1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $ 67 */ 68 69 /* 70 * Virtual memory object module. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> /* for curproc, pageproc */ 76 #include <sys/thread.h> 77 #include <sys/vnode.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/mount.h> 81 #include <sys/kernel.h> 82 #include <sys/sysctl.h> 83 #include <sys/refcount.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_zone.h> 97 98 #define EASY_SCAN_FACTOR 8 99 100 static void vm_object_qcollapse(vm_object_t object, 101 vm_object_t backing_object); 102 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 103 int pagerflags); 104 static void vm_object_lock_init(vm_object_t); 105 106 107 /* 108 * Virtual memory objects maintain the actual data 109 * associated with allocated virtual memory. A given 110 * page of memory exists within exactly one object. 111 * 112 * An object is only deallocated when all "references" 113 * are given up. Only one "reference" to a given 114 * region of an object should be writeable. 115 * 116 * Associated with each object is a list of all resident 117 * memory pages belonging to that object; this list is 118 * maintained by the "vm_page" module, and locked by the object's 119 * lock. 120 * 121 * Each object also records a "pager" routine which is 122 * used to retrieve (and store) pages to the proper backing 123 * storage. In addition, objects may be backed by other 124 * objects from which they were virtual-copied. 125 * 126 * The only items within the object structure which are 127 * modified after time of creation are: 128 * reference count locked by object's lock 129 * pager routine locked by object's lock 130 * 131 */ 132 133 struct object_q vm_object_list; /* locked by vmobj_token */ 134 struct vm_object kernel_object; 135 136 static long vm_object_count; /* locked by vmobj_token */ 137 extern int vm_pageout_page_count; 138 139 static long object_collapses; 140 static long object_bypasses; 141 static int next_index; 142 static vm_zone_t obj_zone; 143 static struct vm_zone obj_zone_store; 144 #define VM_OBJECTS_INIT 256 145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 146 147 /* 148 * Misc low level routines 149 */ 150 static void 151 vm_object_lock_init(vm_object_t obj) 152 { 153 #if defined(DEBUG_LOCKS) 154 int i; 155 156 obj->debug_hold_bitmap = 0; 157 obj->debug_hold_ovfl = 0; 158 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 159 obj->debug_hold_thrs[i] = NULL; 160 obj->debug_hold_file[i] = NULL; 161 obj->debug_hold_line[i] = 0; 162 } 163 #endif 164 } 165 166 void 167 vm_object_lock_swap(void) 168 { 169 lwkt_token_swap(); 170 } 171 172 void 173 vm_object_lock(vm_object_t obj) 174 { 175 lwkt_gettoken(&obj->token); 176 } 177 178 /* 179 * Returns TRUE on sucesss 180 */ 181 static int 182 vm_object_lock_try(vm_object_t obj) 183 { 184 return(lwkt_trytoken(&obj->token)); 185 } 186 187 void 188 vm_object_lock_shared(vm_object_t obj) 189 { 190 lwkt_gettoken_shared(&obj->token); 191 } 192 193 void 194 vm_object_unlock(vm_object_t obj) 195 { 196 lwkt_reltoken(&obj->token); 197 } 198 199 static __inline void 200 vm_object_assert_held(vm_object_t obj) 201 { 202 ASSERT_LWKT_TOKEN_HELD(&obj->token); 203 } 204 205 void 206 #ifndef DEBUG_LOCKS 207 vm_object_hold(vm_object_t obj) 208 #else 209 debugvm_object_hold(vm_object_t obj, char *file, int line) 210 #endif 211 { 212 KKASSERT(obj != NULL); 213 214 /* 215 * Object must be held (object allocation is stable due to callers 216 * context, typically already holding the token on a parent object) 217 * prior to potentially blocking on the lock, otherwise the object 218 * can get ripped away from us. 219 */ 220 refcount_acquire(&obj->hold_count); 221 vm_object_lock(obj); 222 223 #if defined(DEBUG_LOCKS) 224 int i; 225 u_int mask; 226 227 for (;;) { 228 mask = ~obj->debug_hold_bitmap; 229 cpu_ccfence(); 230 if (mask == 0xFFFFFFFFU) { 231 if (obj->debug_hold_ovfl == 0) 232 obj->debug_hold_ovfl = 1; 233 break; 234 } 235 i = ffs(mask) - 1; 236 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 237 ~mask | (1 << i))) { 238 obj->debug_hold_bitmap |= (1 << i); 239 obj->debug_hold_thrs[i] = curthread; 240 obj->debug_hold_file[i] = file; 241 obj->debug_hold_line[i] = line; 242 break; 243 } 244 } 245 #endif 246 } 247 248 int 249 #ifndef DEBUG_LOCKS 250 vm_object_hold_try(vm_object_t obj) 251 #else 252 debugvm_object_hold_try(vm_object_t obj, char *file, int line) 253 #endif 254 { 255 KKASSERT(obj != NULL); 256 257 /* 258 * Object must be held (object allocation is stable due to callers 259 * context, typically already holding the token on a parent object) 260 * prior to potentially blocking on the lock, otherwise the object 261 * can get ripped away from us. 262 */ 263 refcount_acquire(&obj->hold_count); 264 if (vm_object_lock_try(obj) == 0) { 265 if (refcount_release(&obj->hold_count)) { 266 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) 267 zfree(obj_zone, obj); 268 } 269 return(0); 270 } 271 272 #if defined(DEBUG_LOCKS) 273 int i; 274 u_int mask; 275 276 for (;;) { 277 mask = ~obj->debug_hold_bitmap; 278 cpu_ccfence(); 279 if (mask == 0xFFFFFFFFU) { 280 if (obj->debug_hold_ovfl == 0) 281 obj->debug_hold_ovfl = 1; 282 break; 283 } 284 i = ffs(mask) - 1; 285 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 286 ~mask | (1 << i))) { 287 obj->debug_hold_bitmap |= (1 << i); 288 obj->debug_hold_thrs[i] = curthread; 289 obj->debug_hold_file[i] = file; 290 obj->debug_hold_line[i] = line; 291 break; 292 } 293 } 294 #endif 295 return(1); 296 } 297 298 void 299 #ifndef DEBUG_LOCKS 300 vm_object_hold_shared(vm_object_t obj) 301 #else 302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line) 303 #endif 304 { 305 KKASSERT(obj != NULL); 306 307 /* 308 * Object must be held (object allocation is stable due to callers 309 * context, typically already holding the token on a parent object) 310 * prior to potentially blocking on the lock, otherwise the object 311 * can get ripped away from us. 312 */ 313 refcount_acquire(&obj->hold_count); 314 vm_object_lock_shared(obj); 315 316 #if defined(DEBUG_LOCKS) 317 int i; 318 u_int mask; 319 320 for (;;) { 321 mask = ~obj->debug_hold_bitmap; 322 cpu_ccfence(); 323 if (mask == 0xFFFFFFFFU) { 324 if (obj->debug_hold_ovfl == 0) 325 obj->debug_hold_ovfl = 1; 326 break; 327 } 328 i = ffs(mask) - 1; 329 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask, 330 ~mask | (1 << i))) { 331 obj->debug_hold_bitmap |= (1 << i); 332 obj->debug_hold_thrs[i] = curthread; 333 obj->debug_hold_file[i] = file; 334 obj->debug_hold_line[i] = line; 335 break; 336 } 337 } 338 #endif 339 } 340 341 /* 342 * Drop the token and hold_count on the object. 343 */ 344 void 345 vm_object_drop(vm_object_t obj) 346 { 347 if (obj == NULL) 348 return; 349 350 #if defined(DEBUG_LOCKS) 351 int found = 0; 352 int i; 353 354 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) { 355 if ((obj->debug_hold_bitmap & (1 << i)) && 356 (obj->debug_hold_thrs[i] == curthread)) { 357 obj->debug_hold_bitmap &= ~(1 << i); 358 obj->debug_hold_thrs[i] = NULL; 359 obj->debug_hold_file[i] = NULL; 360 obj->debug_hold_line[i] = 0; 361 found = 1; 362 break; 363 } 364 } 365 366 if (found == 0 && obj->debug_hold_ovfl == 0) 367 panic("vm_object: attempt to drop hold on non-self-held obj"); 368 #endif 369 370 /* 371 * No new holders should be possible once we drop hold_count 1->0 as 372 * there is no longer any way to reference the object. 373 */ 374 KKASSERT(obj->hold_count > 0); 375 if (refcount_release(&obj->hold_count)) { 376 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) { 377 vm_object_unlock(obj); 378 zfree(obj_zone, obj); 379 } else { 380 vm_object_unlock(obj); 381 } 382 } else { 383 vm_object_unlock(obj); 384 } 385 } 386 387 /* 388 * Initialize a freshly allocated object, returning a held object. 389 * 390 * Used only by vm_object_allocate() and zinitna(). 391 * 392 * No requirements. 393 */ 394 void 395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 396 { 397 int incr; 398 399 RB_INIT(&object->rb_memq); 400 LIST_INIT(&object->shadow_head); 401 lwkt_token_init(&object->token, "vmobj"); 402 403 object->type = type; 404 object->size = size; 405 object->ref_count = 1; 406 object->hold_count = 0; 407 object->flags = 0; 408 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 409 vm_object_set_flag(object, OBJ_ONEMAPPING); 410 object->paging_in_progress = 0; 411 object->resident_page_count = 0; 412 object->agg_pv_list_count = 0; 413 object->shadow_count = 0; 414 /* cpu localization twist */ 415 object->pg_color = (int)(intptr_t)curthread; 416 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 417 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 418 else 419 incr = size; 420 next_index = (next_index + incr) & PQ_L2_MASK; 421 object->handle = NULL; 422 object->backing_object = NULL; 423 object->backing_object_offset = (vm_ooffset_t)0; 424 425 object->generation++; 426 object->swblock_count = 0; 427 RB_INIT(&object->swblock_root); 428 vm_object_lock_init(object); 429 pmap_object_init(object); 430 431 vm_object_hold(object); 432 lwkt_gettoken(&vmobj_token); 433 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 434 vm_object_count++; 435 lwkt_reltoken(&vmobj_token); 436 } 437 438 /* 439 * Initialize the VM objects module. 440 * 441 * Called from the low level boot code only. 442 */ 443 void 444 vm_object_init(void) 445 { 446 TAILQ_INIT(&vm_object_list); 447 448 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd), 449 &kernel_object); 450 vm_object_drop(&kernel_object); 451 452 obj_zone = &obj_zone_store; 453 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 454 vm_objects_init, VM_OBJECTS_INIT); 455 } 456 457 void 458 vm_object_init2(void) 459 { 460 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1); 461 } 462 463 /* 464 * Allocate and return a new object of the specified type and size. 465 * 466 * No requirements. 467 */ 468 vm_object_t 469 vm_object_allocate(objtype_t type, vm_pindex_t size) 470 { 471 vm_object_t result; 472 473 result = (vm_object_t) zalloc(obj_zone); 474 475 _vm_object_allocate(type, size, result); 476 vm_object_drop(result); 477 478 return (result); 479 } 480 481 /* 482 * This version returns a held object, allowing further atomic initialization 483 * of the object. 484 */ 485 vm_object_t 486 vm_object_allocate_hold(objtype_t type, vm_pindex_t size) 487 { 488 vm_object_t result; 489 490 result = (vm_object_t) zalloc(obj_zone); 491 492 _vm_object_allocate(type, size, result); 493 494 return (result); 495 } 496 497 /* 498 * Add an additional reference to a vm_object. The object must already be 499 * held. The original non-lock version is no longer supported. The object 500 * must NOT be chain locked by anyone at the time the reference is added. 501 * 502 * Referencing a chain-locked object can blow up the fairly sensitive 503 * ref_count and shadow_count tests in the deallocator. Most callers 504 * will call vm_object_chain_wait() prior to calling 505 * vm_object_reference_locked() to avoid the case. 506 * 507 * The object must be held. 508 */ 509 void 510 vm_object_reference_locked(vm_object_t object) 511 { 512 KKASSERT(object != NULL); 513 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 514 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 515 object->ref_count++; 516 if (object->type == OBJT_VNODE) { 517 vref(object->handle); 518 /* XXX what if the vnode is being destroyed? */ 519 } 520 } 521 522 /* 523 * Object OBJ_CHAINLOCK lock handling. 524 * 525 * The caller can chain-lock backing objects recursively and then 526 * use vm_object_chain_release_all() to undo the whole chain. 527 * 528 * Chain locks are used to prevent collapses and are only applicable 529 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations 530 * on other object types are ignored. This is also important because 531 * it allows e.g. the vnode underlying a memory mapping to take concurrent 532 * faults. 533 * 534 * The object must usually be held on entry, though intermediate 535 * objects need not be held on release. 536 */ 537 void 538 vm_object_chain_wait(vm_object_t object) 539 { 540 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 541 while (object->flags & OBJ_CHAINLOCK) { 542 vm_object_set_flag(object, OBJ_CHAINWANT); 543 tsleep(object, 0, "objchain", 0); 544 } 545 } 546 547 void 548 vm_object_chain_acquire(vm_object_t object) 549 { 550 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 551 vm_object_chain_wait(object); 552 vm_object_set_flag(object, OBJ_CHAINLOCK); 553 } 554 } 555 556 void 557 vm_object_chain_release(vm_object_t object) 558 { 559 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 560 if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) { 561 KKASSERT(object->flags & OBJ_CHAINLOCK); 562 if (object->flags & OBJ_CHAINWANT) { 563 vm_object_clear_flag(object, 564 OBJ_CHAINLOCK | OBJ_CHAINWANT); 565 wakeup(object); 566 } else { 567 vm_object_clear_flag(object, OBJ_CHAINLOCK); 568 } 569 } 570 } 571 572 /* 573 * This releases the entire chain of objects from first_object to and 574 * including stopobj, flowing through object->backing_object. 575 * 576 * We release stopobj first as an optimization as this object is most 577 * likely to be shared across multiple processes. 578 */ 579 void 580 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj) 581 { 582 vm_object_t backing_object; 583 vm_object_t object; 584 585 vm_object_chain_release(stopobj); 586 object = first_object; 587 588 while (object != stopobj) { 589 KKASSERT(object); 590 if (object != first_object) 591 vm_object_hold(object); 592 backing_object = object->backing_object; 593 vm_object_chain_release(object); 594 if (object != first_object) 595 vm_object_drop(object); 596 object = backing_object; 597 } 598 } 599 600 /* 601 * Dereference an object and its underlying vnode. 602 * 603 * The object must be held and will be held on return. 604 */ 605 static void 606 vm_object_vndeallocate(vm_object_t object) 607 { 608 struct vnode *vp = (struct vnode *) object->handle; 609 610 KASSERT(object->type == OBJT_VNODE, 611 ("vm_object_vndeallocate: not a vnode object")); 612 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 613 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 614 #ifdef INVARIANTS 615 if (object->ref_count == 0) { 616 vprint("vm_object_vndeallocate", vp); 617 panic("vm_object_vndeallocate: bad object reference count"); 618 } 619 #endif 620 object->ref_count--; 621 if (object->ref_count == 0) 622 vclrflags(vp, VTEXT); 623 vrele(vp); 624 } 625 626 /* 627 * Release a reference to the specified object, gained either through a 628 * vm_object_allocate or a vm_object_reference call. When all references 629 * are gone, storage associated with this object may be relinquished. 630 * 631 * The caller does not have to hold the object locked but must have control 632 * over the reference in question in order to guarantee that the object 633 * does not get ripped out from under us. 634 */ 635 void 636 vm_object_deallocate(vm_object_t object) 637 { 638 if (object) { 639 vm_object_hold(object); 640 vm_object_deallocate_locked(object); 641 vm_object_drop(object); 642 } 643 } 644 645 void 646 vm_object_deallocate_locked(vm_object_t object) 647 { 648 struct vm_object_dealloc_list *dlist = NULL; 649 struct vm_object_dealloc_list *dtmp; 650 vm_object_t temp; 651 int must_drop = 0; 652 653 /* 654 * We may chain deallocate object, but additional objects may 655 * collect on the dlist which also have to be deallocated. We 656 * must avoid a recursion, vm_object chains can get deep. 657 */ 658 again: 659 while (object != NULL) { 660 #if 0 661 /* 662 * Don't rip a ref_count out from under an object undergoing 663 * collapse, it will confuse the collapse code. 664 */ 665 vm_object_chain_wait(object); 666 #endif 667 if (object->type == OBJT_VNODE) { 668 vm_object_vndeallocate(object); 669 break; 670 } 671 672 if (object->ref_count == 0) { 673 panic("vm_object_deallocate: object deallocated " 674 "too many times: %d", object->type); 675 } 676 if (object->ref_count > 2) { 677 object->ref_count--; 678 break; 679 } 680 681 /* 682 * Here on ref_count of one or two, which are special cases for 683 * objects. 684 * 685 * Nominal ref_count > 1 case if the second ref is not from 686 * a shadow. 687 */ 688 if (object->ref_count == 2 && object->shadow_count == 0) { 689 vm_object_set_flag(object, OBJ_ONEMAPPING); 690 object->ref_count--; 691 break; 692 } 693 694 /* 695 * If the second ref is from a shadow we chain along it 696 * upwards if object's handle is exhausted. 697 * 698 * We have to decrement object->ref_count before potentially 699 * collapsing the first shadow object or the collapse code 700 * will not be able to handle the degenerate case to remove 701 * object. However, if we do it too early the object can 702 * get ripped out from under us. 703 */ 704 if (object->ref_count == 2 && object->shadow_count == 1 && 705 object->handle == NULL && (object->type == OBJT_DEFAULT || 706 object->type == OBJT_SWAP)) { 707 temp = LIST_FIRST(&object->shadow_head); 708 KKASSERT(temp != NULL); 709 vm_object_hold(temp); 710 711 /* 712 * Wait for any paging to complete so the collapse 713 * doesn't (or isn't likely to) qcollapse. pip 714 * waiting must occur before we acquire the 715 * chainlock. 716 */ 717 while ( 718 temp->paging_in_progress || 719 object->paging_in_progress 720 ) { 721 vm_object_pip_wait(temp, "objde1"); 722 vm_object_pip_wait(object, "objde2"); 723 } 724 725 /* 726 * If the parent is locked we have to give up, as 727 * otherwise we would be acquiring locks in the 728 * wrong order and potentially deadlock. 729 */ 730 if (temp->flags & OBJ_CHAINLOCK) { 731 vm_object_drop(temp); 732 goto skip; 733 } 734 vm_object_chain_acquire(temp); 735 736 /* 737 * Recheck/retry after the hold and the paging 738 * wait, both of which can block us. 739 */ 740 if (object->ref_count != 2 || 741 object->shadow_count != 1 || 742 object->handle || 743 LIST_FIRST(&object->shadow_head) != temp || 744 (object->type != OBJT_DEFAULT && 745 object->type != OBJT_SWAP)) { 746 vm_object_chain_release(temp); 747 vm_object_drop(temp); 748 continue; 749 } 750 751 /* 752 * We can safely drop object's ref_count now. 753 */ 754 KKASSERT(object->ref_count == 2); 755 object->ref_count--; 756 757 /* 758 * If our single parent is not collapseable just 759 * decrement ref_count (2->1) and stop. 760 */ 761 if (temp->handle || (temp->type != OBJT_DEFAULT && 762 temp->type != OBJT_SWAP)) { 763 vm_object_chain_release(temp); 764 vm_object_drop(temp); 765 break; 766 } 767 768 /* 769 * At this point we have already dropped object's 770 * ref_count so it is possible for a race to 771 * deallocate obj out from under us. Any collapse 772 * will re-check the situation. We must not block 773 * until we are able to collapse. 774 * 775 * Bump temp's ref_count to avoid an unwanted 776 * degenerate recursion (can't call 777 * vm_object_reference_locked() because it asserts 778 * that CHAINLOCK is not set). 779 */ 780 temp->ref_count++; 781 KKASSERT(temp->ref_count > 1); 782 783 /* 784 * Collapse temp, then deallocate the extra ref 785 * formally. 786 */ 787 vm_object_collapse(temp, &dlist); 788 vm_object_chain_release(temp); 789 if (must_drop) { 790 vm_object_lock_swap(); 791 vm_object_drop(object); 792 } 793 object = temp; 794 must_drop = 1; 795 continue; 796 } 797 798 /* 799 * Drop the ref and handle termination on the 1->0 transition. 800 * We may have blocked above so we have to recheck. 801 */ 802 skip: 803 KKASSERT(object->ref_count != 0); 804 if (object->ref_count >= 2) { 805 object->ref_count--; 806 break; 807 } 808 KKASSERT(object->ref_count == 1); 809 810 /* 811 * 1->0 transition. Chain through the backing_object. 812 * Maintain the ref until we've located the backing object, 813 * then re-check. 814 */ 815 while ((temp = object->backing_object) != NULL) { 816 vm_object_hold(temp); 817 if (temp == object->backing_object) 818 break; 819 vm_object_drop(temp); 820 } 821 822 /* 823 * 1->0 transition verified, retry if ref_count is no longer 824 * 1. Otherwise disconnect the backing_object (temp) and 825 * clean up. 826 */ 827 if (object->ref_count != 1) { 828 vm_object_drop(temp); 829 continue; 830 } 831 832 /* 833 * It shouldn't be possible for the object to be chain locked 834 * if we're removing the last ref on it. 835 */ 836 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0); 837 838 if (temp) { 839 LIST_REMOVE(object, shadow_list); 840 temp->shadow_count--; 841 temp->generation++; 842 object->backing_object = NULL; 843 } 844 845 --object->ref_count; 846 if ((object->flags & OBJ_DEAD) == 0) 847 vm_object_terminate(object); 848 if (must_drop && temp) 849 vm_object_lock_swap(); 850 if (must_drop) 851 vm_object_drop(object); 852 object = temp; 853 must_drop = 1; 854 } 855 if (must_drop && object) 856 vm_object_drop(object); 857 858 /* 859 * Additional tail recursion on dlist. Avoid a recursion. Objects 860 * on the dlist have a hold count but are not locked. 861 */ 862 if ((dtmp = dlist) != NULL) { 863 dlist = dtmp->next; 864 object = dtmp->object; 865 kfree(dtmp, M_TEMP); 866 867 vm_object_lock(object); /* already held, add lock */ 868 must_drop = 1; /* and we're responsible for it */ 869 goto again; 870 } 871 } 872 873 /* 874 * Destroy the specified object, freeing up related resources. 875 * 876 * The object must have zero references. 877 * 878 * The object must held. The caller is responsible for dropping the object 879 * after terminate returns. Terminate does NOT drop the object. 880 */ 881 static int vm_object_terminate_callback(vm_page_t p, void *data); 882 883 void 884 vm_object_terminate(vm_object_t object) 885 { 886 /* 887 * Make sure no one uses us. Once we set OBJ_DEAD we should be 888 * able to safely block. 889 */ 890 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 891 KKASSERT((object->flags & OBJ_DEAD) == 0); 892 vm_object_set_flag(object, OBJ_DEAD); 893 894 /* 895 * Wait for the pageout daemon to be done with the object 896 */ 897 vm_object_pip_wait(object, "objtrm1"); 898 899 KASSERT(!object->paging_in_progress, 900 ("vm_object_terminate: pageout in progress")); 901 902 /* 903 * Clean and free the pages, as appropriate. All references to the 904 * object are gone, so we don't need to lock it. 905 */ 906 if (object->type == OBJT_VNODE) { 907 struct vnode *vp; 908 909 /* 910 * Clean pages and flush buffers. 911 */ 912 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 913 914 vp = (struct vnode *) object->handle; 915 vinvalbuf(vp, V_SAVE, 0, 0); 916 } 917 918 /* 919 * Wait for any I/O to complete, after which there had better not 920 * be any references left on the object. 921 */ 922 vm_object_pip_wait(object, "objtrm2"); 923 924 if (object->ref_count != 0) { 925 panic("vm_object_terminate: object with references, " 926 "ref_count=%d", object->ref_count); 927 } 928 929 /* 930 * Cleanup any shared pmaps associated with this object. 931 */ 932 pmap_object_free(object); 933 934 /* 935 * Now free any remaining pages. For internal objects, this also 936 * removes them from paging queues. Don't free wired pages, just 937 * remove them from the object. 938 */ 939 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 940 vm_object_terminate_callback, NULL); 941 942 /* 943 * Let the pager know object is dead. 944 */ 945 vm_pager_deallocate(object); 946 947 /* 948 * Wait for the object hold count to hit 1, clean out pages as 949 * we go. vmobj_token interlocks any race conditions that might 950 * pick the object up from the vm_object_list after we have cleared 951 * rb_memq. 952 */ 953 for (;;) { 954 if (RB_ROOT(&object->rb_memq) == NULL) 955 break; 956 kprintf("vm_object_terminate: Warning, object %p " 957 "still has %d pages\n", 958 object, object->resident_page_count); 959 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL, 960 vm_object_terminate_callback, NULL); 961 } 962 963 /* 964 * There had better not be any pages left 965 */ 966 KKASSERT(object->resident_page_count == 0); 967 968 /* 969 * Remove the object from the global object list. 970 */ 971 lwkt_gettoken(&vmobj_token); 972 TAILQ_REMOVE(&vm_object_list, object, object_list); 973 vm_object_count--; 974 lwkt_reltoken(&vmobj_token); 975 vm_object_dead_wakeup(object); 976 977 if (object->ref_count != 0) { 978 panic("vm_object_terminate2: object with references, " 979 "ref_count=%d", object->ref_count); 980 } 981 982 /* 983 * NOTE: The object hold_count is at least 1, so we cannot zfree() 984 * the object here. See vm_object_drop(). 985 */ 986 } 987 988 /* 989 * The caller must hold the object. 990 */ 991 static int 992 vm_object_terminate_callback(vm_page_t p, void *data __unused) 993 { 994 vm_object_t object; 995 996 object = p->object; 997 vm_page_busy_wait(p, TRUE, "vmpgtrm"); 998 if (object != p->object) { 999 kprintf("vm_object_terminate: Warning: Encountered " 1000 "busied page %p on queue %d\n", p, p->queue); 1001 vm_page_wakeup(p); 1002 } else if (p->wire_count == 0) { 1003 /* 1004 * NOTE: PG_NEED_COMMIT is ignored. 1005 */ 1006 vm_page_free(p); 1007 mycpu->gd_cnt.v_pfree++; 1008 } else { 1009 if (p->queue != PQ_NONE) 1010 kprintf("vm_object_terminate: Warning: Encountered " 1011 "wired page %p on queue %d\n", p, p->queue); 1012 vm_page_remove(p); 1013 vm_page_wakeup(p); 1014 } 1015 lwkt_yield(); 1016 return(0); 1017 } 1018 1019 /* 1020 * The object is dead but still has an object<->pager association. Sleep 1021 * and return. The caller typically retests the association in a loop. 1022 * 1023 * The caller must hold the object. 1024 */ 1025 void 1026 vm_object_dead_sleep(vm_object_t object, const char *wmesg) 1027 { 1028 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1029 if (object->handle) { 1030 vm_object_set_flag(object, OBJ_DEADWNT); 1031 tsleep(object, 0, wmesg, 0); 1032 /* object may be invalid after this point */ 1033 } 1034 } 1035 1036 /* 1037 * Wakeup anyone waiting for the object<->pager disassociation on 1038 * a dead object. 1039 * 1040 * The caller must hold the object. 1041 */ 1042 void 1043 vm_object_dead_wakeup(vm_object_t object) 1044 { 1045 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1046 if (object->flags & OBJ_DEADWNT) { 1047 vm_object_clear_flag(object, OBJ_DEADWNT); 1048 wakeup(object); 1049 } 1050 } 1051 1052 /* 1053 * Clean all dirty pages in the specified range of object. Leaves page 1054 * on whatever queue it is currently on. If NOSYNC is set then do not 1055 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 1056 * leaving the object dirty. 1057 * 1058 * When stuffing pages asynchronously, allow clustering. XXX we need a 1059 * synchronous clustering mode implementation. 1060 * 1061 * Odd semantics: if start == end, we clean everything. 1062 * 1063 * The object must be locked? XXX 1064 */ 1065 static int vm_object_page_clean_pass1(struct vm_page *p, void *data); 1066 static int vm_object_page_clean_pass2(struct vm_page *p, void *data); 1067 1068 void 1069 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1070 int flags) 1071 { 1072 struct rb_vm_page_scan_info info; 1073 struct vnode *vp; 1074 int wholescan; 1075 int pagerflags; 1076 int generation; 1077 1078 vm_object_hold(object); 1079 if (object->type != OBJT_VNODE || 1080 (object->flags & OBJ_MIGHTBEDIRTY) == 0) { 1081 vm_object_drop(object); 1082 return; 1083 } 1084 1085 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 1086 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1087 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 1088 1089 vp = object->handle; 1090 1091 /* 1092 * Interlock other major object operations. This allows us to 1093 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY. 1094 */ 1095 vm_object_set_flag(object, OBJ_CLEANING); 1096 1097 /* 1098 * Handle 'entire object' case 1099 */ 1100 info.start_pindex = start; 1101 if (end == 0) { 1102 info.end_pindex = object->size - 1; 1103 } else { 1104 info.end_pindex = end - 1; 1105 } 1106 wholescan = (start == 0 && info.end_pindex == object->size - 1); 1107 info.limit = flags; 1108 info.pagerflags = pagerflags; 1109 info.object = object; 1110 1111 /* 1112 * If cleaning the entire object do a pass to mark the pages read-only. 1113 * If everything worked out ok, clear OBJ_WRITEABLE and 1114 * OBJ_MIGHTBEDIRTY. 1115 */ 1116 if (wholescan) { 1117 info.error = 0; 1118 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1119 vm_object_page_clean_pass1, &info); 1120 if (info.error == 0) { 1121 vm_object_clear_flag(object, 1122 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1123 if (object->type == OBJT_VNODE && 1124 (vp = (struct vnode *)object->handle) != NULL) { 1125 if (vp->v_flag & VOBJDIRTY) 1126 vclrflags(vp, VOBJDIRTY); 1127 } 1128 } 1129 } 1130 1131 /* 1132 * Do a pass to clean all the dirty pages we find. 1133 */ 1134 do { 1135 info.error = 0; 1136 generation = object->generation; 1137 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1138 vm_object_page_clean_pass2, &info); 1139 } while (info.error || generation != object->generation); 1140 1141 vm_object_clear_flag(object, OBJ_CLEANING); 1142 vm_object_drop(object); 1143 } 1144 1145 /* 1146 * The caller must hold the object. 1147 */ 1148 static 1149 int 1150 vm_object_page_clean_pass1(struct vm_page *p, void *data) 1151 { 1152 struct rb_vm_page_scan_info *info = data; 1153 1154 vm_page_flag_set(p, PG_CLEANCHK); 1155 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1156 info->error = 1; 1157 } else if (vm_page_busy_try(p, FALSE) == 0) { 1158 vm_page_protect(p, VM_PROT_READ); /* must not block */ 1159 vm_page_wakeup(p); 1160 } else { 1161 info->error = 1; 1162 } 1163 lwkt_yield(); 1164 return(0); 1165 } 1166 1167 /* 1168 * The caller must hold the object 1169 */ 1170 static 1171 int 1172 vm_object_page_clean_pass2(struct vm_page *p, void *data) 1173 { 1174 struct rb_vm_page_scan_info *info = data; 1175 int generation; 1176 1177 /* 1178 * Do not mess with pages that were inserted after we started 1179 * the cleaning pass. 1180 */ 1181 if ((p->flags & PG_CLEANCHK) == 0) 1182 goto done; 1183 1184 generation = info->object->generation; 1185 vm_page_busy_wait(p, TRUE, "vpcwai"); 1186 if (p->object != info->object || 1187 info->object->generation != generation) { 1188 info->error = 1; 1189 vm_page_wakeup(p); 1190 goto done; 1191 } 1192 1193 /* 1194 * Before wasting time traversing the pmaps, check for trivial 1195 * cases where the page cannot be dirty. 1196 */ 1197 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) { 1198 KKASSERT((p->dirty & p->valid) == 0); 1199 vm_page_wakeup(p); 1200 goto done; 1201 } 1202 1203 /* 1204 * Check whether the page is dirty or not. The page has been set 1205 * to be read-only so the check will not race a user dirtying the 1206 * page. 1207 */ 1208 vm_page_test_dirty(p); 1209 if ((p->dirty & p->valid) == 0) { 1210 vm_page_flag_clear(p, PG_CLEANCHK); 1211 vm_page_wakeup(p); 1212 goto done; 1213 } 1214 1215 /* 1216 * If we have been asked to skip nosync pages and this is a 1217 * nosync page, skip it. Note that the object flags were 1218 * not cleared in this case (because pass1 will have returned an 1219 * error), so we do not have to set them. 1220 */ 1221 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 1222 vm_page_flag_clear(p, PG_CLEANCHK); 1223 vm_page_wakeup(p); 1224 goto done; 1225 } 1226 1227 /* 1228 * Flush as many pages as we can. PG_CLEANCHK will be cleared on 1229 * the pages that get successfully flushed. Set info->error if 1230 * we raced an object modification. 1231 */ 1232 vm_object_page_collect_flush(info->object, p, info->pagerflags); 1233 vm_wait_nominal(); 1234 done: 1235 lwkt_yield(); 1236 return(0); 1237 } 1238 1239 /* 1240 * Collect the specified page and nearby pages and flush them out. 1241 * The number of pages flushed is returned. The passed page is busied 1242 * by the caller and we are responsible for its disposition. 1243 * 1244 * The caller must hold the object. 1245 */ 1246 static void 1247 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags) 1248 { 1249 int runlen; 1250 int error; 1251 int maxf; 1252 int chkb; 1253 int maxb; 1254 int i; 1255 vm_pindex_t pi; 1256 vm_page_t maf[vm_pageout_page_count]; 1257 vm_page_t mab[vm_pageout_page_count]; 1258 vm_page_t ma[vm_pageout_page_count]; 1259 1260 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1261 1262 pi = p->pindex; 1263 1264 maxf = 0; 1265 for(i = 1; i < vm_pageout_page_count; i++) { 1266 vm_page_t tp; 1267 1268 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error); 1269 if (error) 1270 break; 1271 if (tp == NULL) 1272 break; 1273 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1274 (tp->flags & PG_CLEANCHK) == 0) { 1275 vm_page_wakeup(tp); 1276 break; 1277 } 1278 if ((tp->queue - tp->pc) == PQ_CACHE) { 1279 vm_page_flag_clear(tp, PG_CLEANCHK); 1280 vm_page_wakeup(tp); 1281 break; 1282 } 1283 vm_page_test_dirty(tp); 1284 if ((tp->dirty & tp->valid) == 0) { 1285 vm_page_flag_clear(tp, PG_CLEANCHK); 1286 vm_page_wakeup(tp); 1287 break; 1288 } 1289 maf[i - 1] = tp; 1290 maxf++; 1291 } 1292 1293 maxb = 0; 1294 chkb = vm_pageout_page_count - maxf; 1295 /* 1296 * NOTE: chkb can be 0 1297 */ 1298 for(i = 1; chkb && i < chkb; i++) { 1299 vm_page_t tp; 1300 1301 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error); 1302 if (error) 1303 break; 1304 if (tp == NULL) 1305 break; 1306 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 1307 (tp->flags & PG_CLEANCHK) == 0) { 1308 vm_page_wakeup(tp); 1309 break; 1310 } 1311 if ((tp->queue - tp->pc) == PQ_CACHE) { 1312 vm_page_flag_clear(tp, PG_CLEANCHK); 1313 vm_page_wakeup(tp); 1314 break; 1315 } 1316 vm_page_test_dirty(tp); 1317 if ((tp->dirty & tp->valid) == 0) { 1318 vm_page_flag_clear(tp, PG_CLEANCHK); 1319 vm_page_wakeup(tp); 1320 break; 1321 } 1322 mab[i - 1] = tp; 1323 maxb++; 1324 } 1325 1326 /* 1327 * All pages in the maf[] and mab[] array are busied. 1328 */ 1329 for (i = 0; i < maxb; i++) { 1330 int index = (maxb - i) - 1; 1331 ma[index] = mab[i]; 1332 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1333 } 1334 vm_page_flag_clear(p, PG_CLEANCHK); 1335 ma[maxb] = p; 1336 for(i = 0; i < maxf; i++) { 1337 int index = (maxb + i) + 1; 1338 ma[index] = maf[i]; 1339 vm_page_flag_clear(ma[index], PG_CLEANCHK); 1340 } 1341 runlen = maxb + maxf + 1; 1342 1343 for (i = 0; i < runlen; i++) 1344 vm_page_hold(ma[i]); 1345 1346 vm_pageout_flush(ma, runlen, pagerflags); 1347 1348 /* 1349 * WARNING: Related pages are still held but the BUSY was inherited 1350 * by the pageout I/O, so the pages might not be busy any 1351 * more. We cannot re-protect the page without waiting 1352 * for the I/O to complete and then busying it again. 1353 */ 1354 for (i = 0; i < runlen; i++) { 1355 if (ma[i]->valid & ma[i]->dirty) { 1356 /*vm_page_protect(ma[i], VM_PROT_READ);*/ 1357 vm_page_flag_set(ma[i], PG_CLEANCHK); 1358 1359 /* 1360 * maxf will end up being the actual number of pages 1361 * we wrote out contiguously, non-inclusive of the 1362 * first page. We do not count look-behind pages. 1363 */ 1364 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 1365 maxf = i - maxb - 1; 1366 } 1367 vm_page_unhold(ma[i]); 1368 } 1369 /*return(maxf + 1);*/ 1370 } 1371 1372 /* 1373 * Same as vm_object_pmap_copy, except range checking really 1374 * works, and is meant for small sections of an object. 1375 * 1376 * This code protects resident pages by making them read-only 1377 * and is typically called on a fork or split when a page 1378 * is converted to copy-on-write. 1379 * 1380 * NOTE: If the page is already at VM_PROT_NONE, calling 1381 * vm_page_protect will have no effect. 1382 */ 1383 void 1384 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1385 { 1386 vm_pindex_t idx; 1387 vm_page_t p; 1388 1389 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 1390 return; 1391 1392 vm_object_hold(object); 1393 for (idx = start; idx < end; idx++) { 1394 p = vm_page_lookup(object, idx); 1395 if (p == NULL) 1396 continue; 1397 vm_page_protect(p, VM_PROT_READ); 1398 } 1399 vm_object_drop(object); 1400 } 1401 1402 /* 1403 * Removes all physical pages in the specified object range from all 1404 * physical maps. 1405 * 1406 * The object must *not* be locked. 1407 */ 1408 1409 static int vm_object_pmap_remove_callback(vm_page_t p, void *data); 1410 1411 void 1412 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1413 { 1414 struct rb_vm_page_scan_info info; 1415 1416 if (object == NULL) 1417 return; 1418 info.start_pindex = start; 1419 info.end_pindex = end - 1; 1420 1421 vm_object_hold(object); 1422 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 1423 vm_object_pmap_remove_callback, &info); 1424 if (start == 0 && end == object->size) 1425 vm_object_clear_flag(object, OBJ_WRITEABLE); 1426 vm_object_drop(object); 1427 } 1428 1429 /* 1430 * The caller must hold the object 1431 */ 1432 static int 1433 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused) 1434 { 1435 vm_page_protect(p, VM_PROT_NONE); 1436 return(0); 1437 } 1438 1439 /* 1440 * Implements the madvise function at the object/page level. 1441 * 1442 * MADV_WILLNEED (any object) 1443 * 1444 * Activate the specified pages if they are resident. 1445 * 1446 * MADV_DONTNEED (any object) 1447 * 1448 * Deactivate the specified pages if they are resident. 1449 * 1450 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only) 1451 * 1452 * Deactivate and clean the specified pages if they are 1453 * resident. This permits the process to reuse the pages 1454 * without faulting or the kernel to reclaim the pages 1455 * without I/O. 1456 * 1457 * No requirements. 1458 */ 1459 void 1460 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1461 { 1462 vm_pindex_t end, tpindex; 1463 vm_object_t tobject; 1464 vm_object_t xobj; 1465 vm_page_t m; 1466 int error; 1467 1468 if (object == NULL) 1469 return; 1470 1471 end = pindex + count; 1472 1473 vm_object_hold(object); 1474 tobject = object; 1475 1476 /* 1477 * Locate and adjust resident pages 1478 */ 1479 for (; pindex < end; pindex += 1) { 1480 relookup: 1481 if (tobject != object) 1482 vm_object_drop(tobject); 1483 tobject = object; 1484 tpindex = pindex; 1485 shadowlookup: 1486 /* 1487 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1488 * and those pages must be OBJ_ONEMAPPING. 1489 */ 1490 if (advise == MADV_FREE) { 1491 if ((tobject->type != OBJT_DEFAULT && 1492 tobject->type != OBJT_SWAP) || 1493 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1494 continue; 1495 } 1496 } 1497 1498 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error); 1499 1500 if (error) { 1501 vm_page_sleep_busy(m, TRUE, "madvpo"); 1502 goto relookup; 1503 } 1504 if (m == NULL) { 1505 /* 1506 * There may be swap even if there is no backing page 1507 */ 1508 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1509 swap_pager_freespace(tobject, tpindex, 1); 1510 1511 /* 1512 * next object 1513 */ 1514 while ((xobj = tobject->backing_object) != NULL) { 1515 KKASSERT(xobj != object); 1516 vm_object_hold(xobj); 1517 if (xobj == tobject->backing_object) 1518 break; 1519 vm_object_drop(xobj); 1520 } 1521 if (xobj == NULL) 1522 continue; 1523 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1524 if (tobject != object) { 1525 vm_object_lock_swap(); 1526 vm_object_drop(tobject); 1527 } 1528 tobject = xobj; 1529 goto shadowlookup; 1530 } 1531 1532 /* 1533 * If the page is not in a normal active state, we skip it. 1534 * If the page is not managed there are no page queues to 1535 * mess with. Things can break if we mess with pages in 1536 * any of the below states. 1537 */ 1538 if (m->wire_count || 1539 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 1540 m->valid != VM_PAGE_BITS_ALL 1541 ) { 1542 vm_page_wakeup(m); 1543 continue; 1544 } 1545 1546 /* 1547 * Theoretically once a page is known not to be busy, an 1548 * interrupt cannot come along and rip it out from under us. 1549 */ 1550 1551 if (advise == MADV_WILLNEED) { 1552 vm_page_activate(m); 1553 } else if (advise == MADV_DONTNEED) { 1554 vm_page_dontneed(m); 1555 } else if (advise == MADV_FREE) { 1556 /* 1557 * Mark the page clean. This will allow the page 1558 * to be freed up by the system. However, such pages 1559 * are often reused quickly by malloc()/free() 1560 * so we do not do anything that would cause 1561 * a page fault if we can help it. 1562 * 1563 * Specifically, we do not try to actually free 1564 * the page now nor do we try to put it in the 1565 * cache (which would cause a page fault on reuse). 1566 * 1567 * But we do make the page is freeable as we 1568 * can without actually taking the step of unmapping 1569 * it. 1570 */ 1571 pmap_clear_modify(m); 1572 m->dirty = 0; 1573 m->act_count = 0; 1574 vm_page_dontneed(m); 1575 if (tobject->type == OBJT_SWAP) 1576 swap_pager_freespace(tobject, tpindex, 1); 1577 } 1578 vm_page_wakeup(m); 1579 } 1580 if (tobject != object) 1581 vm_object_drop(tobject); 1582 vm_object_drop(object); 1583 } 1584 1585 /* 1586 * Create a new object which is backed by the specified existing object 1587 * range. Replace the pointer and offset that was pointing at the existing 1588 * object with the pointer/offset for the new object. 1589 * 1590 * No other requirements. 1591 */ 1592 void 1593 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length, 1594 int addref) 1595 { 1596 vm_object_t source; 1597 vm_object_t result; 1598 1599 source = *objectp; 1600 1601 /* 1602 * Don't create the new object if the old object isn't shared. 1603 * We have to chain wait before adding the reference to avoid 1604 * racing a collapse or deallocation. 1605 * 1606 * Add the additional ref to source here to avoid racing a later 1607 * collapse or deallocation. Clear the ONEMAPPING flag whether 1608 * addref is TRUE or not in this case because the original object 1609 * will be shadowed. 1610 */ 1611 if (source) { 1612 vm_object_hold(source); 1613 vm_object_chain_wait(source); 1614 if (source->ref_count == 1 && 1615 source->handle == NULL && 1616 (source->type == OBJT_DEFAULT || 1617 source->type == OBJT_SWAP)) { 1618 vm_object_drop(source); 1619 if (addref) { 1620 vm_object_reference_locked(source); 1621 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1622 } 1623 return; 1624 } 1625 vm_object_reference_locked(source); 1626 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1627 } 1628 1629 /* 1630 * Allocate a new object with the given length. The new object 1631 * is returned referenced but we may have to add another one. 1632 * If we are adding a second reference we must clear OBJ_ONEMAPPING. 1633 * (typically because the caller is about to clone a vm_map_entry). 1634 * 1635 * The source object currently has an extra reference to prevent 1636 * collapses into it while we mess with its shadow list, which 1637 * we will remove later in this routine. 1638 */ 1639 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 1640 panic("vm_object_shadow: no object for shadowing"); 1641 vm_object_hold(result); 1642 if (addref) { 1643 vm_object_reference_locked(result); 1644 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1645 } 1646 1647 /* 1648 * The new object shadows the source object. Chain wait before 1649 * adjusting shadow_count or the shadow list to avoid races. 1650 * 1651 * Try to optimize the result object's page color when shadowing 1652 * in order to maintain page coloring consistency in the combined 1653 * shadowed object. 1654 */ 1655 KKASSERT(result->backing_object == NULL); 1656 result->backing_object = source; 1657 if (source) { 1658 vm_object_chain_wait(source); 1659 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1660 source->shadow_count++; 1661 source->generation++; 1662 /* cpu localization twist */ 1663 result->pg_color = (int)(intptr_t)curthread; 1664 } 1665 1666 /* 1667 * Adjust the return storage. Drop the ref on source before 1668 * returning. 1669 */ 1670 result->backing_object_offset = *offset; 1671 vm_object_drop(result); 1672 *offset = 0; 1673 if (source) { 1674 vm_object_deallocate_locked(source); 1675 vm_object_drop(source); 1676 } 1677 1678 /* 1679 * Return the new things 1680 */ 1681 *objectp = result; 1682 } 1683 1684 #define OBSC_TEST_ALL_SHADOWED 0x0001 1685 #define OBSC_COLLAPSE_NOWAIT 0x0002 1686 #define OBSC_COLLAPSE_WAIT 0x0004 1687 1688 static int vm_object_backing_scan_callback(vm_page_t p, void *data); 1689 1690 /* 1691 * The caller must hold the object. 1692 */ 1693 static __inline int 1694 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op) 1695 { 1696 struct rb_vm_page_scan_info info; 1697 1698 vm_object_assert_held(object); 1699 vm_object_assert_held(backing_object); 1700 1701 KKASSERT(backing_object == object->backing_object); 1702 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1703 1704 /* 1705 * Initial conditions 1706 */ 1707 if (op & OBSC_TEST_ALL_SHADOWED) { 1708 /* 1709 * We do not want to have to test for the existence of 1710 * swap pages in the backing object. XXX but with the 1711 * new swapper this would be pretty easy to do. 1712 * 1713 * XXX what about anonymous MAP_SHARED memory that hasn't 1714 * been ZFOD faulted yet? If we do not test for this, the 1715 * shadow test may succeed! XXX 1716 */ 1717 if (backing_object->type != OBJT_DEFAULT) 1718 return(0); 1719 } 1720 if (op & OBSC_COLLAPSE_WAIT) { 1721 KKASSERT((backing_object->flags & OBJ_DEAD) == 0); 1722 vm_object_set_flag(backing_object, OBJ_DEAD); 1723 lwkt_gettoken(&vmobj_token); 1724 TAILQ_REMOVE(&vm_object_list, backing_object, object_list); 1725 vm_object_count--; 1726 lwkt_reltoken(&vmobj_token); 1727 vm_object_dead_wakeup(backing_object); 1728 } 1729 1730 /* 1731 * Our scan. We have to retry if a negative error code is returned, 1732 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that 1733 * the scan had to be stopped because the parent does not completely 1734 * shadow the child. 1735 */ 1736 info.object = object; 1737 info.backing_object = backing_object; 1738 info.limit = op; 1739 do { 1740 info.error = 1; 1741 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL, 1742 vm_object_backing_scan_callback, 1743 &info); 1744 } while (info.error < 0); 1745 1746 return(info.error); 1747 } 1748 1749 /* 1750 * The caller must hold the object. 1751 */ 1752 static int 1753 vm_object_backing_scan_callback(vm_page_t p, void *data) 1754 { 1755 struct rb_vm_page_scan_info *info = data; 1756 vm_object_t backing_object; 1757 vm_object_t object; 1758 vm_pindex_t pindex; 1759 vm_pindex_t new_pindex; 1760 vm_pindex_t backing_offset_index; 1761 int op; 1762 1763 pindex = p->pindex; 1764 new_pindex = pindex - info->backing_offset_index; 1765 op = info->limit; 1766 object = info->object; 1767 backing_object = info->backing_object; 1768 backing_offset_index = info->backing_offset_index; 1769 1770 if (op & OBSC_TEST_ALL_SHADOWED) { 1771 vm_page_t pp; 1772 1773 /* 1774 * Ignore pages outside the parent object's range 1775 * and outside the parent object's mapping of the 1776 * backing object. 1777 * 1778 * note that we do not busy the backing object's 1779 * page. 1780 */ 1781 if (pindex < backing_offset_index || 1782 new_pindex >= object->size 1783 ) { 1784 return(0); 1785 } 1786 1787 /* 1788 * See if the parent has the page or if the parent's 1789 * object pager has the page. If the parent has the 1790 * page but the page is not valid, the parent's 1791 * object pager must have the page. 1792 * 1793 * If this fails, the parent does not completely shadow 1794 * the object and we might as well give up now. 1795 */ 1796 pp = vm_page_lookup(object, new_pindex); 1797 if ((pp == NULL || pp->valid == 0) && 1798 !vm_pager_has_page(object, new_pindex) 1799 ) { 1800 info->error = 0; /* problemo */ 1801 return(-1); /* stop the scan */ 1802 } 1803 } 1804 1805 /* 1806 * Check for busy page. Note that we may have lost (p) when we 1807 * possibly blocked above. 1808 */ 1809 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1810 vm_page_t pp; 1811 1812 if (vm_page_busy_try(p, TRUE)) { 1813 if (op & OBSC_COLLAPSE_NOWAIT) { 1814 return(0); 1815 } else { 1816 /* 1817 * If we slept, anything could have 1818 * happened. Ask that the scan be restarted. 1819 * 1820 * Since the object is marked dead, the 1821 * backing offset should not have changed. 1822 */ 1823 vm_page_sleep_busy(p, TRUE, "vmocol"); 1824 info->error = -1; 1825 return(-1); 1826 } 1827 } 1828 1829 /* 1830 * If (p) is no longer valid restart the scan. 1831 */ 1832 if (p->object != backing_object || p->pindex != pindex) { 1833 kprintf("vm_object_backing_scan: Warning: page " 1834 "%p ripped out from under us\n", p); 1835 vm_page_wakeup(p); 1836 info->error = -1; 1837 return(-1); 1838 } 1839 1840 if (op & OBSC_COLLAPSE_NOWAIT) { 1841 if (p->valid == 0 || 1842 p->wire_count || 1843 (p->flags & PG_NEED_COMMIT)) { 1844 vm_page_wakeup(p); 1845 return(0); 1846 } 1847 } else { 1848 /* XXX what if p->valid == 0 , hold_count, etc? */ 1849 } 1850 1851 KASSERT( 1852 p->object == backing_object, 1853 ("vm_object_qcollapse(): object mismatch") 1854 ); 1855 1856 /* 1857 * Destroy any associated swap 1858 */ 1859 if (backing_object->type == OBJT_SWAP) 1860 swap_pager_freespace(backing_object, p->pindex, 1); 1861 1862 if ( 1863 p->pindex < backing_offset_index || 1864 new_pindex >= object->size 1865 ) { 1866 /* 1867 * Page is out of the parent object's range, we 1868 * can simply destroy it. 1869 */ 1870 vm_page_protect(p, VM_PROT_NONE); 1871 vm_page_free(p); 1872 return(0); 1873 } 1874 1875 pp = vm_page_lookup(object, new_pindex); 1876 if (pp != NULL || vm_pager_has_page(object, new_pindex)) { 1877 /* 1878 * page already exists in parent OR swap exists 1879 * for this location in the parent. Destroy 1880 * the original page from the backing object. 1881 * 1882 * Leave the parent's page alone 1883 */ 1884 vm_page_protect(p, VM_PROT_NONE); 1885 vm_page_free(p); 1886 return(0); 1887 } 1888 1889 /* 1890 * Page does not exist in parent, rename the 1891 * page from the backing object to the main object. 1892 * 1893 * If the page was mapped to a process, it can remain 1894 * mapped through the rename. 1895 */ 1896 if ((p->queue - p->pc) == PQ_CACHE) 1897 vm_page_deactivate(p); 1898 1899 vm_page_rename(p, object, new_pindex); 1900 vm_page_wakeup(p); 1901 /* page automatically made dirty by rename */ 1902 } 1903 return(0); 1904 } 1905 1906 /* 1907 * This version of collapse allows the operation to occur earlier and 1908 * when paging_in_progress is true for an object... This is not a complete 1909 * operation, but should plug 99.9% of the rest of the leaks. 1910 * 1911 * The caller must hold the object and backing_object and both must be 1912 * chainlocked. 1913 * 1914 * (only called from vm_object_collapse) 1915 */ 1916 static void 1917 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object) 1918 { 1919 if (backing_object->ref_count == 1) { 1920 backing_object->ref_count += 2; 1921 vm_object_backing_scan(object, backing_object, 1922 OBSC_COLLAPSE_NOWAIT); 1923 backing_object->ref_count -= 2; 1924 } 1925 } 1926 1927 /* 1928 * Collapse an object with the object backing it. Pages in the backing 1929 * object are moved into the parent, and the backing object is deallocated. 1930 * Any conflict is resolved in favor of the parent's existing pages. 1931 * 1932 * object must be held and chain-locked on call. 1933 * 1934 * The caller must have an extra ref on object to prevent a race from 1935 * destroying it during the collapse. 1936 */ 1937 void 1938 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp) 1939 { 1940 struct vm_object_dealloc_list *dlist = NULL; 1941 vm_object_t backing_object; 1942 1943 /* 1944 * Only one thread is attempting a collapse at any given moment. 1945 * There are few restrictions for (object) that callers of this 1946 * function check so reentrancy is likely. 1947 */ 1948 KKASSERT(object != NULL); 1949 vm_object_assert_held(object); 1950 KKASSERT(object->flags & OBJ_CHAINLOCK); 1951 1952 for (;;) { 1953 vm_object_t bbobj; 1954 int dodealloc; 1955 1956 /* 1957 * We have to hold the backing object, check races. 1958 */ 1959 while ((backing_object = object->backing_object) != NULL) { 1960 vm_object_hold(backing_object); 1961 if (backing_object == object->backing_object) 1962 break; 1963 vm_object_drop(backing_object); 1964 } 1965 1966 /* 1967 * No backing object? Nothing to collapse then. 1968 */ 1969 if (backing_object == NULL) 1970 break; 1971 1972 /* 1973 * You can't collapse with a non-default/non-swap object. 1974 */ 1975 if (backing_object->type != OBJT_DEFAULT && 1976 backing_object->type != OBJT_SWAP) { 1977 vm_object_drop(backing_object); 1978 backing_object = NULL; 1979 break; 1980 } 1981 1982 /* 1983 * Chain-lock the backing object too because if we 1984 * successfully merge its pages into the top object we 1985 * will collapse backing_object->backing_object as the 1986 * new backing_object. Re-check that it is still our 1987 * backing object. 1988 */ 1989 vm_object_chain_acquire(backing_object); 1990 if (backing_object != object->backing_object) { 1991 vm_object_chain_release(backing_object); 1992 vm_object_drop(backing_object); 1993 continue; 1994 } 1995 1996 /* 1997 * we check the backing object first, because it is most likely 1998 * not collapsable. 1999 */ 2000 if (backing_object->handle != NULL || 2001 (backing_object->type != OBJT_DEFAULT && 2002 backing_object->type != OBJT_SWAP) || 2003 (backing_object->flags & OBJ_DEAD) || 2004 object->handle != NULL || 2005 (object->type != OBJT_DEFAULT && 2006 object->type != OBJT_SWAP) || 2007 (object->flags & OBJ_DEAD)) { 2008 break; 2009 } 2010 2011 /* 2012 * If paging is in progress we can't do a normal collapse. 2013 */ 2014 if ( 2015 object->paging_in_progress != 0 || 2016 backing_object->paging_in_progress != 0 2017 ) { 2018 vm_object_qcollapse(object, backing_object); 2019 break; 2020 } 2021 2022 /* 2023 * We know that we can either collapse the backing object (if 2024 * the parent is the only reference to it) or (perhaps) have 2025 * the parent bypass the object if the parent happens to shadow 2026 * all the resident pages in the entire backing object. 2027 * 2028 * This is ignoring pager-backed pages such as swap pages. 2029 * vm_object_backing_scan fails the shadowing test in this 2030 * case. 2031 */ 2032 if (backing_object->ref_count == 1) { 2033 /* 2034 * If there is exactly one reference to the backing 2035 * object, we can collapse it into the parent. 2036 */ 2037 KKASSERT(object->backing_object == backing_object); 2038 vm_object_backing_scan(object, backing_object, 2039 OBSC_COLLAPSE_WAIT); 2040 2041 /* 2042 * Move the pager from backing_object to object. 2043 */ 2044 if (backing_object->type == OBJT_SWAP) { 2045 vm_object_pip_add(backing_object, 1); 2046 2047 /* 2048 * scrap the paging_offset junk and do a 2049 * discrete copy. This also removes major 2050 * assumptions about how the swap-pager 2051 * works from where it doesn't belong. The 2052 * new swapper is able to optimize the 2053 * destroy-source case. 2054 */ 2055 vm_object_pip_add(object, 1); 2056 swap_pager_copy(backing_object, object, 2057 OFF_TO_IDX(object->backing_object_offset), 2058 TRUE); 2059 vm_object_pip_wakeup(object); 2060 vm_object_pip_wakeup(backing_object); 2061 } 2062 2063 /* 2064 * Object now shadows whatever backing_object did. 2065 * Remove object from backing_object's shadow_list. 2066 */ 2067 LIST_REMOVE(object, shadow_list); 2068 KKASSERT(object->backing_object == backing_object); 2069 backing_object->shadow_count--; 2070 backing_object->generation++; 2071 2072 /* 2073 * backing_object->backing_object moves from within 2074 * backing_object to within object. 2075 */ 2076 while ((bbobj = backing_object->backing_object) != NULL) { 2077 vm_object_hold(bbobj); 2078 if (bbobj == backing_object->backing_object) 2079 break; 2080 vm_object_drop(bbobj); 2081 } 2082 if (bbobj) { 2083 LIST_REMOVE(backing_object, shadow_list); 2084 bbobj->shadow_count--; 2085 bbobj->generation++; 2086 backing_object->backing_object = NULL; 2087 } 2088 object->backing_object = bbobj; 2089 if (bbobj) { 2090 LIST_INSERT_HEAD(&bbobj->shadow_head, 2091 object, shadow_list); 2092 bbobj->shadow_count++; 2093 bbobj->generation++; 2094 } 2095 2096 object->backing_object_offset += 2097 backing_object->backing_object_offset; 2098 2099 vm_object_drop(bbobj); 2100 2101 /* 2102 * Discard the old backing_object. Nothing should be 2103 * able to ref it, other than a vm_map_split(), 2104 * and vm_map_split() will stall on our chain lock. 2105 * And we control the parent so it shouldn't be 2106 * possible for it to go away either. 2107 * 2108 * Since the backing object has no pages, no pager 2109 * left, and no object references within it, all 2110 * that is necessary is to dispose of it. 2111 */ 2112 KASSERT(backing_object->ref_count == 1, 2113 ("backing_object %p was somehow " 2114 "re-referenced during collapse!", 2115 backing_object)); 2116 KASSERT(RB_EMPTY(&backing_object->rb_memq), 2117 ("backing_object %p somehow has left " 2118 "over pages during collapse!", 2119 backing_object)); 2120 2121 /* 2122 * The object can be destroyed. 2123 * 2124 * XXX just fall through and dodealloc instead 2125 * of forcing destruction? 2126 */ 2127 --backing_object->ref_count; 2128 if ((backing_object->flags & OBJ_DEAD) == 0) 2129 vm_object_terminate(backing_object); 2130 object_collapses++; 2131 dodealloc = 0; 2132 } else { 2133 /* 2134 * If we do not entirely shadow the backing object, 2135 * there is nothing we can do so we give up. 2136 */ 2137 if (vm_object_backing_scan(object, backing_object, 2138 OBSC_TEST_ALL_SHADOWED) == 0) { 2139 break; 2140 } 2141 2142 /* 2143 * bbobj is backing_object->backing_object. Since 2144 * object completely shadows backing_object we can 2145 * bypass it and become backed by bbobj instead. 2146 */ 2147 while ((bbobj = backing_object->backing_object) != NULL) { 2148 vm_object_hold(bbobj); 2149 if (bbobj == backing_object->backing_object) 2150 break; 2151 vm_object_drop(bbobj); 2152 } 2153 2154 /* 2155 * Make object shadow bbobj instead of backing_object. 2156 * Remove object from backing_object's shadow list. 2157 * 2158 * Deallocating backing_object will not remove 2159 * it, since its reference count is at least 2. 2160 */ 2161 KKASSERT(object->backing_object == backing_object); 2162 LIST_REMOVE(object, shadow_list); 2163 backing_object->shadow_count--; 2164 backing_object->generation++; 2165 2166 /* 2167 * Add a ref to bbobj, bbobj now shadows object. 2168 * 2169 * NOTE: backing_object->backing_object still points 2170 * to bbobj. That relationship remains intact 2171 * because backing_object has > 1 ref, so 2172 * someone else is pointing to it (hence why 2173 * we can't collapse it into object and can 2174 * only handle the all-shadowed bypass case). 2175 */ 2176 if (bbobj) { 2177 vm_object_chain_wait(bbobj); 2178 vm_object_reference_locked(bbobj); 2179 LIST_INSERT_HEAD(&bbobj->shadow_head, 2180 object, shadow_list); 2181 bbobj->shadow_count++; 2182 bbobj->generation++; 2183 object->backing_object_offset += 2184 backing_object->backing_object_offset; 2185 object->backing_object = bbobj; 2186 vm_object_drop(bbobj); 2187 } else { 2188 object->backing_object = NULL; 2189 } 2190 2191 /* 2192 * Drop the reference count on backing_object. To 2193 * handle ref_count races properly we can't assume 2194 * that the ref_count is still at least 2 so we 2195 * have to actually call vm_object_deallocate() 2196 * (after clearing the chainlock). 2197 */ 2198 object_bypasses++; 2199 dodealloc = 1; 2200 } 2201 2202 /* 2203 * Ok, we want to loop on the new object->bbobj association, 2204 * possibly collapsing it further. However if dodealloc is 2205 * non-zero we have to deallocate the backing_object which 2206 * itself can potentially undergo a collapse, creating a 2207 * recursion depth issue with the LWKT token subsystem. 2208 * 2209 * In the case where we must deallocate the backing_object 2210 * it is possible now that the backing_object has a single 2211 * shadow count on some other object (not represented here 2212 * as yet), since it no longer shadows us. Thus when we 2213 * call vm_object_deallocate() it may attempt to collapse 2214 * itself into its remaining parent. 2215 */ 2216 if (dodealloc) { 2217 struct vm_object_dealloc_list *dtmp; 2218 2219 vm_object_chain_release(backing_object); 2220 vm_object_unlock(backing_object); 2221 /* backing_object remains held */ 2222 2223 /* 2224 * Auto-deallocation list for caller convenience. 2225 */ 2226 if (dlistp == NULL) 2227 dlistp = &dlist; 2228 2229 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK); 2230 dtmp->object = backing_object; 2231 dtmp->next = *dlistp; 2232 *dlistp = dtmp; 2233 } else { 2234 vm_object_chain_release(backing_object); 2235 vm_object_drop(backing_object); 2236 } 2237 /* backing_object = NULL; not needed */ 2238 /* loop */ 2239 } 2240 2241 /* 2242 * Clean up any left over backing_object 2243 */ 2244 if (backing_object) { 2245 vm_object_chain_release(backing_object); 2246 vm_object_drop(backing_object); 2247 } 2248 2249 /* 2250 * Clean up any auto-deallocation list. This is a convenience 2251 * for top-level callers so they don't have to pass &dlist. 2252 * Do not clean up any caller-passed dlistp, the caller will 2253 * do that. 2254 */ 2255 if (dlist) 2256 vm_object_deallocate_list(&dlist); 2257 2258 } 2259 2260 /* 2261 * vm_object_collapse() may collect additional objects in need of 2262 * deallocation. This routine deallocates these objects. The 2263 * deallocation itself can trigger additional collapses (which the 2264 * deallocate function takes care of). This procedure is used to 2265 * reduce procedural recursion since these vm_object shadow chains 2266 * can become quite long. 2267 */ 2268 void 2269 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp) 2270 { 2271 struct vm_object_dealloc_list *dlist; 2272 2273 while ((dlist = *dlistp) != NULL) { 2274 *dlistp = dlist->next; 2275 vm_object_lock(dlist->object); 2276 vm_object_deallocate_locked(dlist->object); 2277 vm_object_drop(dlist->object); 2278 kfree(dlist, M_TEMP); 2279 } 2280 } 2281 2282 /* 2283 * Removes all physical pages in the specified object range from the 2284 * object's list of pages. 2285 * 2286 * No requirements. 2287 */ 2288 static int vm_object_page_remove_callback(vm_page_t p, void *data); 2289 2290 void 2291 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2292 boolean_t clean_only) 2293 { 2294 struct rb_vm_page_scan_info info; 2295 int all; 2296 2297 /* 2298 * Degenerate cases and assertions 2299 */ 2300 vm_object_hold(object); 2301 if (object == NULL || 2302 (object->resident_page_count == 0 && object->swblock_count == 0)) { 2303 vm_object_drop(object); 2304 return; 2305 } 2306 KASSERT(object->type != OBJT_PHYS, 2307 ("attempt to remove pages from a physical object")); 2308 2309 /* 2310 * Indicate that paging is occuring on the object 2311 */ 2312 vm_object_pip_add(object, 1); 2313 2314 /* 2315 * Figure out the actual removal range and whether we are removing 2316 * the entire contents of the object or not. If removing the entire 2317 * contents, be sure to get all pages, even those that might be 2318 * beyond the end of the object. 2319 */ 2320 info.start_pindex = start; 2321 if (end == 0) 2322 info.end_pindex = (vm_pindex_t)-1; 2323 else 2324 info.end_pindex = end - 1; 2325 info.limit = clean_only; 2326 all = (start == 0 && info.end_pindex >= object->size - 1); 2327 2328 /* 2329 * Loop until we are sure we have gotten them all. 2330 */ 2331 do { 2332 info.error = 0; 2333 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp, 2334 vm_object_page_remove_callback, &info); 2335 } while (info.error); 2336 2337 /* 2338 * Remove any related swap if throwing away pages, or for 2339 * non-swap objects (the swap is a clean copy in that case). 2340 */ 2341 if (object->type != OBJT_SWAP || clean_only == FALSE) { 2342 if (all) 2343 swap_pager_freespace_all(object); 2344 else 2345 swap_pager_freespace(object, info.start_pindex, 2346 info.end_pindex - info.start_pindex + 1); 2347 } 2348 2349 /* 2350 * Cleanup 2351 */ 2352 vm_object_pip_wakeup(object); 2353 vm_object_drop(object); 2354 } 2355 2356 /* 2357 * The caller must hold the object 2358 */ 2359 static int 2360 vm_object_page_remove_callback(vm_page_t p, void *data) 2361 { 2362 struct rb_vm_page_scan_info *info = data; 2363 2364 if (vm_page_busy_try(p, TRUE)) { 2365 vm_page_sleep_busy(p, TRUE, "vmopar"); 2366 info->error = 1; 2367 return(0); 2368 } 2369 2370 /* 2371 * Wired pages cannot be destroyed, but they can be invalidated 2372 * and we do so if clean_only (limit) is not set. 2373 * 2374 * WARNING! The page may be wired due to being part of a buffer 2375 * cache buffer, and the buffer might be marked B_CACHE. 2376 * This is fine as part of a truncation but VFSs must be 2377 * sure to fix the buffer up when re-extending the file. 2378 * 2379 * NOTE! PG_NEED_COMMIT is ignored. 2380 */ 2381 if (p->wire_count != 0) { 2382 vm_page_protect(p, VM_PROT_NONE); 2383 if (info->limit == 0) 2384 p->valid = 0; 2385 vm_page_wakeup(p); 2386 return(0); 2387 } 2388 2389 /* 2390 * limit is our clean_only flag. If set and the page is dirty, do 2391 * not free it. If set and the page is being held by someone, do 2392 * not free it. 2393 */ 2394 if (info->limit && p->valid) { 2395 vm_page_test_dirty(p); 2396 if (p->valid & p->dirty) { 2397 vm_page_wakeup(p); 2398 return(0); 2399 } 2400 #if 0 2401 if (p->hold_count) { 2402 vm_page_wakeup(p); 2403 return(0); 2404 } 2405 #endif 2406 } 2407 2408 /* 2409 * Destroy the page 2410 */ 2411 vm_page_protect(p, VM_PROT_NONE); 2412 vm_page_free(p); 2413 return(0); 2414 } 2415 2416 /* 2417 * Coalesces two objects backing up adjoining regions of memory into a 2418 * single object. 2419 * 2420 * returns TRUE if objects were combined. 2421 * 2422 * NOTE: Only works at the moment if the second object is NULL - 2423 * if it's not, which object do we lock first? 2424 * 2425 * Parameters: 2426 * prev_object First object to coalesce 2427 * prev_offset Offset into prev_object 2428 * next_object Second object into coalesce 2429 * next_offset Offset into next_object 2430 * 2431 * prev_size Size of reference to prev_object 2432 * next_size Size of reference to next_object 2433 * 2434 * The caller does not need to hold (prev_object) but must have a stable 2435 * pointer to it (typically by holding the vm_map locked). 2436 */ 2437 boolean_t 2438 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, 2439 vm_size_t prev_size, vm_size_t next_size) 2440 { 2441 vm_pindex_t next_pindex; 2442 2443 if (prev_object == NULL) 2444 return (TRUE); 2445 2446 vm_object_hold(prev_object); 2447 2448 if (prev_object->type != OBJT_DEFAULT && 2449 prev_object->type != OBJT_SWAP) { 2450 vm_object_drop(prev_object); 2451 return (FALSE); 2452 } 2453 2454 /* 2455 * Try to collapse the object first 2456 */ 2457 vm_object_chain_acquire(prev_object); 2458 vm_object_collapse(prev_object, NULL); 2459 2460 /* 2461 * Can't coalesce if: . more than one reference . paged out . shadows 2462 * another object . has a copy elsewhere (any of which mean that the 2463 * pages not mapped to prev_entry may be in use anyway) 2464 */ 2465 2466 if (prev_object->backing_object != NULL) { 2467 vm_object_chain_release(prev_object); 2468 vm_object_drop(prev_object); 2469 return (FALSE); 2470 } 2471 2472 prev_size >>= PAGE_SHIFT; 2473 next_size >>= PAGE_SHIFT; 2474 next_pindex = prev_pindex + prev_size; 2475 2476 if ((prev_object->ref_count > 1) && 2477 (prev_object->size != next_pindex)) { 2478 vm_object_chain_release(prev_object); 2479 vm_object_drop(prev_object); 2480 return (FALSE); 2481 } 2482 2483 /* 2484 * Remove any pages that may still be in the object from a previous 2485 * deallocation. 2486 */ 2487 if (next_pindex < prev_object->size) { 2488 vm_object_page_remove(prev_object, 2489 next_pindex, 2490 next_pindex + next_size, FALSE); 2491 if (prev_object->type == OBJT_SWAP) 2492 swap_pager_freespace(prev_object, 2493 next_pindex, next_size); 2494 } 2495 2496 /* 2497 * Extend the object if necessary. 2498 */ 2499 if (next_pindex + next_size > prev_object->size) 2500 prev_object->size = next_pindex + next_size; 2501 2502 vm_object_chain_release(prev_object); 2503 vm_object_drop(prev_object); 2504 return (TRUE); 2505 } 2506 2507 /* 2508 * Make the object writable and flag is being possibly dirty. 2509 * 2510 * The caller must hold the object. XXX called from vm_page_dirty(), 2511 * There is currently no requirement to hold the object. 2512 */ 2513 void 2514 vm_object_set_writeable_dirty(vm_object_t object) 2515 { 2516 struct vnode *vp; 2517 2518 /*vm_object_assert_held(object);*/ 2519 /* 2520 * Avoid contention in vm fault path by checking the state before 2521 * issuing an atomic op on it. 2522 */ 2523 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) != 2524 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) { 2525 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 2526 } 2527 if (object->type == OBJT_VNODE && 2528 (vp = (struct vnode *)object->handle) != NULL) { 2529 if ((vp->v_flag & VOBJDIRTY) == 0) { 2530 vsetflags(vp, VOBJDIRTY); 2531 } 2532 } 2533 } 2534 2535 #include "opt_ddb.h" 2536 #ifdef DDB 2537 #include <sys/kernel.h> 2538 2539 #include <sys/cons.h> 2540 2541 #include <ddb/ddb.h> 2542 2543 static int _vm_object_in_map (vm_map_t map, vm_object_t object, 2544 vm_map_entry_t entry); 2545 static int vm_object_in_map (vm_object_t object); 2546 2547 /* 2548 * The caller must hold the object. 2549 */ 2550 static int 2551 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2552 { 2553 vm_map_t tmpm; 2554 vm_map_entry_t tmpe; 2555 vm_object_t obj, nobj; 2556 int entcount; 2557 2558 if (map == 0) 2559 return 0; 2560 if (entry == 0) { 2561 tmpe = map->header.next; 2562 entcount = map->nentries; 2563 while (entcount-- && (tmpe != &map->header)) { 2564 if( _vm_object_in_map(map, object, tmpe)) { 2565 return 1; 2566 } 2567 tmpe = tmpe->next; 2568 } 2569 return (0); 2570 } 2571 switch(entry->maptype) { 2572 case VM_MAPTYPE_SUBMAP: 2573 tmpm = entry->object.sub_map; 2574 tmpe = tmpm->header.next; 2575 entcount = tmpm->nentries; 2576 while (entcount-- && tmpe != &tmpm->header) { 2577 if( _vm_object_in_map(tmpm, object, tmpe)) { 2578 return 1; 2579 } 2580 tmpe = tmpe->next; 2581 } 2582 break; 2583 case VM_MAPTYPE_NORMAL: 2584 case VM_MAPTYPE_VPAGETABLE: 2585 obj = entry->object.vm_object; 2586 while (obj) { 2587 if (obj == object) { 2588 if (obj != entry->object.vm_object) 2589 vm_object_drop(obj); 2590 return 1; 2591 } 2592 while ((nobj = obj->backing_object) != NULL) { 2593 vm_object_hold(nobj); 2594 if (nobj == obj->backing_object) 2595 break; 2596 vm_object_drop(nobj); 2597 } 2598 if (obj != entry->object.vm_object) { 2599 if (nobj) 2600 vm_object_lock_swap(); 2601 vm_object_drop(obj); 2602 } 2603 obj = nobj; 2604 } 2605 break; 2606 default: 2607 break; 2608 } 2609 return 0; 2610 } 2611 2612 static int vm_object_in_map_callback(struct proc *p, void *data); 2613 2614 struct vm_object_in_map_info { 2615 vm_object_t object; 2616 int rv; 2617 }; 2618 2619 /* 2620 * Debugging only 2621 */ 2622 static int 2623 vm_object_in_map(vm_object_t object) 2624 { 2625 struct vm_object_in_map_info info; 2626 2627 info.rv = 0; 2628 info.object = object; 2629 2630 allproc_scan(vm_object_in_map_callback, &info); 2631 if (info.rv) 2632 return 1; 2633 if( _vm_object_in_map(&kernel_map, object, 0)) 2634 return 1; 2635 if( _vm_object_in_map(&pager_map, object, 0)) 2636 return 1; 2637 if( _vm_object_in_map(&buffer_map, object, 0)) 2638 return 1; 2639 return 0; 2640 } 2641 2642 /* 2643 * Debugging only 2644 */ 2645 static int 2646 vm_object_in_map_callback(struct proc *p, void *data) 2647 { 2648 struct vm_object_in_map_info *info = data; 2649 2650 if (p->p_vmspace) { 2651 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) { 2652 info->rv = 1; 2653 return -1; 2654 } 2655 } 2656 return (0); 2657 } 2658 2659 DB_SHOW_COMMAND(vmochk, vm_object_check) 2660 { 2661 vm_object_t object; 2662 2663 /* 2664 * make sure that internal objs are in a map somewhere 2665 * and none have zero ref counts. 2666 */ 2667 for (object = TAILQ_FIRST(&vm_object_list); 2668 object != NULL; 2669 object = TAILQ_NEXT(object, object_list)) { 2670 if (object->type == OBJT_MARKER) 2671 continue; 2672 if (object->handle == NULL && 2673 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2674 if (object->ref_count == 0) { 2675 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2676 (long)object->size); 2677 } 2678 if (!vm_object_in_map(object)) { 2679 db_printf( 2680 "vmochk: internal obj is not in a map: " 2681 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2682 object->ref_count, (u_long)object->size, 2683 (u_long)object->size, 2684 (void *)object->backing_object); 2685 } 2686 } 2687 } 2688 } 2689 2690 /* 2691 * Debugging only 2692 */ 2693 DB_SHOW_COMMAND(object, vm_object_print_static) 2694 { 2695 /* XXX convert args. */ 2696 vm_object_t object = (vm_object_t)addr; 2697 boolean_t full = have_addr; 2698 2699 vm_page_t p; 2700 2701 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2702 #define count was_count 2703 2704 int count; 2705 2706 if (object == NULL) 2707 return; 2708 2709 db_iprintf( 2710 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 2711 object, (int)object->type, (u_long)object->size, 2712 object->resident_page_count, object->ref_count, object->flags); 2713 /* 2714 * XXX no %qd in kernel. Truncate object->backing_object_offset. 2715 */ 2716 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 2717 object->shadow_count, 2718 object->backing_object ? object->backing_object->ref_count : 0, 2719 object->backing_object, (long)object->backing_object_offset); 2720 2721 if (!full) 2722 return; 2723 2724 db_indent += 2; 2725 count = 0; 2726 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) { 2727 if (count == 0) 2728 db_iprintf("memory:="); 2729 else if (count == 6) { 2730 db_printf("\n"); 2731 db_iprintf(" ..."); 2732 count = 0; 2733 } else 2734 db_printf(","); 2735 count++; 2736 2737 db_printf("(off=0x%lx,page=0x%lx)", 2738 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 2739 } 2740 if (count != 0) 2741 db_printf("\n"); 2742 db_indent -= 2; 2743 } 2744 2745 /* XXX. */ 2746 #undef count 2747 2748 /* 2749 * XXX need this non-static entry for calling from vm_map_print. 2750 * 2751 * Debugging only 2752 */ 2753 void 2754 vm_object_print(/* db_expr_t */ long addr, 2755 boolean_t have_addr, 2756 /* db_expr_t */ long count, 2757 char *modif) 2758 { 2759 vm_object_print_static(addr, have_addr, count, modif); 2760 } 2761 2762 /* 2763 * Debugging only 2764 */ 2765 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2766 { 2767 vm_object_t object; 2768 int nl = 0; 2769 int c; 2770 for (object = TAILQ_FIRST(&vm_object_list); 2771 object != NULL; 2772 object = TAILQ_NEXT(object, object_list)) { 2773 vm_pindex_t idx, fidx; 2774 vm_pindex_t osize; 2775 vm_paddr_t pa = -1, padiff; 2776 int rcount; 2777 vm_page_t m; 2778 2779 if (object->type == OBJT_MARKER) 2780 continue; 2781 db_printf("new object: %p\n", (void *)object); 2782 if ( nl > 18) { 2783 c = cngetc(); 2784 if (c != ' ') 2785 return; 2786 nl = 0; 2787 } 2788 nl++; 2789 rcount = 0; 2790 fidx = 0; 2791 osize = object->size; 2792 if (osize > 128) 2793 osize = 128; 2794 for (idx = 0; idx < osize; idx++) { 2795 m = vm_page_lookup(object, idx); 2796 if (m == NULL) { 2797 if (rcount) { 2798 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2799 (long)fidx, rcount, (long)pa); 2800 if ( nl > 18) { 2801 c = cngetc(); 2802 if (c != ' ') 2803 return; 2804 nl = 0; 2805 } 2806 nl++; 2807 rcount = 0; 2808 } 2809 continue; 2810 } 2811 2812 2813 if (rcount && 2814 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2815 ++rcount; 2816 continue; 2817 } 2818 if (rcount) { 2819 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2820 padiff >>= PAGE_SHIFT; 2821 padiff &= PQ_L2_MASK; 2822 if (padiff == 0) { 2823 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2824 ++rcount; 2825 continue; 2826 } 2827 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2828 (long)fidx, rcount, (long)pa); 2829 db_printf("pd(%ld)\n", (long)padiff); 2830 if ( nl > 18) { 2831 c = cngetc(); 2832 if (c != ' ') 2833 return; 2834 nl = 0; 2835 } 2836 nl++; 2837 } 2838 fidx = idx; 2839 pa = VM_PAGE_TO_PHYS(m); 2840 rcount = 1; 2841 } 2842 if (rcount) { 2843 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2844 (long)fidx, rcount, (long)pa); 2845 if ( nl > 18) { 2846 c = cngetc(); 2847 if (c != ' ') 2848 return; 2849 nl = 0; 2850 } 2851 nl++; 2852 } 2853 } 2854 } 2855 #endif /* DDB */ 2856