xref: /dflybsd-src/sys/vm/vm_map.c (revision d05b679b5aa949ff7cef967eaa12269a88d789f4)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.50 2006/09/13 22:25:00 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 #include <sys/tree.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 #define VMEPERCPU	2
138 
139 static struct vm_zone mapentzone_store, mapzone_store;
140 static vm_zone_t mapentzone, mapzone, vmspace_zone;
141 static struct vm_object mapentobj, mapobj;
142 
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145 static struct vm_map map_init[MAX_KMAP];
146 
147 static void vm_map_entry_shadow(vm_map_entry_t entry);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 		vm_map_entry_t);
156 static void vm_map_split (vm_map_entry_t);
157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
158 
159 void
160 vm_map_startup(void)
161 {
162 	mapzone = &mapzone_store;
163 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
164 		map_init, MAX_KMAP);
165 	mapentzone = &mapentzone_store;
166 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
167 		map_entry_init, MAX_MAPENT);
168 }
169 
170 /*
171  * Red black tree functions
172  */
173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
175 
176 /* a->start is address, and the only field has to be initialized */
177 static int
178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
179 {
180 	if (a->start < b->start)
181 		return(-1);
182 	else if (a->start > b->start)
183 		return(1);
184 	return(0);
185 }
186 
187 /*
188  * Allocate a vmspace structure, including a vm_map and pmap,
189  * and initialize those structures.  The refcnt is set to 1.
190  * The remaining fields must be initialized by the caller.
191  */
192 struct vmspace *
193 vmspace_alloc(vm_offset_t min, vm_offset_t max)
194 {
195 	struct vmspace *vm;
196 
197 	vm = zalloc(vmspace_zone);
198 	vm_map_init(&vm->vm_map, min, max);
199 	pmap_pinit(vmspace_pmap(vm));
200 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
201 	vm->vm_refcnt = 1;
202 	vm->vm_shm = NULL;
203 	vm->vm_exitingcnt = 0;
204 	return (vm);
205 }
206 
207 void
208 vm_init2(void)
209 {
210 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
211 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
212 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
213 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
214 	pmap_init2();
215 	vm_object_init2();
216 }
217 
218 static __inline void
219 vmspace_dofree(struct vmspace *vm)
220 {
221 	int count;
222 
223 	/*
224 	 * Make sure any SysV shm is freed, it might not have in
225 	 * exit1()
226 	 */
227 	shmexit(vm);
228 
229 	KKASSERT(vm->vm_upcalls == NULL);
230 
231 	/*
232 	 * Lock the map, to wait out all other references to it.
233 	 * Delete all of the mappings and pages they hold, then call
234 	 * the pmap module to reclaim anything left.
235 	 */
236 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
237 	vm_map_lock(&vm->vm_map);
238 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
239 		vm->vm_map.max_offset, &count);
240 	vm_map_unlock(&vm->vm_map);
241 	vm_map_entry_release(count);
242 
243 	pmap_release(vmspace_pmap(vm));
244 	zfree(vmspace_zone, vm);
245 }
246 
247 void
248 vmspace_free(struct vmspace *vm)
249 {
250 	if (vm->vm_refcnt == 0)
251 		panic("vmspace_free: attempt to free already freed vmspace");
252 
253 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
254 		vmspace_dofree(vm);
255 }
256 
257 void
258 vmspace_exitfree(struct proc *p)
259 {
260 	struct vmspace *vm;
261 
262 	vm = p->p_vmspace;
263 	p->p_vmspace = NULL;
264 
265 	/*
266 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
267 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
268 	 * exitingcnt may increment above 0 and drop back down to zero
269 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
270 	 * may also increment above 0 and drop back down to zero several
271 	 * times while vm_exitingcnt is held non-zero.
272 	 *
273 	 * The last wait on the exiting child's vmspace will clean up
274 	 * the remainder of the vmspace.
275 	 */
276 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
277 		vmspace_dofree(vm);
278 }
279 
280 /*
281  * vmspace_swap_count() - count the approximate swap useage in pages for a
282  *			  vmspace.
283  *
284  *	Swap useage is determined by taking the proportional swap used by
285  *	VM objects backing the VM map.  To make up for fractional losses,
286  *	if the VM object has any swap use at all the associated map entries
287  *	count for at least 1 swap page.
288  */
289 int
290 vmspace_swap_count(struct vmspace *vmspace)
291 {
292 	vm_map_t map = &vmspace->vm_map;
293 	vm_map_entry_t cur;
294 	vm_object_t object;
295 	int count = 0;
296 	int n;
297 
298 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
299 		switch(cur->maptype) {
300 		case VM_MAPTYPE_NORMAL:
301 		case VM_MAPTYPE_VPAGETABLE:
302 			if ((object = cur->object.vm_object) == NULL)
303 				break;
304 			if (object->type != OBJT_SWAP)
305 				break;
306 			n = (cur->end - cur->start) / PAGE_SIZE;
307 			if (object->un_pager.swp.swp_bcount) {
308 				count += object->un_pager.swp.swp_bcount *
309 				    SWAP_META_PAGES * n / object->size + 1;
310 			}
311 			break;
312 		default:
313 			break;
314 		}
315 	}
316 	return(count);
317 }
318 
319 
320 /*
321  *	vm_map_create:
322  *
323  *	Creates and returns a new empty VM map with
324  *	the given physical map structure, and having
325  *	the given lower and upper address bounds.
326  */
327 vm_map_t
328 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
329 {
330 	vm_map_t result;
331 
332 	result = zalloc(mapzone);
333 	vm_map_init(result, min, max);
334 	result->pmap = pmap;
335 	return (result);
336 }
337 
338 /*
339  * Initialize an existing vm_map structure
340  * such as that in the vmspace structure.
341  * The pmap is set elsewhere.
342  */
343 void
344 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
345 {
346 	map->header.next = map->header.prev = &map->header;
347 	RB_INIT(&map->rb_root);
348 	map->nentries = 0;
349 	map->size = 0;
350 	map->system_map = 0;
351 	map->infork = 0;
352 	map->min_offset = min;
353 	map->max_offset = max;
354 	map->first_free = &map->header;
355 	map->hint = &map->header;
356 	map->timestamp = 0;
357 	lockinit(&map->lock, "thrd_sleep", 0, 0);
358 }
359 
360 /*
361  * Shadow the vm_map_entry's object.  This typically needs to be done when
362  * a write fault is taken on an entry which had previously been cloned by
363  * fork().  The shared object (which might be NULL) must become private so
364  * we add a shadow layer above it.
365  *
366  * Object allocation for anonymous mappings is defered as long as possible.
367  * When creating a shadow, however, the underlying object must be instantiated
368  * so it can be shared.
369  *
370  * If the map segment is governed by a virtual page table then it is
371  * possible to address offsets beyond the mapped area.  Just allocate
372  * a maximally sized object for this case.
373  */
374 static
375 void
376 vm_map_entry_shadow(vm_map_entry_t entry)
377 {
378 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
379 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
380 				 0x7FFFFFFF);	/* XXX */
381 	} else {
382 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
383 				 atop(entry->end - entry->start));
384 	}
385 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
386 }
387 
388 /*
389  * Allocate an object for a vm_map_entry.
390  *
391  * Object allocation for anonymous mappings is defered as long as possible.
392  * This function is called when we can defer no longer, generally when a map
393  * entry might be split or forked or takes a page fault.
394  *
395  * If the map segment is governed by a virtual page table then it is
396  * possible to address offsets beyond the mapped area.  Just allocate
397  * a maximally sized object for this case.
398  */
399 void
400 vm_map_entry_allocate_object(vm_map_entry_t entry)
401 {
402 	vm_object_t obj;
403 
404 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
405 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
406 	} else {
407 		obj = vm_object_allocate(OBJT_DEFAULT,
408 					 atop(entry->end - entry->start));
409 	}
410 	entry->object.vm_object = obj;
411 	entry->offset = 0;
412 }
413 
414 /*
415  *      vm_map_entry_reserve_cpu_init:
416  *
417  *	Set an initial negative count so the first attempt to reserve
418  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
419  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
420  *	map a new page for vm_map_entry structures.  SMP systems are
421  *	particularly sensitive.
422  *
423  *	This routine is called in early boot so we cannot just call
424  *	vm_map_entry_reserve().
425  *
426  *	May be called for a gd other then mycpu, but may only be called
427  *	during early boot.
428  */
429 void
430 vm_map_entry_reserve_cpu_init(globaldata_t gd)
431 {
432 	vm_map_entry_t entry;
433 	int i;
434 
435 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
436 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
437 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
438 		entry->next = gd->gd_vme_base;
439 		gd->gd_vme_base = entry;
440 	}
441 }
442 
443 /*
444  *	vm_map_entry_reserve:
445  *
446  *	Reserves vm_map_entry structures so code later on can manipulate
447  *	map_entry structures within a locked map without blocking trying
448  *	to allocate a new vm_map_entry.
449  */
450 int
451 vm_map_entry_reserve(int count)
452 {
453 	struct globaldata *gd = mycpu;
454 	vm_map_entry_t entry;
455 
456 	crit_enter();
457 
458 	/*
459 	 * Make sure we have enough structures in gd_vme_base to handle
460 	 * the reservation request.
461 	 */
462 	while (gd->gd_vme_avail < count) {
463 		entry = zalloc(mapentzone);
464 		entry->next = gd->gd_vme_base;
465 		gd->gd_vme_base = entry;
466 		++gd->gd_vme_avail;
467 	}
468 	gd->gd_vme_avail -= count;
469 	crit_exit();
470 	return(count);
471 }
472 
473 /*
474  *	vm_map_entry_release:
475  *
476  *	Releases previously reserved vm_map_entry structures that were not
477  *	used.  If we have too much junk in our per-cpu cache clean some of
478  *	it out.
479  */
480 void
481 vm_map_entry_release(int count)
482 {
483 	struct globaldata *gd = mycpu;
484 	vm_map_entry_t entry;
485 
486 	crit_enter();
487 	gd->gd_vme_avail += count;
488 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
489 		entry = gd->gd_vme_base;
490 		KKASSERT(entry != NULL);
491 		gd->gd_vme_base = entry->next;
492 		--gd->gd_vme_avail;
493 		crit_exit();
494 		zfree(mapentzone, entry);
495 		crit_enter();
496 	}
497 	crit_exit();
498 }
499 
500 /*
501  *	vm_map_entry_kreserve:
502  *
503  *	Reserve map entry structures for use in kernel_map itself.  These
504  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
505  *	was inited.  This function is used by zalloc() to avoid a recursion
506  *	when zalloc() itself needs to allocate additional kernel memory.
507  *
508  *	This function works like the normal reserve but does not load the
509  *	vm_map_entry cache (because that would result in an infinite
510  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
511  *
512  *	Any caller of this function must be sure to renormalize after
513  *	potentially eating entries to ensure that the reserve supply
514  *	remains intact.
515  */
516 int
517 vm_map_entry_kreserve(int count)
518 {
519 	struct globaldata *gd = mycpu;
520 
521 	crit_enter();
522 	gd->gd_vme_avail -= count;
523 	crit_exit();
524 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
525 	return(count);
526 }
527 
528 /*
529  *	vm_map_entry_krelease:
530  *
531  *	Release previously reserved map entries for kernel_map.  We do not
532  *	attempt to clean up like the normal release function as this would
533  *	cause an unnecessary (but probably not fatal) deep procedure call.
534  */
535 void
536 vm_map_entry_krelease(int count)
537 {
538 	struct globaldata *gd = mycpu;
539 
540 	crit_enter();
541 	gd->gd_vme_avail += count;
542 	crit_exit();
543 }
544 
545 /*
546  *	vm_map_entry_create:	[ internal use only ]
547  *
548  *	Allocates a VM map entry for insertion.  No entry fields are filled
549  *	in.
550  *
551  *	This routine may be called from an interrupt thread but not a FAST
552  *	interrupt.  This routine may recurse the map lock.
553  */
554 static vm_map_entry_t
555 vm_map_entry_create(vm_map_t map, int *countp)
556 {
557 	struct globaldata *gd = mycpu;
558 	vm_map_entry_t entry;
559 
560 	KKASSERT(*countp > 0);
561 	--*countp;
562 	crit_enter();
563 	entry = gd->gd_vme_base;
564 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
565 	gd->gd_vme_base = entry->next;
566 	crit_exit();
567 	return(entry);
568 }
569 
570 /*
571  *	vm_map_entry_dispose:	[ internal use only ]
572  *
573  *	Dispose of a vm_map_entry that is no longer being referenced.  This
574  *	function may be called from an interrupt.
575  */
576 static void
577 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
578 {
579 	struct globaldata *gd = mycpu;
580 
581 	KKASSERT(map->hint != entry);
582 	KKASSERT(map->first_free != entry);
583 
584 	++*countp;
585 	crit_enter();
586 	entry->next = gd->gd_vme_base;
587 	gd->gd_vme_base = entry;
588 	crit_exit();
589 }
590 
591 
592 /*
593  *	vm_map_entry_{un,}link:
594  *
595  *	Insert/remove entries from maps.
596  */
597 static __inline void
598 vm_map_entry_link(vm_map_t map,
599 		  vm_map_entry_t after_where,
600 		  vm_map_entry_t entry)
601 {
602 	map->nentries++;
603 	entry->prev = after_where;
604 	entry->next = after_where->next;
605 	entry->next->prev = entry;
606 	after_where->next = entry;
607 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
608 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
609 }
610 
611 static __inline void
612 vm_map_entry_unlink(vm_map_t map,
613 		    vm_map_entry_t entry)
614 {
615 	vm_map_entry_t prev;
616 	vm_map_entry_t next;
617 
618 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
619 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
620 	prev = entry->prev;
621 	next = entry->next;
622 	next->prev = prev;
623 	prev->next = next;
624 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
625 	map->nentries--;
626 }
627 
628 /*
629  *	vm_map_lookup_entry:	[ internal use only ]
630  *
631  *	Finds the map entry containing (or
632  *	immediately preceding) the specified address
633  *	in the given map; the entry is returned
634  *	in the "entry" parameter.  The boolean
635  *	result indicates whether the address is
636  *	actually contained in the map.
637  */
638 boolean_t
639 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
640     vm_map_entry_t *entry /* OUT */)
641 {
642 	vm_map_entry_t tmp;
643 	vm_map_entry_t last;
644 
645 #if 0
646 	/*
647 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
648 	 * the hint code with the red-black lookup meets with system crashes
649 	 * and lockups.  We do not yet know why.
650 	 *
651 	 * It is possible that the problem is related to the setting
652 	 * of the hint during map_entry deletion, in the code specified
653 	 * at the GGG comment later on in this file.
654 	 */
655 	/*
656 	 * Quickly check the cached hint, there's a good chance of a match.
657 	 */
658 	if (map->hint != &map->header) {
659 		tmp = map->hint;
660 		if (address >= tmp->start && address < tmp->end) {
661 			*entry = tmp;
662 			return(TRUE);
663 		}
664 	}
665 #endif
666 
667 	/*
668 	 * Locate the record from the top of the tree.  'last' tracks the
669 	 * closest prior record and is returned if no match is found, which
670 	 * in binary tree terms means tracking the most recent right-branch
671 	 * taken.  If there is no prior record, &map->header is returned.
672 	 */
673 	last = &map->header;
674 	tmp = RB_ROOT(&map->rb_root);
675 
676 	while (tmp) {
677 		if (address >= tmp->start) {
678 			if (address < tmp->end) {
679 				*entry = tmp;
680 				map->hint = tmp;
681 				return(TRUE);
682 			}
683 			last = tmp;
684 			tmp = RB_RIGHT(tmp, rb_entry);
685 		} else {
686 			tmp = RB_LEFT(tmp, rb_entry);
687 		}
688 	}
689 	*entry = last;
690 	return (FALSE);
691 }
692 
693 /*
694  *	vm_map_insert:
695  *
696  *	Inserts the given whole VM object into the target
697  *	map at the specified address range.  The object's
698  *	size should match that of the address range.
699  *
700  *	Requires that the map be locked, and leaves it so.  Requires that
701  *	sufficient vm_map_entry structures have been reserved and tracks
702  *	the use via countp.
703  *
704  *	If object is non-NULL, ref count must be bumped by caller
705  *	prior to making call to account for the new entry.
706  */
707 int
708 vm_map_insert(vm_map_t map, int *countp,
709 	      vm_object_t object, vm_ooffset_t offset,
710 	      vm_offset_t start, vm_offset_t end,
711 	      vm_maptype_t maptype,
712 	      vm_prot_t prot, vm_prot_t max,
713 	      int cow)
714 {
715 	vm_map_entry_t new_entry;
716 	vm_map_entry_t prev_entry;
717 	vm_map_entry_t temp_entry;
718 	vm_eflags_t protoeflags;
719 
720 	/*
721 	 * Check that the start and end points are not bogus.
722 	 */
723 
724 	if ((start < map->min_offset) || (end > map->max_offset) ||
725 	    (start >= end))
726 		return (KERN_INVALID_ADDRESS);
727 
728 	/*
729 	 * Find the entry prior to the proposed starting address; if it's part
730 	 * of an existing entry, this range is bogus.
731 	 */
732 
733 	if (vm_map_lookup_entry(map, start, &temp_entry))
734 		return (KERN_NO_SPACE);
735 
736 	prev_entry = temp_entry;
737 
738 	/*
739 	 * Assert that the next entry doesn't overlap the end point.
740 	 */
741 
742 	if ((prev_entry->next != &map->header) &&
743 	    (prev_entry->next->start < end))
744 		return (KERN_NO_SPACE);
745 
746 	protoeflags = 0;
747 
748 	if (cow & MAP_COPY_ON_WRITE)
749 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
750 
751 	if (cow & MAP_NOFAULT) {
752 		protoeflags |= MAP_ENTRY_NOFAULT;
753 
754 		KASSERT(object == NULL,
755 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
756 	}
757 	if (cow & MAP_DISABLE_SYNCER)
758 		protoeflags |= MAP_ENTRY_NOSYNC;
759 	if (cow & MAP_DISABLE_COREDUMP)
760 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
761 
762 	if (object) {
763 		/*
764 		 * When object is non-NULL, it could be shared with another
765 		 * process.  We have to set or clear OBJ_ONEMAPPING
766 		 * appropriately.
767 		 */
768 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
769 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
770 		}
771 	}
772 	else if ((prev_entry != &map->header) &&
773 		 (prev_entry->eflags == protoeflags) &&
774 		 (prev_entry->end == start) &&
775 		 (prev_entry->wired_count == 0) &&
776 		 prev_entry->maptype == maptype &&
777 		 ((prev_entry->object.vm_object == NULL) ||
778 		  vm_object_coalesce(prev_entry->object.vm_object,
779 				     OFF_TO_IDX(prev_entry->offset),
780 				     (vm_size_t)(prev_entry->end - prev_entry->start),
781 				     (vm_size_t)(end - prev_entry->end)))) {
782 		/*
783 		 * We were able to extend the object.  Determine if we
784 		 * can extend the previous map entry to include the
785 		 * new range as well.
786 		 */
787 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
788 		    (prev_entry->protection == prot) &&
789 		    (prev_entry->max_protection == max)) {
790 			map->size += (end - prev_entry->end);
791 			prev_entry->end = end;
792 			vm_map_simplify_entry(map, prev_entry, countp);
793 			return (KERN_SUCCESS);
794 		}
795 
796 		/*
797 		 * If we can extend the object but cannot extend the
798 		 * map entry, we have to create a new map entry.  We
799 		 * must bump the ref count on the extended object to
800 		 * account for it.  object may be NULL.
801 		 */
802 		object = prev_entry->object.vm_object;
803 		offset = prev_entry->offset +
804 			(prev_entry->end - prev_entry->start);
805 		vm_object_reference(object);
806 	}
807 
808 	/*
809 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
810 	 * in things like the buffer map where we manage kva but do not manage
811 	 * backing objects.
812 	 */
813 
814 	/*
815 	 * Create a new entry
816 	 */
817 
818 	new_entry = vm_map_entry_create(map, countp);
819 	new_entry->start = start;
820 	new_entry->end = end;
821 
822 	new_entry->maptype = maptype;
823 	new_entry->eflags = protoeflags;
824 	new_entry->object.vm_object = object;
825 	new_entry->offset = offset;
826 	new_entry->aux.master_pde = 0;
827 
828 	new_entry->inheritance = VM_INHERIT_DEFAULT;
829 	new_entry->protection = prot;
830 	new_entry->max_protection = max;
831 	new_entry->wired_count = 0;
832 
833 	/*
834 	 * Insert the new entry into the list
835 	 */
836 
837 	vm_map_entry_link(map, prev_entry, new_entry);
838 	map->size += new_entry->end - new_entry->start;
839 
840 	/*
841 	 * Update the free space hint
842 	 */
843 	if ((map->first_free == prev_entry) &&
844 	    (prev_entry->end >= new_entry->start)) {
845 		map->first_free = new_entry;
846 	}
847 
848 #if 0
849 	/*
850 	 * Temporarily removed to avoid MAP_STACK panic, due to
851 	 * MAP_STACK being a huge hack.  Will be added back in
852 	 * when MAP_STACK (and the user stack mapping) is fixed.
853 	 */
854 	/*
855 	 * It may be possible to simplify the entry
856 	 */
857 	vm_map_simplify_entry(map, new_entry, countp);
858 #endif
859 
860 	/*
861 	 * Try to pre-populate the page table.  Mappings governed by virtual
862 	 * page tables cannot be prepopulated without a lot of work, so
863 	 * don't try.
864 	 */
865 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
866 	    maptype != VM_MAPTYPE_VPAGETABLE) {
867 		pmap_object_init_pt(map->pmap, start, prot,
868 				    object, OFF_TO_IDX(offset), end - start,
869 				    cow & MAP_PREFAULT_PARTIAL);
870 	}
871 
872 	return (KERN_SUCCESS);
873 }
874 
875 /*
876  * Find sufficient space for `length' bytes in the given map, starting at
877  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
878  *
879  * This function will returned an arbitrarily aligned pointer.  If no
880  * particular alignment is required you should pass align as 1.  Note that
881  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
882  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
883  * argument.
884  *
885  * 'align' should be a power of 2 but is not required to be.
886  */
887 int
888 vm_map_findspace(
889 	vm_map_t map,
890 	vm_offset_t start,
891 	vm_size_t length,
892 	vm_offset_t align,
893 	vm_offset_t *addr)
894 {
895 	vm_map_entry_t entry, next;
896 	vm_offset_t end;
897 	vm_offset_t align_mask;
898 
899 	if (start < map->min_offset)
900 		start = map->min_offset;
901 	if (start > map->max_offset)
902 		return (1);
903 
904 	/*
905 	 * If the alignment is not a power of 2 we will have to use
906 	 * a mod/division, set align_mask to a special value.
907 	 */
908 	if ((align | (align - 1)) + 1 != (align << 1))
909 		align_mask = (vm_offset_t)-1;
910 	else
911 		align_mask = align - 1;
912 
913 retry:
914 	/*
915 	 * Look for the first possible address; if there's already something
916 	 * at this address, we have to start after it.
917 	 */
918 	if (start == map->min_offset) {
919 		if ((entry = map->first_free) != &map->header)
920 			start = entry->end;
921 	} else {
922 		vm_map_entry_t tmp;
923 
924 		if (vm_map_lookup_entry(map, start, &tmp))
925 			start = tmp->end;
926 		entry = tmp;
927 	}
928 
929 	/*
930 	 * Look through the rest of the map, trying to fit a new region in the
931 	 * gap between existing regions, or after the very last region.
932 	 */
933 	for (;; start = (entry = next)->end) {
934 		/*
935 		 * Adjust the proposed start by the requested alignment,
936 		 * be sure that we didn't wrap the address.
937 		 */
938 		if (align_mask == (vm_offset_t)-1)
939 			end = ((start + align - 1) / align) * align;
940 		else
941 			end = (start + align_mask) & ~align_mask;
942 		if (end < start)
943 			return (1);
944 		start = end;
945 		/*
946 		 * Find the end of the proposed new region.  Be sure we didn't
947 		 * go beyond the end of the map, or wrap around the address.
948 		 * Then check to see if this is the last entry or if the
949 		 * proposed end fits in the gap between this and the next
950 		 * entry.
951 		 */
952 		end = start + length;
953 		if (end > map->max_offset || end < start)
954 			return (1);
955 		next = entry->next;
956 		if (next == &map->header || next->start >= end)
957 			break;
958 	}
959 	map->hint = entry;
960 	if (map == kernel_map) {
961 		vm_offset_t ksize;
962 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
963 			pmap_growkernel(ksize);
964 			goto retry;
965 		}
966 	}
967 	*addr = start;
968 	return (0);
969 }
970 
971 /*
972  *	vm_map_find finds an unallocated region in the target address
973  *	map with the given length.  The search is defined to be
974  *	first-fit from the specified address; the region found is
975  *	returned in the same parameter.
976  *
977  *	If object is non-NULL, ref count must be bumped by caller
978  *	prior to making call to account for the new entry.
979  */
980 int
981 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
982 	    vm_offset_t *addr,	vm_size_t length,
983 	    boolean_t find_space,
984 	    vm_maptype_t maptype,
985 	    vm_prot_t prot, vm_prot_t max,
986 	    int cow)
987 {
988 	vm_offset_t start;
989 	int result;
990 	int count;
991 
992 	start = *addr;
993 
994 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
995 	vm_map_lock(map);
996 	if (find_space) {
997 		if (vm_map_findspace(map, start, length, 1, addr)) {
998 			vm_map_unlock(map);
999 			vm_map_entry_release(count);
1000 			return (KERN_NO_SPACE);
1001 		}
1002 		start = *addr;
1003 	}
1004 	result = vm_map_insert(map, &count, object, offset,
1005 			       start, start + length,
1006 			       maptype,
1007 			       prot, max,
1008 			       cow);
1009 	vm_map_unlock(map);
1010 	vm_map_entry_release(count);
1011 
1012 	return (result);
1013 }
1014 
1015 /*
1016  *	vm_map_simplify_entry:
1017  *
1018  *	Simplify the given map entry by merging with either neighbor.  This
1019  *	routine also has the ability to merge with both neighbors.
1020  *
1021  *	The map must be locked.
1022  *
1023  *	This routine guarentees that the passed entry remains valid (though
1024  *	possibly extended).  When merging, this routine may delete one or
1025  *	both neighbors.  No action is taken on entries which have their
1026  *	in-transition flag set.
1027  */
1028 void
1029 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1030 {
1031 	vm_map_entry_t next, prev;
1032 	vm_size_t prevsize, esize;
1033 
1034 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1035 		++mycpu->gd_cnt.v_intrans_coll;
1036 		return;
1037 	}
1038 
1039 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1040 		return;
1041 
1042 	prev = entry->prev;
1043 	if (prev != &map->header) {
1044 		prevsize = prev->end - prev->start;
1045 		if ( (prev->end == entry->start) &&
1046 		     (prev->maptype == entry->maptype) &&
1047 		     (prev->object.vm_object == entry->object.vm_object) &&
1048 		     (!prev->object.vm_object ||
1049 			(prev->offset + prevsize == entry->offset)) &&
1050 		     (prev->eflags == entry->eflags) &&
1051 		     (prev->protection == entry->protection) &&
1052 		     (prev->max_protection == entry->max_protection) &&
1053 		     (prev->inheritance == entry->inheritance) &&
1054 		     (prev->wired_count == entry->wired_count)) {
1055 			if (map->first_free == prev)
1056 				map->first_free = entry;
1057 			if (map->hint == prev)
1058 				map->hint = entry;
1059 			vm_map_entry_unlink(map, prev);
1060 			entry->start = prev->start;
1061 			entry->offset = prev->offset;
1062 			if (prev->object.vm_object)
1063 				vm_object_deallocate(prev->object.vm_object);
1064 			vm_map_entry_dispose(map, prev, countp);
1065 		}
1066 	}
1067 
1068 	next = entry->next;
1069 	if (next != &map->header) {
1070 		esize = entry->end - entry->start;
1071 		if ((entry->end == next->start) &&
1072 		    (next->maptype == entry->maptype) &&
1073 		    (next->object.vm_object == entry->object.vm_object) &&
1074 		     (!entry->object.vm_object ||
1075 			(entry->offset + esize == next->offset)) &&
1076 		    (next->eflags == entry->eflags) &&
1077 		    (next->protection == entry->protection) &&
1078 		    (next->max_protection == entry->max_protection) &&
1079 		    (next->inheritance == entry->inheritance) &&
1080 		    (next->wired_count == entry->wired_count)) {
1081 			if (map->first_free == next)
1082 				map->first_free = entry;
1083 			if (map->hint == next)
1084 				map->hint = entry;
1085 			vm_map_entry_unlink(map, next);
1086 			entry->end = next->end;
1087 			if (next->object.vm_object)
1088 				vm_object_deallocate(next->object.vm_object);
1089 			vm_map_entry_dispose(map, next, countp);
1090 	        }
1091 	}
1092 }
1093 /*
1094  *	vm_map_clip_start:	[ internal use only ]
1095  *
1096  *	Asserts that the given entry begins at or after
1097  *	the specified address; if necessary,
1098  *	it splits the entry into two.
1099  */
1100 #define vm_map_clip_start(map, entry, startaddr, countp) \
1101 { \
1102 	if (startaddr > entry->start) \
1103 		_vm_map_clip_start(map, entry, startaddr, countp); \
1104 }
1105 
1106 /*
1107  *	This routine is called only when it is known that
1108  *	the entry must be split.
1109  */
1110 static void
1111 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1112 {
1113 	vm_map_entry_t new_entry;
1114 
1115 	/*
1116 	 * Split off the front portion -- note that we must insert the new
1117 	 * entry BEFORE this one, so that this entry has the specified
1118 	 * starting address.
1119 	 */
1120 
1121 	vm_map_simplify_entry(map, entry, countp);
1122 
1123 	/*
1124 	 * If there is no object backing this entry, we might as well create
1125 	 * one now.  If we defer it, an object can get created after the map
1126 	 * is clipped, and individual objects will be created for the split-up
1127 	 * map.  This is a bit of a hack, but is also about the best place to
1128 	 * put this improvement.
1129 	 */
1130 	if (entry->object.vm_object == NULL && !map->system_map) {
1131 		vm_map_entry_allocate_object(entry);
1132 	}
1133 
1134 	new_entry = vm_map_entry_create(map, countp);
1135 	*new_entry = *entry;
1136 
1137 	new_entry->end = start;
1138 	entry->offset += (start - entry->start);
1139 	entry->start = start;
1140 
1141 	vm_map_entry_link(map, entry->prev, new_entry);
1142 
1143 	switch(entry->maptype) {
1144 	case VM_MAPTYPE_NORMAL:
1145 	case VM_MAPTYPE_VPAGETABLE:
1146 		vm_object_reference(new_entry->object.vm_object);
1147 		break;
1148 	default:
1149 		break;
1150 	}
1151 }
1152 
1153 /*
1154  *	vm_map_clip_end:	[ internal use only ]
1155  *
1156  *	Asserts that the given entry ends at or before
1157  *	the specified address; if necessary,
1158  *	it splits the entry into two.
1159  */
1160 
1161 #define vm_map_clip_end(map, entry, endaddr, countp) \
1162 { \
1163 	if (endaddr < entry->end) \
1164 		_vm_map_clip_end(map, entry, endaddr, countp); \
1165 }
1166 
1167 /*
1168  *	This routine is called only when it is known that
1169  *	the entry must be split.
1170  */
1171 static void
1172 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1173 {
1174 	vm_map_entry_t new_entry;
1175 
1176 	/*
1177 	 * If there is no object backing this entry, we might as well create
1178 	 * one now.  If we defer it, an object can get created after the map
1179 	 * is clipped, and individual objects will be created for the split-up
1180 	 * map.  This is a bit of a hack, but is also about the best place to
1181 	 * put this improvement.
1182 	 */
1183 
1184 	if (entry->object.vm_object == NULL && !map->system_map) {
1185 		vm_map_entry_allocate_object(entry);
1186 	}
1187 
1188 	/*
1189 	 * Create a new entry and insert it AFTER the specified entry
1190 	 */
1191 
1192 	new_entry = vm_map_entry_create(map, countp);
1193 	*new_entry = *entry;
1194 
1195 	new_entry->start = entry->end = end;
1196 	new_entry->offset += (end - entry->start);
1197 
1198 	vm_map_entry_link(map, entry, new_entry);
1199 
1200 	switch(entry->maptype) {
1201 	case VM_MAPTYPE_NORMAL:
1202 	case VM_MAPTYPE_VPAGETABLE:
1203 		vm_object_reference(new_entry->object.vm_object);
1204 		break;
1205 	default:
1206 		break;
1207 	}
1208 }
1209 
1210 /*
1211  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1212  *
1213  *	Asserts that the starting and ending region
1214  *	addresses fall within the valid range of the map.
1215  */
1216 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1217 		{					\
1218 		if (start < vm_map_min(map))		\
1219 			start = vm_map_min(map);	\
1220 		if (end > vm_map_max(map))		\
1221 			end = vm_map_max(map);		\
1222 		if (start > end)			\
1223 			start = end;			\
1224 		}
1225 
1226 /*
1227  *	vm_map_transition_wait:	[ kernel use only ]
1228  *
1229  *	Used to block when an in-transition collison occurs.  The map
1230  *	is unlocked for the sleep and relocked before the return.
1231  */
1232 static
1233 void
1234 vm_map_transition_wait(vm_map_t map)
1235 {
1236 	vm_map_unlock(map);
1237 	tsleep(map, 0, "vment", 0);
1238 	vm_map_lock(map);
1239 }
1240 
1241 /*
1242  * CLIP_CHECK_BACK
1243  * CLIP_CHECK_FWD
1244  *
1245  *	When we do blocking operations with the map lock held it is
1246  *	possible that a clip might have occured on our in-transit entry,
1247  *	requiring an adjustment to the entry in our loop.  These macros
1248  *	help the pageable and clip_range code deal with the case.  The
1249  *	conditional costs virtually nothing if no clipping has occured.
1250  */
1251 
1252 #define CLIP_CHECK_BACK(entry, save_start)		\
1253     do {						\
1254 	    while (entry->start != save_start) {	\
1255 		    entry = entry->prev;		\
1256 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1257 	    }						\
1258     } while(0)
1259 
1260 #define CLIP_CHECK_FWD(entry, save_end)			\
1261     do {						\
1262 	    while (entry->end != save_end) {		\
1263 		    entry = entry->next;		\
1264 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1265 	    }						\
1266     } while(0)
1267 
1268 
1269 /*
1270  *	vm_map_clip_range:	[ kernel use only ]
1271  *
1272  *	Clip the specified range and return the base entry.  The
1273  *	range may cover several entries starting at the returned base
1274  *	and the first and last entry in the covering sequence will be
1275  *	properly clipped to the requested start and end address.
1276  *
1277  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1278  *	flag.
1279  *
1280  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1281  *	covered by the requested range.
1282  *
1283  *	The map must be exclusively locked on entry and will remain locked
1284  *	on return. If no range exists or the range contains holes and you
1285  *	specified that no holes were allowed, NULL will be returned.  This
1286  *	routine may temporarily unlock the map in order avoid a deadlock when
1287  *	sleeping.
1288  */
1289 static
1290 vm_map_entry_t
1291 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1292 	int *countp, int flags)
1293 {
1294 	vm_map_entry_t start_entry;
1295 	vm_map_entry_t entry;
1296 
1297 	/*
1298 	 * Locate the entry and effect initial clipping.  The in-transition
1299 	 * case does not occur very often so do not try to optimize it.
1300 	 */
1301 again:
1302 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1303 		return (NULL);
1304 	entry = start_entry;
1305 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1306 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1307 		++mycpu->gd_cnt.v_intrans_coll;
1308 		++mycpu->gd_cnt.v_intrans_wait;
1309 		vm_map_transition_wait(map);
1310 		/*
1311 		 * entry and/or start_entry may have been clipped while
1312 		 * we slept, or may have gone away entirely.  We have
1313 		 * to restart from the lookup.
1314 		 */
1315 		goto again;
1316 	}
1317 	/*
1318 	 * Since we hold an exclusive map lock we do not have to restart
1319 	 * after clipping, even though clipping may block in zalloc.
1320 	 */
1321 	vm_map_clip_start(map, entry, start, countp);
1322 	vm_map_clip_end(map, entry, end, countp);
1323 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1324 
1325 	/*
1326 	 * Scan entries covered by the range.  When working on the next
1327 	 * entry a restart need only re-loop on the current entry which
1328 	 * we have already locked, since 'next' may have changed.  Also,
1329 	 * even though entry is safe, it may have been clipped so we
1330 	 * have to iterate forwards through the clip after sleeping.
1331 	 */
1332 	while (entry->next != &map->header && entry->next->start < end) {
1333 		vm_map_entry_t next = entry->next;
1334 
1335 		if (flags & MAP_CLIP_NO_HOLES) {
1336 			if (next->start > entry->end) {
1337 				vm_map_unclip_range(map, start_entry,
1338 					start, entry->end, countp, flags);
1339 				return(NULL);
1340 			}
1341 		}
1342 
1343 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1344 			vm_offset_t save_end = entry->end;
1345 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1346 			++mycpu->gd_cnt.v_intrans_coll;
1347 			++mycpu->gd_cnt.v_intrans_wait;
1348 			vm_map_transition_wait(map);
1349 
1350 			/*
1351 			 * clips might have occured while we blocked.
1352 			 */
1353 			CLIP_CHECK_FWD(entry, save_end);
1354 			CLIP_CHECK_BACK(start_entry, start);
1355 			continue;
1356 		}
1357 		/*
1358 		 * No restart necessary even though clip_end may block, we
1359 		 * are holding the map lock.
1360 		 */
1361 		vm_map_clip_end(map, next, end, countp);
1362 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1363 		entry = next;
1364 	}
1365 	if (flags & MAP_CLIP_NO_HOLES) {
1366 		if (entry->end != end) {
1367 			vm_map_unclip_range(map, start_entry,
1368 				start, entry->end, countp, flags);
1369 			return(NULL);
1370 		}
1371 	}
1372 	return(start_entry);
1373 }
1374 
1375 /*
1376  *	vm_map_unclip_range:	[ kernel use only ]
1377  *
1378  *	Undo the effect of vm_map_clip_range().  You should pass the same
1379  *	flags and the same range that you passed to vm_map_clip_range().
1380  *	This code will clear the in-transition flag on the entries and
1381  *	wake up anyone waiting.  This code will also simplify the sequence
1382  *	and attempt to merge it with entries before and after the sequence.
1383  *
1384  *	The map must be locked on entry and will remain locked on return.
1385  *
1386  *	Note that you should also pass the start_entry returned by
1387  *	vm_map_clip_range().  However, if you block between the two calls
1388  *	with the map unlocked please be aware that the start_entry may
1389  *	have been clipped and you may need to scan it backwards to find
1390  *	the entry corresponding with the original start address.  You are
1391  *	responsible for this, vm_map_unclip_range() expects the correct
1392  *	start_entry to be passed to it and will KASSERT otherwise.
1393  */
1394 static
1395 void
1396 vm_map_unclip_range(
1397 	vm_map_t map,
1398 	vm_map_entry_t start_entry,
1399 	vm_offset_t start,
1400 	vm_offset_t end,
1401 	int *countp,
1402 	int flags)
1403 {
1404 	vm_map_entry_t entry;
1405 
1406 	entry = start_entry;
1407 
1408 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1409 	while (entry != &map->header && entry->start < end) {
1410 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1411 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1412 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1413 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1414 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1415 			wakeup(map);
1416 		}
1417 		entry = entry->next;
1418 	}
1419 
1420 	/*
1421 	 * Simplification does not block so there is no restart case.
1422 	 */
1423 	entry = start_entry;
1424 	while (entry != &map->header && entry->start < end) {
1425 		vm_map_simplify_entry(map, entry, countp);
1426 		entry = entry->next;
1427 	}
1428 }
1429 
1430 /*
1431  *	vm_map_submap:		[ kernel use only ]
1432  *
1433  *	Mark the given range as handled by a subordinate map.
1434  *
1435  *	This range must have been created with vm_map_find,
1436  *	and no other operations may have been performed on this
1437  *	range prior to calling vm_map_submap.
1438  *
1439  *	Only a limited number of operations can be performed
1440  *	within this rage after calling vm_map_submap:
1441  *		vm_fault
1442  *	[Don't try vm_map_copy!]
1443  *
1444  *	To remove a submapping, one must first remove the
1445  *	range from the superior map, and then destroy the
1446  *	submap (if desired).  [Better yet, don't try it.]
1447  */
1448 int
1449 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1450 {
1451 	vm_map_entry_t entry;
1452 	int result = KERN_INVALID_ARGUMENT;
1453 	int count;
1454 
1455 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1456 	vm_map_lock(map);
1457 
1458 	VM_MAP_RANGE_CHECK(map, start, end);
1459 
1460 	if (vm_map_lookup_entry(map, start, &entry)) {
1461 		vm_map_clip_start(map, entry, start, &count);
1462 	} else {
1463 		entry = entry->next;
1464 	}
1465 
1466 	vm_map_clip_end(map, entry, end, &count);
1467 
1468 	if ((entry->start == start) && (entry->end == end) &&
1469 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1470 	    (entry->object.vm_object == NULL)) {
1471 		entry->object.sub_map = submap;
1472 		entry->maptype = VM_MAPTYPE_SUBMAP;
1473 		result = KERN_SUCCESS;
1474 	}
1475 	vm_map_unlock(map);
1476 	vm_map_entry_release(count);
1477 
1478 	return (result);
1479 }
1480 
1481 /*
1482  * vm_map_protect:
1483  *
1484  * Sets the protection of the specified address region in the target map.
1485  * If "set_max" is specified, the maximum protection is to be set;
1486  * otherwise, only the current protection is affected.
1487  *
1488  * The protection is not applicable to submaps, but is applicable to normal
1489  * maps and maps governed by virtual page tables.  For example, when operating
1490  * on a virtual page table our protection basically controls how COW occurs
1491  * on the backing object, whereas the virtual page table abstraction itself
1492  * is an abstraction for userland.
1493  */
1494 int
1495 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1496 	       vm_prot_t new_prot, boolean_t set_max)
1497 {
1498 	vm_map_entry_t current;
1499 	vm_map_entry_t entry;
1500 	int count;
1501 
1502 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1503 	vm_map_lock(map);
1504 
1505 	VM_MAP_RANGE_CHECK(map, start, end);
1506 
1507 	if (vm_map_lookup_entry(map, start, &entry)) {
1508 		vm_map_clip_start(map, entry, start, &count);
1509 	} else {
1510 		entry = entry->next;
1511 	}
1512 
1513 	/*
1514 	 * Make a first pass to check for protection violations.
1515 	 */
1516 	current = entry;
1517 	while ((current != &map->header) && (current->start < end)) {
1518 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1519 			vm_map_unlock(map);
1520 			vm_map_entry_release(count);
1521 			return (KERN_INVALID_ARGUMENT);
1522 		}
1523 		if ((new_prot & current->max_protection) != new_prot) {
1524 			vm_map_unlock(map);
1525 			vm_map_entry_release(count);
1526 			return (KERN_PROTECTION_FAILURE);
1527 		}
1528 		current = current->next;
1529 	}
1530 
1531 	/*
1532 	 * Go back and fix up protections. [Note that clipping is not
1533 	 * necessary the second time.]
1534 	 */
1535 	current = entry;
1536 
1537 	while ((current != &map->header) && (current->start < end)) {
1538 		vm_prot_t old_prot;
1539 
1540 		vm_map_clip_end(map, current, end, &count);
1541 
1542 		old_prot = current->protection;
1543 		if (set_max) {
1544 			current->protection =
1545 			    (current->max_protection = new_prot) &
1546 			    old_prot;
1547 		} else {
1548 			current->protection = new_prot;
1549 		}
1550 
1551 		/*
1552 		 * Update physical map if necessary. Worry about copy-on-write
1553 		 * here -- CHECK THIS XXX
1554 		 */
1555 
1556 		if (current->protection != old_prot) {
1557 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1558 							VM_PROT_ALL)
1559 
1560 			pmap_protect(map->pmap, current->start,
1561 			    current->end,
1562 			    current->protection & MASK(current));
1563 #undef	MASK
1564 		}
1565 
1566 		vm_map_simplify_entry(map, current, &count);
1567 
1568 		current = current->next;
1569 	}
1570 
1571 	vm_map_unlock(map);
1572 	vm_map_entry_release(count);
1573 	return (KERN_SUCCESS);
1574 }
1575 
1576 /*
1577  *	vm_map_madvise:
1578  *
1579  * 	This routine traverses a processes map handling the madvise
1580  *	system call.  Advisories are classified as either those effecting
1581  *	the vm_map_entry structure, or those effecting the underlying
1582  *	objects.
1583  *
1584  *	The <value> argument is used for extended madvise calls.
1585  */
1586 int
1587 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1588 	       int behav, off_t value)
1589 {
1590 	vm_map_entry_t current, entry;
1591 	int modify_map = 0;
1592 	int error = 0;
1593 	int count;
1594 
1595 	/*
1596 	 * Some madvise calls directly modify the vm_map_entry, in which case
1597 	 * we need to use an exclusive lock on the map and we need to perform
1598 	 * various clipping operations.  Otherwise we only need a read-lock
1599 	 * on the map.
1600 	 */
1601 
1602 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1603 
1604 	switch(behav) {
1605 	case MADV_NORMAL:
1606 	case MADV_SEQUENTIAL:
1607 	case MADV_RANDOM:
1608 	case MADV_NOSYNC:
1609 	case MADV_AUTOSYNC:
1610 	case MADV_NOCORE:
1611 	case MADV_CORE:
1612 	case MADV_SETMAP:
1613 	case MADV_INVAL:
1614 		modify_map = 1;
1615 		vm_map_lock(map);
1616 		break;
1617 	case MADV_WILLNEED:
1618 	case MADV_DONTNEED:
1619 	case MADV_FREE:
1620 		vm_map_lock_read(map);
1621 		break;
1622 	default:
1623 		vm_map_entry_release(count);
1624 		return (EINVAL);
1625 	}
1626 
1627 	/*
1628 	 * Locate starting entry and clip if necessary.
1629 	 */
1630 
1631 	VM_MAP_RANGE_CHECK(map, start, end);
1632 
1633 	if (vm_map_lookup_entry(map, start, &entry)) {
1634 		if (modify_map)
1635 			vm_map_clip_start(map, entry, start, &count);
1636 	} else {
1637 		entry = entry->next;
1638 	}
1639 
1640 	if (modify_map) {
1641 		/*
1642 		 * madvise behaviors that are implemented in the vm_map_entry.
1643 		 *
1644 		 * We clip the vm_map_entry so that behavioral changes are
1645 		 * limited to the specified address range.
1646 		 */
1647 		for (current = entry;
1648 		     (current != &map->header) && (current->start < end);
1649 		     current = current->next
1650 		) {
1651 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1652 				continue;
1653 
1654 			vm_map_clip_end(map, current, end, &count);
1655 
1656 			switch (behav) {
1657 			case MADV_NORMAL:
1658 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1659 				break;
1660 			case MADV_SEQUENTIAL:
1661 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1662 				break;
1663 			case MADV_RANDOM:
1664 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1665 				break;
1666 			case MADV_NOSYNC:
1667 				current->eflags |= MAP_ENTRY_NOSYNC;
1668 				break;
1669 			case MADV_AUTOSYNC:
1670 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1671 				break;
1672 			case MADV_NOCORE:
1673 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1674 				break;
1675 			case MADV_CORE:
1676 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1677 				break;
1678 			case MADV_INVAL:
1679 				/*
1680 				 * Invalidate the related pmap entries, used
1681 				 * to flush portions of the real kernel's
1682 				 * pmap when the caller has removed or
1683 				 * modified existing mappings in a virtual
1684 				 * page table.
1685 				 */
1686 				pmap_remove(map->pmap,
1687 					    current->start, current->end);
1688 				break;
1689 			case MADV_SETMAP:
1690 				/*
1691 				 * Set the page directory page for a map
1692 				 * governed by a virtual page table.  Mark
1693 				 * the entry as being governed by a virtual
1694 				 * page table if it is not.
1695 				 *
1696 				 * XXX the page directory page is stored
1697 				 * in the avail_ssize field if the map_entry.
1698 				 *
1699 				 * XXX the map simplification code does not
1700 				 * compare this field so weird things may
1701 				 * happen if you do not apply this function
1702 				 * to the entire mapping governed by the
1703 				 * virtual page table.
1704 				 */
1705 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1706 					error = EINVAL;
1707 					break;
1708 				}
1709 				current->aux.master_pde = value;
1710 				pmap_remove(map->pmap,
1711 					    current->start, current->end);
1712 				break;
1713 			default:
1714 				error = EINVAL;
1715 				break;
1716 			}
1717 			vm_map_simplify_entry(map, current, &count);
1718 		}
1719 		vm_map_unlock(map);
1720 	} else {
1721 		vm_pindex_t pindex;
1722 		int count;
1723 
1724 		/*
1725 		 * madvise behaviors that are implemented in the underlying
1726 		 * vm_object.
1727 		 *
1728 		 * Since we don't clip the vm_map_entry, we have to clip
1729 		 * the vm_object pindex and count.
1730 		 *
1731 		 * NOTE!  We currently do not support these functions on
1732 		 * virtual page tables.
1733 		 */
1734 		for (current = entry;
1735 		     (current != &map->header) && (current->start < end);
1736 		     current = current->next
1737 		) {
1738 			vm_offset_t useStart;
1739 
1740 			if (current->maptype != VM_MAPTYPE_NORMAL)
1741 				continue;
1742 
1743 			pindex = OFF_TO_IDX(current->offset);
1744 			count = atop(current->end - current->start);
1745 			useStart = current->start;
1746 
1747 			if (current->start < start) {
1748 				pindex += atop(start - current->start);
1749 				count -= atop(start - current->start);
1750 				useStart = start;
1751 			}
1752 			if (current->end > end)
1753 				count -= atop(current->end - end);
1754 
1755 			if (count <= 0)
1756 				continue;
1757 
1758 			vm_object_madvise(current->object.vm_object,
1759 					  pindex, count, behav);
1760 
1761 			/*
1762 			 * Try to populate the page table.  Mappings governed
1763 			 * by virtual page tables cannot be pre-populated
1764 			 * without a lot of work so don't try.
1765 			 */
1766 			if (behav == MADV_WILLNEED &&
1767 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1768 				pmap_object_init_pt(
1769 				    map->pmap,
1770 				    useStart,
1771 				    current->protection,
1772 				    current->object.vm_object,
1773 				    pindex,
1774 				    (count << PAGE_SHIFT),
1775 				    MAP_PREFAULT_MADVISE
1776 				);
1777 			}
1778 		}
1779 		vm_map_unlock_read(map);
1780 	}
1781 	vm_map_entry_release(count);
1782 	return(error);
1783 }
1784 
1785 
1786 /*
1787  *	vm_map_inherit:
1788  *
1789  *	Sets the inheritance of the specified address
1790  *	range in the target map.  Inheritance
1791  *	affects how the map will be shared with
1792  *	child maps at the time of vm_map_fork.
1793  */
1794 int
1795 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1796 	       vm_inherit_t new_inheritance)
1797 {
1798 	vm_map_entry_t entry;
1799 	vm_map_entry_t temp_entry;
1800 	int count;
1801 
1802 	switch (new_inheritance) {
1803 	case VM_INHERIT_NONE:
1804 	case VM_INHERIT_COPY:
1805 	case VM_INHERIT_SHARE:
1806 		break;
1807 	default:
1808 		return (KERN_INVALID_ARGUMENT);
1809 	}
1810 
1811 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1812 	vm_map_lock(map);
1813 
1814 	VM_MAP_RANGE_CHECK(map, start, end);
1815 
1816 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1817 		entry = temp_entry;
1818 		vm_map_clip_start(map, entry, start, &count);
1819 	} else
1820 		entry = temp_entry->next;
1821 
1822 	while ((entry != &map->header) && (entry->start < end)) {
1823 		vm_map_clip_end(map, entry, end, &count);
1824 
1825 		entry->inheritance = new_inheritance;
1826 
1827 		vm_map_simplify_entry(map, entry, &count);
1828 
1829 		entry = entry->next;
1830 	}
1831 	vm_map_unlock(map);
1832 	vm_map_entry_release(count);
1833 	return (KERN_SUCCESS);
1834 }
1835 
1836 /*
1837  * Implement the semantics of mlock
1838  */
1839 int
1840 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1841     boolean_t new_pageable)
1842 {
1843 	vm_map_entry_t entry;
1844 	vm_map_entry_t start_entry;
1845 	vm_offset_t end;
1846 	int rv = KERN_SUCCESS;
1847 	int count;
1848 
1849 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1850 	vm_map_lock(map);
1851 	VM_MAP_RANGE_CHECK(map, start, real_end);
1852 	end = real_end;
1853 
1854 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1855 	if (start_entry == NULL) {
1856 		vm_map_unlock(map);
1857 		vm_map_entry_release(count);
1858 		return (KERN_INVALID_ADDRESS);
1859 	}
1860 
1861 	if (new_pageable == 0) {
1862 		entry = start_entry;
1863 		while ((entry != &map->header) && (entry->start < end)) {
1864 			vm_offset_t save_start;
1865 			vm_offset_t save_end;
1866 
1867 			/*
1868 			 * Already user wired or hard wired (trivial cases)
1869 			 */
1870 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1871 				entry = entry->next;
1872 				continue;
1873 			}
1874 			if (entry->wired_count != 0) {
1875 				entry->wired_count++;
1876 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1877 				entry = entry->next;
1878 				continue;
1879 			}
1880 
1881 			/*
1882 			 * A new wiring requires instantiation of appropriate
1883 			 * management structures and the faulting in of the
1884 			 * page.
1885 			 */
1886 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1887 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1888 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1889 					vm_map_entry_shadow(entry);
1890 				} else if (entry->object.vm_object == NULL &&
1891 					   !map->system_map) {
1892 					vm_map_entry_allocate_object(entry);
1893 				}
1894 			}
1895 			entry->wired_count++;
1896 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1897 
1898 			/*
1899 			 * Now fault in the area.  Note that vm_fault_wire()
1900 			 * may release the map lock temporarily, it will be
1901 			 * relocked on return.  The in-transition
1902 			 * flag protects the entries.
1903 			 */
1904 			save_start = entry->start;
1905 			save_end = entry->end;
1906 			rv = vm_fault_wire(map, entry, TRUE);
1907 			if (rv) {
1908 				CLIP_CHECK_BACK(entry, save_start);
1909 				for (;;) {
1910 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1911 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1912 					entry->wired_count = 0;
1913 					if (entry->end == save_end)
1914 						break;
1915 					entry = entry->next;
1916 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1917 				}
1918 				end = save_start;	/* unwire the rest */
1919 				break;
1920 			}
1921 			/*
1922 			 * note that even though the entry might have been
1923 			 * clipped, the USER_WIRED flag we set prevents
1924 			 * duplication so we do not have to do a
1925 			 * clip check.
1926 			 */
1927 			entry = entry->next;
1928 		}
1929 
1930 		/*
1931 		 * If we failed fall through to the unwiring section to
1932 		 * unwire what we had wired so far.  'end' has already
1933 		 * been adjusted.
1934 		 */
1935 		if (rv)
1936 			new_pageable = 1;
1937 
1938 		/*
1939 		 * start_entry might have been clipped if we unlocked the
1940 		 * map and blocked.  No matter how clipped it has gotten
1941 		 * there should be a fragment that is on our start boundary.
1942 		 */
1943 		CLIP_CHECK_BACK(start_entry, start);
1944 	}
1945 
1946 	/*
1947 	 * Deal with the unwiring case.
1948 	 */
1949 	if (new_pageable) {
1950 		/*
1951 		 * This is the unwiring case.  We must first ensure that the
1952 		 * range to be unwired is really wired down.  We know there
1953 		 * are no holes.
1954 		 */
1955 		entry = start_entry;
1956 		while ((entry != &map->header) && (entry->start < end)) {
1957 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1958 				rv = KERN_INVALID_ARGUMENT;
1959 				goto done;
1960 			}
1961 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1962 			entry = entry->next;
1963 		}
1964 
1965 		/*
1966 		 * Now decrement the wiring count for each region. If a region
1967 		 * becomes completely unwired, unwire its physical pages and
1968 		 * mappings.
1969 		 */
1970 		/*
1971 		 * The map entries are processed in a loop, checking to
1972 		 * make sure the entry is wired and asserting it has a wired
1973 		 * count. However, another loop was inserted more-or-less in
1974 		 * the middle of the unwiring path. This loop picks up the
1975 		 * "entry" loop variable from the first loop without first
1976 		 * setting it to start_entry. Naturally, the secound loop
1977 		 * is never entered and the pages backing the entries are
1978 		 * never unwired. This can lead to a leak of wired pages.
1979 		 */
1980 		entry = start_entry;
1981 		while ((entry != &map->header) && (entry->start < end)) {
1982 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1983 				("expected USER_WIRED on entry %p", entry));
1984 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1985 			entry->wired_count--;
1986 			if (entry->wired_count == 0)
1987 				vm_fault_unwire(map, entry);
1988 			entry = entry->next;
1989 		}
1990 	}
1991 done:
1992 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1993 		MAP_CLIP_NO_HOLES);
1994 	map->timestamp++;
1995 	vm_map_unlock(map);
1996 	vm_map_entry_release(count);
1997 	return (rv);
1998 }
1999 
2000 /*
2001  *	vm_map_wire:
2002  *
2003  *	Sets the pageability of the specified address
2004  *	range in the target map.  Regions specified
2005  *	as not pageable require locked-down physical
2006  *	memory and physical page maps.
2007  *
2008  *	The map must not be locked, but a reference
2009  *	must remain to the map throughout the call.
2010  *
2011  *	This function may be called via the zalloc path and must properly
2012  *	reserve map entries for kernel_map.
2013  */
2014 int
2015 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2016 {
2017 	vm_map_entry_t entry;
2018 	vm_map_entry_t start_entry;
2019 	vm_offset_t end;
2020 	int rv = KERN_SUCCESS;
2021 	int count;
2022 
2023 	if (kmflags & KM_KRESERVE)
2024 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2025 	else
2026 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2027 	vm_map_lock(map);
2028 	VM_MAP_RANGE_CHECK(map, start, real_end);
2029 	end = real_end;
2030 
2031 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2032 	if (start_entry == NULL) {
2033 		vm_map_unlock(map);
2034 		rv = KERN_INVALID_ADDRESS;
2035 		goto failure;
2036 	}
2037 	if ((kmflags & KM_PAGEABLE) == 0) {
2038 		/*
2039 		 * Wiring.
2040 		 *
2041 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2042 		 * objects that need to be created. Then we clip each map
2043 		 * entry to the region to be wired and increment its wiring
2044 		 * count.  We create objects before clipping the map entries
2045 		 * to avoid object proliferation.
2046 		 *
2047 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2048 		 * fault in the pages for any newly wired area (wired_count is
2049 		 * 1).
2050 		 *
2051 		 * Downgrading to a read lock for vm_fault_wire avoids a
2052 		 * possible deadlock with another process that may have faulted
2053 		 * on one of the pages to be wired (it would mark the page busy,
2054 		 * blocking us, then in turn block on the map lock that we
2055 		 * hold).  Because of problems in the recursive lock package,
2056 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2057 		 * any actions that require the write lock must be done
2058 		 * beforehand.  Because we keep the read lock on the map, the
2059 		 * copy-on-write status of the entries we modify here cannot
2060 		 * change.
2061 		 */
2062 
2063 		entry = start_entry;
2064 		while ((entry != &map->header) && (entry->start < end)) {
2065 			/*
2066 			 * Trivial case if the entry is already wired
2067 			 */
2068 			if (entry->wired_count) {
2069 				entry->wired_count++;
2070 				entry = entry->next;
2071 				continue;
2072 			}
2073 
2074 			/*
2075 			 * The entry is being newly wired, we have to setup
2076 			 * appropriate management structures.  A shadow
2077 			 * object is required for a copy-on-write region,
2078 			 * or a normal object for a zero-fill region.  We
2079 			 * do not have to do this for entries that point to sub
2080 			 * maps because we won't hold the lock on the sub map.
2081 			 */
2082 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2083 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2084 				if (copyflag &&
2085 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2086 					vm_map_entry_shadow(entry);
2087 				} else if (entry->object.vm_object == NULL &&
2088 					   !map->system_map) {
2089 					vm_map_entry_allocate_object(entry);
2090 				}
2091 			}
2092 
2093 			entry->wired_count++;
2094 			entry = entry->next;
2095 		}
2096 
2097 		/*
2098 		 * Pass 2.
2099 		 */
2100 
2101 		/*
2102 		 * HACK HACK HACK HACK
2103 		 *
2104 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2105 		 * protects us from most changes but note that
2106 		 * clipping may still occur.  To prevent clipping from
2107 		 * occuring after the unlock, except for when we are
2108 		 * blocking in vm_fault_wire, we must run in a critical
2109 		 * section, otherwise our accesses to entry->start and
2110 		 * entry->end could be corrupted.  We have to enter the
2111 		 * critical section prior to unlocking so start_entry does
2112 		 * not change out from under us at the very beginning of the
2113 		 * loop.
2114 		 *
2115 		 * HACK HACK HACK HACK
2116 		 */
2117 
2118 		crit_enter();
2119 
2120 		entry = start_entry;
2121 		while (entry != &map->header && entry->start < end) {
2122 			/*
2123 			 * If vm_fault_wire fails for any page we need to undo
2124 			 * what has been done.  We decrement the wiring count
2125 			 * for those pages which have not yet been wired (now)
2126 			 * and unwire those that have (later).
2127 			 */
2128 			vm_offset_t save_start = entry->start;
2129 			vm_offset_t save_end = entry->end;
2130 
2131 			if (entry->wired_count == 1)
2132 				rv = vm_fault_wire(map, entry, FALSE);
2133 			if (rv) {
2134 				CLIP_CHECK_BACK(entry, save_start);
2135 				for (;;) {
2136 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2137 					entry->wired_count = 0;
2138 					if (entry->end == save_end)
2139 						break;
2140 					entry = entry->next;
2141 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2142 				}
2143 				end = save_start;
2144 				break;
2145 			}
2146 			CLIP_CHECK_FWD(entry, save_end);
2147 			entry = entry->next;
2148 		}
2149 		crit_exit();
2150 
2151 		/*
2152 		 * If a failure occured undo everything by falling through
2153 		 * to the unwiring code.  'end' has already been adjusted
2154 		 * appropriately.
2155 		 */
2156 		if (rv)
2157 			kmflags |= KM_PAGEABLE;
2158 
2159 		/*
2160 		 * start_entry is still IN_TRANSITION but may have been
2161 		 * clipped since vm_fault_wire() unlocks and relocks the
2162 		 * map.  No matter how clipped it has gotten there should
2163 		 * be a fragment that is on our start boundary.
2164 		 */
2165 		CLIP_CHECK_BACK(start_entry, start);
2166 	}
2167 
2168 	if (kmflags & KM_PAGEABLE) {
2169 		/*
2170 		 * This is the unwiring case.  We must first ensure that the
2171 		 * range to be unwired is really wired down.  We know there
2172 		 * are no holes.
2173 		 */
2174 		entry = start_entry;
2175 		while ((entry != &map->header) && (entry->start < end)) {
2176 			if (entry->wired_count == 0) {
2177 				rv = KERN_INVALID_ARGUMENT;
2178 				goto done;
2179 			}
2180 			entry = entry->next;
2181 		}
2182 
2183 		/*
2184 		 * Now decrement the wiring count for each region. If a region
2185 		 * becomes completely unwired, unwire its physical pages and
2186 		 * mappings.
2187 		 */
2188 		entry = start_entry;
2189 		while ((entry != &map->header) && (entry->start < end)) {
2190 			entry->wired_count--;
2191 			if (entry->wired_count == 0)
2192 				vm_fault_unwire(map, entry);
2193 			entry = entry->next;
2194 		}
2195 	}
2196 done:
2197 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2198 		MAP_CLIP_NO_HOLES);
2199 	map->timestamp++;
2200 	vm_map_unlock(map);
2201 failure:
2202 	if (kmflags & KM_KRESERVE)
2203 		vm_map_entry_krelease(count);
2204 	else
2205 		vm_map_entry_release(count);
2206 	return (rv);
2207 }
2208 
2209 /*
2210  * vm_map_set_wired_quick()
2211  *
2212  *	Mark a newly allocated address range as wired but do not fault in
2213  *	the pages.  The caller is expected to load the pages into the object.
2214  *
2215  *	The map must be locked on entry and will remain locked on return.
2216  */
2217 void
2218 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2219 {
2220 	vm_map_entry_t scan;
2221 	vm_map_entry_t entry;
2222 
2223 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2224 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2225 	    KKASSERT(entry->wired_count == 0);
2226 	    entry->wired_count = 1;
2227 	}
2228 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2229 }
2230 
2231 /*
2232  * vm_map_clean
2233  *
2234  * Push any dirty cached pages in the address range to their pager.
2235  * If syncio is TRUE, dirty pages are written synchronously.
2236  * If invalidate is TRUE, any cached pages are freed as well.
2237  *
2238  * Returns an error if any part of the specified range is not mapped.
2239  */
2240 int
2241 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2242     boolean_t invalidate)
2243 {
2244 	vm_map_entry_t current;
2245 	vm_map_entry_t entry;
2246 	vm_size_t size;
2247 	vm_object_t object;
2248 	vm_ooffset_t offset;
2249 
2250 	vm_map_lock_read(map);
2251 	VM_MAP_RANGE_CHECK(map, start, end);
2252 	if (!vm_map_lookup_entry(map, start, &entry)) {
2253 		vm_map_unlock_read(map);
2254 		return (KERN_INVALID_ADDRESS);
2255 	}
2256 	/*
2257 	 * Make a first pass to check for holes.
2258 	 */
2259 	for (current = entry; current->start < end; current = current->next) {
2260 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2261 			vm_map_unlock_read(map);
2262 			return (KERN_INVALID_ARGUMENT);
2263 		}
2264 		if (end > current->end &&
2265 		    (current->next == &map->header ||
2266 			current->end != current->next->start)) {
2267 			vm_map_unlock_read(map);
2268 			return (KERN_INVALID_ADDRESS);
2269 		}
2270 	}
2271 
2272 	if (invalidate)
2273 		pmap_remove(vm_map_pmap(map), start, end);
2274 	/*
2275 	 * Make a second pass, cleaning/uncaching pages from the indicated
2276 	 * objects as we go.
2277 	 */
2278 	for (current = entry; current->start < end; current = current->next) {
2279 		offset = current->offset + (start - current->start);
2280 		size = (end <= current->end ? end : current->end) - start;
2281 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2282 			vm_map_t smap;
2283 			vm_map_entry_t tentry;
2284 			vm_size_t tsize;
2285 
2286 			smap = current->object.sub_map;
2287 			vm_map_lock_read(smap);
2288 			vm_map_lookup_entry(smap, offset, &tentry);
2289 			tsize = tentry->end - offset;
2290 			if (tsize < size)
2291 				size = tsize;
2292 			object = tentry->object.vm_object;
2293 			offset = tentry->offset + (offset - tentry->start);
2294 			vm_map_unlock_read(smap);
2295 		} else {
2296 			object = current->object.vm_object;
2297 		}
2298 		/*
2299 		 * Note that there is absolutely no sense in writing out
2300 		 * anonymous objects, so we track down the vnode object
2301 		 * to write out.
2302 		 * We invalidate (remove) all pages from the address space
2303 		 * anyway, for semantic correctness.
2304 		 *
2305 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2306 		 * may start out with a NULL object.
2307 		 */
2308 		while (object && object->backing_object) {
2309 			offset += object->backing_object_offset;
2310 			object = object->backing_object;
2311 			if (object->size < OFF_TO_IDX( offset + size))
2312 				size = IDX_TO_OFF(object->size) - offset;
2313 		}
2314 		if (object && (object->type == OBJT_VNODE) &&
2315 		    (current->protection & VM_PROT_WRITE)) {
2316 			/*
2317 			 * Flush pages if writing is allowed, invalidate them
2318 			 * if invalidation requested.  Pages undergoing I/O
2319 			 * will be ignored by vm_object_page_remove().
2320 			 *
2321 			 * We cannot lock the vnode and then wait for paging
2322 			 * to complete without deadlocking against vm_fault.
2323 			 * Instead we simply call vm_object_page_remove() and
2324 			 * allow it to block internally on a page-by-page
2325 			 * basis when it encounters pages undergoing async
2326 			 * I/O.
2327 			 */
2328 			int flags;
2329 
2330 			vm_object_reference(object);
2331 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2332 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2333 			flags |= invalidate ? OBJPC_INVAL : 0;
2334 
2335 			/*
2336 			 * When operating on a virtual page table just
2337 			 * flush the whole object.  XXX we probably ought
2338 			 * to
2339 			 */
2340 			switch(current->maptype) {
2341 			case VM_MAPTYPE_NORMAL:
2342 				vm_object_page_clean(object,
2343 				    OFF_TO_IDX(offset),
2344 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2345 				    flags);
2346 				break;
2347 			case VM_MAPTYPE_VPAGETABLE:
2348 				vm_object_page_clean(object, 0, 0, flags);
2349 				break;
2350 			}
2351 			vn_unlock(((struct vnode *)object->handle));
2352 			vm_object_deallocate(object);
2353 		}
2354 		if (object && invalidate &&
2355 		   ((object->type == OBJT_VNODE) ||
2356 		    (object->type == OBJT_DEVICE))) {
2357 			int clean_only =
2358 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2359 			vm_object_reference(object);
2360 			switch(current->maptype) {
2361 			case VM_MAPTYPE_NORMAL:
2362 				vm_object_page_remove(object,
2363 				    OFF_TO_IDX(offset),
2364 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2365 				    clean_only);
2366 				break;
2367 			case VM_MAPTYPE_VPAGETABLE:
2368 				vm_object_page_remove(object, 0, 0, clean_only);
2369 				break;
2370 			}
2371 			vm_object_deallocate(object);
2372 		}
2373 		start += size;
2374 	}
2375 
2376 	vm_map_unlock_read(map);
2377 	return (KERN_SUCCESS);
2378 }
2379 
2380 /*
2381  *	vm_map_entry_unwire:	[ internal use only ]
2382  *
2383  *	Make the region specified by this entry pageable.
2384  *
2385  *	The map in question should be locked.
2386  *	[This is the reason for this routine's existence.]
2387  */
2388 static void
2389 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2390 {
2391 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2392 	entry->wired_count = 0;
2393 	vm_fault_unwire(map, entry);
2394 }
2395 
2396 /*
2397  *	vm_map_entry_delete:	[ internal use only ]
2398  *
2399  *	Deallocate the given entry from the target map.
2400  */
2401 static void
2402 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2403 {
2404 	vm_map_entry_unlink(map, entry);
2405 	map->size -= entry->end - entry->start;
2406 
2407 	switch(entry->maptype) {
2408 	case VM_MAPTYPE_NORMAL:
2409 	case VM_MAPTYPE_VPAGETABLE:
2410 		vm_object_deallocate(entry->object.vm_object);
2411 		break;
2412 	default:
2413 		break;
2414 	}
2415 
2416 	vm_map_entry_dispose(map, entry, countp);
2417 }
2418 
2419 /*
2420  *	vm_map_delete:	[ internal use only ]
2421  *
2422  *	Deallocates the given address range from the target
2423  *	map.
2424  */
2425 int
2426 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2427 {
2428 	vm_object_t object;
2429 	vm_map_entry_t entry;
2430 	vm_map_entry_t first_entry;
2431 
2432 again:
2433 	/*
2434 	 * Find the start of the region, and clip it.  Set entry to point
2435 	 * at the first record containing the requested address or, if no
2436 	 * such record exists, the next record with a greater address.  The
2437 	 * loop will run from this point until a record beyond the termination
2438 	 * address is encountered.
2439 	 *
2440 	 * map->hint must be adjusted to not point to anything we delete,
2441 	 * so set it to the entry prior to the one being deleted.
2442 	 *
2443 	 * GGG see other GGG comment.
2444 	 */
2445 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2446 		entry = first_entry;
2447 		vm_map_clip_start(map, entry, start, countp);
2448 		map->hint = entry->prev;	/* possible problem XXX */
2449 	} else {
2450 		map->hint = first_entry;	/* possible problem XXX */
2451 		entry = first_entry->next;
2452 	}
2453 
2454 	/*
2455 	 * If a hole opens up prior to the current first_free then
2456 	 * adjust first_free.  As with map->hint, map->first_free
2457 	 * cannot be left set to anything we might delete.
2458 	 */
2459 	if (entry == &map->header) {
2460 		map->first_free = &map->header;
2461 	} else if (map->first_free->start >= start) {
2462 		map->first_free = entry->prev;
2463 	}
2464 
2465 	/*
2466 	 * Step through all entries in this region
2467 	 */
2468 
2469 	while ((entry != &map->header) && (entry->start < end)) {
2470 		vm_map_entry_t next;
2471 		vm_offset_t s, e;
2472 		vm_pindex_t offidxstart, offidxend, count;
2473 
2474 		/*
2475 		 * If we hit an in-transition entry we have to sleep and
2476 		 * retry.  It's easier (and not really slower) to just retry
2477 		 * since this case occurs so rarely and the hint is already
2478 		 * pointing at the right place.  We have to reset the
2479 		 * start offset so as not to accidently delete an entry
2480 		 * another process just created in vacated space.
2481 		 */
2482 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2483 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2484 			start = entry->start;
2485 			++mycpu->gd_cnt.v_intrans_coll;
2486 			++mycpu->gd_cnt.v_intrans_wait;
2487 			vm_map_transition_wait(map);
2488 			goto again;
2489 		}
2490 		vm_map_clip_end(map, entry, end, countp);
2491 
2492 		s = entry->start;
2493 		e = entry->end;
2494 		next = entry->next;
2495 
2496 		offidxstart = OFF_TO_IDX(entry->offset);
2497 		count = OFF_TO_IDX(e - s);
2498 		object = entry->object.vm_object;
2499 
2500 		/*
2501 		 * Unwire before removing addresses from the pmap; otherwise,
2502 		 * unwiring will put the entries back in the pmap.
2503 		 */
2504 		if (entry->wired_count != 0)
2505 			vm_map_entry_unwire(map, entry);
2506 
2507 		offidxend = offidxstart + count;
2508 
2509 		if ((object == kernel_object) || (object == kmem_object)) {
2510 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2511 		} else {
2512 			pmap_remove(map->pmap, s, e);
2513 			if (object != NULL &&
2514 			    object->ref_count != 1 &&
2515 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2516 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2517 				vm_object_collapse(object);
2518 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2519 				if (object->type == OBJT_SWAP) {
2520 					swap_pager_freespace(object, offidxstart, count);
2521 				}
2522 				if (offidxend >= object->size &&
2523 				    offidxstart < object->size) {
2524 					object->size = offidxstart;
2525 				}
2526 			}
2527 		}
2528 
2529 		/*
2530 		 * Delete the entry (which may delete the object) only after
2531 		 * removing all pmap entries pointing to its pages.
2532 		 * (Otherwise, its page frames may be reallocated, and any
2533 		 * modify bits will be set in the wrong object!)
2534 		 */
2535 		vm_map_entry_delete(map, entry, countp);
2536 		entry = next;
2537 	}
2538 	return (KERN_SUCCESS);
2539 }
2540 
2541 /*
2542  *	vm_map_remove:
2543  *
2544  *	Remove the given address range from the target map.
2545  *	This is the exported form of vm_map_delete.
2546  */
2547 int
2548 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2549 {
2550 	int result;
2551 	int count;
2552 
2553 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2554 	vm_map_lock(map);
2555 	VM_MAP_RANGE_CHECK(map, start, end);
2556 	result = vm_map_delete(map, start, end, &count);
2557 	vm_map_unlock(map);
2558 	vm_map_entry_release(count);
2559 
2560 	return (result);
2561 }
2562 
2563 /*
2564  *	vm_map_check_protection:
2565  *
2566  *	Assert that the target map allows the specified
2567  *	privilege on the entire address region given.
2568  *	The entire region must be allocated.
2569  */
2570 boolean_t
2571 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2572 			vm_prot_t protection)
2573 {
2574 	vm_map_entry_t entry;
2575 	vm_map_entry_t tmp_entry;
2576 
2577 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2578 		return (FALSE);
2579 	}
2580 	entry = tmp_entry;
2581 
2582 	while (start < end) {
2583 		if (entry == &map->header) {
2584 			return (FALSE);
2585 		}
2586 		/*
2587 		 * No holes allowed!
2588 		 */
2589 
2590 		if (start < entry->start) {
2591 			return (FALSE);
2592 		}
2593 		/*
2594 		 * Check protection associated with entry.
2595 		 */
2596 
2597 		if ((entry->protection & protection) != protection) {
2598 			return (FALSE);
2599 		}
2600 		/* go to next entry */
2601 
2602 		start = entry->end;
2603 		entry = entry->next;
2604 	}
2605 	return (TRUE);
2606 }
2607 
2608 /*
2609  * Split the pages in a map entry into a new object.  This affords
2610  * easier removal of unused pages, and keeps object inheritance from
2611  * being a negative impact on memory usage.
2612  */
2613 static void
2614 vm_map_split(vm_map_entry_t entry)
2615 {
2616 	vm_page_t m;
2617 	vm_object_t orig_object, new_object, source;
2618 	vm_offset_t s, e;
2619 	vm_pindex_t offidxstart, offidxend, idx;
2620 	vm_size_t size;
2621 	vm_ooffset_t offset;
2622 
2623 	orig_object = entry->object.vm_object;
2624 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2625 		return;
2626 	if (orig_object->ref_count <= 1)
2627 		return;
2628 
2629 	offset = entry->offset;
2630 	s = entry->start;
2631 	e = entry->end;
2632 
2633 	offidxstart = OFF_TO_IDX(offset);
2634 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2635 	size = offidxend - offidxstart;
2636 
2637 	new_object = vm_pager_allocate(orig_object->type, NULL,
2638 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2639 	if (new_object == NULL)
2640 		return;
2641 
2642 	source = orig_object->backing_object;
2643 	if (source != NULL) {
2644 		vm_object_reference(source);	/* Referenced by new_object */
2645 		LIST_INSERT_HEAD(&source->shadow_head,
2646 				  new_object, shadow_list);
2647 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2648 		new_object->backing_object_offset =
2649 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2650 		new_object->backing_object = source;
2651 		source->shadow_count++;
2652 		source->generation++;
2653 	}
2654 
2655 	for (idx = 0; idx < size; idx++) {
2656 		vm_page_t m;
2657 
2658 		/*
2659 		 * A critical section is required to avoid a race between
2660 		 * the lookup and an interrupt/unbusy/free and our busy
2661 		 * check.
2662 		 */
2663 		crit_enter();
2664 	retry:
2665 		m = vm_page_lookup(orig_object, offidxstart + idx);
2666 		if (m == NULL) {
2667 			crit_exit();
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * We must wait for pending I/O to complete before we can
2673 		 * rename the page.
2674 		 *
2675 		 * We do not have to VM_PROT_NONE the page as mappings should
2676 		 * not be changed by this operation.
2677 		 */
2678 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2679 			goto retry;
2680 		vm_page_busy(m);
2681 		vm_page_rename(m, new_object, idx);
2682 		/* page automatically made dirty by rename and cache handled */
2683 		vm_page_busy(m);
2684 		crit_exit();
2685 	}
2686 
2687 	if (orig_object->type == OBJT_SWAP) {
2688 		vm_object_pip_add(orig_object, 1);
2689 		/*
2690 		 * copy orig_object pages into new_object
2691 		 * and destroy unneeded pages in
2692 		 * shadow object.
2693 		 */
2694 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2695 		vm_object_pip_wakeup(orig_object);
2696 	}
2697 
2698 	/*
2699 	 * Wakeup the pages we played with.  No spl protection is needed
2700 	 * for a simple wakeup.
2701 	 */
2702 	for (idx = 0; idx < size; idx++) {
2703 		m = vm_page_lookup(new_object, idx);
2704 		if (m)
2705 			vm_page_wakeup(m);
2706 	}
2707 
2708 	entry->object.vm_object = new_object;
2709 	entry->offset = 0LL;
2710 	vm_object_deallocate(orig_object);
2711 }
2712 
2713 /*
2714  *	vm_map_copy_entry:
2715  *
2716  *	Copies the contents of the source entry to the destination
2717  *	entry.  The entries *must* be aligned properly.
2718  */
2719 static void
2720 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2721 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2722 {
2723 	vm_object_t src_object;
2724 
2725 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2726 		return;
2727 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2728 		return;
2729 
2730 	if (src_entry->wired_count == 0) {
2731 		/*
2732 		 * If the source entry is marked needs_copy, it is already
2733 		 * write-protected.
2734 		 */
2735 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2736 			pmap_protect(src_map->pmap,
2737 			    src_entry->start,
2738 			    src_entry->end,
2739 			    src_entry->protection & ~VM_PROT_WRITE);
2740 		}
2741 
2742 		/*
2743 		 * Make a copy of the object.
2744 		 */
2745 		if ((src_object = src_entry->object.vm_object) != NULL) {
2746 			if ((src_object->handle == NULL) &&
2747 				(src_object->type == OBJT_DEFAULT ||
2748 				 src_object->type == OBJT_SWAP)) {
2749 				vm_object_collapse(src_object);
2750 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2751 					vm_map_split(src_entry);
2752 					src_object = src_entry->object.vm_object;
2753 				}
2754 			}
2755 
2756 			vm_object_reference(src_object);
2757 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2758 			dst_entry->object.vm_object = src_object;
2759 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2760 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2761 			dst_entry->offset = src_entry->offset;
2762 		} else {
2763 			dst_entry->object.vm_object = NULL;
2764 			dst_entry->offset = 0;
2765 		}
2766 
2767 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2768 		    dst_entry->end - dst_entry->start, src_entry->start);
2769 	} else {
2770 		/*
2771 		 * Of course, wired down pages can't be set copy-on-write.
2772 		 * Cause wired pages to be copied into the new map by
2773 		 * simulating faults (the new pages are pageable)
2774 		 */
2775 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2776 	}
2777 }
2778 
2779 /*
2780  * vmspace_fork:
2781  * Create a new process vmspace structure and vm_map
2782  * based on those of an existing process.  The new map
2783  * is based on the old map, according to the inheritance
2784  * values on the regions in that map.
2785  *
2786  * The source map must not be locked.
2787  */
2788 struct vmspace *
2789 vmspace_fork(struct vmspace *vm1)
2790 {
2791 	struct vmspace *vm2;
2792 	vm_map_t old_map = &vm1->vm_map;
2793 	vm_map_t new_map;
2794 	vm_map_entry_t old_entry;
2795 	vm_map_entry_t new_entry;
2796 	vm_object_t object;
2797 	int count;
2798 
2799 	vm_map_lock(old_map);
2800 	old_map->infork = 1;
2801 
2802 	/*
2803 	 * XXX Note: upcalls are not copied.
2804 	 */
2805 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2806 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2807 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2808 	new_map = &vm2->vm_map;	/* XXX */
2809 	new_map->timestamp = 1;
2810 
2811 	count = 0;
2812 	old_entry = old_map->header.next;
2813 	while (old_entry != &old_map->header) {
2814 		++count;
2815 		old_entry = old_entry->next;
2816 	}
2817 
2818 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2819 
2820 	old_entry = old_map->header.next;
2821 	while (old_entry != &old_map->header) {
2822 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2823 			panic("vm_map_fork: encountered a submap");
2824 
2825 		switch (old_entry->inheritance) {
2826 		case VM_INHERIT_NONE:
2827 			break;
2828 
2829 		case VM_INHERIT_SHARE:
2830 			/*
2831 			 * Clone the entry, creating the shared object if
2832 			 * necessary.
2833 			 */
2834 			object = old_entry->object.vm_object;
2835 			if (object == NULL) {
2836 				vm_map_entry_allocate_object(old_entry);
2837 				object = old_entry->object.vm_object;
2838 			}
2839 
2840 			/*
2841 			 * Add the reference before calling vm_map_entry_shadow
2842 			 * to insure that a shadow object is created.
2843 			 */
2844 			vm_object_reference(object);
2845 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2846 				vm_map_entry_shadow(old_entry);
2847 				/* Transfer the second reference too. */
2848 				vm_object_reference(
2849 				    old_entry->object.vm_object);
2850 				vm_object_deallocate(object);
2851 				object = old_entry->object.vm_object;
2852 			}
2853 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2854 
2855 			/*
2856 			 * Clone the entry, referencing the shared object.
2857 			 */
2858 			new_entry = vm_map_entry_create(new_map, &count);
2859 			*new_entry = *old_entry;
2860 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2861 			new_entry->wired_count = 0;
2862 
2863 			/*
2864 			 * Insert the entry into the new map -- we know we're
2865 			 * inserting at the end of the new map.
2866 			 */
2867 
2868 			vm_map_entry_link(new_map, new_map->header.prev,
2869 			    new_entry);
2870 
2871 			/*
2872 			 * Update the physical map
2873 			 */
2874 
2875 			pmap_copy(new_map->pmap, old_map->pmap,
2876 			    new_entry->start,
2877 			    (old_entry->end - old_entry->start),
2878 			    old_entry->start);
2879 			break;
2880 
2881 		case VM_INHERIT_COPY:
2882 			/*
2883 			 * Clone the entry and link into the map.
2884 			 */
2885 			new_entry = vm_map_entry_create(new_map, &count);
2886 			*new_entry = *old_entry;
2887 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2888 			new_entry->wired_count = 0;
2889 			new_entry->object.vm_object = NULL;
2890 			vm_map_entry_link(new_map, new_map->header.prev,
2891 			    new_entry);
2892 			vm_map_copy_entry(old_map, new_map, old_entry,
2893 			    new_entry);
2894 			break;
2895 		}
2896 		old_entry = old_entry->next;
2897 	}
2898 
2899 	new_map->size = old_map->size;
2900 	old_map->infork = 0;
2901 	vm_map_unlock(old_map);
2902 	vm_map_entry_release(count);
2903 
2904 	return (vm2);
2905 }
2906 
2907 int
2908 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2909 	      vm_prot_t prot, vm_prot_t max, int cow)
2910 {
2911 	vm_map_entry_t prev_entry;
2912 	vm_map_entry_t new_stack_entry;
2913 	vm_size_t      init_ssize;
2914 	int            rv;
2915 	int		count;
2916 
2917 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2918 		return (KERN_NO_SPACE);
2919 
2920 	if (max_ssize < sgrowsiz)
2921 		init_ssize = max_ssize;
2922 	else
2923 		init_ssize = sgrowsiz;
2924 
2925 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2926 	vm_map_lock(map);
2927 
2928 	/* If addr is already mapped, no go */
2929 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2930 		vm_map_unlock(map);
2931 		vm_map_entry_release(count);
2932 		return (KERN_NO_SPACE);
2933 	}
2934 
2935 	/* If we would blow our VMEM resource limit, no go */
2936 	if (map->size + init_ssize >
2937 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2938 		vm_map_unlock(map);
2939 		vm_map_entry_release(count);
2940 		return (KERN_NO_SPACE);
2941 	}
2942 
2943 	/* If we can't accomodate max_ssize in the current mapping,
2944 	 * no go.  However, we need to be aware that subsequent user
2945 	 * mappings might map into the space we have reserved for
2946 	 * stack, and currently this space is not protected.
2947 	 *
2948 	 * Hopefully we will at least detect this condition
2949 	 * when we try to grow the stack.
2950 	 */
2951 	if ((prev_entry->next != &map->header) &&
2952 	    (prev_entry->next->start < addrbos + max_ssize)) {
2953 		vm_map_unlock(map);
2954 		vm_map_entry_release(count);
2955 		return (KERN_NO_SPACE);
2956 	}
2957 
2958 	/* We initially map a stack of only init_ssize.  We will
2959 	 * grow as needed later.  Since this is to be a grow
2960 	 * down stack, we map at the top of the range.
2961 	 *
2962 	 * Note: we would normally expect prot and max to be
2963 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2964 	 * eliminate these as input parameters, and just
2965 	 * pass these values here in the insert call.
2966 	 */
2967 	rv = vm_map_insert(map, &count,
2968 			   NULL, 0, addrbos + max_ssize - init_ssize,
2969 	                   addrbos + max_ssize,
2970 			   VM_MAPTYPE_NORMAL,
2971 			   prot, max,
2972 			   cow);
2973 
2974 	/* Now set the avail_ssize amount */
2975 	if (rv == KERN_SUCCESS) {
2976 		if (prev_entry != &map->header)
2977 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2978 		new_stack_entry = prev_entry->next;
2979 		if (new_stack_entry->end   != addrbos + max_ssize ||
2980 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2981 			panic ("Bad entry start/end for new stack entry");
2982 		else
2983 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
2984 	}
2985 
2986 	vm_map_unlock(map);
2987 	vm_map_entry_release(count);
2988 	return (rv);
2989 }
2990 
2991 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2992  * desired address is already mapped, or if we successfully grow
2993  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2994  * stack range (this is strange, but preserves compatibility with
2995  * the grow function in vm_machdep.c).
2996  */
2997 int
2998 vm_map_growstack (struct proc *p, vm_offset_t addr)
2999 {
3000 	vm_map_entry_t prev_entry;
3001 	vm_map_entry_t stack_entry;
3002 	vm_map_entry_t new_stack_entry;
3003 	struct vmspace *vm = p->p_vmspace;
3004 	vm_map_t map = &vm->vm_map;
3005 	vm_offset_t    end;
3006 	int grow_amount;
3007 	int rv = KERN_SUCCESS;
3008 	int is_procstack;
3009 	int use_read_lock = 1;
3010 	int count;
3011 
3012 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3013 Retry:
3014 	if (use_read_lock)
3015 		vm_map_lock_read(map);
3016 	else
3017 		vm_map_lock(map);
3018 
3019 	/* If addr is already in the entry range, no need to grow.*/
3020 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3021 		goto done;
3022 
3023 	if ((stack_entry = prev_entry->next) == &map->header)
3024 		goto done;
3025 	if (prev_entry == &map->header)
3026 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3027 	else
3028 		end = prev_entry->end;
3029 
3030 	/* This next test mimics the old grow function in vm_machdep.c.
3031 	 * It really doesn't quite make sense, but we do it anyway
3032 	 * for compatibility.
3033 	 *
3034 	 * If not growable stack, return success.  This signals the
3035 	 * caller to proceed as he would normally with normal vm.
3036 	 */
3037 	if (stack_entry->aux.avail_ssize < 1 ||
3038 	    addr >= stack_entry->start ||
3039 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3040 		goto done;
3041 	}
3042 
3043 	/* Find the minimum grow amount */
3044 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3045 	if (grow_amount > stack_entry->aux.avail_ssize) {
3046 		rv = KERN_NO_SPACE;
3047 		goto done;
3048 	}
3049 
3050 	/* If there is no longer enough space between the entries
3051 	 * nogo, and adjust the available space.  Note: this
3052 	 * should only happen if the user has mapped into the
3053 	 * stack area after the stack was created, and is
3054 	 * probably an error.
3055 	 *
3056 	 * This also effectively destroys any guard page the user
3057 	 * might have intended by limiting the stack size.
3058 	 */
3059 	if (grow_amount > stack_entry->start - end) {
3060 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3061 			use_read_lock = 0;
3062 			goto Retry;
3063 		}
3064 		use_read_lock = 0;
3065 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3066 		rv = KERN_NO_SPACE;
3067 		goto done;
3068 	}
3069 
3070 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3071 
3072 	/* If this is the main process stack, see if we're over the
3073 	 * stack limit.
3074 	 */
3075 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3076 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3077 		rv = KERN_NO_SPACE;
3078 		goto done;
3079 	}
3080 
3081 	/* Round up the grow amount modulo SGROWSIZ */
3082 	grow_amount = roundup (grow_amount, sgrowsiz);
3083 	if (grow_amount > stack_entry->aux.avail_ssize) {
3084 		grow_amount = stack_entry->aux.avail_ssize;
3085 	}
3086 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3087 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3088 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3089 		              ctob(vm->vm_ssize);
3090 	}
3091 
3092 	/* If we would blow our VMEM resource limit, no go */
3093 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3094 		rv = KERN_NO_SPACE;
3095 		goto done;
3096 	}
3097 
3098 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3099 		use_read_lock = 0;
3100 		goto Retry;
3101 	}
3102 	use_read_lock = 0;
3103 
3104 	/* Get the preliminary new entry start value */
3105 	addr = stack_entry->start - grow_amount;
3106 
3107 	/* If this puts us into the previous entry, cut back our growth
3108 	 * to the available space.  Also, see the note above.
3109 	 */
3110 	if (addr < end) {
3111 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3112 		addr = end;
3113 	}
3114 
3115 	rv = vm_map_insert(map, &count,
3116 			   NULL, 0, addr, stack_entry->start,
3117 			   VM_MAPTYPE_NORMAL,
3118 			   VM_PROT_ALL, VM_PROT_ALL,
3119 			   0);
3120 
3121 	/* Adjust the available stack space by the amount we grew. */
3122 	if (rv == KERN_SUCCESS) {
3123 		if (prev_entry != &map->header)
3124 			vm_map_clip_end(map, prev_entry, addr, &count);
3125 		new_stack_entry = prev_entry->next;
3126 		if (new_stack_entry->end   != stack_entry->start  ||
3127 		    new_stack_entry->start != addr)
3128 			panic ("Bad stack grow start/end in new stack entry");
3129 		else {
3130 			new_stack_entry->aux.avail_ssize =
3131 				stack_entry->aux.avail_ssize -
3132 				(new_stack_entry->end - new_stack_entry->start);
3133 			if (is_procstack)
3134 				vm->vm_ssize += btoc(new_stack_entry->end -
3135 						     new_stack_entry->start);
3136 		}
3137 	}
3138 
3139 done:
3140 	if (use_read_lock)
3141 		vm_map_unlock_read(map);
3142 	else
3143 		vm_map_unlock(map);
3144 	vm_map_entry_release(count);
3145 	return (rv);
3146 }
3147 
3148 /*
3149  * Unshare the specified VM space for exec.  If other processes are
3150  * mapped to it, then create a new one.  The new vmspace is null.
3151  */
3152 
3153 void
3154 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3155 {
3156 	struct vmspace *oldvmspace = p->p_vmspace;
3157 	struct vmspace *newvmspace;
3158 	vm_map_t map = &p->p_vmspace->vm_map;
3159 
3160 	/*
3161 	 * If we are execing a resident vmspace we fork it, otherwise
3162 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3163 	 * are not copied to the new vmspace.
3164 	 */
3165 	if (vmcopy)  {
3166 	    newvmspace = vmspace_fork(vmcopy);
3167 	} else {
3168 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3169 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3170 		(caddr_t)&oldvmspace->vm_endcopy -
3171 		    (caddr_t)&oldvmspace->vm_startcopy);
3172 	}
3173 
3174 	/*
3175 	 * This code is written like this for prototype purposes.  The
3176 	 * goal is to avoid running down the vmspace here, but let the
3177 	 * other process's that are still using the vmspace to finally
3178 	 * run it down.  Even though there is little or no chance of blocking
3179 	 * here, it is a good idea to keep this form for future mods.
3180 	 */
3181 	p->p_vmspace = newvmspace;
3182 	pmap_pinit2(vmspace_pmap(newvmspace));
3183 	if (p == curproc)
3184 		pmap_activate(p);
3185 	vmspace_free(oldvmspace);
3186 }
3187 
3188 /*
3189  * Unshare the specified VM space for forcing COW.  This
3190  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3191  *
3192  * The exitingcnt test is not strictly necessary but has been
3193  * included for code sanity (to make the code a bit more deterministic).
3194  */
3195 
3196 void
3197 vmspace_unshare(struct proc *p)
3198 {
3199 	struct vmspace *oldvmspace = p->p_vmspace;
3200 	struct vmspace *newvmspace;
3201 
3202 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3203 		return;
3204 	newvmspace = vmspace_fork(oldvmspace);
3205 	p->p_vmspace = newvmspace;
3206 	pmap_pinit2(vmspace_pmap(newvmspace));
3207 	if (p == curproc)
3208 		pmap_activate(p);
3209 	vmspace_free(oldvmspace);
3210 }
3211 
3212 /*
3213  *	vm_map_lookup:
3214  *
3215  *	Finds the VM object, offset, and
3216  *	protection for a given virtual address in the
3217  *	specified map, assuming a page fault of the
3218  *	type specified.
3219  *
3220  *	Leaves the map in question locked for read; return
3221  *	values are guaranteed until a vm_map_lookup_done
3222  *	call is performed.  Note that the map argument
3223  *	is in/out; the returned map must be used in
3224  *	the call to vm_map_lookup_done.
3225  *
3226  *	A handle (out_entry) is returned for use in
3227  *	vm_map_lookup_done, to make that fast.
3228  *
3229  *	If a lookup is requested with "write protection"
3230  *	specified, the map may be changed to perform virtual
3231  *	copying operations, although the data referenced will
3232  *	remain the same.
3233  */
3234 int
3235 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3236 	      vm_offset_t vaddr,
3237 	      vm_prot_t fault_typea,
3238 	      vm_map_entry_t *out_entry,	/* OUT */
3239 	      vm_object_t *object,		/* OUT */
3240 	      vm_pindex_t *pindex,		/* OUT */
3241 	      vm_prot_t *out_prot,		/* OUT */
3242 	      boolean_t *wired)			/* OUT */
3243 {
3244 	vm_map_entry_t entry;
3245 	vm_map_t map = *var_map;
3246 	vm_prot_t prot;
3247 	vm_prot_t fault_type = fault_typea;
3248 	int use_read_lock = 1;
3249 	int rv = KERN_SUCCESS;
3250 
3251 RetryLookup:
3252 	if (use_read_lock)
3253 		vm_map_lock_read(map);
3254 	else
3255 		vm_map_lock(map);
3256 
3257 	/*
3258 	 * If the map has an interesting hint, try it before calling full
3259 	 * blown lookup routine.
3260 	 */
3261 	entry = map->hint;
3262 	*out_entry = entry;
3263 
3264 	if ((entry == &map->header) ||
3265 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3266 		vm_map_entry_t tmp_entry;
3267 
3268 		/*
3269 		 * Entry was either not a valid hint, or the vaddr was not
3270 		 * contained in the entry, so do a full lookup.
3271 		 */
3272 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3273 			rv = KERN_INVALID_ADDRESS;
3274 			goto done;
3275 		}
3276 
3277 		entry = tmp_entry;
3278 		*out_entry = entry;
3279 	}
3280 
3281 	/*
3282 	 * Handle submaps.
3283 	 */
3284 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3285 		vm_map_t old_map = map;
3286 
3287 		*var_map = map = entry->object.sub_map;
3288 		if (use_read_lock)
3289 			vm_map_unlock_read(old_map);
3290 		else
3291 			vm_map_unlock(old_map);
3292 		use_read_lock = 1;
3293 		goto RetryLookup;
3294 	}
3295 
3296 	/*
3297 	 * Check whether this task is allowed to have this page.
3298 	 * Note the special case for MAP_ENTRY_COW
3299 	 * pages with an override.  This is to implement a forced
3300 	 * COW for debuggers.
3301 	 */
3302 
3303 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3304 		prot = entry->max_protection;
3305 	else
3306 		prot = entry->protection;
3307 
3308 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3309 	if ((fault_type & prot) != fault_type) {
3310 		rv = KERN_PROTECTION_FAILURE;
3311 		goto done;
3312 	}
3313 
3314 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3315 	    (entry->eflags & MAP_ENTRY_COW) &&
3316 	    (fault_type & VM_PROT_WRITE) &&
3317 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3318 		rv = KERN_PROTECTION_FAILURE;
3319 		goto done;
3320 	}
3321 
3322 	/*
3323 	 * If this page is not pageable, we have to get it for all possible
3324 	 * accesses.
3325 	 */
3326 	*wired = (entry->wired_count != 0);
3327 	if (*wired)
3328 		prot = fault_type = entry->protection;
3329 
3330 	/*
3331 	 * Virtual page tables may need to update the accessed (A) bit
3332 	 * in a page table entry.  Upgrade the fault to a write fault for
3333 	 * that case if the map will support it.  If the map does not support
3334 	 * it the page table entry simply will not be updated.
3335 	 */
3336 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3337 		if (prot & VM_PROT_WRITE)
3338 			fault_type |= VM_PROT_WRITE;
3339 	}
3340 
3341 	/*
3342 	 * If the entry was copy-on-write, we either ...
3343 	 */
3344 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3345 		/*
3346 		 * If we want to write the page, we may as well handle that
3347 		 * now since we've got the map locked.
3348 		 *
3349 		 * If we don't need to write the page, we just demote the
3350 		 * permissions allowed.
3351 		 */
3352 
3353 		if (fault_type & VM_PROT_WRITE) {
3354 			/*
3355 			 * Make a new object, and place it in the object
3356 			 * chain.  Note that no new references have appeared
3357 			 * -- one just moved from the map to the new
3358 			 * object.
3359 			 */
3360 
3361 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3362 				use_read_lock = 0;
3363 				goto RetryLookup;
3364 			}
3365 			use_read_lock = 0;
3366 
3367 			vm_map_entry_shadow(entry);
3368 		} else {
3369 			/*
3370 			 * We're attempting to read a copy-on-write page --
3371 			 * don't allow writes.
3372 			 */
3373 
3374 			prot &= ~VM_PROT_WRITE;
3375 		}
3376 	}
3377 
3378 	/*
3379 	 * Create an object if necessary.
3380 	 */
3381 	if (entry->object.vm_object == NULL &&
3382 	    !map->system_map) {
3383 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3384 			use_read_lock = 0;
3385 			goto RetryLookup;
3386 		}
3387 		use_read_lock = 0;
3388 		vm_map_entry_allocate_object(entry);
3389 	}
3390 
3391 	/*
3392 	 * Return the object/offset from this entry.  If the entry was
3393 	 * copy-on-write or empty, it has been fixed up.
3394 	 */
3395 
3396 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3397 	*object = entry->object.vm_object;
3398 
3399 	/*
3400 	 * Return whether this is the only map sharing this data.  On
3401 	 * success we return with a read lock held on the map.  On failure
3402 	 * we return with the map unlocked.
3403 	 */
3404 	*out_prot = prot;
3405 done:
3406 	if (rv == KERN_SUCCESS) {
3407 		if (use_read_lock == 0)
3408 			vm_map_lock_downgrade(map);
3409 	} else if (use_read_lock) {
3410 		vm_map_unlock_read(map);
3411 	} else {
3412 		vm_map_unlock(map);
3413 	}
3414 	return (rv);
3415 }
3416 
3417 /*
3418  *	vm_map_lookup_done:
3419  *
3420  *	Releases locks acquired by a vm_map_lookup
3421  *	(according to the handle returned by that lookup).
3422  */
3423 
3424 void
3425 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3426 {
3427 	/*
3428 	 * Unlock the main-level map
3429 	 */
3430 	vm_map_unlock_read(map);
3431 	if (count)
3432 		vm_map_entry_release(count);
3433 }
3434 
3435 #include "opt_ddb.h"
3436 #ifdef DDB
3437 #include <sys/kernel.h>
3438 
3439 #include <ddb/ddb.h>
3440 
3441 /*
3442  *	vm_map_print:	[ debug ]
3443  */
3444 DB_SHOW_COMMAND(map, vm_map_print)
3445 {
3446 	static int nlines;
3447 	/* XXX convert args. */
3448 	vm_map_t map = (vm_map_t)addr;
3449 	boolean_t full = have_addr;
3450 
3451 	vm_map_entry_t entry;
3452 
3453 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3454 	    (void *)map,
3455 	    (void *)map->pmap, map->nentries, map->timestamp);
3456 	nlines++;
3457 
3458 	if (!full && db_indent)
3459 		return;
3460 
3461 	db_indent += 2;
3462 	for (entry = map->header.next; entry != &map->header;
3463 	    entry = entry->next) {
3464 		db_iprintf("map entry %p: start=%p, end=%p\n",
3465 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3466 		nlines++;
3467 		{
3468 			static char *inheritance_name[4] =
3469 			{"share", "copy", "none", "donate_copy"};
3470 
3471 			db_iprintf(" prot=%x/%x/%s",
3472 			    entry->protection,
3473 			    entry->max_protection,
3474 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3475 			if (entry->wired_count != 0)
3476 				db_printf(", wired");
3477 		}
3478 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3479 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3480 			db_printf(", share=%p, offset=0x%lx\n",
3481 			    (void *)entry->object.sub_map,
3482 			    (long)entry->offset);
3483 			nlines++;
3484 			if ((entry->prev == &map->header) ||
3485 			    (entry->prev->object.sub_map !=
3486 				entry->object.sub_map)) {
3487 				db_indent += 2;
3488 				vm_map_print((db_expr_t)(intptr_t)
3489 					     entry->object.sub_map,
3490 					     full, 0, (char *)0);
3491 				db_indent -= 2;
3492 			}
3493 		} else {
3494 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3495 			db_printf(", object=%p, offset=0x%lx",
3496 			    (void *)entry->object.vm_object,
3497 			    (long)entry->offset);
3498 			if (entry->eflags & MAP_ENTRY_COW)
3499 				db_printf(", copy (%s)",
3500 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3501 			db_printf("\n");
3502 			nlines++;
3503 
3504 			if ((entry->prev == &map->header) ||
3505 			    (entry->prev->object.vm_object !=
3506 				entry->object.vm_object)) {
3507 				db_indent += 2;
3508 				vm_object_print((db_expr_t)(intptr_t)
3509 						entry->object.vm_object,
3510 						full, 0, (char *)0);
3511 				nlines += 4;
3512 				db_indent -= 2;
3513 			}
3514 		}
3515 	}
3516 	db_indent -= 2;
3517 	if (db_indent == 0)
3518 		nlines = 0;
3519 }
3520 
3521 
3522 DB_SHOW_COMMAND(procvm, procvm)
3523 {
3524 	struct proc *p;
3525 
3526 	if (have_addr) {
3527 		p = (struct proc *) addr;
3528 	} else {
3529 		p = curproc;
3530 	}
3531 
3532 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3533 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3534 	    (void *)vmspace_pmap(p->p_vmspace));
3535 
3536 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3537 }
3538 
3539 #endif /* DDB */
3540