xref: /dflybsd-src/sys/vm/vm_object.c (revision 127a3eb4035f914ee311e89500f4d77abda51b3f)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory object module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>		/* for curproc, pageproc */
77 #include <sys/thread.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/mman.h>
81 #include <sys/mount.h>
82 #include <sys/kernel.h>
83 #include <sys/sysctl.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object);
101 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 					     int pagerflags);
103 
104 /*
105  *	Virtual memory objects maintain the actual data
106  *	associated with allocated virtual memory.  A given
107  *	page of memory exists within exactly one object.
108  *
109  *	An object is only deallocated when all "references"
110  *	are given up.  Only one "reference" to a given
111  *	region of an object should be writeable.
112  *
113  *	Associated with each object is a list of all resident
114  *	memory pages belonging to that object; this list is
115  *	maintained by the "vm_page" module, and locked by the object's
116  *	lock.
117  *
118  *	Each object also records a "pager" routine which is
119  *	used to retrieve (and store) pages to the proper backing
120  *	storage.  In addition, objects may be backed by other
121  *	objects from which they were virtual-copied.
122  *
123  *	The only items within the object structure which are
124  *	modified after time of creation are:
125  *		reference count		locked by object's lock
126  *		pager routine		locked by object's lock
127  *
128  */
129 
130 struct object_q vm_object_list;		/* locked by vmobj_token */
131 struct vm_object kernel_object;
132 
133 static long vm_object_count;		/* locked by vmobj_token */
134 extern int vm_pageout_page_count;
135 
136 static long object_collapses;
137 static long object_bypasses;
138 static int next_index;
139 static vm_zone_t obj_zone;
140 static struct vm_zone obj_zone_store;
141 static int object_hash_rand;
142 #define VM_OBJECTS_INIT 256
143 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
144 
145 /*
146  * Initialize a freshly allocated object
147  *
148  * Used only by vm_object_allocate() and zinitna().
149  *
150  * No requirements.
151  */
152 void
153 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
154 {
155 	int incr;
156 
157 	RB_INIT(&object->rb_memq);
158 	LIST_INIT(&object->shadow_head);
159 
160 	object->type = type;
161 	object->size = size;
162 	object->ref_count = 1;
163 	object->flags = 0;
164 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
165 		vm_object_set_flag(object, OBJ_ONEMAPPING);
166 	object->paging_in_progress = 0;
167 	object->resident_page_count = 0;
168 	object->agg_pv_list_count = 0;
169 	object->shadow_count = 0;
170 	object->pg_color = next_index;
171 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
172 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
173 	else
174 		incr = size;
175 	next_index = (next_index + incr) & PQ_L2_MASK;
176 	object->handle = NULL;
177 	object->backing_object = NULL;
178 	object->backing_object_offset = (vm_ooffset_t) 0;
179 	/*
180 	 * Try to generate a number that will spread objects out in the
181 	 * hash table.  We 'wipe' new objects across the hash in 128 page
182 	 * increments plus 1 more to offset it a little more by the time
183 	 * it wraps around.
184 	 */
185 	object->hash_rand = object_hash_rand - 129;
186 
187 	object->generation++;
188 	object->swblock_count = 0;
189 	RB_INIT(&object->swblock_root);
190 	lwkt_token_init(&object->tok, "vmobjtk");
191 
192 	lwkt_gettoken(&vmobj_token);
193 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
194 	vm_object_count++;
195 	object_hash_rand = object->hash_rand;
196 	lwkt_reltoken(&vmobj_token);
197 }
198 
199 /*
200  * Initialize the VM objects module.
201  *
202  * Called from the low level boot code only.
203  */
204 void
205 vm_object_init(void)
206 {
207 	TAILQ_INIT(&vm_object_list);
208 
209 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
210 			    &kernel_object);
211 
212 	obj_zone = &obj_zone_store;
213 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
214 		vm_objects_init, VM_OBJECTS_INIT);
215 }
216 
217 void
218 vm_object_init2(void)
219 {
220 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
221 }
222 
223 /*
224  * Allocate and return a new object of the specified type and size.
225  *
226  * No requirements.
227  */
228 vm_object_t
229 vm_object_allocate(objtype_t type, vm_pindex_t size)
230 {
231 	vm_object_t result;
232 
233 	result = (vm_object_t) zalloc(obj_zone);
234 
235 	_vm_object_allocate(type, size, result);
236 
237 	return (result);
238 }
239 
240 /*
241  * Add an additional reference to a vm_object.
242  *
243  * Object passed by caller must be stable or caller must already
244  * hold vmobj_token to avoid races.
245  */
246 void
247 vm_object_reference(vm_object_t object)
248 {
249 	lwkt_gettoken(&vmobj_token);
250 	vm_object_reference_locked(object);
251 	lwkt_reltoken(&vmobj_token);
252 }
253 
254 void
255 vm_object_reference_locked(vm_object_t object)
256 {
257 	if (object) {
258 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
259 		vm_object_lock(object);
260 		object->ref_count++;
261 		if (object->type == OBJT_VNODE) {
262 			vref(object->handle);
263 			/* XXX what if the vnode is being destroyed? */
264 		}
265 		vm_object_unlock(object);
266 	}
267 }
268 
269 /*
270  * Dereference an object and its underlying vnode.
271  *
272  * The caller must hold vmobj_token.
273  */
274 static void
275 vm_object_vndeallocate(vm_object_t object)
276 {
277 	struct vnode *vp = (struct vnode *) object->handle;
278 
279 	KASSERT(object->type == OBJT_VNODE,
280 	    ("vm_object_vndeallocate: not a vnode object"));
281 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
282 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
283 #ifdef INVARIANTS
284 	if (object->ref_count == 0) {
285 		vprint("vm_object_vndeallocate", vp);
286 		panic("vm_object_vndeallocate: bad object reference count");
287 	}
288 #endif
289 
290 	object->ref_count--;
291 	if (object->ref_count == 0)
292 		vclrflags(vp, VTEXT);
293 	vrele(vp);
294 }
295 
296 /*
297  * Release a reference to the specified object, gained either through a
298  * vm_object_allocate or a vm_object_reference call.  When all references
299  * are gone, storage associated with this object may be relinquished.
300  */
301 void
302 vm_object_deallocate(vm_object_t object)
303 {
304 	lwkt_gettoken(&vmobj_token);
305 	vm_object_deallocate_locked(object);
306 	lwkt_reltoken(&vmobj_token);
307 }
308 
309 void
310 vm_object_deallocate_locked(vm_object_t object)
311 {
312 	vm_object_t temp;
313 
314 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
315 
316 	while (object != NULL) {
317 		if (object->type == OBJT_VNODE) {
318 			vm_object_vndeallocate(object);
319 			break;
320 		}
321 
322 		if (object->ref_count == 0) {
323 			panic("vm_object_deallocate: object deallocated "
324 			      "too many times: %d", object->type);
325 		}
326 		if (object->ref_count > 2) {
327 			object->ref_count--;
328 			break;
329 		}
330 
331 		/*
332 		 * We currently need the vm_token from this point on, and
333 		 * we must recheck ref_count after acquiring it.
334 		 */
335 		lwkt_gettoken(&vm_token);
336 
337 		if (object->ref_count > 2) {
338 			object->ref_count--;
339 			lwkt_reltoken(&vm_token);
340 			break;
341 		}
342 
343 		/*
344 		 * Here on ref_count of one or two, which are special cases for
345 		 * objects.
346 		 */
347 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
348 			vm_object_set_flag(object, OBJ_ONEMAPPING);
349 			object->ref_count--;
350 			lwkt_reltoken(&vm_token);
351 			break;
352 		}
353 		if ((object->ref_count == 2) && (object->shadow_count == 1)) {
354 			object->ref_count--;
355 			if ((object->handle == NULL) &&
356 			    (object->type == OBJT_DEFAULT ||
357 			     object->type == OBJT_SWAP)) {
358 				vm_object_t robject;
359 
360 				robject = LIST_FIRST(&object->shadow_head);
361 				KASSERT(robject != NULL,
362 					("vm_object_deallocate: ref_count: "
363 					"%d, shadow_count: %d",
364 					object->ref_count,
365 					object->shadow_count));
366 
367 				if ((robject->handle == NULL) &&
368 				    (robject->type == OBJT_DEFAULT ||
369 				     robject->type == OBJT_SWAP)) {
370 
371 					robject->ref_count++;
372 
373 					while (
374 						robject->paging_in_progress ||
375 						object->paging_in_progress
376 					) {
377 						vm_object_pip_sleep(robject, "objde1");
378 						vm_object_pip_sleep(object, "objde2");
379 					}
380 
381 					if (robject->ref_count == 1) {
382 						robject->ref_count--;
383 						object = robject;
384 						goto doterm;
385 					}
386 
387 					object = robject;
388 					vm_object_collapse(object);
389 					lwkt_reltoken(&vm_token);
390 					continue;
391 				}
392 			}
393 			lwkt_reltoken(&vm_token);
394 			break;
395 		}
396 
397 		/*
398 		 * Normal dereferencing path
399 		 */
400 		object->ref_count--;
401 		if (object->ref_count != 0) {
402 			lwkt_reltoken(&vm_token);
403 			break;
404 		}
405 
406 		/*
407 		 * Termination path
408 		 */
409 doterm:
410 		temp = object->backing_object;
411 		if (temp) {
412 			LIST_REMOVE(object, shadow_list);
413 			temp->shadow_count--;
414 			temp->generation++;
415 			object->backing_object = NULL;
416 		}
417 		lwkt_reltoken(&vm_token);
418 
419 		/*
420 		 * Don't double-terminate, we could be in a termination
421 		 * recursion due to the terminate having to sync data
422 		 * to disk.
423 		 */
424 		if ((object->flags & OBJ_DEAD) == 0)
425 			vm_object_terminate(object);
426 		object = temp;
427 	}
428 }
429 
430 /*
431  * Destroy the specified object, freeing up related resources.
432  *
433  * The object must have zero references.
434  *
435  * The caller must be holding vmobj_token and properly interlock with
436  * OBJ_DEAD.
437  */
438 static int vm_object_terminate_callback(vm_page_t p, void *data);
439 
440 void
441 vm_object_terminate(vm_object_t object)
442 {
443 	/*
444 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
445 	 * able to safely block.
446 	 */
447 	KKASSERT((object->flags & OBJ_DEAD) == 0);
448 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
449 	vm_object_set_flag(object, OBJ_DEAD);
450 
451 	/*
452 	 * Wait for the pageout daemon to be done with the object
453 	 */
454 	vm_object_pip_wait(object, "objtrm");
455 
456 	KASSERT(!object->paging_in_progress,
457 		("vm_object_terminate: pageout in progress"));
458 
459 	/*
460 	 * Clean and free the pages, as appropriate. All references to the
461 	 * object are gone, so we don't need to lock it.
462 	 */
463 	if (object->type == OBJT_VNODE) {
464 		struct vnode *vp;
465 
466 		/*
467 		 * Clean pages and flush buffers.
468 		 */
469 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
470 
471 		vp = (struct vnode *) object->handle;
472 		vinvalbuf(vp, V_SAVE, 0, 0);
473 	}
474 
475 	/*
476 	 * Wait for any I/O to complete, after which there had better not
477 	 * be any references left on the object.
478 	 */
479 	vm_object_pip_wait(object, "objtrm");
480 
481 	if (object->ref_count != 0) {
482 		panic("vm_object_terminate: object with references, "
483 		      "ref_count=%d", object->ref_count);
484 	}
485 
486 	/*
487 	 * Now free any remaining pages. For internal objects, this also
488 	 * removes them from paging queues. Don't free wired pages, just
489 	 * remove them from the object.
490 	 */
491 	lwkt_gettoken(&vm_token);
492 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
493 				vm_object_terminate_callback, NULL);
494 	lwkt_reltoken(&vm_token);
495 
496 	/*
497 	 * Let the pager know object is dead.
498 	 */
499 	vm_pager_deallocate(object);
500 
501 	/*
502 	 * Remove the object from the global object list.
503 	 *
504 	 * (we are holding vmobj_token)
505 	 */
506 	TAILQ_REMOVE(&vm_object_list, object, object_list);
507 	vm_object_count--;
508 	vm_object_dead_wakeup(object);
509 
510 	if (object->ref_count != 0) {
511 		panic("vm_object_terminate2: object with references, "
512 		      "ref_count=%d", object->ref_count);
513 	}
514 
515 	/*
516 	 * Free the space for the object.
517 	 */
518 	zfree(obj_zone, object);
519 }
520 
521 /*
522  * The caller must hold vm_token.
523  */
524 static int
525 vm_object_terminate_callback(vm_page_t p, void *data __unused)
526 {
527 	if (p->busy || (p->flags & PG_BUSY))
528 		panic("vm_object_terminate: freeing busy page %p", p);
529 	if (p->wire_count == 0) {
530 		vm_page_busy(p);
531 		vm_page_free(p);
532 		mycpu->gd_cnt.v_pfree++;
533 	} else {
534 		if (p->queue != PQ_NONE)
535 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
536 		vm_page_busy(p);
537 		vm_page_remove(p);
538 		vm_page_wakeup(p);
539 	}
540 	return(0);
541 }
542 
543 /*
544  * The object is dead but still has an object<->pager association.  Sleep
545  * and return.  The caller typically retests the association in a loop.
546  *
547  * Must be called with the vmobj_token held.
548  */
549 void
550 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
551 {
552 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
553 	if (object->handle) {
554 		vm_object_set_flag(object, OBJ_DEADWNT);
555 		tsleep(object, 0, wmesg, 0);
556 		/* object may be invalid after this point */
557 	}
558 }
559 
560 /*
561  * Wakeup anyone waiting for the object<->pager disassociation on
562  * a dead object.
563  *
564  * Must be called with the vmobj_token held.
565  */
566 void
567 vm_object_dead_wakeup(vm_object_t object)
568 {
569 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
570 	if (object->flags & OBJ_DEADWNT) {
571 		vm_object_clear_flag(object, OBJ_DEADWNT);
572 		wakeup(object);
573 	}
574 }
575 
576 /*
577  * Clean all dirty pages in the specified range of object.  Leaves page
578  * on whatever queue it is currently on.   If NOSYNC is set then do not
579  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
580  * leaving the object dirty.
581  *
582  * When stuffing pages asynchronously, allow clustering.  XXX we need a
583  * synchronous clustering mode implementation.
584  *
585  * Odd semantics: if start == end, we clean everything.
586  *
587  * The object must be locked? XXX
588  */
589 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
590 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
591 
592 void
593 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
594 		     int flags)
595 {
596 	struct rb_vm_page_scan_info info;
597 	struct vnode *vp;
598 	int wholescan;
599 	int pagerflags;
600 	int curgeneration;
601 
602 	lwkt_gettoken(&vm_token);
603 	if (object->type != OBJT_VNODE ||
604 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
605 		lwkt_reltoken(&vm_token);
606 		return;
607 	}
608 
609 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
610 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
611 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
612 
613 	vp = object->handle;
614 
615 	/*
616 	 * Interlock other major object operations.  This allows us to
617 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
618 	 */
619 	crit_enter();
620 	vm_object_set_flag(object, OBJ_CLEANING);
621 
622 	/*
623 	 * Handle 'entire object' case
624 	 */
625 	info.start_pindex = start;
626 	if (end == 0) {
627 		info.end_pindex = object->size - 1;
628 	} else {
629 		info.end_pindex = end - 1;
630 	}
631 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
632 	info.limit = flags;
633 	info.pagerflags = pagerflags;
634 	info.object = object;
635 
636 	/*
637 	 * If cleaning the entire object do a pass to mark the pages read-only.
638 	 * If everything worked out ok, clear OBJ_WRITEABLE and
639 	 * OBJ_MIGHTBEDIRTY.
640 	 */
641 	if (wholescan) {
642 		info.error = 0;
643 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
644 					vm_object_page_clean_pass1, &info);
645 		if (info.error == 0) {
646 			vm_object_clear_flag(object,
647 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
648 			if (object->type == OBJT_VNODE &&
649 			    (vp = (struct vnode *)object->handle) != NULL) {
650 				if (vp->v_flag & VOBJDIRTY)
651 					vclrflags(vp, VOBJDIRTY);
652 			}
653 		}
654 	}
655 
656 	/*
657 	 * Do a pass to clean all the dirty pages we find.
658 	 */
659 	do {
660 		info.error = 0;
661 		curgeneration = object->generation;
662 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
663 					vm_object_page_clean_pass2, &info);
664 	} while (info.error || curgeneration != object->generation);
665 
666 	vm_object_clear_flag(object, OBJ_CLEANING);
667 	crit_exit();
668 	lwkt_reltoken(&vm_token);
669 }
670 
671 /*
672  * The caller must hold vm_token.
673  */
674 static
675 int
676 vm_object_page_clean_pass1(struct vm_page *p, void *data)
677 {
678 	struct rb_vm_page_scan_info *info = data;
679 
680 	vm_page_flag_set(p, PG_CLEANCHK);
681 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
682 		info->error = 1;
683 	else
684 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
685 	return(0);
686 }
687 
688 /*
689  * The caller must hold vm_token.
690  */
691 static
692 int
693 vm_object_page_clean_pass2(struct vm_page *p, void *data)
694 {
695 	struct rb_vm_page_scan_info *info = data;
696 	int n;
697 
698 	/*
699 	 * Do not mess with pages that were inserted after we started
700 	 * the cleaning pass.
701 	 */
702 	if ((p->flags & PG_CLEANCHK) == 0)
703 		return(0);
704 
705 	/*
706 	 * Before wasting time traversing the pmaps, check for trivial
707 	 * cases where the page cannot be dirty.
708 	 */
709 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
710 		KKASSERT((p->dirty & p->valid) == 0);
711 		return(0);
712 	}
713 
714 	/*
715 	 * Check whether the page is dirty or not.  The page has been set
716 	 * to be read-only so the check will not race a user dirtying the
717 	 * page.
718 	 */
719 	vm_page_test_dirty(p);
720 	if ((p->dirty & p->valid) == 0) {
721 		vm_page_flag_clear(p, PG_CLEANCHK);
722 		return(0);
723 	}
724 
725 	/*
726 	 * If we have been asked to skip nosync pages and this is a
727 	 * nosync page, skip it.  Note that the object flags were
728 	 * not cleared in this case (because pass1 will have returned an
729 	 * error), so we do not have to set them.
730 	 */
731 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
732 		vm_page_flag_clear(p, PG_CLEANCHK);
733 		return(0);
734 	}
735 
736 	/*
737 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
738 	 * the pages that get successfully flushed.  Set info->error if
739 	 * we raced an object modification.
740 	 */
741 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
742 	if (n == 0)
743 		info->error = 1;
744 	return(0);
745 }
746 
747 /*
748  * Collect the specified page and nearby pages and flush them out.
749  * The number of pages flushed is returned.
750  *
751  * The caller must hold vm_token.
752  */
753 static int
754 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
755 {
756 	int runlen;
757 	int maxf;
758 	int chkb;
759 	int maxb;
760 	int i;
761 	int curgeneration;
762 	vm_pindex_t pi;
763 	vm_page_t maf[vm_pageout_page_count];
764 	vm_page_t mab[vm_pageout_page_count];
765 	vm_page_t ma[vm_pageout_page_count];
766 
767 	curgeneration = object->generation;
768 
769 	pi = p->pindex;
770 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
771 		if (object->generation != curgeneration) {
772 			return(0);
773 		}
774 	}
775 	KKASSERT(p->object == object && p->pindex == pi);
776 
777 	maxf = 0;
778 	for(i = 1; i < vm_pageout_page_count; i++) {
779 		vm_page_t tp;
780 
781 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
782 			if ((tp->flags & PG_BUSY) ||
783 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
784 				 (tp->flags & PG_CLEANCHK) == 0) ||
785 				(tp->busy != 0))
786 				break;
787 			if((tp->queue - tp->pc) == PQ_CACHE) {
788 				vm_page_flag_clear(tp, PG_CLEANCHK);
789 				break;
790 			}
791 			vm_page_test_dirty(tp);
792 			if ((tp->dirty & tp->valid) == 0) {
793 				vm_page_flag_clear(tp, PG_CLEANCHK);
794 				break;
795 			}
796 			maf[ i - 1 ] = tp;
797 			maxf++;
798 			continue;
799 		}
800 		break;
801 	}
802 
803 	maxb = 0;
804 	chkb = vm_pageout_page_count -  maxf;
805 	if (chkb) {
806 		for(i = 1; i < chkb;i++) {
807 			vm_page_t tp;
808 
809 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
810 				if ((tp->flags & PG_BUSY) ||
811 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
812 					 (tp->flags & PG_CLEANCHK) == 0) ||
813 					(tp->busy != 0))
814 					break;
815 				if((tp->queue - tp->pc) == PQ_CACHE) {
816 					vm_page_flag_clear(tp, PG_CLEANCHK);
817 					break;
818 				}
819 				vm_page_test_dirty(tp);
820 				if ((tp->dirty & tp->valid) == 0) {
821 					vm_page_flag_clear(tp, PG_CLEANCHK);
822 					break;
823 				}
824 				mab[ i - 1 ] = tp;
825 				maxb++;
826 				continue;
827 			}
828 			break;
829 		}
830 	}
831 
832 	for(i = 0; i < maxb; i++) {
833 		int index = (maxb - i) - 1;
834 		ma[index] = mab[i];
835 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
836 	}
837 	vm_page_flag_clear(p, PG_CLEANCHK);
838 	ma[maxb] = p;
839 	for(i = 0; i < maxf; i++) {
840 		int index = (maxb + i) + 1;
841 		ma[index] = maf[i];
842 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
843 	}
844 	runlen = maxb + maxf + 1;
845 
846 	vm_pageout_flush(ma, runlen, pagerflags);
847 	for (i = 0; i < runlen; i++) {
848 		if (ma[i]->valid & ma[i]->dirty) {
849 			vm_page_protect(ma[i], VM_PROT_READ);
850 			vm_page_flag_set(ma[i], PG_CLEANCHK);
851 
852 			/*
853 			 * maxf will end up being the actual number of pages
854 			 * we wrote out contiguously, non-inclusive of the
855 			 * first page.  We do not count look-behind pages.
856 			 */
857 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
858 				maxf = i - maxb - 1;
859 		}
860 	}
861 	return(maxf + 1);
862 }
863 
864 /*
865  * Same as vm_object_pmap_copy, except range checking really
866  * works, and is meant for small sections of an object.
867  *
868  * This code protects resident pages by making them read-only
869  * and is typically called on a fork or split when a page
870  * is converted to copy-on-write.
871  *
872  * NOTE: If the page is already at VM_PROT_NONE, calling
873  * vm_page_protect will have no effect.
874  */
875 void
876 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
877 {
878 	vm_pindex_t idx;
879 	vm_page_t p;
880 
881 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
882 		return;
883 
884 	/*
885 	 * spl protection needed to prevent races between the lookup,
886 	 * an interrupt unbusy/free, and our protect call.
887 	 */
888 	crit_enter();
889 	lwkt_gettoken(&vm_token);
890 	for (idx = start; idx < end; idx++) {
891 		p = vm_page_lookup(object, idx);
892 		if (p == NULL)
893 			continue;
894 		vm_page_protect(p, VM_PROT_READ);
895 	}
896 	lwkt_reltoken(&vm_token);
897 	crit_exit();
898 }
899 
900 /*
901  * Removes all physical pages in the specified object range from all
902  * physical maps.
903  *
904  * The object must *not* be locked.
905  */
906 
907 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
908 
909 void
910 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
911 {
912 	struct rb_vm_page_scan_info info;
913 
914 	if (object == NULL)
915 		return;
916 	info.start_pindex = start;
917 	info.end_pindex = end - 1;
918 
919 	crit_enter();
920 	lwkt_gettoken(&vm_token);
921 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
922 				vm_object_pmap_remove_callback, &info);
923 	if (start == 0 && end == object->size)
924 		vm_object_clear_flag(object, OBJ_WRITEABLE);
925 	lwkt_reltoken(&vm_token);
926 	crit_exit();
927 }
928 
929 /*
930  * The caller must hold vm_token.
931  */
932 static int
933 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
934 {
935 	vm_page_protect(p, VM_PROT_NONE);
936 	return(0);
937 }
938 
939 /*
940  * Implements the madvise function at the object/page level.
941  *
942  * MADV_WILLNEED	(any object)
943  *
944  *	Activate the specified pages if they are resident.
945  *
946  * MADV_DONTNEED	(any object)
947  *
948  *	Deactivate the specified pages if they are resident.
949  *
950  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
951  *
952  *	Deactivate and clean the specified pages if they are
953  *	resident.  This permits the process to reuse the pages
954  *	without faulting or the kernel to reclaim the pages
955  *	without I/O.
956  *
957  * No requirements.
958  */
959 void
960 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
961 {
962 	vm_pindex_t end, tpindex;
963 	vm_object_t tobject;
964 	vm_page_t m;
965 
966 	if (object == NULL)
967 		return;
968 
969 	end = pindex + count;
970 
971 	lwkt_gettoken(&vm_token);
972 
973 	/*
974 	 * Locate and adjust resident pages
975 	 */
976 	for (; pindex < end; pindex += 1) {
977 relookup:
978 		tobject = object;
979 		tpindex = pindex;
980 shadowlookup:
981 		/*
982 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
983 		 * and those pages must be OBJ_ONEMAPPING.
984 		 */
985 		if (advise == MADV_FREE) {
986 			if ((tobject->type != OBJT_DEFAULT &&
987 			     tobject->type != OBJT_SWAP) ||
988 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
989 				continue;
990 			}
991 		}
992 
993 		/*
994 		 * spl protection is required to avoid a race between the
995 		 * lookup, an interrupt unbusy/free, and our busy check.
996 		 */
997 
998 		crit_enter();
999 		m = vm_page_lookup(tobject, tpindex);
1000 
1001 		if (m == NULL) {
1002 			/*
1003 			 * There may be swap even if there is no backing page
1004 			 */
1005 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1006 				swap_pager_freespace(tobject, tpindex, 1);
1007 
1008 			/*
1009 			 * next object
1010 			 */
1011 			crit_exit();
1012 			if (tobject->backing_object == NULL)
1013 				continue;
1014 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1015 			tobject = tobject->backing_object;
1016 			goto shadowlookup;
1017 		}
1018 
1019 		/*
1020 		 * If the page is busy or not in a normal active state,
1021 		 * we skip it.  If the page is not managed there are no
1022 		 * page queues to mess with.  Things can break if we mess
1023 		 * with pages in any of the below states.
1024 		 */
1025 		if (
1026 		    m->hold_count ||
1027 		    m->wire_count ||
1028 		    (m->flags & PG_UNMANAGED) ||
1029 		    m->valid != VM_PAGE_BITS_ALL
1030 		) {
1031 			crit_exit();
1032 			continue;
1033 		}
1034 
1035  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1036 			crit_exit();
1037   			goto relookup;
1038 		}
1039 		vm_page_busy(m);
1040 		crit_exit();
1041 
1042 		/*
1043 		 * Theoretically once a page is known not to be busy, an
1044 		 * interrupt cannot come along and rip it out from under us.
1045 		 */
1046 
1047 		if (advise == MADV_WILLNEED) {
1048 			vm_page_activate(m);
1049 		} else if (advise == MADV_DONTNEED) {
1050 			vm_page_dontneed(m);
1051 		} else if (advise == MADV_FREE) {
1052 			/*
1053 			 * Mark the page clean.  This will allow the page
1054 			 * to be freed up by the system.  However, such pages
1055 			 * are often reused quickly by malloc()/free()
1056 			 * so we do not do anything that would cause
1057 			 * a page fault if we can help it.
1058 			 *
1059 			 * Specifically, we do not try to actually free
1060 			 * the page now nor do we try to put it in the
1061 			 * cache (which would cause a page fault on reuse).
1062 			 *
1063 			 * But we do make the page is freeable as we
1064 			 * can without actually taking the step of unmapping
1065 			 * it.
1066 			 */
1067 			pmap_clear_modify(m);
1068 			m->dirty = 0;
1069 			m->act_count = 0;
1070 			vm_page_dontneed(m);
1071 			if (tobject->type == OBJT_SWAP)
1072 				swap_pager_freespace(tobject, tpindex, 1);
1073 		}
1074 		vm_page_wakeup(m);
1075 	}
1076 	lwkt_reltoken(&vm_token);
1077 }
1078 
1079 /*
1080  * Create a new object which is backed by the specified existing object
1081  * range.  The source object reference is deallocated.
1082  *
1083  * The new object and offset into that object are returned in the source
1084  * parameters.
1085  *
1086  * No other requirements.
1087  */
1088 void
1089 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1090 {
1091 	vm_object_t source;
1092 	vm_object_t result;
1093 
1094 	source = *object;
1095 
1096 	/*
1097 	 * Don't create the new object if the old object isn't shared.
1098 	 */
1099 	lwkt_gettoken(&vm_token);
1100 
1101 	if (source != NULL &&
1102 	    source->ref_count == 1 &&
1103 	    source->handle == NULL &&
1104 	    (source->type == OBJT_DEFAULT ||
1105 	     source->type == OBJT_SWAP)) {
1106 		lwkt_reltoken(&vm_token);
1107 		return;
1108 	}
1109 
1110 	/*
1111 	 * Allocate a new object with the given length
1112 	 */
1113 
1114 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1115 		panic("vm_object_shadow: no object for shadowing");
1116 
1117 	/*
1118 	 * The new object shadows the source object, adding a reference to it.
1119 	 * Our caller changes his reference to point to the new object,
1120 	 * removing a reference to the source object.  Net result: no change
1121 	 * of reference count.
1122 	 *
1123 	 * Try to optimize the result object's page color when shadowing
1124 	 * in order to maintain page coloring consistency in the combined
1125 	 * shadowed object.
1126 	 */
1127 	result->backing_object = source;
1128 	if (source) {
1129 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1130 		source->shadow_count++;
1131 		source->generation++;
1132 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1133 	}
1134 
1135 	/*
1136 	 * Store the offset into the source object, and fix up the offset into
1137 	 * the new object.
1138 	 */
1139 	result->backing_object_offset = *offset;
1140 	lwkt_reltoken(&vm_token);
1141 
1142 	/*
1143 	 * Return the new things
1144 	 */
1145 	*offset = 0;
1146 	*object = result;
1147 }
1148 
1149 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1150 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1151 #define	OBSC_COLLAPSE_WAIT	0x0004
1152 
1153 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1154 
1155 /*
1156  * The caller must hold vm_token.
1157  */
1158 static __inline int
1159 vm_object_backing_scan(vm_object_t object, int op)
1160 {
1161 	struct rb_vm_page_scan_info info;
1162 	vm_object_t backing_object;
1163 
1164 	crit_enter();
1165 
1166 	backing_object = object->backing_object;
1167 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1168 
1169 	/*
1170 	 * Initial conditions
1171 	 */
1172 
1173 	if (op & OBSC_TEST_ALL_SHADOWED) {
1174 		/*
1175 		 * We do not want to have to test for the existence of
1176 		 * swap pages in the backing object.  XXX but with the
1177 		 * new swapper this would be pretty easy to do.
1178 		 *
1179 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1180 		 * been ZFOD faulted yet?  If we do not test for this, the
1181 		 * shadow test may succeed! XXX
1182 		 */
1183 		if (backing_object->type != OBJT_DEFAULT) {
1184 			crit_exit();
1185 			return(0);
1186 		}
1187 	}
1188 	if (op & OBSC_COLLAPSE_WAIT) {
1189 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1190 		vm_object_set_flag(backing_object, OBJ_DEAD);
1191 	}
1192 
1193 	/*
1194 	 * Our scan.   We have to retry if a negative error code is returned,
1195 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1196 	 * the scan had to be stopped because the parent does not completely
1197 	 * shadow the child.
1198 	 */
1199 	info.object = object;
1200 	info.backing_object = backing_object;
1201 	info.limit = op;
1202 	do {
1203 		info.error = 1;
1204 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1205 					vm_object_backing_scan_callback,
1206 					&info);
1207 	} while (info.error < 0);
1208 	crit_exit();
1209 	return(info.error);
1210 }
1211 
1212 /*
1213  * The caller must hold vm_token.
1214  */
1215 static int
1216 vm_object_backing_scan_callback(vm_page_t p, void *data)
1217 {
1218 	struct rb_vm_page_scan_info *info = data;
1219 	vm_object_t backing_object;
1220 	vm_object_t object;
1221 	vm_pindex_t new_pindex;
1222 	vm_pindex_t backing_offset_index;
1223 	int op;
1224 
1225 	new_pindex = p->pindex - info->backing_offset_index;
1226 	op = info->limit;
1227 	object = info->object;
1228 	backing_object = info->backing_object;
1229 	backing_offset_index = info->backing_offset_index;
1230 
1231 	if (op & OBSC_TEST_ALL_SHADOWED) {
1232 		vm_page_t pp;
1233 
1234 		/*
1235 		 * Ignore pages outside the parent object's range
1236 		 * and outside the parent object's mapping of the
1237 		 * backing object.
1238 		 *
1239 		 * note that we do not busy the backing object's
1240 		 * page.
1241 		 */
1242 		if (
1243 		    p->pindex < backing_offset_index ||
1244 		    new_pindex >= object->size
1245 		) {
1246 			return(0);
1247 		}
1248 
1249 		/*
1250 		 * See if the parent has the page or if the parent's
1251 		 * object pager has the page.  If the parent has the
1252 		 * page but the page is not valid, the parent's
1253 		 * object pager must have the page.
1254 		 *
1255 		 * If this fails, the parent does not completely shadow
1256 		 * the object and we might as well give up now.
1257 		 */
1258 
1259 		pp = vm_page_lookup(object, new_pindex);
1260 		if ((pp == NULL || pp->valid == 0) &&
1261 		    !vm_pager_has_page(object, new_pindex)
1262 		) {
1263 			info->error = 0;	/* problemo */
1264 			return(-1);		/* stop the scan */
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Check for busy page
1270 	 */
1271 
1272 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1273 		vm_page_t pp;
1274 
1275 		if (op & OBSC_COLLAPSE_NOWAIT) {
1276 			if (
1277 			    (p->flags & PG_BUSY) ||
1278 			    !p->valid ||
1279 			    p->hold_count ||
1280 			    p->wire_count ||
1281 			    p->busy
1282 			) {
1283 				return(0);
1284 			}
1285 		} else if (op & OBSC_COLLAPSE_WAIT) {
1286 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1287 				/*
1288 				 * If we slept, anything could have
1289 				 * happened.   Ask that the scan be restarted.
1290 				 *
1291 				 * Since the object is marked dead, the
1292 				 * backing offset should not have changed.
1293 				 */
1294 				info->error = -1;
1295 				return(-1);
1296 			}
1297 		}
1298 
1299 		/*
1300 		 * Busy the page
1301 		 */
1302 		vm_page_busy(p);
1303 
1304 		KASSERT(
1305 		    p->object == backing_object,
1306 		    ("vm_object_qcollapse(): object mismatch")
1307 		);
1308 
1309 		/*
1310 		 * Destroy any associated swap
1311 		 */
1312 		if (backing_object->type == OBJT_SWAP)
1313 			swap_pager_freespace(backing_object, p->pindex, 1);
1314 
1315 		if (
1316 		    p->pindex < backing_offset_index ||
1317 		    new_pindex >= object->size
1318 		) {
1319 			/*
1320 			 * Page is out of the parent object's range, we
1321 			 * can simply destroy it.
1322 			 */
1323 			vm_page_protect(p, VM_PROT_NONE);
1324 			vm_page_free(p);
1325 			return(0);
1326 		}
1327 
1328 		pp = vm_page_lookup(object, new_pindex);
1329 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1330 			/*
1331 			 * page already exists in parent OR swap exists
1332 			 * for this location in the parent.  Destroy
1333 			 * the original page from the backing object.
1334 			 *
1335 			 * Leave the parent's page alone
1336 			 */
1337 			vm_page_protect(p, VM_PROT_NONE);
1338 			vm_page_free(p);
1339 			return(0);
1340 		}
1341 
1342 		/*
1343 		 * Page does not exist in parent, rename the
1344 		 * page from the backing object to the main object.
1345 		 *
1346 		 * If the page was mapped to a process, it can remain
1347 		 * mapped through the rename.
1348 		 */
1349 		if ((p->queue - p->pc) == PQ_CACHE)
1350 			vm_page_deactivate(p);
1351 
1352 		vm_page_rename(p, object, new_pindex);
1353 		/* page automatically made dirty by rename */
1354 	}
1355 	return(0);
1356 }
1357 
1358 /*
1359  * This version of collapse allows the operation to occur earlier and
1360  * when paging_in_progress is true for an object...  This is not a complete
1361  * operation, but should plug 99.9% of the rest of the leaks.
1362  *
1363  * The caller must hold vm_token and vmobj_token.
1364  * (only called from vm_object_collapse)
1365  */
1366 static void
1367 vm_object_qcollapse(vm_object_t object)
1368 {
1369 	vm_object_t backing_object = object->backing_object;
1370 
1371 	if (backing_object->ref_count != 1)
1372 		return;
1373 
1374 	backing_object->ref_count += 2;
1375 
1376 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1377 
1378 	backing_object->ref_count -= 2;
1379 }
1380 
1381 /*
1382  * Collapse an object with the object backing it.  Pages in the backing
1383  * object are moved into the parent, and the backing object is deallocated.
1384  */
1385 void
1386 vm_object_collapse(vm_object_t object)
1387 {
1388 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1389 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1390 
1391 	while (TRUE) {
1392 		vm_object_t backing_object;
1393 
1394 		/*
1395 		 * Verify that the conditions are right for collapse:
1396 		 *
1397 		 * The object exists and the backing object exists.
1398 		 */
1399 		if (object == NULL)
1400 			break;
1401 
1402 		if ((backing_object = object->backing_object) == NULL)
1403 			break;
1404 
1405 		/*
1406 		 * we check the backing object first, because it is most likely
1407 		 * not collapsable.
1408 		 */
1409 		if (backing_object->handle != NULL ||
1410 		    (backing_object->type != OBJT_DEFAULT &&
1411 		     backing_object->type != OBJT_SWAP) ||
1412 		    (backing_object->flags & OBJ_DEAD) ||
1413 		    object->handle != NULL ||
1414 		    (object->type != OBJT_DEFAULT &&
1415 		     object->type != OBJT_SWAP) ||
1416 		    (object->flags & OBJ_DEAD)) {
1417 			break;
1418 		}
1419 
1420 		if (
1421 		    object->paging_in_progress != 0 ||
1422 		    backing_object->paging_in_progress != 0
1423 		) {
1424 			vm_object_qcollapse(object);
1425 			break;
1426 		}
1427 
1428 		/*
1429 		 * We know that we can either collapse the backing object (if
1430 		 * the parent is the only reference to it) or (perhaps) have
1431 		 * the parent bypass the object if the parent happens to shadow
1432 		 * all the resident pages in the entire backing object.
1433 		 *
1434 		 * This is ignoring pager-backed pages such as swap pages.
1435 		 * vm_object_backing_scan fails the shadowing test in this
1436 		 * case.
1437 		 */
1438 
1439 		if (backing_object->ref_count == 1) {
1440 			/*
1441 			 * If there is exactly one reference to the backing
1442 			 * object, we can collapse it into the parent.
1443 			 */
1444 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1445 
1446 			/*
1447 			 * Move the pager from backing_object to object.
1448 			 */
1449 
1450 			if (backing_object->type == OBJT_SWAP) {
1451 				vm_object_pip_add(backing_object, 1);
1452 
1453 				/*
1454 				 * scrap the paging_offset junk and do a
1455 				 * discrete copy.  This also removes major
1456 				 * assumptions about how the swap-pager
1457 				 * works from where it doesn't belong.  The
1458 				 * new swapper is able to optimize the
1459 				 * destroy-source case.
1460 				 */
1461 
1462 				vm_object_pip_add(object, 1);
1463 				swap_pager_copy(
1464 				    backing_object,
1465 				    object,
1466 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1467 				vm_object_pip_wakeup(object);
1468 
1469 				vm_object_pip_wakeup(backing_object);
1470 			}
1471 			/*
1472 			 * Object now shadows whatever backing_object did.
1473 			 * Note that the reference to
1474 			 * backing_object->backing_object moves from within
1475 			 * backing_object to within object.
1476 			 */
1477 
1478 			LIST_REMOVE(object, shadow_list);
1479 			object->backing_object->shadow_count--;
1480 			object->backing_object->generation++;
1481 			if (backing_object->backing_object) {
1482 				LIST_REMOVE(backing_object, shadow_list);
1483 				backing_object->backing_object->shadow_count--;
1484 				backing_object->backing_object->generation++;
1485 			}
1486 			object->backing_object = backing_object->backing_object;
1487 			if (object->backing_object) {
1488 				LIST_INSERT_HEAD(
1489 				    &object->backing_object->shadow_head,
1490 				    object,
1491 				    shadow_list
1492 				);
1493 				object->backing_object->shadow_count++;
1494 				object->backing_object->generation++;
1495 			}
1496 
1497 			object->backing_object_offset +=
1498 			    backing_object->backing_object_offset;
1499 
1500 			/*
1501 			 * Discard backing_object.
1502 			 *
1503 			 * Since the backing object has no pages, no pager left,
1504 			 * and no object references within it, all that is
1505 			 * necessary is to dispose of it.
1506 			 */
1507 
1508 			KASSERT(backing_object->ref_count == 1,
1509 				("backing_object %p was somehow "
1510 				 "re-referenced during collapse!",
1511 				 backing_object));
1512 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1513 				("backing_object %p somehow has left "
1514 				 "over pages during collapse!",
1515 				 backing_object));
1516 
1517 			/* (we are holding vmobj_token) */
1518 			TAILQ_REMOVE(&vm_object_list, backing_object,
1519 				     object_list);
1520 			vm_object_count--;
1521 
1522 			zfree(obj_zone, backing_object);
1523 
1524 			object_collapses++;
1525 		} else {
1526 			vm_object_t new_backing_object;
1527 
1528 			/*
1529 			 * If we do not entirely shadow the backing object,
1530 			 * there is nothing we can do so we give up.
1531 			 */
1532 
1533 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1534 				break;
1535 			}
1536 
1537 			/*
1538 			 * Make the parent shadow the next object in the
1539 			 * chain.  Deallocating backing_object will not remove
1540 			 * it, since its reference count is at least 2.
1541 			 */
1542 
1543 			LIST_REMOVE(object, shadow_list);
1544 			backing_object->shadow_count--;
1545 			backing_object->generation++;
1546 
1547 			new_backing_object = backing_object->backing_object;
1548 			if ((object->backing_object = new_backing_object) != NULL) {
1549 				vm_object_reference(new_backing_object);
1550 				LIST_INSERT_HEAD(
1551 				    &new_backing_object->shadow_head,
1552 				    object,
1553 				    shadow_list
1554 				);
1555 				new_backing_object->shadow_count++;
1556 				new_backing_object->generation++;
1557 				object->backing_object_offset +=
1558 					backing_object->backing_object_offset;
1559 			}
1560 
1561 			/*
1562 			 * Drop the reference count on backing_object. Since
1563 			 * its ref_count was at least 2, it will not vanish;
1564 			 * so we don't need to call vm_object_deallocate, but
1565 			 * we do anyway.
1566 			 */
1567 			vm_object_deallocate_locked(backing_object);
1568 			object_bypasses++;
1569 		}
1570 
1571 		/*
1572 		 * Try again with this object's new backing object.
1573 		 */
1574 	}
1575 }
1576 
1577 /*
1578  * Removes all physical pages in the specified object range from the
1579  * object's list of pages.
1580  *
1581  * No requirements.
1582  */
1583 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1584 
1585 void
1586 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1587 		      boolean_t clean_only)
1588 {
1589 	struct rb_vm_page_scan_info info;
1590 	int all;
1591 
1592 	/*
1593 	 * Degenerate cases and assertions
1594 	 */
1595 	lwkt_gettoken(&vm_token);
1596 	if (object == NULL ||
1597 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1598 		lwkt_reltoken(&vm_token);
1599 		return;
1600 	}
1601 	KASSERT(object->type != OBJT_PHYS,
1602 		("attempt to remove pages from a physical object"));
1603 
1604 	/*
1605 	 * Indicate that paging is occuring on the object
1606 	 */
1607 	crit_enter();
1608 	vm_object_pip_add(object, 1);
1609 
1610 	/*
1611 	 * Figure out the actual removal range and whether we are removing
1612 	 * the entire contents of the object or not.  If removing the entire
1613 	 * contents, be sure to get all pages, even those that might be
1614 	 * beyond the end of the object.
1615 	 */
1616 	info.start_pindex = start;
1617 	if (end == 0)
1618 		info.end_pindex = (vm_pindex_t)-1;
1619 	else
1620 		info.end_pindex = end - 1;
1621 	info.limit = clean_only;
1622 	all = (start == 0 && info.end_pindex >= object->size - 1);
1623 
1624 	/*
1625 	 * Loop until we are sure we have gotten them all.
1626 	 */
1627 	do {
1628 		info.error = 0;
1629 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1630 					vm_object_page_remove_callback, &info);
1631 	} while (info.error);
1632 
1633 	/*
1634 	 * Remove any related swap if throwing away pages, or for
1635 	 * non-swap objects (the swap is a clean copy in that case).
1636 	 */
1637 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1638 		if (all)
1639 			swap_pager_freespace_all(object);
1640 		else
1641 			swap_pager_freespace(object, info.start_pindex,
1642 			     info.end_pindex - info.start_pindex + 1);
1643 	}
1644 
1645 	/*
1646 	 * Cleanup
1647 	 */
1648 	vm_object_pip_wakeup(object);
1649 	crit_exit();
1650 	lwkt_reltoken(&vm_token);
1651 }
1652 
1653 /*
1654  * The caller must hold vm_token.
1655  */
1656 static int
1657 vm_object_page_remove_callback(vm_page_t p, void *data)
1658 {
1659 	struct rb_vm_page_scan_info *info = data;
1660 
1661 	/*
1662 	 * Wired pages cannot be destroyed, but they can be invalidated
1663 	 * and we do so if clean_only (limit) is not set.
1664 	 *
1665 	 * WARNING!  The page may be wired due to being part of a buffer
1666 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1667 	 *	     This is fine as part of a truncation but VFSs must be
1668 	 *	     sure to fix the buffer up when re-extending the file.
1669 	 */
1670 	if (p->wire_count != 0) {
1671 		vm_page_protect(p, VM_PROT_NONE);
1672 		if (info->limit == 0)
1673 			p->valid = 0;
1674 		return(0);
1675 	}
1676 
1677 	/*
1678 	 * The busy flags are only cleared at
1679 	 * interrupt -- minimize the spl transitions
1680 	 */
1681 
1682 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1683 		info->error = 1;
1684 		return(0);
1685 	}
1686 
1687 	/*
1688 	 * limit is our clean_only flag.  If set and the page is dirty, do
1689 	 * not free it.  If set and the page is being held by someone, do
1690 	 * not free it.
1691 	 */
1692 	if (info->limit && p->valid) {
1693 		vm_page_test_dirty(p);
1694 		if (p->valid & p->dirty)
1695 			return(0);
1696 		if (p->hold_count)
1697 			return(0);
1698 	}
1699 
1700 	/*
1701 	 * Destroy the page
1702 	 */
1703 	vm_page_busy(p);
1704 	vm_page_protect(p, VM_PROT_NONE);
1705 	vm_page_free(p);
1706 	return(0);
1707 }
1708 
1709 /*
1710  * Coalesces two objects backing up adjoining regions of memory into a
1711  * single object.
1712  *
1713  * returns TRUE if objects were combined.
1714  *
1715  * NOTE: Only works at the moment if the second object is NULL -
1716  *	 if it's not, which object do we lock first?
1717  *
1718  * Parameters:
1719  *	prev_object	First object to coalesce
1720  *	prev_offset	Offset into prev_object
1721  *	next_object	Second object into coalesce
1722  *	next_offset	Offset into next_object
1723  *
1724  *	prev_size	Size of reference to prev_object
1725  *	next_size	Size of reference to next_object
1726  *
1727  * The object must not be locked.
1728  * The caller must hold vm_token and vmobj_token.
1729  */
1730 boolean_t
1731 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1732 		   vm_size_t prev_size, vm_size_t next_size)
1733 {
1734 	vm_pindex_t next_pindex;
1735 
1736 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1737 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1738 
1739 	if (prev_object == NULL) {
1740 		return (TRUE);
1741 	}
1742 
1743 	vm_object_lock(prev_object);
1744 	if (prev_object->type != OBJT_DEFAULT &&
1745 	    prev_object->type != OBJT_SWAP) {
1746 		vm_object_unlock(prev_object);
1747 		return (FALSE);
1748 	}
1749 
1750 	/*
1751 	 * Try to collapse the object first
1752 	 */
1753 	vm_object_collapse(prev_object);
1754 
1755 	/*
1756 	 * Can't coalesce if: . more than one reference . paged out . shadows
1757 	 * another object . has a copy elsewhere (any of which mean that the
1758 	 * pages not mapped to prev_entry may be in use anyway)
1759 	 */
1760 
1761 	if (prev_object->backing_object != NULL) {
1762 		vm_object_unlock(prev_object);
1763 		return (FALSE);
1764 	}
1765 
1766 	prev_size >>= PAGE_SHIFT;
1767 	next_size >>= PAGE_SHIFT;
1768 	next_pindex = prev_pindex + prev_size;
1769 
1770 	if ((prev_object->ref_count > 1) &&
1771 	    (prev_object->size != next_pindex)) {
1772 		vm_object_unlock(prev_object);
1773 		return (FALSE);
1774 	}
1775 
1776 	/*
1777 	 * Remove any pages that may still be in the object from a previous
1778 	 * deallocation.
1779 	 */
1780 	if (next_pindex < prev_object->size) {
1781 		vm_object_page_remove(prev_object,
1782 				      next_pindex,
1783 				      next_pindex + next_size, FALSE);
1784 		if (prev_object->type == OBJT_SWAP)
1785 			swap_pager_freespace(prev_object,
1786 					     next_pindex, next_size);
1787 	}
1788 
1789 	/*
1790 	 * Extend the object if necessary.
1791 	 */
1792 	if (next_pindex + next_size > prev_object->size)
1793 		prev_object->size = next_pindex + next_size;
1794 
1795 	vm_object_unlock(prev_object);
1796 	return (TRUE);
1797 }
1798 
1799 /*
1800  * Make the object writable and flag is being possibly dirty.
1801  *
1802  * No requirements.
1803  */
1804 void
1805 vm_object_set_writeable_dirty(vm_object_t object)
1806 {
1807 	struct vnode *vp;
1808 
1809 	lwkt_gettoken(&vm_token);
1810 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1811 	if (object->type == OBJT_VNODE &&
1812 	    (vp = (struct vnode *)object->handle) != NULL) {
1813 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1814 			vsetflags(vp, VOBJDIRTY);
1815 		}
1816 	}
1817 	lwkt_reltoken(&vm_token);
1818 }
1819 
1820 void
1821 vm_object_lock(vm_object_t object)
1822 {
1823 	lwkt_gettoken(&object->tok);
1824 }
1825 
1826 void
1827 vm_object_unlock(vm_object_t object)
1828 {
1829 	lwkt_reltoken(&object->tok);
1830 }
1831 
1832 #include "opt_ddb.h"
1833 #ifdef DDB
1834 #include <sys/kernel.h>
1835 
1836 #include <sys/cons.h>
1837 
1838 #include <ddb/ddb.h>
1839 
1840 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1841 				       vm_map_entry_t entry);
1842 static int	vm_object_in_map (vm_object_t object);
1843 
1844 /*
1845  * The caller must hold vm_token.
1846  */
1847 static int
1848 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1849 {
1850 	vm_map_t tmpm;
1851 	vm_map_entry_t tmpe;
1852 	vm_object_t obj;
1853 	int entcount;
1854 
1855 	if (map == 0)
1856 		return 0;
1857 	if (entry == 0) {
1858 		tmpe = map->header.next;
1859 		entcount = map->nentries;
1860 		while (entcount-- && (tmpe != &map->header)) {
1861 			if( _vm_object_in_map(map, object, tmpe)) {
1862 				return 1;
1863 			}
1864 			tmpe = tmpe->next;
1865 		}
1866 		return (0);
1867 	}
1868 	switch(entry->maptype) {
1869 	case VM_MAPTYPE_SUBMAP:
1870 		tmpm = entry->object.sub_map;
1871 		tmpe = tmpm->header.next;
1872 		entcount = tmpm->nentries;
1873 		while (entcount-- && tmpe != &tmpm->header) {
1874 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1875 				return 1;
1876 			}
1877 			tmpe = tmpe->next;
1878 		}
1879 		break;
1880 	case VM_MAPTYPE_NORMAL:
1881 	case VM_MAPTYPE_VPAGETABLE:
1882 		obj = entry->object.vm_object;
1883 		while (obj) {
1884 			if (obj == object)
1885 				return 1;
1886 			obj = obj->backing_object;
1887 		}
1888 		break;
1889 	default:
1890 		break;
1891 	}
1892 	return 0;
1893 }
1894 
1895 static int vm_object_in_map_callback(struct proc *p, void *data);
1896 
1897 struct vm_object_in_map_info {
1898 	vm_object_t object;
1899 	int rv;
1900 };
1901 
1902 /*
1903  * Debugging only
1904  */
1905 static int
1906 vm_object_in_map(vm_object_t object)
1907 {
1908 	struct vm_object_in_map_info info;
1909 
1910 	info.rv = 0;
1911 	info.object = object;
1912 
1913 	allproc_scan(vm_object_in_map_callback, &info);
1914 	if (info.rv)
1915 		return 1;
1916 	if( _vm_object_in_map(&kernel_map, object, 0))
1917 		return 1;
1918 	if( _vm_object_in_map(&pager_map, object, 0))
1919 		return 1;
1920 	if( _vm_object_in_map(&buffer_map, object, 0))
1921 		return 1;
1922 	return 0;
1923 }
1924 
1925 /*
1926  * Debugging only
1927  */
1928 static int
1929 vm_object_in_map_callback(struct proc *p, void *data)
1930 {
1931 	struct vm_object_in_map_info *info = data;
1932 
1933 	if (p->p_vmspace) {
1934 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1935 			info->rv = 1;
1936 			return -1;
1937 		}
1938 	}
1939 	return (0);
1940 }
1941 
1942 DB_SHOW_COMMAND(vmochk, vm_object_check)
1943 {
1944 	vm_object_t object;
1945 
1946 	/*
1947 	 * make sure that internal objs are in a map somewhere
1948 	 * and none have zero ref counts.
1949 	 */
1950 	for (object = TAILQ_FIRST(&vm_object_list);
1951 			object != NULL;
1952 			object = TAILQ_NEXT(object, object_list)) {
1953 		if (object->type == OBJT_MARKER)
1954 			continue;
1955 		if (object->handle == NULL &&
1956 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1957 			if (object->ref_count == 0) {
1958 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1959 					(long)object->size);
1960 			}
1961 			if (!vm_object_in_map(object)) {
1962 				db_printf(
1963 			"vmochk: internal obj is not in a map: "
1964 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1965 				    object->ref_count, (u_long)object->size,
1966 				    (u_long)object->size,
1967 				    (void *)object->backing_object);
1968 			}
1969 		}
1970 	}
1971 }
1972 
1973 /*
1974  * Debugging only
1975  */
1976 DB_SHOW_COMMAND(object, vm_object_print_static)
1977 {
1978 	/* XXX convert args. */
1979 	vm_object_t object = (vm_object_t)addr;
1980 	boolean_t full = have_addr;
1981 
1982 	vm_page_t p;
1983 
1984 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1985 #define	count	was_count
1986 
1987 	int count;
1988 
1989 	if (object == NULL)
1990 		return;
1991 
1992 	db_iprintf(
1993 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1994 	    object, (int)object->type, (u_long)object->size,
1995 	    object->resident_page_count, object->ref_count, object->flags);
1996 	/*
1997 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1998 	 */
1999 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2000 	    object->shadow_count,
2001 	    object->backing_object ? object->backing_object->ref_count : 0,
2002 	    object->backing_object, (long)object->backing_object_offset);
2003 
2004 	if (!full)
2005 		return;
2006 
2007 	db_indent += 2;
2008 	count = 0;
2009 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2010 		if (count == 0)
2011 			db_iprintf("memory:=");
2012 		else if (count == 6) {
2013 			db_printf("\n");
2014 			db_iprintf(" ...");
2015 			count = 0;
2016 		} else
2017 			db_printf(",");
2018 		count++;
2019 
2020 		db_printf("(off=0x%lx,page=0x%lx)",
2021 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2022 	}
2023 	if (count != 0)
2024 		db_printf("\n");
2025 	db_indent -= 2;
2026 }
2027 
2028 /* XXX. */
2029 #undef count
2030 
2031 /*
2032  * XXX need this non-static entry for calling from vm_map_print.
2033  *
2034  * Debugging only
2035  */
2036 void
2037 vm_object_print(/* db_expr_t */ long addr,
2038 		boolean_t have_addr,
2039 		/* db_expr_t */ long count,
2040 		char *modif)
2041 {
2042 	vm_object_print_static(addr, have_addr, count, modif);
2043 }
2044 
2045 /*
2046  * Debugging only
2047  */
2048 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2049 {
2050 	vm_object_t object;
2051 	int nl = 0;
2052 	int c;
2053 	for (object = TAILQ_FIRST(&vm_object_list);
2054 			object != NULL;
2055 			object = TAILQ_NEXT(object, object_list)) {
2056 		vm_pindex_t idx, fidx;
2057 		vm_pindex_t osize;
2058 		vm_paddr_t pa = -1, padiff;
2059 		int rcount;
2060 		vm_page_t m;
2061 
2062 		if (object->type == OBJT_MARKER)
2063 			continue;
2064 		db_printf("new object: %p\n", (void *)object);
2065 		if ( nl > 18) {
2066 			c = cngetc();
2067 			if (c != ' ')
2068 				return;
2069 			nl = 0;
2070 		}
2071 		nl++;
2072 		rcount = 0;
2073 		fidx = 0;
2074 		osize = object->size;
2075 		if (osize > 128)
2076 			osize = 128;
2077 		for (idx = 0; idx < osize; idx++) {
2078 			m = vm_page_lookup(object, idx);
2079 			if (m == NULL) {
2080 				if (rcount) {
2081 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2082 						(long)fidx, rcount, (long)pa);
2083 					if ( nl > 18) {
2084 						c = cngetc();
2085 						if (c != ' ')
2086 							return;
2087 						nl = 0;
2088 					}
2089 					nl++;
2090 					rcount = 0;
2091 				}
2092 				continue;
2093 			}
2094 
2095 
2096 			if (rcount &&
2097 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2098 				++rcount;
2099 				continue;
2100 			}
2101 			if (rcount) {
2102 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2103 				padiff >>= PAGE_SHIFT;
2104 				padiff &= PQ_L2_MASK;
2105 				if (padiff == 0) {
2106 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2107 					++rcount;
2108 					continue;
2109 				}
2110 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2111 					(long)fidx, rcount, (long)pa);
2112 				db_printf("pd(%ld)\n", (long)padiff);
2113 				if ( nl > 18) {
2114 					c = cngetc();
2115 					if (c != ' ')
2116 						return;
2117 					nl = 0;
2118 				}
2119 				nl++;
2120 			}
2121 			fidx = idx;
2122 			pa = VM_PAGE_TO_PHYS(m);
2123 			rcount = 1;
2124 		}
2125 		if (rcount) {
2126 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2127 				(long)fidx, rcount, (long)pa);
2128 			if ( nl > 18) {
2129 				c = cngetc();
2130 				if (c != ' ')
2131 					return;
2132 				nl = 0;
2133 			}
2134 			nl++;
2135 		}
2136 	}
2137 }
2138 #endif /* DDB */
2139