if (backing_object) { 2161 vm_object_chain_release(backing_object); 2162 vm_object_drop(backing_object); 2163 } 2164 2165 /* 2166 * Clean up any auto-deallocation list. This is a convenience 2167 * for top-level callers so they don't have to pass &dlist. 2168 * Do not clean up any caller-passed dlistp, the caller will 2169 * do that. 2170 */ 2171 if (dlist) 2172 vm_object_deallocate_list(&dlist); 2173 2174 } 2175 2176 /* 2177 * vm_object_collapse() may collect additional objects in need of 2178 * deallocation. This routine deallocates these objects. The 2179 * deallocation itself can trigger additional collapses (which the 2180 * deallocate function takes care of). This procedure is used to 2181 * reduce procedural recursion since these vm_object shadow chains 2182 * can become quite long. 2183 */ 2184 void 2185 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2186 { 2187 struct vm_object_dealloc_list *dlist; 2188 2189 while ((dlist = *dlistp) != NULL) { 2190 *dlistp = dlist->next; 2191 vm_object_lock(dlist->object); 2192 vm_object_deallocate_locked(dlist->object); 2193 vm_object_drop(dlist->object); 2194 kfree(dlist, M_TEMP); 2195 } 2196 } 2197 2198 /* 2199 * Removes all physical pages in the specified object range from the 2200 * object's list of pages. 2201 * 2202 * No requirements. 2203 */ 2204 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2205 2206 void 2207 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2208 boolean_t clean_only) 2209 { 2210 struct rb_vm_page_scan_info info; 2211 int all; 2212 2213 /* 2214 * Degenerate cases and assertions 2215 */ 2216 vm_object_hold(object); 2217 if (object == NULL || 2218 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2219 vm_object_drop(object); 2220 return; 2221 } 2222 KASSERT(object->type != OBJT_PHYS, 2223 ("attempt to remove pages from a physical object")); 2224 2225 /* 2226 * Indicate that paging is occuring on the object 2227 */ 2228 vm_object_pip_add(object, 1); 2229 2230 /* 2231 * Figure out the actual removal range and whether we are removing 2232 * the entire contents of the object or not. If removing the entire 2233 * contents, be sure to get all pages, even those that might be 2234 * beyond the end of the object. 2235 */ 2236 info.start_pindex = start; 2237 if (end == 0) 2238 info.end_pindex = (vm_pindex_t)-1; 2239 else 2240 info.end_pindex = end - 1; 2241 info.limit = clean_only; 2242 all = (start == 0 && info.end_pindex >= object->size - 1); 2243 2244 /* 2245 * Loop until we are sure we have gotten them all. 2246 */ 2247 do { 2248 info.error = 0; 2249 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2250 vm_object_page_remove_callback, &info); 2251 } while (info.error); 2252 2253 /* 2254 * Remove any related swap if throwing away pages, or for 2255 * non-swap objects (the swap is a clean copy in that case). 2256 */ 2257 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2258 if (all) 2259 swap_pager_freespace_all(object); 2260 else 2261 swap_pager_freespace(object, info.start_pindex, 2262 info.end_pindex - info.start_pindex + 1); 2263 } 2264 2265 /* 2266 * Cleanup 2267 */ 2268 vm_object_pip_wakeup(object); 2269 vm_object_drop(object); 2270 } 2271 2272 /* 2273 * The caller must hold the object 2274 */ 2275 static int 2276 vm_object_page_remove_callback(vm_page_t p, void *data) 2277 { 2278 struct rb_vm_page_scan_info *info = data; 2279 2280 if (vm_page_busy_try(p, TRUE)) { 2281 vm_page_sleep_busy(p, TRUE, "vmopar"); 2282 info->error = 1; 2283 return(0); 2284 } 2285 2286 /* 2287 * Wired pages cannot be destroyed, but they can be invalidated 2288 * and we do so if clean_only (limit) is not set. 2289 * 2290 * WARNING! The page may be wired due to being part of a buffer 2291 * cache buffer, and the buffer might be marked B_CACHE. 2292 * This is fine as part of a truncation but VFSs must be 2293 * sure to fix the buffer up when re-extending the file. 2294 */ 2295 if (p->wire_count != 0) { 2296 vm_page_protect(p, VM_PROT_NONE); 2297 if (info->limit == 0) 2298 p->valid = 0; 2299 vm_page_wakeup(p); 2300 return(0); 2301 } 2302 2303 /* 2304 * limit is our clean_only flag. If set and the page is dirty, do 2305 * not free it. If set and the page is being held by someone, do 2306 * not free it. 2307 */ 2308 if (info->limit && p->valid) { 2309 vm_page_test_dirty(p); 2310 if (p->valid & p->dirty) { 2311 vm_page_wakeup(p); 2312 return(0); 2313 } 2314 #if 0 2315 if (p->hold_count) { 2316 vm_page_wakeup(p); 2317 return(0); 2318 } 2319 #endif 2320 } 2321 2322 /* 2323 * Destroy the page 2324 */ 2325 vm_page_protect(p, VM_PROT_NONE); 2326 vm_page_free(p); 2327 return(0); 2328 } 2329 2330 /* 2331 * Coalesces two objects backing up adjoining regions of memory into a 2332 * single object. 2333 * 2334 * returns TRUE if objects were combined. 2335 * 2336 * NOTE: Only works at the moment if the second object is NULL - 2337 * if it's not, which object do we lock first? 2338 * 2339 * Parameters: 2340 * prev_object First object to coalesce 2341 * prev_offset Offset into prev_object 2342 * next_object Second object into coalesce 2343 * next_offset Offset into next_object 2344 * 2345 * prev_size Size of reference to prev_object 2346 * next_size Size of reference to next_object 2347 * 2348 * The caller does not need to hold (prev_object) but must have a stable 2349 * pointer to it (typically by holding the vm_map locked). 2350 */ 2351 boolean_t 2352 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2353 vm_size_t prev_size, vm_size_t next_size) 2354 { 2355 vm_pindex_t next_pindex; 2356 2357 if (prev_object == NULL) 2358 return (TRUE); 2359 2360 vm_object_hold(prev_object); 2361 2362 if (prev_object->type != OBJT_DEFAULT && 2363 prev_object->type != OBJT_SWAP) { 2364 vm_object_drop(prev_object); 2365 return (FALSE); 2366 } 2367 2368 /* 2369 * Try to collapse the object first 2370 */ 2371 vm_object_chain_acquire(prev_object); 2372 vm_object_collapse(prev_object, NULL); 2373 2374 /* 2375 * Can't coalesce if: . more than one reference . paged out . shadows 2376 * another object . has a copy elsewhere (any of which mean that the 2377 * pages not mapped to prev_entry may be in use anyway) 2378 */ 2379 2380 if (prev_object->backing_object != NULL) { 2381 vm_object_chain_release(prev_object); 2382 vm_object_drop(prev_object); 2383 return (FALSE); 2384 } 2385 2386 prev_size >>= PAGE_SHIFT; 2387 next_size >>= PAGE_SHIFT; 2388 next_pindex = prev_pindex + prev_size; 2389 2390 if ((prev_object->ref_count > 1) && 2391 (prev_object->size != next_pindex)) { 2392 vm_object_chain_release(prev_object); 2393 vm_object_drop(prev_object); 2394 return (FALSE); 2395 } 2396 2397 /* 2398 * Remove any pages that may still be in the object from a previous 2399 * deallocation. 2400 */ 2401 if (next_pindex < prev_object->size) { 2402 vm_object_page_remove(prev_object, 2403 next_pindex, 2404 next_pindex + next_size, FALSE); 2405 if (prev_object->type == OBJT_SWAP) 2406 swap_pager_freespace(prev_object, 2407 next_pindex, next_size); 2408 } 2409 2410 /* 2411 * Extend the object if necessary. 2412 */ 2413 if (next_pindex + next_size > prev_object->size) 2414 prev_object->size = next_pindex + next_size; 2415 2416 vm_object_chain_release(prev_object); 2417 vm_object_drop(prev_object); 2418 return (TRUE); 2419 } 2420 2421 /* 2422 * Make the object writable and flag is being possibly dirty. 2423 * 2424 * The caller must hold the object. XXX called from vm_page_dirty(), 2425 * There is currently no requirement to hold the object. 2426 */ 2427 void 2428 vm_object_set_writeable_dirty(vm_object_t object) 2429 { 2430 struct vnode *vp; 2431 2432 /*vm_object_assert_held(object);*/ 2433 /* 2434 * Avoid contention in vm fault path by checking the state before 2435 * issuing an atomic op on it. 2436 */ 2437 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) != 2438 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) { 2439 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2440 } 2441 if (object->type == OBJT_VNODE && 2442 (vp = (struct vnode *)object->handle) != NULL) { 2443 if ((vp->v_flag & VOBJDIRTY) == 0) { 2444 vsetflags(vp, VOBJDIRTY); 2445 } 2446 } 2447 } 2448 2449 #include "opt_ddb.h" 2450 #ifdef DDB 2451 #include <sys/kernel.h> 2452 2453 #include <sys/cons.h> 2454 2455 #include <ddb/ddb.h> 2456 2457 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2458 vm_map_entry_t entry); 2459 static int vm_object_in_map (vm_object_t object); 2460 2461 /* 2462 * The caller must hold the object. 2463 */ 2464 static int 2465 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2466 { 2467 vm_map_t tmpm; 2468 vm_map_entry_t tmpe; 2469 vm_object_t obj, nobj; 2470 int entcount; 2471 2472 if (map == 0) 2473 return 0; 2474 if (entry == 0) { 2475 tmpe = map->header.next; 2476 entcount = map->nentries; 2477 while (entcount-- && (tmpe != &map->header)) { 2478 if( _vm_object_in_map(map, object, tmpe)) { 2479 return 1; 2480 } 2481 tmpe = tmpe->next; 2482 } 2483 return (0); 2484 } 2485 switch(entry->maptype) { 2486 case VM_MAPTYPE_SUBMAP: 2487 tmpm = entry->object.sub_map; 2488 tmpe = tmpm->header.next; 2489 entcount = tmpm->nentries; 2490 while (entcount-- && tmpe != &tmpm->header) { 2491 if( _vm_object_in_map(tmpm, object, tmpe)) { 2492 return 1; 2493 } 2494 tmpe = tmpe->next; 2495 } 2496 break; 2497 case VM_MAPTYPE_NORMAL: 2498 case VM_MAPTYPE_VPAGETABLE: 2499 obj = entry->object.vm_object; 2500 while (obj) { 2501 if (obj == object) { 2502 if (obj != entry->object.vm_object) 2503 vm_object_drop(obj); 2504 return 1; 2505 } 2506 while ((nobj = obj->backing_object) != NULL) { 2507 vm_object_hold(nobj); 2508 if (nobj == obj->backing_object) 2509 break; 2510 vm_object_drop(nobj); 2511 } 2512 if (obj != entry->object.vm_object) { 2513 if (nobj) 2514 vm_object_lock_swap(); 2515 vm_object_drop(obj); 2516 } 2517 obj = nobj; 2518 } 2519 break; 2520 default: 2521 break; 2522 } 2523 return 0; 2524 } 2525 2526 static int vm_object_in_map_callback(struct proc *p, void *data); 2527 2528 struct vm_object_in_map_info { 2529 vm_object_t object; 2530 int rv; 2531 }; 2532 2533 /* 2534 * Debugging only 2535 */ 2536 static int 2537 vm_object_in_map(vm_object_t object) 2538 { 2539 struct vm_object_in_map_info info; 2540 2541 info.rv = 0; 2542 info.object = object; 2543 2544 allproc_scan(vm_object_in_map_callback, &info); 2545 if (info.rv) 2546 return 1; 2547 if( _vm_object_in_map(&kernel_map, object, 0)) 2548 return 1; 2549 if( _vm_object_in_map(&pager_map, object, 0)) 2550 return 1; 2551 if( _vm_object_in_map(&buffer_map, object, 0)) 2552 return 1; 2553 return 0; 2554 } 2555 2556 /* 2557 * Debugging only 2558 */ 2559 static int 2560 vm_object_in_map_callback(struct proc *p, void *data) 2561 { 2562 struct vm_object_in_map_info *info = data; 2563 2564 if (p->p_vmspace) { 2565 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2566 info->rv = 1; 2567 return -1; 2568 } 2569 } 2570 return (0); 2571 } 2572 2573 DB_SHOW_COMMAND(vmochk, vm_object_check) 2574 { 2575 vm_object_t object; 2576 2577 /* 2578 * make sure that internal objs are in a map somewhere 2579 * and none have zero ref counts. 2580 */ 2581 for (object = TAILQ_FIRST(&vm_object_list); 2582 object != NULL; 2583 object = TAILQ_NEXT(object, object_list)) { 2584 if (object->type == OBJT_MARKER) 2585 continue; 2586 if (object->handle == NULL && 2587 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2588 if (object->ref_count == 0) { 2589 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2590 (long)object->size); 2591 } 2592 if (!vm_object_in_map(object)) { 2593 db_printf( 2594 "vmochk: internal obj is not in a map: " 2595 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2596 object->ref_count, (u_long)object->size, 2597 (u_long)object->size, 2598 (void *)object->backing_object); 2599 } 2600 } 2601 } 2602 } 2603 2604 /* 2605 * Debugging only 2606 */ 2607 DB_SHOW_COMMAND(object, vm_object_print_static) 2608 { 2609 /* XXX convert args. */ 2610 vm_object_t object = (vm_object_t)addr; 2611 boolean_t full = have_addr; 2612 2613 vm_page_t p; 2614 2615 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2616 #define count was_count 2617 2618 int count; 2619 2620 if (object == NULL) 2621 return; 2622 2623 db_iprintf( 2624 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2625 object, (int)object->type, (u_long)object->size, 2626 object->resident_page_count, object->ref_count, object->flags); 2627 /* 2628 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2629 */ 2630 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2631 object->shadow_count, 2632 object->backing_object ? object->backing_object->ref_count : 0, 2633 object->backing_object, (long)object->backing_object_offset); 2634 2635 if (!full) 2636 return; 2637 2638 db_indent += 2; 2639 count = 0; 2640 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2641 if (count == 0) 2642 db_iprintf("memory:="); 2643 else if (count == 6) { 2644 db_printf("\n"); 2645 db_iprintf(" ..."); 2646 count = 0; 2647 } else 2648 db_printf(","); 2649 count++; 2650 2651 db_printf("(off=0x%lx,page=0x%lx)", 2652 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 2653 } 2654 if (count != 0) 2655 db_printf("\n"); 2656 db_indent -= 2; 2657 } 2658 2659 /* XXX. */ 2660 #undef count 2661 2662 /* 2663 * XXX need this non-static entry for calling from vm_map_print. 2664 * 2665 * Debugging only 2666 */ 2667 void 2668 vm_object_print(/* db_expr_t */ long addr, 2669 boolean_t have_addr, 2670 /* db_expr_t */ long count, 2671 char *modif) 2672 { 2673 vm_object_print_static(addr, have_addr, count, modif); 2674 } 2675 2676 /* 2677 * Debugging only 2678 */ 2679 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2680 { 2681 vm_object_t object; 2682 int nl = 0; 2683 int c; 2684 for (object = TAILQ_FIRST(&vm_object_list); 2685 object != NULL; 2686 object = TAILQ_NEXT(object, object_list)) { 2687 vm_pindex_t idx, fidx; 2688 vm_pindex_t osize; 2689 vm_paddr_t pa = -1, padiff; 2690 int rcount; 2691 vm_page_t m; 2692 2693 if (object->type == OBJT_MARKER) 2694 continue; 2695 db_printf("new object: %p\n", (void *)object); 2696 if ( nl > 18) { 2697 c = cngetc(); 2698 if (c != ' ') 2699 return; 2700 nl = 0; 2701 } 2702 nl++; 2703 rcount = 0; 2704 fidx = 0; 2705 osize = object->size; 2706 if (osize > 128) 2707 osize = 128; 2708 for (idx = 0; idx < osize; idx++) { 2709 m = vm_page_lookup(object, idx); 2710 if (m == NULL) { 2711 if (rcount) { 2712 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2713 (long)fidx, rcount, (long)pa); 2714 if ( nl > 18) { 2715 c = cngetc(); 2716 if (c != ' ') 2717 return; 2718 nl = 0; 2719 } 2720 nl++; 2721 rcount = 0; 2722 } 2723 continue; 2724 } 2725 2726 2727 if (rcount && 2728 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2729 ++rcount; 2730 continue; 2731 } 2732 if (rcount) { 2733 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2734 padiff >>= PAGE_SHIFT; 2735 padiff &= PQ_L2_MASK; 2736 if (padiff == 0) { 2737 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2738 ++rcount; 2739 continue; 2740 } 2741 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2742 (long)fidx, rcount, (long)pa); 2743 db_printf("pd(%ld)\n", (long)padiff); 2744 if ( nl > 18) { 2745 c = cngetc(); 2746 if (c != ' ') 2747 return; 2748 nl = 0; 2749 } 2750 nl++; 2751 } 2752 fidx = idx; 2753 pa = VM_PAGE_TO_PHYS(m); 2754 rcount = 1; 2755 } 2756 if (rcount) { 2757 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2758 (long)fidx, rcount, (long)pa); 2759 if ( nl > 18) { 2760 c = cngetc(); 2761 if (c != ' ') 2762 return; 2763 nl = 0; 2764 } 2765 nl++; 2766 } 2767 } 2768 } 2769 #endif /* DDB */ 2770