xref: /dflybsd-src/sys/vm/vm_object.c (revision 0eb2eccd5a86ef7dd7492d2651de55c3589f23d7)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object);
101 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 					     int pagerflags);
103 static void	vm_object_lock_init(vm_object_t);
104 static void	vm_object_hold_wake(vm_object_t);
105 static void	vm_object_hold_wait(vm_object_t);
106 
107 
108 /*
109  *	Virtual memory objects maintain the actual data
110  *	associated with allocated virtual memory.  A given
111  *	page of memory exists within exactly one object.
112  *
113  *	An object is only deallocated when all "references"
114  *	are given up.  Only one "reference" to a given
115  *	region of an object should be writeable.
116  *
117  *	Associated with each object is a list of all resident
118  *	memory pages belonging to that object; this list is
119  *	maintained by the "vm_page" module, and locked by the object's
120  *	lock.
121  *
122  *	Each object also records a "pager" routine which is
123  *	used to retrieve (and store) pages to the proper backing
124  *	storage.  In addition, objects may be backed by other
125  *	objects from which they were virtual-copied.
126  *
127  *	The only items within the object structure which are
128  *	modified after time of creation are:
129  *		reference count		locked by object's lock
130  *		pager routine		locked by object's lock
131  *
132  */
133 
134 struct object_q vm_object_list;		/* locked by vmobj_token */
135 struct vm_object kernel_object;
136 
137 static long vm_object_count;		/* locked by vmobj_token */
138 extern int vm_pageout_page_count;
139 
140 static long object_collapses;
141 static long object_bypasses;
142 static int next_index;
143 static vm_zone_t obj_zone;
144 static struct vm_zone obj_zone_store;
145 #define VM_OBJECTS_INIT 256
146 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
147 
148 /*
149  * Initialize a freshly allocated object
150  *
151  * Used only by vm_object_allocate() and zinitna().
152  *
153  * No requirements.
154  */
155 void
156 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
157 {
158 	int incr;
159 
160 	RB_INIT(&object->rb_memq);
161 	LIST_INIT(&object->shadow_head);
162 
163 	object->type = type;
164 	object->size = size;
165 	object->ref_count = 1;
166 	object->hold_count = 0;
167 	object->flags = 0;
168 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
169 		vm_object_set_flag(object, OBJ_ONEMAPPING);
170 	object->paging_in_progress = 0;
171 	object->resident_page_count = 0;
172 	object->agg_pv_list_count = 0;
173 	object->shadow_count = 0;
174 	object->pg_color = next_index;
175 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
176 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
177 	else
178 		incr = size;
179 	next_index = (next_index + incr) & PQ_L2_MASK;
180 	object->handle = NULL;
181 	object->backing_object = NULL;
182 	object->backing_object_offset = (vm_ooffset_t) 0;
183 
184 	object->generation++;
185 	object->swblock_count = 0;
186 	RB_INIT(&object->swblock_root);
187 	vm_object_lock_init(object);
188 
189 	lwkt_gettoken(&vmobj_token);
190 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
191 	vm_object_count++;
192 	lwkt_reltoken(&vmobj_token);
193 }
194 
195 /*
196  * Initialize the VM objects module.
197  *
198  * Called from the low level boot code only.
199  */
200 void
201 vm_object_init(void)
202 {
203 	TAILQ_INIT(&vm_object_list);
204 
205 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
206 			    &kernel_object);
207 
208 	obj_zone = &obj_zone_store;
209 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
210 		vm_objects_init, VM_OBJECTS_INIT);
211 }
212 
213 void
214 vm_object_init2(void)
215 {
216 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
217 }
218 
219 /*
220  * Allocate and return a new object of the specified type and size.
221  *
222  * No requirements.
223  */
224 vm_object_t
225 vm_object_allocate(objtype_t type, vm_pindex_t size)
226 {
227 	vm_object_t result;
228 
229 	result = (vm_object_t) zalloc(obj_zone);
230 
231 	_vm_object_allocate(type, size, result);
232 
233 	return (result);
234 }
235 
236 /*
237  * Add an additional reference to a vm_object.
238  *
239  * Object passed by caller must be stable or caller must already
240  * hold vmobj_token to avoid races.
241  */
242 void
243 vm_object_reference(vm_object_t object)
244 {
245 	lwkt_gettoken(&vmobj_token);
246 	vm_object_reference_locked(object);
247 	lwkt_reltoken(&vmobj_token);
248 }
249 
250 void
251 vm_object_reference_locked(vm_object_t object)
252 {
253 	if (object) {
254 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
255 		object->ref_count++;
256 		if (object->type == OBJT_VNODE) {
257 			vref(object->handle);
258 			/* XXX what if the vnode is being destroyed? */
259 		}
260 	}
261 }
262 
263 /*
264  * Dereference an object and its underlying vnode.
265  *
266  * The caller must hold vmobj_token.
267  */
268 static void
269 vm_object_vndeallocate(vm_object_t object)
270 {
271 	struct vnode *vp = (struct vnode *) object->handle;
272 
273 	KASSERT(object->type == OBJT_VNODE,
274 	    ("vm_object_vndeallocate: not a vnode object"));
275 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
276 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
277 #ifdef INVARIANTS
278 	if (object->ref_count == 0) {
279 		vprint("vm_object_vndeallocate", vp);
280 		panic("vm_object_vndeallocate: bad object reference count");
281 	}
282 #endif
283 
284 	object->ref_count--;
285 	if (object->ref_count == 0)
286 		vclrflags(vp, VTEXT);
287 	vrele(vp);
288 }
289 
290 /*
291  * Release a reference to the specified object, gained either through a
292  * vm_object_allocate or a vm_object_reference call.  When all references
293  * are gone, storage associated with this object may be relinquished.
294  */
295 void
296 vm_object_deallocate(vm_object_t object)
297 {
298 	lwkt_gettoken(&vmobj_token);
299 	vm_object_deallocate_locked(object);
300 	lwkt_reltoken(&vmobj_token);
301 }
302 
303 void
304 vm_object_deallocate_locked(vm_object_t object)
305 {
306 	vm_object_t temp;
307 
308 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
309 
310 	while (object != NULL) {
311 		if (object->type == OBJT_VNODE) {
312 			vm_object_vndeallocate(object);
313 			break;
314 		}
315 
316 		if (object->ref_count == 0) {
317 			panic("vm_object_deallocate: object deallocated "
318 			      "too many times: %d", object->type);
319 		}
320 		if (object->ref_count > 2) {
321 			object->ref_count--;
322 			break;
323 		}
324 
325 		/*
326 		 * We currently need the vm_token from this point on, and
327 		 * we must recheck ref_count after acquiring it.
328 		 */
329 		lwkt_gettoken(&vm_token);
330 
331 		if (object->ref_count > 2) {
332 			object->ref_count--;
333 			lwkt_reltoken(&vm_token);
334 			break;
335 		}
336 
337 		/*
338 		 * Here on ref_count of one or two, which are special cases for
339 		 * objects.
340 		 */
341 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
342 			vm_object_set_flag(object, OBJ_ONEMAPPING);
343 			object->ref_count--;
344 			lwkt_reltoken(&vm_token);
345 			break;
346 		}
347 		if ((object->ref_count == 2) && (object->shadow_count == 1)) {
348 			object->ref_count--;
349 			if ((object->handle == NULL) &&
350 			    (object->type == OBJT_DEFAULT ||
351 			     object->type == OBJT_SWAP)) {
352 				vm_object_t robject;
353 
354 				robject = LIST_FIRST(&object->shadow_head);
355 				KASSERT(robject != NULL,
356 					("vm_object_deallocate: ref_count: "
357 					"%d, shadow_count: %d",
358 					object->ref_count,
359 					object->shadow_count));
360 
361 				if ((robject->handle == NULL) &&
362 				    (robject->type == OBJT_DEFAULT ||
363 				     robject->type == OBJT_SWAP)) {
364 
365 					robject->ref_count++;
366 
367 					while (
368 						robject->paging_in_progress ||
369 						object->paging_in_progress
370 					) {
371 						vm_object_pip_sleep(robject, "objde1");
372 						vm_object_pip_sleep(object, "objde2");
373 					}
374 
375 					if (robject->ref_count == 1) {
376 						robject->ref_count--;
377 						object = robject;
378 						goto doterm;
379 					}
380 
381 					object = robject;
382 					vm_object_collapse(object);
383 					lwkt_reltoken(&vm_token);
384 					continue;
385 				}
386 			}
387 			lwkt_reltoken(&vm_token);
388 			break;
389 		}
390 
391 		/*
392 		 * Normal dereferencing path
393 		 */
394 		object->ref_count--;
395 		if (object->ref_count != 0) {
396 			lwkt_reltoken(&vm_token);
397 			break;
398 		}
399 
400 		/*
401 		 * Termination path
402 		 */
403 doterm:
404 		temp = object->backing_object;
405 		if (temp) {
406 			LIST_REMOVE(object, shadow_list);
407 			temp->shadow_count--;
408 			temp->generation++;
409 			object->backing_object = NULL;
410 		}
411 		lwkt_reltoken(&vm_token);
412 
413 		/*
414 		 * Don't double-terminate, we could be in a termination
415 		 * recursion due to the terminate having to sync data
416 		 * to disk.
417 		 */
418 		if ((object->flags & OBJ_DEAD) == 0)
419 			vm_object_terminate(object);
420 		object = temp;
421 	}
422 }
423 
424 /*
425  * Destroy the specified object, freeing up related resources.
426  *
427  * The object must have zero references.
428  *
429  * The caller must be holding vmobj_token and properly interlock with
430  * OBJ_DEAD.
431  */
432 static int vm_object_terminate_callback(vm_page_t p, void *data);
433 
434 void
435 vm_object_terminate(vm_object_t object)
436 {
437 	/*
438 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
439 	 * able to safely block.
440 	 */
441 	KKASSERT((object->flags & OBJ_DEAD) == 0);
442 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
443 	vm_object_set_flag(object, OBJ_DEAD);
444 
445 	/*
446 	 * Wait for the pageout daemon to be done with the object
447 	 */
448 	vm_object_pip_wait(object, "objtrm1");
449 
450 	KASSERT(!object->paging_in_progress,
451 		("vm_object_terminate: pageout in progress"));
452 
453 	/*
454 	 * Clean and free the pages, as appropriate. All references to the
455 	 * object are gone, so we don't need to lock it.
456 	 */
457 	if (object->type == OBJT_VNODE) {
458 		struct vnode *vp;
459 
460 		/*
461 		 * Clean pages and flush buffers.
462 		 */
463 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
464 
465 		vp = (struct vnode *) object->handle;
466 		vinvalbuf(vp, V_SAVE, 0, 0);
467 	}
468 
469 	/*
470 	 * Wait for any I/O to complete, after which there had better not
471 	 * be any references left on the object.
472 	 */
473 	vm_object_pip_wait(object, "objtrm2");
474 
475 	if (object->ref_count != 0) {
476 		panic("vm_object_terminate: object with references, "
477 		      "ref_count=%d", object->ref_count);
478 	}
479 
480 	/*
481 	 * Now free any remaining pages. For internal objects, this also
482 	 * removes them from paging queues. Don't free wired pages, just
483 	 * remove them from the object.
484 	 */
485 	lwkt_gettoken(&vm_token);
486 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
487 				vm_object_terminate_callback, NULL);
488 	lwkt_reltoken(&vm_token);
489 
490 	/*
491 	 * Let the pager know object is dead.
492 	 */
493 	vm_pager_deallocate(object);
494 
495 	/*
496 	 * Wait for the object hold count to hit zero, clean out pages as
497 	 * we go.
498 	 */
499 	lwkt_gettoken(&vm_token);
500 	for (;;) {
501 		vm_object_hold_wait(object);
502 		if (RB_ROOT(&object->rb_memq) == NULL)
503 			break;
504 		kprintf("vm_object_terminate: Warning, object %p "
505 			"still has %d pages\n",
506 			object, object->resident_page_count);
507 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
508 					vm_object_terminate_callback, NULL);
509 	}
510 	lwkt_reltoken(&vm_token);
511 
512 	/*
513 	 * There had better not be any pages left
514 	 */
515 	KKASSERT(object->resident_page_count == 0);
516 
517 	/*
518 	 * Remove the object from the global object list.
519 	 *
520 	 * (we are holding vmobj_token)
521 	 */
522 	TAILQ_REMOVE(&vm_object_list, object, object_list);
523 	vm_object_count--;
524 	vm_object_dead_wakeup(object);
525 
526 	if (object->ref_count != 0) {
527 		panic("vm_object_terminate2: object with references, "
528 		      "ref_count=%d", object->ref_count);
529 	}
530 
531 	/*
532 	 * Free the space for the object.
533 	 */
534 	zfree(obj_zone, object);
535 }
536 
537 /*
538  * The caller must hold vm_token.
539  */
540 static int
541 vm_object_terminate_callback(vm_page_t p, void *data __unused)
542 {
543 	if (p->busy || (p->flags & PG_BUSY))
544 		panic("vm_object_terminate: freeing busy page %p", p);
545 	if (p->wire_count == 0) {
546 		vm_page_busy(p);
547 		vm_page_free(p);
548 		mycpu->gd_cnt.v_pfree++;
549 	} else {
550 		if (p->queue != PQ_NONE)
551 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
552 		vm_page_busy(p);
553 		vm_page_remove(p);
554 		vm_page_wakeup(p);
555 	}
556 	return(0);
557 }
558 
559 /*
560  * The object is dead but still has an object<->pager association.  Sleep
561  * and return.  The caller typically retests the association in a loop.
562  *
563  * Must be called with the vmobj_token held.
564  */
565 void
566 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
567 {
568 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
569 	if (object->handle) {
570 		vm_object_set_flag(object, OBJ_DEADWNT);
571 		tsleep(object, 0, wmesg, 0);
572 		/* object may be invalid after this point */
573 	}
574 }
575 
576 /*
577  * Wakeup anyone waiting for the object<->pager disassociation on
578  * a dead object.
579  *
580  * Must be called with the vmobj_token held.
581  */
582 void
583 vm_object_dead_wakeup(vm_object_t object)
584 {
585 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
586 	if (object->flags & OBJ_DEADWNT) {
587 		vm_object_clear_flag(object, OBJ_DEADWNT);
588 		wakeup(object);
589 	}
590 }
591 
592 /*
593  * Clean all dirty pages in the specified range of object.  Leaves page
594  * on whatever queue it is currently on.   If NOSYNC is set then do not
595  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
596  * leaving the object dirty.
597  *
598  * When stuffing pages asynchronously, allow clustering.  XXX we need a
599  * synchronous clustering mode implementation.
600  *
601  * Odd semantics: if start == end, we clean everything.
602  *
603  * The object must be locked? XXX
604  */
605 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
606 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
607 
608 void
609 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
610 		     int flags)
611 {
612 	struct rb_vm_page_scan_info info;
613 	struct vnode *vp;
614 	int wholescan;
615 	int pagerflags;
616 	int curgeneration;
617 
618 	vm_object_hold(object);
619 	if (object->type != OBJT_VNODE ||
620 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
621 		vm_object_drop(object);
622 		return;
623 	}
624 
625 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
626 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
627 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
628 
629 	vp = object->handle;
630 
631 	/*
632 	 * Interlock other major object operations.  This allows us to
633 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
634 	 */
635 	crit_enter();
636 	vm_object_set_flag(object, OBJ_CLEANING);
637 
638 	/*
639 	 * Handle 'entire object' case
640 	 */
641 	info.start_pindex = start;
642 	if (end == 0) {
643 		info.end_pindex = object->size - 1;
644 	} else {
645 		info.end_pindex = end - 1;
646 	}
647 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
648 	info.limit = flags;
649 	info.pagerflags = pagerflags;
650 	info.object = object;
651 
652 	/*
653 	 * If cleaning the entire object do a pass to mark the pages read-only.
654 	 * If everything worked out ok, clear OBJ_WRITEABLE and
655 	 * OBJ_MIGHTBEDIRTY.
656 	 */
657 	if (wholescan) {
658 		info.error = 0;
659 		lwkt_gettoken(&vm_token);
660 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
661 					vm_object_page_clean_pass1, &info);
662 		lwkt_reltoken(&vm_token);
663 		if (info.error == 0) {
664 			vm_object_clear_flag(object,
665 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
666 			if (object->type == OBJT_VNODE &&
667 			    (vp = (struct vnode *)object->handle) != NULL) {
668 				if (vp->v_flag & VOBJDIRTY)
669 					vclrflags(vp, VOBJDIRTY);
670 			}
671 		}
672 	}
673 
674 	/*
675 	 * Do a pass to clean all the dirty pages we find.
676 	 */
677 	do {
678 		info.error = 0;
679 		curgeneration = object->generation;
680 		lwkt_gettoken(&vm_token);
681 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
682 					vm_object_page_clean_pass2, &info);
683 		lwkt_reltoken(&vm_token);
684 	} while (info.error || curgeneration != object->generation);
685 
686 	vm_object_clear_flag(object, OBJ_CLEANING);
687 	crit_exit();
688 	vm_object_drop(object);
689 }
690 
691 /*
692  * The caller must hold vm_token.
693  */
694 static
695 int
696 vm_object_page_clean_pass1(struct vm_page *p, void *data)
697 {
698 	struct rb_vm_page_scan_info *info = data;
699 
700 	vm_page_flag_set(p, PG_CLEANCHK);
701 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
702 		info->error = 1;
703 	else
704 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
705 	return(0);
706 }
707 
708 /*
709  * The caller must hold vm_token.
710  */
711 static
712 int
713 vm_object_page_clean_pass2(struct vm_page *p, void *data)
714 {
715 	struct rb_vm_page_scan_info *info = data;
716 	int n;
717 
718 	/*
719 	 * Do not mess with pages that were inserted after we started
720 	 * the cleaning pass.
721 	 */
722 	if ((p->flags & PG_CLEANCHK) == 0)
723 		return(0);
724 
725 	/*
726 	 * Before wasting time traversing the pmaps, check for trivial
727 	 * cases where the page cannot be dirty.
728 	 */
729 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
730 		KKASSERT((p->dirty & p->valid) == 0);
731 		return(0);
732 	}
733 
734 	/*
735 	 * Check whether the page is dirty or not.  The page has been set
736 	 * to be read-only so the check will not race a user dirtying the
737 	 * page.
738 	 */
739 	vm_page_test_dirty(p);
740 	if ((p->dirty & p->valid) == 0) {
741 		vm_page_flag_clear(p, PG_CLEANCHK);
742 		return(0);
743 	}
744 
745 	/*
746 	 * If we have been asked to skip nosync pages and this is a
747 	 * nosync page, skip it.  Note that the object flags were
748 	 * not cleared in this case (because pass1 will have returned an
749 	 * error), so we do not have to set them.
750 	 */
751 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
752 		vm_page_flag_clear(p, PG_CLEANCHK);
753 		return(0);
754 	}
755 
756 	/*
757 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
758 	 * the pages that get successfully flushed.  Set info->error if
759 	 * we raced an object modification.
760 	 */
761 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
762 	if (n == 0)
763 		info->error = 1;
764 	return(0);
765 }
766 
767 /*
768  * Collect the specified page and nearby pages and flush them out.
769  * The number of pages flushed is returned.
770  *
771  * The caller must hold vm_token.
772  */
773 static int
774 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
775 {
776 	int runlen;
777 	int maxf;
778 	int chkb;
779 	int maxb;
780 	int i;
781 	int curgeneration;
782 	vm_pindex_t pi;
783 	vm_page_t maf[vm_pageout_page_count];
784 	vm_page_t mab[vm_pageout_page_count];
785 	vm_page_t ma[vm_pageout_page_count];
786 
787 	curgeneration = object->generation;
788 
789 	pi = p->pindex;
790 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
791 		if (object->generation != curgeneration) {
792 			return(0);
793 		}
794 	}
795 	KKASSERT(p->object == object && p->pindex == pi);
796 
797 	maxf = 0;
798 	for(i = 1; i < vm_pageout_page_count; i++) {
799 		vm_page_t tp;
800 
801 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
802 			if ((tp->flags & PG_BUSY) ||
803 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
804 				 (tp->flags & PG_CLEANCHK) == 0) ||
805 				(tp->busy != 0))
806 				break;
807 			if((tp->queue - tp->pc) == PQ_CACHE) {
808 				vm_page_flag_clear(tp, PG_CLEANCHK);
809 				break;
810 			}
811 			vm_page_test_dirty(tp);
812 			if ((tp->dirty & tp->valid) == 0) {
813 				vm_page_flag_clear(tp, PG_CLEANCHK);
814 				break;
815 			}
816 			maf[ i - 1 ] = tp;
817 			maxf++;
818 			continue;
819 		}
820 		break;
821 	}
822 
823 	maxb = 0;
824 	chkb = vm_pageout_page_count -  maxf;
825 	if (chkb) {
826 		for(i = 1; i < chkb;i++) {
827 			vm_page_t tp;
828 
829 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
830 				if ((tp->flags & PG_BUSY) ||
831 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
832 					 (tp->flags & PG_CLEANCHK) == 0) ||
833 					(tp->busy != 0))
834 					break;
835 				if((tp->queue - tp->pc) == PQ_CACHE) {
836 					vm_page_flag_clear(tp, PG_CLEANCHK);
837 					break;
838 				}
839 				vm_page_test_dirty(tp);
840 				if ((tp->dirty & tp->valid) == 0) {
841 					vm_page_flag_clear(tp, PG_CLEANCHK);
842 					break;
843 				}
844 				mab[ i - 1 ] = tp;
845 				maxb++;
846 				continue;
847 			}
848 			break;
849 		}
850 	}
851 
852 	for(i = 0; i < maxb; i++) {
853 		int index = (maxb - i) - 1;
854 		ma[index] = mab[i];
855 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
856 	}
857 	vm_page_flag_clear(p, PG_CLEANCHK);
858 	ma[maxb] = p;
859 	for(i = 0; i < maxf; i++) {
860 		int index = (maxb + i) + 1;
861 		ma[index] = maf[i];
862 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
863 	}
864 	runlen = maxb + maxf + 1;
865 
866 	vm_pageout_flush(ma, runlen, pagerflags);
867 	for (i = 0; i < runlen; i++) {
868 		if (ma[i]->valid & ma[i]->dirty) {
869 			vm_page_protect(ma[i], VM_PROT_READ);
870 			vm_page_flag_set(ma[i], PG_CLEANCHK);
871 
872 			/*
873 			 * maxf will end up being the actual number of pages
874 			 * we wrote out contiguously, non-inclusive of the
875 			 * first page.  We do not count look-behind pages.
876 			 */
877 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
878 				maxf = i - maxb - 1;
879 		}
880 	}
881 	return(maxf + 1);
882 }
883 
884 /*
885  * Same as vm_object_pmap_copy, except range checking really
886  * works, and is meant for small sections of an object.
887  *
888  * This code protects resident pages by making them read-only
889  * and is typically called on a fork or split when a page
890  * is converted to copy-on-write.
891  *
892  * NOTE: If the page is already at VM_PROT_NONE, calling
893  * vm_page_protect will have no effect.
894  */
895 void
896 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
897 {
898 	vm_pindex_t idx;
899 	vm_page_t p;
900 
901 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
902 		return;
903 
904 	/*
905 	 * spl protection needed to prevent races between the lookup,
906 	 * an interrupt unbusy/free, and our protect call.
907 	 */
908 	crit_enter();
909 	lwkt_gettoken(&vm_token);
910 	for (idx = start; idx < end; idx++) {
911 		p = vm_page_lookup(object, idx);
912 		if (p == NULL)
913 			continue;
914 		vm_page_protect(p, VM_PROT_READ);
915 	}
916 	lwkt_reltoken(&vm_token);
917 	crit_exit();
918 }
919 
920 /*
921  * Removes all physical pages in the specified object range from all
922  * physical maps.
923  *
924  * The object must *not* be locked.
925  */
926 
927 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
928 
929 void
930 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
931 {
932 	struct rb_vm_page_scan_info info;
933 
934 	if (object == NULL)
935 		return;
936 	info.start_pindex = start;
937 	info.end_pindex = end - 1;
938 
939 	crit_enter();
940 	lwkt_gettoken(&vm_token);
941 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
942 				vm_object_pmap_remove_callback, &info);
943 	if (start == 0 && end == object->size)
944 		vm_object_clear_flag(object, OBJ_WRITEABLE);
945 	lwkt_reltoken(&vm_token);
946 	crit_exit();
947 }
948 
949 /*
950  * The caller must hold vm_token.
951  */
952 static int
953 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
954 {
955 	vm_page_protect(p, VM_PROT_NONE);
956 	return(0);
957 }
958 
959 /*
960  * Implements the madvise function at the object/page level.
961  *
962  * MADV_WILLNEED	(any object)
963  *
964  *	Activate the specified pages if they are resident.
965  *
966  * MADV_DONTNEED	(any object)
967  *
968  *	Deactivate the specified pages if they are resident.
969  *
970  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
971  *
972  *	Deactivate and clean the specified pages if they are
973  *	resident.  This permits the process to reuse the pages
974  *	without faulting or the kernel to reclaim the pages
975  *	without I/O.
976  *
977  * No requirements.
978  */
979 void
980 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
981 {
982 	vm_pindex_t end, tpindex;
983 	vm_object_t tobject;
984 	vm_page_t m;
985 
986 	if (object == NULL)
987 		return;
988 
989 	end = pindex + count;
990 
991 	lwkt_gettoken(&vm_token);
992 
993 	/*
994 	 * Locate and adjust resident pages
995 	 */
996 	for (; pindex < end; pindex += 1) {
997 relookup:
998 		tobject = object;
999 		tpindex = pindex;
1000 shadowlookup:
1001 		/*
1002 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1003 		 * and those pages must be OBJ_ONEMAPPING.
1004 		 */
1005 		if (advise == MADV_FREE) {
1006 			if ((tobject->type != OBJT_DEFAULT &&
1007 			     tobject->type != OBJT_SWAP) ||
1008 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1009 				continue;
1010 			}
1011 		}
1012 
1013 		/*
1014 		 * spl protection is required to avoid a race between the
1015 		 * lookup, an interrupt unbusy/free, and our busy check.
1016 		 */
1017 
1018 		crit_enter();
1019 		m = vm_page_lookup(tobject, tpindex);
1020 
1021 		if (m == NULL) {
1022 			/*
1023 			 * There may be swap even if there is no backing page
1024 			 */
1025 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1026 				swap_pager_freespace(tobject, tpindex, 1);
1027 
1028 			/*
1029 			 * next object
1030 			 */
1031 			crit_exit();
1032 			if (tobject->backing_object == NULL)
1033 				continue;
1034 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1035 			tobject = tobject->backing_object;
1036 			goto shadowlookup;
1037 		}
1038 
1039 		/*
1040 		 * If the page is busy or not in a normal active state,
1041 		 * we skip it.  If the page is not managed there are no
1042 		 * page queues to mess with.  Things can break if we mess
1043 		 * with pages in any of the below states.
1044 		 */
1045 		if (
1046 		    m->hold_count ||
1047 		    m->wire_count ||
1048 		    (m->flags & PG_UNMANAGED) ||
1049 		    m->valid != VM_PAGE_BITS_ALL
1050 		) {
1051 			crit_exit();
1052 			continue;
1053 		}
1054 
1055  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1056 			crit_exit();
1057   			goto relookup;
1058 		}
1059 		vm_page_busy(m);
1060 		crit_exit();
1061 
1062 		/*
1063 		 * Theoretically once a page is known not to be busy, an
1064 		 * interrupt cannot come along and rip it out from under us.
1065 		 */
1066 
1067 		if (advise == MADV_WILLNEED) {
1068 			vm_page_activate(m);
1069 		} else if (advise == MADV_DONTNEED) {
1070 			vm_page_dontneed(m);
1071 		} else if (advise == MADV_FREE) {
1072 			/*
1073 			 * Mark the page clean.  This will allow the page
1074 			 * to be freed up by the system.  However, such pages
1075 			 * are often reused quickly by malloc()/free()
1076 			 * so we do not do anything that would cause
1077 			 * a page fault if we can help it.
1078 			 *
1079 			 * Specifically, we do not try to actually free
1080 			 * the page now nor do we try to put it in the
1081 			 * cache (which would cause a page fault on reuse).
1082 			 *
1083 			 * But we do make the page is freeable as we
1084 			 * can without actually taking the step of unmapping
1085 			 * it.
1086 			 */
1087 			pmap_clear_modify(m);
1088 			m->dirty = 0;
1089 			m->act_count = 0;
1090 			vm_page_dontneed(m);
1091 			if (tobject->type == OBJT_SWAP)
1092 				swap_pager_freespace(tobject, tpindex, 1);
1093 		}
1094 		vm_page_wakeup(m);
1095 	}
1096 	lwkt_reltoken(&vm_token);
1097 }
1098 
1099 /*
1100  * Create a new object which is backed by the specified existing object
1101  * range.  The source object reference is deallocated.
1102  *
1103  * The new object and offset into that object are returned in the source
1104  * parameters.
1105  *
1106  * No other requirements.
1107  */
1108 void
1109 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1110 {
1111 	vm_object_t source;
1112 	vm_object_t result;
1113 
1114 	source = *object;
1115 
1116 	/*
1117 	 * Don't create the new object if the old object isn't shared.
1118 	 */
1119 	lwkt_gettoken(&vm_token);
1120 
1121 	if (source != NULL &&
1122 	    source->ref_count == 1 &&
1123 	    source->handle == NULL &&
1124 	    (source->type == OBJT_DEFAULT ||
1125 	     source->type == OBJT_SWAP)) {
1126 		lwkt_reltoken(&vm_token);
1127 		return;
1128 	}
1129 
1130 	/*
1131 	 * Allocate a new object with the given length
1132 	 */
1133 
1134 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1135 		panic("vm_object_shadow: no object for shadowing");
1136 
1137 	/*
1138 	 * The new object shadows the source object, adding a reference to it.
1139 	 * Our caller changes his reference to point to the new object,
1140 	 * removing a reference to the source object.  Net result: no change
1141 	 * of reference count.
1142 	 *
1143 	 * Try to optimize the result object's page color when shadowing
1144 	 * in order to maintain page coloring consistency in the combined
1145 	 * shadowed object.
1146 	 */
1147 	result->backing_object = source;
1148 	if (source) {
1149 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1150 		source->shadow_count++;
1151 		source->generation++;
1152 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1153 	}
1154 
1155 	/*
1156 	 * Store the offset into the source object, and fix up the offset into
1157 	 * the new object.
1158 	 */
1159 	result->backing_object_offset = *offset;
1160 	lwkt_reltoken(&vm_token);
1161 
1162 	/*
1163 	 * Return the new things
1164 	 */
1165 	*offset = 0;
1166 	*object = result;
1167 }
1168 
1169 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1170 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1171 #define	OBSC_COLLAPSE_WAIT	0x0004
1172 
1173 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1174 
1175 /*
1176  * The caller must hold vm_token.
1177  */
1178 static __inline int
1179 vm_object_backing_scan(vm_object_t object, int op)
1180 {
1181 	struct rb_vm_page_scan_info info;
1182 	vm_object_t backing_object;
1183 
1184 	crit_enter();
1185 
1186 	backing_object = object->backing_object;
1187 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1188 
1189 	/*
1190 	 * Initial conditions
1191 	 */
1192 
1193 	if (op & OBSC_TEST_ALL_SHADOWED) {
1194 		/*
1195 		 * We do not want to have to test for the existence of
1196 		 * swap pages in the backing object.  XXX but with the
1197 		 * new swapper this would be pretty easy to do.
1198 		 *
1199 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1200 		 * been ZFOD faulted yet?  If we do not test for this, the
1201 		 * shadow test may succeed! XXX
1202 		 */
1203 		if (backing_object->type != OBJT_DEFAULT) {
1204 			crit_exit();
1205 			return(0);
1206 		}
1207 	}
1208 	if (op & OBSC_COLLAPSE_WAIT) {
1209 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1210 		vm_object_set_flag(backing_object, OBJ_DEAD);
1211 	}
1212 
1213 	/*
1214 	 * Our scan.   We have to retry if a negative error code is returned,
1215 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1216 	 * the scan had to be stopped because the parent does not completely
1217 	 * shadow the child.
1218 	 */
1219 	info.object = object;
1220 	info.backing_object = backing_object;
1221 	info.limit = op;
1222 	do {
1223 		info.error = 1;
1224 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1225 					vm_object_backing_scan_callback,
1226 					&info);
1227 	} while (info.error < 0);
1228 	crit_exit();
1229 	return(info.error);
1230 }
1231 
1232 /*
1233  * The caller must hold vm_token.
1234  */
1235 static int
1236 vm_object_backing_scan_callback(vm_page_t p, void *data)
1237 {
1238 	struct rb_vm_page_scan_info *info = data;
1239 	vm_object_t backing_object;
1240 	vm_object_t object;
1241 	vm_pindex_t new_pindex;
1242 	vm_pindex_t backing_offset_index;
1243 	int op;
1244 
1245 	new_pindex = p->pindex - info->backing_offset_index;
1246 	op = info->limit;
1247 	object = info->object;
1248 	backing_object = info->backing_object;
1249 	backing_offset_index = info->backing_offset_index;
1250 
1251 	if (op & OBSC_TEST_ALL_SHADOWED) {
1252 		vm_page_t pp;
1253 
1254 		/*
1255 		 * Ignore pages outside the parent object's range
1256 		 * and outside the parent object's mapping of the
1257 		 * backing object.
1258 		 *
1259 		 * note that we do not busy the backing object's
1260 		 * page.
1261 		 */
1262 		if (
1263 		    p->pindex < backing_offset_index ||
1264 		    new_pindex >= object->size
1265 		) {
1266 			return(0);
1267 		}
1268 
1269 		/*
1270 		 * See if the parent has the page or if the parent's
1271 		 * object pager has the page.  If the parent has the
1272 		 * page but the page is not valid, the parent's
1273 		 * object pager must have the page.
1274 		 *
1275 		 * If this fails, the parent does not completely shadow
1276 		 * the object and we might as well give up now.
1277 		 */
1278 
1279 		pp = vm_page_lookup(object, new_pindex);
1280 		if ((pp == NULL || pp->valid == 0) &&
1281 		    !vm_pager_has_page(object, new_pindex)
1282 		) {
1283 			info->error = 0;	/* problemo */
1284 			return(-1);		/* stop the scan */
1285 		}
1286 	}
1287 
1288 	/*
1289 	 * Check for busy page
1290 	 */
1291 
1292 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1293 		vm_page_t pp;
1294 
1295 		if (op & OBSC_COLLAPSE_NOWAIT) {
1296 			if (
1297 			    (p->flags & PG_BUSY) ||
1298 			    !p->valid ||
1299 			    p->hold_count ||
1300 			    p->wire_count ||
1301 			    p->busy
1302 			) {
1303 				return(0);
1304 			}
1305 		} else if (op & OBSC_COLLAPSE_WAIT) {
1306 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1307 				/*
1308 				 * If we slept, anything could have
1309 				 * happened.   Ask that the scan be restarted.
1310 				 *
1311 				 * Since the object is marked dead, the
1312 				 * backing offset should not have changed.
1313 				 */
1314 				info->error = -1;
1315 				return(-1);
1316 			}
1317 		}
1318 
1319 		/*
1320 		 * Busy the page
1321 		 */
1322 		vm_page_busy(p);
1323 
1324 		KASSERT(
1325 		    p->object == backing_object,
1326 		    ("vm_object_qcollapse(): object mismatch")
1327 		);
1328 
1329 		/*
1330 		 * Destroy any associated swap
1331 		 */
1332 		if (backing_object->type == OBJT_SWAP)
1333 			swap_pager_freespace(backing_object, p->pindex, 1);
1334 
1335 		if (
1336 		    p->pindex < backing_offset_index ||
1337 		    new_pindex >= object->size
1338 		) {
1339 			/*
1340 			 * Page is out of the parent object's range, we
1341 			 * can simply destroy it.
1342 			 */
1343 			vm_page_protect(p, VM_PROT_NONE);
1344 			vm_page_free(p);
1345 			return(0);
1346 		}
1347 
1348 		pp = vm_page_lookup(object, new_pindex);
1349 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1350 			/*
1351 			 * page already exists in parent OR swap exists
1352 			 * for this location in the parent.  Destroy
1353 			 * the original page from the backing object.
1354 			 *
1355 			 * Leave the parent's page alone
1356 			 */
1357 			vm_page_protect(p, VM_PROT_NONE);
1358 			vm_page_free(p);
1359 			return(0);
1360 		}
1361 
1362 		/*
1363 		 * Page does not exist in parent, rename the
1364 		 * page from the backing object to the main object.
1365 		 *
1366 		 * If the page was mapped to a process, it can remain
1367 		 * mapped through the rename.
1368 		 */
1369 		if ((p->queue - p->pc) == PQ_CACHE)
1370 			vm_page_deactivate(p);
1371 
1372 		vm_page_rename(p, object, new_pindex);
1373 		/* page automatically made dirty by rename */
1374 	}
1375 	return(0);
1376 }
1377 
1378 /*
1379  * This version of collapse allows the operation to occur earlier and
1380  * when paging_in_progress is true for an object...  This is not a complete
1381  * operation, but should plug 99.9% of the rest of the leaks.
1382  *
1383  * The caller must hold vm_token and vmobj_token.
1384  * (only called from vm_object_collapse)
1385  */
1386 static void
1387 vm_object_qcollapse(vm_object_t object)
1388 {
1389 	vm_object_t backing_object = object->backing_object;
1390 
1391 	if (backing_object->ref_count != 1)
1392 		return;
1393 
1394 	backing_object->ref_count += 2;
1395 
1396 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1397 
1398 	backing_object->ref_count -= 2;
1399 }
1400 
1401 /*
1402  * Collapse an object with the object backing it.  Pages in the backing
1403  * object are moved into the parent, and the backing object is deallocated.
1404  */
1405 void
1406 vm_object_collapse(vm_object_t object)
1407 {
1408 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1409 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1410 
1411 	while (TRUE) {
1412 		vm_object_t backing_object;
1413 
1414 		/*
1415 		 * Verify that the conditions are right for collapse:
1416 		 *
1417 		 * The object exists and the backing object exists.
1418 		 */
1419 		if (object == NULL)
1420 			break;
1421 
1422 		if ((backing_object = object->backing_object) == NULL)
1423 			break;
1424 
1425 		/*
1426 		 * we check the backing object first, because it is most likely
1427 		 * not collapsable.
1428 		 */
1429 		if (backing_object->handle != NULL ||
1430 		    (backing_object->type != OBJT_DEFAULT &&
1431 		     backing_object->type != OBJT_SWAP) ||
1432 		    (backing_object->flags & OBJ_DEAD) ||
1433 		    object->handle != NULL ||
1434 		    (object->type != OBJT_DEFAULT &&
1435 		     object->type != OBJT_SWAP) ||
1436 		    (object->flags & OBJ_DEAD)) {
1437 			break;
1438 		}
1439 
1440 		if (
1441 		    object->paging_in_progress != 0 ||
1442 		    backing_object->paging_in_progress != 0
1443 		) {
1444 			vm_object_qcollapse(object);
1445 			break;
1446 		}
1447 
1448 		/*
1449 		 * We know that we can either collapse the backing object (if
1450 		 * the parent is the only reference to it) or (perhaps) have
1451 		 * the parent bypass the object if the parent happens to shadow
1452 		 * all the resident pages in the entire backing object.
1453 		 *
1454 		 * This is ignoring pager-backed pages such as swap pages.
1455 		 * vm_object_backing_scan fails the shadowing test in this
1456 		 * case.
1457 		 */
1458 
1459 		if (backing_object->ref_count == 1) {
1460 			/*
1461 			 * If there is exactly one reference to the backing
1462 			 * object, we can collapse it into the parent.
1463 			 */
1464 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1465 
1466 			/*
1467 			 * Move the pager from backing_object to object.
1468 			 */
1469 
1470 			if (backing_object->type == OBJT_SWAP) {
1471 				vm_object_pip_add(backing_object, 1);
1472 
1473 				/*
1474 				 * scrap the paging_offset junk and do a
1475 				 * discrete copy.  This also removes major
1476 				 * assumptions about how the swap-pager
1477 				 * works from where it doesn't belong.  The
1478 				 * new swapper is able to optimize the
1479 				 * destroy-source case.
1480 				 */
1481 
1482 				vm_object_pip_add(object, 1);
1483 				swap_pager_copy(
1484 				    backing_object,
1485 				    object,
1486 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1487 				vm_object_pip_wakeup(object);
1488 
1489 				vm_object_pip_wakeup(backing_object);
1490 			}
1491 			/*
1492 			 * Object now shadows whatever backing_object did.
1493 			 * Note that the reference to
1494 			 * backing_object->backing_object moves from within
1495 			 * backing_object to within object.
1496 			 */
1497 
1498 			LIST_REMOVE(object, shadow_list);
1499 			object->backing_object->shadow_count--;
1500 			object->backing_object->generation++;
1501 			if (backing_object->backing_object) {
1502 				LIST_REMOVE(backing_object, shadow_list);
1503 				backing_object->backing_object->shadow_count--;
1504 				backing_object->backing_object->generation++;
1505 			}
1506 			object->backing_object = backing_object->backing_object;
1507 			if (object->backing_object) {
1508 				LIST_INSERT_HEAD(
1509 				    &object->backing_object->shadow_head,
1510 				    object,
1511 				    shadow_list
1512 				);
1513 				object->backing_object->shadow_count++;
1514 				object->backing_object->generation++;
1515 			}
1516 
1517 			object->backing_object_offset +=
1518 			    backing_object->backing_object_offset;
1519 
1520 			/*
1521 			 * Discard backing_object.
1522 			 *
1523 			 * Since the backing object has no pages, no pager left,
1524 			 * and no object references within it, all that is
1525 			 * necessary is to dispose of it.
1526 			 */
1527 
1528 			KASSERT(backing_object->ref_count == 1,
1529 				("backing_object %p was somehow "
1530 				 "re-referenced during collapse!",
1531 				 backing_object));
1532 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1533 				("backing_object %p somehow has left "
1534 				 "over pages during collapse!",
1535 				 backing_object));
1536 
1537 			/*
1538 			 * Wait for hold count to hit zero
1539 			 */
1540 			vm_object_hold_wait(backing_object);
1541 
1542 			/* (we are holding vmobj_token) */
1543 			TAILQ_REMOVE(&vm_object_list, backing_object,
1544 				     object_list);
1545 			vm_object_count--;
1546 
1547 			zfree(obj_zone, backing_object);
1548 
1549 			object_collapses++;
1550 		} else {
1551 			vm_object_t new_backing_object;
1552 
1553 			/*
1554 			 * If we do not entirely shadow the backing object,
1555 			 * there is nothing we can do so we give up.
1556 			 */
1557 
1558 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1559 				break;
1560 			}
1561 
1562 			/*
1563 			 * Make the parent shadow the next object in the
1564 			 * chain.  Deallocating backing_object will not remove
1565 			 * it, since its reference count is at least 2.
1566 			 */
1567 
1568 			LIST_REMOVE(object, shadow_list);
1569 			backing_object->shadow_count--;
1570 			backing_object->generation++;
1571 
1572 			new_backing_object = backing_object->backing_object;
1573 			if ((object->backing_object = new_backing_object) != NULL) {
1574 				vm_object_reference(new_backing_object);
1575 				LIST_INSERT_HEAD(
1576 				    &new_backing_object->shadow_head,
1577 				    object,
1578 				    shadow_list
1579 				);
1580 				new_backing_object->shadow_count++;
1581 				new_backing_object->generation++;
1582 				object->backing_object_offset +=
1583 					backing_object->backing_object_offset;
1584 			}
1585 
1586 			/*
1587 			 * Drop the reference count on backing_object. Since
1588 			 * its ref_count was at least 2, it will not vanish;
1589 			 * so we don't need to call vm_object_deallocate, but
1590 			 * we do anyway.
1591 			 */
1592 			vm_object_deallocate_locked(backing_object);
1593 			object_bypasses++;
1594 		}
1595 
1596 		/*
1597 		 * Try again with this object's new backing object.
1598 		 */
1599 	}
1600 }
1601 
1602 /*
1603  * Removes all physical pages in the specified object range from the
1604  * object's list of pages.
1605  *
1606  * No requirements.
1607  */
1608 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1609 
1610 void
1611 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1612 		      boolean_t clean_only)
1613 {
1614 	struct rb_vm_page_scan_info info;
1615 	int all;
1616 
1617 	/*
1618 	 * Degenerate cases and assertions
1619 	 */
1620 	lwkt_gettoken(&vm_token);
1621 	if (object == NULL ||
1622 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1623 		lwkt_reltoken(&vm_token);
1624 		return;
1625 	}
1626 	KASSERT(object->type != OBJT_PHYS,
1627 		("attempt to remove pages from a physical object"));
1628 
1629 	/*
1630 	 * Indicate that paging is occuring on the object
1631 	 */
1632 	crit_enter();
1633 	vm_object_pip_add(object, 1);
1634 
1635 	/*
1636 	 * Figure out the actual removal range and whether we are removing
1637 	 * the entire contents of the object or not.  If removing the entire
1638 	 * contents, be sure to get all pages, even those that might be
1639 	 * beyond the end of the object.
1640 	 */
1641 	info.start_pindex = start;
1642 	if (end == 0)
1643 		info.end_pindex = (vm_pindex_t)-1;
1644 	else
1645 		info.end_pindex = end - 1;
1646 	info.limit = clean_only;
1647 	all = (start == 0 && info.end_pindex >= object->size - 1);
1648 
1649 	/*
1650 	 * Loop until we are sure we have gotten them all.
1651 	 */
1652 	do {
1653 		info.error = 0;
1654 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1655 					vm_object_page_remove_callback, &info);
1656 	} while (info.error);
1657 
1658 	/*
1659 	 * Remove any related swap if throwing away pages, or for
1660 	 * non-swap objects (the swap is a clean copy in that case).
1661 	 */
1662 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1663 		if (all)
1664 			swap_pager_freespace_all(object);
1665 		else
1666 			swap_pager_freespace(object, info.start_pindex,
1667 			     info.end_pindex - info.start_pindex + 1);
1668 	}
1669 
1670 	/*
1671 	 * Cleanup
1672 	 */
1673 	vm_object_pip_wakeup(object);
1674 	crit_exit();
1675 	lwkt_reltoken(&vm_token);
1676 }
1677 
1678 /*
1679  * The caller must hold vm_token.
1680  */
1681 static int
1682 vm_object_page_remove_callback(vm_page_t p, void *data)
1683 {
1684 	struct rb_vm_page_scan_info *info = data;
1685 
1686 	/*
1687 	 * Wired pages cannot be destroyed, but they can be invalidated
1688 	 * and we do so if clean_only (limit) is not set.
1689 	 *
1690 	 * WARNING!  The page may be wired due to being part of a buffer
1691 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1692 	 *	     This is fine as part of a truncation but VFSs must be
1693 	 *	     sure to fix the buffer up when re-extending the file.
1694 	 */
1695 	if (p->wire_count != 0) {
1696 		vm_page_protect(p, VM_PROT_NONE);
1697 		if (info->limit == 0)
1698 			p->valid = 0;
1699 		return(0);
1700 	}
1701 
1702 	/*
1703 	 * The busy flags are only cleared at
1704 	 * interrupt -- minimize the spl transitions
1705 	 */
1706 
1707 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1708 		info->error = 1;
1709 		return(0);
1710 	}
1711 
1712 	/*
1713 	 * limit is our clean_only flag.  If set and the page is dirty, do
1714 	 * not free it.  If set and the page is being held by someone, do
1715 	 * not free it.
1716 	 */
1717 	if (info->limit && p->valid) {
1718 		vm_page_test_dirty(p);
1719 		if (p->valid & p->dirty)
1720 			return(0);
1721 		if (p->hold_count)
1722 			return(0);
1723 	}
1724 
1725 	/*
1726 	 * Destroy the page
1727 	 */
1728 	vm_page_busy(p);
1729 	vm_page_protect(p, VM_PROT_NONE);
1730 	vm_page_free(p);
1731 	return(0);
1732 }
1733 
1734 /*
1735  * Coalesces two objects backing up adjoining regions of memory into a
1736  * single object.
1737  *
1738  * returns TRUE if objects were combined.
1739  *
1740  * NOTE: Only works at the moment if the second object is NULL -
1741  *	 if it's not, which object do we lock first?
1742  *
1743  * Parameters:
1744  *	prev_object	First object to coalesce
1745  *	prev_offset	Offset into prev_object
1746  *	next_object	Second object into coalesce
1747  *	next_offset	Offset into next_object
1748  *
1749  *	prev_size	Size of reference to prev_object
1750  *	next_size	Size of reference to next_object
1751  *
1752  * The object must not be locked.
1753  * The caller must hold vm_token and vmobj_token.
1754  */
1755 boolean_t
1756 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1757 		   vm_size_t prev_size, vm_size_t next_size)
1758 {
1759 	vm_pindex_t next_pindex;
1760 
1761 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1762 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1763 
1764 	if (prev_object == NULL) {
1765 		return (TRUE);
1766 	}
1767 
1768 	if (prev_object->type != OBJT_DEFAULT &&
1769 	    prev_object->type != OBJT_SWAP) {
1770 		return (FALSE);
1771 	}
1772 
1773 	/*
1774 	 * Try to collapse the object first
1775 	 */
1776 	vm_object_collapse(prev_object);
1777 
1778 	/*
1779 	 * Can't coalesce if: . more than one reference . paged out . shadows
1780 	 * another object . has a copy elsewhere (any of which mean that the
1781 	 * pages not mapped to prev_entry may be in use anyway)
1782 	 */
1783 
1784 	if (prev_object->backing_object != NULL) {
1785 		return (FALSE);
1786 	}
1787 
1788 	prev_size >>= PAGE_SHIFT;
1789 	next_size >>= PAGE_SHIFT;
1790 	next_pindex = prev_pindex + prev_size;
1791 
1792 	if ((prev_object->ref_count > 1) &&
1793 	    (prev_object->size != next_pindex)) {
1794 		return (FALSE);
1795 	}
1796 
1797 	/*
1798 	 * Remove any pages that may still be in the object from a previous
1799 	 * deallocation.
1800 	 */
1801 	if (next_pindex < prev_object->size) {
1802 		vm_object_page_remove(prev_object,
1803 				      next_pindex,
1804 				      next_pindex + next_size, FALSE);
1805 		if (prev_object->type == OBJT_SWAP)
1806 			swap_pager_freespace(prev_object,
1807 					     next_pindex, next_size);
1808 	}
1809 
1810 	/*
1811 	 * Extend the object if necessary.
1812 	 */
1813 	if (next_pindex + next_size > prev_object->size)
1814 		prev_object->size = next_pindex + next_size;
1815 
1816 	return (TRUE);
1817 }
1818 
1819 /*
1820  * Make the object writable and flag is being possibly dirty.
1821  *
1822  * No requirements.
1823  */
1824 void
1825 vm_object_set_writeable_dirty(vm_object_t object)
1826 {
1827 	struct vnode *vp;
1828 
1829 	lwkt_gettoken(&vm_token);
1830 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1831 	if (object->type == OBJT_VNODE &&
1832 	    (vp = (struct vnode *)object->handle) != NULL) {
1833 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1834 			vsetflags(vp, VOBJDIRTY);
1835 		}
1836 	}
1837 	lwkt_reltoken(&vm_token);
1838 }
1839 
1840 static void
1841 vm_object_lock_init(vm_object_t obj)
1842 {
1843 #if defined(DEBUG_LOCKS)
1844 	int i;
1845 
1846 	obj->debug_hold_bitmap = 0;
1847 	obj->debug_hold_ovfl = 0;
1848 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1849 		obj->debug_hold_thrs[i] = NULL;
1850 	}
1851 #endif
1852 }
1853 
1854 void
1855 vm_object_lock(vm_object_t obj)
1856 {
1857 	lwkt_getpooltoken(obj);
1858 }
1859 
1860 void
1861 vm_object_unlock(vm_object_t obj)
1862 {
1863 	lwkt_relpooltoken(obj);
1864 }
1865 
1866 void
1867 vm_object_hold(vm_object_t obj)
1868 {
1869 	vm_object_lock(obj);
1870 
1871 	refcount_acquire(&obj->hold_count);
1872 
1873 #if defined(DEBUG_LOCKS)
1874 	int i;
1875 
1876 	i = ffs(~obj->debug_hold_bitmap) - 1;
1877 	if (i == -1) {
1878 		kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
1879 		obj->debug_hold_ovfl = 1;
1880 	}
1881 
1882 	obj->debug_hold_bitmap |= (1 << i);
1883 	obj->debug_hold_thrs[i] = curthread;
1884 #endif
1885 }
1886 
1887 void
1888 vm_object_drop(vm_object_t obj)
1889 {
1890 	int rc;
1891 
1892 #if defined(DEBUG_LOCKS)
1893 	int found = 0;
1894 	int i;
1895 
1896 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1897 		if ((obj->debug_hold_bitmap & (1 << i)) &&
1898 		    (obj->debug_hold_thrs[i] == curthread)) {
1899 			obj->debug_hold_bitmap &= ~(1 << i);
1900 			obj->debug_hold_thrs[i] = NULL;
1901 			found = 1;
1902 			break;
1903 		}
1904 	}
1905 
1906 	if (found == 0 && obj->debug_hold_ovfl == 0)
1907 		panic("vm_object: attempt to drop hold on non-self-held obj");
1908 #endif
1909 
1910 	rc = refcount_release(&obj->hold_count);
1911 	vm_object_unlock(obj);
1912 
1913 	if (rc)
1914 		vm_object_hold_wake(obj);
1915 }
1916 
1917 static void
1918 vm_object_hold_wake(vm_object_t obj)
1919 {
1920 	wakeup(obj);
1921 }
1922 
1923 static void
1924 vm_object_hold_wait(vm_object_t obj)
1925 {
1926 	vm_object_lock(obj);
1927 
1928 #if defined(DEBUG_LOCKS)
1929 	int i;
1930 
1931 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
1932 		if ((obj->debug_hold_bitmap & (1 << i)) &&
1933 		    (obj->debug_hold_thrs[i] == curthread))
1934 			panic("vm_object: self-hold in terminate or collapse");
1935 	}
1936 #endif
1937 
1938 	while (obj->hold_count)
1939 		tsleep(obj, 0, "vmobjhld", 0);
1940 
1941 	vm_object_unlock(obj);
1942 }
1943 
1944 #include "opt_ddb.h"
1945 #ifdef DDB
1946 #include <sys/kernel.h>
1947 
1948 #include <sys/cons.h>
1949 
1950 #include <ddb/ddb.h>
1951 
1952 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1953 				       vm_map_entry_t entry);
1954 static int	vm_object_in_map (vm_object_t object);
1955 
1956 /*
1957  * The caller must hold vm_token.
1958  */
1959 static int
1960 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1961 {
1962 	vm_map_t tmpm;
1963 	vm_map_entry_t tmpe;
1964 	vm_object_t obj;
1965 	int entcount;
1966 
1967 	if (map == 0)
1968 		return 0;
1969 	if (entry == 0) {
1970 		tmpe = map->header.next;
1971 		entcount = map->nentries;
1972 		while (entcount-- && (tmpe != &map->header)) {
1973 			if( _vm_object_in_map(map, object, tmpe)) {
1974 				return 1;
1975 			}
1976 			tmpe = tmpe->next;
1977 		}
1978 		return (0);
1979 	}
1980 	switch(entry->maptype) {
1981 	case VM_MAPTYPE_SUBMAP:
1982 		tmpm = entry->object.sub_map;
1983 		tmpe = tmpm->header.next;
1984 		entcount = tmpm->nentries;
1985 		while (entcount-- && tmpe != &tmpm->header) {
1986 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1987 				return 1;
1988 			}
1989 			tmpe = tmpe->next;
1990 		}
1991 		break;
1992 	case VM_MAPTYPE_NORMAL:
1993 	case VM_MAPTYPE_VPAGETABLE:
1994 		obj = entry->object.vm_object;
1995 		while (obj) {
1996 			if (obj == object)
1997 				return 1;
1998 			obj = obj->backing_object;
1999 		}
2000 		break;
2001 	default:
2002 		break;
2003 	}
2004 	return 0;
2005 }
2006 
2007 static int vm_object_in_map_callback(struct proc *p, void *data);
2008 
2009 struct vm_object_in_map_info {
2010 	vm_object_t object;
2011 	int rv;
2012 };
2013 
2014 /*
2015  * Debugging only
2016  */
2017 static int
2018 vm_object_in_map(vm_object_t object)
2019 {
2020 	struct vm_object_in_map_info info;
2021 
2022 	info.rv = 0;
2023 	info.object = object;
2024 
2025 	allproc_scan(vm_object_in_map_callback, &info);
2026 	if (info.rv)
2027 		return 1;
2028 	if( _vm_object_in_map(&kernel_map, object, 0))
2029 		return 1;
2030 	if( _vm_object_in_map(&pager_map, object, 0))
2031 		return 1;
2032 	if( _vm_object_in_map(&buffer_map, object, 0))
2033 		return 1;
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Debugging only
2039  */
2040 static int
2041 vm_object_in_map_callback(struct proc *p, void *data)
2042 {
2043 	struct vm_object_in_map_info *info = data;
2044 
2045 	if (p->p_vmspace) {
2046 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2047 			info->rv = 1;
2048 			return -1;
2049 		}
2050 	}
2051 	return (0);
2052 }
2053 
2054 DB_SHOW_COMMAND(vmochk, vm_object_check)
2055 {
2056 	vm_object_t object;
2057 
2058 	/*
2059 	 * make sure that internal objs are in a map somewhere
2060 	 * and none have zero ref counts.
2061 	 */
2062 	for (object = TAILQ_FIRST(&vm_object_list);
2063 			object != NULL;
2064 			object = TAILQ_NEXT(object, object_list)) {
2065 		if (object->type == OBJT_MARKER)
2066 			continue;
2067 		if (object->handle == NULL &&
2068 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2069 			if (object->ref_count == 0) {
2070 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2071 					(long)object->size);
2072 			}
2073 			if (!vm_object_in_map(object)) {
2074 				db_printf(
2075 			"vmochk: internal obj is not in a map: "
2076 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2077 				    object->ref_count, (u_long)object->size,
2078 				    (u_long)object->size,
2079 				    (void *)object->backing_object);
2080 			}
2081 		}
2082 	}
2083 }
2084 
2085 /*
2086  * Debugging only
2087  */
2088 DB_SHOW_COMMAND(object, vm_object_print_static)
2089 {
2090 	/* XXX convert args. */
2091 	vm_object_t object = (vm_object_t)addr;
2092 	boolean_t full = have_addr;
2093 
2094 	vm_page_t p;
2095 
2096 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2097 #define	count	was_count
2098 
2099 	int count;
2100 
2101 	if (object == NULL)
2102 		return;
2103 
2104 	db_iprintf(
2105 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2106 	    object, (int)object->type, (u_long)object->size,
2107 	    object->resident_page_count, object->ref_count, object->flags);
2108 	/*
2109 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2110 	 */
2111 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2112 	    object->shadow_count,
2113 	    object->backing_object ? object->backing_object->ref_count : 0,
2114 	    object->backing_object, (long)object->backing_object_offset);
2115 
2116 	if (!full)
2117 		return;
2118 
2119 	db_indent += 2;
2120 	count = 0;
2121 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2122 		if (count == 0)
2123 			db_iprintf("memory:=");
2124 		else if (count == 6) {
2125 			db_printf("\n");
2126 			db_iprintf(" ...");
2127 			count = 0;
2128 		} else
2129 			db_printf(",");
2130 		count++;
2131 
2132 		db_printf("(off=0x%lx,page=0x%lx)",
2133 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2134 	}
2135 	if (count != 0)
2136 		db_printf("\n");
2137 	db_indent -= 2;
2138 }
2139 
2140 /* XXX. */
2141 #undef count
2142 
2143 /*
2144  * XXX need this non-static entry for calling from vm_map_print.
2145  *
2146  * Debugging only
2147  */
2148 void
2149 vm_object_print(/* db_expr_t */ long addr,
2150 		boolean_t have_addr,
2151 		/* db_expr_t */ long count,
2152 		char *modif)
2153 {
2154 	vm_object_print_static(addr, have_addr, count, modif);
2155 }
2156 
2157 /*
2158  * Debugging only
2159  */
2160 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2161 {
2162 	vm_object_t object;
2163 	int nl = 0;
2164 	int c;
2165 	for (object = TAILQ_FIRST(&vm_object_list);
2166 			object != NULL;
2167 			object = TAILQ_NEXT(object, object_list)) {
2168 		vm_pindex_t idx, fidx;
2169 		vm_pindex_t osize;
2170 		vm_paddr_t pa = -1, padiff;
2171 		int rcount;
2172 		vm_page_t m;
2173 
2174 		if (object->type == OBJT_MARKER)
2175 			continue;
2176 		db_printf("new object: %p\n", (void *)object);
2177 		if ( nl > 18) {
2178 			c = cngetc();
2179 			if (c != ' ')
2180 				return;
2181 			nl = 0;
2182 		}
2183 		nl++;
2184 		rcount = 0;
2185 		fidx = 0;
2186 		osize = object->size;
2187 		if (osize > 128)
2188 			osize = 128;
2189 		for (idx = 0; idx < osize; idx++) {
2190 			m = vm_page_lookup(object, idx);
2191 			if (m == NULL) {
2192 				if (rcount) {
2193 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2194 						(long)fidx, rcount, (long)pa);
2195 					if ( nl > 18) {
2196 						c = cngetc();
2197 						if (c != ' ')
2198 							return;
2199 						nl = 0;
2200 					}
2201 					nl++;
2202 					rcount = 0;
2203 				}
2204 				continue;
2205 			}
2206 
2207 
2208 			if (rcount &&
2209 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2210 				++rcount;
2211 				continue;
2212 			}
2213 			if (rcount) {
2214 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2215 				padiff >>= PAGE_SHIFT;
2216 				padiff &= PQ_L2_MASK;
2217 				if (padiff == 0) {
2218 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2219 					++rcount;
2220 					continue;
2221 				}
2222 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2223 					(long)fidx, rcount, (long)pa);
2224 				db_printf("pd(%ld)\n", (long)padiff);
2225 				if ( nl > 18) {
2226 					c = cngetc();
2227 					if (c != ' ')
2228 						return;
2229 					nl = 0;
2230 				}
2231 				nl++;
2232 			}
2233 			fidx = idx;
2234 			pa = VM_PAGE_TO_PHYS(m);
2235 			rcount = 1;
2236 		}
2237 		if (rcount) {
2238 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2239 				(long)fidx, rcount, (long)pa);
2240 			if ( nl > 18) {
2241 				c = cngetc();
2242 				if (c != ' ')
2243 					return;
2244 				nl = 0;
2245 			}
2246 			nl++;
2247 		}
2248 	}
2249 }
2250 #endif /* DDB */
2251