1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/proc.h> /* for curproc, pageproc */ 70 #include <sys/thread.h> 71 #include <sys/vnode.h> 72 #include <sys/vmmeter.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/refcount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_pager.h> 87 #include <vm/swap_pager.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/vm_zone.h> 91 92 #define EASY_SCAN_FACTOR 8 93 94 static void vm_object_qcollapse(vm_object_t object, 95 vm_object_t backing_object); 96 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 97 int pagerflags); 98 static void vm_object_lock_init(vm_object_t); 99 100 101 /* 102 * Virtual memory objects maintain the actual data 103 * associated with allocated virtual memory. A given 104 * page of memory exists within exactly one object. 105 * 106 * An object is only deallocated when all "references" 107 * are given up. Only one "reference" to a given 108 * region of an object should be writeable. 109 * 110 * Associated with each object is a list of all resident 111 * memory pages belonging to that object; this list is 112 * maintained by the "vm_page" module, and locked by the object's 113 * lock. 114 * 115 * Each object also records a "pager" routine which is 116 * used to retrieve (and store) pages to the proper backing 117 * storage. In addition, objects may be backed by other 118 * objects from which they were virtual-copied. 119 * 120 * The only items within the object structure which are 121 * modified after time of creation are: 122 * reference count locked by object's lock 123 * pager routine locked by object's lock 124 * 125 */ 126 127 struct object_q vm_object_list; /* locked by vmobj_token */ 128 struct vm_object kernel_object; 129 130 static long vm_object_count; /* locked by vmobj_token */ 131 132 static long object_collapses; 133 static long object_bypasses; 134 static int next_index; 135 static vm_zone_t obj_zone; 136 static struct vm_zone obj_zone_store; 137 #define VM_OBJECTS_INIT 256 138 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 139 140 /* 141 * Misc low level routines 142 */ 143 static void 144 vm_object_lock_init(vm_object_t obj) 145 { 146 #if defined(DEBUG_LOCKS) 147 int i; 148 149 obj->debug_hold_bitmap = 0; 150 obj->debug_hold_ovfl = 0; 151 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 152 obj->debug_hold_thrs[i] = NULL; 153 obj->debug_hold_file[i] = NULL; 154 obj->debug_hold_line[i] = 0; 155 } 156 #endif 157 } 158 159 void 160 vm_object_lock_swap(void) 161 { 162 lwkt_token_swap(); 163 } 164 165 void 166 vm_object_lock(vm_object_t obj) 167 { 168 lwkt_gettoken(&obj->token); 169 } 170 171 /* 172 * Returns TRUE on sucesss 173 */ 174 static int 175 vm_object_lock_try(vm_object_t obj) 176 { 177 return(lwkt_trytoken(&obj->token)); 178 } 179 180 void 181 vm_object_lock_shared(vm_object_t obj) 182 { 183 lwkt_gettoken_shared(&obj->token); 184 } 185 186 void 187 vm_object_unlock(vm_object_t obj) 188 { 189 lwkt_reltoken(&obj->token); 190 } 191 192 static __inline void 193 vm_object_assert_held(vm_object_t obj) 194 { 195 ASSERT_LWKT_TOKEN_HELD(&obj->token); 196 } 197 198 void 199 #ifndef DEBUG_LOCKS 200 vm_object_hold(vm_object_t obj) 201 #else 202 debugvm_object_hold(vm_object_t obj, char *file, int line) 203 #endif 204 { 205 KKASSERT(obj != NULL); 206 207 /* 208 * Object must be held (object allocation is stable due to callers 209 * context, typically already holding the token on a parent object) 210 * prior to potentially blocking on the lock, otherwise the object 211 * can get ripped away from us. 212 */ 213 refcount_acquire(&obj->hold_count); 214 vm_object_lock(obj); 215 216 #if defined(DEBUG_LOCKS) 217 int i; 218 u_int mask; 219 220 for (;;) { 221 mask = ~obj->debug_hold_bitmap; 222 cpu_ccfence(); 223 if (mask == 0xFFFFFFFFU) { 224 if (obj->debug_hold_ovfl == 0) 225 obj->debug_hold_ovfl = 1; 226 break; 227 } 228 i = ffs(mask) - 1; 229 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 230 ~mask | (1 << i))) { 231 obj->debug_hold_bitmap |= (1 << i); 232 obj->debug_hold_thrs[i] = curthread; 233 obj->debug_hold_file[i] = file; 234 obj->debug_hold_line[i] = line; 235 break; 236 } 237 } 238 #endif 239 } 240 241 int 242 #ifndef DEBUG_LOCKS 243 vm_object_hold_try(vm_object_t obj) 244 #else 245 debugvm_object_hold_try(vm_object_t obj, char *file, int line) 246 #endif 247 { 248 KKASSERT(obj != NULL); 249 250 /* 251 * Object must be held (object allocation is stable due to callers 252 * context, typically already holding the token on a parent object) 253 * prior to potentially blocking on the lock, otherwise the object 254 * can get ripped away from us. 255 */ 256 refcount_acquire(&obj->hold_count); 257 if (vm_object_lock_try(obj) == 0) { 258 if (refcount_release(&obj->hold_count)) { 259 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) 260 zfree(obj_zone, obj); 261 } 262 return(0); 263 } 264 265 #if defined(DEBUG_LOCKS) 266 int i; 267 u_int mask; 268 269 for (;;) { 270 mask = ~obj->debug_hold_bitmap; 271 cpu_ccfence(); 272 if (mask == 0xFFFFFFFFU) { 273 if (obj->debug_hold_ovfl == 0) 274 obj->debug_hold_ovfl = 1; 275 break; 276 } 277 i = ffs(mask) - 1; 278 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 279 ~mask | (1 << i))) { 280 obj->debug_hold_bitmap |= (1 << i); 281 obj->debug_hold_thrs[i] = curthread; 282 obj->debug_hold_file[i] = file; 283 obj->debug_hold_line[i] = line; 284 break; 285 } 286 } 287 #endif 288 return(1); 289 } 290 291 void 292 #ifndef DEBUG_LOCKS 293 vm_object_hold_shared(vm_object_t obj) 294 #else 295 debugvm_object_hold_shared(vm_object_t obj, char *file, int line) 296 #endif 297 { 298 KKASSERT(obj != NULL); 299 300 /* 301 * Object must be held (object allocation is stable due to callers 302 * context, typically already holding the token on a parent object) 303 * prior to potentially blocking on the lock, otherwise the object 304 * can get ripped away from us. 305 */ 306 refcount_acquire(&obj->hold_count); 307 vm_object_lock_shared(obj); 308 309 #if defined(DEBUG_LOCKS) 310 int i; 311 u_int mask; 312 313 for (;;) { 314 mask = ~obj->debug_hold_bitmap; 315 cpu_ccfence(); 316 if (mask == 0xFFFFFFFFU) { 317 if (obj->debug_hold_ovfl == 0) 318 obj->debug_hold_ovfl = 1; 319 break; 320 } 321 i = ffs(mask) - 1; 322 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 323 ~mask | (1 << i))) { 324 obj->debug_hold_bitmap |= (1 << i); 325 obj->debug_hold_thrs[i] = curthread; 326 obj->debug_hold_file[i] = file; 327 obj->debug_hold_line[i] = line; 328 break; 329 } 330 } 331 #endif 332 } 333 334 /* 335 * Obtain either a shared or exclusive lock on VM object 336 * based on whether this is a terminal vnode object or not. 337 */ 338 int 339 #ifndef DEBUG_LOCKS 340 vm_object_hold_maybe_shared(vm_object_t obj) 341 #else 342 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line) 343 #endif 344 { 345 if (vm_shared_fault && 346 obj->type == OBJT_VNODE && 347 obj->backing_object == NULL) { 348 vm_object_hold_shared(obj); 349 return(1); 350 } else { 351 vm_object_hold(obj); 352 return(0); 353 } 354 } 355 356 /* 357 * Drop the token and hold_count on the object. 358 */ 359 void 360 vm_object_drop(vm_object_t obj) 361 { 362 if (obj == NULL) 363 return; 364 365 #if defined(DEBUG_LOCKS) 366 int found = 0; 367 int i; 368 369 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 370 if ((obj->debug_hold_bitmap & (1 << i)) && 371 (obj->debug_hold_thrs[i] == curthread)) { 372 obj->debug_hold_bitmap &= ~(1 << i); 373 obj->debug_hold_thrs[i] = NULL; 374 obj->debug_hold_file[i] = NULL; 375 obj->debug_hold_line[i] = 0; 376 found = 1; 377 break; 378 } 379 } 380 381 if (found == 0 && obj->debug_hold_ovfl == 0) 382 panic("vm_object: attempt to drop hold on non-self-held obj"); 383 #endif 384 385 /* 386 * No new holders should be possible once we drop hold_count 1->0 as 387 * there is no longer any way to reference the object. 388 */ 389 KKASSERT(obj->hold_count > 0); 390 if (refcount_release(&obj->hold_count)) { 391 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) { 392 vm_object_unlock(obj); 393 zfree(obj_zone, obj); 394 } else { 395 vm_object_unlock(obj); 396 } 397 } else { 398 vm_object_unlock(obj); 399 } 400 } 401 402 /* 403 * Initialize a freshly allocated object, returning a held object. 404 * 405 * Used only by vm_object_allocate() and zinitna(). 406 * 407 * No requirements. 408 */ 409 void 410 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 411 { 412 int incr; 413 414 RB_INIT(&object->rb_memq); 415 LIST_INIT(&object->shadow_head); 416 lwkt_token_init(&object->token, "vmobj"); 417 418 object->type = type; 419 object->size = size; 420 object->ref_count = 1; 421 object->hold_count = 0; 422 object->flags = 0; 423 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 424 vm_object_set_flag(object, OBJ_ONEMAPPING); 425 object->paging_in_progress = 0; 426 object->resident_page_count = 0; 427 object->agg_pv_list_count = 0; 428 object->shadow_count = 0; 429 /* cpu localization twist */ 430 object->pg_color = (int)(intptr_t)curthread; 431 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 432 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 433 else 434 incr = size; 435 next_index = (next_index + incr) & PQ_L2_MASK; 436 object->handle = NULL; 437 object->backing_object = NULL; 438 object->backing_object_offset = (vm_ooffset_t)0; 439 440 object->generation++; 441 object->swblock_count = 0; 442 RB_INIT(&object->swblock_root); 443 vm_object_lock_init(object); 444 pmap_object_init(object); 445 446 vm_object_hold(object); 447 lwkt_gettoken(&vmobj_token); 448 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 449 vm_object_count++; 450 lwkt_reltoken(&vmobj_token); 451 } 452 453 /* 454 * Initialize the VM objects module. 455 * 456 * Called from the low level boot code only. 457 */ 458 void 459 vm_object_init(void) 460 { 461 TAILQ_INIT(&vm_object_list); 462 463 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 464 &kernel_object); 465 vm_object_drop(&kernel_object); 466 467 obj_zone = &obj_zone_store; 468 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 469 vm_objects_init, VM_OBJECTS_INIT); 470 } 471 472 void 473 vm_object_init2(void) 474 { 475 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 476 } 477 478 /* 479 * Allocate and return a new object of the specified type and size. 480 * 481 * No requirements. 482 */ 483 vm_object_t 484 vm_object_allocate(objtype_t type, vm_pindex_t size) 485 { 486 vm_object_t result; 487 488 result = (vm_object_t) zalloc(obj_zone); 489 490 _vm_object_allocate(type, size, result); 491 vm_object_drop(result); 492 493 return (result); 494 } 495 496 /* 497 * This version returns a held object, allowing further atomic initialization 498 * of the object. 499 */ 500 vm_object_t 501 vm_object_allocate_hold(objtype_t type, vm_pindex_t size) 502 { 503 vm_object_t result; 504 505 result = (vm_object_t) zalloc(obj_zone); 506 507 _vm_object_allocate(type, size, result); 508 509 return (result); 510 } 511 512 /* 513 * Add an additional reference to a vm_object. The object must already be 514 * held. The original non-lock version is no longer supported. The object 515 * must NOT be chain locked by anyone at the time the reference is added. 516 * 517 * Referencing a chain-locked object can blow up the fairly sensitive 518 * ref_count and shadow_count tests in the deallocator. Most callers 519 * will call vm_object_chain_wait() prior to calling 520 * vm_object_reference_locked() to avoid the case. 521 * 522 * The object must be held, but may be held shared if desired (hence why 523 * we use an atomic op). 524 */ 525 void 526 vm_object_reference_locked(vm_object_t object) 527 { 528 KKASSERT(object != NULL); 529 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 530 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 531 atomic_add_int(&object->ref_count, 1); 532 if (object->type == OBJT_VNODE) { 533 vref(object->handle); 534 /* XXX what if the vnode is being destroyed? */ 535 } 536 } 537 538 /* 539 * Object OBJ_CHAINLOCK lock handling. 540 * 541 * The caller can chain-lock backing objects recursively and then 542 * use vm_object_chain_release_all() to undo the whole chain. 543 * 544 * Chain locks are used to prevent collapses and are only applicable 545 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 546 * on other object types are ignored. This is also important because 547 * it allows e.g. the vnode underlying a memory mapping to take concurrent 548 * faults. 549 * 550 * The object must usually be held on entry, though intermediate 551 * objects need not be held on release. 552 */ 553 void 554 vm_object_chain_wait(vm_object_t object) 555 { 556 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 557 while (object->flags & OBJ_CHAINLOCK) { 558 vm_object_set_flag(object, OBJ_CHAINWANT); 559 tsleep(object, 0, "objchain", 0); 560 } 561 } 562 563 void 564 vm_object_chain_acquire(vm_object_t object) 565 { 566 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 567 vm_object_chain_wait(object); 568 vm_object_set_flag(object, OBJ_CHAINLOCK); 569 } 570 } 571 572 void 573 vm_object_chain_release(vm_object_t object) 574 { 575 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 576 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 577 KKASSERT(object->flags & OBJ_CHAINLOCK); 578 if (object->flags & OBJ_CHAINWANT) { 579 vm_object_clear_flag(object, 580 OBJ_CHAINLOCK | OBJ_CHAINWANT); 581 wakeup(object); 582 } else { 583 vm_object_clear_flag(object, OBJ_CHAINLOCK); 584 } 585 } 586 } 587 588 /* 589 * This releases the entire chain of objects from first_object to and 590 * including stopobj, flowing through object->backing_object. 591 * 592 * We release stopobj first as an optimization as this object is most 593 * likely to be shared across multiple processes. 594 */ 595 void 596 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 597 { 598 vm_object_t backing_object; 599 vm_object_t object; 600 601 vm_object_chain_release(stopobj); 602 object = first_object; 603 604 while (object != stopobj) { 605 KKASSERT(object); 606 if (object != first_object) 607 vm_object_hold(object); 608 backing_object = object->backing_object; 609 vm_object_chain_release(object); 610 if (object != first_object) 611 vm_object_drop(object); 612 object = backing_object; 613 } 614 } 615 616 /* 617 * Dereference an object and its underlying vnode. 618 * 619 * The object must be held exclusively and will remain held on return. 620 * (We don't need an atomic op due to the exclusivity). 621 */ 622 static void 623 vm_object_vndeallocate(vm_object_t object) 624 { 625 struct vnode *vp = (struct vnode *) object->handle; 626 627 KASSERT(object->type == OBJT_VNODE, 628 ("vm_object_vndeallocate: not a vnode object")); 629 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 630 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 631 #ifdef INVARIANTS 632 if (object->ref_count == 0) { 633 vprint("vm_object_vndeallocate", vp); 634 panic("vm_object_vndeallocate: bad object reference count"); 635 } 636 #endif 637 object->ref_count--; 638 if (object->ref_count == 0) 639 vclrflags(vp, VTEXT); 640 vrele(vp); 641 } 642 643 /* 644 * Release a reference to the specified object, gained either through a 645 * vm_object_allocate or a vm_object_reference call. When all references 646 * are gone, storage associated with this object may be relinquished. 647 * 648 * The caller does not have to hold the object locked but must have control 649 * over the reference in question in order to guarantee that the object 650 * does not get ripped out from under us. 651 * 652 * XXX Currently all deallocations require an exclusive lock. 653 */ 654 void 655 vm_object_deallocate(vm_object_t object) 656 { 657 if (object) { 658 vm_object_hold(object); 659 vm_object_deallocate_locked(object); 660 vm_object_drop(object); 661 } 662 } 663 664 void 665 vm_object_deallocate_locked(vm_object_t object) 666 { 667 struct vm_object_dealloc_list *dlist = NULL; 668 struct vm_object_dealloc_list *dtmp; 669 vm_object_t temp; 670 int must_drop = 0; 671 672 /* 673 * We may chain deallocate object, but additional objects may 674 * collect on the dlist which also have to be deallocated. We 675 * must avoid a recursion, vm_object chains can get deep. 676 */ 677 again: 678 while (object != NULL) { 679 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token); 680 #if 0 681 /* 682 * Don't rip a ref_count out from under an object undergoing 683 * collapse, it will confuse the collapse code. 684 */ 685 vm_object_chain_wait(object); 686 #endif 687 if (object->type == OBJT_VNODE) { 688 vm_object_vndeallocate(object); 689 break; 690 } 691 692 if (object->ref_count == 0) { 693 panic("vm_object_deallocate: object deallocated " 694 "too many times: %d", object->type); 695 } 696 if (object->ref_count > 2) { 697 object->ref_count--; 698 break; 699 } 700 701 /* 702 * Here on ref_count of one or two, which are special cases for 703 * objects. 704 * 705 * Nominal ref_count > 1 case if the second ref is not from 706 * a shadow. 707 * 708 * (ONEMAPPING only applies to DEFAULT AND SWAP objects) 709 */ 710 if (object->ref_count == 2 && object->shadow_count == 0) { 711 if (object->type == OBJT_DEFAULT || 712 object->type == OBJT_SWAP) { 713 vm_object_set_flag(object, OBJ_ONEMAPPING); 714 } 715 object->ref_count--; 716 break; 717 } 718 719 /* 720 * If the second ref is from a shadow we chain along it 721 * upwards if object's handle is exhausted. 722 * 723 * We have to decrement object->ref_count before potentially 724 * collapsing the first shadow object or the collapse code 725 * will not be able to handle the degenerate case to remove 726 * object. However, if we do it too early the object can 727 * get ripped out from under us. 728 */ 729 if (object->ref_count == 2 && object->shadow_count == 1 && 730 object->handle == NULL && (object->type == OBJT_DEFAULT || 731 object->type == OBJT_SWAP)) { 732 temp = LIST_FIRST(&object->shadow_head); 733 KKASSERT(temp != NULL); 734 vm_object_hold(temp); 735 736 /* 737 * Wait for any paging to complete so the collapse 738 * doesn't (or isn't likely to) qcollapse. pip 739 * waiting must occur before we acquire the 740 * chainlock. 741 */ 742 while ( 743 temp->paging_in_progress || 744 object->paging_in_progress 745 ) { 746 vm_object_pip_wait(temp, "objde1"); 747 vm_object_pip_wait(object, "objde2"); 748 } 749 750 /* 751 * If the parent is locked we have to give up, as 752 * otherwise we would be acquiring locks in the 753 * wrong order and potentially deadlock. 754 */ 755 if (temp->flags & OBJ_CHAINLOCK) { 756 vm_object_drop(temp); 757 goto skip; 758 } 759 vm_object_chain_acquire(temp); 760 761 /* 762 * Recheck/retry after the hold and the paging 763 * wait, both of which can block us. 764 */ 765 if (object->ref_count != 2 || 766 object->shadow_count != 1 || 767 object->handle || 768 LIST_FIRST(&object->shadow_head) != temp || 769 (object->type != OBJT_DEFAULT && 770 object->type != OBJT_SWAP)) { 771 vm_object_chain_release(temp); 772 vm_object_drop(temp); 773 continue; 774 } 775 776 /* 777 * We can safely drop object's ref_count now. 778 */ 779 KKASSERT(object->ref_count == 2); 780 object->ref_count--; 781 782 /* 783 * If our single parent is not collapseable just 784 * decrement ref_count (2->1) and stop. 785 */ 786 if (temp->handle || (temp->type != OBJT_DEFAULT && 787 temp->type != OBJT_SWAP)) { 788 vm_object_chain_release(temp); 789 vm_object_drop(temp); 790 break; 791 } 792 793 /* 794 * At this point we have already dropped object's 795 * ref_count so it is possible for a race to 796 * deallocate obj out from under us. Any collapse 797 * will re-check the situation. We must not block 798 * until we are able to collapse. 799 * 800 * Bump temp's ref_count to avoid an unwanted 801 * degenerate recursion (can't call 802 * vm_object_reference_locked() because it asserts 803 * that CHAINLOCK is not set). 804 */ 805 temp->ref_count++; 806 KKASSERT(temp->ref_count > 1); 807 808 /* 809 * Collapse temp, then deallocate the extra ref 810 * formally. 811 */ 812 vm_object_collapse(temp, &dlist); 813 vm_object_chain_release(temp); 814 if (must_drop) { 815 vm_object_lock_swap(); 816 vm_object_drop(object); 817 } 818 object = temp; 819 must_drop = 1; 820 continue; 821 } 822 823 /* 824 * Drop the ref and handle termination on the 1->0 transition. 825 * We may have blocked above so we have to recheck. 826 */ 827 skip: 828 KKASSERT(object->ref_count != 0); 829 if (object->ref_count >= 2) { 830 object->ref_count--; 831 break; 832 } 833 KKASSERT(object->ref_count == 1); 834 835 /* 836 * 1->0 transition. Chain through the backing_object. 837 * Maintain the ref until we've located the backing object, 838 * then re-check. 839 */ 840 while ((temp = object->backing_object) != NULL) { 841 vm_object_hold(temp); 842 if (temp == object->backing_object) 843 break; 844 vm_object_drop(temp); 845 } 846 847 /* 848 * 1->0 transition verified, retry if ref_count is no longer 849 * 1. Otherwise disconnect the backing_object (temp) and 850 * clean up. 851 */ 852 if (object->ref_count != 1) { 853 vm_object_drop(temp); 854 continue; 855 } 856 857 /* 858 * It shouldn't be possible for the object to be chain locked 859 * if we're removing the last ref on it. 860 */ 861 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 862 863 if (temp) { 864 LIST_REMOVE(object, shadow_list); 865 temp->shadow_count--; 866 temp->generation++; 867 object->backing_object = NULL; 868 } 869 870 --object->ref_count; 871 if ((object->flags & OBJ_DEAD) == 0) 872 vm_object_terminate(object); 873 if (must_drop && temp) 874 vm_object_lock_swap(); 875 if (must_drop) 876 vm_object_drop(object); 877 object = temp; 878 must_drop = 1; 879 } 880 if (must_drop && object) 881 vm_object_drop(object); 882 883 /* 884 * Additional tail recursion on dlist. Avoid a recursion. Objects 885 * on the dlist have a hold count but are not locked. 886 */ 887 if ((dtmp = dlist) != NULL) { 888 dlist = dtmp->next; 889 object = dtmp->object; 890 kfree(dtmp, M_TEMP); 891 892 vm_object_lock(object); /* already held, add lock */ 893 must_drop = 1; /* and we're responsible for it */ 894 goto again; 895 } 896 } 897 898 /* 899 * Destroy the specified object, freeing up related resources. 900 * 901 * The object must have zero references. 902 * 903 * The object must held. The caller is responsible for dropping the object 904 * after terminate returns. Terminate does NOT drop the object. 905 */ 906 static int vm_object_terminate_callback(vm_page_t p, void *data); 907 908 void 909 vm_object_terminate(vm_object_t object) 910 { 911 /* 912 * Make sure no one uses us. Once we set OBJ_DEAD we should be 913 * able to safely block. 914 */ 915 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 916 KKASSERT((object->flags & OBJ_DEAD) == 0); 917 vm_object_set_flag(object, OBJ_DEAD); 918 919 /* 920 * Wait for the pageout daemon to be done with the object 921 */ 922 vm_object_pip_wait(object, "objtrm1"); 923 924 KASSERT(!object->paging_in_progress, 925 ("vm_object_terminate: pageout in progress")); 926 927 /* 928 * Clean and free the pages, as appropriate. All references to the 929 * object are gone, so we don't need to lock it. 930 */ 931 if (object->type == OBJT_VNODE) { 932 struct vnode *vp; 933 934 /* 935 * Clean pages and flush buffers. 936 * 937 * NOTE! TMPFS buffer flushes do not typically flush the 938 * actual page to swap as this would be highly 939 * inefficient, and normal filesystems usually wrap 940 * page flushes with buffer cache buffers. 941 * 942 * To deal with this we have to call vinvalbuf() both 943 * before and after the vm_object_page_clean(). 944 */ 945 vp = (struct vnode *) object->handle; 946 vinvalbuf(vp, V_SAVE, 0, 0); 947 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 948 vinvalbuf(vp, V_SAVE, 0, 0); 949 } 950 951 /* 952 * Wait for any I/O to complete, after which there had better not 953 * be any references left on the object. 954 */ 955 vm_object_pip_wait(object, "objtrm2"); 956 957 if (object->ref_count != 0) { 958 panic("vm_object_terminate: object with references, " 959 "ref_count=%d", object->ref_count); 960 } 961 962 /* 963 * Cleanup any shared pmaps associated with this object. 964 */ 965 pmap_object_free(object); 966 967 /* 968 * Now free any remaining pages. For internal objects, this also 969 * removes them from paging queues. Don't free wired pages, just 970 * remove them from the object. 971 */ 972 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 973 vm_object_terminate_callback, NULL); 974 975 /* 976 * Let the pager know object is dead. 977 */ 978 vm_pager_deallocate(object); 979 980 /* 981 * Wait for the object hold count to hit 1, clean out pages as 982 * we go. vmobj_token interlocks any race conditions that might 983 * pick the object up from the vm_object_list after we have cleared 984 * rb_memq. 985 */ 986 for (;;) { 987 if (RB_ROOT(&object->rb_memq) == NULL) 988 break; 989 kprintf("vm_object_terminate: Warning, object %p " 990 "still has %d pages\n", 991 object, object->resident_page_count); 992 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 993 vm_object_terminate_callback, NULL); 994 } 995 996 /* 997 * There had better not be any pages left 998 */ 999 KKASSERT(object->resident_page_count == 0); 1000 1001 /* 1002 * Remove the object from the global object list. 1003 */ 1004 lwkt_gettoken(&vmobj_token); 1005 TAILQ_REMOVE(&vm_object_list, object, object_list); 1006 vm_object_count--; 1007 lwkt_reltoken(&vmobj_token); 1008 vm_object_dead_wakeup(object); 1009 1010 if (object->ref_count != 0) { 1011 panic("vm_object_terminate2: object with references, " 1012 "ref_count=%d", object->ref_count); 1013 } 1014 1015 /* 1016 * NOTE: The object hold_count is at least 1, so we cannot zfree() 1017 * the object here. See vm_object_drop(). 1018 */ 1019 } 1020 1021 /* 1022 * The caller must hold the object. 1023 */ 1024 static int 1025 vm_object_terminate_callback(vm_page_t p, void *data __unused) 1026 { 1027 vm_object_t object; 1028 1029 object = p->object; 1030 vm_page_busy_wait(p, TRUE, "vmpgtrm"); 1031 if (object != p->object) { 1032 kprintf("vm_object_terminate: Warning: Encountered " 1033 "busied page %p on queue %d\n", p, p->queue); 1034 vm_page_wakeup(p); 1035 } else if (p->wire_count == 0) { 1036 /* 1037 * NOTE: p->dirty and PG_NEED_COMMIT are ignored. 1038 */ 1039 vm_page_free(p); 1040 mycpu->gd_cnt.v_pfree++; 1041 } else { 1042 if (p->queue != PQ_NONE) 1043 kprintf("vm_object_terminate: Warning: Encountered " 1044 "wired page %p on queue %d\n", p, p->queue); 1045 vm_page_remove(p); 1046 vm_page_wakeup(p); 1047 } 1048 lwkt_yield(); 1049 return(0); 1050 } 1051 1052 /* 1053 * The object is dead but still has an object<->pager association. Sleep 1054 * and return. The caller typically retests the association in a loop. 1055 * 1056 * The caller must hold the object. 1057 */ 1058 void 1059 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 1060 { 1061 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1062 if (object->handle) { 1063 vm_object_set_flag(object, OBJ_DEADWNT); 1064 tsleep(object, 0, wmesg, 0); 1065 /* object may be invalid after this point */ 1066 } 1067 } 1068 1069 /* 1070 * Wakeup anyone waiting for the object<->pager disassociation on 1071 * a dead object. 1072 * 1073 * The caller must hold the object. 1074 */ 1075 void 1076 vm_object_dead_wakeup(vm_object_t object) 1077 { 1078 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1079 if (object->flags & OBJ_DEADWNT) { 1080 vm_object_clear_flag(object, OBJ_DEADWNT); 1081 wakeup(object); 1082 } 1083 } 1084 1085 /* 1086 * Clean all dirty pages in the specified range of object. Leaves page 1087 * on whatever queue it is currently on. If NOSYNC is set then do not 1088 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 1089 * leaving the object dirty. 1090 * 1091 * When stuffing pages asynchronously, allow clustering. XXX we need a 1092 * synchronous clustering mode implementation. 1093 * 1094 * Odd semantics: if start == end, we clean everything. 1095 * 1096 * The object must be locked? XXX 1097 */ 1098 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 1099 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 1100 1101 void 1102 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1103 int flags) 1104 { 1105 struct rb_vm_page_scan_info info; 1106 struct vnode *vp; 1107 int wholescan; 1108 int pagerflags; 1109 int generation; 1110 1111 vm_object_hold(object); 1112 if (object->type != OBJT_VNODE || 1113 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 1114 vm_object_drop(object); 1115 return; 1116 } 1117 1118 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 1119 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1120 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 1121 1122 vp = object->handle; 1123 1124 /* 1125 * Interlock other major object operations. This allows us to 1126 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 1127 */ 1128 vm_object_set_flag(object, OBJ_CLEANING); 1129 1130 /* 1131 * Handle 'entire object' case 1132 */ 1133 info.start_pindex = start; 1134 if (end == 0) { 1135 info.end_pindex = object->size - 1; 1136 } else { 1137 info.end_pindex = end - 1; 1138 } 1139 wholescan = (start == 0 && info.end_pindex == object->size - 1); 1140 info.limit = flags; 1141 info.pagerflags = pagerflags; 1142 info.object = object; 1143 1144 /* 1145 * If cleaning the entire object do a pass to mark the pages read-only. 1146 * If everything worked out ok, clear OBJ_WRITEABLE and 1147 * OBJ_MIGHTBEDIRTY. 1148 */ 1149 if (wholescan) { 1150 info.error = 0; 1151 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1152 vm_object_page_clean_pass1, &info); 1153 if (info.error == 0) { 1154 vm_object_clear_flag(object, 1155 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1156 if (object->type == OBJT_VNODE && 1157 (vp = (struct vnode *)object->handle) != NULL) { 1158 if (vp->v_flag & VOBJDIRTY) 1159 vclrflags(vp, VOBJDIRTY); 1160 } 1161 } 1162 } 1163 1164 /* 1165 * Do a pass to clean all the dirty pages we find. 1166 */ 1167 do { 1168 info.error = 0; 1169 generation = object->generation; 1170 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1171 vm_object_page_clean_pass2, &info); 1172 } while (info.error || generation != object->generation); 1173 1174 vm_object_clear_flag(object, OBJ_CLEANING); 1175 vm_object_drop(object); 1176 } 1177 1178 /* 1179 * The caller must hold the object. 1180 */ 1181 static 1182 int 1183 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1184 { 1185 struct rb_vm_page_scan_info *info = data; 1186 1187 vm_page_flag_set(p, PG_CLEANCHK); 1188 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1189 info->error = 1; 1190 } else if (vm_page_busy_try(p, FALSE) == 0) { 1191 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1192 vm_page_wakeup(p); 1193 } else { 1194 info->error = 1; 1195 } 1196 lwkt_yield(); 1197 return(0); 1198 } 1199 1200 /* 1201 * The caller must hold the object 1202 */ 1203 static 1204 int 1205 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1206 { 1207 struct rb_vm_page_scan_info *info = data; 1208 int generation; 1209 1210 /* 1211 * Do not mess with pages that were inserted after we started 1212 * the cleaning pass. 1213 */ 1214 if ((p->flags & PG_CLEANCHK) == 0) 1215 goto done; 1216 1217 generation = info->object->generation; 1218 vm_page_busy_wait(p, TRUE, "vpcwai"); 1219 if (p->object != info->object || 1220 info->object->generation != generation) { 1221 info->error = 1; 1222 vm_page_wakeup(p); 1223 goto done; 1224 } 1225 1226 /* 1227 * Before wasting time traversing the pmaps, check for trivial 1228 * cases where the page cannot be dirty. 1229 */ 1230 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1231 KKASSERT((p->dirty & p->valid) == 0 && 1232 (p->flags & PG_NEED_COMMIT) == 0); 1233 vm_page_wakeup(p); 1234 goto done; 1235 } 1236 1237 /* 1238 * Check whether the page is dirty or not. The page has been set 1239 * to be read-only so the check will not race a user dirtying the 1240 * page. 1241 */ 1242 vm_page_test_dirty(p); 1243 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) { 1244 vm_page_flag_clear(p, PG_CLEANCHK); 1245 vm_page_wakeup(p); 1246 goto done; 1247 } 1248 1249 /* 1250 * If we have been asked to skip nosync pages and this is a 1251 * nosync page, skip it. Note that the object flags were 1252 * not cleared in this case (because pass1 will have returned an 1253 * error), so we do not have to set them. 1254 */ 1255 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1256 vm_page_flag_clear(p, PG_CLEANCHK); 1257 vm_page_wakeup(p); 1258 goto done; 1259 } 1260 1261 /* 1262 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1263 * the pages that get successfully flushed. Set info->error if 1264 * we raced an object modification. 1265 */ 1266 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1267 vm_wait_nominal(); 1268 done: 1269 lwkt_yield(); 1270 return(0); 1271 } 1272 1273 /* 1274 * Collect the specified page and nearby pages and flush them out. 1275 * The number of pages flushed is returned. The passed page is busied 1276 * by the caller and we are responsible for its disposition. 1277 * 1278 * The caller must hold the object. 1279 */ 1280 static void 1281 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1282 { 1283 int error; 1284 int is; 1285 int ib; 1286 int i; 1287 int page_base; 1288 vm_pindex_t pi; 1289 vm_page_t ma[BLIST_MAX_ALLOC]; 1290 1291 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1292 1293 pi = p->pindex; 1294 page_base = pi % BLIST_MAX_ALLOC; 1295 ib = page_base - 1; 1296 is = page_base + 1; 1297 1298 while (ib >= 0) { 1299 vm_page_t tp; 1300 1301 tp = vm_page_lookup_busy_try(object, pi - page_base + ib, 1302 TRUE, &error); 1303 if (error) 1304 break; 1305 if (tp == NULL) 1306 break; 1307 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1308 (tp->flags & PG_CLEANCHK) == 0) { 1309 vm_page_wakeup(tp); 1310 break; 1311 } 1312 if ((tp->queue - tp->pc) == PQ_CACHE) { 1313 vm_page_flag_clear(tp, PG_CLEANCHK); 1314 vm_page_wakeup(tp); 1315 break; 1316 } 1317 vm_page_test_dirty(tp); 1318 if ((tp->dirty & tp->valid) == 0 && 1319 (tp->flags & PG_NEED_COMMIT) == 0) { 1320 vm_page_flag_clear(tp, PG_CLEANCHK); 1321 vm_page_wakeup(tp); 1322 break; 1323 } 1324 ma[ib] = tp; 1325 --ib; 1326 } 1327 ++ib; /* fixup */ 1328 1329 while (is < BLIST_MAX_ALLOC && 1330 pi - page_base + is < object->size) { 1331 vm_page_t tp; 1332 1333 tp = vm_page_lookup_busy_try(object, pi - page_base + is, 1334 TRUE, &error); 1335 if (error) 1336 break; 1337 if (tp == NULL) 1338 break; 1339 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1340 (tp->flags & PG_CLEANCHK) == 0) { 1341 vm_page_wakeup(tp); 1342 break; 1343 } 1344 if ((tp->queue - tp->pc) == PQ_CACHE) { 1345 vm_page_flag_clear(tp, PG_CLEANCHK); 1346 vm_page_wakeup(tp); 1347 break; 1348 } 1349 vm_page_test_dirty(tp); 1350 if ((tp->dirty & tp->valid) == 0 && 1351 (tp->flags & PG_NEED_COMMIT) == 0) { 1352 vm_page_flag_clear(tp, PG_CLEANCHK); 1353 vm_page_wakeup(tp); 1354 break; 1355 } 1356 ma[is] = tp; 1357 ++is; 1358 } 1359 1360 /* 1361 * All pages in the ma[] array are busied now 1362 */ 1363 for (i = ib; i < is; ++i) { 1364 vm_page_flag_clear(ma[i], PG_CLEANCHK); 1365 vm_page_hold(ma[i]); /* XXX need this any more? */ 1366 } 1367 vm_pageout_flush(&ma[ib], is - ib, pagerflags); 1368 for (i = ib; i < is; ++i) /* XXX need this any more? */ 1369 vm_page_unhold(ma[i]); 1370 } 1371 1372 /* 1373 * Same as vm_object_pmap_copy, except range checking really 1374 * works, and is meant for small sections of an object. 1375 * 1376 * This code protects resident pages by making them read-only 1377 * and is typically called on a fork or split when a page 1378 * is converted to copy-on-write. 1379 * 1380 * NOTE: If the page is already at VM_PROT_NONE, calling 1381 * vm_page_protect will have no effect. 1382 */ 1383 void 1384 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1385 { 1386 vm_pindex_t idx; 1387 vm_page_t p; 1388 1389 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1390 return; 1391 1392 vm_object_hold(object); 1393 for (idx = start; idx < end; idx++) { 1394 p = vm_page_lookup(object, idx); 1395 if (p == NULL) 1396 continue; 1397 vm_page_protect(p, VM_PROT_READ); 1398 } 1399 vm_object_drop(object); 1400 } 1401 1402 /* 1403 * Removes all physical pages in the specified object range from all 1404 * physical maps. 1405 * 1406 * The object must *not* be locked. 1407 */ 1408 1409 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1410 1411 void 1412 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1413 { 1414 struct rb_vm_page_scan_info info; 1415 1416 if (object == NULL) 1417 return; 1418 info.start_pindex = start; 1419 info.end_pindex = end - 1; 1420 1421 vm_object_hold(object); 1422 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1423 vm_object_pmap_remove_callback, &info); 1424 if (start == 0 && end == object->size) 1425 vm_object_clear_flag(object, OBJ_WRITEABLE); 1426 vm_object_drop(object); 1427 } 1428 1429 /* 1430 * The caller must hold the object 1431 */ 1432 static int 1433 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1434 { 1435 vm_page_protect(p, VM_PROT_NONE); 1436 return(0); 1437 } 1438 1439 /* 1440 * Implements the madvise function at the object/page level. 1441 * 1442 * MADV_WILLNEED (any object) 1443 * 1444 * Activate the specified pages if they are resident. 1445 * 1446 * MADV_DONTNEED (any object) 1447 * 1448 * Deactivate the specified pages if they are resident. 1449 * 1450 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1451 * 1452 * Deactivate and clean the specified pages if they are 1453 * resident. This permits the process to reuse the pages 1454 * without faulting or the kernel to reclaim the pages 1455 * without I/O. 1456 * 1457 * No requirements. 1458 */ 1459 void 1460 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1461 { 1462 vm_pindex_t end, tpindex; 1463 vm_object_t tobject; 1464 vm_object_t xobj; 1465 vm_page_t m; 1466 int error; 1467 1468 if (object == NULL) 1469 return; 1470 1471 end = pindex + count; 1472 1473 vm_object_hold(object); 1474 tobject = object; 1475 1476 /* 1477 * Locate and adjust resident pages 1478 */ 1479 for (; pindex < end; pindex += 1) { 1480 relookup: 1481 if (tobject != object) 1482 vm_object_drop(tobject); 1483 tobject = object; 1484 tpindex = pindex; 1485 shadowlookup: 1486 /* 1487 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1488 * and those pages must be OBJ_ONEMAPPING. 1489 */ 1490 if (advise == MADV_FREE) { 1491 if ((tobject->type != OBJT_DEFAULT && 1492 tobject->type != OBJT_SWAP) || 1493 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1494 continue; 1495 } 1496 } 1497 1498 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1499 1500 if (error) { 1501 vm_page_sleep_busy(m, TRUE, "madvpo"); 1502 goto relookup; 1503 } 1504 if (m == NULL) { 1505 /* 1506 * There may be swap even if there is no backing page 1507 */ 1508 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1509 swap_pager_freespace(tobject, tpindex, 1); 1510 1511 /* 1512 * next object 1513 */ 1514 while ((xobj = tobject->backing_object) != NULL) { 1515 KKASSERT(xobj != object); 1516 vm_object_hold(xobj); 1517 if (xobj == tobject->backing_object) 1518 break; 1519 vm_object_drop(xobj); 1520 } 1521 if (xobj == NULL) 1522 continue; 1523 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1524 if (tobject != object) { 1525 vm_object_lock_swap(); 1526 vm_object_drop(tobject); 1527 } 1528 tobject = xobj; 1529 goto shadowlookup; 1530 } 1531 1532 /* 1533 * If the page is not in a normal active state, we skip it. 1534 * If the page is not managed there are no page queues to 1535 * mess with. Things can break if we mess with pages in 1536 * any of the below states. 1537 */ 1538 if (m->wire_count || 1539 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 1540 m->valid != VM_PAGE_BITS_ALL 1541 ) { 1542 vm_page_wakeup(m); 1543 continue; 1544 } 1545 1546 /* 1547 * Theoretically once a page is known not to be busy, an 1548 * interrupt cannot come along and rip it out from under us. 1549 */ 1550 1551 if (advise == MADV_WILLNEED) { 1552 vm_page_activate(m); 1553 } else if (advise == MADV_DONTNEED) { 1554 vm_page_dontneed(m); 1555 } else if (advise == MADV_FREE) { 1556 /* 1557 * Mark the page clean. This will allow the page 1558 * to be freed up by the system. However, such pages 1559 * are often reused quickly by malloc()/free() 1560 * so we do not do anything that would cause 1561 * a page fault if we can help it. 1562 * 1563 * Specifically, we do not try to actually free 1564 * the page now nor do we try to put it in the 1565 * cache (which would cause a page fault on reuse). 1566 * 1567 * But we do make the page is freeable as we 1568 * can without actually taking the step of unmapping 1569 * it. 1570 */ 1571 pmap_clear_modify(m); 1572 m->dirty = 0; 1573 m->act_count = 0; 1574 vm_page_dontneed(m); 1575 if (tobject->type == OBJT_SWAP) 1576 swap_pager_freespace(tobject, tpindex, 1); 1577 } 1578 vm_page_wakeup(m); 1579 } 1580 if (tobject != object) 1581 vm_object_drop(tobject); 1582 vm_object_drop(object); 1583 } 1584 1585 /* 1586 * Create a new object which is backed by the specified existing object 1587 * range. Replace the pointer and offset that was pointing at the existing 1588 * object with the pointer/offset for the new object. 1589 * 1590 * No other requirements. 1591 */ 1592 void 1593 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1594 int addref) 1595 { 1596 vm_object_t source; 1597 vm_object_t result; 1598 1599 source = *objectp; 1600 1601 /* 1602 * Don't create the new object if the old object isn't shared. 1603 * We have to chain wait before adding the reference to avoid 1604 * racing a collapse or deallocation. 1605 * 1606 * Add the additional ref to source here to avoid racing a later 1607 * collapse or deallocation. Clear the ONEMAPPING flag whether 1608 * addref is TRUE or not in this case because the original object 1609 * will be shadowed. 1610 */ 1611 if (source) { 1612 vm_object_hold(source); 1613 vm_object_chain_wait(source); 1614 if (source->ref_count == 1 && 1615 source->handle == NULL && 1616 (source->type == OBJT_DEFAULT || 1617 source->type == OBJT_SWAP)) { 1618 vm_object_drop(source); 1619 if (addref) { 1620 vm_object_reference_locked(source); 1621 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1622 } 1623 return; 1624 } 1625 vm_object_reference_locked(source); 1626 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1627 } 1628 1629 /* 1630 * Allocate a new object with the given length. The new object 1631 * is returned referenced but we may have to add another one. 1632 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1633 * (typically because the caller is about to clone a vm_map_entry). 1634 * 1635 * The source object currently has an extra reference to prevent 1636 * collapses into it while we mess with its shadow list, which 1637 * we will remove later in this routine. 1638 */ 1639 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1640 panic("vm_object_shadow: no object for shadowing"); 1641 vm_object_hold(result); 1642 if (addref) { 1643 vm_object_reference_locked(result); 1644 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1645 } 1646 1647 /* 1648 * The new object shadows the source object. Chain wait before 1649 * adjusting shadow_count or the shadow list to avoid races. 1650 * 1651 * Try to optimize the result object's page color when shadowing 1652 * in order to maintain page coloring consistency in the combined 1653 * shadowed object. 1654 */ 1655 KKASSERT(result->backing_object == NULL); 1656 result->backing_object = source; 1657 if (source) { 1658 vm_object_chain_wait(source); 1659 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1660 source->shadow_count++; 1661 source->generation++; 1662 /* cpu localization twist */ 1663 result->pg_color = (int)(intptr_t)curthread; 1664 } 1665 1666 /* 1667 * Adjust the return storage. Drop the ref on source before 1668 * returning. 1669 */ 1670 result->backing_object_offset = *offset; 1671 vm_object_drop(result); 1672 *offset = 0; 1673 if (source) { 1674 vm_object_deallocate_locked(source); 1675 vm_object_drop(source); 1676 } 1677 1678 /* 1679 * Return the new things 1680 */ 1681 *objectp = result; 1682 } 1683 1684 #define OBSC_TEST_ALL_SHADOWED 0x0001 1685 #define OBSC_COLLAPSE_NOWAIT 0x0002 1686 #define OBSC_COLLAPSE_WAIT 0x0004 1687 1688 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1689 1690 /* 1691 * The caller must hold the object. 1692 */ 1693 static __inline int 1694 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1695 { 1696 struct rb_vm_page_scan_info info; 1697 1698 vm_object_assert_held(object); 1699 vm_object_assert_held(backing_object); 1700 1701 KKASSERT(backing_object == object->backing_object); 1702 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1703 1704 /* 1705 * Initial conditions 1706 */ 1707 if (op & OBSC_TEST_ALL_SHADOWED) { 1708 /* 1709 * We do not want to have to test for the existence of 1710 * swap pages in the backing object. XXX but with the 1711 * new swapper this would be pretty easy to do. 1712 * 1713 * XXX what about anonymous MAP_SHARED memory that hasn't 1714 * been ZFOD faulted yet? If we do not test for this, the 1715 * shadow test may succeed! XXX 1716 */ 1717 if (backing_object->type != OBJT_DEFAULT) 1718 return(0); 1719 } 1720 if (op & OBSC_COLLAPSE_WAIT) { 1721 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1722 vm_object_set_flag(backing_object, OBJ_DEAD); 1723 lwkt_gettoken(&vmobj_token); 1724 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1725 vm_object_count--; 1726 lwkt_reltoken(&vmobj_token); 1727 vm_object_dead_wakeup(backing_object); 1728 } 1729 1730 /* 1731 * Our scan. We have to retry if a negative error code is returned, 1732 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1733 * the scan had to be stopped because the parent does not completely 1734 * shadow the child. 1735 */ 1736 info.object = object; 1737 info.backing_object = backing_object; 1738 info.limit = op; 1739 do { 1740 info.error = 1; 1741 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1742 vm_object_backing_scan_callback, 1743 &info); 1744 } while (info.error < 0); 1745 1746 return(info.error); 1747 } 1748 1749 /* 1750 * The caller must hold the object. 1751 */ 1752 static int 1753 vm_object_backing_scan_callback(vm_page_t p, void *data) 1754 { 1755 struct rb_vm_page_scan_info *info = data; 1756 vm_object_t backing_object; 1757 vm_object_t object; 1758 vm_pindex_t pindex; 1759 vm_pindex_t new_pindex; 1760 vm_pindex_t backing_offset_index; 1761 int op; 1762 1763 pindex = p->pindex; 1764 new_pindex = pindex - info->backing_offset_index; 1765 op = info->limit; 1766 object = info->object; 1767 backing_object = info->backing_object; 1768 backing_offset_index = info->backing_offset_index; 1769 1770 if (op & OBSC_TEST_ALL_SHADOWED) { 1771 vm_page_t pp; 1772 1773 /* 1774 * Ignore pages outside the parent object's range 1775 * and outside the parent object's mapping of the 1776 * backing object. 1777 * 1778 * note that we do not busy the backing object's 1779 * page. 1780 */ 1781 if (pindex < backing_offset_index || 1782 new_pindex >= object->size 1783 ) { 1784 return(0); 1785 } 1786 1787 /* 1788 * See if the parent has the page or if the parent's 1789 * object pager has the page. If the parent has the 1790 * page but the page is not valid, the parent's 1791 * object pager must have the page. 1792 * 1793 * If this fails, the parent does not completely shadow 1794 * the object and we might as well give up now. 1795 */ 1796 pp = vm_page_lookup(object, new_pindex); 1797 if ((pp == NULL || pp->valid == 0) && 1798 !vm_pager_has_page(object, new_pindex) 1799 ) { 1800 info->error = 0; /* problemo */ 1801 return(-1); /* stop the scan */ 1802 } 1803 } 1804 1805 /* 1806 * Check for busy page. Note that we may have lost (p) when we 1807 * possibly blocked above. 1808 */ 1809 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1810 vm_page_t pp; 1811 1812 if (vm_page_busy_try(p, TRUE)) { 1813 if (op & OBSC_COLLAPSE_NOWAIT) { 1814 return(0); 1815 } else { 1816 /* 1817 * If we slept, anything could have 1818 * happened. Ask that the scan be restarted. 1819 * 1820 * Since the object is marked dead, the 1821 * backing offset should not have changed. 1822 */ 1823 vm_page_sleep_busy(p, TRUE, "vmocol"); 1824 info->error = -1; 1825 return(-1); 1826 } 1827 } 1828 1829 /* 1830 * If (p) is no longer valid restart the scan. 1831 */ 1832 if (p->object != backing_object || p->pindex != pindex) { 1833 kprintf("vm_object_backing_scan: Warning: page " 1834 "%p ripped out from under us\n", p); 1835 vm_page_wakeup(p); 1836 info->error = -1; 1837 return(-1); 1838 } 1839 1840 if (op & OBSC_COLLAPSE_NOWAIT) { 1841 if (p->valid == 0 || 1842 p->wire_count || 1843 (p->flags & PG_NEED_COMMIT)) { 1844 vm_page_wakeup(p); 1845 return(0); 1846 } 1847 } else { 1848 /* XXX what if p->valid == 0 , hold_count, etc? */ 1849 } 1850 1851 KASSERT( 1852 p->object == backing_object, 1853 ("vm_object_qcollapse(): object mismatch") 1854 ); 1855 1856 /* 1857 * Destroy any associated swap 1858 */ 1859 if (backing_object->type == OBJT_SWAP) 1860 swap_pager_freespace(backing_object, p->pindex, 1); 1861 1862 if ( 1863 p->pindex < backing_offset_index || 1864 new_pindex >= object->size 1865 ) { 1866 /* 1867 * Page is out of the parent object's range, we 1868 * can simply destroy it. 1869 */ 1870 vm_page_protect(p, VM_PROT_NONE); 1871 vm_page_free(p); 1872 return(0); 1873 } 1874 1875 pp = vm_page_lookup(object, new_pindex); 1876 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 1877 /* 1878 * page already exists in parent OR swap exists 1879 * for this location in the parent. Destroy 1880 * the original page from the backing object. 1881 * 1882 * Leave the parent's page alone 1883 */ 1884 vm_page_protect(p, VM_PROT_NONE); 1885 vm_page_free(p); 1886 return(0); 1887 } 1888 1889 /* 1890 * Page does not exist in parent, rename the 1891 * page from the backing object to the main object. 1892 * 1893 * If the page was mapped to a process, it can remain 1894 * mapped through the rename. 1895 */ 1896 if ((p->queue - p->pc) == PQ_CACHE) 1897 vm_page_deactivate(p); 1898 1899 vm_page_rename(p, object, new_pindex); 1900 vm_page_wakeup(p); 1901 /* page automatically made dirty by rename */ 1902 } 1903 return(0); 1904 } 1905 1906 /* 1907 * This version of collapse allows the operation to occur earlier and 1908 * when paging_in_progress is true for an object... This is not a complete 1909 * operation, but should plug 99.9% of the rest of the leaks. 1910 * 1911 * The caller must hold the object and backing_object and both must be 1912 * chainlocked. 1913 * 1914 * (only called from vm_object_collapse) 1915 */ 1916 static void 1917 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 1918 { 1919 if (backing_object->ref_count == 1) { 1920 backing_object->ref_count += 2; 1921 vm_object_backing_scan(object, backing_object, 1922 OBSC_COLLAPSE_NOWAIT); 1923 backing_object->ref_count -= 2; 1924 } 1925 } 1926 1927 /* 1928 * Collapse an object with the object backing it. Pages in the backing 1929 * object are moved into the parent, and the backing object is deallocated. 1930 * Any conflict is resolved in favor of the parent's existing pages. 1931 * 1932 * object must be held and chain-locked on call. 1933 * 1934 * The caller must have an extra ref on object to prevent a race from 1935 * destroying it during the collapse. 1936 */ 1937 void 1938 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 1939 { 1940 struct vm_object_dealloc_list *dlist = NULL; 1941 vm_object_t backing_object; 1942 1943 /* 1944 * Only one thread is attempting a collapse at any given moment. 1945 * There are few restrictions for (object) that callers of this 1946 * function check so reentrancy is likely. 1947 */ 1948 KKASSERT(object != NULL); 1949 vm_object_assert_held(object); 1950 KKASSERT(object->flags & OBJ_CHAINLOCK); 1951 1952 for (;;) { 1953 vm_object_t bbobj; 1954 int dodealloc; 1955 1956 /* 1957 * We have to hold the backing object, check races. 1958 */ 1959 while ((backing_object = object->backing_object) != NULL) { 1960 vm_object_hold(backing_object); 1961 if (backing_object == object->backing_object) 1962 break; 1963 vm_object_drop(backing_object); 1964 } 1965 1966 /* 1967 * No backing object? Nothing to collapse then. 1968 */ 1969 if (backing_object == NULL) 1970 break; 1971 1972 /* 1973 * You can't collapse with a non-default/non-swap object. 1974 */ 1975 if (backing_object->type != OBJT_DEFAULT && 1976 backing_object->type != OBJT_SWAP) { 1977 vm_object_drop(backing_object); 1978 backing_object = NULL; 1979 break; 1980 } 1981 1982 /* 1983 * Chain-lock the backing object too because if we 1984 * successfully merge its pages into the top object we 1985 * will collapse backing_object->backing_object as the 1986 * new backing_object. Re-check that it is still our 1987 * backing object. 1988 */ 1989 vm_object_chain_acquire(backing_object); 1990 if (backing_object != object->backing_object) { 1991 vm_object_chain_release(backing_object); 1992 vm_object_drop(backing_object); 1993 continue; 1994 } 1995 1996 /* 1997 * we check the backing object first, because it is most likely 1998 * not collapsable. 1999 */ 2000 if (backing_object->handle != NULL || 2001 (backing_object->type != OBJT_DEFAULT && 2002 backing_object->type != OBJT_SWAP) || 2003 (backing_object->flags & OBJ_DEAD) || 2004 object->handle != NULL || 2005 (object->type != OBJT_DEFAULT && 2006 object->type != OBJT_SWAP) || 2007 (object->flags & OBJ_DEAD)) { 2008 break; 2009 } 2010 2011 /* 2012 * If paging is in progress we can't do a normal collapse. 2013 */ 2014 if ( 2015 object->paging_in_progress != 0 || 2016 backing_object->paging_in_progress != 0 2017 ) { 2018 vm_object_qcollapse(object, backing_object); 2019 break; 2020 } 2021 2022 /* 2023 * We know that we can either collapse the backing object (if 2024 * the parent is the only reference to it) or (perhaps) have 2025 * the parent bypass the object if the parent happens to shadow 2026 * all the resident pages in the entire backing object. 2027 * 2028 * This is ignoring pager-backed pages such as swap pages. 2029 * vm_object_backing_scan fails the shadowing test in this 2030 * case. 2031 */ 2032 if (backing_object->ref_count == 1) { 2033 /* 2034 * If there is exactly one reference to the backing 2035 * object, we can collapse it into the parent. 2036 */ 2037 KKASSERT(object->backing_object == backing_object); 2038 vm_object_backing_scan(object, backing_object, 2039 OBSC_COLLAPSE_WAIT); 2040 2041 /* 2042 * Move the pager from backing_object to object. 2043 */ 2044 if (backing_object->type == OBJT_SWAP) { 2045 vm_object_pip_add(backing_object, 1); 2046 2047 /* 2048 * scrap the paging_offset junk and do a 2049 * discrete copy. This also removes major 2050 * assumptions about how the swap-pager 2051 * works from where it doesn't belong. The 2052 * new swapper is able to optimize the 2053 * destroy-source case. 2054 */ 2055 vm_object_pip_add(object, 1); 2056 swap_pager_copy(backing_object, object, 2057 OFF_TO_IDX(object->backing_object_offset), 2058 TRUE); 2059 vm_object_pip_wakeup(object); 2060 vm_object_pip_wakeup(backing_object); 2061 } 2062 2063 /* 2064 * Object now shadows whatever backing_object did. 2065 * Remove object from backing_object's shadow_list. 2066 */ 2067 LIST_REMOVE(object, shadow_list); 2068 KKASSERT(object->backing_object == backing_object); 2069 backing_object->shadow_count--; 2070 backing_object->generation++; 2071 2072 /* 2073 * backing_object->backing_object moves from within 2074 * backing_object to within object. 2075 */ 2076 while ((bbobj = backing_object->backing_object) != NULL) { 2077 vm_object_hold(bbobj); 2078 if (bbobj == backing_object->backing_object) 2079 break; 2080 vm_object_drop(bbobj); 2081 } 2082 if (bbobj) { 2083 LIST_REMOVE(backing_object, shadow_list); 2084 bbobj->shadow_count--; 2085 bbobj->generation++; 2086 backing_object->backing_object = NULL; 2087 } 2088 object->backing_object = bbobj; 2089 if (bbobj) { 2090 LIST_INSERT_HEAD(&bbobj->shadow_head, 2091 object, shadow_list); 2092 bbobj->shadow_count++; 2093 bbobj->generation++; 2094 } 2095 2096 object->backing_object_offset += 2097 backing_object->backing_object_offset; 2098 2099 vm_object_drop(bbobj); 2100 2101 /* 2102 * Discard the old backing_object. Nothing should be 2103 * able to ref it, other than a vm_map_split(), 2104 * and vm_map_split() will stall on our chain lock. 2105 * And we control the parent so it shouldn't be 2106 * possible for it to go away either. 2107 * 2108 * Since the backing object has no pages, no pager 2109 * left, and no object references within it, all 2110 * that is necessary is to dispose of it. 2111 */ 2112 KASSERT(backing_object->ref_count == 1, 2113 ("backing_object %p was somehow " 2114 "re-referenced during collapse!", 2115 backing_object)); 2116 KASSERT(RB_EMPTY(&backing_object->rb_memq), 2117 ("backing_object %p somehow has left " 2118 "over pages during collapse!", 2119 backing_object)); 2120 2121 /* 2122 * The object can be destroyed. 2123 * 2124 * XXX just fall through and dodealloc instead 2125 * of forcing destruction? 2126 */ 2127 --backing_object->ref_count; 2128 if ((backing_object->flags & OBJ_DEAD) == 0) 2129 vm_object_terminate(backing_object); 2130 object_collapses++; 2131 dodealloc = 0; 2132 } else { 2133 /* 2134 * If we do not entirely shadow the backing object, 2135 * there is nothing we can do so we give up. 2136 */ 2137 if (vm_object_backing_scan(object, backing_object, 2138 OBSC_TEST_ALL_SHADOWED) == 0) { 2139 break; 2140 } 2141 2142 /* 2143 * bbobj is backing_object->backing_object. Since 2144 * object completely shadows backing_object we can 2145 * bypass it and become backed by bbobj instead. 2146 */ 2147 while ((bbobj = backing_object->backing_object) != NULL) { 2148 vm_object_hold(bbobj); 2149 if (bbobj == backing_object->backing_object) 2150 break; 2151 vm_object_drop(bbobj); 2152 } 2153 2154 /* 2155 * Make object shadow bbobj instead of backing_object. 2156 * Remove object from backing_object's shadow list. 2157 * 2158 * Deallocating backing_object will not remove 2159 * it, since its reference count is at least 2. 2160 */ 2161 KKASSERT(object->backing_object == backing_object); 2162 LIST_REMOVE(object, shadow_list); 2163 backing_object->shadow_count--; 2164 backing_object->generation++; 2165 2166 /* 2167 * Add a ref to bbobj, bbobj now shadows object. 2168 * 2169 * NOTE: backing_object->backing_object still points 2170 * to bbobj. That relationship remains intact 2171 * because backing_object has > 1 ref, so 2172 * someone else is pointing to it (hence why 2173 * we can't collapse it into object and can 2174 * only handle the all-shadowed bypass case). 2175 */ 2176 if (bbobj) { 2177 vm_object_chain_wait(bbobj); 2178 vm_object_reference_locked(bbobj); 2179 LIST_INSERT_HEAD(&bbobj->shadow_head, 2180 object, shadow_list); 2181 bbobj->shadow_count++; 2182 bbobj->generation++; 2183 object->backing_object_offset += 2184 backing_object->backing_object_offset; 2185 object->backing_object = bbobj; 2186 vm_object_drop(bbobj); 2187 } else { 2188 object->backing_object = NULL; 2189 } 2190 2191 /* 2192 * Drop the reference count on backing_object. To 2193 * handle ref_count races properly we can't assume 2194 * that the ref_count is still at least 2 so we 2195 * have to actually call vm_object_deallocate() 2196 * (after clearing the chainlock). 2197 */ 2198 object_bypasses++; 2199 dodealloc = 1; 2200 } 2201 2202 /* 2203 * Ok, we want to loop on the new object->bbobj association, 2204 * possibly collapsing it further. However if dodealloc is 2205 * non-zero we have to deallocate the backing_object which 2206 * itself can potentially undergo a collapse, creating a 2207 * recursion depth issue with the LWKT token subsystem. 2208 * 2209 * In the case where we must deallocate the backing_object 2210 * it is possible now that the backing_object has a single 2211 * shadow count on some other object (not represented here 2212 * as yet), since it no longer shadows us. Thus when we 2213 * call vm_object_deallocate() it may attempt to collapse 2214 * itself into its remaining parent. 2215 */ 2216 if (dodealloc) { 2217 struct vm_object_dealloc_list *dtmp; 2218 2219 vm_object_chain_release(backing_object); 2220 vm_object_unlock(backing_object); 2221 /* backing_object remains held */ 2222 2223 /* 2224 * Auto-deallocation list for caller convenience. 2225 */ 2226 if (dlistp == NULL) 2227 dlistp = &dlist; 2228 2229 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2230 dtmp->object = backing_object; 2231 dtmp->next = *dlistp; 2232 *dlistp = dtmp; 2233 } else { 2234 vm_object_chain_release(backing_object); 2235 vm_object_drop(backing_object); 2236 } 2237 /* backing_object = NULL; not needed */ 2238 /* loop */ 2239 } 2240 2241 /* 2242 * Clean up any left over backing_object 2243 */ 2244 if (backing_object) { 2245 vm_object_chain_release(backing_object); 2246 vm_object_drop(backing_object); 2247 } 2248 2249 /* 2250 * Clean up any auto-deallocation list. This is a convenience 2251 * for top-level callers so they don't have to pass &dlist. 2252 * Do not clean up any caller-passed dlistp, the caller will 2253 * do that. 2254 */ 2255 if (dlist) 2256 vm_object_deallocate_list(&dlist); 2257 2258 } 2259 2260 /* 2261 * vm_object_collapse() may collect additional objects in need of 2262 * deallocation. This routine deallocates these objects. The 2263 * deallocation itself can trigger additional collapses (which the 2264 * deallocate function takes care of). This procedure is used to 2265 * reduce procedural recursion since these vm_object shadow chains 2266 * can become quite long. 2267 */ 2268 void 2269 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2270 { 2271 struct vm_object_dealloc_list *dlist; 2272 2273 while ((dlist = *dlistp) != NULL) { 2274 *dlistp = dlist->next; 2275 vm_object_lock(dlist->object); 2276 vm_object_deallocate_locked(dlist->object); 2277 vm_object_drop(dlist->object); 2278 kfree(dlist, M_TEMP); 2279 } 2280 } 2281 2282 /* 2283 * Removes all physical pages in the specified object range from the 2284 * object's list of pages. 2285 * 2286 * No requirements. 2287 */ 2288 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2289 2290 void 2291 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2292 boolean_t clean_only) 2293 { 2294 struct rb_vm_page_scan_info info; 2295 int all; 2296 2297 /* 2298 * Degenerate cases and assertions 2299 */ 2300 vm_object_hold(object); 2301 if (object == NULL || 2302 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2303 vm_object_drop(object); 2304 return; 2305 } 2306 KASSERT(object->type != OBJT_PHYS, 2307 ("attempt to remove pages from a physical object")); 2308 2309 /* 2310 * Indicate that paging is occuring on the object 2311 */ 2312 vm_object_pip_add(object, 1); 2313 2314 /* 2315 * Figure out the actual removal range and whether we are removing 2316 * the entire contents of the object or not. If removing the entire 2317 * contents, be sure to get all pages, even those that might be 2318 * beyond the end of the object. 2319 */ 2320 info.start_pindex = start; 2321 if (end == 0) 2322 info.end_pindex = (vm_pindex_t)-1; 2323 else 2324 info.end_pindex = end - 1; 2325 info.limit = clean_only; 2326 all = (start == 0 && info.end_pindex >= object->size - 1); 2327 2328 /* 2329 * Loop until we are sure we have gotten them all. 2330 */ 2331 do { 2332 info.error = 0; 2333 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2334 vm_object_page_remove_callback, &info); 2335 } while (info.error); 2336 2337 /* 2338 * Remove any related swap if throwing away pages, or for 2339 * non-swap objects (the swap is a clean copy in that case). 2340 */ 2341 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2342 if (all) 2343 swap_pager_freespace_all(object); 2344 else 2345 swap_pager_freespace(object, info.start_pindex, 2346 info.end_pindex - info.start_pindex + 1); 2347 } 2348 2349 /* 2350 * Cleanup 2351 */ 2352 vm_object_pip_wakeup(object); 2353 vm_object_drop(object); 2354 } 2355 2356 /* 2357 * The caller must hold the object 2358 */ 2359 static int 2360 vm_object_page_remove_callback(vm_page_t p, void *data) 2361 { 2362 struct rb_vm_page_scan_info *info = data; 2363 2364 if (vm_page_busy_try(p, TRUE)) { 2365 vm_page_sleep_busy(p, TRUE, "vmopar"); 2366 info->error = 1; 2367 return(0); 2368 } 2369 2370 /* 2371 * Wired pages cannot be destroyed, but they can be invalidated 2372 * and we do so if clean_only (limit) is not set. 2373 * 2374 * WARNING! The page may be wired due to being part of a buffer 2375 * cache buffer, and the buffer might be marked B_CACHE. 2376 * This is fine as part of a truncation but VFSs must be 2377 * sure to fix the buffer up when re-extending the file. 2378 * 2379 * NOTE! PG_NEED_COMMIT is ignored. 2380 */ 2381 if (p->wire_count != 0) { 2382 vm_page_protect(p, VM_PROT_NONE); 2383 if (info->limit == 0) 2384 p->valid = 0; 2385 vm_page_wakeup(p); 2386 return(0); 2387 } 2388 2389 /* 2390 * limit is our clean_only flag. If set and the page is dirty or 2391 * requires a commit, do not free it. If set and the page is being 2392 * held by someone, do not free it. 2393 */ 2394 if (info->limit && p->valid) { 2395 vm_page_test_dirty(p); 2396 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) { 2397 vm_page_wakeup(p); 2398 return(0); 2399 } 2400 #if 0 2401 if (p->hold_count) { 2402 vm_page_wakeup(p); 2403 return(0); 2404 } 2405 #endif 2406 } 2407 2408 /* 2409 * Destroy the page 2410 */ 2411 vm_page_protect(p, VM_PROT_NONE); 2412 vm_page_free(p); 2413 return(0); 2414 } 2415 2416 /* 2417 * Coalesces two objects backing up adjoining regions of memory into a 2418 * single object. 2419 * 2420 * returns TRUE if objects were combined. 2421 * 2422 * NOTE: Only works at the moment if the second object is NULL - 2423 * if it's not, which object do we lock first? 2424 * 2425 * Parameters: 2426 * prev_object First object to coalesce 2427 * prev_offset Offset into prev_object 2428 * next_object Second object into coalesce 2429 * next_offset Offset into next_object 2430 * 2431 * prev_size Size of reference to prev_object 2432 * next_size Size of reference to next_object 2433 * 2434 * The caller does not need to hold (prev_object) but must have a stable 2435 * pointer to it (typically by holding the vm_map locked). 2436 */ 2437 boolean_t 2438 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2439 vm_size_t prev_size, vm_size_t next_size) 2440 { 2441 vm_pindex_t next_pindex; 2442 2443 if (prev_object == NULL) 2444 return (TRUE); 2445 2446 vm_object_hold(prev_object); 2447 2448 if (prev_object->type != OBJT_DEFAULT && 2449 prev_object->type != OBJT_SWAP) { 2450 vm_object_drop(prev_object); 2451 return (FALSE); 2452 } 2453 2454 /* 2455 * Try to collapse the object first 2456 */ 2457 vm_object_chain_acquire(prev_object); 2458 vm_object_collapse(prev_object, NULL); 2459 2460 /* 2461 * Can't coalesce if: . more than one reference . paged out . shadows 2462 * another object . has a copy elsewhere (any of which mean that the 2463 * pages not mapped to prev_entry may be in use anyway) 2464 */ 2465 2466 if (prev_object->backing_object != NULL) { 2467 vm_object_chain_release(prev_object); 2468 vm_object_drop(prev_object); 2469 return (FALSE); 2470 } 2471 2472 prev_size >>= PAGE_SHIFT; 2473 next_size >>= PAGE_SHIFT; 2474 next_pindex = prev_pindex + prev_size; 2475 2476 if ((prev_object->ref_count > 1) && 2477 (prev_object->size != next_pindex)) { 2478 vm_object_chain_release(prev_object); 2479 vm_object_drop(prev_object); 2480 return (FALSE); 2481 } 2482 2483 /* 2484 * Remove any pages that may still be in the object from a previous 2485 * deallocation. 2486 */ 2487 if (next_pindex < prev_object->size) { 2488 vm_object_page_remove(prev_object, 2489 next_pindex, 2490 next_pindex + next_size, FALSE); 2491 if (prev_object->type == OBJT_SWAP) 2492 swap_pager_freespace(prev_object, 2493 next_pindex, next_size); 2494 } 2495 2496 /* 2497 * Extend the object if necessary. 2498 */ 2499 if (next_pindex + next_size > prev_object->size) 2500 prev_object->size = next_pindex + next_size; 2501 2502 vm_object_chain_release(prev_object); 2503 vm_object_drop(prev_object); 2504 return (TRUE); 2505 } 2506 2507 /* 2508 * Make the object writable and flag is being possibly dirty. 2509 * 2510 * The caller must hold the object. XXX called from vm_page_dirty(), 2511 * There is currently no requirement to hold the object. 2512 */ 2513 void 2514 vm_object_set_writeable_dirty(vm_object_t object) 2515 { 2516 struct vnode *vp; 2517 2518 /*vm_object_assert_held(object);*/ 2519 /* 2520 * Avoid contention in vm fault path by checking the state before 2521 * issuing an atomic op on it. 2522 */ 2523 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) != 2524 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) { 2525 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2526 } 2527 if (object->type == OBJT_VNODE && 2528 (vp = (struct vnode *)object->handle) != NULL) { 2529 if ((vp->v_flag & VOBJDIRTY) == 0) { 2530 vsetflags(vp, VOBJDIRTY); 2531 } 2532 } 2533 } 2534 2535 #include "opt_ddb.h" 2536 #ifdef DDB 2537 #include <sys/kernel.h> 2538 2539 #include <sys/cons.h> 2540 2541 #include <ddb/ddb.h> 2542 2543 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2544 vm_map_entry_t entry); 2545 static int vm_object_in_map (vm_object_t object); 2546 2547 /* 2548 * The caller must hold the object. 2549 */ 2550 static int 2551 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2552 { 2553 vm_map_t tmpm; 2554 vm_map_entry_t tmpe; 2555 vm_object_t obj, nobj; 2556 int entcount; 2557 2558 if (map == 0) 2559 return 0; 2560 if (entry == 0) { 2561 tmpe = map->header.next; 2562 entcount = map->nentries; 2563 while (entcount-- && (tmpe != &map->header)) { 2564 if( _vm_object_in_map(map, object, tmpe)) { 2565 return 1; 2566 } 2567 tmpe = tmpe->next; 2568 } 2569 return (0); 2570 } 2571 switch(entry->maptype) { 2572 case VM_MAPTYPE_SUBMAP: 2573 tmpm = entry->object.sub_map; 2574 tmpe = tmpm->header.next; 2575 entcount = tmpm->nentries; 2576 while (entcount-- && tmpe != &tmpm->header) { 2577 if( _vm_object_in_map(tmpm, object, tmpe)) { 2578 return 1; 2579 } 2580 tmpe = tmpe->next; 2581 } 2582 break; 2583 case VM_MAPTYPE_NORMAL: 2584 case VM_MAPTYPE_VPAGETABLE: 2585 obj = entry->object.vm_object; 2586 while (obj) { 2587 if (obj == object) { 2588 if (obj != entry->object.vm_object) 2589 vm_object_drop(obj); 2590 return 1; 2591 } 2592 while ((nobj = obj->backing_object) != NULL) { 2593 vm_object_hold(nobj); 2594 if (nobj == obj->backing_object) 2595 break; 2596 vm_object_drop(nobj); 2597 } 2598 if (obj != entry->object.vm_object) { 2599 if (nobj) 2600 vm_object_lock_swap(); 2601 vm_object_drop(obj); 2602 } 2603 obj = nobj; 2604 } 2605 break; 2606 default: 2607 break; 2608 } 2609 return 0; 2610 } 2611 2612 static int vm_object_in_map_callback(struct proc *p, void *data); 2613 2614 struct vm_object_in_map_info { 2615 vm_object_t object; 2616 int rv; 2617 }; 2618 2619 /* 2620 * Debugging only 2621 */ 2622 static int 2623 vm_object_in_map(vm_object_t object) 2624 { 2625 struct vm_object_in_map_info info; 2626 2627 info.rv = 0; 2628 info.object = object; 2629 2630 allproc_scan(vm_object_in_map_callback, &info); 2631 if (info.rv) 2632 return 1; 2633 if( _vm_object_in_map(&kernel_map, object, 0)) 2634 return 1; 2635 if( _vm_object_in_map(&pager_map, object, 0)) 2636 return 1; 2637 if( _vm_object_in_map(&buffer_map, object, 0)) 2638 return 1; 2639 return 0; 2640 } 2641 2642 /* 2643 * Debugging only 2644 */ 2645 static int 2646 vm_object_in_map_callback(struct proc *p, void *data) 2647 { 2648 struct vm_object_in_map_info *info = data; 2649 2650 if (p->p_vmspace) { 2651 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2652 info->rv = 1; 2653 return -1; 2654 } 2655 } 2656 return (0); 2657 } 2658 2659 DB_SHOW_COMMAND(vmochk, vm_object_check) 2660 { 2661 vm_object_t object; 2662 2663 /* 2664 * make sure that internal objs are in a map somewhere 2665 * and none have zero ref counts. 2666 */ 2667 for (object = TAILQ_FIRST(&vm_object_list); 2668 object != NULL; 2669 object = TAILQ_NEXT(object, object_list)) { 2670 if (object->type == OBJT_MARKER) 2671 continue; 2672 if (object->handle == NULL && 2673 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2674 if (object->ref_count == 0) { 2675 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2676 (long)object->size); 2677 } 2678 if (!vm_object_in_map(object)) { 2679 db_printf( 2680 "vmochk: internal obj is not in a map: " 2681 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2682 object->ref_count, (u_long)object->size, 2683 (u_long)object->size, 2684 (void *)object->backing_object); 2685 } 2686 } 2687 } 2688 } 2689 2690 /* 2691 * Debugging only 2692 */ 2693 DB_SHOW_COMMAND(object, vm_object_print_static) 2694 { 2695 /* XXX convert args. */ 2696 vm_object_t object = (vm_object_t)addr; 2697 boolean_t full = have_addr; 2698 2699 vm_page_t p; 2700 2701 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2702 #define count was_count 2703 2704 int count; 2705 2706 if (object == NULL) 2707 return; 2708 2709 db_iprintf( 2710 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2711 object, (int)object->type, (u_long)object->size, 2712 object->resident_page_count, object->ref_count, object->flags); 2713 /* 2714 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2715 */ 2716 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2717 object->shadow_count, 2718 object->backing_object ? object->backing_object->ref_count : 0, 2719 object->backing_object, (long)object->backing_object_offset); 2720 2721 if (!full) 2722 return; 2723 2724 db_indent += 2; 2725 count = 0; 2726 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2727 if (count == 0) 2728 db_iprintf("memory:="); 2729 else if (count == 6) { 2730 db_printf("\n"); 2731 db_iprintf(" ..."); 2732 count = 0; 2733 } else 2734 db_printf(","); 2735 count++; 2736 2737 db_printf("(off=0x%lx,page=0x%lx)", 2738 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 2739 } 2740 if (count != 0) 2741 db_printf("\n"); 2742 db_indent -= 2; 2743 } 2744 2745 /* XXX. */ 2746 #undef count 2747 2748 /* 2749 * XXX need this non-static entry for calling from vm_map_print. 2750 * 2751 * Debugging only 2752 */ 2753 void 2754 vm_object_print(/* db_expr_t */ long addr, 2755 boolean_t have_addr, 2756 /* db_expr_t */ long count, 2757 char *modif) 2758 { 2759 vm_object_print_static(addr, have_addr, count, modif); 2760 } 2761 2762 /* 2763 * Debugging only 2764 */ 2765 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2766 { 2767 vm_object_t object; 2768 int nl = 0; 2769 int c; 2770 for (object = TAILQ_FIRST(&vm_object_list); 2771 object != NULL; 2772 object = TAILQ_NEXT(object, object_list)) { 2773 vm_pindex_t idx, fidx; 2774 vm_pindex_t osize; 2775 vm_paddr_t pa = -1, padiff; 2776 int rcount; 2777 vm_page_t m; 2778 2779 if (object->type == OBJT_MARKER) 2780 continue; 2781 db_printf("new object: %p\n", (void *)object); 2782 if ( nl > 18) { 2783 c = cngetc(); 2784 if (c != ' ') 2785 return; 2786 nl = 0; 2787 } 2788 nl++; 2789 rcount = 0; 2790 fidx = 0; 2791 osize = object->size; 2792 if (osize > 128) 2793 osize = 128; 2794 for (idx = 0; idx < osize; idx++) { 2795 m = vm_page_lookup(object, idx); 2796 if (m == NULL) { 2797 if (rcount) { 2798 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2799 (long)fidx, rcount, (long)pa); 2800 if ( nl > 18) { 2801 c = cngetc(); 2802 if (c != ' ') 2803 return; 2804 nl = 0; 2805 } 2806 nl++; 2807 rcount = 0; 2808 } 2809 continue; 2810 } 2811 2812 2813 if (rcount && 2814 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2815 ++rcount; 2816 continue; 2817 } 2818 if (rcount) { 2819 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2820 padiff >>= PAGE_SHIFT; 2821 padiff &= PQ_L2_MASK; 2822 if (padiff == 0) { 2823 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2824 ++rcount; 2825 continue; 2826 } 2827 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2828 (long)fidx, rcount, (long)pa); 2829 db_printf("pd(%ld)\n", (long)padiff); 2830 if ( nl > 18) { 2831 c = cngetc(); 2832 if (c != ' ') 2833 return; 2834 nl = 0; 2835 } 2836 nl++; 2837 } 2838 fidx = idx; 2839 pa = VM_PAGE_TO_PHYS(m); 2840 rcount = 1; 2841 } 2842 if (rcount) { 2843 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2844 (long)fidx, rcount, (long)pa); 2845 if ( nl > 18) { 2846 c = cngetc(); 2847 if (c != ' ') 2848 return; 2849 nl = 0; 2850 } 2851 nl++; 2852 } 2853 } 2854 } 2855 #endif /* DDB */ 2856