1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 67 */ 68 69 /* 70 * Virtual memory object module. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> /* for curproc, pageproc */ 76 #include <sys/thread.h> 77 #include <sys/vnode.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/mount.h> 81 #include <sys/kernel.h> 82 #include <sys/sysctl.h> 83 #include <sys/refcount.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_zone.h> 97 98 #define EASY_SCAN_FACTOR 8 99 100 static void vm_object_qcollapse(vm_object_t object, 101 vm_object_t backing_object); 102 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 103 int pagerflags); 104 static void vm_object_lock_init(vm_object_t); 105 106 107 /* 108 * Virtual memory objects maintain the actual data 109 * associated with allocated virtual memory. A given 110 * page of memory exists within exactly one object. 111 * 112 * An object is only deallocated when all "references" 113 * are given up. Only one "reference" to a given 114 * region of an object should be writeable. 115 * 116 * Associated with each object is a list of all resident 117 * memory pages belonging to that object; this list is 118 * maintained by the "vm_page" module, and locked by the object's 119 * lock. 120 * 121 * Each object also records a "pager" routine which is 122 * used to retrieve (and store) pages to the proper backing 123 * storage. In addition, objects may be backed by other 124 * objects from which they were virtual-copied. 125 * 126 * The only items within the object structure which are 127 * modified after time of creation are: 128 * reference count locked by object's lock 129 * pager routine locked by object's lock 130 * 131 */ 132 133 struct object_q vm_object_list; /* locked by vmobj_token */ 134 struct vm_object kernel_object; 135 136 static long vm_object_count; /* locked by vmobj_token */ 137 extern int vm_pageout_page_count; 138 139 static long object_collapses; 140 static long object_bypasses; 141 static int next_index; 142 static vm_zone_t obj_zone; 143 static struct vm_zone obj_zone_store; 144 #define VM_OBJECTS_INIT 256 145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 146 147 /* 148 * Misc low level routines 149 */ 150 static void 151 vm_object_lock_init(vm_object_t obj) 152 { 153 #if defined(DEBUG_LOCKS) 154 int i; 155 156 obj->debug_hold_bitmap = 0; 157 obj->debug_hold_ovfl = 0; 158 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 159 obj->debug_hold_thrs[i] = NULL; 160 obj->debug_hold_file[i] = NULL; 161 obj->debug_hold_line[i] = 0; 162 } 163 #endif 164 } 165 166 void 167 vm_object_lock_swap(void) 168 { 169 lwkt_token_swap(); 170 } 171 172 void 173 vm_object_lock(vm_object_t obj) 174 { 175 lwkt_gettoken(&obj->token); 176 } 177 178 /* 179 * Returns TRUE on sucesss 180 */ 181 static int 182 vm_object_lock_try(vm_object_t obj) 183 { 184 return(lwkt_trytoken(&obj->token)); 185 } 186 187 void 188 vm_object_lock_shared(vm_object_t obj) 189 { 190 lwkt_gettoken_shared(&obj->token); 191 } 192 193 void 194 vm_object_unlock(vm_object_t obj) 195 { 196 lwkt_reltoken(&obj->token); 197 } 198 199 static __inline void 200 vm_object_assert_held(vm_object_t obj) 201 { 202 ASSERT_LWKT_TOKEN_HELD(&obj->token); 203 } 204 205 void 206 #ifndef DEBUG_LOCKS 207 vm_object_hold(vm_object_t obj) 208 #else 209 debugvm_object_hold(vm_object_t obj, char *file, int line) 210 #endif 211 { 212 KKASSERT(obj != NULL); 213 214 /* 215 * Object must be held (object allocation is stable due to callers 216 * context, typically already holding the token on a parent object) 217 * prior to potentially blocking on the lock, otherwise the object 218 * can get ripped away from us. 219 */ 220 refcount_acquire(&obj->hold_count); 221 vm_object_lock(obj); 222 223 #if defined(DEBUG_LOCKS) 224 int i; 225 u_int mask; 226 227 for (;;) { 228 mask = ~obj->debug_hold_bitmap; 229 cpu_ccfence(); 230 if (mask == 0xFFFFFFFFU) { 231 if (obj->debug_hold_ovfl == 0) 232 obj->debug_hold_ovfl = 1; 233 break; 234 } 235 i = ffs(mask) - 1; 236 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 237 ~mask | (1 << i))) { 238 obj->debug_hold_bitmap |= (1 << i); 239 obj->debug_hold_thrs[i] = curthread; 240 obj->debug_hold_file[i] = file; 241 obj->debug_hold_line[i] = line; 242 break; 243 } 244 } 245 #endif 246 } 247 248 int 249 #ifndef DEBUG_LOCKS 250 vm_object_hold_try(vm_object_t obj) 251 #else 252 debugvm_object_hold_try(vm_object_t obj, char *file, int line) 253 #endif 254 { 255 KKASSERT(obj != NULL); 256 257 /* 258 * Object must be held (object allocation is stable due to callers 259 * context, typically already holding the token on a parent object) 260 * prior to potentially blocking on the lock, otherwise the object 261 * can get ripped away from us. 262 */ 263 refcount_acquire(&obj->hold_count); 264 if (vm_object_lock_try(obj) == 0) { 265 if (refcount_release(&obj->hold_count)) { 266 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) 267 zfree(obj_zone, obj); 268 } 269 return(0); 270 } 271 272 #if defined(DEBUG_LOCKS) 273 int i; 274 u_int mask; 275 276 for (;;) { 277 mask = ~obj->debug_hold_bitmap; 278 cpu_ccfence(); 279 if (mask == 0xFFFFFFFFU) { 280 if (obj->debug_hold_ovfl == 0) 281 obj->debug_hold_ovfl = 1; 282 break; 283 } 284 i = ffs(mask) - 1; 285 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 286 ~mask | (1 << i))) { 287 obj->debug_hold_bitmap |= (1 << i); 288 obj->debug_hold_thrs[i] = curthread; 289 obj->debug_hold_file[i] = file; 290 obj->debug_hold_line[i] = line; 291 break; 292 } 293 } 294 #endif 295 return(1); 296 } 297 298 void 299 #ifndef DEBUG_LOCKS 300 vm_object_hold_shared(vm_object_t obj) 301 #else 302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line) 303 #endif 304 { 305 KKASSERT(obj != NULL); 306 307 /* 308 * Object must be held (object allocation is stable due to callers 309 * context, typically already holding the token on a parent object) 310 * prior to potentially blocking on the lock, otherwise the object 311 * can get ripped away from us. 312 */ 313 refcount_acquire(&obj->hold_count); 314 vm_object_lock_shared(obj); 315 316 #if defined(DEBUG_LOCKS) 317 int i; 318 u_int mask; 319 320 for (;;) { 321 mask = ~obj->debug_hold_bitmap; 322 cpu_ccfence(); 323 if (mask == 0xFFFFFFFFU) { 324 if (obj->debug_hold_ovfl == 0) 325 obj->debug_hold_ovfl = 1; 326 break; 327 } 328 i = ffs(mask) - 1; 329 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 330 ~mask | (1 << i))) { 331 obj->debug_hold_bitmap |= (1 << i); 332 obj->debug_hold_thrs[i] = curthread; 333 obj->debug_hold_file[i] = file; 334 obj->debug_hold_line[i] = line; 335 break; 336 } 337 } 338 #endif 339 } 340 341 /* 342 * Drop the token and hold_count on the object. 343 */ 344 void 345 vm_object_drop(vm_object_t obj) 346 { 347 if (obj == NULL) 348 return; 349 350 #if defined(DEBUG_LOCKS) 351 int found = 0; 352 int i; 353 354 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 355 if ((obj->debug_hold_bitmap & (1 << i)) && 356 (obj->debug_hold_thrs[i] == curthread)) { 357 obj->debug_hold_bitmap &= ~(1 << i); 358 obj->debug_hold_thrs[i] = NULL; 359 obj->debug_hold_file[i] = NULL; 360 obj->debug_hold_line[i] = 0; 361 found = 1; 362 break; 363 } 364 } 365 366 if (found == 0 && obj->debug_hold_ovfl == 0) 367 panic("vm_object: attempt to drop hold on non-self-held obj"); 368 #endif 369 370 /* 371 * No new holders should be possible once we drop hold_count 1->0 as 372 * there is no longer any way to reference the object. 373 */ 374 KKASSERT(obj->hold_count > 0); 375 if (refcount_release(&obj->hold_count)) { 376 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) { 377 vm_object_unlock(obj); 378 zfree(obj_zone, obj); 379 } else { 380 vm_object_unlock(obj); 381 } 382 } else { 383 vm_object_unlock(obj); 384 } 385 } 386 387 /* 388 * Initialize a freshly allocated object, returning a held object. 389 * 390 * Used only by vm_object_allocate() and zinitna(). 391 * 392 * No requirements. 393 */ 394 void 395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 396 { 397 int incr; 398 399 RB_INIT(&object->rb_memq); 400 LIST_INIT(&object->shadow_head); 401 lwkt_token_init(&object->token, "vmobj"); 402 403 object->type = type; 404 object->size = size; 405 object->ref_count = 1; 406 object->hold_count = 0; 407 object->flags = 0; 408 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 409 vm_object_set_flag(object, OBJ_ONEMAPPING); 410 object->paging_in_progress = 0; 411 object->resident_page_count = 0; 412 object->agg_pv_list_count = 0; 413 object->shadow_count = 0; 414 #ifdef SMP 415 /* cpu localization twist */ 416 object->pg_color = (int)(intptr_t)curthread; 417 #else 418 object->pg_color = next_index; 419 #endif 420 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 421 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 422 else 423 incr = size; 424 next_index = (next_index + incr) & PQ_L2_MASK; 425 object->handle = NULL; 426 object->backing_object = NULL; 427 object->backing_object_offset = (vm_ooffset_t)0; 428 429 object->generation++; 430 object->swblock_count = 0; 431 RB_INIT(&object->swblock_root); 432 vm_object_lock_init(object); 433 434 vm_object_hold(object); 435 lwkt_gettoken(&vmobj_token); 436 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 437 vm_object_count++; 438 lwkt_reltoken(&vmobj_token); 439 } 440 441 /* 442 * Initialize the VM objects module. 443 * 444 * Called from the low level boot code only. 445 */ 446 void 447 vm_object_init(void) 448 { 449 TAILQ_INIT(&vm_object_list); 450 451 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 452 &kernel_object); 453 vm_object_drop(&kernel_object); 454 455 obj_zone = &obj_zone_store; 456 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 457 vm_objects_init, VM_OBJECTS_INIT); 458 } 459 460 void 461 vm_object_init2(void) 462 { 463 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 464 } 465 466 /* 467 * Allocate and return a new object of the specified type and size. 468 * 469 * No requirements. 470 */ 471 vm_object_t 472 vm_object_allocate(objtype_t type, vm_pindex_t size) 473 { 474 vm_object_t result; 475 476 result = (vm_object_t) zalloc(obj_zone); 477 478 _vm_object_allocate(type, size, result); 479 vm_object_drop(result); 480 481 return (result); 482 } 483 484 /* 485 * This version returns a held object, allowing further atomic initialization 486 * of the object. 487 */ 488 vm_object_t 489 vm_object_allocate_hold(objtype_t type, vm_pindex_t size) 490 { 491 vm_object_t result; 492 493 result = (vm_object_t) zalloc(obj_zone); 494 495 _vm_object_allocate(type, size, result); 496 497 return (result); 498 } 499 500 /* 501 * Add an additional reference to a vm_object. The object must already be 502 * held. The original non-lock version is no longer supported. The object 503 * must NOT be chain locked by anyone at the time the reference is added. 504 * 505 * Referencing a chain-locked object can blow up the fairly sensitive 506 * ref_count and shadow_count tests in the deallocator. Most callers 507 * will call vm_object_chain_wait() prior to calling 508 * vm_object_reference_locked() to avoid the case. 509 * 510 * The object must be held. 511 */ 512 void 513 vm_object_reference_locked(vm_object_t object) 514 { 515 KKASSERT(object != NULL); 516 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 517 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 518 object->ref_count++; 519 if (object->type == OBJT_VNODE) { 520 vref(object->handle); 521 /* XXX what if the vnode is being destroyed? */ 522 } 523 } 524 525 /* 526 * Object OBJ_CHAINLOCK lock handling. 527 * 528 * The caller can chain-lock backing objects recursively and then 529 * use vm_object_chain_release_all() to undo the whole chain. 530 * 531 * Chain locks are used to prevent collapses and are only applicable 532 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 533 * on other object types are ignored. This is also important because 534 * it allows e.g. the vnode underlying a memory mapping to take concurrent 535 * faults. 536 * 537 * The object must usually be held on entry, though intermediate 538 * objects need not be held on release. 539 */ 540 void 541 vm_object_chain_wait(vm_object_t object) 542 { 543 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 544 while (object->flags & OBJ_CHAINLOCK) { 545 vm_object_set_flag(object, OBJ_CHAINWANT); 546 tsleep(object, 0, "objchain", 0); 547 } 548 } 549 550 void 551 vm_object_chain_acquire(vm_object_t object) 552 { 553 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 554 vm_object_chain_wait(object); 555 vm_object_set_flag(object, OBJ_CHAINLOCK); 556 } 557 } 558 559 void 560 vm_object_chain_release(vm_object_t object) 561 { 562 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 563 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 564 KKASSERT(object->flags & OBJ_CHAINLOCK); 565 if (object->flags & OBJ_CHAINWANT) { 566 vm_object_clear_flag(object, 567 OBJ_CHAINLOCK | OBJ_CHAINWANT); 568 wakeup(object); 569 } else { 570 vm_object_clear_flag(object, OBJ_CHAINLOCK); 571 } 572 } 573 } 574 575 /* 576 * This releases the entire chain of objects from first_object to and 577 * including stopobj, flowing through object->backing_object. 578 * 579 * We release stopobj first as an optimization as this object is most 580 * likely to be shared across multiple processes. 581 */ 582 void 583 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 584 { 585 vm_object_t backing_object; 586 vm_object_t object; 587 588 vm_object_chain_release(stopobj); 589 object = first_object; 590 591 while (object != stopobj) { 592 KKASSERT(object); 593 if (object != first_object) 594 vm_object_hold(object); 595 backing_object = object->backing_object; 596 vm_object_chain_release(object); 597 if (object != first_object) 598 vm_object_drop(object); 599 object = backing_object; 600 } 601 } 602 603 /* 604 * Dereference an object and its underlying vnode. 605 * 606 * The object must be held and will be held on return. 607 */ 608 static void 609 vm_object_vndeallocate(vm_object_t object) 610 { 611 struct vnode *vp = (struct vnode *) object->handle; 612 613 KASSERT(object->type == OBJT_VNODE, 614 ("vm_object_vndeallocate: not a vnode object")); 615 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 616 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 617 #ifdef INVARIANTS 618 if (object->ref_count == 0) { 619 vprint("vm_object_vndeallocate", vp); 620 panic("vm_object_vndeallocate: bad object reference count"); 621 } 622 #endif 623 object->ref_count--; 624 if (object->ref_count == 0) 625 vclrflags(vp, VTEXT); 626 vrele(vp); 627 } 628 629 /* 630 * Release a reference to the specified object, gained either through a 631 * vm_object_allocate or a vm_object_reference call. When all references 632 * are gone, storage associated with this object may be relinquished. 633 * 634 * The caller does not have to hold the object locked but must have control 635 * over the reference in question in order to guarantee that the object 636 * does not get ripped out from under us. 637 */ 638 void 639 vm_object_deallocate(vm_object_t object) 640 { 641 if (object) { 642 vm_object_hold(object); 643 vm_object_deallocate_locked(object); 644 vm_object_drop(object); 645 } 646 } 647 648 void 649 vm_object_deallocate_locked(vm_object_t object) 650 { 651 struct vm_object_dealloc_list *dlist = NULL; 652 struct vm_object_dealloc_list *dtmp; 653 vm_object_t temp; 654 int must_drop = 0; 655 656 /* 657 * We may chain deallocate object, but additional objects may 658 * collect on the dlist which also have to be deallocated. We 659 * must avoid a recursion, vm_object chains can get deep. 660 */ 661 again: 662 while (object != NULL) { 663 #if 0 664 /* 665 * Don't rip a ref_count out from under an object undergoing 666 * collapse, it will confuse the collapse code. 667 */ 668 vm_object_chain_wait(object); 669 #endif 670 if (object->type == OBJT_VNODE) { 671 vm_object_vndeallocate(object); 672 break; 673 } 674 675 if (object->ref_count == 0) { 676 panic("vm_object_deallocate: object deallocated " 677 "too many times: %d", object->type); 678 } 679 if (object->ref_count > 2) { 680 object->ref_count--; 681 break; 682 } 683 684 /* 685 * Here on ref_count of one or two, which are special cases for 686 * objects. 687 * 688 * Nominal ref_count > 1 case if the second ref is not from 689 * a shadow. 690 */ 691 if (object->ref_count == 2 && object->shadow_count == 0) { 692 vm_object_set_flag(object, OBJ_ONEMAPPING); 693 object->ref_count--; 694 break; 695 } 696 697 /* 698 * If the second ref is from a shadow we chain along it 699 * upwards if object's handle is exhausted. 700 * 701 * We have to decrement object->ref_count before potentially 702 * collapsing the first shadow object or the collapse code 703 * will not be able to handle the degenerate case to remove 704 * object. However, if we do it too early the object can 705 * get ripped out from under us. 706 */ 707 if (object->ref_count == 2 && object->shadow_count == 1 && 708 object->handle == NULL && (object->type == OBJT_DEFAULT || 709 object->type == OBJT_SWAP)) { 710 temp = LIST_FIRST(&object->shadow_head); 711 KKASSERT(temp != NULL); 712 vm_object_hold(temp); 713 714 /* 715 * Wait for any paging to complete so the collapse 716 * doesn't (or isn't likely to) qcollapse. pip 717 * waiting must occur before we acquire the 718 * chainlock. 719 */ 720 while ( 721 temp->paging_in_progress || 722 object->paging_in_progress 723 ) { 724 vm_object_pip_wait(temp, "objde1"); 725 vm_object_pip_wait(object, "objde2"); 726 } 727 728 /* 729 * If the parent is locked we have to give up, as 730 * otherwise we would be acquiring locks in the 731 * wrong order and potentially deadlock. 732 */ 733 if (temp->flags & OBJ_CHAINLOCK) { 734 vm_object_drop(temp); 735 goto skip; 736 } 737 vm_object_chain_acquire(temp); 738 739 /* 740 * Recheck/retry after the hold and the paging 741 * wait, both of which can block us. 742 */ 743 if (object->ref_count != 2 || 744 object->shadow_count != 1 || 745 object->handle || 746 LIST_FIRST(&object->shadow_head) != temp || 747 (object->type != OBJT_DEFAULT && 748 object->type != OBJT_SWAP)) { 749 vm_object_chain_release(temp); 750 vm_object_drop(temp); 751 continue; 752 } 753 754 /* 755 * We can safely drop object's ref_count now. 756 */ 757 KKASSERT(object->ref_count == 2); 758 object->ref_count--; 759 760 /* 761 * If our single parent is not collapseable just 762 * decrement ref_count (2->1) and stop. 763 */ 764 if (temp->handle || (temp->type != OBJT_DEFAULT && 765 temp->type != OBJT_SWAP)) { 766 vm_object_chain_release(temp); 767 vm_object_drop(temp); 768 break; 769 } 770 771 /* 772 * At this point we have already dropped object's 773 * ref_count so it is possible for a race to 774 * deallocate obj out from under us. Any collapse 775 * will re-check the situation. We must not block 776 * until we are able to collapse. 777 * 778 * Bump temp's ref_count to avoid an unwanted 779 * degenerate recursion (can't call 780 * vm_object_reference_locked() because it asserts 781 * that CHAINLOCK is not set). 782 */ 783 temp->ref_count++; 784 KKASSERT(temp->ref_count > 1); 785 786 /* 787 * Collapse temp, then deallocate the extra ref 788 * formally. 789 */ 790 vm_object_collapse(temp, &dlist); 791 vm_object_chain_release(temp); 792 if (must_drop) { 793 vm_object_lock_swap(); 794 vm_object_drop(object); 795 } 796 object = temp; 797 must_drop = 1; 798 continue; 799 } 800 801 /* 802 * Drop the ref and handle termination on the 1->0 transition. 803 * We may have blocked above so we have to recheck. 804 */ 805 skip: 806 KKASSERT(object->ref_count != 0); 807 if (object->ref_count >= 2) { 808 object->ref_count--; 809 break; 810 } 811 KKASSERT(object->ref_count == 1); 812 813 /* 814 * 1->0 transition. Chain through the backing_object. 815 * Maintain the ref until we've located the backing object, 816 * then re-check. 817 */ 818 while ((temp = object->backing_object) != NULL) { 819 vm_object_hold(temp); 820 if (temp == object->backing_object) 821 break; 822 vm_object_drop(temp); 823 } 824 825 /* 826 * 1->0 transition verified, retry if ref_count is no longer 827 * 1. Otherwise disconnect the backing_object (temp) and 828 * clean up. 829 */ 830 if (object->ref_count != 1) { 831 vm_object_drop(temp); 832 continue; 833 } 834 835 /* 836 * It shouldn't be possible for the object to be chain locked 837 * if we're removing the last ref on it. 838 */ 839 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 840 841 if (temp) { 842 LIST_REMOVE(object, shadow_list); 843 temp->shadow_count--; 844 temp->generation++; 845 object->backing_object = NULL; 846 } 847 848 --object->ref_count; 849 if ((object->flags & OBJ_DEAD) == 0) 850 vm_object_terminate(object); 851 if (must_drop && temp) 852 vm_object_lock_swap(); 853 if (must_drop) 854 vm_object_drop(object); 855 object = temp; 856 must_drop = 1; 857 } 858 if (must_drop && object) 859 vm_object_drop(object); 860 861 /* 862 * Additional tail recursion on dlist. Avoid a recursion. Objects 863 * on the dlist have a hold count but are not locked. 864 */ 865 if ((dtmp = dlist) != NULL) { 866 dlist = dtmp->next; 867 object = dtmp->object; 868 kfree(dtmp, M_TEMP); 869 870 vm_object_lock(object); /* already held, add lock */ 871 must_drop = 1; /* and we're responsible for it */ 872 goto again; 873 } 874 } 875 876 /* 877 * Destroy the specified object, freeing up related resources. 878 * 879 * The object must have zero references. 880 * 881 * The object must held. The caller is responsible for dropping the object 882 * after terminate returns. Terminate does NOT drop the object. 883 */ 884 static int vm_object_terminate_callback(vm_page_t p, void *data); 885 886 void 887 vm_object_terminate(vm_object_t object) 888 { 889 /* 890 * Make sure no one uses us. Once we set OBJ_DEAD we should be 891 * able to safely block. 892 */ 893 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 894 KKASSERT((object->flags & OBJ_DEAD) == 0); 895 vm_object_set_flag(object, OBJ_DEAD); 896 897 /* 898 * Wait for the pageout daemon to be done with the object 899 */ 900 vm_object_pip_wait(object, "objtrm1"); 901 902 KASSERT(!object->paging_in_progress, 903 ("vm_object_terminate: pageout in progress")); 904 905 /* 906 * Clean and free the pages, as appropriate. All references to the 907 * object are gone, so we don't need to lock it. 908 */ 909 if (object->type == OBJT_VNODE) { 910 struct vnode *vp; 911 912 /* 913 * Clean pages and flush buffers. 914 */ 915 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 916 917 vp = (struct vnode *) object->handle; 918 vinvalbuf(vp, V_SAVE, 0, 0); 919 } 920 921 /* 922 * Wait for any I/O to complete, after which there had better not 923 * be any references left on the object. 924 */ 925 vm_object_pip_wait(object, "objtrm2"); 926 927 if (object->ref_count != 0) { 928 panic("vm_object_terminate: object with references, " 929 "ref_count=%d", object->ref_count); 930 } 931 932 /* 933 * Now free any remaining pages. For internal objects, this also 934 * removes them from paging queues. Don't free wired pages, just 935 * remove them from the object. 936 */ 937 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 938 vm_object_terminate_callback, NULL); 939 940 /* 941 * Let the pager know object is dead. 942 */ 943 vm_pager_deallocate(object); 944 945 /* 946 * Wait for the object hold count to hit 1, clean out pages as 947 * we go. vmobj_token interlocks any race conditions that might 948 * pick the object up from the vm_object_list after we have cleared 949 * rb_memq. 950 */ 951 for (;;) { 952 if (RB_ROOT(&object->rb_memq) == NULL) 953 break; 954 kprintf("vm_object_terminate: Warning, object %p " 955 "still has %d pages\n", 956 object, object->resident_page_count); 957 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 958 vm_object_terminate_callback, NULL); 959 } 960 961 /* 962 * There had better not be any pages left 963 */ 964 KKASSERT(object->resident_page_count == 0); 965 966 /* 967 * Remove the object from the global object list. 968 */ 969 lwkt_gettoken(&vmobj_token); 970 TAILQ_REMOVE(&vm_object_list, object, object_list); 971 vm_object_count--; 972 lwkt_reltoken(&vmobj_token); 973 vm_object_dead_wakeup(object); 974 975 if (object->ref_count != 0) { 976 panic("vm_object_terminate2: object with references, " 977 "ref_count=%d", object->ref_count); 978 } 979 980 /* 981 * NOTE: The object hold_count is at least 1, so we cannot zfree() 982 * the object here. See vm_object_drop(). 983 */ 984 } 985 986 /* 987 * The caller must hold the object. 988 */ 989 static int 990 vm_object_terminate_callback(vm_page_t p, void *data __unused) 991 { 992 vm_object_t object; 993 994 object = p->object; 995 vm_page_busy_wait(p, TRUE, "vmpgtrm"); 996 if (object != p->object) { 997 kprintf("vm_object_terminate: Warning: Encountered " 998 "busied page %p on queue %d\n", p, p->queue); 999 vm_page_wakeup(p); 1000 } else if (p->wire_count == 0) { 1001 /* 1002 * NOTE: PG_NEED_COMMIT is ignored. 1003 */ 1004 vm_page_free(p); 1005 mycpu->gd_cnt.v_pfree++; 1006 } else { 1007 if (p->queue != PQ_NONE) 1008 kprintf("vm_object_terminate: Warning: Encountered " 1009 "wired page %p on queue %d\n", p, p->queue); 1010 vm_page_remove(p); 1011 vm_page_wakeup(p); 1012 } 1013 lwkt_yield(); 1014 return(0); 1015 } 1016 1017 /* 1018 * The object is dead but still has an object<->pager association. Sleep 1019 * and return. The caller typically retests the association in a loop. 1020 * 1021 * The caller must hold the object. 1022 */ 1023 void 1024 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 1025 { 1026 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1027 if (object->handle) { 1028 vm_object_set_flag(object, OBJ_DEADWNT); 1029 tsleep(object, 0, wmesg, 0); 1030 /* object may be invalid after this point */ 1031 } 1032 } 1033 1034 /* 1035 * Wakeup anyone waiting for the object<->pager disassociation on 1036 * a dead object. 1037 * 1038 * The caller must hold the object. 1039 */ 1040 void 1041 vm_object_dead_wakeup(vm_object_t object) 1042 { 1043 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1044 if (object->flags & OBJ_DEADWNT) { 1045 vm_object_clear_flag(object, OBJ_DEADWNT); 1046 wakeup(object); 1047 } 1048 } 1049 1050 /* 1051 * Clean all dirty pages in the specified range of object. Leaves page 1052 * on whatever queue it is currently on. If NOSYNC is set then do not 1053 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 1054 * leaving the object dirty. 1055 * 1056 * When stuffing pages asynchronously, allow clustering. XXX we need a 1057 * synchronous clustering mode implementation. 1058 * 1059 * Odd semantics: if start == end, we clean everything. 1060 * 1061 * The object must be locked? XXX 1062 */ 1063 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 1064 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 1065 1066 void 1067 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1068 int flags) 1069 { 1070 struct rb_vm_page_scan_info info; 1071 struct vnode *vp; 1072 int wholescan; 1073 int pagerflags; 1074 int generation; 1075 1076 vm_object_hold(object); 1077 if (object->type != OBJT_VNODE || 1078 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 1079 vm_object_drop(object); 1080 return; 1081 } 1082 1083 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 1084 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1085 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 1086 1087 vp = object->handle; 1088 1089 /* 1090 * Interlock other major object operations. This allows us to 1091 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 1092 */ 1093 vm_object_set_flag(object, OBJ_CLEANING); 1094 1095 /* 1096 * Handle 'entire object' case 1097 */ 1098 info.start_pindex = start; 1099 if (end == 0) { 1100 info.end_pindex = object->size - 1; 1101 } else { 1102 info.end_pindex = end - 1; 1103 } 1104 wholescan = (start == 0 && info.end_pindex == object->size - 1); 1105 info.limit = flags; 1106 info.pagerflags = pagerflags; 1107 info.object = object; 1108 1109 /* 1110 * If cleaning the entire object do a pass to mark the pages read-only. 1111 * If everything worked out ok, clear OBJ_WRITEABLE and 1112 * OBJ_MIGHTBEDIRTY. 1113 */ 1114 if (wholescan) { 1115 info.error = 0; 1116 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1117 vm_object_page_clean_pass1, &info); 1118 if (info.error == 0) { 1119 vm_object_clear_flag(object, 1120 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1121 if (object->type == OBJT_VNODE && 1122 (vp = (struct vnode *)object->handle) != NULL) { 1123 if (vp->v_flag & VOBJDIRTY) 1124 vclrflags(vp, VOBJDIRTY); 1125 } 1126 } 1127 } 1128 1129 /* 1130 * Do a pass to clean all the dirty pages we find. 1131 */ 1132 do { 1133 info.error = 0; 1134 generation = object->generation; 1135 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1136 vm_object_page_clean_pass2, &info); 1137 } while (info.error || generation != object->generation); 1138 1139 vm_object_clear_flag(object, OBJ_CLEANING); 1140 vm_object_drop(object); 1141 } 1142 1143 /* 1144 * The caller must hold the object. 1145 */ 1146 static 1147 int 1148 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1149 { 1150 struct rb_vm_page_scan_info *info = data; 1151 1152 vm_page_flag_set(p, PG_CLEANCHK); 1153 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1154 info->error = 1; 1155 } else if (vm_page_busy_try(p, FALSE) == 0) { 1156 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1157 vm_page_wakeup(p); 1158 } else { 1159 info->error = 1; 1160 } 1161 lwkt_yield(); 1162 return(0); 1163 } 1164 1165 /* 1166 * The caller must hold the object 1167 */ 1168 static 1169 int 1170 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1171 { 1172 struct rb_vm_page_scan_info *info = data; 1173 int generation; 1174 1175 /* 1176 * Do not mess with pages that were inserted after we started 1177 * the cleaning pass. 1178 */ 1179 if ((p->flags & PG_CLEANCHK) == 0) 1180 goto done; 1181 1182 generation = info->object->generation; 1183 vm_page_busy_wait(p, TRUE, "vpcwai"); 1184 if (p->object != info->object || 1185 info->object->generation != generation) { 1186 info->error = 1; 1187 vm_page_wakeup(p); 1188 goto done; 1189 } 1190 1191 /* 1192 * Before wasting time traversing the pmaps, check for trivial 1193 * cases where the page cannot be dirty. 1194 */ 1195 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1196 KKASSERT((p->dirty & p->valid) == 0); 1197 vm_page_wakeup(p); 1198 goto done; 1199 } 1200 1201 /* 1202 * Check whether the page is dirty or not. The page has been set 1203 * to be read-only so the check will not race a user dirtying the 1204 * page. 1205 */ 1206 vm_page_test_dirty(p); 1207 if ((p->dirty & p->valid) == 0) { 1208 vm_page_flag_clear(p, PG_CLEANCHK); 1209 vm_page_wakeup(p); 1210 goto done; 1211 } 1212 1213 /* 1214 * If we have been asked to skip nosync pages and this is a 1215 * nosync page, skip it. Note that the object flags were 1216 * not cleared in this case (because pass1 will have returned an 1217 * error), so we do not have to set them. 1218 */ 1219 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1220 vm_page_flag_clear(p, PG_CLEANCHK); 1221 vm_page_wakeup(p); 1222 goto done; 1223 } 1224 1225 /* 1226 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1227 * the pages that get successfully flushed. Set info->error if 1228 * we raced an object modification. 1229 */ 1230 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1231 vm_wait_nominal(); 1232 done: 1233 lwkt_yield(); 1234 return(0); 1235 } 1236 1237 /* 1238 * Collect the specified page and nearby pages and flush them out. 1239 * The number of pages flushed is returned. The passed page is busied 1240 * by the caller and we are responsible for its disposition. 1241 * 1242 * The caller must hold the object. 1243 */ 1244 static void 1245 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1246 { 1247 int runlen; 1248 int error; 1249 int maxf; 1250 int chkb; 1251 int maxb; 1252 int i; 1253 vm_pindex_t pi; 1254 vm_page_t maf[vm_pageout_page_count]; 1255 vm_page_t mab[vm_pageout_page_count]; 1256 vm_page_t ma[vm_pageout_page_count]; 1257 1258 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1259 1260 pi = p->pindex; 1261 1262 maxf = 0; 1263 for(i = 1; i < vm_pageout_page_count; i++) { 1264 vm_page_t tp; 1265 1266 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error); 1267 if (error) 1268 break; 1269 if (tp == NULL) 1270 break; 1271 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1272 (tp->flags & PG_CLEANCHK) == 0) { 1273 vm_page_wakeup(tp); 1274 break; 1275 } 1276 if ((tp->queue - tp->pc) == PQ_CACHE) { 1277 vm_page_flag_clear(tp, PG_CLEANCHK); 1278 vm_page_wakeup(tp); 1279 break; 1280 } 1281 vm_page_test_dirty(tp); 1282 if ((tp->dirty & tp->valid) == 0) { 1283 vm_page_flag_clear(tp, PG_CLEANCHK); 1284 vm_page_wakeup(tp); 1285 break; 1286 } 1287 maf[i - 1] = tp; 1288 maxf++; 1289 } 1290 1291 maxb = 0; 1292 chkb = vm_pageout_page_count - maxf; 1293 /* 1294 * NOTE: chkb can be 0 1295 */ 1296 for(i = 1; chkb && i < chkb; i++) { 1297 vm_page_t tp; 1298 1299 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error); 1300 if (error) 1301 break; 1302 if (tp == NULL) 1303 break; 1304 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1305 (tp->flags & PG_CLEANCHK) == 0) { 1306 vm_page_wakeup(tp); 1307 break; 1308 } 1309 if ((tp->queue - tp->pc) == PQ_CACHE) { 1310 vm_page_flag_clear(tp, PG_CLEANCHK); 1311 vm_page_wakeup(tp); 1312 break; 1313 } 1314 vm_page_test_dirty(tp); 1315 if ((tp->dirty & tp->valid) == 0) { 1316 vm_page_flag_clear(tp, PG_CLEANCHK); 1317 vm_page_wakeup(tp); 1318 break; 1319 } 1320 mab[i - 1] = tp; 1321 maxb++; 1322 } 1323 1324 /* 1325 * All pages in the maf[] and mab[] array are busied. 1326 */ 1327 for (i = 0; i < maxb; i++) { 1328 int index = (maxb - i) - 1; 1329 ma[index] = mab[i]; 1330 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1331 } 1332 vm_page_flag_clear(p, PG_CLEANCHK); 1333 ma[maxb] = p; 1334 for(i = 0; i < maxf; i++) { 1335 int index = (maxb + i) + 1; 1336 ma[index] = maf[i]; 1337 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1338 } 1339 runlen = maxb + maxf + 1; 1340 1341 for (i = 0; i < runlen; i++) 1342 vm_page_hold(ma[i]); 1343 1344 vm_pageout_flush(ma, runlen, pagerflags); 1345 1346 /* 1347 * WARNING: Related pages are still held but the BUSY was inherited 1348 * by the pageout I/O, so the pages might not be busy any 1349 * more. We cannot re-protect the page without waiting 1350 * for the I/O to complete and then busying it again. 1351 */ 1352 for (i = 0; i < runlen; i++) { 1353 if (ma[i]->valid & ma[i]->dirty) { 1354 /*vm_page_protect(ma[i], VM_PROT_READ);*/ 1355 vm_page_flag_set(ma[i], PG_CLEANCHK); 1356 1357 /* 1358 * maxf will end up being the actual number of pages 1359 * we wrote out contiguously, non-inclusive of the 1360 * first page. We do not count look-behind pages. 1361 */ 1362 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 1363 maxf = i - maxb - 1; 1364 } 1365 vm_page_unhold(ma[i]); 1366 } 1367 /*return(maxf + 1);*/ 1368 } 1369 1370 /* 1371 * Same as vm_object_pmap_copy, except range checking really 1372 * works, and is meant for small sections of an object. 1373 * 1374 * This code protects resident pages by making them read-only 1375 * and is typically called on a fork or split when a page 1376 * is converted to copy-on-write. 1377 * 1378 * NOTE: If the page is already at VM_PROT_NONE, calling 1379 * vm_page_protect will have no effect. 1380 */ 1381 void 1382 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1383 { 1384 vm_pindex_t idx; 1385 vm_page_t p; 1386 1387 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1388 return; 1389 1390 vm_object_hold(object); 1391 for (idx = start; idx < end; idx++) { 1392 p = vm_page_lookup(object, idx); 1393 if (p == NULL) 1394 continue; 1395 vm_page_protect(p, VM_PROT_READ); 1396 } 1397 vm_object_drop(object); 1398 } 1399 1400 /* 1401 * Removes all physical pages in the specified object range from all 1402 * physical maps. 1403 * 1404 * The object must *not* be locked. 1405 */ 1406 1407 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1408 1409 void 1410 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1411 { 1412 struct rb_vm_page_scan_info info; 1413 1414 if (object == NULL) 1415 return; 1416 info.start_pindex = start; 1417 info.end_pindex = end - 1; 1418 1419 vm_object_hold(object); 1420 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1421 vm_object_pmap_remove_callback, &info); 1422 if (start == 0 && end == object->size) 1423 vm_object_clear_flag(object, OBJ_WRITEABLE); 1424 vm_object_drop(object); 1425 } 1426 1427 /* 1428 * The caller must hold the object 1429 */ 1430 static int 1431 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1432 { 1433 vm_page_protect(p, VM_PROT_NONE); 1434 return(0); 1435 } 1436 1437 /* 1438 * Implements the madvise function at the object/page level. 1439 * 1440 * MADV_WILLNEED (any object) 1441 * 1442 * Activate the specified pages if they are resident. 1443 * 1444 * MADV_DONTNEED (any object) 1445 * 1446 * Deactivate the specified pages if they are resident. 1447 * 1448 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1449 * 1450 * Deactivate and clean the specified pages if they are 1451 * resident. This permits the process to reuse the pages 1452 * without faulting or the kernel to reclaim the pages 1453 * without I/O. 1454 * 1455 * No requirements. 1456 */ 1457 void 1458 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1459 { 1460 vm_pindex_t end, tpindex; 1461 vm_object_t tobject; 1462 vm_object_t xobj; 1463 vm_page_t m; 1464 int error; 1465 1466 if (object == NULL) 1467 return; 1468 1469 end = pindex + count; 1470 1471 vm_object_hold(object); 1472 tobject = object; 1473 1474 /* 1475 * Locate and adjust resident pages 1476 */ 1477 for (; pindex < end; pindex += 1) { 1478 relookup: 1479 if (tobject != object) 1480 vm_object_drop(tobject); 1481 tobject = object; 1482 tpindex = pindex; 1483 shadowlookup: 1484 /* 1485 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1486 * and those pages must be OBJ_ONEMAPPING. 1487 */ 1488 if (advise == MADV_FREE) { 1489 if ((tobject->type != OBJT_DEFAULT && 1490 tobject->type != OBJT_SWAP) || 1491 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1492 continue; 1493 } 1494 } 1495 1496 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1497 1498 if (error) { 1499 vm_page_sleep_busy(m, TRUE, "madvpo"); 1500 goto relookup; 1501 } 1502 if (m == NULL) { 1503 /* 1504 * There may be swap even if there is no backing page 1505 */ 1506 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1507 swap_pager_freespace(tobject, tpindex, 1); 1508 1509 /* 1510 * next object 1511 */ 1512 while ((xobj = tobject->backing_object) != NULL) { 1513 KKASSERT(xobj != object); 1514 vm_object_hold(xobj); 1515 if (xobj == tobject->backing_object) 1516 break; 1517 vm_object_drop(xobj); 1518 } 1519 if (xobj == NULL) 1520 continue; 1521 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1522 if (tobject != object) { 1523 vm_object_lock_swap(); 1524 vm_object_drop(tobject); 1525 } 1526 tobject = xobj; 1527 goto shadowlookup; 1528 } 1529 1530 /* 1531 * If the page is not in a normal active state, we skip it. 1532 * If the page is not managed there are no page queues to 1533 * mess with. Things can break if we mess with pages in 1534 * any of the below states. 1535 */ 1536 if (m->wire_count || 1537 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 1538 m->valid != VM_PAGE_BITS_ALL 1539 ) { 1540 vm_page_wakeup(m); 1541 continue; 1542 } 1543 1544 /* 1545 * Theoretically once a page is known not to be busy, an 1546 * interrupt cannot come along and rip it out from under us. 1547 */ 1548 1549 if (advise == MADV_WILLNEED) { 1550 vm_page_activate(m); 1551 } else if (advise == MADV_DONTNEED) { 1552 vm_page_dontneed(m); 1553 } else if (advise == MADV_FREE) { 1554 /* 1555 * Mark the page clean. This will allow the page 1556 * to be freed up by the system. However, such pages 1557 * are often reused quickly by malloc()/free() 1558 * so we do not do anything that would cause 1559 * a page fault if we can help it. 1560 * 1561 * Specifically, we do not try to actually free 1562 * the page now nor do we try to put it in the 1563 * cache (which would cause a page fault on reuse). 1564 * 1565 * But we do make the page is freeable as we 1566 * can without actually taking the step of unmapping 1567 * it. 1568 */ 1569 pmap_clear_modify(m); 1570 m->dirty = 0; 1571 m->act_count = 0; 1572 vm_page_dontneed(m); 1573 if (tobject->type == OBJT_SWAP) 1574 swap_pager_freespace(tobject, tpindex, 1); 1575 } 1576 vm_page_wakeup(m); 1577 } 1578 if (tobject != object) 1579 vm_object_drop(tobject); 1580 vm_object_drop(object); 1581 } 1582 1583 /* 1584 * Create a new object which is backed by the specified existing object 1585 * range. Replace the pointer and offset that was pointing at the existing 1586 * object with the pointer/offset for the new object. 1587 * 1588 * No other requirements. 1589 */ 1590 void 1591 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1592 int addref) 1593 { 1594 vm_object_t source; 1595 vm_object_t result; 1596 1597 source = *objectp; 1598 1599 /* 1600 * Don't create the new object if the old object isn't shared. 1601 * We have to chain wait before adding the reference to avoid 1602 * racing a collapse or deallocation. 1603 * 1604 * Add the additional ref to source here to avoid racing a later 1605 * collapse or deallocation. Clear the ONEMAPPING flag whether 1606 * addref is TRUE or not in this case because the original object 1607 * will be shadowed. 1608 */ 1609 if (source) { 1610 vm_object_hold(source); 1611 vm_object_chain_wait(source); 1612 if (source->ref_count == 1 && 1613 source->handle == NULL && 1614 (source->type == OBJT_DEFAULT || 1615 source->type == OBJT_SWAP)) { 1616 vm_object_drop(source); 1617 if (addref) { 1618 vm_object_reference_locked(source); 1619 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1620 } 1621 return; 1622 } 1623 vm_object_reference_locked(source); 1624 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1625 } 1626 1627 /* 1628 * Allocate a new object with the given length. The new object 1629 * is returned referenced but we may have to add another one. 1630 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1631 * (typically because the caller is about to clone a vm_map_entry). 1632 * 1633 * The source object currently has an extra reference to prevent 1634 * collapses into it while we mess with its shadow list, which 1635 * we will remove later in this routine. 1636 */ 1637 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1638 panic("vm_object_shadow: no object for shadowing"); 1639 vm_object_hold(result); 1640 if (addref) { 1641 vm_object_reference_locked(result); 1642 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1643 } 1644 1645 /* 1646 * The new object shadows the source object. Chain wait before 1647 * adjusting shadow_count or the shadow list to avoid races. 1648 * 1649 * Try to optimize the result object's page color when shadowing 1650 * in order to maintain page coloring consistency in the combined 1651 * shadowed object. 1652 */ 1653 KKASSERT(result->backing_object == NULL); 1654 result->backing_object = source; 1655 if (source) { 1656 vm_object_chain_wait(source); 1657 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1658 source->shadow_count++; 1659 source->generation++; 1660 #ifdef SMP 1661 /* cpu localization twist */ 1662 result->pg_color = (int)(intptr_t)curthread; 1663 #else 1664 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1665 PQ_L2_MASK; 1666 #endif 1667 } 1668 1669 /* 1670 * Adjust the return storage. Drop the ref on source before 1671 * returning. 1672 */ 1673 result->backing_object_offset = *offset; 1674 vm_object_drop(result); 1675 *offset = 0; 1676 if (source) { 1677 vm_object_deallocate_locked(source); 1678 vm_object_drop(source); 1679 } 1680 1681 /* 1682 * Return the new things 1683 */ 1684 *objectp = result; 1685 } 1686 1687 #define OBSC_TEST_ALL_SHADOWED 0x0001 1688 #define OBSC_COLLAPSE_NOWAIT 0x0002 1689 #define OBSC_COLLAPSE_WAIT 0x0004 1690 1691 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1692 1693 /* 1694 * The caller must hold the object. 1695 */ 1696 static __inline int 1697 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1698 { 1699 struct rb_vm_page_scan_info info; 1700 1701 vm_object_assert_held(object); 1702 vm_object_assert_held(backing_object); 1703 1704 KKASSERT(backing_object == object->backing_object); 1705 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1706 1707 /* 1708 * Initial conditions 1709 */ 1710 if (op & OBSC_TEST_ALL_SHADOWED) { 1711 /* 1712 * We do not want to have to test for the existence of 1713 * swap pages in the backing object. XXX but with the 1714 * new swapper this would be pretty easy to do. 1715 * 1716 * XXX what about anonymous MAP_SHARED memory that hasn't 1717 * been ZFOD faulted yet? If we do not test for this, the 1718 * shadow test may succeed! XXX 1719 */ 1720 if (backing_object->type != OBJT_DEFAULT) 1721 return(0); 1722 } 1723 if (op & OBSC_COLLAPSE_WAIT) { 1724 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1725 vm_object_set_flag(backing_object, OBJ_DEAD); 1726 lwkt_gettoken(&vmobj_token); 1727 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1728 vm_object_count--; 1729 lwkt_reltoken(&vmobj_token); 1730 vm_object_dead_wakeup(backing_object); 1731 } 1732 1733 /* 1734 * Our scan. We have to retry if a negative error code is returned, 1735 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1736 * the scan had to be stopped because the parent does not completely 1737 * shadow the child. 1738 */ 1739 info.object = object; 1740 info.backing_object = backing_object; 1741 info.limit = op; 1742 do { 1743 info.error = 1; 1744 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1745 vm_object_backing_scan_callback, 1746 &info); 1747 } while (info.error < 0); 1748 1749 return(info.error); 1750 } 1751 1752 /* 1753 * The caller must hold the object. 1754 */ 1755 static int 1756 vm_object_backing_scan_callback(vm_page_t p, void *data) 1757 { 1758 struct rb_vm_page_scan_info *info = data; 1759 vm_object_t backing_object; 1760 vm_object_t object; 1761 vm_pindex_t pindex; 1762 vm_pindex_t new_pindex; 1763 vm_pindex_t backing_offset_index; 1764 int op; 1765 1766 pindex = p->pindex; 1767 new_pindex = pindex - info->backing_offset_index; 1768 op = info->limit; 1769 object = info->object; 1770 backing_object = info->backing_object; 1771 backing_offset_index = info->backing_offset_index; 1772 1773 if (op & OBSC_TEST_ALL_SHADOWED) { 1774 vm_page_t pp; 1775 1776 /* 1777 * Ignore pages outside the parent object's range 1778 * and outside the parent object's mapping of the 1779 * backing object. 1780 * 1781 * note that we do not busy the backing object's 1782 * page. 1783 */ 1784 if (pindex < backing_offset_index || 1785 new_pindex >= object->size 1786 ) { 1787 return(0); 1788 } 1789 1790 /* 1791 * See if the parent has the page or if the parent's 1792 * object pager has the page. If the parent has the 1793 * page but the page is not valid, the parent's 1794 * object pager must have the page. 1795 * 1796 * If this fails, the parent does not completely shadow 1797 * the object and we might as well give up now. 1798 */ 1799 pp = vm_page_lookup(object, new_pindex); 1800 if ((pp == NULL || pp->valid == 0) && 1801 !vm_pager_has_page(object, new_pindex) 1802 ) { 1803 info->error = 0; /* problemo */ 1804 return(-1); /* stop the scan */ 1805 } 1806 } 1807 1808 /* 1809 * Check for busy page. Note that we may have lost (p) when we 1810 * possibly blocked above. 1811 */ 1812 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1813 vm_page_t pp; 1814 1815 if (vm_page_busy_try(p, TRUE)) { 1816 if (op & OBSC_COLLAPSE_NOWAIT) { 1817 return(0); 1818 } else { 1819 /* 1820 * If we slept, anything could have 1821 * happened. Ask that the scan be restarted. 1822 * 1823 * Since the object is marked dead, the 1824 * backing offset should not have changed. 1825 */ 1826 vm_page_sleep_busy(p, TRUE, "vmocol"); 1827 info->error = -1; 1828 return(-1); 1829 } 1830 } 1831 1832 /* 1833 * If (p) is no longer valid restart the scan. 1834 */ 1835 if (p->object != backing_object || p->pindex != pindex) { 1836 kprintf("vm_object_backing_scan: Warning: page " 1837 "%p ripped out from under us\n", p); 1838 vm_page_wakeup(p); 1839 info->error = -1; 1840 return(-1); 1841 } 1842 1843 if (op & OBSC_COLLAPSE_NOWAIT) { 1844 if (p->valid == 0 || 1845 p->wire_count || 1846 (p->flags & PG_NEED_COMMIT)) { 1847 vm_page_wakeup(p); 1848 return(0); 1849 } 1850 } else { 1851 /* XXX what if p->valid == 0 , hold_count, etc? */ 1852 } 1853 1854 KASSERT( 1855 p->object == backing_object, 1856 ("vm_object_qcollapse(): object mismatch") 1857 ); 1858 1859 /* 1860 * Destroy any associated swap 1861 */ 1862 if (backing_object->type == OBJT_SWAP) 1863 swap_pager_freespace(backing_object, p->pindex, 1); 1864 1865 if ( 1866 p->pindex < backing_offset_index || 1867 new_pindex >= object->size 1868 ) { 1869 /* 1870 * Page is out of the parent object's range, we 1871 * can simply destroy it. 1872 */ 1873 vm_page_protect(p, VM_PROT_NONE); 1874 vm_page_free(p); 1875 return(0); 1876 } 1877 1878 pp = vm_page_lookup(object, new_pindex); 1879 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 1880 /* 1881 * page already exists in parent OR swap exists 1882 * for this location in the parent. Destroy 1883 * the original page from the backing object. 1884 * 1885 * Leave the parent's page alone 1886 */ 1887 vm_page_protect(p, VM_PROT_NONE); 1888 vm_page_free(p); 1889 return(0); 1890 } 1891 1892 /* 1893 * Page does not exist in parent, rename the 1894 * page from the backing object to the main object. 1895 * 1896 * If the page was mapped to a process, it can remain 1897 * mapped through the rename. 1898 */ 1899 if ((p->queue - p->pc) == PQ_CACHE) 1900 vm_page_deactivate(p); 1901 1902 vm_page_rename(p, object, new_pindex); 1903 vm_page_wakeup(p); 1904 /* page automatically made dirty by rename */ 1905 } 1906 return(0); 1907 } 1908 1909 /* 1910 * This version of collapse allows the operation to occur earlier and 1911 * when paging_in_progress is true for an object... This is not a complete 1912 * operation, but should plug 99.9% of the rest of the leaks. 1913 * 1914 * The caller must hold the object and backing_object and both must be 1915 * chainlocked. 1916 * 1917 * (only called from vm_object_collapse) 1918 */ 1919 static void 1920 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 1921 { 1922 if (backing_object->ref_count == 1) { 1923 backing_object->ref_count += 2; 1924 vm_object_backing_scan(object, backing_object, 1925 OBSC_COLLAPSE_NOWAIT); 1926 backing_object->ref_count -= 2; 1927 } 1928 } 1929 1930 /* 1931 * Collapse an object with the object backing it. Pages in the backing 1932 * object are moved into the parent, and the backing object is deallocated. 1933 * Any conflict is resolved in favor of the parent's existing pages. 1934 * 1935 * object must be held and chain-locked on call. 1936 * 1937 * The caller must have an extra ref on object to prevent a race from 1938 * destroying it during the collapse. 1939 */ 1940 void 1941 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 1942 { 1943 struct vm_object_dealloc_list *dlist = NULL; 1944 vm_object_t backing_object; 1945 1946 /* 1947 * Only one thread is attempting a collapse at any given moment. 1948 * There are few restrictions for (object) that callers of this 1949 * function check so reentrancy is likely. 1950 */ 1951 KKASSERT(object != NULL); 1952 vm_object_assert_held(object); 1953 KKASSERT(object->flags & OBJ_CHAINLOCK); 1954 1955 for (;;) { 1956 vm_object_t bbobj; 1957 int dodealloc; 1958 1959 /* 1960 * We have to hold the backing object, check races. 1961 */ 1962 while ((backing_object = object->backing_object) != NULL) { 1963 vm_object_hold(backing_object); 1964 if (backing_object == object->backing_object) 1965 break; 1966 vm_object_drop(backing_object); 1967 } 1968 1969 /* 1970 * No backing object? Nothing to collapse then. 1971 */ 1972 if (backing_object == NULL) 1973 break; 1974 1975 /* 1976 * You can't collapse with a non-default/non-swap object. 1977 */ 1978 if (backing_object->type != OBJT_DEFAULT && 1979 backing_object->type != OBJT_SWAP) { 1980 vm_object_drop(backing_object); 1981 backing_object = NULL; 1982 break; 1983 } 1984 1985 /* 1986 * Chain-lock the backing object too because if we 1987 * successfully merge its pages into the top object we 1988 * will collapse backing_object->backing_object as the 1989 * new backing_object. Re-check that it is still our 1990 * backing object. 1991 */ 1992 vm_object_chain_acquire(backing_object); 1993 if (backing_object != object->backing_object) { 1994 vm_object_chain_release(backing_object); 1995 vm_object_drop(backing_object); 1996 continue; 1997 } 1998 1999 /* 2000 * we check the backing object first, because it is most likely 2001 * not collapsable. 2002 */ 2003 if (backing_object->handle != NULL || 2004 (backing_object->type != OBJT_DEFAULT && 2005 backing_object->type != OBJT_SWAP) || 2006 (backing_object->flags & OBJ_DEAD) || 2007 object->handle != NULL || 2008 (object->type != OBJT_DEFAULT && 2009 object->type != OBJT_SWAP) || 2010 (object->flags & OBJ_DEAD)) { 2011 break; 2012 } 2013 2014 /* 2015 * If paging is in progress we can't do a normal collapse. 2016 */ 2017 if ( 2018 object->paging_in_progress != 0 || 2019 backing_object->paging_in_progress != 0 2020 ) { 2021 vm_object_qcollapse(object, backing_object); 2022 break; 2023 } 2024 2025 /* 2026 * We know that we can either collapse the backing object (if 2027 * the parent is the only reference to it) or (perhaps) have 2028 * the parent bypass the object if the parent happens to shadow 2029 * all the resident pages in the entire backing object. 2030 * 2031 * This is ignoring pager-backed pages such as swap pages. 2032 * vm_object_backing_scan fails the shadowing test in this 2033 * case. 2034 */ 2035 if (backing_object->ref_count == 1) { 2036 /* 2037 * If there is exactly one reference to the backing 2038 * object, we can collapse it into the parent. 2039 */ 2040 KKASSERT(object->backing_object == backing_object); 2041 vm_object_backing_scan(object, backing_object, 2042 OBSC_COLLAPSE_WAIT); 2043 2044 /* 2045 * Move the pager from backing_object to object. 2046 */ 2047 if (backing_object->type == OBJT_SWAP) { 2048 vm_object_pip_add(backing_object, 1); 2049 2050 /* 2051 * scrap the paging_offset junk and do a 2052 * discrete copy. This also removes major 2053 * assumptions about how the swap-pager 2054 * works from where it doesn't belong. The 2055 * new swapper is able to optimize the 2056 * destroy-source case. 2057 */ 2058 vm_object_pip_add(object, 1); 2059 swap_pager_copy(backing_object, object, 2060 OFF_TO_IDX(object->backing_object_offset), 2061 TRUE); 2062 vm_object_pip_wakeup(object); 2063 vm_object_pip_wakeup(backing_object); 2064 } 2065 2066 /* 2067 * Object now shadows whatever backing_object did. 2068 * Remove object from backing_object's shadow_list. 2069 */ 2070 LIST_REMOVE(object, shadow_list); 2071 KKASSERT(object->backing_object == backing_object); 2072 backing_object->shadow_count--; 2073 backing_object->generation++; 2074 2075 /* 2076 * backing_object->backing_object moves from within 2077 * backing_object to within object. 2078 */ 2079 while ((bbobj = backing_object->backing_object) != NULL) { 2080 vm_object_hold(bbobj); 2081 if (bbobj == backing_object->backing_object) 2082 break; 2083 vm_object_drop(bbobj); 2084 } 2085 if (bbobj) { 2086 LIST_REMOVE(backing_object, shadow_list); 2087 bbobj->shadow_count--; 2088 bbobj->generation++; 2089 backing_object->backing_object = NULL; 2090 } 2091 object->backing_object = bbobj; 2092 if (bbobj) { 2093 LIST_INSERT_HEAD(&bbobj->shadow_head, 2094 object, shadow_list); 2095 bbobj->shadow_count++; 2096 bbobj->generation++; 2097 } 2098 2099 object->backing_object_offset += 2100 backing_object->backing_object_offset; 2101 2102 vm_object_drop(bbobj); 2103 2104 /* 2105 * Discard the old backing_object. Nothing should be 2106 * able to ref it, other than a vm_map_split(), 2107 * and vm_map_split() will stall on our chain lock. 2108 * And we control the parent so it shouldn't be 2109 * possible for it to go away either. 2110 * 2111 * Since the backing object has no pages, no pager 2112 * left, and no object references within it, all 2113 * that is necessary is to dispose of it. 2114 */ 2115 KASSERT(backing_object->ref_count == 1, 2116 ("backing_object %p was somehow " 2117 "re-referenced during collapse!", 2118 backing_object)); 2119 KASSERT(RB_EMPTY(&backing_object->rb_memq), 2120 ("backing_object %p somehow has left " 2121 "over pages during collapse!", 2122 backing_object)); 2123 2124 /* 2125 * The object can be destroyed. 2126 * 2127 * XXX just fall through and dodealloc instead 2128 * of forcing destruction? 2129 */ 2130 --backing_object->ref_count; 2131 if ((backing_object->flags & OBJ_DEAD) == 0) 2132 vm_object_terminate(backing_object); 2133 object_collapses++; 2134 dodealloc = 0; 2135 } else { 2136 /* 2137 * If we do not entirely shadow the backing object, 2138 * there is nothing we can do so we give up. 2139 */ 2140 if (vm_object_backing_scan(object, backing_object, 2141 OBSC_TEST_ALL_SHADOWED) == 0) { 2142 break; 2143 } 2144 2145 /* 2146 * bbobj is backing_object->backing_object. Since 2147 * object completely shadows backing_object we can 2148 * bypass it and become backed by bbobj instead. 2149 */ 2150 while ((bbobj = backing_object->backing_object) != NULL) { 2151 vm_object_hold(bbobj); 2152 if (bbobj == backing_object->backing_object) 2153 break; 2154 vm_object_drop(bbobj); 2155 } 2156 2157 /* 2158 * Make object shadow bbobj instead of backing_object. 2159 * Remove object from backing_object's shadow list. 2160 * 2161 * Deallocating backing_object will not remove 2162 * it, since its reference count is at least 2. 2163 */ 2164 KKASSERT(object->backing_object == backing_object); 2165 LIST_REMOVE(object, shadow_list); 2166 backing_object->shadow_count--; 2167 backing_object->generation++; 2168 2169 /* 2170 * Add a ref to bbobj, bbobj now shadows object. 2171 * 2172 * NOTE: backing_object->backing_object still points 2173 * to bbobj. That relationship remains intact 2174 * because backing_object has > 1 ref, so 2175 * someone else is pointing to it (hence why 2176 * we can't collapse it into object and can 2177 * only handle the all-shadowed bypass case). 2178 */ 2179 if (bbobj) { 2180 vm_object_chain_wait(bbobj); 2181 vm_object_reference_locked(bbobj); 2182 LIST_INSERT_HEAD(&bbobj->shadow_head, 2183 object, shadow_list); 2184 bbobj->shadow_count++; 2185 bbobj->generation++; 2186 object->backing_object_offset += 2187 backing_object->backing_object_offset; 2188 object->backing_object = bbobj; 2189 vm_object_drop(bbobj); 2190 } else { 2191 object->backing_object = NULL; 2192 } 2193 2194 /* 2195 * Drop the reference count on backing_object. To 2196 * handle ref_count races properly we can't assume 2197 * that the ref_count is still at least 2 so we 2198 * have to actually call vm_object_deallocate() 2199 * (after clearing the chainlock). 2200 */ 2201 object_bypasses++; 2202 dodealloc = 1; 2203 } 2204 2205 /* 2206 * Ok, we want to loop on the new object->bbobj association, 2207 * possibly collapsing it further. However if dodealloc is 2208 * non-zero we have to deallocate the backing_object which 2209 * itself can potentially undergo a collapse, creating a 2210 * recursion depth issue with the LWKT token subsystem. 2211 * 2212 * In the case where we must deallocate the backing_object 2213 * it is possible now that the backing_object has a single 2214 * shadow count on some other object (not represented here 2215 * as yet), since it no longer shadows us. Thus when we 2216 * call vm_object_deallocate() it may attempt to collapse 2217 * itself into its remaining parent. 2218 */ 2219 if (dodealloc) { 2220 struct vm_object_dealloc_list *dtmp; 2221 2222 vm_object_chain_release(backing_object); 2223 vm_object_unlock(backing_object); 2224 /* backing_object remains held */ 2225 2226 /* 2227 * Auto-deallocation list for caller convenience. 2228 */ 2229 if (dlistp == NULL) 2230 dlistp = &dlist; 2231 2232 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2233 dtmp->object = backing_object; 2234 dtmp->next = *dlistp; 2235 *dlistp = dtmp; 2236 } else { 2237 vm_object_chain_release(backing_object); 2238 vm_object_drop(backing_object); 2239 } 2240 /* backing_object = NULL; not needed */ 2241 /* loop */ 2242 } 2243 2244 /* 2245 * Clean up any left over backing_object 2246 */ 2247 if (backing_object) { 2248 vm_object_chain_release(backing_object); 2249 vm_object_drop(backing_object); 2250 } 2251 2252 /* 2253 * Clean up any auto-deallocation list. This is a convenience 2254 * for top-level callers so they don't have to pass &dlist. 2255 * Do not clean up any caller-passed dlistp, the caller will 2256 * do that. 2257 */ 2258 if (dlist) 2259 vm_object_deallocate_list(&dlist); 2260 2261 } 2262 2263 /* 2264 * vm_object_collapse() may collect additional objects in need of 2265 * deallocation. This routine deallocates these objects. The 2266 * deallocation itself can trigger additional collapses (which the 2267 * deallocate function takes care of). This procedure is used to 2268 * reduce procedural recursion since these vm_object shadow chains 2269 * can become quite long. 2270 */ 2271 void 2272 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2273 { 2274 struct vm_object_dealloc_list *dlist; 2275 2276 while ((dlist = *dlistp) != NULL) { 2277 *dlistp = dlist->next; 2278 vm_object_lock(dlist->object); 2279 vm_object_deallocate_locked(dlist->object); 2280 vm_object_drop(dlist->object); 2281 kfree(dlist, M_TEMP); 2282 } 2283 } 2284 2285 /* 2286 * Removes all physical pages in the specified object range from the 2287 * object's list of pages. 2288 * 2289 * No requirements. 2290 */ 2291 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2292 2293 void 2294 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2295 boolean_t clean_only) 2296 { 2297 struct rb_vm_page_scan_info info; 2298 int all; 2299 2300 /* 2301 * Degenerate cases and assertions 2302 */ 2303 vm_object_hold(object); 2304 if (object == NULL || 2305 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2306 vm_object_drop(object); 2307 return; 2308 } 2309 KASSERT(object->type != OBJT_PHYS, 2310 ("attempt to remove pages from a physical object")); 2311 2312 /* 2313 * Indicate that paging is occuring on the object 2314 */ 2315 vm_object_pip_add(object, 1); 2316 2317 /* 2318 * Figure out the actual removal range and whether we are removing 2319 * the entire contents of the object or not. If removing the entire 2320 * contents, be sure to get all pages, even those that might be 2321 * beyond the end of the object. 2322 */ 2323 info.start_pindex = start; 2324 if (end == 0) 2325 info.end_pindex = (vm_pindex_t)-1; 2326 else 2327 info.end_pindex = end - 1; 2328 info.limit = clean_only; 2329 all = (start == 0 && info.end_pindex >= object->size - 1); 2330 2331 /* 2332 * Loop until we are sure we have gotten them all. 2333 */ 2334 do { 2335 info.error = 0; 2336 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2337 vm_object_page_remove_callback, &info); 2338 } while (info.error); 2339 2340 /* 2341 * Remove any related swap if throwing away pages, or for 2342 * non-swap objects (the swap is a clean copy in that case). 2343 */ 2344 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2345 if (all) 2346 swap_pager_freespace_all(object); 2347 else 2348 swap_pager_freespace(object, info.start_pindex, 2349 info.end_pindex - info.start_pindex + 1); 2350 } 2351 2352 /* 2353 * Cleanup 2354 */ 2355 vm_object_pip_wakeup(object); 2356 vm_object_drop(object); 2357 } 2358 2359 /* 2360 * The caller must hold the object 2361 */ 2362 static int 2363 vm_object_page_remove_callback(vm_page_t p, void *data) 2364 { 2365 struct rb_vm_page_scan_info *info = data; 2366 2367 if (vm_page_busy_try(p, TRUE)) { 2368 vm_page_sleep_busy(p, TRUE, "vmopar"); 2369 info->error = 1; 2370 return(0); 2371 } 2372 2373 /* 2374 * Wired pages cannot be destroyed, but they can be invalidated 2375 * and we do so if clean_only (limit) is not set. 2376 * 2377 * WARNING! The page may be wired due to being part of a buffer 2378 * cache buffer, and the buffer might be marked B_CACHE. 2379 * This is fine as part of a truncation but VFSs must be 2380 * sure to fix the buffer up when re-extending the file. 2381 * 2382 * NOTE! PG_NEED_COMMIT is ignored. 2383 */ 2384 if (p->wire_count != 0) { 2385 vm_page_protect(p, VM_PROT_NONE); 2386 if (info->limit == 0) 2387 p->valid = 0; 2388 vm_page_wakeup(p); 2389 return(0); 2390 } 2391 2392 /* 2393 * limit is our clean_only flag. If set and the page is dirty, do 2394 * not free it. If set and the page is being held by someone, do 2395 * not free it. 2396 */ 2397 if (info->limit && p->valid) { 2398 vm_page_test_dirty(p); 2399 if (p->valid & p->dirty) { 2400 vm_page_wakeup(p); 2401 return(0); 2402 } 2403 #if 0 2404 if (p->hold_count) { 2405 vm_page_wakeup(p); 2406 return(0); 2407 } 2408 #endif 2409 } 2410 2411 /* 2412 * Destroy the page 2413 */ 2414 vm_page_protect(p, VM_PROT_NONE); 2415 vm_page_free(p); 2416 return(0); 2417 } 2418 2419 /* 2420 * Coalesces two objects backing up adjoining regions of memory into a 2421 * single object. 2422 * 2423 * returns TRUE if objects were combined. 2424 * 2425 * NOTE: Only works at the moment if the second object is NULL - 2426 * if it's not, which object do we lock first? 2427 * 2428 * Parameters: 2429 * prev_object First object to coalesce 2430 * prev_offset Offset into prev_object 2431 * next_object Second object into coalesce 2432 * next_offset Offset into next_object 2433 * 2434 * prev_size Size of reference to prev_object 2435 * next_size Size of reference to next_object 2436 * 2437 * The caller does not need to hold (prev_object) but must have a stable 2438 * pointer to it (typically by holding the vm_map locked). 2439 */ 2440 boolean_t 2441 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2442 vm_size_t prev_size, vm_size_t next_size) 2443 { 2444 vm_pindex_t next_pindex; 2445 2446 if (prev_object == NULL) 2447 return (TRUE); 2448 2449 vm_object_hold(prev_object); 2450 2451 if (prev_object->type != OBJT_DEFAULT && 2452 prev_object->type != OBJT_SWAP) { 2453 vm_object_drop(prev_object); 2454 return (FALSE); 2455 } 2456 2457 /* 2458 * Try to collapse the object first 2459 */ 2460 vm_object_chain_acquire(prev_object); 2461 vm_object_collapse(prev_object, NULL); 2462 2463 /* 2464 * Can't coalesce if: . more than one reference . paged out . shadows 2465 * another object . has a copy elsewhere (any of which mean that the 2466 * pages not mapped to prev_entry may be in use anyway) 2467 */ 2468 2469 if (prev_object->backing_object != NULL) { 2470 vm_object_chain_release(prev_object); 2471 vm_object_drop(prev_object); 2472 return (FALSE); 2473 } 2474 2475 prev_size >>= PAGE_SHIFT; 2476 next_size >>= PAGE_SHIFT; 2477 next_pindex = prev_pindex + prev_size; 2478 2479 if ((prev_object->ref_count > 1) && 2480 (prev_object->size != next_pindex)) { 2481 vm_object_chain_release(prev_object); 2482 vm_object_drop(prev_object); 2483 return (FALSE); 2484 } 2485 2486 /* 2487 * Remove any pages that may still be in the object from a previous 2488 * deallocation. 2489 */ 2490 if (next_pindex < prev_object->size) { 2491 vm_object_page_remove(prev_object, 2492 next_pindex, 2493 next_pindex + next_size, FALSE); 2494 if (prev_object->type == OBJT_SWAP) 2495 swap_pager_freespace(prev_object, 2496 next_pindex, next_size); 2497 } 2498 2499 /* 2500 * Extend the object if necessary. 2501 */ 2502 if (next_pindex + next_size > prev_object->size) 2503 prev_object->size = next_pindex + next_size; 2504 2505 vm_object_chain_release(prev_object); 2506 vm_object_drop(prev_object); 2507 return (TRUE); 2508 } 2509 2510 /* 2511 * Make the object writable and flag is being possibly dirty. 2512 * 2513 * The caller must hold the object. XXX called from vm_page_dirty(), 2514 * There is currently no requirement to hold the object. 2515 */ 2516 void 2517 vm_object_set_writeable_dirty(vm_object_t object) 2518 { 2519 struct vnode *vp; 2520 2521 /*vm_object_assert_held(object);*/ 2522 /* 2523 * Avoid contention in vm fault path by checking the state before 2524 * issuing an atomic op on it. 2525 */ 2526 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) != 2527 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) { 2528 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2529 } 2530 if (object->type == OBJT_VNODE && 2531 (vp = (struct vnode *)object->handle) != NULL) { 2532 if ((vp->v_flag & VOBJDIRTY) == 0) { 2533 vsetflags(vp, VOBJDIRTY); 2534 } 2535 } 2536 } 2537 2538 #include "opt_ddb.h" 2539 #ifdef DDB 2540 #include <sys/kernel.h> 2541 2542 #include <sys/cons.h> 2543 2544 #include <ddb/ddb.h> 2545 2546 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2547 vm_map_entry_t entry); 2548 static int vm_object_in_map (vm_object_t object); 2549 2550 /* 2551 * The caller must hold the object. 2552 */ 2553 static int 2554 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2555 { 2556 vm_map_t tmpm; 2557 vm_map_entry_t tmpe; 2558 vm_object_t obj, nobj; 2559 int entcount; 2560 2561 if (map == 0) 2562 return 0; 2563 if (entry == 0) { 2564 tmpe = map->header.next; 2565 entcount = map->nentries; 2566 while (entcount-- && (tmpe != &map->header)) { 2567 if( _vm_object_in_map(map, object, tmpe)) { 2568 return 1; 2569 } 2570 tmpe = tmpe->next; 2571 } 2572 return (0); 2573 } 2574 switch(entry->maptype) { 2575 case VM_MAPTYPE_SUBMAP: 2576 tmpm = entry->object.sub_map; 2577 tmpe = tmpm->header.next; 2578 entcount = tmpm->nentries; 2579 while (entcount-- && tmpe != &tmpm->header) { 2580 if( _vm_object_in_map(tmpm, object, tmpe)) { 2581 return 1; 2582 } 2583 tmpe = tmpe->next; 2584 } 2585 break; 2586 case VM_MAPTYPE_NORMAL: 2587 case VM_MAPTYPE_VPAGETABLE: 2588 obj = entry->object.vm_object; 2589 while (obj) { 2590 if (obj == object) { 2591 if (obj != entry->object.vm_object) 2592 vm_object_drop(obj); 2593 return 1; 2594 } 2595 while ((nobj = obj->backing_object) != NULL) { 2596 vm_object_hold(nobj); 2597 if (nobj == obj->backing_object) 2598 break; 2599 vm_object_drop(nobj); 2600 } 2601 if (obj != entry->object.vm_object) { 2602 if (nobj) 2603 vm_object_lock_swap(); 2604 vm_object_drop(obj); 2605 } 2606 obj = nobj; 2607 } 2608 break; 2609 default: 2610 break; 2611 } 2612 return 0; 2613 } 2614 2615 static int vm_object_in_map_callback(struct proc *p, void *data); 2616 2617 struct vm_object_in_map_info { 2618 vm_object_t object; 2619 int rv; 2620 }; 2621 2622 /* 2623 * Debugging only 2624 */ 2625 static int 2626 vm_object_in_map(vm_object_t object) 2627 { 2628 struct vm_object_in_map_info info; 2629 2630 info.rv = 0; 2631 info.object = object; 2632 2633 allproc_scan(vm_object_in_map_callback, &info); 2634 if (info.rv) 2635 return 1; 2636 if( _vm_object_in_map(&kernel_map, object, 0)) 2637 return 1; 2638 if( _vm_object_in_map(&pager_map, object, 0)) 2639 return 1; 2640 if( _vm_object_in_map(&buffer_map, object, 0)) 2641 return 1; 2642 return 0; 2643 } 2644 2645 /* 2646 * Debugging only 2647 */ 2648 static int 2649 vm_object_in_map_callback(struct proc *p, void *data) 2650 { 2651 struct vm_object_in_map_info *info = data; 2652 2653 if (p->p_vmspace) { 2654 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2655 info->rv = 1; 2656 return -1; 2657 } 2658 } 2659 return (0); 2660 } 2661 2662 DB_SHOW_COMMAND(vmochk, vm_object_check) 2663 { 2664 vm_object_t object; 2665 2666 /* 2667 * make sure that internal objs are in a map somewhere 2668 * and none have zero ref counts. 2669 */ 2670 for (object = TAILQ_FIRST(&vm_object_list); 2671 object != NULL; 2672 object = TAILQ_NEXT(object, object_list)) { 2673 if (object->type == OBJT_MARKER) 2674 continue; 2675 if (object->handle == NULL && 2676 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2677 if (object->ref_count == 0) { 2678 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2679 (long)object->size); 2680 } 2681 if (!vm_object_in_map(object)) { 2682 db_printf( 2683 "vmochk: internal obj is not in a map: " 2684 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2685 object->ref_count, (u_long)object->size, 2686 (u_long)object->size, 2687 (void *)object->backing_object); 2688 } 2689 } 2690 } 2691 } 2692 2693 /* 2694 * Debugging only 2695 */ 2696 DB_SHOW_COMMAND(object, vm_object_print_static) 2697 { 2698 /* XXX convert args. */ 2699 vm_object_t object = (vm_object_t)addr; 2700 boolean_t full = have_addr; 2701 2702 vm_page_t p; 2703 2704 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2705 #define count was_count 2706 2707 int count; 2708 2709 if (object == NULL) 2710 return; 2711 2712 db_iprintf( 2713 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2714 object, (int)object->type, (u_long)object->size, 2715 object->resident_page_count, object->ref_count, object->flags); 2716 /* 2717 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2718 */ 2719 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2720 object->shadow_count, 2721 object->backing_object ? object->backing_object->ref_count : 0, 2722 object->backing_object, (long)object->backing_object_offset); 2723 2724 if (!full) 2725 return; 2726 2727 db_indent += 2; 2728 count = 0; 2729 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2730 if (count == 0) 2731 db_iprintf("memory:="); 2732 else if (count == 6) { 2733 db_printf("\n"); 2734 db_iprintf(" ..."); 2735 count = 0; 2736 } else 2737 db_printf(","); 2738 count++; 2739 2740 db_printf("(off=0x%lx,page=0x%lx)", 2741 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 2742 } 2743 if (count != 0) 2744 db_printf("\n"); 2745 db_indent -= 2; 2746 } 2747 2748 /* XXX. */ 2749 #undef count 2750 2751 /* 2752 * XXX need this non-static entry for calling from vm_map_print. 2753 * 2754 * Debugging only 2755 */ 2756 void 2757 vm_object_print(/* db_expr_t */ long addr, 2758 boolean_t have_addr, 2759 /* db_expr_t */ long count, 2760 char *modif) 2761 { 2762 vm_object_print_static(addr, have_addr, count, modif); 2763 } 2764 2765 /* 2766 * Debugging only 2767 */ 2768 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2769 { 2770 vm_object_t object; 2771 int nl = 0; 2772 int c; 2773 for (object = TAILQ_FIRST(&vm_object_list); 2774 object != NULL; 2775 object = TAILQ_NEXT(object, object_list)) { 2776 vm_pindex_t idx, fidx; 2777 vm_pindex_t osize; 2778 vm_paddr_t pa = -1, padiff; 2779 int rcount; 2780 vm_page_t m; 2781 2782 if (object->type == OBJT_MARKER) 2783 continue; 2784 db_printf("new object: %p\n", (void *)object); 2785 if ( nl > 18) { 2786 c = cngetc(); 2787 if (c != ' ') 2788 return; 2789 nl = 0; 2790 } 2791 nl++; 2792 rcount = 0; 2793 fidx = 0; 2794 osize = object->size; 2795 if (osize > 128) 2796 osize = 128; 2797 for (idx = 0; idx < osize; idx++) { 2798 m = vm_page_lookup(object, idx); 2799 if (m == NULL) { 2800 if (rcount) { 2801 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2802 (long)fidx, rcount, (long)pa); 2803 if ( nl > 18) { 2804 c = cngetc(); 2805 if (c != ' ') 2806 return; 2807 nl = 0; 2808 } 2809 nl++; 2810 rcount = 0; 2811 } 2812 continue; 2813 } 2814 2815 2816 if (rcount && 2817 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2818 ++rcount; 2819 continue; 2820 } 2821 if (rcount) { 2822 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2823 padiff >>= PAGE_SHIFT; 2824 padiff &= PQ_L2_MASK; 2825 if (padiff == 0) { 2826 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2827 ++rcount; 2828 continue; 2829 } 2830 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2831 (long)fidx, rcount, (long)pa); 2832 db_printf("pd(%ld)\n", (long)padiff); 2833 if ( nl > 18) { 2834 c = cngetc(); 2835 if (c != ' ') 2836 return; 2837 nl = 0; 2838 } 2839 nl++; 2840 } 2841 fidx = idx; 2842 pa = VM_PAGE_TO_PHYS(m); 2843 rcount = 1; 2844 } 2845 if (rcount) { 2846 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2847 (long)fidx, rcount, (long)pa); 2848 if ( nl > 18) { 2849 c = cngetc(); 2850 if (c != ' ') 2851 return; 2852 nl = 0; 2853 } 2854 nl++; 2855 } 2856 } 2857 } 2858 #endif /* DDB */ 2859