1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.50 2006/09/13 22:25:00 dillon Exp $ 66 */ 67 68 /* 69 * Virtual memory mapping module. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/lock.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 #include <sys/vnode.h> 79 #include <sys/resourcevar.h> 80 #include <sys/shm.h> 81 #include <sys/tree.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/swap_pager.h> 93 #include <vm/vm_zone.h> 94 95 #include <sys/thread2.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a single hint is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 /* 122 * vm_map_startup: 123 * 124 * Initialize the vm_map module. Must be called before 125 * any other vm_map routines. 126 * 127 * Map and entry structures are allocated from the general 128 * purpose memory pool with some exceptions: 129 * 130 * - The kernel map and kmem submap are allocated statically. 131 * - Kernel map entries are allocated out of a static pool. 132 * 133 * These restrictions are necessary since malloc() uses the 134 * maps and requires map entries. 135 */ 136 137 #define VMEPERCPU 2 138 139 static struct vm_zone mapentzone_store, mapzone_store; 140 static vm_zone_t mapentzone, mapzone, vmspace_zone; 141 static struct vm_object mapentobj, mapobj; 142 143 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 145 static struct vm_map map_init[MAX_KMAP]; 146 147 static void vm_map_entry_shadow(vm_map_entry_t entry); 148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 155 vm_map_entry_t); 156 static void vm_map_split (vm_map_entry_t); 157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 158 159 void 160 vm_map_startup(void) 161 { 162 mapzone = &mapzone_store; 163 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 164 map_init, MAX_KMAP); 165 mapentzone = &mapentzone_store; 166 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 167 map_entry_init, MAX_MAPENT); 168 } 169 170 /* 171 * Red black tree functions 172 */ 173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 175 176 /* a->start is address, and the only field has to be initialized */ 177 static int 178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 179 { 180 if (a->start < b->start) 181 return(-1); 182 else if (a->start > b->start) 183 return(1); 184 return(0); 185 } 186 187 /* 188 * Allocate a vmspace structure, including a vm_map and pmap, 189 * and initialize those structures. The refcnt is set to 1. 190 * The remaining fields must be initialized by the caller. 191 */ 192 struct vmspace * 193 vmspace_alloc(vm_offset_t min, vm_offset_t max) 194 { 195 struct vmspace *vm; 196 197 vm = zalloc(vmspace_zone); 198 vm_map_init(&vm->vm_map, min, max); 199 pmap_pinit(vmspace_pmap(vm)); 200 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 201 vm->vm_refcnt = 1; 202 vm->vm_shm = NULL; 203 vm->vm_exitingcnt = 0; 204 return (vm); 205 } 206 207 void 208 vm_init2(void) 209 { 210 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 211 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 212 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 213 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 214 pmap_init2(); 215 vm_object_init2(); 216 } 217 218 static __inline void 219 vmspace_dofree(struct vmspace *vm) 220 { 221 int count; 222 223 /* 224 * Make sure any SysV shm is freed, it might not have in 225 * exit1() 226 */ 227 shmexit(vm); 228 229 KKASSERT(vm->vm_upcalls == NULL); 230 231 /* 232 * Lock the map, to wait out all other references to it. 233 * Delete all of the mappings and pages they hold, then call 234 * the pmap module to reclaim anything left. 235 */ 236 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 237 vm_map_lock(&vm->vm_map); 238 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 239 vm->vm_map.max_offset, &count); 240 vm_map_unlock(&vm->vm_map); 241 vm_map_entry_release(count); 242 243 pmap_release(vmspace_pmap(vm)); 244 zfree(vmspace_zone, vm); 245 } 246 247 void 248 vmspace_free(struct vmspace *vm) 249 { 250 if (vm->vm_refcnt == 0) 251 panic("vmspace_free: attempt to free already freed vmspace"); 252 253 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 254 vmspace_dofree(vm); 255 } 256 257 void 258 vmspace_exitfree(struct proc *p) 259 { 260 struct vmspace *vm; 261 262 vm = p->p_vmspace; 263 p->p_vmspace = NULL; 264 265 /* 266 * cleanup by parent process wait()ing on exiting child. vm_refcnt 267 * may not be 0 (e.g. fork() and child exits without exec()ing). 268 * exitingcnt may increment above 0 and drop back down to zero 269 * several times while vm_refcnt is held non-zero. vm_refcnt 270 * may also increment above 0 and drop back down to zero several 271 * times while vm_exitingcnt is held non-zero. 272 * 273 * The last wait on the exiting child's vmspace will clean up 274 * the remainder of the vmspace. 275 */ 276 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 277 vmspace_dofree(vm); 278 } 279 280 /* 281 * vmspace_swap_count() - count the approximate swap useage in pages for a 282 * vmspace. 283 * 284 * Swap useage is determined by taking the proportional swap used by 285 * VM objects backing the VM map. To make up for fractional losses, 286 * if the VM object has any swap use at all the associated map entries 287 * count for at least 1 swap page. 288 */ 289 int 290 vmspace_swap_count(struct vmspace *vmspace) 291 { 292 vm_map_t map = &vmspace->vm_map; 293 vm_map_entry_t cur; 294 vm_object_t object; 295 int count = 0; 296 int n; 297 298 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 299 switch(cur->maptype) { 300 case VM_MAPTYPE_NORMAL: 301 case VM_MAPTYPE_VPAGETABLE: 302 if ((object = cur->object.vm_object) == NULL) 303 break; 304 if (object->type != OBJT_SWAP) 305 break; 306 n = (cur->end - cur->start) / PAGE_SIZE; 307 if (object->un_pager.swp.swp_bcount) { 308 count += object->un_pager.swp.swp_bcount * 309 SWAP_META_PAGES * n / object->size + 1; 310 } 311 break; 312 default: 313 break; 314 } 315 } 316 return(count); 317 } 318 319 320 /* 321 * vm_map_create: 322 * 323 * Creates and returns a new empty VM map with 324 * the given physical map structure, and having 325 * the given lower and upper address bounds. 326 */ 327 vm_map_t 328 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 329 { 330 vm_map_t result; 331 332 result = zalloc(mapzone); 333 vm_map_init(result, min, max); 334 result->pmap = pmap; 335 return (result); 336 } 337 338 /* 339 * Initialize an existing vm_map structure 340 * such as that in the vmspace structure. 341 * The pmap is set elsewhere. 342 */ 343 void 344 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max) 345 { 346 map->header.next = map->header.prev = &map->header; 347 RB_INIT(&map->rb_root); 348 map->nentries = 0; 349 map->size = 0; 350 map->system_map = 0; 351 map->infork = 0; 352 map->min_offset = min; 353 map->max_offset = max; 354 map->first_free = &map->header; 355 map->hint = &map->header; 356 map->timestamp = 0; 357 lockinit(&map->lock, "thrd_sleep", 0, 0); 358 } 359 360 /* 361 * Shadow the vm_map_entry's object. This typically needs to be done when 362 * a write fault is taken on an entry which had previously been cloned by 363 * fork(). The shared object (which might be NULL) must become private so 364 * we add a shadow layer above it. 365 * 366 * Object allocation for anonymous mappings is defered as long as possible. 367 * When creating a shadow, however, the underlying object must be instantiated 368 * so it can be shared. 369 * 370 * If the map segment is governed by a virtual page table then it is 371 * possible to address offsets beyond the mapped area. Just allocate 372 * a maximally sized object for this case. 373 */ 374 static 375 void 376 vm_map_entry_shadow(vm_map_entry_t entry) 377 { 378 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 379 vm_object_shadow(&entry->object.vm_object, &entry->offset, 380 0x7FFFFFFF); /* XXX */ 381 } else { 382 vm_object_shadow(&entry->object.vm_object, &entry->offset, 383 atop(entry->end - entry->start)); 384 } 385 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 386 } 387 388 /* 389 * Allocate an object for a vm_map_entry. 390 * 391 * Object allocation for anonymous mappings is defered as long as possible. 392 * This function is called when we can defer no longer, generally when a map 393 * entry might be split or forked or takes a page fault. 394 * 395 * If the map segment is governed by a virtual page table then it is 396 * possible to address offsets beyond the mapped area. Just allocate 397 * a maximally sized object for this case. 398 */ 399 void 400 vm_map_entry_allocate_object(vm_map_entry_t entry) 401 { 402 vm_object_t obj; 403 404 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 405 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 406 } else { 407 obj = vm_object_allocate(OBJT_DEFAULT, 408 atop(entry->end - entry->start)); 409 } 410 entry->object.vm_object = obj; 411 entry->offset = 0; 412 } 413 414 /* 415 * vm_map_entry_reserve_cpu_init: 416 * 417 * Set an initial negative count so the first attempt to reserve 418 * space preloads a bunch of vm_map_entry's for this cpu. Also 419 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 420 * map a new page for vm_map_entry structures. SMP systems are 421 * particularly sensitive. 422 * 423 * This routine is called in early boot so we cannot just call 424 * vm_map_entry_reserve(). 425 * 426 * May be called for a gd other then mycpu, but may only be called 427 * during early boot. 428 */ 429 void 430 vm_map_entry_reserve_cpu_init(globaldata_t gd) 431 { 432 vm_map_entry_t entry; 433 int i; 434 435 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 436 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 437 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 438 entry->next = gd->gd_vme_base; 439 gd->gd_vme_base = entry; 440 } 441 } 442 443 /* 444 * vm_map_entry_reserve: 445 * 446 * Reserves vm_map_entry structures so code later on can manipulate 447 * map_entry structures within a locked map without blocking trying 448 * to allocate a new vm_map_entry. 449 */ 450 int 451 vm_map_entry_reserve(int count) 452 { 453 struct globaldata *gd = mycpu; 454 vm_map_entry_t entry; 455 456 crit_enter(); 457 458 /* 459 * Make sure we have enough structures in gd_vme_base to handle 460 * the reservation request. 461 */ 462 while (gd->gd_vme_avail < count) { 463 entry = zalloc(mapentzone); 464 entry->next = gd->gd_vme_base; 465 gd->gd_vme_base = entry; 466 ++gd->gd_vme_avail; 467 } 468 gd->gd_vme_avail -= count; 469 crit_exit(); 470 return(count); 471 } 472 473 /* 474 * vm_map_entry_release: 475 * 476 * Releases previously reserved vm_map_entry structures that were not 477 * used. If we have too much junk in our per-cpu cache clean some of 478 * it out. 479 */ 480 void 481 vm_map_entry_release(int count) 482 { 483 struct globaldata *gd = mycpu; 484 vm_map_entry_t entry; 485 486 crit_enter(); 487 gd->gd_vme_avail += count; 488 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 489 entry = gd->gd_vme_base; 490 KKASSERT(entry != NULL); 491 gd->gd_vme_base = entry->next; 492 --gd->gd_vme_avail; 493 crit_exit(); 494 zfree(mapentzone, entry); 495 crit_enter(); 496 } 497 crit_exit(); 498 } 499 500 /* 501 * vm_map_entry_kreserve: 502 * 503 * Reserve map entry structures for use in kernel_map itself. These 504 * entries have *ALREADY* been reserved on a per-cpu basis when the map 505 * was inited. This function is used by zalloc() to avoid a recursion 506 * when zalloc() itself needs to allocate additional kernel memory. 507 * 508 * This function works like the normal reserve but does not load the 509 * vm_map_entry cache (because that would result in an infinite 510 * recursion). Note that gd_vme_avail may go negative. This is expected. 511 * 512 * Any caller of this function must be sure to renormalize after 513 * potentially eating entries to ensure that the reserve supply 514 * remains intact. 515 */ 516 int 517 vm_map_entry_kreserve(int count) 518 { 519 struct globaldata *gd = mycpu; 520 521 crit_enter(); 522 gd->gd_vme_avail -= count; 523 crit_exit(); 524 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail)); 525 return(count); 526 } 527 528 /* 529 * vm_map_entry_krelease: 530 * 531 * Release previously reserved map entries for kernel_map. We do not 532 * attempt to clean up like the normal release function as this would 533 * cause an unnecessary (but probably not fatal) deep procedure call. 534 */ 535 void 536 vm_map_entry_krelease(int count) 537 { 538 struct globaldata *gd = mycpu; 539 540 crit_enter(); 541 gd->gd_vme_avail += count; 542 crit_exit(); 543 } 544 545 /* 546 * vm_map_entry_create: [ internal use only ] 547 * 548 * Allocates a VM map entry for insertion. No entry fields are filled 549 * in. 550 * 551 * This routine may be called from an interrupt thread but not a FAST 552 * interrupt. This routine may recurse the map lock. 553 */ 554 static vm_map_entry_t 555 vm_map_entry_create(vm_map_t map, int *countp) 556 { 557 struct globaldata *gd = mycpu; 558 vm_map_entry_t entry; 559 560 KKASSERT(*countp > 0); 561 --*countp; 562 crit_enter(); 563 entry = gd->gd_vme_base; 564 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 565 gd->gd_vme_base = entry->next; 566 crit_exit(); 567 return(entry); 568 } 569 570 /* 571 * vm_map_entry_dispose: [ internal use only ] 572 * 573 * Dispose of a vm_map_entry that is no longer being referenced. This 574 * function may be called from an interrupt. 575 */ 576 static void 577 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 578 { 579 struct globaldata *gd = mycpu; 580 581 KKASSERT(map->hint != entry); 582 KKASSERT(map->first_free != entry); 583 584 ++*countp; 585 crit_enter(); 586 entry->next = gd->gd_vme_base; 587 gd->gd_vme_base = entry; 588 crit_exit(); 589 } 590 591 592 /* 593 * vm_map_entry_{un,}link: 594 * 595 * Insert/remove entries from maps. 596 */ 597 static __inline void 598 vm_map_entry_link(vm_map_t map, 599 vm_map_entry_t after_where, 600 vm_map_entry_t entry) 601 { 602 map->nentries++; 603 entry->prev = after_where; 604 entry->next = after_where->next; 605 entry->next->prev = entry; 606 after_where->next = entry; 607 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 608 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 609 } 610 611 static __inline void 612 vm_map_entry_unlink(vm_map_t map, 613 vm_map_entry_t entry) 614 { 615 vm_map_entry_t prev; 616 vm_map_entry_t next; 617 618 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) 619 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry); 620 prev = entry->prev; 621 next = entry->next; 622 next->prev = prev; 623 prev->next = next; 624 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 625 map->nentries--; 626 } 627 628 /* 629 * vm_map_lookup_entry: [ internal use only ] 630 * 631 * Finds the map entry containing (or 632 * immediately preceding) the specified address 633 * in the given map; the entry is returned 634 * in the "entry" parameter. The boolean 635 * result indicates whether the address is 636 * actually contained in the map. 637 */ 638 boolean_t 639 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, 640 vm_map_entry_t *entry /* OUT */) 641 { 642 vm_map_entry_t tmp; 643 vm_map_entry_t last; 644 645 #if 0 646 /* 647 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 648 * the hint code with the red-black lookup meets with system crashes 649 * and lockups. We do not yet know why. 650 * 651 * It is possible that the problem is related to the setting 652 * of the hint during map_entry deletion, in the code specified 653 * at the GGG comment later on in this file. 654 */ 655 /* 656 * Quickly check the cached hint, there's a good chance of a match. 657 */ 658 if (map->hint != &map->header) { 659 tmp = map->hint; 660 if (address >= tmp->start && address < tmp->end) { 661 *entry = tmp; 662 return(TRUE); 663 } 664 } 665 #endif 666 667 /* 668 * Locate the record from the top of the tree. 'last' tracks the 669 * closest prior record and is returned if no match is found, which 670 * in binary tree terms means tracking the most recent right-branch 671 * taken. If there is no prior record, &map->header is returned. 672 */ 673 last = &map->header; 674 tmp = RB_ROOT(&map->rb_root); 675 676 while (tmp) { 677 if (address >= tmp->start) { 678 if (address < tmp->end) { 679 *entry = tmp; 680 map->hint = tmp; 681 return(TRUE); 682 } 683 last = tmp; 684 tmp = RB_RIGHT(tmp, rb_entry); 685 } else { 686 tmp = RB_LEFT(tmp, rb_entry); 687 } 688 } 689 *entry = last; 690 return (FALSE); 691 } 692 693 /* 694 * vm_map_insert: 695 * 696 * Inserts the given whole VM object into the target 697 * map at the specified address range. The object's 698 * size should match that of the address range. 699 * 700 * Requires that the map be locked, and leaves it so. Requires that 701 * sufficient vm_map_entry structures have been reserved and tracks 702 * the use via countp. 703 * 704 * If object is non-NULL, ref count must be bumped by caller 705 * prior to making call to account for the new entry. 706 */ 707 int 708 vm_map_insert(vm_map_t map, int *countp, 709 vm_object_t object, vm_ooffset_t offset, 710 vm_offset_t start, vm_offset_t end, 711 vm_maptype_t maptype, 712 vm_prot_t prot, vm_prot_t max, 713 int cow) 714 { 715 vm_map_entry_t new_entry; 716 vm_map_entry_t prev_entry; 717 vm_map_entry_t temp_entry; 718 vm_eflags_t protoeflags; 719 720 /* 721 * Check that the start and end points are not bogus. 722 */ 723 724 if ((start < map->min_offset) || (end > map->max_offset) || 725 (start >= end)) 726 return (KERN_INVALID_ADDRESS); 727 728 /* 729 * Find the entry prior to the proposed starting address; if it's part 730 * of an existing entry, this range is bogus. 731 */ 732 733 if (vm_map_lookup_entry(map, start, &temp_entry)) 734 return (KERN_NO_SPACE); 735 736 prev_entry = temp_entry; 737 738 /* 739 * Assert that the next entry doesn't overlap the end point. 740 */ 741 742 if ((prev_entry->next != &map->header) && 743 (prev_entry->next->start < end)) 744 return (KERN_NO_SPACE); 745 746 protoeflags = 0; 747 748 if (cow & MAP_COPY_ON_WRITE) 749 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 750 751 if (cow & MAP_NOFAULT) { 752 protoeflags |= MAP_ENTRY_NOFAULT; 753 754 KASSERT(object == NULL, 755 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 756 } 757 if (cow & MAP_DISABLE_SYNCER) 758 protoeflags |= MAP_ENTRY_NOSYNC; 759 if (cow & MAP_DISABLE_COREDUMP) 760 protoeflags |= MAP_ENTRY_NOCOREDUMP; 761 762 if (object) { 763 /* 764 * When object is non-NULL, it could be shared with another 765 * process. We have to set or clear OBJ_ONEMAPPING 766 * appropriately. 767 */ 768 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 769 vm_object_clear_flag(object, OBJ_ONEMAPPING); 770 } 771 } 772 else if ((prev_entry != &map->header) && 773 (prev_entry->eflags == protoeflags) && 774 (prev_entry->end == start) && 775 (prev_entry->wired_count == 0) && 776 prev_entry->maptype == maptype && 777 ((prev_entry->object.vm_object == NULL) || 778 vm_object_coalesce(prev_entry->object.vm_object, 779 OFF_TO_IDX(prev_entry->offset), 780 (vm_size_t)(prev_entry->end - prev_entry->start), 781 (vm_size_t)(end - prev_entry->end)))) { 782 /* 783 * We were able to extend the object. Determine if we 784 * can extend the previous map entry to include the 785 * new range as well. 786 */ 787 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 788 (prev_entry->protection == prot) && 789 (prev_entry->max_protection == max)) { 790 map->size += (end - prev_entry->end); 791 prev_entry->end = end; 792 vm_map_simplify_entry(map, prev_entry, countp); 793 return (KERN_SUCCESS); 794 } 795 796 /* 797 * If we can extend the object but cannot extend the 798 * map entry, we have to create a new map entry. We 799 * must bump the ref count on the extended object to 800 * account for it. object may be NULL. 801 */ 802 object = prev_entry->object.vm_object; 803 offset = prev_entry->offset + 804 (prev_entry->end - prev_entry->start); 805 vm_object_reference(object); 806 } 807 808 /* 809 * NOTE: if conditionals fail, object can be NULL here. This occurs 810 * in things like the buffer map where we manage kva but do not manage 811 * backing objects. 812 */ 813 814 /* 815 * Create a new entry 816 */ 817 818 new_entry = vm_map_entry_create(map, countp); 819 new_entry->start = start; 820 new_entry->end = end; 821 822 new_entry->maptype = maptype; 823 new_entry->eflags = protoeflags; 824 new_entry->object.vm_object = object; 825 new_entry->offset = offset; 826 new_entry->aux.master_pde = 0; 827 828 new_entry->inheritance = VM_INHERIT_DEFAULT; 829 new_entry->protection = prot; 830 new_entry->max_protection = max; 831 new_entry->wired_count = 0; 832 833 /* 834 * Insert the new entry into the list 835 */ 836 837 vm_map_entry_link(map, prev_entry, new_entry); 838 map->size += new_entry->end - new_entry->start; 839 840 /* 841 * Update the free space hint 842 */ 843 if ((map->first_free == prev_entry) && 844 (prev_entry->end >= new_entry->start)) { 845 map->first_free = new_entry; 846 } 847 848 #if 0 849 /* 850 * Temporarily removed to avoid MAP_STACK panic, due to 851 * MAP_STACK being a huge hack. Will be added back in 852 * when MAP_STACK (and the user stack mapping) is fixed. 853 */ 854 /* 855 * It may be possible to simplify the entry 856 */ 857 vm_map_simplify_entry(map, new_entry, countp); 858 #endif 859 860 /* 861 * Try to pre-populate the page table. Mappings governed by virtual 862 * page tables cannot be prepopulated without a lot of work, so 863 * don't try. 864 */ 865 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 866 maptype != VM_MAPTYPE_VPAGETABLE) { 867 pmap_object_init_pt(map->pmap, start, prot, 868 object, OFF_TO_IDX(offset), end - start, 869 cow & MAP_PREFAULT_PARTIAL); 870 } 871 872 return (KERN_SUCCESS); 873 } 874 875 /* 876 * Find sufficient space for `length' bytes in the given map, starting at 877 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 878 * 879 * This function will returned an arbitrarily aligned pointer. If no 880 * particular alignment is required you should pass align as 1. Note that 881 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 882 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 883 * argument. 884 * 885 * 'align' should be a power of 2 but is not required to be. 886 */ 887 int 888 vm_map_findspace( 889 vm_map_t map, 890 vm_offset_t start, 891 vm_size_t length, 892 vm_offset_t align, 893 vm_offset_t *addr) 894 { 895 vm_map_entry_t entry, next; 896 vm_offset_t end; 897 vm_offset_t align_mask; 898 899 if (start < map->min_offset) 900 start = map->min_offset; 901 if (start > map->max_offset) 902 return (1); 903 904 /* 905 * If the alignment is not a power of 2 we will have to use 906 * a mod/division, set align_mask to a special value. 907 */ 908 if ((align | (align - 1)) + 1 != (align << 1)) 909 align_mask = (vm_offset_t)-1; 910 else 911 align_mask = align - 1; 912 913 retry: 914 /* 915 * Look for the first possible address; if there's already something 916 * at this address, we have to start after it. 917 */ 918 if (start == map->min_offset) { 919 if ((entry = map->first_free) != &map->header) 920 start = entry->end; 921 } else { 922 vm_map_entry_t tmp; 923 924 if (vm_map_lookup_entry(map, start, &tmp)) 925 start = tmp->end; 926 entry = tmp; 927 } 928 929 /* 930 * Look through the rest of the map, trying to fit a new region in the 931 * gap between existing regions, or after the very last region. 932 */ 933 for (;; start = (entry = next)->end) { 934 /* 935 * Adjust the proposed start by the requested alignment, 936 * be sure that we didn't wrap the address. 937 */ 938 if (align_mask == (vm_offset_t)-1) 939 end = ((start + align - 1) / align) * align; 940 else 941 end = (start + align_mask) & ~align_mask; 942 if (end < start) 943 return (1); 944 start = end; 945 /* 946 * Find the end of the proposed new region. Be sure we didn't 947 * go beyond the end of the map, or wrap around the address. 948 * Then check to see if this is the last entry or if the 949 * proposed end fits in the gap between this and the next 950 * entry. 951 */ 952 end = start + length; 953 if (end > map->max_offset || end < start) 954 return (1); 955 next = entry->next; 956 if (next == &map->header || next->start >= end) 957 break; 958 } 959 map->hint = entry; 960 if (map == kernel_map) { 961 vm_offset_t ksize; 962 if ((ksize = round_page(start + length)) > kernel_vm_end) { 963 pmap_growkernel(ksize); 964 goto retry; 965 } 966 } 967 *addr = start; 968 return (0); 969 } 970 971 /* 972 * vm_map_find finds an unallocated region in the target address 973 * map with the given length. The search is defined to be 974 * first-fit from the specified address; the region found is 975 * returned in the same parameter. 976 * 977 * If object is non-NULL, ref count must be bumped by caller 978 * prior to making call to account for the new entry. 979 */ 980 int 981 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 982 vm_offset_t *addr, vm_size_t length, 983 boolean_t find_space, 984 vm_maptype_t maptype, 985 vm_prot_t prot, vm_prot_t max, 986 int cow) 987 { 988 vm_offset_t start; 989 int result; 990 int count; 991 992 start = *addr; 993 994 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 995 vm_map_lock(map); 996 if (find_space) { 997 if (vm_map_findspace(map, start, length, 1, addr)) { 998 vm_map_unlock(map); 999 vm_map_entry_release(count); 1000 return (KERN_NO_SPACE); 1001 } 1002 start = *addr; 1003 } 1004 result = vm_map_insert(map, &count, object, offset, 1005 start, start + length, 1006 maptype, 1007 prot, max, 1008 cow); 1009 vm_map_unlock(map); 1010 vm_map_entry_release(count); 1011 1012 return (result); 1013 } 1014 1015 /* 1016 * vm_map_simplify_entry: 1017 * 1018 * Simplify the given map entry by merging with either neighbor. This 1019 * routine also has the ability to merge with both neighbors. 1020 * 1021 * The map must be locked. 1022 * 1023 * This routine guarentees that the passed entry remains valid (though 1024 * possibly extended). When merging, this routine may delete one or 1025 * both neighbors. No action is taken on entries which have their 1026 * in-transition flag set. 1027 */ 1028 void 1029 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1030 { 1031 vm_map_entry_t next, prev; 1032 vm_size_t prevsize, esize; 1033 1034 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1035 ++mycpu->gd_cnt.v_intrans_coll; 1036 return; 1037 } 1038 1039 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1040 return; 1041 1042 prev = entry->prev; 1043 if (prev != &map->header) { 1044 prevsize = prev->end - prev->start; 1045 if ( (prev->end == entry->start) && 1046 (prev->maptype == entry->maptype) && 1047 (prev->object.vm_object == entry->object.vm_object) && 1048 (!prev->object.vm_object || 1049 (prev->offset + prevsize == entry->offset)) && 1050 (prev->eflags == entry->eflags) && 1051 (prev->protection == entry->protection) && 1052 (prev->max_protection == entry->max_protection) && 1053 (prev->inheritance == entry->inheritance) && 1054 (prev->wired_count == entry->wired_count)) { 1055 if (map->first_free == prev) 1056 map->first_free = entry; 1057 if (map->hint == prev) 1058 map->hint = entry; 1059 vm_map_entry_unlink(map, prev); 1060 entry->start = prev->start; 1061 entry->offset = prev->offset; 1062 if (prev->object.vm_object) 1063 vm_object_deallocate(prev->object.vm_object); 1064 vm_map_entry_dispose(map, prev, countp); 1065 } 1066 } 1067 1068 next = entry->next; 1069 if (next != &map->header) { 1070 esize = entry->end - entry->start; 1071 if ((entry->end == next->start) && 1072 (next->maptype == entry->maptype) && 1073 (next->object.vm_object == entry->object.vm_object) && 1074 (!entry->object.vm_object || 1075 (entry->offset + esize == next->offset)) && 1076 (next->eflags == entry->eflags) && 1077 (next->protection == entry->protection) && 1078 (next->max_protection == entry->max_protection) && 1079 (next->inheritance == entry->inheritance) && 1080 (next->wired_count == entry->wired_count)) { 1081 if (map->first_free == next) 1082 map->first_free = entry; 1083 if (map->hint == next) 1084 map->hint = entry; 1085 vm_map_entry_unlink(map, next); 1086 entry->end = next->end; 1087 if (next->object.vm_object) 1088 vm_object_deallocate(next->object.vm_object); 1089 vm_map_entry_dispose(map, next, countp); 1090 } 1091 } 1092 } 1093 /* 1094 * vm_map_clip_start: [ internal use only ] 1095 * 1096 * Asserts that the given entry begins at or after 1097 * the specified address; if necessary, 1098 * it splits the entry into two. 1099 */ 1100 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1101 { \ 1102 if (startaddr > entry->start) \ 1103 _vm_map_clip_start(map, entry, startaddr, countp); \ 1104 } 1105 1106 /* 1107 * This routine is called only when it is known that 1108 * the entry must be split. 1109 */ 1110 static void 1111 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp) 1112 { 1113 vm_map_entry_t new_entry; 1114 1115 /* 1116 * Split off the front portion -- note that we must insert the new 1117 * entry BEFORE this one, so that this entry has the specified 1118 * starting address. 1119 */ 1120 1121 vm_map_simplify_entry(map, entry, countp); 1122 1123 /* 1124 * If there is no object backing this entry, we might as well create 1125 * one now. If we defer it, an object can get created after the map 1126 * is clipped, and individual objects will be created for the split-up 1127 * map. This is a bit of a hack, but is also about the best place to 1128 * put this improvement. 1129 */ 1130 if (entry->object.vm_object == NULL && !map->system_map) { 1131 vm_map_entry_allocate_object(entry); 1132 } 1133 1134 new_entry = vm_map_entry_create(map, countp); 1135 *new_entry = *entry; 1136 1137 new_entry->end = start; 1138 entry->offset += (start - entry->start); 1139 entry->start = start; 1140 1141 vm_map_entry_link(map, entry->prev, new_entry); 1142 1143 switch(entry->maptype) { 1144 case VM_MAPTYPE_NORMAL: 1145 case VM_MAPTYPE_VPAGETABLE: 1146 vm_object_reference(new_entry->object.vm_object); 1147 break; 1148 default: 1149 break; 1150 } 1151 } 1152 1153 /* 1154 * vm_map_clip_end: [ internal use only ] 1155 * 1156 * Asserts that the given entry ends at or before 1157 * the specified address; if necessary, 1158 * it splits the entry into two. 1159 */ 1160 1161 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1162 { \ 1163 if (endaddr < entry->end) \ 1164 _vm_map_clip_end(map, entry, endaddr, countp); \ 1165 } 1166 1167 /* 1168 * This routine is called only when it is known that 1169 * the entry must be split. 1170 */ 1171 static void 1172 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp) 1173 { 1174 vm_map_entry_t new_entry; 1175 1176 /* 1177 * If there is no object backing this entry, we might as well create 1178 * one now. If we defer it, an object can get created after the map 1179 * is clipped, and individual objects will be created for the split-up 1180 * map. This is a bit of a hack, but is also about the best place to 1181 * put this improvement. 1182 */ 1183 1184 if (entry->object.vm_object == NULL && !map->system_map) { 1185 vm_map_entry_allocate_object(entry); 1186 } 1187 1188 /* 1189 * Create a new entry and insert it AFTER the specified entry 1190 */ 1191 1192 new_entry = vm_map_entry_create(map, countp); 1193 *new_entry = *entry; 1194 1195 new_entry->start = entry->end = end; 1196 new_entry->offset += (end - entry->start); 1197 1198 vm_map_entry_link(map, entry, new_entry); 1199 1200 switch(entry->maptype) { 1201 case VM_MAPTYPE_NORMAL: 1202 case VM_MAPTYPE_VPAGETABLE: 1203 vm_object_reference(new_entry->object.vm_object); 1204 break; 1205 default: 1206 break; 1207 } 1208 } 1209 1210 /* 1211 * VM_MAP_RANGE_CHECK: [ internal use only ] 1212 * 1213 * Asserts that the starting and ending region 1214 * addresses fall within the valid range of the map. 1215 */ 1216 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1217 { \ 1218 if (start < vm_map_min(map)) \ 1219 start = vm_map_min(map); \ 1220 if (end > vm_map_max(map)) \ 1221 end = vm_map_max(map); \ 1222 if (start > end) \ 1223 start = end; \ 1224 } 1225 1226 /* 1227 * vm_map_transition_wait: [ kernel use only ] 1228 * 1229 * Used to block when an in-transition collison occurs. The map 1230 * is unlocked for the sleep and relocked before the return. 1231 */ 1232 static 1233 void 1234 vm_map_transition_wait(vm_map_t map) 1235 { 1236 vm_map_unlock(map); 1237 tsleep(map, 0, "vment", 0); 1238 vm_map_lock(map); 1239 } 1240 1241 /* 1242 * CLIP_CHECK_BACK 1243 * CLIP_CHECK_FWD 1244 * 1245 * When we do blocking operations with the map lock held it is 1246 * possible that a clip might have occured on our in-transit entry, 1247 * requiring an adjustment to the entry in our loop. These macros 1248 * help the pageable and clip_range code deal with the case. The 1249 * conditional costs virtually nothing if no clipping has occured. 1250 */ 1251 1252 #define CLIP_CHECK_BACK(entry, save_start) \ 1253 do { \ 1254 while (entry->start != save_start) { \ 1255 entry = entry->prev; \ 1256 KASSERT(entry != &map->header, ("bad entry clip")); \ 1257 } \ 1258 } while(0) 1259 1260 #define CLIP_CHECK_FWD(entry, save_end) \ 1261 do { \ 1262 while (entry->end != save_end) { \ 1263 entry = entry->next; \ 1264 KASSERT(entry != &map->header, ("bad entry clip")); \ 1265 } \ 1266 } while(0) 1267 1268 1269 /* 1270 * vm_map_clip_range: [ kernel use only ] 1271 * 1272 * Clip the specified range and return the base entry. The 1273 * range may cover several entries starting at the returned base 1274 * and the first and last entry in the covering sequence will be 1275 * properly clipped to the requested start and end address. 1276 * 1277 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1278 * flag. 1279 * 1280 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1281 * covered by the requested range. 1282 * 1283 * The map must be exclusively locked on entry and will remain locked 1284 * on return. If no range exists or the range contains holes and you 1285 * specified that no holes were allowed, NULL will be returned. This 1286 * routine may temporarily unlock the map in order avoid a deadlock when 1287 * sleeping. 1288 */ 1289 static 1290 vm_map_entry_t 1291 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1292 int *countp, int flags) 1293 { 1294 vm_map_entry_t start_entry; 1295 vm_map_entry_t entry; 1296 1297 /* 1298 * Locate the entry and effect initial clipping. The in-transition 1299 * case does not occur very often so do not try to optimize it. 1300 */ 1301 again: 1302 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1303 return (NULL); 1304 entry = start_entry; 1305 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1306 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1307 ++mycpu->gd_cnt.v_intrans_coll; 1308 ++mycpu->gd_cnt.v_intrans_wait; 1309 vm_map_transition_wait(map); 1310 /* 1311 * entry and/or start_entry may have been clipped while 1312 * we slept, or may have gone away entirely. We have 1313 * to restart from the lookup. 1314 */ 1315 goto again; 1316 } 1317 /* 1318 * Since we hold an exclusive map lock we do not have to restart 1319 * after clipping, even though clipping may block in zalloc. 1320 */ 1321 vm_map_clip_start(map, entry, start, countp); 1322 vm_map_clip_end(map, entry, end, countp); 1323 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1324 1325 /* 1326 * Scan entries covered by the range. When working on the next 1327 * entry a restart need only re-loop on the current entry which 1328 * we have already locked, since 'next' may have changed. Also, 1329 * even though entry is safe, it may have been clipped so we 1330 * have to iterate forwards through the clip after sleeping. 1331 */ 1332 while (entry->next != &map->header && entry->next->start < end) { 1333 vm_map_entry_t next = entry->next; 1334 1335 if (flags & MAP_CLIP_NO_HOLES) { 1336 if (next->start > entry->end) { 1337 vm_map_unclip_range(map, start_entry, 1338 start, entry->end, countp, flags); 1339 return(NULL); 1340 } 1341 } 1342 1343 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1344 vm_offset_t save_end = entry->end; 1345 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1346 ++mycpu->gd_cnt.v_intrans_coll; 1347 ++mycpu->gd_cnt.v_intrans_wait; 1348 vm_map_transition_wait(map); 1349 1350 /* 1351 * clips might have occured while we blocked. 1352 */ 1353 CLIP_CHECK_FWD(entry, save_end); 1354 CLIP_CHECK_BACK(start_entry, start); 1355 continue; 1356 } 1357 /* 1358 * No restart necessary even though clip_end may block, we 1359 * are holding the map lock. 1360 */ 1361 vm_map_clip_end(map, next, end, countp); 1362 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1363 entry = next; 1364 } 1365 if (flags & MAP_CLIP_NO_HOLES) { 1366 if (entry->end != end) { 1367 vm_map_unclip_range(map, start_entry, 1368 start, entry->end, countp, flags); 1369 return(NULL); 1370 } 1371 } 1372 return(start_entry); 1373 } 1374 1375 /* 1376 * vm_map_unclip_range: [ kernel use only ] 1377 * 1378 * Undo the effect of vm_map_clip_range(). You should pass the same 1379 * flags and the same range that you passed to vm_map_clip_range(). 1380 * This code will clear the in-transition flag on the entries and 1381 * wake up anyone waiting. This code will also simplify the sequence 1382 * and attempt to merge it with entries before and after the sequence. 1383 * 1384 * The map must be locked on entry and will remain locked on return. 1385 * 1386 * Note that you should also pass the start_entry returned by 1387 * vm_map_clip_range(). However, if you block between the two calls 1388 * with the map unlocked please be aware that the start_entry may 1389 * have been clipped and you may need to scan it backwards to find 1390 * the entry corresponding with the original start address. You are 1391 * responsible for this, vm_map_unclip_range() expects the correct 1392 * start_entry to be passed to it and will KASSERT otherwise. 1393 */ 1394 static 1395 void 1396 vm_map_unclip_range( 1397 vm_map_t map, 1398 vm_map_entry_t start_entry, 1399 vm_offset_t start, 1400 vm_offset_t end, 1401 int *countp, 1402 int flags) 1403 { 1404 vm_map_entry_t entry; 1405 1406 entry = start_entry; 1407 1408 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1409 while (entry != &map->header && entry->start < end) { 1410 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry)); 1411 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped")); 1412 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1413 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1414 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1415 wakeup(map); 1416 } 1417 entry = entry->next; 1418 } 1419 1420 /* 1421 * Simplification does not block so there is no restart case. 1422 */ 1423 entry = start_entry; 1424 while (entry != &map->header && entry->start < end) { 1425 vm_map_simplify_entry(map, entry, countp); 1426 entry = entry->next; 1427 } 1428 } 1429 1430 /* 1431 * vm_map_submap: [ kernel use only ] 1432 * 1433 * Mark the given range as handled by a subordinate map. 1434 * 1435 * This range must have been created with vm_map_find, 1436 * and no other operations may have been performed on this 1437 * range prior to calling vm_map_submap. 1438 * 1439 * Only a limited number of operations can be performed 1440 * within this rage after calling vm_map_submap: 1441 * vm_fault 1442 * [Don't try vm_map_copy!] 1443 * 1444 * To remove a submapping, one must first remove the 1445 * range from the superior map, and then destroy the 1446 * submap (if desired). [Better yet, don't try it.] 1447 */ 1448 int 1449 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1450 { 1451 vm_map_entry_t entry; 1452 int result = KERN_INVALID_ARGUMENT; 1453 int count; 1454 1455 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1456 vm_map_lock(map); 1457 1458 VM_MAP_RANGE_CHECK(map, start, end); 1459 1460 if (vm_map_lookup_entry(map, start, &entry)) { 1461 vm_map_clip_start(map, entry, start, &count); 1462 } else { 1463 entry = entry->next; 1464 } 1465 1466 vm_map_clip_end(map, entry, end, &count); 1467 1468 if ((entry->start == start) && (entry->end == end) && 1469 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1470 (entry->object.vm_object == NULL)) { 1471 entry->object.sub_map = submap; 1472 entry->maptype = VM_MAPTYPE_SUBMAP; 1473 result = KERN_SUCCESS; 1474 } 1475 vm_map_unlock(map); 1476 vm_map_entry_release(count); 1477 1478 return (result); 1479 } 1480 1481 /* 1482 * vm_map_protect: 1483 * 1484 * Sets the protection of the specified address region in the target map. 1485 * If "set_max" is specified, the maximum protection is to be set; 1486 * otherwise, only the current protection is affected. 1487 * 1488 * The protection is not applicable to submaps, but is applicable to normal 1489 * maps and maps governed by virtual page tables. For example, when operating 1490 * on a virtual page table our protection basically controls how COW occurs 1491 * on the backing object, whereas the virtual page table abstraction itself 1492 * is an abstraction for userland. 1493 */ 1494 int 1495 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1496 vm_prot_t new_prot, boolean_t set_max) 1497 { 1498 vm_map_entry_t current; 1499 vm_map_entry_t entry; 1500 int count; 1501 1502 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1503 vm_map_lock(map); 1504 1505 VM_MAP_RANGE_CHECK(map, start, end); 1506 1507 if (vm_map_lookup_entry(map, start, &entry)) { 1508 vm_map_clip_start(map, entry, start, &count); 1509 } else { 1510 entry = entry->next; 1511 } 1512 1513 /* 1514 * Make a first pass to check for protection violations. 1515 */ 1516 current = entry; 1517 while ((current != &map->header) && (current->start < end)) { 1518 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1519 vm_map_unlock(map); 1520 vm_map_entry_release(count); 1521 return (KERN_INVALID_ARGUMENT); 1522 } 1523 if ((new_prot & current->max_protection) != new_prot) { 1524 vm_map_unlock(map); 1525 vm_map_entry_release(count); 1526 return (KERN_PROTECTION_FAILURE); 1527 } 1528 current = current->next; 1529 } 1530 1531 /* 1532 * Go back and fix up protections. [Note that clipping is not 1533 * necessary the second time.] 1534 */ 1535 current = entry; 1536 1537 while ((current != &map->header) && (current->start < end)) { 1538 vm_prot_t old_prot; 1539 1540 vm_map_clip_end(map, current, end, &count); 1541 1542 old_prot = current->protection; 1543 if (set_max) { 1544 current->protection = 1545 (current->max_protection = new_prot) & 1546 old_prot; 1547 } else { 1548 current->protection = new_prot; 1549 } 1550 1551 /* 1552 * Update physical map if necessary. Worry about copy-on-write 1553 * here -- CHECK THIS XXX 1554 */ 1555 1556 if (current->protection != old_prot) { 1557 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1558 VM_PROT_ALL) 1559 1560 pmap_protect(map->pmap, current->start, 1561 current->end, 1562 current->protection & MASK(current)); 1563 #undef MASK 1564 } 1565 1566 vm_map_simplify_entry(map, current, &count); 1567 1568 current = current->next; 1569 } 1570 1571 vm_map_unlock(map); 1572 vm_map_entry_release(count); 1573 return (KERN_SUCCESS); 1574 } 1575 1576 /* 1577 * vm_map_madvise: 1578 * 1579 * This routine traverses a processes map handling the madvise 1580 * system call. Advisories are classified as either those effecting 1581 * the vm_map_entry structure, or those effecting the underlying 1582 * objects. 1583 * 1584 * The <value> argument is used for extended madvise calls. 1585 */ 1586 int 1587 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1588 int behav, off_t value) 1589 { 1590 vm_map_entry_t current, entry; 1591 int modify_map = 0; 1592 int error = 0; 1593 int count; 1594 1595 /* 1596 * Some madvise calls directly modify the vm_map_entry, in which case 1597 * we need to use an exclusive lock on the map and we need to perform 1598 * various clipping operations. Otherwise we only need a read-lock 1599 * on the map. 1600 */ 1601 1602 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1603 1604 switch(behav) { 1605 case MADV_NORMAL: 1606 case MADV_SEQUENTIAL: 1607 case MADV_RANDOM: 1608 case MADV_NOSYNC: 1609 case MADV_AUTOSYNC: 1610 case MADV_NOCORE: 1611 case MADV_CORE: 1612 case MADV_SETMAP: 1613 case MADV_INVAL: 1614 modify_map = 1; 1615 vm_map_lock(map); 1616 break; 1617 case MADV_WILLNEED: 1618 case MADV_DONTNEED: 1619 case MADV_FREE: 1620 vm_map_lock_read(map); 1621 break; 1622 default: 1623 vm_map_entry_release(count); 1624 return (EINVAL); 1625 } 1626 1627 /* 1628 * Locate starting entry and clip if necessary. 1629 */ 1630 1631 VM_MAP_RANGE_CHECK(map, start, end); 1632 1633 if (vm_map_lookup_entry(map, start, &entry)) { 1634 if (modify_map) 1635 vm_map_clip_start(map, entry, start, &count); 1636 } else { 1637 entry = entry->next; 1638 } 1639 1640 if (modify_map) { 1641 /* 1642 * madvise behaviors that are implemented in the vm_map_entry. 1643 * 1644 * We clip the vm_map_entry so that behavioral changes are 1645 * limited to the specified address range. 1646 */ 1647 for (current = entry; 1648 (current != &map->header) && (current->start < end); 1649 current = current->next 1650 ) { 1651 if (current->maptype == VM_MAPTYPE_SUBMAP) 1652 continue; 1653 1654 vm_map_clip_end(map, current, end, &count); 1655 1656 switch (behav) { 1657 case MADV_NORMAL: 1658 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1659 break; 1660 case MADV_SEQUENTIAL: 1661 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1662 break; 1663 case MADV_RANDOM: 1664 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1665 break; 1666 case MADV_NOSYNC: 1667 current->eflags |= MAP_ENTRY_NOSYNC; 1668 break; 1669 case MADV_AUTOSYNC: 1670 current->eflags &= ~MAP_ENTRY_NOSYNC; 1671 break; 1672 case MADV_NOCORE: 1673 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1674 break; 1675 case MADV_CORE: 1676 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1677 break; 1678 case MADV_INVAL: 1679 /* 1680 * Invalidate the related pmap entries, used 1681 * to flush portions of the real kernel's 1682 * pmap when the caller has removed or 1683 * modified existing mappings in a virtual 1684 * page table. 1685 */ 1686 pmap_remove(map->pmap, 1687 current->start, current->end); 1688 break; 1689 case MADV_SETMAP: 1690 /* 1691 * Set the page directory page for a map 1692 * governed by a virtual page table. Mark 1693 * the entry as being governed by a virtual 1694 * page table if it is not. 1695 * 1696 * XXX the page directory page is stored 1697 * in the avail_ssize field if the map_entry. 1698 * 1699 * XXX the map simplification code does not 1700 * compare this field so weird things may 1701 * happen if you do not apply this function 1702 * to the entire mapping governed by the 1703 * virtual page table. 1704 */ 1705 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1706 error = EINVAL; 1707 break; 1708 } 1709 current->aux.master_pde = value; 1710 pmap_remove(map->pmap, 1711 current->start, current->end); 1712 break; 1713 default: 1714 error = EINVAL; 1715 break; 1716 } 1717 vm_map_simplify_entry(map, current, &count); 1718 } 1719 vm_map_unlock(map); 1720 } else { 1721 vm_pindex_t pindex; 1722 int count; 1723 1724 /* 1725 * madvise behaviors that are implemented in the underlying 1726 * vm_object. 1727 * 1728 * Since we don't clip the vm_map_entry, we have to clip 1729 * the vm_object pindex and count. 1730 * 1731 * NOTE! We currently do not support these functions on 1732 * virtual page tables. 1733 */ 1734 for (current = entry; 1735 (current != &map->header) && (current->start < end); 1736 current = current->next 1737 ) { 1738 vm_offset_t useStart; 1739 1740 if (current->maptype != VM_MAPTYPE_NORMAL) 1741 continue; 1742 1743 pindex = OFF_TO_IDX(current->offset); 1744 count = atop(current->end - current->start); 1745 useStart = current->start; 1746 1747 if (current->start < start) { 1748 pindex += atop(start - current->start); 1749 count -= atop(start - current->start); 1750 useStart = start; 1751 } 1752 if (current->end > end) 1753 count -= atop(current->end - end); 1754 1755 if (count <= 0) 1756 continue; 1757 1758 vm_object_madvise(current->object.vm_object, 1759 pindex, count, behav); 1760 1761 /* 1762 * Try to populate the page table. Mappings governed 1763 * by virtual page tables cannot be pre-populated 1764 * without a lot of work so don't try. 1765 */ 1766 if (behav == MADV_WILLNEED && 1767 current->maptype != VM_MAPTYPE_VPAGETABLE) { 1768 pmap_object_init_pt( 1769 map->pmap, 1770 useStart, 1771 current->protection, 1772 current->object.vm_object, 1773 pindex, 1774 (count << PAGE_SHIFT), 1775 MAP_PREFAULT_MADVISE 1776 ); 1777 } 1778 } 1779 vm_map_unlock_read(map); 1780 } 1781 vm_map_entry_release(count); 1782 return(error); 1783 } 1784 1785 1786 /* 1787 * vm_map_inherit: 1788 * 1789 * Sets the inheritance of the specified address 1790 * range in the target map. Inheritance 1791 * affects how the map will be shared with 1792 * child maps at the time of vm_map_fork. 1793 */ 1794 int 1795 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1796 vm_inherit_t new_inheritance) 1797 { 1798 vm_map_entry_t entry; 1799 vm_map_entry_t temp_entry; 1800 int count; 1801 1802 switch (new_inheritance) { 1803 case VM_INHERIT_NONE: 1804 case VM_INHERIT_COPY: 1805 case VM_INHERIT_SHARE: 1806 break; 1807 default: 1808 return (KERN_INVALID_ARGUMENT); 1809 } 1810 1811 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1812 vm_map_lock(map); 1813 1814 VM_MAP_RANGE_CHECK(map, start, end); 1815 1816 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1817 entry = temp_entry; 1818 vm_map_clip_start(map, entry, start, &count); 1819 } else 1820 entry = temp_entry->next; 1821 1822 while ((entry != &map->header) && (entry->start < end)) { 1823 vm_map_clip_end(map, entry, end, &count); 1824 1825 entry->inheritance = new_inheritance; 1826 1827 vm_map_simplify_entry(map, entry, &count); 1828 1829 entry = entry->next; 1830 } 1831 vm_map_unlock(map); 1832 vm_map_entry_release(count); 1833 return (KERN_SUCCESS); 1834 } 1835 1836 /* 1837 * Implement the semantics of mlock 1838 */ 1839 int 1840 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 1841 boolean_t new_pageable) 1842 { 1843 vm_map_entry_t entry; 1844 vm_map_entry_t start_entry; 1845 vm_offset_t end; 1846 int rv = KERN_SUCCESS; 1847 int count; 1848 1849 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1850 vm_map_lock(map); 1851 VM_MAP_RANGE_CHECK(map, start, real_end); 1852 end = real_end; 1853 1854 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1855 if (start_entry == NULL) { 1856 vm_map_unlock(map); 1857 vm_map_entry_release(count); 1858 return (KERN_INVALID_ADDRESS); 1859 } 1860 1861 if (new_pageable == 0) { 1862 entry = start_entry; 1863 while ((entry != &map->header) && (entry->start < end)) { 1864 vm_offset_t save_start; 1865 vm_offset_t save_end; 1866 1867 /* 1868 * Already user wired or hard wired (trivial cases) 1869 */ 1870 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1871 entry = entry->next; 1872 continue; 1873 } 1874 if (entry->wired_count != 0) { 1875 entry->wired_count++; 1876 entry->eflags |= MAP_ENTRY_USER_WIRED; 1877 entry = entry->next; 1878 continue; 1879 } 1880 1881 /* 1882 * A new wiring requires instantiation of appropriate 1883 * management structures and the faulting in of the 1884 * page. 1885 */ 1886 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 1887 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1888 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1889 vm_map_entry_shadow(entry); 1890 } else if (entry->object.vm_object == NULL && 1891 !map->system_map) { 1892 vm_map_entry_allocate_object(entry); 1893 } 1894 } 1895 entry->wired_count++; 1896 entry->eflags |= MAP_ENTRY_USER_WIRED; 1897 1898 /* 1899 * Now fault in the area. Note that vm_fault_wire() 1900 * may release the map lock temporarily, it will be 1901 * relocked on return. The in-transition 1902 * flag protects the entries. 1903 */ 1904 save_start = entry->start; 1905 save_end = entry->end; 1906 rv = vm_fault_wire(map, entry, TRUE); 1907 if (rv) { 1908 CLIP_CHECK_BACK(entry, save_start); 1909 for (;;) { 1910 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 1911 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1912 entry->wired_count = 0; 1913 if (entry->end == save_end) 1914 break; 1915 entry = entry->next; 1916 KASSERT(entry != &map->header, ("bad entry clip during backout")); 1917 } 1918 end = save_start; /* unwire the rest */ 1919 break; 1920 } 1921 /* 1922 * note that even though the entry might have been 1923 * clipped, the USER_WIRED flag we set prevents 1924 * duplication so we do not have to do a 1925 * clip check. 1926 */ 1927 entry = entry->next; 1928 } 1929 1930 /* 1931 * If we failed fall through to the unwiring section to 1932 * unwire what we had wired so far. 'end' has already 1933 * been adjusted. 1934 */ 1935 if (rv) 1936 new_pageable = 1; 1937 1938 /* 1939 * start_entry might have been clipped if we unlocked the 1940 * map and blocked. No matter how clipped it has gotten 1941 * there should be a fragment that is on our start boundary. 1942 */ 1943 CLIP_CHECK_BACK(start_entry, start); 1944 } 1945 1946 /* 1947 * Deal with the unwiring case. 1948 */ 1949 if (new_pageable) { 1950 /* 1951 * This is the unwiring case. We must first ensure that the 1952 * range to be unwired is really wired down. We know there 1953 * are no holes. 1954 */ 1955 entry = start_entry; 1956 while ((entry != &map->header) && (entry->start < end)) { 1957 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1958 rv = KERN_INVALID_ARGUMENT; 1959 goto done; 1960 } 1961 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 1962 entry = entry->next; 1963 } 1964 1965 /* 1966 * Now decrement the wiring count for each region. If a region 1967 * becomes completely unwired, unwire its physical pages and 1968 * mappings. 1969 */ 1970 /* 1971 * The map entries are processed in a loop, checking to 1972 * make sure the entry is wired and asserting it has a wired 1973 * count. However, another loop was inserted more-or-less in 1974 * the middle of the unwiring path. This loop picks up the 1975 * "entry" loop variable from the first loop without first 1976 * setting it to start_entry. Naturally, the secound loop 1977 * is never entered and the pages backing the entries are 1978 * never unwired. This can lead to a leak of wired pages. 1979 */ 1980 entry = start_entry; 1981 while ((entry != &map->header) && (entry->start < end)) { 1982 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 1983 ("expected USER_WIRED on entry %p", entry)); 1984 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1985 entry->wired_count--; 1986 if (entry->wired_count == 0) 1987 vm_fault_unwire(map, entry); 1988 entry = entry->next; 1989 } 1990 } 1991 done: 1992 vm_map_unclip_range(map, start_entry, start, real_end, &count, 1993 MAP_CLIP_NO_HOLES); 1994 map->timestamp++; 1995 vm_map_unlock(map); 1996 vm_map_entry_release(count); 1997 return (rv); 1998 } 1999 2000 /* 2001 * vm_map_wire: 2002 * 2003 * Sets the pageability of the specified address 2004 * range in the target map. Regions specified 2005 * as not pageable require locked-down physical 2006 * memory and physical page maps. 2007 * 2008 * The map must not be locked, but a reference 2009 * must remain to the map throughout the call. 2010 * 2011 * This function may be called via the zalloc path and must properly 2012 * reserve map entries for kernel_map. 2013 */ 2014 int 2015 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2016 { 2017 vm_map_entry_t entry; 2018 vm_map_entry_t start_entry; 2019 vm_offset_t end; 2020 int rv = KERN_SUCCESS; 2021 int count; 2022 2023 if (kmflags & KM_KRESERVE) 2024 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2025 else 2026 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2027 vm_map_lock(map); 2028 VM_MAP_RANGE_CHECK(map, start, real_end); 2029 end = real_end; 2030 2031 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 2032 if (start_entry == NULL) { 2033 vm_map_unlock(map); 2034 rv = KERN_INVALID_ADDRESS; 2035 goto failure; 2036 } 2037 if ((kmflags & KM_PAGEABLE) == 0) { 2038 /* 2039 * Wiring. 2040 * 2041 * 1. Holding the write lock, we create any shadow or zero-fill 2042 * objects that need to be created. Then we clip each map 2043 * entry to the region to be wired and increment its wiring 2044 * count. We create objects before clipping the map entries 2045 * to avoid object proliferation. 2046 * 2047 * 2. We downgrade to a read lock, and call vm_fault_wire to 2048 * fault in the pages for any newly wired area (wired_count is 2049 * 1). 2050 * 2051 * Downgrading to a read lock for vm_fault_wire avoids a 2052 * possible deadlock with another process that may have faulted 2053 * on one of the pages to be wired (it would mark the page busy, 2054 * blocking us, then in turn block on the map lock that we 2055 * hold). Because of problems in the recursive lock package, 2056 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2057 * any actions that require the write lock must be done 2058 * beforehand. Because we keep the read lock on the map, the 2059 * copy-on-write status of the entries we modify here cannot 2060 * change. 2061 */ 2062 2063 entry = start_entry; 2064 while ((entry != &map->header) && (entry->start < end)) { 2065 /* 2066 * Trivial case if the entry is already wired 2067 */ 2068 if (entry->wired_count) { 2069 entry->wired_count++; 2070 entry = entry->next; 2071 continue; 2072 } 2073 2074 /* 2075 * The entry is being newly wired, we have to setup 2076 * appropriate management structures. A shadow 2077 * object is required for a copy-on-write region, 2078 * or a normal object for a zero-fill region. We 2079 * do not have to do this for entries that point to sub 2080 * maps because we won't hold the lock on the sub map. 2081 */ 2082 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2083 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 2084 if (copyflag && 2085 ((entry->protection & VM_PROT_WRITE) != 0)) { 2086 vm_map_entry_shadow(entry); 2087 } else if (entry->object.vm_object == NULL && 2088 !map->system_map) { 2089 vm_map_entry_allocate_object(entry); 2090 } 2091 } 2092 2093 entry->wired_count++; 2094 entry = entry->next; 2095 } 2096 2097 /* 2098 * Pass 2. 2099 */ 2100 2101 /* 2102 * HACK HACK HACK HACK 2103 * 2104 * Unlock the map to avoid deadlocks. The in-transit flag 2105 * protects us from most changes but note that 2106 * clipping may still occur. To prevent clipping from 2107 * occuring after the unlock, except for when we are 2108 * blocking in vm_fault_wire, we must run in a critical 2109 * section, otherwise our accesses to entry->start and 2110 * entry->end could be corrupted. We have to enter the 2111 * critical section prior to unlocking so start_entry does 2112 * not change out from under us at the very beginning of the 2113 * loop. 2114 * 2115 * HACK HACK HACK HACK 2116 */ 2117 2118 crit_enter(); 2119 2120 entry = start_entry; 2121 while (entry != &map->header && entry->start < end) { 2122 /* 2123 * If vm_fault_wire fails for any page we need to undo 2124 * what has been done. We decrement the wiring count 2125 * for those pages which have not yet been wired (now) 2126 * and unwire those that have (later). 2127 */ 2128 vm_offset_t save_start = entry->start; 2129 vm_offset_t save_end = entry->end; 2130 2131 if (entry->wired_count == 1) 2132 rv = vm_fault_wire(map, entry, FALSE); 2133 if (rv) { 2134 CLIP_CHECK_BACK(entry, save_start); 2135 for (;;) { 2136 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2137 entry->wired_count = 0; 2138 if (entry->end == save_end) 2139 break; 2140 entry = entry->next; 2141 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2142 } 2143 end = save_start; 2144 break; 2145 } 2146 CLIP_CHECK_FWD(entry, save_end); 2147 entry = entry->next; 2148 } 2149 crit_exit(); 2150 2151 /* 2152 * If a failure occured undo everything by falling through 2153 * to the unwiring code. 'end' has already been adjusted 2154 * appropriately. 2155 */ 2156 if (rv) 2157 kmflags |= KM_PAGEABLE; 2158 2159 /* 2160 * start_entry is still IN_TRANSITION but may have been 2161 * clipped since vm_fault_wire() unlocks and relocks the 2162 * map. No matter how clipped it has gotten there should 2163 * be a fragment that is on our start boundary. 2164 */ 2165 CLIP_CHECK_BACK(start_entry, start); 2166 } 2167 2168 if (kmflags & KM_PAGEABLE) { 2169 /* 2170 * This is the unwiring case. We must first ensure that the 2171 * range to be unwired is really wired down. We know there 2172 * are no holes. 2173 */ 2174 entry = start_entry; 2175 while ((entry != &map->header) && (entry->start < end)) { 2176 if (entry->wired_count == 0) { 2177 rv = KERN_INVALID_ARGUMENT; 2178 goto done; 2179 } 2180 entry = entry->next; 2181 } 2182 2183 /* 2184 * Now decrement the wiring count for each region. If a region 2185 * becomes completely unwired, unwire its physical pages and 2186 * mappings. 2187 */ 2188 entry = start_entry; 2189 while ((entry != &map->header) && (entry->start < end)) { 2190 entry->wired_count--; 2191 if (entry->wired_count == 0) 2192 vm_fault_unwire(map, entry); 2193 entry = entry->next; 2194 } 2195 } 2196 done: 2197 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2198 MAP_CLIP_NO_HOLES); 2199 map->timestamp++; 2200 vm_map_unlock(map); 2201 failure: 2202 if (kmflags & KM_KRESERVE) 2203 vm_map_entry_krelease(count); 2204 else 2205 vm_map_entry_release(count); 2206 return (rv); 2207 } 2208 2209 /* 2210 * vm_map_set_wired_quick() 2211 * 2212 * Mark a newly allocated address range as wired but do not fault in 2213 * the pages. The caller is expected to load the pages into the object. 2214 * 2215 * The map must be locked on entry and will remain locked on return. 2216 */ 2217 void 2218 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp) 2219 { 2220 vm_map_entry_t scan; 2221 vm_map_entry_t entry; 2222 2223 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2224 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) { 2225 KKASSERT(entry->wired_count == 0); 2226 entry->wired_count = 1; 2227 } 2228 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2229 } 2230 2231 /* 2232 * vm_map_clean 2233 * 2234 * Push any dirty cached pages in the address range to their pager. 2235 * If syncio is TRUE, dirty pages are written synchronously. 2236 * If invalidate is TRUE, any cached pages are freed as well. 2237 * 2238 * Returns an error if any part of the specified range is not mapped. 2239 */ 2240 int 2241 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, 2242 boolean_t invalidate) 2243 { 2244 vm_map_entry_t current; 2245 vm_map_entry_t entry; 2246 vm_size_t size; 2247 vm_object_t object; 2248 vm_ooffset_t offset; 2249 2250 vm_map_lock_read(map); 2251 VM_MAP_RANGE_CHECK(map, start, end); 2252 if (!vm_map_lookup_entry(map, start, &entry)) { 2253 vm_map_unlock_read(map); 2254 return (KERN_INVALID_ADDRESS); 2255 } 2256 /* 2257 * Make a first pass to check for holes. 2258 */ 2259 for (current = entry; current->start < end; current = current->next) { 2260 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2261 vm_map_unlock_read(map); 2262 return (KERN_INVALID_ARGUMENT); 2263 } 2264 if (end > current->end && 2265 (current->next == &map->header || 2266 current->end != current->next->start)) { 2267 vm_map_unlock_read(map); 2268 return (KERN_INVALID_ADDRESS); 2269 } 2270 } 2271 2272 if (invalidate) 2273 pmap_remove(vm_map_pmap(map), start, end); 2274 /* 2275 * Make a second pass, cleaning/uncaching pages from the indicated 2276 * objects as we go. 2277 */ 2278 for (current = entry; current->start < end; current = current->next) { 2279 offset = current->offset + (start - current->start); 2280 size = (end <= current->end ? end : current->end) - start; 2281 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2282 vm_map_t smap; 2283 vm_map_entry_t tentry; 2284 vm_size_t tsize; 2285 2286 smap = current->object.sub_map; 2287 vm_map_lock_read(smap); 2288 vm_map_lookup_entry(smap, offset, &tentry); 2289 tsize = tentry->end - offset; 2290 if (tsize < size) 2291 size = tsize; 2292 object = tentry->object.vm_object; 2293 offset = tentry->offset + (offset - tentry->start); 2294 vm_map_unlock_read(smap); 2295 } else { 2296 object = current->object.vm_object; 2297 } 2298 /* 2299 * Note that there is absolutely no sense in writing out 2300 * anonymous objects, so we track down the vnode object 2301 * to write out. 2302 * We invalidate (remove) all pages from the address space 2303 * anyway, for semantic correctness. 2304 * 2305 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2306 * may start out with a NULL object. 2307 */ 2308 while (object && object->backing_object) { 2309 offset += object->backing_object_offset; 2310 object = object->backing_object; 2311 if (object->size < OFF_TO_IDX( offset + size)) 2312 size = IDX_TO_OFF(object->size) - offset; 2313 } 2314 if (object && (object->type == OBJT_VNODE) && 2315 (current->protection & VM_PROT_WRITE)) { 2316 /* 2317 * Flush pages if writing is allowed, invalidate them 2318 * if invalidation requested. Pages undergoing I/O 2319 * will be ignored by vm_object_page_remove(). 2320 * 2321 * We cannot lock the vnode and then wait for paging 2322 * to complete without deadlocking against vm_fault. 2323 * Instead we simply call vm_object_page_remove() and 2324 * allow it to block internally on a page-by-page 2325 * basis when it encounters pages undergoing async 2326 * I/O. 2327 */ 2328 int flags; 2329 2330 vm_object_reference(object); 2331 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2332 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2333 flags |= invalidate ? OBJPC_INVAL : 0; 2334 2335 /* 2336 * When operating on a virtual page table just 2337 * flush the whole object. XXX we probably ought 2338 * to 2339 */ 2340 switch(current->maptype) { 2341 case VM_MAPTYPE_NORMAL: 2342 vm_object_page_clean(object, 2343 OFF_TO_IDX(offset), 2344 OFF_TO_IDX(offset + size + PAGE_MASK), 2345 flags); 2346 break; 2347 case VM_MAPTYPE_VPAGETABLE: 2348 vm_object_page_clean(object, 0, 0, flags); 2349 break; 2350 } 2351 vn_unlock(((struct vnode *)object->handle)); 2352 vm_object_deallocate(object); 2353 } 2354 if (object && invalidate && 2355 ((object->type == OBJT_VNODE) || 2356 (object->type == OBJT_DEVICE))) { 2357 int clean_only = 2358 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2359 vm_object_reference(object); 2360 switch(current->maptype) { 2361 case VM_MAPTYPE_NORMAL: 2362 vm_object_page_remove(object, 2363 OFF_TO_IDX(offset), 2364 OFF_TO_IDX(offset + size + PAGE_MASK), 2365 clean_only); 2366 break; 2367 case VM_MAPTYPE_VPAGETABLE: 2368 vm_object_page_remove(object, 0, 0, clean_only); 2369 break; 2370 } 2371 vm_object_deallocate(object); 2372 } 2373 start += size; 2374 } 2375 2376 vm_map_unlock_read(map); 2377 return (KERN_SUCCESS); 2378 } 2379 2380 /* 2381 * vm_map_entry_unwire: [ internal use only ] 2382 * 2383 * Make the region specified by this entry pageable. 2384 * 2385 * The map in question should be locked. 2386 * [This is the reason for this routine's existence.] 2387 */ 2388 static void 2389 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2390 { 2391 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2392 entry->wired_count = 0; 2393 vm_fault_unwire(map, entry); 2394 } 2395 2396 /* 2397 * vm_map_entry_delete: [ internal use only ] 2398 * 2399 * Deallocate the given entry from the target map. 2400 */ 2401 static void 2402 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2403 { 2404 vm_map_entry_unlink(map, entry); 2405 map->size -= entry->end - entry->start; 2406 2407 switch(entry->maptype) { 2408 case VM_MAPTYPE_NORMAL: 2409 case VM_MAPTYPE_VPAGETABLE: 2410 vm_object_deallocate(entry->object.vm_object); 2411 break; 2412 default: 2413 break; 2414 } 2415 2416 vm_map_entry_dispose(map, entry, countp); 2417 } 2418 2419 /* 2420 * vm_map_delete: [ internal use only ] 2421 * 2422 * Deallocates the given address range from the target 2423 * map. 2424 */ 2425 int 2426 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2427 { 2428 vm_object_t object; 2429 vm_map_entry_t entry; 2430 vm_map_entry_t first_entry; 2431 2432 again: 2433 /* 2434 * Find the start of the region, and clip it. Set entry to point 2435 * at the first record containing the requested address or, if no 2436 * such record exists, the next record with a greater address. The 2437 * loop will run from this point until a record beyond the termination 2438 * address is encountered. 2439 * 2440 * map->hint must be adjusted to not point to anything we delete, 2441 * so set it to the entry prior to the one being deleted. 2442 * 2443 * GGG see other GGG comment. 2444 */ 2445 if (vm_map_lookup_entry(map, start, &first_entry)) { 2446 entry = first_entry; 2447 vm_map_clip_start(map, entry, start, countp); 2448 map->hint = entry->prev; /* possible problem XXX */ 2449 } else { 2450 map->hint = first_entry; /* possible problem XXX */ 2451 entry = first_entry->next; 2452 } 2453 2454 /* 2455 * If a hole opens up prior to the current first_free then 2456 * adjust first_free. As with map->hint, map->first_free 2457 * cannot be left set to anything we might delete. 2458 */ 2459 if (entry == &map->header) { 2460 map->first_free = &map->header; 2461 } else if (map->first_free->start >= start) { 2462 map->first_free = entry->prev; 2463 } 2464 2465 /* 2466 * Step through all entries in this region 2467 */ 2468 2469 while ((entry != &map->header) && (entry->start < end)) { 2470 vm_map_entry_t next; 2471 vm_offset_t s, e; 2472 vm_pindex_t offidxstart, offidxend, count; 2473 2474 /* 2475 * If we hit an in-transition entry we have to sleep and 2476 * retry. It's easier (and not really slower) to just retry 2477 * since this case occurs so rarely and the hint is already 2478 * pointing at the right place. We have to reset the 2479 * start offset so as not to accidently delete an entry 2480 * another process just created in vacated space. 2481 */ 2482 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2483 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2484 start = entry->start; 2485 ++mycpu->gd_cnt.v_intrans_coll; 2486 ++mycpu->gd_cnt.v_intrans_wait; 2487 vm_map_transition_wait(map); 2488 goto again; 2489 } 2490 vm_map_clip_end(map, entry, end, countp); 2491 2492 s = entry->start; 2493 e = entry->end; 2494 next = entry->next; 2495 2496 offidxstart = OFF_TO_IDX(entry->offset); 2497 count = OFF_TO_IDX(e - s); 2498 object = entry->object.vm_object; 2499 2500 /* 2501 * Unwire before removing addresses from the pmap; otherwise, 2502 * unwiring will put the entries back in the pmap. 2503 */ 2504 if (entry->wired_count != 0) 2505 vm_map_entry_unwire(map, entry); 2506 2507 offidxend = offidxstart + count; 2508 2509 if ((object == kernel_object) || (object == kmem_object)) { 2510 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2511 } else { 2512 pmap_remove(map->pmap, s, e); 2513 if (object != NULL && 2514 object->ref_count != 1 && 2515 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2516 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2517 vm_object_collapse(object); 2518 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2519 if (object->type == OBJT_SWAP) { 2520 swap_pager_freespace(object, offidxstart, count); 2521 } 2522 if (offidxend >= object->size && 2523 offidxstart < object->size) { 2524 object->size = offidxstart; 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Delete the entry (which may delete the object) only after 2531 * removing all pmap entries pointing to its pages. 2532 * (Otherwise, its page frames may be reallocated, and any 2533 * modify bits will be set in the wrong object!) 2534 */ 2535 vm_map_entry_delete(map, entry, countp); 2536 entry = next; 2537 } 2538 return (KERN_SUCCESS); 2539 } 2540 2541 /* 2542 * vm_map_remove: 2543 * 2544 * Remove the given address range from the target map. 2545 * This is the exported form of vm_map_delete. 2546 */ 2547 int 2548 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2549 { 2550 int result; 2551 int count; 2552 2553 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2554 vm_map_lock(map); 2555 VM_MAP_RANGE_CHECK(map, start, end); 2556 result = vm_map_delete(map, start, end, &count); 2557 vm_map_unlock(map); 2558 vm_map_entry_release(count); 2559 2560 return (result); 2561 } 2562 2563 /* 2564 * vm_map_check_protection: 2565 * 2566 * Assert that the target map allows the specified 2567 * privilege on the entire address region given. 2568 * The entire region must be allocated. 2569 */ 2570 boolean_t 2571 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2572 vm_prot_t protection) 2573 { 2574 vm_map_entry_t entry; 2575 vm_map_entry_t tmp_entry; 2576 2577 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2578 return (FALSE); 2579 } 2580 entry = tmp_entry; 2581 2582 while (start < end) { 2583 if (entry == &map->header) { 2584 return (FALSE); 2585 } 2586 /* 2587 * No holes allowed! 2588 */ 2589 2590 if (start < entry->start) { 2591 return (FALSE); 2592 } 2593 /* 2594 * Check protection associated with entry. 2595 */ 2596 2597 if ((entry->protection & protection) != protection) { 2598 return (FALSE); 2599 } 2600 /* go to next entry */ 2601 2602 start = entry->end; 2603 entry = entry->next; 2604 } 2605 return (TRUE); 2606 } 2607 2608 /* 2609 * Split the pages in a map entry into a new object. This affords 2610 * easier removal of unused pages, and keeps object inheritance from 2611 * being a negative impact on memory usage. 2612 */ 2613 static void 2614 vm_map_split(vm_map_entry_t entry) 2615 { 2616 vm_page_t m; 2617 vm_object_t orig_object, new_object, source; 2618 vm_offset_t s, e; 2619 vm_pindex_t offidxstart, offidxend, idx; 2620 vm_size_t size; 2621 vm_ooffset_t offset; 2622 2623 orig_object = entry->object.vm_object; 2624 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2625 return; 2626 if (orig_object->ref_count <= 1) 2627 return; 2628 2629 offset = entry->offset; 2630 s = entry->start; 2631 e = entry->end; 2632 2633 offidxstart = OFF_TO_IDX(offset); 2634 offidxend = offidxstart + OFF_TO_IDX(e - s); 2635 size = offidxend - offidxstart; 2636 2637 new_object = vm_pager_allocate(orig_object->type, NULL, 2638 IDX_TO_OFF(size), VM_PROT_ALL, 0); 2639 if (new_object == NULL) 2640 return; 2641 2642 source = orig_object->backing_object; 2643 if (source != NULL) { 2644 vm_object_reference(source); /* Referenced by new_object */ 2645 LIST_INSERT_HEAD(&source->shadow_head, 2646 new_object, shadow_list); 2647 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2648 new_object->backing_object_offset = 2649 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2650 new_object->backing_object = source; 2651 source->shadow_count++; 2652 source->generation++; 2653 } 2654 2655 for (idx = 0; idx < size; idx++) { 2656 vm_page_t m; 2657 2658 /* 2659 * A critical section is required to avoid a race between 2660 * the lookup and an interrupt/unbusy/free and our busy 2661 * check. 2662 */ 2663 crit_enter(); 2664 retry: 2665 m = vm_page_lookup(orig_object, offidxstart + idx); 2666 if (m == NULL) { 2667 crit_exit(); 2668 continue; 2669 } 2670 2671 /* 2672 * We must wait for pending I/O to complete before we can 2673 * rename the page. 2674 * 2675 * We do not have to VM_PROT_NONE the page as mappings should 2676 * not be changed by this operation. 2677 */ 2678 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2679 goto retry; 2680 vm_page_busy(m); 2681 vm_page_rename(m, new_object, idx); 2682 /* page automatically made dirty by rename and cache handled */ 2683 vm_page_busy(m); 2684 crit_exit(); 2685 } 2686 2687 if (orig_object->type == OBJT_SWAP) { 2688 vm_object_pip_add(orig_object, 1); 2689 /* 2690 * copy orig_object pages into new_object 2691 * and destroy unneeded pages in 2692 * shadow object. 2693 */ 2694 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2695 vm_object_pip_wakeup(orig_object); 2696 } 2697 2698 /* 2699 * Wakeup the pages we played with. No spl protection is needed 2700 * for a simple wakeup. 2701 */ 2702 for (idx = 0; idx < size; idx++) { 2703 m = vm_page_lookup(new_object, idx); 2704 if (m) 2705 vm_page_wakeup(m); 2706 } 2707 2708 entry->object.vm_object = new_object; 2709 entry->offset = 0LL; 2710 vm_object_deallocate(orig_object); 2711 } 2712 2713 /* 2714 * vm_map_copy_entry: 2715 * 2716 * Copies the contents of the source entry to the destination 2717 * entry. The entries *must* be aligned properly. 2718 */ 2719 static void 2720 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2721 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2722 { 2723 vm_object_t src_object; 2724 2725 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 2726 return; 2727 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 2728 return; 2729 2730 if (src_entry->wired_count == 0) { 2731 /* 2732 * If the source entry is marked needs_copy, it is already 2733 * write-protected. 2734 */ 2735 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2736 pmap_protect(src_map->pmap, 2737 src_entry->start, 2738 src_entry->end, 2739 src_entry->protection & ~VM_PROT_WRITE); 2740 } 2741 2742 /* 2743 * Make a copy of the object. 2744 */ 2745 if ((src_object = src_entry->object.vm_object) != NULL) { 2746 if ((src_object->handle == NULL) && 2747 (src_object->type == OBJT_DEFAULT || 2748 src_object->type == OBJT_SWAP)) { 2749 vm_object_collapse(src_object); 2750 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2751 vm_map_split(src_entry); 2752 src_object = src_entry->object.vm_object; 2753 } 2754 } 2755 2756 vm_object_reference(src_object); 2757 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2758 dst_entry->object.vm_object = src_object; 2759 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2760 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2761 dst_entry->offset = src_entry->offset; 2762 } else { 2763 dst_entry->object.vm_object = NULL; 2764 dst_entry->offset = 0; 2765 } 2766 2767 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2768 dst_entry->end - dst_entry->start, src_entry->start); 2769 } else { 2770 /* 2771 * Of course, wired down pages can't be set copy-on-write. 2772 * Cause wired pages to be copied into the new map by 2773 * simulating faults (the new pages are pageable) 2774 */ 2775 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2776 } 2777 } 2778 2779 /* 2780 * vmspace_fork: 2781 * Create a new process vmspace structure and vm_map 2782 * based on those of an existing process. The new map 2783 * is based on the old map, according to the inheritance 2784 * values on the regions in that map. 2785 * 2786 * The source map must not be locked. 2787 */ 2788 struct vmspace * 2789 vmspace_fork(struct vmspace *vm1) 2790 { 2791 struct vmspace *vm2; 2792 vm_map_t old_map = &vm1->vm_map; 2793 vm_map_t new_map; 2794 vm_map_entry_t old_entry; 2795 vm_map_entry_t new_entry; 2796 vm_object_t object; 2797 int count; 2798 2799 vm_map_lock(old_map); 2800 old_map->infork = 1; 2801 2802 /* 2803 * XXX Note: upcalls are not copied. 2804 */ 2805 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2806 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2807 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 2808 new_map = &vm2->vm_map; /* XXX */ 2809 new_map->timestamp = 1; 2810 2811 count = 0; 2812 old_entry = old_map->header.next; 2813 while (old_entry != &old_map->header) { 2814 ++count; 2815 old_entry = old_entry->next; 2816 } 2817 2818 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 2819 2820 old_entry = old_map->header.next; 2821 while (old_entry != &old_map->header) { 2822 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 2823 panic("vm_map_fork: encountered a submap"); 2824 2825 switch (old_entry->inheritance) { 2826 case VM_INHERIT_NONE: 2827 break; 2828 2829 case VM_INHERIT_SHARE: 2830 /* 2831 * Clone the entry, creating the shared object if 2832 * necessary. 2833 */ 2834 object = old_entry->object.vm_object; 2835 if (object == NULL) { 2836 vm_map_entry_allocate_object(old_entry); 2837 object = old_entry->object.vm_object; 2838 } 2839 2840 /* 2841 * Add the reference before calling vm_map_entry_shadow 2842 * to insure that a shadow object is created. 2843 */ 2844 vm_object_reference(object); 2845 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2846 vm_map_entry_shadow(old_entry); 2847 /* Transfer the second reference too. */ 2848 vm_object_reference( 2849 old_entry->object.vm_object); 2850 vm_object_deallocate(object); 2851 object = old_entry->object.vm_object; 2852 } 2853 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2854 2855 /* 2856 * Clone the entry, referencing the shared object. 2857 */ 2858 new_entry = vm_map_entry_create(new_map, &count); 2859 *new_entry = *old_entry; 2860 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2861 new_entry->wired_count = 0; 2862 2863 /* 2864 * Insert the entry into the new map -- we know we're 2865 * inserting at the end of the new map. 2866 */ 2867 2868 vm_map_entry_link(new_map, new_map->header.prev, 2869 new_entry); 2870 2871 /* 2872 * Update the physical map 2873 */ 2874 2875 pmap_copy(new_map->pmap, old_map->pmap, 2876 new_entry->start, 2877 (old_entry->end - old_entry->start), 2878 old_entry->start); 2879 break; 2880 2881 case VM_INHERIT_COPY: 2882 /* 2883 * Clone the entry and link into the map. 2884 */ 2885 new_entry = vm_map_entry_create(new_map, &count); 2886 *new_entry = *old_entry; 2887 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2888 new_entry->wired_count = 0; 2889 new_entry->object.vm_object = NULL; 2890 vm_map_entry_link(new_map, new_map->header.prev, 2891 new_entry); 2892 vm_map_copy_entry(old_map, new_map, old_entry, 2893 new_entry); 2894 break; 2895 } 2896 old_entry = old_entry->next; 2897 } 2898 2899 new_map->size = old_map->size; 2900 old_map->infork = 0; 2901 vm_map_unlock(old_map); 2902 vm_map_entry_release(count); 2903 2904 return (vm2); 2905 } 2906 2907 int 2908 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2909 vm_prot_t prot, vm_prot_t max, int cow) 2910 { 2911 vm_map_entry_t prev_entry; 2912 vm_map_entry_t new_stack_entry; 2913 vm_size_t init_ssize; 2914 int rv; 2915 int count; 2916 2917 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2918 return (KERN_NO_SPACE); 2919 2920 if (max_ssize < sgrowsiz) 2921 init_ssize = max_ssize; 2922 else 2923 init_ssize = sgrowsiz; 2924 2925 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2926 vm_map_lock(map); 2927 2928 /* If addr is already mapped, no go */ 2929 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2930 vm_map_unlock(map); 2931 vm_map_entry_release(count); 2932 return (KERN_NO_SPACE); 2933 } 2934 2935 /* If we would blow our VMEM resource limit, no go */ 2936 if (map->size + init_ssize > 2937 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2938 vm_map_unlock(map); 2939 vm_map_entry_release(count); 2940 return (KERN_NO_SPACE); 2941 } 2942 2943 /* If we can't accomodate max_ssize in the current mapping, 2944 * no go. However, we need to be aware that subsequent user 2945 * mappings might map into the space we have reserved for 2946 * stack, and currently this space is not protected. 2947 * 2948 * Hopefully we will at least detect this condition 2949 * when we try to grow the stack. 2950 */ 2951 if ((prev_entry->next != &map->header) && 2952 (prev_entry->next->start < addrbos + max_ssize)) { 2953 vm_map_unlock(map); 2954 vm_map_entry_release(count); 2955 return (KERN_NO_SPACE); 2956 } 2957 2958 /* We initially map a stack of only init_ssize. We will 2959 * grow as needed later. Since this is to be a grow 2960 * down stack, we map at the top of the range. 2961 * 2962 * Note: we would normally expect prot and max to be 2963 * VM_PROT_ALL, and cow to be 0. Possibly we should 2964 * eliminate these as input parameters, and just 2965 * pass these values here in the insert call. 2966 */ 2967 rv = vm_map_insert(map, &count, 2968 NULL, 0, addrbos + max_ssize - init_ssize, 2969 addrbos + max_ssize, 2970 VM_MAPTYPE_NORMAL, 2971 prot, max, 2972 cow); 2973 2974 /* Now set the avail_ssize amount */ 2975 if (rv == KERN_SUCCESS) { 2976 if (prev_entry != &map->header) 2977 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 2978 new_stack_entry = prev_entry->next; 2979 if (new_stack_entry->end != addrbos + max_ssize || 2980 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2981 panic ("Bad entry start/end for new stack entry"); 2982 else 2983 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 2984 } 2985 2986 vm_map_unlock(map); 2987 vm_map_entry_release(count); 2988 return (rv); 2989 } 2990 2991 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2992 * desired address is already mapped, or if we successfully grow 2993 * the stack. Also returns KERN_SUCCESS if addr is outside the 2994 * stack range (this is strange, but preserves compatibility with 2995 * the grow function in vm_machdep.c). 2996 */ 2997 int 2998 vm_map_growstack (struct proc *p, vm_offset_t addr) 2999 { 3000 vm_map_entry_t prev_entry; 3001 vm_map_entry_t stack_entry; 3002 vm_map_entry_t new_stack_entry; 3003 struct vmspace *vm = p->p_vmspace; 3004 vm_map_t map = &vm->vm_map; 3005 vm_offset_t end; 3006 int grow_amount; 3007 int rv = KERN_SUCCESS; 3008 int is_procstack; 3009 int use_read_lock = 1; 3010 int count; 3011 3012 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3013 Retry: 3014 if (use_read_lock) 3015 vm_map_lock_read(map); 3016 else 3017 vm_map_lock(map); 3018 3019 /* If addr is already in the entry range, no need to grow.*/ 3020 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3021 goto done; 3022 3023 if ((stack_entry = prev_entry->next) == &map->header) 3024 goto done; 3025 if (prev_entry == &map->header) 3026 end = stack_entry->start - stack_entry->aux.avail_ssize; 3027 else 3028 end = prev_entry->end; 3029 3030 /* This next test mimics the old grow function in vm_machdep.c. 3031 * It really doesn't quite make sense, but we do it anyway 3032 * for compatibility. 3033 * 3034 * If not growable stack, return success. This signals the 3035 * caller to proceed as he would normally with normal vm. 3036 */ 3037 if (stack_entry->aux.avail_ssize < 1 || 3038 addr >= stack_entry->start || 3039 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3040 goto done; 3041 } 3042 3043 /* Find the minimum grow amount */ 3044 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3045 if (grow_amount > stack_entry->aux.avail_ssize) { 3046 rv = KERN_NO_SPACE; 3047 goto done; 3048 } 3049 3050 /* If there is no longer enough space between the entries 3051 * nogo, and adjust the available space. Note: this 3052 * should only happen if the user has mapped into the 3053 * stack area after the stack was created, and is 3054 * probably an error. 3055 * 3056 * This also effectively destroys any guard page the user 3057 * might have intended by limiting the stack size. 3058 */ 3059 if (grow_amount > stack_entry->start - end) { 3060 if (use_read_lock && vm_map_lock_upgrade(map)) { 3061 use_read_lock = 0; 3062 goto Retry; 3063 } 3064 use_read_lock = 0; 3065 stack_entry->aux.avail_ssize = stack_entry->start - end; 3066 rv = KERN_NO_SPACE; 3067 goto done; 3068 } 3069 3070 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3071 3072 /* If this is the main process stack, see if we're over the 3073 * stack limit. 3074 */ 3075 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3076 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3077 rv = KERN_NO_SPACE; 3078 goto done; 3079 } 3080 3081 /* Round up the grow amount modulo SGROWSIZ */ 3082 grow_amount = roundup (grow_amount, sgrowsiz); 3083 if (grow_amount > stack_entry->aux.avail_ssize) { 3084 grow_amount = stack_entry->aux.avail_ssize; 3085 } 3086 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3087 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3088 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3089 ctob(vm->vm_ssize); 3090 } 3091 3092 /* If we would blow our VMEM resource limit, no go */ 3093 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3094 rv = KERN_NO_SPACE; 3095 goto done; 3096 } 3097 3098 if (use_read_lock && vm_map_lock_upgrade(map)) { 3099 use_read_lock = 0; 3100 goto Retry; 3101 } 3102 use_read_lock = 0; 3103 3104 /* Get the preliminary new entry start value */ 3105 addr = stack_entry->start - grow_amount; 3106 3107 /* If this puts us into the previous entry, cut back our growth 3108 * to the available space. Also, see the note above. 3109 */ 3110 if (addr < end) { 3111 stack_entry->aux.avail_ssize = stack_entry->start - end; 3112 addr = end; 3113 } 3114 3115 rv = vm_map_insert(map, &count, 3116 NULL, 0, addr, stack_entry->start, 3117 VM_MAPTYPE_NORMAL, 3118 VM_PROT_ALL, VM_PROT_ALL, 3119 0); 3120 3121 /* Adjust the available stack space by the amount we grew. */ 3122 if (rv == KERN_SUCCESS) { 3123 if (prev_entry != &map->header) 3124 vm_map_clip_end(map, prev_entry, addr, &count); 3125 new_stack_entry = prev_entry->next; 3126 if (new_stack_entry->end != stack_entry->start || 3127 new_stack_entry->start != addr) 3128 panic ("Bad stack grow start/end in new stack entry"); 3129 else { 3130 new_stack_entry->aux.avail_ssize = 3131 stack_entry->aux.avail_ssize - 3132 (new_stack_entry->end - new_stack_entry->start); 3133 if (is_procstack) 3134 vm->vm_ssize += btoc(new_stack_entry->end - 3135 new_stack_entry->start); 3136 } 3137 } 3138 3139 done: 3140 if (use_read_lock) 3141 vm_map_unlock_read(map); 3142 else 3143 vm_map_unlock(map); 3144 vm_map_entry_release(count); 3145 return (rv); 3146 } 3147 3148 /* 3149 * Unshare the specified VM space for exec. If other processes are 3150 * mapped to it, then create a new one. The new vmspace is null. 3151 */ 3152 3153 void 3154 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3155 { 3156 struct vmspace *oldvmspace = p->p_vmspace; 3157 struct vmspace *newvmspace; 3158 vm_map_t map = &p->p_vmspace->vm_map; 3159 3160 /* 3161 * If we are execing a resident vmspace we fork it, otherwise 3162 * we create a new vmspace. Note that exitingcnt and upcalls 3163 * are not copied to the new vmspace. 3164 */ 3165 if (vmcopy) { 3166 newvmspace = vmspace_fork(vmcopy); 3167 } else { 3168 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3169 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3170 (caddr_t)&oldvmspace->vm_endcopy - 3171 (caddr_t)&oldvmspace->vm_startcopy); 3172 } 3173 3174 /* 3175 * This code is written like this for prototype purposes. The 3176 * goal is to avoid running down the vmspace here, but let the 3177 * other process's that are still using the vmspace to finally 3178 * run it down. Even though there is little or no chance of blocking 3179 * here, it is a good idea to keep this form for future mods. 3180 */ 3181 p->p_vmspace = newvmspace; 3182 pmap_pinit2(vmspace_pmap(newvmspace)); 3183 if (p == curproc) 3184 pmap_activate(p); 3185 vmspace_free(oldvmspace); 3186 } 3187 3188 /* 3189 * Unshare the specified VM space for forcing COW. This 3190 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3191 * 3192 * The exitingcnt test is not strictly necessary but has been 3193 * included for code sanity (to make the code a bit more deterministic). 3194 */ 3195 3196 void 3197 vmspace_unshare(struct proc *p) 3198 { 3199 struct vmspace *oldvmspace = p->p_vmspace; 3200 struct vmspace *newvmspace; 3201 3202 if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3203 return; 3204 newvmspace = vmspace_fork(oldvmspace); 3205 p->p_vmspace = newvmspace; 3206 pmap_pinit2(vmspace_pmap(newvmspace)); 3207 if (p == curproc) 3208 pmap_activate(p); 3209 vmspace_free(oldvmspace); 3210 } 3211 3212 /* 3213 * vm_map_lookup: 3214 * 3215 * Finds the VM object, offset, and 3216 * protection for a given virtual address in the 3217 * specified map, assuming a page fault of the 3218 * type specified. 3219 * 3220 * Leaves the map in question locked for read; return 3221 * values are guaranteed until a vm_map_lookup_done 3222 * call is performed. Note that the map argument 3223 * is in/out; the returned map must be used in 3224 * the call to vm_map_lookup_done. 3225 * 3226 * A handle (out_entry) is returned for use in 3227 * vm_map_lookup_done, to make that fast. 3228 * 3229 * If a lookup is requested with "write protection" 3230 * specified, the map may be changed to perform virtual 3231 * copying operations, although the data referenced will 3232 * remain the same. 3233 */ 3234 int 3235 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3236 vm_offset_t vaddr, 3237 vm_prot_t fault_typea, 3238 vm_map_entry_t *out_entry, /* OUT */ 3239 vm_object_t *object, /* OUT */ 3240 vm_pindex_t *pindex, /* OUT */ 3241 vm_prot_t *out_prot, /* OUT */ 3242 boolean_t *wired) /* OUT */ 3243 { 3244 vm_map_entry_t entry; 3245 vm_map_t map = *var_map; 3246 vm_prot_t prot; 3247 vm_prot_t fault_type = fault_typea; 3248 int use_read_lock = 1; 3249 int rv = KERN_SUCCESS; 3250 3251 RetryLookup: 3252 if (use_read_lock) 3253 vm_map_lock_read(map); 3254 else 3255 vm_map_lock(map); 3256 3257 /* 3258 * If the map has an interesting hint, try it before calling full 3259 * blown lookup routine. 3260 */ 3261 entry = map->hint; 3262 *out_entry = entry; 3263 3264 if ((entry == &map->header) || 3265 (vaddr < entry->start) || (vaddr >= entry->end)) { 3266 vm_map_entry_t tmp_entry; 3267 3268 /* 3269 * Entry was either not a valid hint, or the vaddr was not 3270 * contained in the entry, so do a full lookup. 3271 */ 3272 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3273 rv = KERN_INVALID_ADDRESS; 3274 goto done; 3275 } 3276 3277 entry = tmp_entry; 3278 *out_entry = entry; 3279 } 3280 3281 /* 3282 * Handle submaps. 3283 */ 3284 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3285 vm_map_t old_map = map; 3286 3287 *var_map = map = entry->object.sub_map; 3288 if (use_read_lock) 3289 vm_map_unlock_read(old_map); 3290 else 3291 vm_map_unlock(old_map); 3292 use_read_lock = 1; 3293 goto RetryLookup; 3294 } 3295 3296 /* 3297 * Check whether this task is allowed to have this page. 3298 * Note the special case for MAP_ENTRY_COW 3299 * pages with an override. This is to implement a forced 3300 * COW for debuggers. 3301 */ 3302 3303 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3304 prot = entry->max_protection; 3305 else 3306 prot = entry->protection; 3307 3308 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3309 if ((fault_type & prot) != fault_type) { 3310 rv = KERN_PROTECTION_FAILURE; 3311 goto done; 3312 } 3313 3314 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3315 (entry->eflags & MAP_ENTRY_COW) && 3316 (fault_type & VM_PROT_WRITE) && 3317 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3318 rv = KERN_PROTECTION_FAILURE; 3319 goto done; 3320 } 3321 3322 /* 3323 * If this page is not pageable, we have to get it for all possible 3324 * accesses. 3325 */ 3326 *wired = (entry->wired_count != 0); 3327 if (*wired) 3328 prot = fault_type = entry->protection; 3329 3330 /* 3331 * Virtual page tables may need to update the accessed (A) bit 3332 * in a page table entry. Upgrade the fault to a write fault for 3333 * that case if the map will support it. If the map does not support 3334 * it the page table entry simply will not be updated. 3335 */ 3336 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3337 if (prot & VM_PROT_WRITE) 3338 fault_type |= VM_PROT_WRITE; 3339 } 3340 3341 /* 3342 * If the entry was copy-on-write, we either ... 3343 */ 3344 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3345 /* 3346 * If we want to write the page, we may as well handle that 3347 * now since we've got the map locked. 3348 * 3349 * If we don't need to write the page, we just demote the 3350 * permissions allowed. 3351 */ 3352 3353 if (fault_type & VM_PROT_WRITE) { 3354 /* 3355 * Make a new object, and place it in the object 3356 * chain. Note that no new references have appeared 3357 * -- one just moved from the map to the new 3358 * object. 3359 */ 3360 3361 if (use_read_lock && vm_map_lock_upgrade(map)) { 3362 use_read_lock = 0; 3363 goto RetryLookup; 3364 } 3365 use_read_lock = 0; 3366 3367 vm_map_entry_shadow(entry); 3368 } else { 3369 /* 3370 * We're attempting to read a copy-on-write page -- 3371 * don't allow writes. 3372 */ 3373 3374 prot &= ~VM_PROT_WRITE; 3375 } 3376 } 3377 3378 /* 3379 * Create an object if necessary. 3380 */ 3381 if (entry->object.vm_object == NULL && 3382 !map->system_map) { 3383 if (use_read_lock && vm_map_lock_upgrade(map)) { 3384 use_read_lock = 0; 3385 goto RetryLookup; 3386 } 3387 use_read_lock = 0; 3388 vm_map_entry_allocate_object(entry); 3389 } 3390 3391 /* 3392 * Return the object/offset from this entry. If the entry was 3393 * copy-on-write or empty, it has been fixed up. 3394 */ 3395 3396 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3397 *object = entry->object.vm_object; 3398 3399 /* 3400 * Return whether this is the only map sharing this data. On 3401 * success we return with a read lock held on the map. On failure 3402 * we return with the map unlocked. 3403 */ 3404 *out_prot = prot; 3405 done: 3406 if (rv == KERN_SUCCESS) { 3407 if (use_read_lock == 0) 3408 vm_map_lock_downgrade(map); 3409 } else if (use_read_lock) { 3410 vm_map_unlock_read(map); 3411 } else { 3412 vm_map_unlock(map); 3413 } 3414 return (rv); 3415 } 3416 3417 /* 3418 * vm_map_lookup_done: 3419 * 3420 * Releases locks acquired by a vm_map_lookup 3421 * (according to the handle returned by that lookup). 3422 */ 3423 3424 void 3425 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3426 { 3427 /* 3428 * Unlock the main-level map 3429 */ 3430 vm_map_unlock_read(map); 3431 if (count) 3432 vm_map_entry_release(count); 3433 } 3434 3435 #include "opt_ddb.h" 3436 #ifdef DDB 3437 #include <sys/kernel.h> 3438 3439 #include <ddb/ddb.h> 3440 3441 /* 3442 * vm_map_print: [ debug ] 3443 */ 3444 DB_SHOW_COMMAND(map, vm_map_print) 3445 { 3446 static int nlines; 3447 /* XXX convert args. */ 3448 vm_map_t map = (vm_map_t)addr; 3449 boolean_t full = have_addr; 3450 3451 vm_map_entry_t entry; 3452 3453 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3454 (void *)map, 3455 (void *)map->pmap, map->nentries, map->timestamp); 3456 nlines++; 3457 3458 if (!full && db_indent) 3459 return; 3460 3461 db_indent += 2; 3462 for (entry = map->header.next; entry != &map->header; 3463 entry = entry->next) { 3464 db_iprintf("map entry %p: start=%p, end=%p\n", 3465 (void *)entry, (void *)entry->start, (void *)entry->end); 3466 nlines++; 3467 { 3468 static char *inheritance_name[4] = 3469 {"share", "copy", "none", "donate_copy"}; 3470 3471 db_iprintf(" prot=%x/%x/%s", 3472 entry->protection, 3473 entry->max_protection, 3474 inheritance_name[(int)(unsigned char)entry->inheritance]); 3475 if (entry->wired_count != 0) 3476 db_printf(", wired"); 3477 } 3478 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3479 /* XXX no %qd in kernel. Truncate entry->offset. */ 3480 db_printf(", share=%p, offset=0x%lx\n", 3481 (void *)entry->object.sub_map, 3482 (long)entry->offset); 3483 nlines++; 3484 if ((entry->prev == &map->header) || 3485 (entry->prev->object.sub_map != 3486 entry->object.sub_map)) { 3487 db_indent += 2; 3488 vm_map_print((db_expr_t)(intptr_t) 3489 entry->object.sub_map, 3490 full, 0, (char *)0); 3491 db_indent -= 2; 3492 } 3493 } else { 3494 /* XXX no %qd in kernel. Truncate entry->offset. */ 3495 db_printf(", object=%p, offset=0x%lx", 3496 (void *)entry->object.vm_object, 3497 (long)entry->offset); 3498 if (entry->eflags & MAP_ENTRY_COW) 3499 db_printf(", copy (%s)", 3500 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3501 db_printf("\n"); 3502 nlines++; 3503 3504 if ((entry->prev == &map->header) || 3505 (entry->prev->object.vm_object != 3506 entry->object.vm_object)) { 3507 db_indent += 2; 3508 vm_object_print((db_expr_t)(intptr_t) 3509 entry->object.vm_object, 3510 full, 0, (char *)0); 3511 nlines += 4; 3512 db_indent -= 2; 3513 } 3514 } 3515 } 3516 db_indent -= 2; 3517 if (db_indent == 0) 3518 nlines = 0; 3519 } 3520 3521 3522 DB_SHOW_COMMAND(procvm, procvm) 3523 { 3524 struct proc *p; 3525 3526 if (have_addr) { 3527 p = (struct proc *) addr; 3528 } else { 3529 p = curproc; 3530 } 3531 3532 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3533 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3534 (void *)vmspace_pmap(p->p_vmspace)); 3535 3536 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3537 } 3538 3539 #endif /* DDB */ 3540