xref: /dflybsd-src/sys/vm/vm_object.c (revision 313fe22582cf808f3169980f2d030a3cf80aedca)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object);
101 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 					     int pagerflags);
103 static void	vm_object_lock_init(vm_object_t);
104 static void	vm_object_hold_wake(vm_object_t);
105 static void	vm_object_hold_wait(vm_object_t);
106 
107 
108 /*
109  *	Virtual memory objects maintain the actual data
110  *	associated with allocated virtual memory.  A given
111  *	page of memory exists within exactly one object.
112  *
113  *	An object is only deallocated when all "references"
114  *	are given up.  Only one "reference" to a given
115  *	region of an object should be writeable.
116  *
117  *	Associated with each object is a list of all resident
118  *	memory pages belonging to that object; this list is
119  *	maintained by the "vm_page" module, and locked by the object's
120  *	lock.
121  *
122  *	Each object also records a "pager" routine which is
123  *	used to retrieve (and store) pages to the proper backing
124  *	storage.  In addition, objects may be backed by other
125  *	objects from which they were virtual-copied.
126  *
127  *	The only items within the object structure which are
128  *	modified after time of creation are:
129  *		reference count		locked by object's lock
130  *		pager routine		locked by object's lock
131  *
132  */
133 
134 struct object_q vm_object_list;		/* locked by vmobj_token */
135 struct vm_object kernel_object;
136 
137 static long vm_object_count;		/* locked by vmobj_token */
138 extern int vm_pageout_page_count;
139 
140 static long object_collapses;
141 static long object_bypasses;
142 static int next_index;
143 static vm_zone_t obj_zone;
144 static struct vm_zone obj_zone_store;
145 #define VM_OBJECTS_INIT 256
146 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
147 
148 /*
149  * Initialize a freshly allocated object
150  *
151  * Used only by vm_object_allocate() and zinitna().
152  *
153  * No requirements.
154  */
155 void
156 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
157 {
158 	int incr;
159 
160 	RB_INIT(&object->rb_memq);
161 	LIST_INIT(&object->shadow_head);
162 
163 	object->type = type;
164 	object->size = size;
165 	object->ref_count = 1;
166 	object->hold_count = 0;
167 	object->flags = 0;
168 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
169 		vm_object_set_flag(object, OBJ_ONEMAPPING);
170 	object->paging_in_progress = 0;
171 	object->resident_page_count = 0;
172 	object->agg_pv_list_count = 0;
173 	object->shadow_count = 0;
174 	object->pg_color = next_index;
175 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
176 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
177 	else
178 		incr = size;
179 	next_index = (next_index + incr) & PQ_L2_MASK;
180 	object->handle = NULL;
181 	object->backing_object = NULL;
182 	object->backing_object_offset = (vm_ooffset_t) 0;
183 
184 	object->generation++;
185 	object->swblock_count = 0;
186 	RB_INIT(&object->swblock_root);
187 	vm_object_lock_init(object);
188 
189 	lwkt_gettoken(&vmobj_token);
190 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
191 	vm_object_count++;
192 	lwkt_reltoken(&vmobj_token);
193 }
194 
195 /*
196  * Initialize the VM objects module.
197  *
198  * Called from the low level boot code only.
199  */
200 void
201 vm_object_init(void)
202 {
203 	TAILQ_INIT(&vm_object_list);
204 
205 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
206 			    &kernel_object);
207 
208 	obj_zone = &obj_zone_store;
209 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
210 		vm_objects_init, VM_OBJECTS_INIT);
211 }
212 
213 void
214 vm_object_init2(void)
215 {
216 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
217 }
218 
219 /*
220  * Allocate and return a new object of the specified type and size.
221  *
222  * No requirements.
223  */
224 vm_object_t
225 vm_object_allocate(objtype_t type, vm_pindex_t size)
226 {
227 	vm_object_t result;
228 
229 	result = (vm_object_t) zalloc(obj_zone);
230 
231 	_vm_object_allocate(type, size, result);
232 
233 	return (result);
234 }
235 
236 /*
237  * Add an additional reference to a vm_object.
238  *
239  * Object passed by caller must be stable or caller must already
240  * hold vmobj_token to avoid races.
241  */
242 void
243 vm_object_reference(vm_object_t object)
244 {
245 	lwkt_gettoken(&vmobj_token);
246 	vm_object_reference_locked(object);
247 	lwkt_reltoken(&vmobj_token);
248 }
249 
250 void
251 vm_object_reference_locked(vm_object_t object)
252 {
253 	if (object) {
254 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
255 		object->ref_count++;
256 		if (object->type == OBJT_VNODE) {
257 			vref(object->handle);
258 			/* XXX what if the vnode is being destroyed? */
259 		}
260 	}
261 }
262 
263 /*
264  * Dereference an object and its underlying vnode.
265  *
266  * The caller must hold vmobj_token.
267  */
268 static void
269 vm_object_vndeallocate(vm_object_t object)
270 {
271 	struct vnode *vp = (struct vnode *) object->handle;
272 
273 	KASSERT(object->type == OBJT_VNODE,
274 	    ("vm_object_vndeallocate: not a vnode object"));
275 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
276 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
277 #ifdef INVARIANTS
278 	if (object->ref_count == 0) {
279 		vprint("vm_object_vndeallocate", vp);
280 		panic("vm_object_vndeallocate: bad object reference count");
281 	}
282 #endif
283 
284 	object->ref_count--;
285 	if (object->ref_count == 0)
286 		vclrflags(vp, VTEXT);
287 	vrele(vp);
288 }
289 
290 /*
291  * Release a reference to the specified object, gained either through a
292  * vm_object_allocate or a vm_object_reference call.  When all references
293  * are gone, storage associated with this object may be relinquished.
294  */
295 void
296 vm_object_deallocate(vm_object_t object)
297 {
298 	lwkt_gettoken(&vmobj_token);
299 	vm_object_deallocate_locked(object);
300 	lwkt_reltoken(&vmobj_token);
301 }
302 
303 void
304 vm_object_deallocate_locked(vm_object_t object)
305 {
306 	vm_object_t temp;
307 
308 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
309 
310 	while (object != NULL) {
311 		if (object->type == OBJT_VNODE) {
312 			vm_object_vndeallocate(object);
313 			break;
314 		}
315 
316 		if (object->ref_count == 0) {
317 			panic("vm_object_deallocate: object deallocated "
318 			      "too many times: %d", object->type);
319 		}
320 		if (object->ref_count > 2) {
321 			object->ref_count--;
322 			break;
323 		}
324 
325 		/*
326 		 * We currently need the vm_token from this point on, and
327 		 * we must recheck ref_count after acquiring it.
328 		 */
329 		lwkt_gettoken(&vm_token);
330 
331 		if (object->ref_count > 2) {
332 			object->ref_count--;
333 			lwkt_reltoken(&vm_token);
334 			break;
335 		}
336 
337 		/*
338 		 * Here on ref_count of one or two, which are special cases for
339 		 * objects.
340 		 */
341 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
342 			vm_object_set_flag(object, OBJ_ONEMAPPING);
343 			object->ref_count--;
344 			lwkt_reltoken(&vm_token);
345 			break;
346 		}
347 		if ((object->ref_count == 2) && (object->shadow_count == 1)) {
348 			object->ref_count--;
349 			if ((object->handle == NULL) &&
350 			    (object->type == OBJT_DEFAULT ||
351 			     object->type == OBJT_SWAP)) {
352 				vm_object_t robject;
353 
354 				robject = LIST_FIRST(&object->shadow_head);
355 				KASSERT(robject != NULL,
356 					("vm_object_deallocate: ref_count: "
357 					"%d, shadow_count: %d",
358 					object->ref_count,
359 					object->shadow_count));
360 
361 				if ((robject->handle == NULL) &&
362 				    (robject->type == OBJT_DEFAULT ||
363 				     robject->type == OBJT_SWAP)) {
364 
365 					robject->ref_count++;
366 
367 					while (
368 						robject->paging_in_progress ||
369 						object->paging_in_progress
370 					) {
371 						vm_object_pip_sleep(robject, "objde1");
372 						vm_object_pip_sleep(object, "objde2");
373 					}
374 
375 					if (robject->ref_count == 1) {
376 						robject->ref_count--;
377 						object = robject;
378 						goto doterm;
379 					}
380 
381 					object = robject;
382 					vm_object_collapse(object);
383 					lwkt_reltoken(&vm_token);
384 					continue;
385 				}
386 			}
387 			lwkt_reltoken(&vm_token);
388 			break;
389 		}
390 
391 		/*
392 		 * Normal dereferencing path
393 		 */
394 		object->ref_count--;
395 		if (object->ref_count != 0) {
396 			lwkt_reltoken(&vm_token);
397 			break;
398 		}
399 
400 		/*
401 		 * Termination path
402 		 */
403 doterm:
404 		temp = object->backing_object;
405 		if (temp) {
406 			LIST_REMOVE(object, shadow_list);
407 			temp->shadow_count--;
408 			temp->generation++;
409 			object->backing_object = NULL;
410 		}
411 		lwkt_reltoken(&vm_token);
412 
413 		/*
414 		 * Don't double-terminate, we could be in a termination
415 		 * recursion due to the terminate having to sync data
416 		 * to disk.
417 		 */
418 		if ((object->flags & OBJ_DEAD) == 0)
419 			vm_object_terminate(object);
420 		object = temp;
421 	}
422 }
423 
424 /*
425  * Destroy the specified object, freeing up related resources.
426  *
427  * The object must have zero references.
428  *
429  * The caller must be holding vmobj_token and properly interlock with
430  * OBJ_DEAD.
431  */
432 static int vm_object_terminate_callback(vm_page_t p, void *data);
433 
434 void
435 vm_object_terminate(vm_object_t object)
436 {
437 	/*
438 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
439 	 * able to safely block.
440 	 */
441 	KKASSERT((object->flags & OBJ_DEAD) == 0);
442 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
443 	vm_object_set_flag(object, OBJ_DEAD);
444 
445 	/*
446 	 * Wait for the pageout daemon to be done with the object
447 	 */
448 	vm_object_pip_wait(object, "objtrm1");
449 
450 	KASSERT(!object->paging_in_progress,
451 		("vm_object_terminate: pageout in progress"));
452 
453 	/*
454 	 * Clean and free the pages, as appropriate. All references to the
455 	 * object are gone, so we don't need to lock it.
456 	 */
457 	if (object->type == OBJT_VNODE) {
458 		struct vnode *vp;
459 
460 		/*
461 		 * Clean pages and flush buffers.
462 		 */
463 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
464 
465 		vp = (struct vnode *) object->handle;
466 		vinvalbuf(vp, V_SAVE, 0, 0);
467 	}
468 
469 	/*
470 	 * Wait for any I/O to complete, after which there had better not
471 	 * be any references left on the object.
472 	 */
473 	vm_object_pip_wait(object, "objtrm2");
474 
475 	if (object->ref_count != 0) {
476 		panic("vm_object_terminate: object with references, "
477 		      "ref_count=%d", object->ref_count);
478 	}
479 
480 	/*
481 	 * Now free any remaining pages. For internal objects, this also
482 	 * removes them from paging queues. Don't free wired pages, just
483 	 * remove them from the object.
484 	 */
485 	lwkt_gettoken(&vm_token);
486 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
487 				vm_object_terminate_callback, NULL);
488 	lwkt_reltoken(&vm_token);
489 
490 	/*
491 	 * Let the pager know object is dead.
492 	 */
493 	vm_pager_deallocate(object);
494 
495 	/*
496 	 * Wait for the object hold count to hit zero
497 	 */
498 	vm_object_hold_wait(object);
499 
500 	/*
501 	 * Remove the object from the global object list.
502 	 *
503 	 * (we are holding vmobj_token)
504 	 */
505 	TAILQ_REMOVE(&vm_object_list, object, object_list);
506 	vm_object_count--;
507 	vm_object_dead_wakeup(object);
508 
509 	if (object->ref_count != 0) {
510 		panic("vm_object_terminate2: object with references, "
511 		      "ref_count=%d", object->ref_count);
512 	}
513 
514 	/*
515 	 * Free the space for the object.
516 	 */
517 	zfree(obj_zone, object);
518 }
519 
520 /*
521  * The caller must hold vm_token.
522  */
523 static int
524 vm_object_terminate_callback(vm_page_t p, void *data __unused)
525 {
526 	if (p->busy || (p->flags & PG_BUSY))
527 		panic("vm_object_terminate: freeing busy page %p", p);
528 	if (p->wire_count == 0) {
529 		vm_page_busy(p);
530 		vm_page_free(p);
531 		mycpu->gd_cnt.v_pfree++;
532 	} else {
533 		if (p->queue != PQ_NONE)
534 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
535 		vm_page_busy(p);
536 		vm_page_remove(p);
537 		vm_page_wakeup(p);
538 	}
539 	return(0);
540 }
541 
542 /*
543  * The object is dead but still has an object<->pager association.  Sleep
544  * and return.  The caller typically retests the association in a loop.
545  *
546  * Must be called with the vmobj_token held.
547  */
548 void
549 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
550 {
551 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
552 	if (object->handle) {
553 		vm_object_set_flag(object, OBJ_DEADWNT);
554 		tsleep(object, 0, wmesg, 0);
555 		/* object may be invalid after this point */
556 	}
557 }
558 
559 /*
560  * Wakeup anyone waiting for the object<->pager disassociation on
561  * a dead object.
562  *
563  * Must be called with the vmobj_token held.
564  */
565 void
566 vm_object_dead_wakeup(vm_object_t object)
567 {
568 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
569 	if (object->flags & OBJ_DEADWNT) {
570 		vm_object_clear_flag(object, OBJ_DEADWNT);
571 		wakeup(object);
572 	}
573 }
574 
575 /*
576  * Clean all dirty pages in the specified range of object.  Leaves page
577  * on whatever queue it is currently on.   If NOSYNC is set then do not
578  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
579  * leaving the object dirty.
580  *
581  * When stuffing pages asynchronously, allow clustering.  XXX we need a
582  * synchronous clustering mode implementation.
583  *
584  * Odd semantics: if start == end, we clean everything.
585  *
586  * The object must be locked? XXX
587  */
588 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
589 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
590 
591 void
592 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
593 		     int flags)
594 {
595 	struct rb_vm_page_scan_info info;
596 	struct vnode *vp;
597 	int wholescan;
598 	int pagerflags;
599 	int curgeneration;
600 
601 	lwkt_gettoken(&vm_token);
602 	if (object->type != OBJT_VNODE ||
603 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
604 		lwkt_reltoken(&vm_token);
605 		return;
606 	}
607 
608 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
609 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
610 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
611 
612 	vp = object->handle;
613 
614 	/*
615 	 * Interlock other major object operations.  This allows us to
616 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
617 	 */
618 	crit_enter();
619 	vm_object_set_flag(object, OBJ_CLEANING);
620 
621 	/*
622 	 * Handle 'entire object' case
623 	 */
624 	info.start_pindex = start;
625 	if (end == 0) {
626 		info.end_pindex = object->size - 1;
627 	} else {
628 		info.end_pindex = end - 1;
629 	}
630 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
631 	info.limit = flags;
632 	info.pagerflags = pagerflags;
633 	info.object = object;
634 
635 	/*
636 	 * If cleaning the entire object do a pass to mark the pages read-only.
637 	 * If everything worked out ok, clear OBJ_WRITEABLE and
638 	 * OBJ_MIGHTBEDIRTY.
639 	 */
640 	if (wholescan) {
641 		info.error = 0;
642 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
643 					vm_object_page_clean_pass1, &info);
644 		if (info.error == 0) {
645 			vm_object_clear_flag(object,
646 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
647 			if (object->type == OBJT_VNODE &&
648 			    (vp = (struct vnode *)object->handle) != NULL) {
649 				if (vp->v_flag & VOBJDIRTY)
650 					vclrflags(vp, VOBJDIRTY);
651 			}
652 		}
653 	}
654 
655 	/*
656 	 * Do a pass to clean all the dirty pages we find.
657 	 */
658 	do {
659 		info.error = 0;
660 		curgeneration = object->generation;
661 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
662 					vm_object_page_clean_pass2, &info);
663 	} while (info.error || curgeneration != object->generation);
664 
665 	vm_object_clear_flag(object, OBJ_CLEANING);
666 	crit_exit();
667 	lwkt_reltoken(&vm_token);
668 }
669 
670 /*
671  * The caller must hold vm_token.
672  */
673 static
674 int
675 vm_object_page_clean_pass1(struct vm_page *p, void *data)
676 {
677 	struct rb_vm_page_scan_info *info = data;
678 
679 	vm_page_flag_set(p, PG_CLEANCHK);
680 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
681 		info->error = 1;
682 	else
683 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
684 	return(0);
685 }
686 
687 /*
688  * The caller must hold vm_token.
689  */
690 static
691 int
692 vm_object_page_clean_pass2(struct vm_page *p, void *data)
693 {
694 	struct rb_vm_page_scan_info *info = data;
695 	int n;
696 
697 	/*
698 	 * Do not mess with pages that were inserted after we started
699 	 * the cleaning pass.
700 	 */
701 	if ((p->flags & PG_CLEANCHK) == 0)
702 		return(0);
703 
704 	/*
705 	 * Before wasting time traversing the pmaps, check for trivial
706 	 * cases where the page cannot be dirty.
707 	 */
708 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
709 		KKASSERT((p->dirty & p->valid) == 0);
710 		return(0);
711 	}
712 
713 	/*
714 	 * Check whether the page is dirty or not.  The page has been set
715 	 * to be read-only so the check will not race a user dirtying the
716 	 * page.
717 	 */
718 	vm_page_test_dirty(p);
719 	if ((p->dirty & p->valid) == 0) {
720 		vm_page_flag_clear(p, PG_CLEANCHK);
721 		return(0);
722 	}
723 
724 	/*
725 	 * If we have been asked to skip nosync pages and this is a
726 	 * nosync page, skip it.  Note that the object flags were
727 	 * not cleared in this case (because pass1 will have returned an
728 	 * error), so we do not have to set them.
729 	 */
730 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
731 		vm_page_flag_clear(p, PG_CLEANCHK);
732 		return(0);
733 	}
734 
735 	/*
736 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
737 	 * the pages that get successfully flushed.  Set info->error if
738 	 * we raced an object modification.
739 	 */
740 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
741 	if (n == 0)
742 		info->error = 1;
743 	return(0);
744 }
745 
746 /*
747  * Collect the specified page and nearby pages and flush them out.
748  * The number of pages flushed is returned.
749  *
750  * The caller must hold vm_token.
751  */
752 static int
753 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
754 {
755 	int runlen;
756 	int maxf;
757 	int chkb;
758 	int maxb;
759 	int i;
760 	int curgeneration;
761 	vm_pindex_t pi;
762 	vm_page_t maf[vm_pageout_page_count];
763 	vm_page_t mab[vm_pageout_page_count];
764 	vm_page_t ma[vm_pageout_page_count];
765 
766 	curgeneration = object->generation;
767 
768 	pi = p->pindex;
769 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
770 		if (object->generation != curgeneration) {
771 			return(0);
772 		}
773 	}
774 	KKASSERT(p->object == object && p->pindex == pi);
775 
776 	maxf = 0;
777 	for(i = 1; i < vm_pageout_page_count; i++) {
778 		vm_page_t tp;
779 
780 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
781 			if ((tp->flags & PG_BUSY) ||
782 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
783 				 (tp->flags & PG_CLEANCHK) == 0) ||
784 				(tp->busy != 0))
785 				break;
786 			if((tp->queue - tp->pc) == PQ_CACHE) {
787 				vm_page_flag_clear(tp, PG_CLEANCHK);
788 				break;
789 			}
790 			vm_page_test_dirty(tp);
791 			if ((tp->dirty & tp->valid) == 0) {
792 				vm_page_flag_clear(tp, PG_CLEANCHK);
793 				break;
794 			}
795 			maf[ i - 1 ] = tp;
796 			maxf++;
797 			continue;
798 		}
799 		break;
800 	}
801 
802 	maxb = 0;
803 	chkb = vm_pageout_page_count -  maxf;
804 	if (chkb) {
805 		for(i = 1; i < chkb;i++) {
806 			vm_page_t tp;
807 
808 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
809 				if ((tp->flags & PG_BUSY) ||
810 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
811 					 (tp->flags & PG_CLEANCHK) == 0) ||
812 					(tp->busy != 0))
813 					break;
814 				if((tp->queue - tp->pc) == PQ_CACHE) {
815 					vm_page_flag_clear(tp, PG_CLEANCHK);
816 					break;
817 				}
818 				vm_page_test_dirty(tp);
819 				if ((tp->dirty & tp->valid) == 0) {
820 					vm_page_flag_clear(tp, PG_CLEANCHK);
821 					break;
822 				}
823 				mab[ i - 1 ] = tp;
824 				maxb++;
825 				continue;
826 			}
827 			break;
828 		}
829 	}
830 
831 	for(i = 0; i < maxb; i++) {
832 		int index = (maxb - i) - 1;
833 		ma[index] = mab[i];
834 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
835 	}
836 	vm_page_flag_clear(p, PG_CLEANCHK);
837 	ma[maxb] = p;
838 	for(i = 0; i < maxf; i++) {
839 		int index = (maxb + i) + 1;
840 		ma[index] = maf[i];
841 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
842 	}
843 	runlen = maxb + maxf + 1;
844 
845 	vm_pageout_flush(ma, runlen, pagerflags);
846 	for (i = 0; i < runlen; i++) {
847 		if (ma[i]->valid & ma[i]->dirty) {
848 			vm_page_protect(ma[i], VM_PROT_READ);
849 			vm_page_flag_set(ma[i], PG_CLEANCHK);
850 
851 			/*
852 			 * maxf will end up being the actual number of pages
853 			 * we wrote out contiguously, non-inclusive of the
854 			 * first page.  We do not count look-behind pages.
855 			 */
856 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
857 				maxf = i - maxb - 1;
858 		}
859 	}
860 	return(maxf + 1);
861 }
862 
863 /*
864  * Same as vm_object_pmap_copy, except range checking really
865  * works, and is meant for small sections of an object.
866  *
867  * This code protects resident pages by making them read-only
868  * and is typically called on a fork or split when a page
869  * is converted to copy-on-write.
870  *
871  * NOTE: If the page is already at VM_PROT_NONE, calling
872  * vm_page_protect will have no effect.
873  */
874 void
875 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
876 {
877 	vm_pindex_t idx;
878 	vm_page_t p;
879 
880 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
881 		return;
882 
883 	/*
884 	 * spl protection needed to prevent races between the lookup,
885 	 * an interrupt unbusy/free, and our protect call.
886 	 */
887 	crit_enter();
888 	lwkt_gettoken(&vm_token);
889 	for (idx = start; idx < end; idx++) {
890 		p = vm_page_lookup(object, idx);
891 		if (p == NULL)
892 			continue;
893 		vm_page_protect(p, VM_PROT_READ);
894 	}
895 	lwkt_reltoken(&vm_token);
896 	crit_exit();
897 }
898 
899 /*
900  * Removes all physical pages in the specified object range from all
901  * physical maps.
902  *
903  * The object must *not* be locked.
904  */
905 
906 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
907 
908 void
909 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
910 {
911 	struct rb_vm_page_scan_info info;
912 
913 	if (object == NULL)
914 		return;
915 	info.start_pindex = start;
916 	info.end_pindex = end - 1;
917 
918 	crit_enter();
919 	lwkt_gettoken(&vm_token);
920 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
921 				vm_object_pmap_remove_callback, &info);
922 	if (start == 0 && end == object->size)
923 		vm_object_clear_flag(object, OBJ_WRITEABLE);
924 	lwkt_reltoken(&vm_token);
925 	crit_exit();
926 }
927 
928 /*
929  * The caller must hold vm_token.
930  */
931 static int
932 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
933 {
934 	vm_page_protect(p, VM_PROT_NONE);
935 	return(0);
936 }
937 
938 /*
939  * Implements the madvise function at the object/page level.
940  *
941  * MADV_WILLNEED	(any object)
942  *
943  *	Activate the specified pages if they are resident.
944  *
945  * MADV_DONTNEED	(any object)
946  *
947  *	Deactivate the specified pages if they are resident.
948  *
949  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
950  *
951  *	Deactivate and clean the specified pages if they are
952  *	resident.  This permits the process to reuse the pages
953  *	without faulting or the kernel to reclaim the pages
954  *	without I/O.
955  *
956  * No requirements.
957  */
958 void
959 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
960 {
961 	vm_pindex_t end, tpindex;
962 	vm_object_t tobject;
963 	vm_page_t m;
964 
965 	if (object == NULL)
966 		return;
967 
968 	end = pindex + count;
969 
970 	lwkt_gettoken(&vm_token);
971 
972 	/*
973 	 * Locate and adjust resident pages
974 	 */
975 	for (; pindex < end; pindex += 1) {
976 relookup:
977 		tobject = object;
978 		tpindex = pindex;
979 shadowlookup:
980 		/*
981 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
982 		 * and those pages must be OBJ_ONEMAPPING.
983 		 */
984 		if (advise == MADV_FREE) {
985 			if ((tobject->type != OBJT_DEFAULT &&
986 			     tobject->type != OBJT_SWAP) ||
987 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
988 				continue;
989 			}
990 		}
991 
992 		/*
993 		 * spl protection is required to avoid a race between the
994 		 * lookup, an interrupt unbusy/free, and our busy check.
995 		 */
996 
997 		crit_enter();
998 		m = vm_page_lookup(tobject, tpindex);
999 
1000 		if (m == NULL) {
1001 			/*
1002 			 * There may be swap even if there is no backing page
1003 			 */
1004 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1005 				swap_pager_freespace(tobject, tpindex, 1);
1006 
1007 			/*
1008 			 * next object
1009 			 */
1010 			crit_exit();
1011 			if (tobject->backing_object == NULL)
1012 				continue;
1013 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1014 			tobject = tobject->backing_object;
1015 			goto shadowlookup;
1016 		}
1017 
1018 		/*
1019 		 * If the page is busy or not in a normal active state,
1020 		 * we skip it.  If the page is not managed there are no
1021 		 * page queues to mess with.  Things can break if we mess
1022 		 * with pages in any of the below states.
1023 		 */
1024 		if (
1025 		    m->hold_count ||
1026 		    m->wire_count ||
1027 		    (m->flags & PG_UNMANAGED) ||
1028 		    m->valid != VM_PAGE_BITS_ALL
1029 		) {
1030 			crit_exit();
1031 			continue;
1032 		}
1033 
1034  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1035 			crit_exit();
1036   			goto relookup;
1037 		}
1038 		vm_page_busy(m);
1039 		crit_exit();
1040 
1041 		/*
1042 		 * Theoretically once a page is known not to be busy, an
1043 		 * interrupt cannot come along and rip it out from under us.
1044 		 */
1045 
1046 		if (advise == MADV_WILLNEED) {
1047 			vm_page_activate(m);
1048 		} else if (advise == MADV_DONTNEED) {
1049 			vm_page_dontneed(m);
1050 		} else if (advise == MADV_FREE) {
1051 			/*
1052 			 * Mark the page clean.  This will allow the page
1053 			 * to be freed up by the system.  However, such pages
1054 			 * are often reused quickly by malloc()/free()
1055 			 * so we do not do anything that would cause
1056 			 * a page fault if we can help it.
1057 			 *
1058 			 * Specifically, we do not try to actually free
1059 			 * the page now nor do we try to put it in the
1060 			 * cache (which would cause a page fault on reuse).
1061 			 *
1062 			 * But we do make the page is freeable as we
1063 			 * can without actually taking the step of unmapping
1064 			 * it.
1065 			 */
1066 			pmap_clear_modify(m);
1067 			m->dirty = 0;
1068 			m->act_count = 0;
1069 			vm_page_dontneed(m);
1070 			if (tobject->type == OBJT_SWAP)
1071 				swap_pager_freespace(tobject, tpindex, 1);
1072 		}
1073 		vm_page_wakeup(m);
1074 	}
1075 	lwkt_reltoken(&vm_token);
1076 }
1077 
1078 /*
1079  * Create a new object which is backed by the specified existing object
1080  * range.  The source object reference is deallocated.
1081  *
1082  * The new object and offset into that object are returned in the source
1083  * parameters.
1084  *
1085  * No other requirements.
1086  */
1087 void
1088 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1089 {
1090 	vm_object_t source;
1091 	vm_object_t result;
1092 
1093 	source = *object;
1094 
1095 	/*
1096 	 * Don't create the new object if the old object isn't shared.
1097 	 */
1098 	lwkt_gettoken(&vm_token);
1099 
1100 	if (source != NULL &&
1101 	    source->ref_count == 1 &&
1102 	    source->handle == NULL &&
1103 	    (source->type == OBJT_DEFAULT ||
1104 	     source->type == OBJT_SWAP)) {
1105 		lwkt_reltoken(&vm_token);
1106 		return;
1107 	}
1108 
1109 	/*
1110 	 * Allocate a new object with the given length
1111 	 */
1112 
1113 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1114 		panic("vm_object_shadow: no object for shadowing");
1115 
1116 	/*
1117 	 * The new object shadows the source object, adding a reference to it.
1118 	 * Our caller changes his reference to point to the new object,
1119 	 * removing a reference to the source object.  Net result: no change
1120 	 * of reference count.
1121 	 *
1122 	 * Try to optimize the result object's page color when shadowing
1123 	 * in order to maintain page coloring consistency in the combined
1124 	 * shadowed object.
1125 	 */
1126 	result->backing_object = source;
1127 	if (source) {
1128 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1129 		source->shadow_count++;
1130 		source->generation++;
1131 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1132 	}
1133 
1134 	/*
1135 	 * Store the offset into the source object, and fix up the offset into
1136 	 * the new object.
1137 	 */
1138 	result->backing_object_offset = *offset;
1139 	lwkt_reltoken(&vm_token);
1140 
1141 	/*
1142 	 * Return the new things
1143 	 */
1144 	*offset = 0;
1145 	*object = result;
1146 }
1147 
1148 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1149 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1150 #define	OBSC_COLLAPSE_WAIT	0x0004
1151 
1152 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1153 
1154 /*
1155  * The caller must hold vm_token.
1156  */
1157 static __inline int
1158 vm_object_backing_scan(vm_object_t object, int op)
1159 {
1160 	struct rb_vm_page_scan_info info;
1161 	vm_object_t backing_object;
1162 
1163 	crit_enter();
1164 
1165 	backing_object = object->backing_object;
1166 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1167 
1168 	/*
1169 	 * Initial conditions
1170 	 */
1171 
1172 	if (op & OBSC_TEST_ALL_SHADOWED) {
1173 		/*
1174 		 * We do not want to have to test for the existence of
1175 		 * swap pages in the backing object.  XXX but with the
1176 		 * new swapper this would be pretty easy to do.
1177 		 *
1178 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1179 		 * been ZFOD faulted yet?  If we do not test for this, the
1180 		 * shadow test may succeed! XXX
1181 		 */
1182 		if (backing_object->type != OBJT_DEFAULT) {
1183 			crit_exit();
1184 			return(0);
1185 		}
1186 	}
1187 	if (op & OBSC_COLLAPSE_WAIT) {
1188 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1189 		vm_object_set_flag(backing_object, OBJ_DEAD);
1190 	}
1191 
1192 	/*
1193 	 * Our scan.   We have to retry if a negative error code is returned,
1194 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1195 	 * the scan had to be stopped because the parent does not completely
1196 	 * shadow the child.
1197 	 */
1198 	info.object = object;
1199 	info.backing_object = backing_object;
1200 	info.limit = op;
1201 	do {
1202 		info.error = 1;
1203 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1204 					vm_object_backing_scan_callback,
1205 					&info);
1206 	} while (info.error < 0);
1207 	crit_exit();
1208 	return(info.error);
1209 }
1210 
1211 /*
1212  * The caller must hold vm_token.
1213  */
1214 static int
1215 vm_object_backing_scan_callback(vm_page_t p, void *data)
1216 {
1217 	struct rb_vm_page_scan_info *info = data;
1218 	vm_object_t backing_object;
1219 	vm_object_t object;
1220 	vm_pindex_t new_pindex;
1221 	vm_pindex_t backing_offset_index;
1222 	int op;
1223 
1224 	new_pindex = p->pindex - info->backing_offset_index;
1225 	op = info->limit;
1226 	object = info->object;
1227 	backing_object = info->backing_object;
1228 	backing_offset_index = info->backing_offset_index;
1229 
1230 	if (op & OBSC_TEST_ALL_SHADOWED) {
1231 		vm_page_t pp;
1232 
1233 		/*
1234 		 * Ignore pages outside the parent object's range
1235 		 * and outside the parent object's mapping of the
1236 		 * backing object.
1237 		 *
1238 		 * note that we do not busy the backing object's
1239 		 * page.
1240 		 */
1241 		if (
1242 		    p->pindex < backing_offset_index ||
1243 		    new_pindex >= object->size
1244 		) {
1245 			return(0);
1246 		}
1247 
1248 		/*
1249 		 * See if the parent has the page or if the parent's
1250 		 * object pager has the page.  If the parent has the
1251 		 * page but the page is not valid, the parent's
1252 		 * object pager must have the page.
1253 		 *
1254 		 * If this fails, the parent does not completely shadow
1255 		 * the object and we might as well give up now.
1256 		 */
1257 
1258 		pp = vm_page_lookup(object, new_pindex);
1259 		if ((pp == NULL || pp->valid == 0) &&
1260 		    !vm_pager_has_page(object, new_pindex)
1261 		) {
1262 			info->error = 0;	/* problemo */
1263 			return(-1);		/* stop the scan */
1264 		}
1265 	}
1266 
1267 	/*
1268 	 * Check for busy page
1269 	 */
1270 
1271 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1272 		vm_page_t pp;
1273 
1274 		if (op & OBSC_COLLAPSE_NOWAIT) {
1275 			if (
1276 			    (p->flags & PG_BUSY) ||
1277 			    !p->valid ||
1278 			    p->hold_count ||
1279 			    p->wire_count ||
1280 			    p->busy
1281 			) {
1282 				return(0);
1283 			}
1284 		} else if (op & OBSC_COLLAPSE_WAIT) {
1285 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1286 				/*
1287 				 * If we slept, anything could have
1288 				 * happened.   Ask that the scan be restarted.
1289 				 *
1290 				 * Since the object is marked dead, the
1291 				 * backing offset should not have changed.
1292 				 */
1293 				info->error = -1;
1294 				return(-1);
1295 			}
1296 		}
1297 
1298 		/*
1299 		 * Busy the page
1300 		 */
1301 		vm_page_busy(p);
1302 
1303 		KASSERT(
1304 		    p->object == backing_object,
1305 		    ("vm_object_qcollapse(): object mismatch")
1306 		);
1307 
1308 		/*
1309 		 * Destroy any associated swap
1310 		 */
1311 		if (backing_object->type == OBJT_SWAP)
1312 			swap_pager_freespace(backing_object, p->pindex, 1);
1313 
1314 		if (
1315 		    p->pindex < backing_offset_index ||
1316 		    new_pindex >= object->size
1317 		) {
1318 			/*
1319 			 * Page is out of the parent object's range, we
1320 			 * can simply destroy it.
1321 			 */
1322 			vm_page_protect(p, VM_PROT_NONE);
1323 			vm_page_free(p);
1324 			return(0);
1325 		}
1326 
1327 		pp = vm_page_lookup(object, new_pindex);
1328 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1329 			/*
1330 			 * page already exists in parent OR swap exists
1331 			 * for this location in the parent.  Destroy
1332 			 * the original page from the backing object.
1333 			 *
1334 			 * Leave the parent's page alone
1335 			 */
1336 			vm_page_protect(p, VM_PROT_NONE);
1337 			vm_page_free(p);
1338 			return(0);
1339 		}
1340 
1341 		/*
1342 		 * Page does not exist in parent, rename the
1343 		 * page from the backing object to the main object.
1344 		 *
1345 		 * If the page was mapped to a process, it can remain
1346 		 * mapped through the rename.
1347 		 */
1348 		if ((p->queue - p->pc) == PQ_CACHE)
1349 			vm_page_deactivate(p);
1350 
1351 		vm_page_rename(p, object, new_pindex);
1352 		/* page automatically made dirty by rename */
1353 	}
1354 	return(0);
1355 }
1356 
1357 /*
1358  * This version of collapse allows the operation to occur earlier and
1359  * when paging_in_progress is true for an object...  This is not a complete
1360  * operation, but should plug 99.9% of the rest of the leaks.
1361  *
1362  * The caller must hold vm_token and vmobj_token.
1363  * (only called from vm_object_collapse)
1364  */
1365 static void
1366 vm_object_qcollapse(vm_object_t object)
1367 {
1368 	vm_object_t backing_object = object->backing_object;
1369 
1370 	if (backing_object->ref_count != 1)
1371 		return;
1372 
1373 	backing_object->ref_count += 2;
1374 
1375 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1376 
1377 	backing_object->ref_count -= 2;
1378 }
1379 
1380 /*
1381  * Collapse an object with the object backing it.  Pages in the backing
1382  * object are moved into the parent, and the backing object is deallocated.
1383  */
1384 void
1385 vm_object_collapse(vm_object_t object)
1386 {
1387 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1388 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1389 
1390 	while (TRUE) {
1391 		vm_object_t backing_object;
1392 
1393 		/*
1394 		 * Verify that the conditions are right for collapse:
1395 		 *
1396 		 * The object exists and the backing object exists.
1397 		 */
1398 		if (object == NULL)
1399 			break;
1400 
1401 		if ((backing_object = object->backing_object) == NULL)
1402 			break;
1403 
1404 		/*
1405 		 * we check the backing object first, because it is most likely
1406 		 * not collapsable.
1407 		 */
1408 		if (backing_object->handle != NULL ||
1409 		    (backing_object->type != OBJT_DEFAULT &&
1410 		     backing_object->type != OBJT_SWAP) ||
1411 		    (backing_object->flags & OBJ_DEAD) ||
1412 		    object->handle != NULL ||
1413 		    (object->type != OBJT_DEFAULT &&
1414 		     object->type != OBJT_SWAP) ||
1415 		    (object->flags & OBJ_DEAD)) {
1416 			break;
1417 		}
1418 
1419 		if (
1420 		    object->paging_in_progress != 0 ||
1421 		    backing_object->paging_in_progress != 0
1422 		) {
1423 			vm_object_qcollapse(object);
1424 			break;
1425 		}
1426 
1427 		/*
1428 		 * We know that we can either collapse the backing object (if
1429 		 * the parent is the only reference to it) or (perhaps) have
1430 		 * the parent bypass the object if the parent happens to shadow
1431 		 * all the resident pages in the entire backing object.
1432 		 *
1433 		 * This is ignoring pager-backed pages such as swap pages.
1434 		 * vm_object_backing_scan fails the shadowing test in this
1435 		 * case.
1436 		 */
1437 
1438 		if (backing_object->ref_count == 1) {
1439 			/*
1440 			 * If there is exactly one reference to the backing
1441 			 * object, we can collapse it into the parent.
1442 			 */
1443 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1444 
1445 			/*
1446 			 * Move the pager from backing_object to object.
1447 			 */
1448 
1449 			if (backing_object->type == OBJT_SWAP) {
1450 				vm_object_pip_add(backing_object, 1);
1451 
1452 				/*
1453 				 * scrap the paging_offset junk and do a
1454 				 * discrete copy.  This also removes major
1455 				 * assumptions about how the swap-pager
1456 				 * works from where it doesn't belong.  The
1457 				 * new swapper is able to optimize the
1458 				 * destroy-source case.
1459 				 */
1460 
1461 				vm_object_pip_add(object, 1);
1462 				swap_pager_copy(
1463 				    backing_object,
1464 				    object,
1465 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1466 				vm_object_pip_wakeup(object);
1467 
1468 				vm_object_pip_wakeup(backing_object);
1469 			}
1470 			/*
1471 			 * Object now shadows whatever backing_object did.
1472 			 * Note that the reference to
1473 			 * backing_object->backing_object moves from within
1474 			 * backing_object to within object.
1475 			 */
1476 
1477 			LIST_REMOVE(object, shadow_list);
1478 			object->backing_object->shadow_count--;
1479 			object->backing_object->generation++;
1480 			if (backing_object->backing_object) {
1481 				LIST_REMOVE(backing_object, shadow_list);
1482 				backing_object->backing_object->shadow_count--;
1483 				backing_object->backing_object->generation++;
1484 			}
1485 			object->backing_object = backing_object->backing_object;
1486 			if (object->backing_object) {
1487 				LIST_INSERT_HEAD(
1488 				    &object->backing_object->shadow_head,
1489 				    object,
1490 				    shadow_list
1491 				);
1492 				object->backing_object->shadow_count++;
1493 				object->backing_object->generation++;
1494 			}
1495 
1496 			object->backing_object_offset +=
1497 			    backing_object->backing_object_offset;
1498 
1499 			/*
1500 			 * Discard backing_object.
1501 			 *
1502 			 * Since the backing object has no pages, no pager left,
1503 			 * and no object references within it, all that is
1504 			 * necessary is to dispose of it.
1505 			 */
1506 
1507 			KASSERT(backing_object->ref_count == 1,
1508 				("backing_object %p was somehow "
1509 				 "re-referenced during collapse!",
1510 				 backing_object));
1511 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1512 				("backing_object %p somehow has left "
1513 				 "over pages during collapse!",
1514 				 backing_object));
1515 
1516 			/*
1517 			 * Wait for hold count to hit zero
1518 			 */
1519 			vm_object_hold_wait(backing_object);
1520 
1521 			/* (we are holding vmobj_token) */
1522 			TAILQ_REMOVE(&vm_object_list, backing_object,
1523 				     object_list);
1524 			vm_object_count--;
1525 
1526 			zfree(obj_zone, backing_object);
1527 
1528 			object_collapses++;
1529 		} else {
1530 			vm_object_t new_backing_object;
1531 
1532 			/*
1533 			 * If we do not entirely shadow the backing object,
1534 			 * there is nothing we can do so we give up.
1535 			 */
1536 
1537 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1538 				break;
1539 			}
1540 
1541 			/*
1542 			 * Make the parent shadow the next object in the
1543 			 * chain.  Deallocating backing_object will not remove
1544 			 * it, since its reference count is at least 2.
1545 			 */
1546 
1547 			LIST_REMOVE(object, shadow_list);
1548 			backing_object->shadow_count--;
1549 			backing_object->generation++;
1550 
1551 			new_backing_object = backing_object->backing_object;
1552 			if ((object->backing_object = new_backing_object) != NULL) {
1553 				vm_object_reference(new_backing_object);
1554 				LIST_INSERT_HEAD(
1555 				    &new_backing_object->shadow_head,
1556 				    object,
1557 				    shadow_list
1558 				);
1559 				new_backing_object->shadow_count++;
1560 				new_backing_object->generation++;
1561 				object->backing_object_offset +=
1562 					backing_object->backing_object_offset;
1563 			}
1564 
1565 			/*
1566 			 * Drop the reference count on backing_object. Since
1567 			 * its ref_count was at least 2, it will not vanish;
1568 			 * so we don't need to call vm_object_deallocate, but
1569 			 * we do anyway.
1570 			 */
1571 			vm_object_deallocate_locked(backing_object);
1572 			object_bypasses++;
1573 		}
1574 
1575 		/*
1576 		 * Try again with this object's new backing object.
1577 		 */
1578 	}
1579 }
1580 
1581 /*
1582  * Removes all physical pages in the specified object range from the
1583  * object's list of pages.
1584  *
1585  * No requirements.
1586  */
1587 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1588 
1589 void
1590 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1591 		      boolean_t clean_only)
1592 {
1593 	struct rb_vm_page_scan_info info;
1594 	int all;
1595 
1596 	/*
1597 	 * Degenerate cases and assertions
1598 	 */
1599 	lwkt_gettoken(&vm_token);
1600 	if (object == NULL ||
1601 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1602 		lwkt_reltoken(&vm_token);
1603 		return;
1604 	}
1605 	KASSERT(object->type != OBJT_PHYS,
1606 		("attempt to remove pages from a physical object"));
1607 
1608 	/*
1609 	 * Indicate that paging is occuring on the object
1610 	 */
1611 	crit_enter();
1612 	vm_object_pip_add(object, 1);
1613 
1614 	/*
1615 	 * Figure out the actual removal range and whether we are removing
1616 	 * the entire contents of the object or not.  If removing the entire
1617 	 * contents, be sure to get all pages, even those that might be
1618 	 * beyond the end of the object.
1619 	 */
1620 	info.start_pindex = start;
1621 	if (end == 0)
1622 		info.end_pindex = (vm_pindex_t)-1;
1623 	else
1624 		info.end_pindex = end - 1;
1625 	info.limit = clean_only;
1626 	all = (start == 0 && info.end_pindex >= object->size - 1);
1627 
1628 	/*
1629 	 * Loop until we are sure we have gotten them all.
1630 	 */
1631 	do {
1632 		info.error = 0;
1633 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1634 					vm_object_page_remove_callback, &info);
1635 	} while (info.error);
1636 
1637 	/*
1638 	 * Remove any related swap if throwing away pages, or for
1639 	 * non-swap objects (the swap is a clean copy in that case).
1640 	 */
1641 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1642 		if (all)
1643 			swap_pager_freespace_all(object);
1644 		else
1645 			swap_pager_freespace(object, info.start_pindex,
1646 			     info.end_pindex - info.start_pindex + 1);
1647 	}
1648 
1649 	/*
1650 	 * Cleanup
1651 	 */
1652 	vm_object_pip_wakeup(object);
1653 	crit_exit();
1654 	lwkt_reltoken(&vm_token);
1655 }
1656 
1657 /*
1658  * The caller must hold vm_token.
1659  */
1660 static int
1661 vm_object_page_remove_callback(vm_page_t p, void *data)
1662 {
1663 	struct rb_vm_page_scan_info *info = data;
1664 
1665 	/*
1666 	 * Wired pages cannot be destroyed, but they can be invalidated
1667 	 * and we do so if clean_only (limit) is not set.
1668 	 *
1669 	 * WARNING!  The page may be wired due to being part of a buffer
1670 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1671 	 *	     This is fine as part of a truncation but VFSs must be
1672 	 *	     sure to fix the buffer up when re-extending the file.
1673 	 */
1674 	if (p->wire_count != 0) {
1675 		vm_page_protect(p, VM_PROT_NONE);
1676 		if (info->limit == 0)
1677 			p->valid = 0;
1678 		return(0);
1679 	}
1680 
1681 	/*
1682 	 * The busy flags are only cleared at
1683 	 * interrupt -- minimize the spl transitions
1684 	 */
1685 
1686 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1687 		info->error = 1;
1688 		return(0);
1689 	}
1690 
1691 	/*
1692 	 * limit is our clean_only flag.  If set and the page is dirty, do
1693 	 * not free it.  If set and the page is being held by someone, do
1694 	 * not free it.
1695 	 */
1696 	if (info->limit && p->valid) {
1697 		vm_page_test_dirty(p);
1698 		if (p->valid & p->dirty)
1699 			return(0);
1700 		if (p->hold_count)
1701 			return(0);
1702 	}
1703 
1704 	/*
1705 	 * Destroy the page
1706 	 */
1707 	vm_page_busy(p);
1708 	vm_page_protect(p, VM_PROT_NONE);
1709 	vm_page_free(p);
1710 	return(0);
1711 }
1712 
1713 /*
1714  * Coalesces two objects backing up adjoining regions of memory into a
1715  * single object.
1716  *
1717  * returns TRUE if objects were combined.
1718  *
1719  * NOTE: Only works at the moment if the second object is NULL -
1720  *	 if it's not, which object do we lock first?
1721  *
1722  * Parameters:
1723  *	prev_object	First object to coalesce
1724  *	prev_offset	Offset into prev_object
1725  *	next_object	Second object into coalesce
1726  *	next_offset	Offset into next_object
1727  *
1728  *	prev_size	Size of reference to prev_object
1729  *	next_size	Size of reference to next_object
1730  *
1731  * The object must not be locked.
1732  * The caller must hold vm_token and vmobj_token.
1733  */
1734 boolean_t
1735 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1736 		   vm_size_t prev_size, vm_size_t next_size)
1737 {
1738 	vm_pindex_t next_pindex;
1739 
1740 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1741 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1742 
1743 	if (prev_object == NULL) {
1744 		return (TRUE);
1745 	}
1746 
1747 	if (prev_object->type != OBJT_DEFAULT &&
1748 	    prev_object->type != OBJT_SWAP) {
1749 		return (FALSE);
1750 	}
1751 
1752 	/*
1753 	 * Try to collapse the object first
1754 	 */
1755 	vm_object_collapse(prev_object);
1756 
1757 	/*
1758 	 * Can't coalesce if: . more than one reference . paged out . shadows
1759 	 * another object . has a copy elsewhere (any of which mean that the
1760 	 * pages not mapped to prev_entry may be in use anyway)
1761 	 */
1762 
1763 	if (prev_object->backing_object != NULL) {
1764 		return (FALSE);
1765 	}
1766 
1767 	prev_size >>= PAGE_SHIFT;
1768 	next_size >>= PAGE_SHIFT;
1769 	next_pindex = prev_pindex + prev_size;
1770 
1771 	if ((prev_object->ref_count > 1) &&
1772 	    (prev_object->size != next_pindex)) {
1773 		return (FALSE);
1774 	}
1775 
1776 	/*
1777 	 * Remove any pages that may still be in the object from a previous
1778 	 * deallocation.
1779 	 */
1780 	if (next_pindex < prev_object->size) {
1781 		vm_object_page_remove(prev_object,
1782 				      next_pindex,
1783 				      next_pindex + next_size, FALSE);
1784 		if (prev_object->type == OBJT_SWAP)
1785 			swap_pager_freespace(prev_object,
1786 					     next_pindex, next_size);
1787 	}
1788 
1789 	/*
1790 	 * Extend the object if necessary.
1791 	 */
1792 	if (next_pindex + next_size > prev_object->size)
1793 		prev_object->size = next_pindex + next_size;
1794 
1795 	return (TRUE);
1796 }
1797 
1798 /*
1799  * Make the object writable and flag is being possibly dirty.
1800  *
1801  * No requirements.
1802  */
1803 void
1804 vm_object_set_writeable_dirty(vm_object_t object)
1805 {
1806 	struct vnode *vp;
1807 
1808 	lwkt_gettoken(&vm_token);
1809 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1810 	if (object->type == OBJT_VNODE &&
1811 	    (vp = (struct vnode *)object->handle) != NULL) {
1812 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1813 			vsetflags(vp, VOBJDIRTY);
1814 		}
1815 	}
1816 	lwkt_reltoken(&vm_token);
1817 }
1818 
1819 static void
1820 vm_object_lock_init(vm_object_t obj)
1821 {
1822 #if defined(DEBUG_LOCKS)
1823 	int i;
1824 
1825 	obj->debug_hold_bitmap = 0;
1826 	obj->debug_hold_ovfl = 0;
1827 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1828 		obj->debug_hold_thrs[i] = NULL;
1829 	}
1830 #endif
1831 }
1832 
1833 void
1834 vm_object_lock(vm_object_t obj)
1835 {
1836 	lwkt_getpooltoken(obj);
1837 }
1838 
1839 void
1840 vm_object_unlock(vm_object_t obj)
1841 {
1842 	lwkt_relpooltoken(obj);
1843 }
1844 
1845 void
1846 vm_object_hold(vm_object_t obj)
1847 {
1848 	vm_object_lock(obj);
1849 
1850 	refcount_acquire(&obj->hold_count);
1851 
1852 #if defined(DEBUG_LOCKS)
1853 	int i;
1854 
1855 	i = ffs(~obj->debug_hold_bitmap) - 1;
1856 	if (i == -1) {
1857 		kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
1858 		obj->debug_hold_ovfl = 1;
1859 	}
1860 
1861 	obj->debug_hold_bitmap |= (1 << i);
1862 	obj->debug_hold_thrs[i] = curthread;
1863 #endif
1864 }
1865 
1866 void
1867 vm_object_drop(vm_object_t obj)
1868 {
1869 	int rc;
1870 
1871 #if defined(DEBUG_LOCKS)
1872 	int found = 0;
1873 	int i;
1874 
1875 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1876 		if ((obj->debug_hold_bitmap & (1 << i)) &&
1877 		    (obj->debug_hold_thrs[i] == curthread)) {
1878 			obj->debug_hold_bitmap &= ~(1 << i);
1879 			obj->debug_hold_thrs[i] = NULL;
1880 			found = 1;
1881 			break;
1882 		}
1883 	}
1884 
1885 	if (found == 0 && obj->debug_hold_ovfl == 0)
1886 		panic("vm_object: attempt to drop hold on non-self-held obj");
1887 #endif
1888 
1889 	rc = refcount_release(&obj->hold_count);
1890 	vm_object_unlock(obj);
1891 
1892 	if (rc)
1893 		vm_object_hold_wake(obj);
1894 }
1895 
1896 static void
1897 vm_object_hold_wake(vm_object_t obj)
1898 {
1899 	wakeup(obj);
1900 }
1901 
1902 static void
1903 vm_object_hold_wait(vm_object_t obj)
1904 {
1905 	vm_object_lock(obj);
1906 
1907 #if defined(DEBUG_LOCKS)
1908 	int i;
1909 
1910 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1911 		if ((obj->debug_hold_bitmap & (1 << i)) &&
1912 		    (obj->debug_hold_thrs[i] == curthread))
1913 			panic("vm_object: self-hold in terminate or collapse");
1914 	}
1915 #endif
1916 
1917 	while (obj->hold_count)
1918 		tsleep(obj, 0, "vmobjhld", 0);
1919 
1920 	vm_object_unlock(obj);
1921 }
1922 
1923 #include "opt_ddb.h"
1924 #ifdef DDB
1925 #include <sys/kernel.h>
1926 
1927 #include <sys/cons.h>
1928 
1929 #include <ddb/ddb.h>
1930 
1931 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1932 				       vm_map_entry_t entry);
1933 static int	vm_object_in_map (vm_object_t object);
1934 
1935 /*
1936  * The caller must hold vm_token.
1937  */
1938 static int
1939 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1940 {
1941 	vm_map_t tmpm;
1942 	vm_map_entry_t tmpe;
1943 	vm_object_t obj;
1944 	int entcount;
1945 
1946 	if (map == 0)
1947 		return 0;
1948 	if (entry == 0) {
1949 		tmpe = map->header.next;
1950 		entcount = map->nentries;
1951 		while (entcount-- && (tmpe != &map->header)) {
1952 			if( _vm_object_in_map(map, object, tmpe)) {
1953 				return 1;
1954 			}
1955 			tmpe = tmpe->next;
1956 		}
1957 		return (0);
1958 	}
1959 	switch(entry->maptype) {
1960 	case VM_MAPTYPE_SUBMAP:
1961 		tmpm = entry->object.sub_map;
1962 		tmpe = tmpm->header.next;
1963 		entcount = tmpm->nentries;
1964 		while (entcount-- && tmpe != &tmpm->header) {
1965 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1966 				return 1;
1967 			}
1968 			tmpe = tmpe->next;
1969 		}
1970 		break;
1971 	case VM_MAPTYPE_NORMAL:
1972 	case VM_MAPTYPE_VPAGETABLE:
1973 		obj = entry->object.vm_object;
1974 		while (obj) {
1975 			if (obj == object)
1976 				return 1;
1977 			obj = obj->backing_object;
1978 		}
1979 		break;
1980 	default:
1981 		break;
1982 	}
1983 	return 0;
1984 }
1985 
1986 static int vm_object_in_map_callback(struct proc *p, void *data);
1987 
1988 struct vm_object_in_map_info {
1989 	vm_object_t object;
1990 	int rv;
1991 };
1992 
1993 /*
1994  * Debugging only
1995  */
1996 static int
1997 vm_object_in_map(vm_object_t object)
1998 {
1999 	struct vm_object_in_map_info info;
2000 
2001 	info.rv = 0;
2002 	info.object = object;
2003 
2004 	allproc_scan(vm_object_in_map_callback, &info);
2005 	if (info.rv)
2006 		return 1;
2007 	if( _vm_object_in_map(&kernel_map, object, 0))
2008 		return 1;
2009 	if( _vm_object_in_map(&pager_map, object, 0))
2010 		return 1;
2011 	if( _vm_object_in_map(&buffer_map, object, 0))
2012 		return 1;
2013 	return 0;
2014 }
2015 
2016 /*
2017  * Debugging only
2018  */
2019 static int
2020 vm_object_in_map_callback(struct proc *p, void *data)
2021 {
2022 	struct vm_object_in_map_info *info = data;
2023 
2024 	if (p->p_vmspace) {
2025 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2026 			info->rv = 1;
2027 			return -1;
2028 		}
2029 	}
2030 	return (0);
2031 }
2032 
2033 DB_SHOW_COMMAND(vmochk, vm_object_check)
2034 {
2035 	vm_object_t object;
2036 
2037 	/*
2038 	 * make sure that internal objs are in a map somewhere
2039 	 * and none have zero ref counts.
2040 	 */
2041 	for (object = TAILQ_FIRST(&vm_object_list);
2042 			object != NULL;
2043 			object = TAILQ_NEXT(object, object_list)) {
2044 		if (object->type == OBJT_MARKER)
2045 			continue;
2046 		if (object->handle == NULL &&
2047 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2048 			if (object->ref_count == 0) {
2049 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2050 					(long)object->size);
2051 			}
2052 			if (!vm_object_in_map(object)) {
2053 				db_printf(
2054 			"vmochk: internal obj is not in a map: "
2055 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2056 				    object->ref_count, (u_long)object->size,
2057 				    (u_long)object->size,
2058 				    (void *)object->backing_object);
2059 			}
2060 		}
2061 	}
2062 }
2063 
2064 /*
2065  * Debugging only
2066  */
2067 DB_SHOW_COMMAND(object, vm_object_print_static)
2068 {
2069 	/* XXX convert args. */
2070 	vm_object_t object = (vm_object_t)addr;
2071 	boolean_t full = have_addr;
2072 
2073 	vm_page_t p;
2074 
2075 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2076 #define	count	was_count
2077 
2078 	int count;
2079 
2080 	if (object == NULL)
2081 		return;
2082 
2083 	db_iprintf(
2084 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2085 	    object, (int)object->type, (u_long)object->size,
2086 	    object->resident_page_count, object->ref_count, object->flags);
2087 	/*
2088 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2089 	 */
2090 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2091 	    object->shadow_count,
2092 	    object->backing_object ? object->backing_object->ref_count : 0,
2093 	    object->backing_object, (long)object->backing_object_offset);
2094 
2095 	if (!full)
2096 		return;
2097 
2098 	db_indent += 2;
2099 	count = 0;
2100 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2101 		if (count == 0)
2102 			db_iprintf("memory:=");
2103 		else if (count == 6) {
2104 			db_printf("\n");
2105 			db_iprintf(" ...");
2106 			count = 0;
2107 		} else
2108 			db_printf(",");
2109 		count++;
2110 
2111 		db_printf("(off=0x%lx,page=0x%lx)",
2112 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2113 	}
2114 	if (count != 0)
2115 		db_printf("\n");
2116 	db_indent -= 2;
2117 }
2118 
2119 /* XXX. */
2120 #undef count
2121 
2122 /*
2123  * XXX need this non-static entry for calling from vm_map_print.
2124  *
2125  * Debugging only
2126  */
2127 void
2128 vm_object_print(/* db_expr_t */ long addr,
2129 		boolean_t have_addr,
2130 		/* db_expr_t */ long count,
2131 		char *modif)
2132 {
2133 	vm_object_print_static(addr, have_addr, count, modif);
2134 }
2135 
2136 /*
2137  * Debugging only
2138  */
2139 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2140 {
2141 	vm_object_t object;
2142 	int nl = 0;
2143 	int c;
2144 	for (object = TAILQ_FIRST(&vm_object_list);
2145 			object != NULL;
2146 			object = TAILQ_NEXT(object, object_list)) {
2147 		vm_pindex_t idx, fidx;
2148 		vm_pindex_t osize;
2149 		vm_paddr_t pa = -1, padiff;
2150 		int rcount;
2151 		vm_page_t m;
2152 
2153 		if (object->type == OBJT_MARKER)
2154 			continue;
2155 		db_printf("new object: %p\n", (void *)object);
2156 		if ( nl > 18) {
2157 			c = cngetc();
2158 			if (c != ' ')
2159 				return;
2160 			nl = 0;
2161 		}
2162 		nl++;
2163 		rcount = 0;
2164 		fidx = 0;
2165 		osize = object->size;
2166 		if (osize > 128)
2167 			osize = 128;
2168 		for (idx = 0; idx < osize; idx++) {
2169 			m = vm_page_lookup(object, idx);
2170 			if (m == NULL) {
2171 				if (rcount) {
2172 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2173 						(long)fidx, rcount, (long)pa);
2174 					if ( nl > 18) {
2175 						c = cngetc();
2176 						if (c != ' ')
2177 							return;
2178 						nl = 0;
2179 					}
2180 					nl++;
2181 					rcount = 0;
2182 				}
2183 				continue;
2184 			}
2185 
2186 
2187 			if (rcount &&
2188 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2189 				++rcount;
2190 				continue;
2191 			}
2192 			if (rcount) {
2193 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2194 				padiff >>= PAGE_SHIFT;
2195 				padiff &= PQ_L2_MASK;
2196 				if (padiff == 0) {
2197 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2198 					++rcount;
2199 					continue;
2200 				}
2201 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2202 					(long)fidx, rcount, (long)pa);
2203 				db_printf("pd(%ld)\n", (long)padiff);
2204 				if ( nl > 18) {
2205 					c = cngetc();
2206 					if (c != ' ')
2207 						return;
2208 					nl = 0;
2209 				}
2210 				nl++;
2211 			}
2212 			fidx = idx;
2213 			pa = VM_PAGE_TO_PHYS(m);
2214 			rcount = 1;
2215 		}
2216 		if (rcount) {
2217 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2218 				(long)fidx, rcount, (long)pa);
2219 			if ( nl > 18) {
2220 				c = cngetc();
2221 				if (c != ' ')
2222 					return;
2223 				nl = 0;
2224 			}
2225 			nl++;
2226 		}
2227 	}
2228 }
2229 #endif /* DDB */
2230