xref: /dflybsd-src/sys/vm/vm_object.c (revision 64ed7155dec9fea48b542f16c80a6f0dd25dca37)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object,
101 				    vm_object_t backing_object);
102 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103 					     int pagerflags);
104 static void	vm_object_lock_init(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_gettoken(&obj->token);
176 }
177 
178 /*
179  * Returns TRUE on sucesss
180  */
181 static int
182 vm_object_lock_try(vm_object_t obj)
183 {
184 	return(lwkt_trytoken(&obj->token));
185 }
186 
187 void
188 vm_object_lock_shared(vm_object_t obj)
189 {
190 	lwkt_gettoken_shared(&obj->token);
191 }
192 
193 void
194 vm_object_unlock(vm_object_t obj)
195 {
196 	lwkt_reltoken(&obj->token);
197 }
198 
199 static __inline void
200 vm_object_assert_held(vm_object_t obj)
201 {
202 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
203 }
204 
205 void
206 #ifndef DEBUG_LOCKS
207 vm_object_hold(vm_object_t obj)
208 #else
209 debugvm_object_hold(vm_object_t obj, char *file, int line)
210 #endif
211 {
212 	KKASSERT(obj != NULL);
213 
214 	/*
215 	 * Object must be held (object allocation is stable due to callers
216 	 * context, typically already holding the token on a parent object)
217 	 * prior to potentially blocking on the lock, otherwise the object
218 	 * can get ripped away from us.
219 	 */
220 	refcount_acquire(&obj->hold_count);
221 	vm_object_lock(obj);
222 
223 #if defined(DEBUG_LOCKS)
224 	int i;
225 	u_int mask;
226 
227 	for (;;) {
228 		mask = ~obj->debug_hold_bitmap;
229 		cpu_ccfence();
230 		if (mask == 0xFFFFFFFFU) {
231 			if (obj->debug_hold_ovfl == 0)
232 				obj->debug_hold_ovfl = 1;
233 			break;
234 		}
235 		i = ffs(mask) - 1;
236 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
237 				      ~mask | (1 << i))) {
238 			obj->debug_hold_bitmap |= (1 << i);
239 			obj->debug_hold_thrs[i] = curthread;
240 			obj->debug_hold_file[i] = file;
241 			obj->debug_hold_line[i] = line;
242 			break;
243 		}
244 	}
245 #endif
246 }
247 
248 int
249 #ifndef DEBUG_LOCKS
250 vm_object_hold_try(vm_object_t obj)
251 #else
252 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
253 #endif
254 {
255 	KKASSERT(obj != NULL);
256 
257 	/*
258 	 * Object must be held (object allocation is stable due to callers
259 	 * context, typically already holding the token on a parent object)
260 	 * prior to potentially blocking on the lock, otherwise the object
261 	 * can get ripped away from us.
262 	 */
263 	refcount_acquire(&obj->hold_count);
264 	if (vm_object_lock_try(obj) == 0) {
265 		if (refcount_release(&obj->hold_count)) {
266 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
267 				zfree(obj_zone, obj);
268 		}
269 		return(0);
270 	}
271 
272 #if defined(DEBUG_LOCKS)
273 	int i;
274 	u_int mask;
275 
276 	for (;;) {
277 		mask = ~obj->debug_hold_bitmap;
278 		cpu_ccfence();
279 		if (mask == 0xFFFFFFFFU) {
280 			if (obj->debug_hold_ovfl == 0)
281 				obj->debug_hold_ovfl = 1;
282 			break;
283 		}
284 		i = ffs(mask) - 1;
285 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
286 				      ~mask | (1 << i))) {
287 			obj->debug_hold_bitmap |= (1 << i);
288 			obj->debug_hold_thrs[i] = curthread;
289 			obj->debug_hold_file[i] = file;
290 			obj->debug_hold_line[i] = line;
291 			break;
292 		}
293 	}
294 #endif
295 	return(1);
296 }
297 
298 void
299 #ifndef DEBUG_LOCKS
300 vm_object_hold_shared(vm_object_t obj)
301 #else
302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
303 #endif
304 {
305 	KKASSERT(obj != NULL);
306 
307 	/*
308 	 * Object must be held (object allocation is stable due to callers
309 	 * context, typically already holding the token on a parent object)
310 	 * prior to potentially blocking on the lock, otherwise the object
311 	 * can get ripped away from us.
312 	 */
313 	refcount_acquire(&obj->hold_count);
314 	vm_object_lock_shared(obj);
315 
316 #if defined(DEBUG_LOCKS)
317 	int i;
318 	u_int mask;
319 
320 	for (;;) {
321 		mask = ~obj->debug_hold_bitmap;
322 		cpu_ccfence();
323 		if (mask == 0xFFFFFFFFU) {
324 			if (obj->debug_hold_ovfl == 0)
325 				obj->debug_hold_ovfl = 1;
326 			break;
327 		}
328 		i = ffs(mask) - 1;
329 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
330 				      ~mask | (1 << i))) {
331 			obj->debug_hold_bitmap |= (1 << i);
332 			obj->debug_hold_thrs[i] = curthread;
333 			obj->debug_hold_file[i] = file;
334 			obj->debug_hold_line[i] = line;
335 			break;
336 		}
337 	}
338 #endif
339 }
340 
341 /*
342  * Drop the token and hold_count on the object.
343  */
344 void
345 vm_object_drop(vm_object_t obj)
346 {
347 	if (obj == NULL)
348 		return;
349 
350 #if defined(DEBUG_LOCKS)
351 	int found = 0;
352 	int i;
353 
354 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
355 		if ((obj->debug_hold_bitmap & (1 << i)) &&
356 		    (obj->debug_hold_thrs[i] == curthread)) {
357 			obj->debug_hold_bitmap &= ~(1 << i);
358 			obj->debug_hold_thrs[i] = NULL;
359 			obj->debug_hold_file[i] = NULL;
360 			obj->debug_hold_line[i] = 0;
361 			found = 1;
362 			break;
363 		}
364 	}
365 
366 	if (found == 0 && obj->debug_hold_ovfl == 0)
367 		panic("vm_object: attempt to drop hold on non-self-held obj");
368 #endif
369 
370 	/*
371 	 * No new holders should be possible once we drop hold_count 1->0 as
372 	 * there is no longer any way to reference the object.
373 	 */
374 	KKASSERT(obj->hold_count > 0);
375 	if (refcount_release(&obj->hold_count)) {
376 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
377 			vm_object_unlock(obj);
378 			zfree(obj_zone, obj);
379 		} else {
380 			vm_object_unlock(obj);
381 		}
382 	} else {
383 		vm_object_unlock(obj);
384 	}
385 }
386 
387 /*
388  * Initialize a freshly allocated object, returning a held object.
389  *
390  * Used only by vm_object_allocate() and zinitna().
391  *
392  * No requirements.
393  */
394 void
395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
396 {
397 	int incr;
398 
399 	RB_INIT(&object->rb_memq);
400 	LIST_INIT(&object->shadow_head);
401 	lwkt_token_init(&object->token, "vmobj");
402 
403 	object->type = type;
404 	object->size = size;
405 	object->ref_count = 1;
406 	object->hold_count = 0;
407 	object->flags = 0;
408 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
409 		vm_object_set_flag(object, OBJ_ONEMAPPING);
410 	object->paging_in_progress = 0;
411 	object->resident_page_count = 0;
412 	object->agg_pv_list_count = 0;
413 	object->shadow_count = 0;
414 	/* cpu localization twist */
415 	object->pg_color = (int)(intptr_t)curthread;
416 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
417 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
418 	else
419 		incr = size;
420 	next_index = (next_index + incr) & PQ_L2_MASK;
421 	object->handle = NULL;
422 	object->backing_object = NULL;
423 	object->backing_object_offset = (vm_ooffset_t)0;
424 
425 	object->generation++;
426 	object->swblock_count = 0;
427 	RB_INIT(&object->swblock_root);
428 	vm_object_lock_init(object);
429 	pmap_object_init(object);
430 
431 	vm_object_hold(object);
432 	lwkt_gettoken(&vmobj_token);
433 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
434 	vm_object_count++;
435 	lwkt_reltoken(&vmobj_token);
436 }
437 
438 /*
439  * Initialize the VM objects module.
440  *
441  * Called from the low level boot code only.
442  */
443 void
444 vm_object_init(void)
445 {
446 	TAILQ_INIT(&vm_object_list);
447 
448 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
449 			    &kernel_object);
450 	vm_object_drop(&kernel_object);
451 
452 	obj_zone = &obj_zone_store;
453 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
454 		vm_objects_init, VM_OBJECTS_INIT);
455 }
456 
457 void
458 vm_object_init2(void)
459 {
460 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
461 }
462 
463 /*
464  * Allocate and return a new object of the specified type and size.
465  *
466  * No requirements.
467  */
468 vm_object_t
469 vm_object_allocate(objtype_t type, vm_pindex_t size)
470 {
471 	vm_object_t result;
472 
473 	result = (vm_object_t) zalloc(obj_zone);
474 
475 	_vm_object_allocate(type, size, result);
476 	vm_object_drop(result);
477 
478 	return (result);
479 }
480 
481 /*
482  * This version returns a held object, allowing further atomic initialization
483  * of the object.
484  */
485 vm_object_t
486 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
487 {
488 	vm_object_t result;
489 
490 	result = (vm_object_t) zalloc(obj_zone);
491 
492 	_vm_object_allocate(type, size, result);
493 
494 	return (result);
495 }
496 
497 /*
498  * Add an additional reference to a vm_object.  The object must already be
499  * held.  The original non-lock version is no longer supported.  The object
500  * must NOT be chain locked by anyone at the time the reference is added.
501  *
502  * Referencing a chain-locked object can blow up the fairly sensitive
503  * ref_count and shadow_count tests in the deallocator.  Most callers
504  * will call vm_object_chain_wait() prior to calling
505  * vm_object_reference_locked() to avoid the case.
506  *
507  * The object must be held.
508  */
509 void
510 vm_object_reference_locked(vm_object_t object)
511 {
512 	KKASSERT(object != NULL);
513 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
514 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
515 	object->ref_count++;
516 	if (object->type == OBJT_VNODE) {
517 		vref(object->handle);
518 		/* XXX what if the vnode is being destroyed? */
519 	}
520 }
521 
522 /*
523  * Object OBJ_CHAINLOCK lock handling.
524  *
525  * The caller can chain-lock backing objects recursively and then
526  * use vm_object_chain_release_all() to undo the whole chain.
527  *
528  * Chain locks are used to prevent collapses and are only applicable
529  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
530  * on other object types are ignored.  This is also important because
531  * it allows e.g. the vnode underlying a memory mapping to take concurrent
532  * faults.
533  *
534  * The object must usually be held on entry, though intermediate
535  * objects need not be held on release.
536  */
537 void
538 vm_object_chain_wait(vm_object_t object)
539 {
540 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
541 	while (object->flags & OBJ_CHAINLOCK) {
542 		vm_object_set_flag(object, OBJ_CHAINWANT);
543 		tsleep(object, 0, "objchain", 0);
544 	}
545 }
546 
547 void
548 vm_object_chain_acquire(vm_object_t object)
549 {
550 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
551 		vm_object_chain_wait(object);
552 		vm_object_set_flag(object, OBJ_CHAINLOCK);
553 	}
554 }
555 
556 void
557 vm_object_chain_release(vm_object_t object)
558 {
559 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
560 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
561 		KKASSERT(object->flags & OBJ_CHAINLOCK);
562 		if (object->flags & OBJ_CHAINWANT) {
563 			vm_object_clear_flag(object,
564 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
565 			wakeup(object);
566 		} else {
567 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
568 		}
569 	}
570 }
571 
572 /*
573  * This releases the entire chain of objects from first_object to and
574  * including stopobj, flowing through object->backing_object.
575  *
576  * We release stopobj first as an optimization as this object is most
577  * likely to be shared across multiple processes.
578  */
579 void
580 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
581 {
582 	vm_object_t backing_object;
583 	vm_object_t object;
584 
585 	vm_object_chain_release(stopobj);
586 	object = first_object;
587 
588 	while (object != stopobj) {
589 		KKASSERT(object);
590 		if (object != first_object)
591 			vm_object_hold(object);
592 		backing_object = object->backing_object;
593 		vm_object_chain_release(object);
594 		if (object != first_object)
595 			vm_object_drop(object);
596 		object = backing_object;
597 	}
598 }
599 
600 /*
601  * Dereference an object and its underlying vnode.
602  *
603  * The object must be held and will be held on return.
604  */
605 static void
606 vm_object_vndeallocate(vm_object_t object)
607 {
608 	struct vnode *vp = (struct vnode *) object->handle;
609 
610 	KASSERT(object->type == OBJT_VNODE,
611 	    ("vm_object_vndeallocate: not a vnode object"));
612 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
613 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
614 #ifdef INVARIANTS
615 	if (object->ref_count == 0) {
616 		vprint("vm_object_vndeallocate", vp);
617 		panic("vm_object_vndeallocate: bad object reference count");
618 	}
619 #endif
620 	object->ref_count--;
621 	if (object->ref_count == 0)
622 		vclrflags(vp, VTEXT);
623 	vrele(vp);
624 }
625 
626 /*
627  * Release a reference to the specified object, gained either through a
628  * vm_object_allocate or a vm_object_reference call.  When all references
629  * are gone, storage associated with this object may be relinquished.
630  *
631  * The caller does not have to hold the object locked but must have control
632  * over the reference in question in order to guarantee that the object
633  * does not get ripped out from under us.
634  */
635 void
636 vm_object_deallocate(vm_object_t object)
637 {
638 	if (object) {
639 		vm_object_hold(object);
640 		vm_object_deallocate_locked(object);
641 		vm_object_drop(object);
642 	}
643 }
644 
645 void
646 vm_object_deallocate_locked(vm_object_t object)
647 {
648 	struct vm_object_dealloc_list *dlist = NULL;
649 	struct vm_object_dealloc_list *dtmp;
650 	vm_object_t temp;
651 	int must_drop = 0;
652 
653 	/*
654 	 * We may chain deallocate object, but additional objects may
655 	 * collect on the dlist which also have to be deallocated.  We
656 	 * must avoid a recursion, vm_object chains can get deep.
657 	 */
658 again:
659 	while (object != NULL) {
660 #if 0
661 		/*
662 		 * Don't rip a ref_count out from under an object undergoing
663 		 * collapse, it will confuse the collapse code.
664 		 */
665 		vm_object_chain_wait(object);
666 #endif
667 		if (object->type == OBJT_VNODE) {
668 			vm_object_vndeallocate(object);
669 			break;
670 		}
671 
672 		if (object->ref_count == 0) {
673 			panic("vm_object_deallocate: object deallocated "
674 			      "too many times: %d", object->type);
675 		}
676 		if (object->ref_count > 2) {
677 			object->ref_count--;
678 			break;
679 		}
680 
681 		/*
682 		 * Here on ref_count of one or two, which are special cases for
683 		 * objects.
684 		 *
685 		 * Nominal ref_count > 1 case if the second ref is not from
686 		 * a shadow.
687 		 */
688 		if (object->ref_count == 2 && object->shadow_count == 0) {
689 			vm_object_set_flag(object, OBJ_ONEMAPPING);
690 			object->ref_count--;
691 			break;
692 		}
693 
694 		/*
695 		 * If the second ref is from a shadow we chain along it
696 		 * upwards if object's handle is exhausted.
697 		 *
698 		 * We have to decrement object->ref_count before potentially
699 		 * collapsing the first shadow object or the collapse code
700 		 * will not be able to handle the degenerate case to remove
701 		 * object.  However, if we do it too early the object can
702 		 * get ripped out from under us.
703 		 */
704 		if (object->ref_count == 2 && object->shadow_count == 1 &&
705 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
706 					       object->type == OBJT_SWAP)) {
707 			temp = LIST_FIRST(&object->shadow_head);
708 			KKASSERT(temp != NULL);
709 			vm_object_hold(temp);
710 
711 			/*
712 			 * Wait for any paging to complete so the collapse
713 			 * doesn't (or isn't likely to) qcollapse.  pip
714 			 * waiting must occur before we acquire the
715 			 * chainlock.
716 			 */
717 			while (
718 				temp->paging_in_progress ||
719 				object->paging_in_progress
720 			) {
721 				vm_object_pip_wait(temp, "objde1");
722 				vm_object_pip_wait(object, "objde2");
723 			}
724 
725 			/*
726 			 * If the parent is locked we have to give up, as
727 			 * otherwise we would be acquiring locks in the
728 			 * wrong order and potentially deadlock.
729 			 */
730 			if (temp->flags & OBJ_CHAINLOCK) {
731 				vm_object_drop(temp);
732 				goto skip;
733 			}
734 			vm_object_chain_acquire(temp);
735 
736 			/*
737 			 * Recheck/retry after the hold and the paging
738 			 * wait, both of which can block us.
739 			 */
740 			if (object->ref_count != 2 ||
741 			    object->shadow_count != 1 ||
742 			    object->handle ||
743 			    LIST_FIRST(&object->shadow_head) != temp ||
744 			    (object->type != OBJT_DEFAULT &&
745 			     object->type != OBJT_SWAP)) {
746 				vm_object_chain_release(temp);
747 				vm_object_drop(temp);
748 				continue;
749 			}
750 
751 			/*
752 			 * We can safely drop object's ref_count now.
753 			 */
754 			KKASSERT(object->ref_count == 2);
755 			object->ref_count--;
756 
757 			/*
758 			 * If our single parent is not collapseable just
759 			 * decrement ref_count (2->1) and stop.
760 			 */
761 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
762 					     temp->type != OBJT_SWAP)) {
763 				vm_object_chain_release(temp);
764 				vm_object_drop(temp);
765 				break;
766 			}
767 
768 			/*
769 			 * At this point we have already dropped object's
770 			 * ref_count so it is possible for a race to
771 			 * deallocate obj out from under us.  Any collapse
772 			 * will re-check the situation.  We must not block
773 			 * until we are able to collapse.
774 			 *
775 			 * Bump temp's ref_count to avoid an unwanted
776 			 * degenerate recursion (can't call
777 			 * vm_object_reference_locked() because it asserts
778 			 * that CHAINLOCK is not set).
779 			 */
780 			temp->ref_count++;
781 			KKASSERT(temp->ref_count > 1);
782 
783 			/*
784 			 * Collapse temp, then deallocate the extra ref
785 			 * formally.
786 			 */
787 			vm_object_collapse(temp, &dlist);
788 			vm_object_chain_release(temp);
789 			if (must_drop) {
790 				vm_object_lock_swap();
791 				vm_object_drop(object);
792 			}
793 			object = temp;
794 			must_drop = 1;
795 			continue;
796 		}
797 
798 		/*
799 		 * Drop the ref and handle termination on the 1->0 transition.
800 		 * We may have blocked above so we have to recheck.
801 		 */
802 skip:
803 		KKASSERT(object->ref_count != 0);
804 		if (object->ref_count >= 2) {
805 			object->ref_count--;
806 			break;
807 		}
808 		KKASSERT(object->ref_count == 1);
809 
810 		/*
811 		 * 1->0 transition.  Chain through the backing_object.
812 		 * Maintain the ref until we've located the backing object,
813 		 * then re-check.
814 		 */
815 		while ((temp = object->backing_object) != NULL) {
816 			vm_object_hold(temp);
817 			if (temp == object->backing_object)
818 				break;
819 			vm_object_drop(temp);
820 		}
821 
822 		/*
823 		 * 1->0 transition verified, retry if ref_count is no longer
824 		 * 1.  Otherwise disconnect the backing_object (temp) and
825 		 * clean up.
826 		 */
827 		if (object->ref_count != 1) {
828 			vm_object_drop(temp);
829 			continue;
830 		}
831 
832 		/*
833 		 * It shouldn't be possible for the object to be chain locked
834 		 * if we're removing the last ref on it.
835 		 */
836 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
837 
838 		if (temp) {
839 			LIST_REMOVE(object, shadow_list);
840 			temp->shadow_count--;
841 			temp->generation++;
842 			object->backing_object = NULL;
843 		}
844 
845 		--object->ref_count;
846 		if ((object->flags & OBJ_DEAD) == 0)
847 			vm_object_terminate(object);
848 		if (must_drop && temp)
849 			vm_object_lock_swap();
850 		if (must_drop)
851 			vm_object_drop(object);
852 		object = temp;
853 		must_drop = 1;
854 	}
855 	if (must_drop && object)
856 		vm_object_drop(object);
857 
858 	/*
859 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
860 	 * on the dlist have a hold count but are not locked.
861 	 */
862 	if ((dtmp = dlist) != NULL) {
863 		dlist = dtmp->next;
864 		object = dtmp->object;
865 		kfree(dtmp, M_TEMP);
866 
867 		vm_object_lock(object);	/* already held, add lock */
868 		must_drop = 1;		/* and we're responsible for it */
869 		goto again;
870 	}
871 }
872 
873 /*
874  * Destroy the specified object, freeing up related resources.
875  *
876  * The object must have zero references.
877  *
878  * The object must held.  The caller is responsible for dropping the object
879  * after terminate returns.  Terminate does NOT drop the object.
880  */
881 static int vm_object_terminate_callback(vm_page_t p, void *data);
882 
883 void
884 vm_object_terminate(vm_object_t object)
885 {
886 	/*
887 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
888 	 * able to safely block.
889 	 */
890 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
891 	KKASSERT((object->flags & OBJ_DEAD) == 0);
892 	vm_object_set_flag(object, OBJ_DEAD);
893 
894 	/*
895 	 * Wait for the pageout daemon to be done with the object
896 	 */
897 	vm_object_pip_wait(object, "objtrm1");
898 
899 	KASSERT(!object->paging_in_progress,
900 		("vm_object_terminate: pageout in progress"));
901 
902 	/*
903 	 * Clean and free the pages, as appropriate. All references to the
904 	 * object are gone, so we don't need to lock it.
905 	 */
906 	if (object->type == OBJT_VNODE) {
907 		struct vnode *vp;
908 
909 		/*
910 		 * Clean pages and flush buffers.
911 		 */
912 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
913 
914 		vp = (struct vnode *) object->handle;
915 		vinvalbuf(vp, V_SAVE, 0, 0);
916 	}
917 
918 	/*
919 	 * Wait for any I/O to complete, after which there had better not
920 	 * be any references left on the object.
921 	 */
922 	vm_object_pip_wait(object, "objtrm2");
923 
924 	if (object->ref_count != 0) {
925 		panic("vm_object_terminate: object with references, "
926 		      "ref_count=%d", object->ref_count);
927 	}
928 
929 	/*
930 	 * Cleanup any shared pmaps associated with this object.
931 	 */
932 	pmap_object_free(object);
933 
934 	/*
935 	 * Now free any remaining pages. For internal objects, this also
936 	 * removes them from paging queues. Don't free wired pages, just
937 	 * remove them from the object.
938 	 */
939 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
940 				vm_object_terminate_callback, NULL);
941 
942 	/*
943 	 * Let the pager know object is dead.
944 	 */
945 	vm_pager_deallocate(object);
946 
947 	/*
948 	 * Wait for the object hold count to hit 1, clean out pages as
949 	 * we go.  vmobj_token interlocks any race conditions that might
950 	 * pick the object up from the vm_object_list after we have cleared
951 	 * rb_memq.
952 	 */
953 	for (;;) {
954 		if (RB_ROOT(&object->rb_memq) == NULL)
955 			break;
956 		kprintf("vm_object_terminate: Warning, object %p "
957 			"still has %d pages\n",
958 			object, object->resident_page_count);
959 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
960 					vm_object_terminate_callback, NULL);
961 	}
962 
963 	/*
964 	 * There had better not be any pages left
965 	 */
966 	KKASSERT(object->resident_page_count == 0);
967 
968 	/*
969 	 * Remove the object from the global object list.
970 	 */
971 	lwkt_gettoken(&vmobj_token);
972 	TAILQ_REMOVE(&vm_object_list, object, object_list);
973 	vm_object_count--;
974 	lwkt_reltoken(&vmobj_token);
975 	vm_object_dead_wakeup(object);
976 
977 	if (object->ref_count != 0) {
978 		panic("vm_object_terminate2: object with references, "
979 		      "ref_count=%d", object->ref_count);
980 	}
981 
982 	/*
983 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
984 	 *	 the object here.  See vm_object_drop().
985 	 */
986 }
987 
988 /*
989  * The caller must hold the object.
990  */
991 static int
992 vm_object_terminate_callback(vm_page_t p, void *data __unused)
993 {
994 	vm_object_t object;
995 
996 	object = p->object;
997 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
998 	if (object != p->object) {
999 		kprintf("vm_object_terminate: Warning: Encountered "
1000 			"busied page %p on queue %d\n", p, p->queue);
1001 		vm_page_wakeup(p);
1002 	} else if (p->wire_count == 0) {
1003 		/*
1004 		 * NOTE: PG_NEED_COMMIT is ignored.
1005 		 */
1006 		vm_page_free(p);
1007 		mycpu->gd_cnt.v_pfree++;
1008 	} else {
1009 		if (p->queue != PQ_NONE)
1010 			kprintf("vm_object_terminate: Warning: Encountered "
1011 				"wired page %p on queue %d\n", p, p->queue);
1012 		vm_page_remove(p);
1013 		vm_page_wakeup(p);
1014 	}
1015 	lwkt_yield();
1016 	return(0);
1017 }
1018 
1019 /*
1020  * The object is dead but still has an object<->pager association.  Sleep
1021  * and return.  The caller typically retests the association in a loop.
1022  *
1023  * The caller must hold the object.
1024  */
1025 void
1026 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1027 {
1028 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1029 	if (object->handle) {
1030 		vm_object_set_flag(object, OBJ_DEADWNT);
1031 		tsleep(object, 0, wmesg, 0);
1032 		/* object may be invalid after this point */
1033 	}
1034 }
1035 
1036 /*
1037  * Wakeup anyone waiting for the object<->pager disassociation on
1038  * a dead object.
1039  *
1040  * The caller must hold the object.
1041  */
1042 void
1043 vm_object_dead_wakeup(vm_object_t object)
1044 {
1045 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1046 	if (object->flags & OBJ_DEADWNT) {
1047 		vm_object_clear_flag(object, OBJ_DEADWNT);
1048 		wakeup(object);
1049 	}
1050 }
1051 
1052 /*
1053  * Clean all dirty pages in the specified range of object.  Leaves page
1054  * on whatever queue it is currently on.   If NOSYNC is set then do not
1055  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1056  * leaving the object dirty.
1057  *
1058  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1059  * synchronous clustering mode implementation.
1060  *
1061  * Odd semantics: if start == end, we clean everything.
1062  *
1063  * The object must be locked? XXX
1064  */
1065 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1066 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1067 
1068 void
1069 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1070 		     int flags)
1071 {
1072 	struct rb_vm_page_scan_info info;
1073 	struct vnode *vp;
1074 	int wholescan;
1075 	int pagerflags;
1076 	int generation;
1077 
1078 	vm_object_hold(object);
1079 	if (object->type != OBJT_VNODE ||
1080 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1081 		vm_object_drop(object);
1082 		return;
1083 	}
1084 
1085 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1086 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1087 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1088 
1089 	vp = object->handle;
1090 
1091 	/*
1092 	 * Interlock other major object operations.  This allows us to
1093 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1094 	 */
1095 	vm_object_set_flag(object, OBJ_CLEANING);
1096 
1097 	/*
1098 	 * Handle 'entire object' case
1099 	 */
1100 	info.start_pindex = start;
1101 	if (end == 0) {
1102 		info.end_pindex = object->size - 1;
1103 	} else {
1104 		info.end_pindex = end - 1;
1105 	}
1106 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1107 	info.limit = flags;
1108 	info.pagerflags = pagerflags;
1109 	info.object = object;
1110 
1111 	/*
1112 	 * If cleaning the entire object do a pass to mark the pages read-only.
1113 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1114 	 * OBJ_MIGHTBEDIRTY.
1115 	 */
1116 	if (wholescan) {
1117 		info.error = 0;
1118 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1119 					vm_object_page_clean_pass1, &info);
1120 		if (info.error == 0) {
1121 			vm_object_clear_flag(object,
1122 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1123 			if (object->type == OBJT_VNODE &&
1124 			    (vp = (struct vnode *)object->handle) != NULL) {
1125 				if (vp->v_flag & VOBJDIRTY)
1126 					vclrflags(vp, VOBJDIRTY);
1127 			}
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * Do a pass to clean all the dirty pages we find.
1133 	 */
1134 	do {
1135 		info.error = 0;
1136 		generation = object->generation;
1137 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1138 					vm_object_page_clean_pass2, &info);
1139 	} while (info.error || generation != object->generation);
1140 
1141 	vm_object_clear_flag(object, OBJ_CLEANING);
1142 	vm_object_drop(object);
1143 }
1144 
1145 /*
1146  * The caller must hold the object.
1147  */
1148 static
1149 int
1150 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1151 {
1152 	struct rb_vm_page_scan_info *info = data;
1153 
1154 	vm_page_flag_set(p, PG_CLEANCHK);
1155 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1156 		info->error = 1;
1157 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1158 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1159 		vm_page_wakeup(p);
1160 	} else {
1161 		info->error = 1;
1162 	}
1163 	lwkt_yield();
1164 	return(0);
1165 }
1166 
1167 /*
1168  * The caller must hold the object
1169  */
1170 static
1171 int
1172 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1173 {
1174 	struct rb_vm_page_scan_info *info = data;
1175 	int generation;
1176 
1177 	/*
1178 	 * Do not mess with pages that were inserted after we started
1179 	 * the cleaning pass.
1180 	 */
1181 	if ((p->flags & PG_CLEANCHK) == 0)
1182 		goto done;
1183 
1184 	generation = info->object->generation;
1185 	vm_page_busy_wait(p, TRUE, "vpcwai");
1186 	if (p->object != info->object ||
1187 	    info->object->generation != generation) {
1188 		info->error = 1;
1189 		vm_page_wakeup(p);
1190 		goto done;
1191 	}
1192 
1193 	/*
1194 	 * Before wasting time traversing the pmaps, check for trivial
1195 	 * cases where the page cannot be dirty.
1196 	 */
1197 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1198 		KKASSERT((p->dirty & p->valid) == 0);
1199 		vm_page_wakeup(p);
1200 		goto done;
1201 	}
1202 
1203 	/*
1204 	 * Check whether the page is dirty or not.  The page has been set
1205 	 * to be read-only so the check will not race a user dirtying the
1206 	 * page.
1207 	 */
1208 	vm_page_test_dirty(p);
1209 	if ((p->dirty & p->valid) == 0) {
1210 		vm_page_flag_clear(p, PG_CLEANCHK);
1211 		vm_page_wakeup(p);
1212 		goto done;
1213 	}
1214 
1215 	/*
1216 	 * If we have been asked to skip nosync pages and this is a
1217 	 * nosync page, skip it.  Note that the object flags were
1218 	 * not cleared in this case (because pass1 will have returned an
1219 	 * error), so we do not have to set them.
1220 	 */
1221 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1222 		vm_page_flag_clear(p, PG_CLEANCHK);
1223 		vm_page_wakeup(p);
1224 		goto done;
1225 	}
1226 
1227 	/*
1228 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1229 	 * the pages that get successfully flushed.  Set info->error if
1230 	 * we raced an object modification.
1231 	 */
1232 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1233 	vm_wait_nominal();
1234 done:
1235 	lwkt_yield();
1236 	return(0);
1237 }
1238 
1239 /*
1240  * Collect the specified page and nearby pages and flush them out.
1241  * The number of pages flushed is returned.  The passed page is busied
1242  * by the caller and we are responsible for its disposition.
1243  *
1244  * The caller must hold the object.
1245  */
1246 static void
1247 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1248 {
1249 	int runlen;
1250 	int error;
1251 	int maxf;
1252 	int chkb;
1253 	int maxb;
1254 	int i;
1255 	vm_pindex_t pi;
1256 	vm_page_t maf[vm_pageout_page_count];
1257 	vm_page_t mab[vm_pageout_page_count];
1258 	vm_page_t ma[vm_pageout_page_count];
1259 
1260 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1261 
1262 	pi = p->pindex;
1263 
1264 	maxf = 0;
1265 	for(i = 1; i < vm_pageout_page_count; i++) {
1266 		vm_page_t tp;
1267 
1268 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1269 		if (error)
1270 			break;
1271 		if (tp == NULL)
1272 			break;
1273 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1274 		    (tp->flags & PG_CLEANCHK) == 0) {
1275 			vm_page_wakeup(tp);
1276 			break;
1277 		}
1278 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1279 			vm_page_flag_clear(tp, PG_CLEANCHK);
1280 			vm_page_wakeup(tp);
1281 			break;
1282 		}
1283 		vm_page_test_dirty(tp);
1284 		if ((tp->dirty & tp->valid) == 0) {
1285 			vm_page_flag_clear(tp, PG_CLEANCHK);
1286 			vm_page_wakeup(tp);
1287 			break;
1288 		}
1289 		maf[i - 1] = tp;
1290 		maxf++;
1291 	}
1292 
1293 	maxb = 0;
1294 	chkb = vm_pageout_page_count -  maxf;
1295 	/*
1296 	 * NOTE: chkb can be 0
1297 	 */
1298 	for(i = 1; chkb && i < chkb; i++) {
1299 		vm_page_t tp;
1300 
1301 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1302 		if (error)
1303 			break;
1304 		if (tp == NULL)
1305 			break;
1306 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1307 		    (tp->flags & PG_CLEANCHK) == 0) {
1308 			vm_page_wakeup(tp);
1309 			break;
1310 		}
1311 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1312 			vm_page_flag_clear(tp, PG_CLEANCHK);
1313 			vm_page_wakeup(tp);
1314 			break;
1315 		}
1316 		vm_page_test_dirty(tp);
1317 		if ((tp->dirty & tp->valid) == 0) {
1318 			vm_page_flag_clear(tp, PG_CLEANCHK);
1319 			vm_page_wakeup(tp);
1320 			break;
1321 		}
1322 		mab[i - 1] = tp;
1323 		maxb++;
1324 	}
1325 
1326 	/*
1327 	 * All pages in the maf[] and mab[] array are busied.
1328 	 */
1329 	for (i = 0; i < maxb; i++) {
1330 		int index = (maxb - i) - 1;
1331 		ma[index] = mab[i];
1332 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1333 	}
1334 	vm_page_flag_clear(p, PG_CLEANCHK);
1335 	ma[maxb] = p;
1336 	for(i = 0; i < maxf; i++) {
1337 		int index = (maxb + i) + 1;
1338 		ma[index] = maf[i];
1339 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1340 	}
1341 	runlen = maxb + maxf + 1;
1342 
1343 	for (i = 0; i < runlen; i++)
1344 		vm_page_hold(ma[i]);
1345 
1346 	vm_pageout_flush(ma, runlen, pagerflags);
1347 
1348 	/*
1349 	 * WARNING: Related pages are still held but the BUSY was inherited
1350 	 *	    by the pageout I/O, so the pages might not be busy any
1351 	 *	    more.  We cannot re-protect the page without waiting
1352 	 *	    for the I/O to complete and then busying it again.
1353 	 */
1354 	for (i = 0; i < runlen; i++) {
1355 		if (ma[i]->valid & ma[i]->dirty) {
1356 			/*vm_page_protect(ma[i], VM_PROT_READ);*/
1357 			vm_page_flag_set(ma[i], PG_CLEANCHK);
1358 
1359 			/*
1360 			 * maxf will end up being the actual number of pages
1361 			 * we wrote out contiguously, non-inclusive of the
1362 			 * first page.  We do not count look-behind pages.
1363 			 */
1364 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1365 				maxf = i - maxb - 1;
1366 		}
1367 		vm_page_unhold(ma[i]);
1368 	}
1369 	/*return(maxf + 1);*/
1370 }
1371 
1372 /*
1373  * Same as vm_object_pmap_copy, except range checking really
1374  * works, and is meant for small sections of an object.
1375  *
1376  * This code protects resident pages by making them read-only
1377  * and is typically called on a fork or split when a page
1378  * is converted to copy-on-write.
1379  *
1380  * NOTE: If the page is already at VM_PROT_NONE, calling
1381  * vm_page_protect will have no effect.
1382  */
1383 void
1384 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1385 {
1386 	vm_pindex_t idx;
1387 	vm_page_t p;
1388 
1389 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1390 		return;
1391 
1392 	vm_object_hold(object);
1393 	for (idx = start; idx < end; idx++) {
1394 		p = vm_page_lookup(object, idx);
1395 		if (p == NULL)
1396 			continue;
1397 		vm_page_protect(p, VM_PROT_READ);
1398 	}
1399 	vm_object_drop(object);
1400 }
1401 
1402 /*
1403  * Removes all physical pages in the specified object range from all
1404  * physical maps.
1405  *
1406  * The object must *not* be locked.
1407  */
1408 
1409 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1410 
1411 void
1412 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1413 {
1414 	struct rb_vm_page_scan_info info;
1415 
1416 	if (object == NULL)
1417 		return;
1418 	info.start_pindex = start;
1419 	info.end_pindex = end - 1;
1420 
1421 	vm_object_hold(object);
1422 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1423 				vm_object_pmap_remove_callback, &info);
1424 	if (start == 0 && end == object->size)
1425 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1426 	vm_object_drop(object);
1427 }
1428 
1429 /*
1430  * The caller must hold the object
1431  */
1432 static int
1433 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1434 {
1435 	vm_page_protect(p, VM_PROT_NONE);
1436 	return(0);
1437 }
1438 
1439 /*
1440  * Implements the madvise function at the object/page level.
1441  *
1442  * MADV_WILLNEED	(any object)
1443  *
1444  *	Activate the specified pages if they are resident.
1445  *
1446  * MADV_DONTNEED	(any object)
1447  *
1448  *	Deactivate the specified pages if they are resident.
1449  *
1450  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1451  *
1452  *	Deactivate and clean the specified pages if they are
1453  *	resident.  This permits the process to reuse the pages
1454  *	without faulting or the kernel to reclaim the pages
1455  *	without I/O.
1456  *
1457  * No requirements.
1458  */
1459 void
1460 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1461 {
1462 	vm_pindex_t end, tpindex;
1463 	vm_object_t tobject;
1464 	vm_object_t xobj;
1465 	vm_page_t m;
1466 	int error;
1467 
1468 	if (object == NULL)
1469 		return;
1470 
1471 	end = pindex + count;
1472 
1473 	vm_object_hold(object);
1474 	tobject = object;
1475 
1476 	/*
1477 	 * Locate and adjust resident pages
1478 	 */
1479 	for (; pindex < end; pindex += 1) {
1480 relookup:
1481 		if (tobject != object)
1482 			vm_object_drop(tobject);
1483 		tobject = object;
1484 		tpindex = pindex;
1485 shadowlookup:
1486 		/*
1487 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1488 		 * and those pages must be OBJ_ONEMAPPING.
1489 		 */
1490 		if (advise == MADV_FREE) {
1491 			if ((tobject->type != OBJT_DEFAULT &&
1492 			     tobject->type != OBJT_SWAP) ||
1493 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1494 				continue;
1495 			}
1496 		}
1497 
1498 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1499 
1500 		if (error) {
1501 			vm_page_sleep_busy(m, TRUE, "madvpo");
1502 			goto relookup;
1503 		}
1504 		if (m == NULL) {
1505 			/*
1506 			 * There may be swap even if there is no backing page
1507 			 */
1508 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1509 				swap_pager_freespace(tobject, tpindex, 1);
1510 
1511 			/*
1512 			 * next object
1513 			 */
1514 			while ((xobj = tobject->backing_object) != NULL) {
1515 				KKASSERT(xobj != object);
1516 				vm_object_hold(xobj);
1517 				if (xobj == tobject->backing_object)
1518 					break;
1519 				vm_object_drop(xobj);
1520 			}
1521 			if (xobj == NULL)
1522 				continue;
1523 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1524 			if (tobject != object) {
1525 				vm_object_lock_swap();
1526 				vm_object_drop(tobject);
1527 			}
1528 			tobject = xobj;
1529 			goto shadowlookup;
1530 		}
1531 
1532 		/*
1533 		 * If the page is not in a normal active state, we skip it.
1534 		 * If the page is not managed there are no page queues to
1535 		 * mess with.  Things can break if we mess with pages in
1536 		 * any of the below states.
1537 		 */
1538 		if (m->wire_count ||
1539 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1540 		    m->valid != VM_PAGE_BITS_ALL
1541 		) {
1542 			vm_page_wakeup(m);
1543 			continue;
1544 		}
1545 
1546 		/*
1547 		 * Theoretically once a page is known not to be busy, an
1548 		 * interrupt cannot come along and rip it out from under us.
1549 		 */
1550 
1551 		if (advise == MADV_WILLNEED) {
1552 			vm_page_activate(m);
1553 		} else if (advise == MADV_DONTNEED) {
1554 			vm_page_dontneed(m);
1555 		} else if (advise == MADV_FREE) {
1556 			/*
1557 			 * Mark the page clean.  This will allow the page
1558 			 * to be freed up by the system.  However, such pages
1559 			 * are often reused quickly by malloc()/free()
1560 			 * so we do not do anything that would cause
1561 			 * a page fault if we can help it.
1562 			 *
1563 			 * Specifically, we do not try to actually free
1564 			 * the page now nor do we try to put it in the
1565 			 * cache (which would cause a page fault on reuse).
1566 			 *
1567 			 * But we do make the page is freeable as we
1568 			 * can without actually taking the step of unmapping
1569 			 * it.
1570 			 */
1571 			pmap_clear_modify(m);
1572 			m->dirty = 0;
1573 			m->act_count = 0;
1574 			vm_page_dontneed(m);
1575 			if (tobject->type == OBJT_SWAP)
1576 				swap_pager_freespace(tobject, tpindex, 1);
1577 		}
1578 		vm_page_wakeup(m);
1579 	}
1580 	if (tobject != object)
1581 		vm_object_drop(tobject);
1582 	vm_object_drop(object);
1583 }
1584 
1585 /*
1586  * Create a new object which is backed by the specified existing object
1587  * range.  Replace the pointer and offset that was pointing at the existing
1588  * object with the pointer/offset for the new object.
1589  *
1590  * No other requirements.
1591  */
1592 void
1593 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1594 		 int addref)
1595 {
1596 	vm_object_t source;
1597 	vm_object_t result;
1598 
1599 	source = *objectp;
1600 
1601 	/*
1602 	 * Don't create the new object if the old object isn't shared.
1603 	 * We have to chain wait before adding the reference to avoid
1604 	 * racing a collapse or deallocation.
1605 	 *
1606 	 * Add the additional ref to source here to avoid racing a later
1607 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1608 	 * addref is TRUE or not in this case because the original object
1609 	 * will be shadowed.
1610 	 */
1611 	if (source) {
1612 		vm_object_hold(source);
1613 		vm_object_chain_wait(source);
1614 		if (source->ref_count == 1 &&
1615 		    source->handle == NULL &&
1616 		    (source->type == OBJT_DEFAULT ||
1617 		     source->type == OBJT_SWAP)) {
1618 			vm_object_drop(source);
1619 			if (addref) {
1620 				vm_object_reference_locked(source);
1621 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1622 			}
1623 			return;
1624 		}
1625 		vm_object_reference_locked(source);
1626 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1627 	}
1628 
1629 	/*
1630 	 * Allocate a new object with the given length.  The new object
1631 	 * is returned referenced but we may have to add another one.
1632 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1633 	 * (typically because the caller is about to clone a vm_map_entry).
1634 	 *
1635 	 * The source object currently has an extra reference to prevent
1636 	 * collapses into it while we mess with its shadow list, which
1637 	 * we will remove later in this routine.
1638 	 */
1639 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1640 		panic("vm_object_shadow: no object for shadowing");
1641 	vm_object_hold(result);
1642 	if (addref) {
1643 		vm_object_reference_locked(result);
1644 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1645 	}
1646 
1647 	/*
1648 	 * The new object shadows the source object.  Chain wait before
1649 	 * adjusting shadow_count or the shadow list to avoid races.
1650 	 *
1651 	 * Try to optimize the result object's page color when shadowing
1652 	 * in order to maintain page coloring consistency in the combined
1653 	 * shadowed object.
1654 	 */
1655 	KKASSERT(result->backing_object == NULL);
1656 	result->backing_object = source;
1657 	if (source) {
1658 		vm_object_chain_wait(source);
1659 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1660 		source->shadow_count++;
1661 		source->generation++;
1662 		/* cpu localization twist */
1663 		result->pg_color = (int)(intptr_t)curthread;
1664 	}
1665 
1666 	/*
1667 	 * Adjust the return storage.  Drop the ref on source before
1668 	 * returning.
1669 	 */
1670 	result->backing_object_offset = *offset;
1671 	vm_object_drop(result);
1672 	*offset = 0;
1673 	if (source) {
1674 		vm_object_deallocate_locked(source);
1675 		vm_object_drop(source);
1676 	}
1677 
1678 	/*
1679 	 * Return the new things
1680 	 */
1681 	*objectp = result;
1682 }
1683 
1684 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1685 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1686 #define	OBSC_COLLAPSE_WAIT	0x0004
1687 
1688 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1689 
1690 /*
1691  * The caller must hold the object.
1692  */
1693 static __inline int
1694 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1695 {
1696 	struct rb_vm_page_scan_info info;
1697 
1698 	vm_object_assert_held(object);
1699 	vm_object_assert_held(backing_object);
1700 
1701 	KKASSERT(backing_object == object->backing_object);
1702 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1703 
1704 	/*
1705 	 * Initial conditions
1706 	 */
1707 	if (op & OBSC_TEST_ALL_SHADOWED) {
1708 		/*
1709 		 * We do not want to have to test for the existence of
1710 		 * swap pages in the backing object.  XXX but with the
1711 		 * new swapper this would be pretty easy to do.
1712 		 *
1713 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1714 		 * been ZFOD faulted yet?  If we do not test for this, the
1715 		 * shadow test may succeed! XXX
1716 		 */
1717 		if (backing_object->type != OBJT_DEFAULT)
1718 			return(0);
1719 	}
1720 	if (op & OBSC_COLLAPSE_WAIT) {
1721 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1722 		vm_object_set_flag(backing_object, OBJ_DEAD);
1723 		lwkt_gettoken(&vmobj_token);
1724 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1725 		vm_object_count--;
1726 		lwkt_reltoken(&vmobj_token);
1727 		vm_object_dead_wakeup(backing_object);
1728 	}
1729 
1730 	/*
1731 	 * Our scan.   We have to retry if a negative error code is returned,
1732 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1733 	 * the scan had to be stopped because the parent does not completely
1734 	 * shadow the child.
1735 	 */
1736 	info.object = object;
1737 	info.backing_object = backing_object;
1738 	info.limit = op;
1739 	do {
1740 		info.error = 1;
1741 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1742 					vm_object_backing_scan_callback,
1743 					&info);
1744 	} while (info.error < 0);
1745 
1746 	return(info.error);
1747 }
1748 
1749 /*
1750  * The caller must hold the object.
1751  */
1752 static int
1753 vm_object_backing_scan_callback(vm_page_t p, void *data)
1754 {
1755 	struct rb_vm_page_scan_info *info = data;
1756 	vm_object_t backing_object;
1757 	vm_object_t object;
1758 	vm_pindex_t pindex;
1759 	vm_pindex_t new_pindex;
1760 	vm_pindex_t backing_offset_index;
1761 	int op;
1762 
1763 	pindex = p->pindex;
1764 	new_pindex = pindex - info->backing_offset_index;
1765 	op = info->limit;
1766 	object = info->object;
1767 	backing_object = info->backing_object;
1768 	backing_offset_index = info->backing_offset_index;
1769 
1770 	if (op & OBSC_TEST_ALL_SHADOWED) {
1771 		vm_page_t pp;
1772 
1773 		/*
1774 		 * Ignore pages outside the parent object's range
1775 		 * and outside the parent object's mapping of the
1776 		 * backing object.
1777 		 *
1778 		 * note that we do not busy the backing object's
1779 		 * page.
1780 		 */
1781 		if (pindex < backing_offset_index ||
1782 		    new_pindex >= object->size
1783 		) {
1784 			return(0);
1785 		}
1786 
1787 		/*
1788 		 * See if the parent has the page or if the parent's
1789 		 * object pager has the page.  If the parent has the
1790 		 * page but the page is not valid, the parent's
1791 		 * object pager must have the page.
1792 		 *
1793 		 * If this fails, the parent does not completely shadow
1794 		 * the object and we might as well give up now.
1795 		 */
1796 		pp = vm_page_lookup(object, new_pindex);
1797 		if ((pp == NULL || pp->valid == 0) &&
1798 		    !vm_pager_has_page(object, new_pindex)
1799 		) {
1800 			info->error = 0;	/* problemo */
1801 			return(-1);		/* stop the scan */
1802 		}
1803 	}
1804 
1805 	/*
1806 	 * Check for busy page.  Note that we may have lost (p) when we
1807 	 * possibly blocked above.
1808 	 */
1809 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1810 		vm_page_t pp;
1811 
1812 		if (vm_page_busy_try(p, TRUE)) {
1813 			if (op & OBSC_COLLAPSE_NOWAIT) {
1814 				return(0);
1815 			} else {
1816 				/*
1817 				 * If we slept, anything could have
1818 				 * happened.   Ask that the scan be restarted.
1819 				 *
1820 				 * Since the object is marked dead, the
1821 				 * backing offset should not have changed.
1822 				 */
1823 				vm_page_sleep_busy(p, TRUE, "vmocol");
1824 				info->error = -1;
1825 				return(-1);
1826 			}
1827 		}
1828 
1829 		/*
1830 		 * If (p) is no longer valid restart the scan.
1831 		 */
1832 		if (p->object != backing_object || p->pindex != pindex) {
1833 			kprintf("vm_object_backing_scan: Warning: page "
1834 				"%p ripped out from under us\n", p);
1835 			vm_page_wakeup(p);
1836 			info->error = -1;
1837 			return(-1);
1838 		}
1839 
1840 		if (op & OBSC_COLLAPSE_NOWAIT) {
1841 			if (p->valid == 0 ||
1842 			    p->wire_count ||
1843 			    (p->flags & PG_NEED_COMMIT)) {
1844 				vm_page_wakeup(p);
1845 				return(0);
1846 			}
1847 		} else {
1848 			/* XXX what if p->valid == 0 , hold_count, etc? */
1849 		}
1850 
1851 		KASSERT(
1852 		    p->object == backing_object,
1853 		    ("vm_object_qcollapse(): object mismatch")
1854 		);
1855 
1856 		/*
1857 		 * Destroy any associated swap
1858 		 */
1859 		if (backing_object->type == OBJT_SWAP)
1860 			swap_pager_freespace(backing_object, p->pindex, 1);
1861 
1862 		if (
1863 		    p->pindex < backing_offset_index ||
1864 		    new_pindex >= object->size
1865 		) {
1866 			/*
1867 			 * Page is out of the parent object's range, we
1868 			 * can simply destroy it.
1869 			 */
1870 			vm_page_protect(p, VM_PROT_NONE);
1871 			vm_page_free(p);
1872 			return(0);
1873 		}
1874 
1875 		pp = vm_page_lookup(object, new_pindex);
1876 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1877 			/*
1878 			 * page already exists in parent OR swap exists
1879 			 * for this location in the parent.  Destroy
1880 			 * the original page from the backing object.
1881 			 *
1882 			 * Leave the parent's page alone
1883 			 */
1884 			vm_page_protect(p, VM_PROT_NONE);
1885 			vm_page_free(p);
1886 			return(0);
1887 		}
1888 
1889 		/*
1890 		 * Page does not exist in parent, rename the
1891 		 * page from the backing object to the main object.
1892 		 *
1893 		 * If the page was mapped to a process, it can remain
1894 		 * mapped through the rename.
1895 		 */
1896 		if ((p->queue - p->pc) == PQ_CACHE)
1897 			vm_page_deactivate(p);
1898 
1899 		vm_page_rename(p, object, new_pindex);
1900 		vm_page_wakeup(p);
1901 		/* page automatically made dirty by rename */
1902 	}
1903 	return(0);
1904 }
1905 
1906 /*
1907  * This version of collapse allows the operation to occur earlier and
1908  * when paging_in_progress is true for an object...  This is not a complete
1909  * operation, but should plug 99.9% of the rest of the leaks.
1910  *
1911  * The caller must hold the object and backing_object and both must be
1912  * chainlocked.
1913  *
1914  * (only called from vm_object_collapse)
1915  */
1916 static void
1917 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1918 {
1919 	if (backing_object->ref_count == 1) {
1920 		backing_object->ref_count += 2;
1921 		vm_object_backing_scan(object, backing_object,
1922 				       OBSC_COLLAPSE_NOWAIT);
1923 		backing_object->ref_count -= 2;
1924 	}
1925 }
1926 
1927 /*
1928  * Collapse an object with the object backing it.  Pages in the backing
1929  * object are moved into the parent, and the backing object is deallocated.
1930  * Any conflict is resolved in favor of the parent's existing pages.
1931  *
1932  * object must be held and chain-locked on call.
1933  *
1934  * The caller must have an extra ref on object to prevent a race from
1935  * destroying it during the collapse.
1936  */
1937 void
1938 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1939 {
1940 	struct vm_object_dealloc_list *dlist = NULL;
1941 	vm_object_t backing_object;
1942 
1943 	/*
1944 	 * Only one thread is attempting a collapse at any given moment.
1945 	 * There are few restrictions for (object) that callers of this
1946 	 * function check so reentrancy is likely.
1947 	 */
1948 	KKASSERT(object != NULL);
1949 	vm_object_assert_held(object);
1950 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1951 
1952 	for (;;) {
1953 		vm_object_t bbobj;
1954 		int dodealloc;
1955 
1956 		/*
1957 		 * We have to hold the backing object, check races.
1958 		 */
1959 		while ((backing_object = object->backing_object) != NULL) {
1960 			vm_object_hold(backing_object);
1961 			if (backing_object == object->backing_object)
1962 				break;
1963 			vm_object_drop(backing_object);
1964 		}
1965 
1966 		/*
1967 		 * No backing object?  Nothing to collapse then.
1968 		 */
1969 		if (backing_object == NULL)
1970 			break;
1971 
1972 		/*
1973 		 * You can't collapse with a non-default/non-swap object.
1974 		 */
1975 		if (backing_object->type != OBJT_DEFAULT &&
1976 		    backing_object->type != OBJT_SWAP) {
1977 			vm_object_drop(backing_object);
1978 			backing_object = NULL;
1979 			break;
1980 		}
1981 
1982 		/*
1983 		 * Chain-lock the backing object too because if we
1984 		 * successfully merge its pages into the top object we
1985 		 * will collapse backing_object->backing_object as the
1986 		 * new backing_object.  Re-check that it is still our
1987 		 * backing object.
1988 		 */
1989 		vm_object_chain_acquire(backing_object);
1990 		if (backing_object != object->backing_object) {
1991 			vm_object_chain_release(backing_object);
1992 			vm_object_drop(backing_object);
1993 			continue;
1994 		}
1995 
1996 		/*
1997 		 * we check the backing object first, because it is most likely
1998 		 * not collapsable.
1999 		 */
2000 		if (backing_object->handle != NULL ||
2001 		    (backing_object->type != OBJT_DEFAULT &&
2002 		     backing_object->type != OBJT_SWAP) ||
2003 		    (backing_object->flags & OBJ_DEAD) ||
2004 		    object->handle != NULL ||
2005 		    (object->type != OBJT_DEFAULT &&
2006 		     object->type != OBJT_SWAP) ||
2007 		    (object->flags & OBJ_DEAD)) {
2008 			break;
2009 		}
2010 
2011 		/*
2012 		 * If paging is in progress we can't do a normal collapse.
2013 		 */
2014 		if (
2015 		    object->paging_in_progress != 0 ||
2016 		    backing_object->paging_in_progress != 0
2017 		) {
2018 			vm_object_qcollapse(object, backing_object);
2019 			break;
2020 		}
2021 
2022 		/*
2023 		 * We know that we can either collapse the backing object (if
2024 		 * the parent is the only reference to it) or (perhaps) have
2025 		 * the parent bypass the object if the parent happens to shadow
2026 		 * all the resident pages in the entire backing object.
2027 		 *
2028 		 * This is ignoring pager-backed pages such as swap pages.
2029 		 * vm_object_backing_scan fails the shadowing test in this
2030 		 * case.
2031 		 */
2032 		if (backing_object->ref_count == 1) {
2033 			/*
2034 			 * If there is exactly one reference to the backing
2035 			 * object, we can collapse it into the parent.
2036 			 */
2037 			KKASSERT(object->backing_object == backing_object);
2038 			vm_object_backing_scan(object, backing_object,
2039 					       OBSC_COLLAPSE_WAIT);
2040 
2041 			/*
2042 			 * Move the pager from backing_object to object.
2043 			 */
2044 			if (backing_object->type == OBJT_SWAP) {
2045 				vm_object_pip_add(backing_object, 1);
2046 
2047 				/*
2048 				 * scrap the paging_offset junk and do a
2049 				 * discrete copy.  This also removes major
2050 				 * assumptions about how the swap-pager
2051 				 * works from where it doesn't belong.  The
2052 				 * new swapper is able to optimize the
2053 				 * destroy-source case.
2054 				 */
2055 				vm_object_pip_add(object, 1);
2056 				swap_pager_copy(backing_object, object,
2057 				    OFF_TO_IDX(object->backing_object_offset),
2058 				    TRUE);
2059 				vm_object_pip_wakeup(object);
2060 				vm_object_pip_wakeup(backing_object);
2061 			}
2062 
2063 			/*
2064 			 * Object now shadows whatever backing_object did.
2065 			 * Remove object from backing_object's shadow_list.
2066 			 */
2067 			LIST_REMOVE(object, shadow_list);
2068 			KKASSERT(object->backing_object == backing_object);
2069 			backing_object->shadow_count--;
2070 			backing_object->generation++;
2071 
2072 			/*
2073 			 * backing_object->backing_object moves from within
2074 			 * backing_object to within object.
2075 			 */
2076 			while ((bbobj = backing_object->backing_object) != NULL) {
2077 				vm_object_hold(bbobj);
2078 				if (bbobj == backing_object->backing_object)
2079 					break;
2080 				vm_object_drop(bbobj);
2081 			}
2082 			if (bbobj) {
2083 				LIST_REMOVE(backing_object, shadow_list);
2084 				bbobj->shadow_count--;
2085 				bbobj->generation++;
2086 				backing_object->backing_object = NULL;
2087 			}
2088 			object->backing_object = bbobj;
2089 			if (bbobj) {
2090 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2091 						 object, shadow_list);
2092 				bbobj->shadow_count++;
2093 				bbobj->generation++;
2094 			}
2095 
2096 			object->backing_object_offset +=
2097 				backing_object->backing_object_offset;
2098 
2099 			vm_object_drop(bbobj);
2100 
2101 			/*
2102 			 * Discard the old backing_object.  Nothing should be
2103 			 * able to ref it, other than a vm_map_split(),
2104 			 * and vm_map_split() will stall on our chain lock.
2105 			 * And we control the parent so it shouldn't be
2106 			 * possible for it to go away either.
2107 			 *
2108 			 * Since the backing object has no pages, no pager
2109 			 * left, and no object references within it, all
2110 			 * that is necessary is to dispose of it.
2111 			 */
2112 			KASSERT(backing_object->ref_count == 1,
2113 				("backing_object %p was somehow "
2114 				 "re-referenced during collapse!",
2115 				 backing_object));
2116 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2117 				("backing_object %p somehow has left "
2118 				 "over pages during collapse!",
2119 				 backing_object));
2120 
2121 			/*
2122 			 * The object can be destroyed.
2123 			 *
2124 			 * XXX just fall through and dodealloc instead
2125 			 *     of forcing destruction?
2126 			 */
2127 			--backing_object->ref_count;
2128 			if ((backing_object->flags & OBJ_DEAD) == 0)
2129 				vm_object_terminate(backing_object);
2130 			object_collapses++;
2131 			dodealloc = 0;
2132 		} else {
2133 			/*
2134 			 * If we do not entirely shadow the backing object,
2135 			 * there is nothing we can do so we give up.
2136 			 */
2137 			if (vm_object_backing_scan(object, backing_object,
2138 						OBSC_TEST_ALL_SHADOWED) == 0) {
2139 				break;
2140 			}
2141 
2142 			/*
2143 			 * bbobj is backing_object->backing_object.  Since
2144 			 * object completely shadows backing_object we can
2145 			 * bypass it and become backed by bbobj instead.
2146 			 */
2147 			while ((bbobj = backing_object->backing_object) != NULL) {
2148 				vm_object_hold(bbobj);
2149 				if (bbobj == backing_object->backing_object)
2150 					break;
2151 				vm_object_drop(bbobj);
2152 			}
2153 
2154 			/*
2155 			 * Make object shadow bbobj instead of backing_object.
2156 			 * Remove object from backing_object's shadow list.
2157 			 *
2158 			 * Deallocating backing_object will not remove
2159 			 * it, since its reference count is at least 2.
2160 			 */
2161 			KKASSERT(object->backing_object == backing_object);
2162 			LIST_REMOVE(object, shadow_list);
2163 			backing_object->shadow_count--;
2164 			backing_object->generation++;
2165 
2166 			/*
2167 			 * Add a ref to bbobj, bbobj now shadows object.
2168 			 *
2169 			 * NOTE: backing_object->backing_object still points
2170 			 *	 to bbobj.  That relationship remains intact
2171 			 *	 because backing_object has > 1 ref, so
2172 			 *	 someone else is pointing to it (hence why
2173 			 *	 we can't collapse it into object and can
2174 			 *	 only handle the all-shadowed bypass case).
2175 			 */
2176 			if (bbobj) {
2177 				vm_object_chain_wait(bbobj);
2178 				vm_object_reference_locked(bbobj);
2179 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2180 						 object, shadow_list);
2181 				bbobj->shadow_count++;
2182 				bbobj->generation++;
2183 				object->backing_object_offset +=
2184 					backing_object->backing_object_offset;
2185 				object->backing_object = bbobj;
2186 				vm_object_drop(bbobj);
2187 			} else {
2188 				object->backing_object = NULL;
2189 			}
2190 
2191 			/*
2192 			 * Drop the reference count on backing_object.  To
2193 			 * handle ref_count races properly we can't assume
2194 			 * that the ref_count is still at least 2 so we
2195 			 * have to actually call vm_object_deallocate()
2196 			 * (after clearing the chainlock).
2197 			 */
2198 			object_bypasses++;
2199 			dodealloc = 1;
2200 		}
2201 
2202 		/*
2203 		 * Ok, we want to loop on the new object->bbobj association,
2204 		 * possibly collapsing it further.  However if dodealloc is
2205 		 * non-zero we have to deallocate the backing_object which
2206 		 * itself can potentially undergo a collapse, creating a
2207 		 * recursion depth issue with the LWKT token subsystem.
2208 		 *
2209 		 * In the case where we must deallocate the backing_object
2210 		 * it is possible now that the backing_object has a single
2211 		 * shadow count on some other object (not represented here
2212 		 * as yet), since it no longer shadows us.  Thus when we
2213 		 * call vm_object_deallocate() it may attempt to collapse
2214 		 * itself into its remaining parent.
2215 		 */
2216 		if (dodealloc) {
2217 			struct vm_object_dealloc_list *dtmp;
2218 
2219 			vm_object_chain_release(backing_object);
2220 			vm_object_unlock(backing_object);
2221 			/* backing_object remains held */
2222 
2223 			/*
2224 			 * Auto-deallocation list for caller convenience.
2225 			 */
2226 			if (dlistp == NULL)
2227 				dlistp = &dlist;
2228 
2229 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2230 			dtmp->object = backing_object;
2231 			dtmp->next = *dlistp;
2232 			*dlistp = dtmp;
2233 		} else {
2234 			vm_object_chain_release(backing_object);
2235 			vm_object_drop(backing_object);
2236 		}
2237 		/* backing_object = NULL; not needed */
2238 		/* loop */
2239 	}
2240 
2241 	/*
2242 	 * Clean up any left over backing_object
2243 	 */
2244 	if (backing_object) {
2245 		vm_object_chain_release(backing_object);
2246 		vm_object_drop(backing_object);
2247 	}
2248 
2249 	/*
2250 	 * Clean up any auto-deallocation list.  This is a convenience
2251 	 * for top-level callers so they don't have to pass &dlist.
2252 	 * Do not clean up any caller-passed dlistp, the caller will
2253 	 * do that.
2254 	 */
2255 	if (dlist)
2256 		vm_object_deallocate_list(&dlist);
2257 
2258 }
2259 
2260 /*
2261  * vm_object_collapse() may collect additional objects in need of
2262  * deallocation.  This routine deallocates these objects.  The
2263  * deallocation itself can trigger additional collapses (which the
2264  * deallocate function takes care of).  This procedure is used to
2265  * reduce procedural recursion since these vm_object shadow chains
2266  * can become quite long.
2267  */
2268 void
2269 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2270 {
2271 	struct vm_object_dealloc_list *dlist;
2272 
2273 	while ((dlist = *dlistp) != NULL) {
2274 		*dlistp = dlist->next;
2275 		vm_object_lock(dlist->object);
2276 		vm_object_deallocate_locked(dlist->object);
2277 		vm_object_drop(dlist->object);
2278 		kfree(dlist, M_TEMP);
2279 	}
2280 }
2281 
2282 /*
2283  * Removes all physical pages in the specified object range from the
2284  * object's list of pages.
2285  *
2286  * No requirements.
2287  */
2288 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2289 
2290 void
2291 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2292 		      boolean_t clean_only)
2293 {
2294 	struct rb_vm_page_scan_info info;
2295 	int all;
2296 
2297 	/*
2298 	 * Degenerate cases and assertions
2299 	 */
2300 	vm_object_hold(object);
2301 	if (object == NULL ||
2302 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2303 		vm_object_drop(object);
2304 		return;
2305 	}
2306 	KASSERT(object->type != OBJT_PHYS,
2307 		("attempt to remove pages from a physical object"));
2308 
2309 	/*
2310 	 * Indicate that paging is occuring on the object
2311 	 */
2312 	vm_object_pip_add(object, 1);
2313 
2314 	/*
2315 	 * Figure out the actual removal range and whether we are removing
2316 	 * the entire contents of the object or not.  If removing the entire
2317 	 * contents, be sure to get all pages, even those that might be
2318 	 * beyond the end of the object.
2319 	 */
2320 	info.start_pindex = start;
2321 	if (end == 0)
2322 		info.end_pindex = (vm_pindex_t)-1;
2323 	else
2324 		info.end_pindex = end - 1;
2325 	info.limit = clean_only;
2326 	all = (start == 0 && info.end_pindex >= object->size - 1);
2327 
2328 	/*
2329 	 * Loop until we are sure we have gotten them all.
2330 	 */
2331 	do {
2332 		info.error = 0;
2333 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2334 					vm_object_page_remove_callback, &info);
2335 	} while (info.error);
2336 
2337 	/*
2338 	 * Remove any related swap if throwing away pages, or for
2339 	 * non-swap objects (the swap is a clean copy in that case).
2340 	 */
2341 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2342 		if (all)
2343 			swap_pager_freespace_all(object);
2344 		else
2345 			swap_pager_freespace(object, info.start_pindex,
2346 			     info.end_pindex - info.start_pindex + 1);
2347 	}
2348 
2349 	/*
2350 	 * Cleanup
2351 	 */
2352 	vm_object_pip_wakeup(object);
2353 	vm_object_drop(object);
2354 }
2355 
2356 /*
2357  * The caller must hold the object
2358  */
2359 static int
2360 vm_object_page_remove_callback(vm_page_t p, void *data)
2361 {
2362 	struct rb_vm_page_scan_info *info = data;
2363 
2364 	if (vm_page_busy_try(p, TRUE)) {
2365 		vm_page_sleep_busy(p, TRUE, "vmopar");
2366 		info->error = 1;
2367 		return(0);
2368 	}
2369 
2370 	/*
2371 	 * Wired pages cannot be destroyed, but they can be invalidated
2372 	 * and we do so if clean_only (limit) is not set.
2373 	 *
2374 	 * WARNING!  The page may be wired due to being part of a buffer
2375 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2376 	 *	     This is fine as part of a truncation but VFSs must be
2377 	 *	     sure to fix the buffer up when re-extending the file.
2378 	 *
2379 	 * NOTE!     PG_NEED_COMMIT is ignored.
2380 	 */
2381 	if (p->wire_count != 0) {
2382 		vm_page_protect(p, VM_PROT_NONE);
2383 		if (info->limit == 0)
2384 			p->valid = 0;
2385 		vm_page_wakeup(p);
2386 		return(0);
2387 	}
2388 
2389 	/*
2390 	 * limit is our clean_only flag.  If set and the page is dirty, do
2391 	 * not free it.  If set and the page is being held by someone, do
2392 	 * not free it.
2393 	 */
2394 	if (info->limit && p->valid) {
2395 		vm_page_test_dirty(p);
2396 		if (p->valid & p->dirty) {
2397 			vm_page_wakeup(p);
2398 			return(0);
2399 		}
2400 #if 0
2401 		if (p->hold_count) {
2402 			vm_page_wakeup(p);
2403 			return(0);
2404 		}
2405 #endif
2406 	}
2407 
2408 	/*
2409 	 * Destroy the page
2410 	 */
2411 	vm_page_protect(p, VM_PROT_NONE);
2412 	vm_page_free(p);
2413 	return(0);
2414 }
2415 
2416 /*
2417  * Coalesces two objects backing up adjoining regions of memory into a
2418  * single object.
2419  *
2420  * returns TRUE if objects were combined.
2421  *
2422  * NOTE: Only works at the moment if the second object is NULL -
2423  *	 if it's not, which object do we lock first?
2424  *
2425  * Parameters:
2426  *	prev_object	First object to coalesce
2427  *	prev_offset	Offset into prev_object
2428  *	next_object	Second object into coalesce
2429  *	next_offset	Offset into next_object
2430  *
2431  *	prev_size	Size of reference to prev_object
2432  *	next_size	Size of reference to next_object
2433  *
2434  * The caller does not need to hold (prev_object) but must have a stable
2435  * pointer to it (typically by holding the vm_map locked).
2436  */
2437 boolean_t
2438 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2439 		   vm_size_t prev_size, vm_size_t next_size)
2440 {
2441 	vm_pindex_t next_pindex;
2442 
2443 	if (prev_object == NULL)
2444 		return (TRUE);
2445 
2446 	vm_object_hold(prev_object);
2447 
2448 	if (prev_object->type != OBJT_DEFAULT &&
2449 	    prev_object->type != OBJT_SWAP) {
2450 		vm_object_drop(prev_object);
2451 		return (FALSE);
2452 	}
2453 
2454 	/*
2455 	 * Try to collapse the object first
2456 	 */
2457 	vm_object_chain_acquire(prev_object);
2458 	vm_object_collapse(prev_object, NULL);
2459 
2460 	/*
2461 	 * Can't coalesce if: . more than one reference . paged out . shadows
2462 	 * another object . has a copy elsewhere (any of which mean that the
2463 	 * pages not mapped to prev_entry may be in use anyway)
2464 	 */
2465 
2466 	if (prev_object->backing_object != NULL) {
2467 		vm_object_chain_release(prev_object);
2468 		vm_object_drop(prev_object);
2469 		return (FALSE);
2470 	}
2471 
2472 	prev_size >>= PAGE_SHIFT;
2473 	next_size >>= PAGE_SHIFT;
2474 	next_pindex = prev_pindex + prev_size;
2475 
2476 	if ((prev_object->ref_count > 1) &&
2477 	    (prev_object->size != next_pindex)) {
2478 		vm_object_chain_release(prev_object);
2479 		vm_object_drop(prev_object);
2480 		return (FALSE);
2481 	}
2482 
2483 	/*
2484 	 * Remove any pages that may still be in the object from a previous
2485 	 * deallocation.
2486 	 */
2487 	if (next_pindex < prev_object->size) {
2488 		vm_object_page_remove(prev_object,
2489 				      next_pindex,
2490 				      next_pindex + next_size, FALSE);
2491 		if (prev_object->type == OBJT_SWAP)
2492 			swap_pager_freespace(prev_object,
2493 					     next_pindex, next_size);
2494 	}
2495 
2496 	/*
2497 	 * Extend the object if necessary.
2498 	 */
2499 	if (next_pindex + next_size > prev_object->size)
2500 		prev_object->size = next_pindex + next_size;
2501 
2502 	vm_object_chain_release(prev_object);
2503 	vm_object_drop(prev_object);
2504 	return (TRUE);
2505 }
2506 
2507 /*
2508  * Make the object writable and flag is being possibly dirty.
2509  *
2510  * The caller must hold the object. XXX called from vm_page_dirty(),
2511  * There is currently no requirement to hold the object.
2512  */
2513 void
2514 vm_object_set_writeable_dirty(vm_object_t object)
2515 {
2516 	struct vnode *vp;
2517 
2518 	/*vm_object_assert_held(object);*/
2519 	/*
2520 	 * Avoid contention in vm fault path by checking the state before
2521 	 * issuing an atomic op on it.
2522 	 */
2523 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2524 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2525 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2526 	}
2527 	if (object->type == OBJT_VNODE &&
2528 	    (vp = (struct vnode *)object->handle) != NULL) {
2529 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2530 			vsetflags(vp, VOBJDIRTY);
2531 		}
2532 	}
2533 }
2534 
2535 #include "opt_ddb.h"
2536 #ifdef DDB
2537 #include <sys/kernel.h>
2538 
2539 #include <sys/cons.h>
2540 
2541 #include <ddb/ddb.h>
2542 
2543 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2544 				       vm_map_entry_t entry);
2545 static int	vm_object_in_map (vm_object_t object);
2546 
2547 /*
2548  * The caller must hold the object.
2549  */
2550 static int
2551 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2552 {
2553 	vm_map_t tmpm;
2554 	vm_map_entry_t tmpe;
2555 	vm_object_t obj, nobj;
2556 	int entcount;
2557 
2558 	if (map == 0)
2559 		return 0;
2560 	if (entry == 0) {
2561 		tmpe = map->header.next;
2562 		entcount = map->nentries;
2563 		while (entcount-- && (tmpe != &map->header)) {
2564 			if( _vm_object_in_map(map, object, tmpe)) {
2565 				return 1;
2566 			}
2567 			tmpe = tmpe->next;
2568 		}
2569 		return (0);
2570 	}
2571 	switch(entry->maptype) {
2572 	case VM_MAPTYPE_SUBMAP:
2573 		tmpm = entry->object.sub_map;
2574 		tmpe = tmpm->header.next;
2575 		entcount = tmpm->nentries;
2576 		while (entcount-- && tmpe != &tmpm->header) {
2577 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2578 				return 1;
2579 			}
2580 			tmpe = tmpe->next;
2581 		}
2582 		break;
2583 	case VM_MAPTYPE_NORMAL:
2584 	case VM_MAPTYPE_VPAGETABLE:
2585 		obj = entry->object.vm_object;
2586 		while (obj) {
2587 			if (obj == object) {
2588 				if (obj != entry->object.vm_object)
2589 					vm_object_drop(obj);
2590 				return 1;
2591 			}
2592 			while ((nobj = obj->backing_object) != NULL) {
2593 				vm_object_hold(nobj);
2594 				if (nobj == obj->backing_object)
2595 					break;
2596 				vm_object_drop(nobj);
2597 			}
2598 			if (obj != entry->object.vm_object) {
2599 				if (nobj)
2600 					vm_object_lock_swap();
2601 				vm_object_drop(obj);
2602 			}
2603 			obj = nobj;
2604 		}
2605 		break;
2606 	default:
2607 		break;
2608 	}
2609 	return 0;
2610 }
2611 
2612 static int vm_object_in_map_callback(struct proc *p, void *data);
2613 
2614 struct vm_object_in_map_info {
2615 	vm_object_t object;
2616 	int rv;
2617 };
2618 
2619 /*
2620  * Debugging only
2621  */
2622 static int
2623 vm_object_in_map(vm_object_t object)
2624 {
2625 	struct vm_object_in_map_info info;
2626 
2627 	info.rv = 0;
2628 	info.object = object;
2629 
2630 	allproc_scan(vm_object_in_map_callback, &info);
2631 	if (info.rv)
2632 		return 1;
2633 	if( _vm_object_in_map(&kernel_map, object, 0))
2634 		return 1;
2635 	if( _vm_object_in_map(&pager_map, object, 0))
2636 		return 1;
2637 	if( _vm_object_in_map(&buffer_map, object, 0))
2638 		return 1;
2639 	return 0;
2640 }
2641 
2642 /*
2643  * Debugging only
2644  */
2645 static int
2646 vm_object_in_map_callback(struct proc *p, void *data)
2647 {
2648 	struct vm_object_in_map_info *info = data;
2649 
2650 	if (p->p_vmspace) {
2651 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2652 			info->rv = 1;
2653 			return -1;
2654 		}
2655 	}
2656 	return (0);
2657 }
2658 
2659 DB_SHOW_COMMAND(vmochk, vm_object_check)
2660 {
2661 	vm_object_t object;
2662 
2663 	/*
2664 	 * make sure that internal objs are in a map somewhere
2665 	 * and none have zero ref counts.
2666 	 */
2667 	for (object = TAILQ_FIRST(&vm_object_list);
2668 			object != NULL;
2669 			object = TAILQ_NEXT(object, object_list)) {
2670 		if (object->type == OBJT_MARKER)
2671 			continue;
2672 		if (object->handle == NULL &&
2673 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2674 			if (object->ref_count == 0) {
2675 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2676 					(long)object->size);
2677 			}
2678 			if (!vm_object_in_map(object)) {
2679 				db_printf(
2680 			"vmochk: internal obj is not in a map: "
2681 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2682 				    object->ref_count, (u_long)object->size,
2683 				    (u_long)object->size,
2684 				    (void *)object->backing_object);
2685 			}
2686 		}
2687 	}
2688 }
2689 
2690 /*
2691  * Debugging only
2692  */
2693 DB_SHOW_COMMAND(object, vm_object_print_static)
2694 {
2695 	/* XXX convert args. */
2696 	vm_object_t object = (vm_object_t)addr;
2697 	boolean_t full = have_addr;
2698 
2699 	vm_page_t p;
2700 
2701 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2702 #define	count	was_count
2703 
2704 	int count;
2705 
2706 	if (object == NULL)
2707 		return;
2708 
2709 	db_iprintf(
2710 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2711 	    object, (int)object->type, (u_long)object->size,
2712 	    object->resident_page_count, object->ref_count, object->flags);
2713 	/*
2714 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2715 	 */
2716 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2717 	    object->shadow_count,
2718 	    object->backing_object ? object->backing_object->ref_count : 0,
2719 	    object->backing_object, (long)object->backing_object_offset);
2720 
2721 	if (!full)
2722 		return;
2723 
2724 	db_indent += 2;
2725 	count = 0;
2726 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2727 		if (count == 0)
2728 			db_iprintf("memory:=");
2729 		else if (count == 6) {
2730 			db_printf("\n");
2731 			db_iprintf(" ...");
2732 			count = 0;
2733 		} else
2734 			db_printf(",");
2735 		count++;
2736 
2737 		db_printf("(off=0x%lx,page=0x%lx)",
2738 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2739 	}
2740 	if (count != 0)
2741 		db_printf("\n");
2742 	db_indent -= 2;
2743 }
2744 
2745 /* XXX. */
2746 #undef count
2747 
2748 /*
2749  * XXX need this non-static entry for calling from vm_map_print.
2750  *
2751  * Debugging only
2752  */
2753 void
2754 vm_object_print(/* db_expr_t */ long addr,
2755 		boolean_t have_addr,
2756 		/* db_expr_t */ long count,
2757 		char *modif)
2758 {
2759 	vm_object_print_static(addr, have_addr, count, modif);
2760 }
2761 
2762 /*
2763  * Debugging only
2764  */
2765 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2766 {
2767 	vm_object_t object;
2768 	int nl = 0;
2769 	int c;
2770 	for (object = TAILQ_FIRST(&vm_object_list);
2771 			object != NULL;
2772 			object = TAILQ_NEXT(object, object_list)) {
2773 		vm_pindex_t idx, fidx;
2774 		vm_pindex_t osize;
2775 		vm_paddr_t pa = -1, padiff;
2776 		int rcount;
2777 		vm_page_t m;
2778 
2779 		if (object->type == OBJT_MARKER)
2780 			continue;
2781 		db_printf("new object: %p\n", (void *)object);
2782 		if ( nl > 18) {
2783 			c = cngetc();
2784 			if (c != ' ')
2785 				return;
2786 			nl = 0;
2787 		}
2788 		nl++;
2789 		rcount = 0;
2790 		fidx = 0;
2791 		osize = object->size;
2792 		if (osize > 128)
2793 			osize = 128;
2794 		for (idx = 0; idx < osize; idx++) {
2795 			m = vm_page_lookup(object, idx);
2796 			if (m == NULL) {
2797 				if (rcount) {
2798 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2799 						(long)fidx, rcount, (long)pa);
2800 					if ( nl > 18) {
2801 						c = cngetc();
2802 						if (c != ' ')
2803 							return;
2804 						nl = 0;
2805 					}
2806 					nl++;
2807 					rcount = 0;
2808 				}
2809 				continue;
2810 			}
2811 
2812 
2813 			if (rcount &&
2814 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2815 				++rcount;
2816 				continue;
2817 			}
2818 			if (rcount) {
2819 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2820 				padiff >>= PAGE_SHIFT;
2821 				padiff &= PQ_L2_MASK;
2822 				if (padiff == 0) {
2823 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2824 					++rcount;
2825 					continue;
2826 				}
2827 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2828 					(long)fidx, rcount, (long)pa);
2829 				db_printf("pd(%ld)\n", (long)padiff);
2830 				if ( nl > 18) {
2831 					c = cngetc();
2832 					if (c != ' ')
2833 						return;
2834 					nl = 0;
2835 				}
2836 				nl++;
2837 			}
2838 			fidx = idx;
2839 			pa = VM_PAGE_TO_PHYS(m);
2840 			rcount = 1;
2841 		}
2842 		if (rcount) {
2843 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2844 				(long)fidx, rcount, (long)pa);
2845 			if ( nl > 18) {
2846 				c = cngetc();
2847 				if (c != ' ')
2848 					return;
2849 				nl = 0;
2850 			}
2851 			nl++;
2852 		}
2853 	}
2854 }
2855 #endif /* DDB */
2856