xref: /dflybsd-src/sys/vm/vm_map.c (revision c9e3d8f96688a159959b1af2d4fef14b744173e3)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
99 
100 /*
101  *	Virtual memory maps provide for the mapping, protection,
102  *	and sharing of virtual memory objects.  In addition,
103  *	this module provides for an efficient virtual copy of
104  *	memory from one map to another.
105  *
106  *	Synchronization is required prior to most operations.
107  *
108  *	Maps consist of an ordered doubly-linked list of simple
109  *	entries; a single hint is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_lock(struct vmspace *vm);
126 static void vmspace_unlock(struct vmspace *vm);
127 static void vmspace_dtor(void *obj, void *private);
128 
129 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
130 
131 struct sysref_class vmspace_sysref_class = {
132 	.name =		"vmspace",
133 	.mtype =	M_VMSPACE,
134 	.proto =	SYSREF_PROTO_VMSPACE,
135 	.offset =	offsetof(struct vmspace, vm_sysref),
136 	.objsize =	sizeof(struct vmspace),
137 	.mag_capacity =	32,
138 	.flags = SRC_MANAGEDINIT,
139 	.dtor = vmspace_dtor,
140 	.ops = {
141 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
142 		.lock = (sysref_lock_func_t)vmspace_lock,
143 		.unlock = (sysref_lock_func_t)vmspace_unlock
144 	}
145 };
146 
147 #define VMEPERCPU	2
148 
149 static struct vm_zone mapentzone_store, mapzone_store;
150 static vm_zone_t mapentzone, mapzone;
151 static struct vm_object mapentobj, mapobj;
152 
153 static struct vm_map_entry map_entry_init[MAX_MAPENT];
154 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
155 static struct vm_map map_init[MAX_KMAP];
156 
157 static void vm_map_entry_shadow(vm_map_entry_t entry);
158 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
159 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
160 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
161 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
162 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
163 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
164 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
165 		vm_map_entry_t);
166 static void vm_map_split (vm_map_entry_t);
167 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 void
185 vm_map_startup(void)
186 {
187 	mapzone = &mapzone_store;
188 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
189 		map_init, MAX_KMAP);
190 	mapentzone = &mapentzone_store;
191 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
192 		map_entry_init, MAX_MAPENT);
193 }
194 
195 /*
196  *	vm_init2 - called prior to any vmspace allocations
197  */
198 void
199 vm_init2(void)
200 {
201 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
202 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
203 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
204 	pmap_init2();
205 	vm_object_init2();
206 }
207 
208 
209 /*
210  * Red black tree functions
211  */
212 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
213 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
214 
215 /* a->start is address, and the only field has to be initialized */
216 static int
217 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
218 {
219 	if (a->start < b->start)
220 		return(-1);
221 	else if (a->start > b->start)
222 		return(1);
223 	return(0);
224 }
225 
226 /*
227  * Allocate a vmspace structure, including a vm_map and pmap.
228  * Initialize numerous fields.  While the initial allocation is zerod,
229  * subsequence reuse from the objcache leaves elements of the structure
230  * intact (particularly the pmap), so portions must be zerod.
231  *
232  * The structure is not considered activated until we call sysref_activate().
233  */
234 struct vmspace *
235 vmspace_alloc(vm_offset_t min, vm_offset_t max)
236 {
237 	struct vmspace *vm;
238 
239 	vm = sysref_alloc(&vmspace_sysref_class);
240 	bzero(&vm->vm_startcopy,
241 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
242 	vm_map_init(&vm->vm_map, min, max, NULL);
243 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
244 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
245 	vm->vm_shm = NULL;
246 	vm->vm_exitingcnt = 0;
247 	cpu_vmspace_alloc(vm);
248 	sysref_activate(&vm->vm_sysref);
249 	return (vm);
250 }
251 
252 /*
253  * dtor function - Some elements of the pmap are retained in the
254  * free-cached vmspaces to improve performance.  We have to clean them up
255  * here before returning the vmspace to the memory pool.
256  */
257 static void
258 vmspace_dtor(void *obj, void *private)
259 {
260 	struct vmspace *vm = obj;
261 
262 	pmap_puninit(vmspace_pmap(vm));
263 }
264 
265 /*
266  * Called in two cases:
267  *
268  * (1) When the last sysref is dropped, but exitingcnt might still be
269  *     non-zero.
270  *
271  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
272  *     exitingcnt becomes zero
273  *
274  * sysref will not scrap the object until we call sysref_put() once more
275  * after the last ref has been dropped.
276  */
277 static void
278 vmspace_terminate(struct vmspace *vm)
279 {
280 	int count;
281 
282 	/*
283 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
284 	 * yet, but we can scrap user memory.
285 	 */
286 	if (vm->vm_exitingcnt) {
287 		shmexit(vm);
288 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
289 				  VM_MAX_USER_ADDRESS);
290 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
291 			      VM_MAX_USER_ADDRESS);
292 
293 		return;
294 	}
295 	cpu_vmspace_free(vm);
296 
297 	/*
298 	 * Make sure any SysV shm is freed, it might not have in
299 	 * exit1()
300 	 */
301 	shmexit(vm);
302 
303 	KKASSERT(vm->vm_upcalls == NULL);
304 
305 	/*
306 	 * Lock the map, to wait out all other references to it.
307 	 * Delete all of the mappings and pages they hold, then call
308 	 * the pmap module to reclaim anything left.
309 	 */
310 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
311 	vm_map_lock(&vm->vm_map);
312 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
313 		vm->vm_map.max_offset, &count);
314 	vm_map_unlock(&vm->vm_map);
315 	vm_map_entry_release(count);
316 
317 	pmap_release(vmspace_pmap(vm));
318 	sysref_put(&vm->vm_sysref);
319 }
320 
321 static void
322 vmspace_lock(struct vmspace *vm __unused)
323 {
324 }
325 
326 static void
327 vmspace_unlock(struct vmspace *vm __unused)
328 {
329 }
330 
331 /*
332  * This is called in the wait*() handling code.  The vmspace can be terminated
333  * after the last wait is finished using it.
334  */
335 void
336 vmspace_exitfree(struct proc *p)
337 {
338 	struct vmspace *vm;
339 
340 	vm = p->p_vmspace;
341 	p->p_vmspace = NULL;
342 
343 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
344 		vmspace_terminate(vm);
345 }
346 
347 /*
348  * vmspace_swap_count()
349  *
350  *	Swap useage is determined by taking the proportional swap used by
351  *	VM objects backing the VM map.  To make up for fractional losses,
352  *	if the VM object has any swap use at all the associated map entries
353  *	count for at least 1 swap page.
354  */
355 int
356 vmspace_swap_count(struct vmspace *vmspace)
357 {
358 	vm_map_t map = &vmspace->vm_map;
359 	vm_map_entry_t cur;
360 	vm_object_t object;
361 	int count = 0;
362 	int n;
363 
364 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
365 		switch(cur->maptype) {
366 		case VM_MAPTYPE_NORMAL:
367 		case VM_MAPTYPE_VPAGETABLE:
368 			if ((object = cur->object.vm_object) == NULL)
369 				break;
370 			if (object->swblock_count) {
371 				n = (cur->end - cur->start) / PAGE_SIZE;
372 				count += object->swblock_count *
373 				    SWAP_META_PAGES * n / object->size + 1;
374 			}
375 			break;
376 		default:
377 			break;
378 		}
379 	}
380 	return(count);
381 }
382 
383 /*
384  * vmspace_anonymous_count()
385  *
386  *	Calculate the approximate number of anonymous pages in use by
387  *	this vmspace.  To make up for fractional losses, we count each
388  *	VM object as having at least 1 anonymous page.
389  */
390 int
391 vmspace_anonymous_count(struct vmspace *vmspace)
392 {
393 	vm_map_t map = &vmspace->vm_map;
394 	vm_map_entry_t cur;
395 	vm_object_t object;
396 	int count = 0;
397 
398 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
399 		switch(cur->maptype) {
400 		case VM_MAPTYPE_NORMAL:
401 		case VM_MAPTYPE_VPAGETABLE:
402 			if ((object = cur->object.vm_object) == NULL)
403 				break;
404 			if (object->type != OBJT_DEFAULT &&
405 			    object->type != OBJT_SWAP) {
406 				break;
407 			}
408 			count += object->resident_page_count;
409 			break;
410 		default:
411 			break;
412 		}
413 	}
414 	return(count);
415 }
416 
417 
418 
419 
420 /*
421  *	vm_map_create:
422  *
423  *	Creates and returns a new empty VM map with
424  *	the given physical map structure, and having
425  *	the given lower and upper address bounds.
426  */
427 vm_map_t
428 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
429 {
430 	if (result == NULL)
431 		result = zalloc(mapzone);
432 	vm_map_init(result, min, max, pmap);
433 	return (result);
434 }
435 
436 /*
437  * Initialize an existing vm_map structure
438  * such as that in the vmspace structure.
439  * The pmap is set elsewhere.
440  */
441 void
442 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
443 {
444 	map->header.next = map->header.prev = &map->header;
445 	RB_INIT(&map->rb_root);
446 	map->nentries = 0;
447 	map->size = 0;
448 	map->system_map = 0;
449 	map->infork = 0;
450 	map->min_offset = min;
451 	map->max_offset = max;
452 	map->pmap = pmap;
453 	map->first_free = &map->header;
454 	map->hint = &map->header;
455 	map->timestamp = 0;
456 	lockinit(&map->lock, "thrd_sleep", 0, 0);
457 }
458 
459 /*
460  * Shadow the vm_map_entry's object.  This typically needs to be done when
461  * a write fault is taken on an entry which had previously been cloned by
462  * fork().  The shared object (which might be NULL) must become private so
463  * we add a shadow layer above it.
464  *
465  * Object allocation for anonymous mappings is defered as long as possible.
466  * When creating a shadow, however, the underlying object must be instantiated
467  * so it can be shared.
468  *
469  * If the map segment is governed by a virtual page table then it is
470  * possible to address offsets beyond the mapped area.  Just allocate
471  * a maximally sized object for this case.
472  */
473 static
474 void
475 vm_map_entry_shadow(vm_map_entry_t entry)
476 {
477 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
478 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
479 				 0x7FFFFFFF);	/* XXX */
480 	} else {
481 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
482 				 atop(entry->end - entry->start));
483 	}
484 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
485 }
486 
487 /*
488  * Allocate an object for a vm_map_entry.
489  *
490  * Object allocation for anonymous mappings is defered as long as possible.
491  * This function is called when we can defer no longer, generally when a map
492  * entry might be split or forked or takes a page fault.
493  *
494  * If the map segment is governed by a virtual page table then it is
495  * possible to address offsets beyond the mapped area.  Just allocate
496  * a maximally sized object for this case.
497  */
498 void
499 vm_map_entry_allocate_object(vm_map_entry_t entry)
500 {
501 	vm_object_t obj;
502 
503 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
504 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
505 	} else {
506 		obj = vm_object_allocate(OBJT_DEFAULT,
507 					 atop(entry->end - entry->start));
508 	}
509 	entry->object.vm_object = obj;
510 	entry->offset = 0;
511 }
512 
513 /*
514  *      vm_map_entry_reserve_cpu_init:
515  *
516  *	Set an initial negative count so the first attempt to reserve
517  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
518  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
519  *	map a new page for vm_map_entry structures.  SMP systems are
520  *	particularly sensitive.
521  *
522  *	This routine is called in early boot so we cannot just call
523  *	vm_map_entry_reserve().
524  *
525  *	May be called for a gd other then mycpu, but may only be called
526  *	during early boot.
527  */
528 void
529 vm_map_entry_reserve_cpu_init(globaldata_t gd)
530 {
531 	vm_map_entry_t entry;
532 	int i;
533 
534 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
535 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
536 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
537 		entry->next = gd->gd_vme_base;
538 		gd->gd_vme_base = entry;
539 	}
540 }
541 
542 /*
543  *	vm_map_entry_reserve:
544  *
545  *	Reserves vm_map_entry structures so code later on can manipulate
546  *	map_entry structures within a locked map without blocking trying
547  *	to allocate a new vm_map_entry.
548  */
549 int
550 vm_map_entry_reserve(int count)
551 {
552 	struct globaldata *gd = mycpu;
553 	vm_map_entry_t entry;
554 
555 	crit_enter();
556 
557 	/*
558 	 * Make sure we have enough structures in gd_vme_base to handle
559 	 * the reservation request.
560 	 */
561 	while (gd->gd_vme_avail < count) {
562 		entry = zalloc(mapentzone);
563 		entry->next = gd->gd_vme_base;
564 		gd->gd_vme_base = entry;
565 		++gd->gd_vme_avail;
566 	}
567 	gd->gd_vme_avail -= count;
568 	crit_exit();
569 	return(count);
570 }
571 
572 /*
573  *	vm_map_entry_release:
574  *
575  *	Releases previously reserved vm_map_entry structures that were not
576  *	used.  If we have too much junk in our per-cpu cache clean some of
577  *	it out.
578  */
579 void
580 vm_map_entry_release(int count)
581 {
582 	struct globaldata *gd = mycpu;
583 	vm_map_entry_t entry;
584 
585 	crit_enter();
586 	gd->gd_vme_avail += count;
587 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
588 		entry = gd->gd_vme_base;
589 		KKASSERT(entry != NULL);
590 		gd->gd_vme_base = entry->next;
591 		--gd->gd_vme_avail;
592 		crit_exit();
593 		zfree(mapentzone, entry);
594 		crit_enter();
595 	}
596 	crit_exit();
597 }
598 
599 /*
600  *	vm_map_entry_kreserve:
601  *
602  *	Reserve map entry structures for use in kernel_map itself.  These
603  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
604  *	was inited.  This function is used by zalloc() to avoid a recursion
605  *	when zalloc() itself needs to allocate additional kernel memory.
606  *
607  *	This function works like the normal reserve but does not load the
608  *	vm_map_entry cache (because that would result in an infinite
609  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
610  *
611  *	Any caller of this function must be sure to renormalize after
612  *	potentially eating entries to ensure that the reserve supply
613  *	remains intact.
614  */
615 int
616 vm_map_entry_kreserve(int count)
617 {
618 	struct globaldata *gd = mycpu;
619 
620 	crit_enter();
621 	gd->gd_vme_avail -= count;
622 	crit_exit();
623 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
624 	return(count);
625 }
626 
627 /*
628  *	vm_map_entry_krelease:
629  *
630  *	Release previously reserved map entries for kernel_map.  We do not
631  *	attempt to clean up like the normal release function as this would
632  *	cause an unnecessary (but probably not fatal) deep procedure call.
633  */
634 void
635 vm_map_entry_krelease(int count)
636 {
637 	struct globaldata *gd = mycpu;
638 
639 	crit_enter();
640 	gd->gd_vme_avail += count;
641 	crit_exit();
642 }
643 
644 /*
645  *	vm_map_entry_create:	[ internal use only ]
646  *
647  *	Allocates a VM map entry for insertion.  No entry fields are filled
648  *	in.
649  *
650  *	This routine may be called from an interrupt thread but not a FAST
651  *	interrupt.  This routine may recurse the map lock.
652  */
653 static vm_map_entry_t
654 vm_map_entry_create(vm_map_t map, int *countp)
655 {
656 	struct globaldata *gd = mycpu;
657 	vm_map_entry_t entry;
658 
659 	KKASSERT(*countp > 0);
660 	--*countp;
661 	crit_enter();
662 	entry = gd->gd_vme_base;
663 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
664 	gd->gd_vme_base = entry->next;
665 	crit_exit();
666 	return(entry);
667 }
668 
669 /*
670  *	vm_map_entry_dispose:	[ internal use only ]
671  *
672  *	Dispose of a vm_map_entry that is no longer being referenced.  This
673  *	function may be called from an interrupt.
674  */
675 static void
676 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
677 {
678 	struct globaldata *gd = mycpu;
679 
680 	KKASSERT(map->hint != entry);
681 	KKASSERT(map->first_free != entry);
682 
683 	++*countp;
684 	crit_enter();
685 	entry->next = gd->gd_vme_base;
686 	gd->gd_vme_base = entry;
687 	crit_exit();
688 }
689 
690 
691 /*
692  *	vm_map_entry_{un,}link:
693  *
694  *	Insert/remove entries from maps.
695  */
696 static __inline void
697 vm_map_entry_link(vm_map_t map,
698 		  vm_map_entry_t after_where,
699 		  vm_map_entry_t entry)
700 {
701 	map->nentries++;
702 	entry->prev = after_where;
703 	entry->next = after_where->next;
704 	entry->next->prev = entry;
705 	after_where->next = entry;
706 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
707 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
708 }
709 
710 static __inline void
711 vm_map_entry_unlink(vm_map_t map,
712 		    vm_map_entry_t entry)
713 {
714 	vm_map_entry_t prev;
715 	vm_map_entry_t next;
716 
717 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
718 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
719 	prev = entry->prev;
720 	next = entry->next;
721 	next->prev = prev;
722 	prev->next = next;
723 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
724 	map->nentries--;
725 }
726 
727 /*
728  *	vm_map_lookup_entry:	[ internal use only ]
729  *
730  *	Finds the map entry containing (or
731  *	immediately preceding) the specified address
732  *	in the given map; the entry is returned
733  *	in the "entry" parameter.  The boolean
734  *	result indicates whether the address is
735  *	actually contained in the map.
736  */
737 boolean_t
738 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
739     vm_map_entry_t *entry /* OUT */)
740 {
741 	vm_map_entry_t tmp;
742 	vm_map_entry_t last;
743 
744 #if 0
745 	/*
746 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
747 	 * the hint code with the red-black lookup meets with system crashes
748 	 * and lockups.  We do not yet know why.
749 	 *
750 	 * It is possible that the problem is related to the setting
751 	 * of the hint during map_entry deletion, in the code specified
752 	 * at the GGG comment later on in this file.
753 	 */
754 	/*
755 	 * Quickly check the cached hint, there's a good chance of a match.
756 	 */
757 	if (map->hint != &map->header) {
758 		tmp = map->hint;
759 		if (address >= tmp->start && address < tmp->end) {
760 			*entry = tmp;
761 			return(TRUE);
762 		}
763 	}
764 #endif
765 
766 	/*
767 	 * Locate the record from the top of the tree.  'last' tracks the
768 	 * closest prior record and is returned if no match is found, which
769 	 * in binary tree terms means tracking the most recent right-branch
770 	 * taken.  If there is no prior record, &map->header is returned.
771 	 */
772 	last = &map->header;
773 	tmp = RB_ROOT(&map->rb_root);
774 
775 	while (tmp) {
776 		if (address >= tmp->start) {
777 			if (address < tmp->end) {
778 				*entry = tmp;
779 				map->hint = tmp;
780 				return(TRUE);
781 			}
782 			last = tmp;
783 			tmp = RB_RIGHT(tmp, rb_entry);
784 		} else {
785 			tmp = RB_LEFT(tmp, rb_entry);
786 		}
787 	}
788 	*entry = last;
789 	return (FALSE);
790 }
791 
792 /*
793  *	vm_map_insert:
794  *
795  *	Inserts the given whole VM object into the target
796  *	map at the specified address range.  The object's
797  *	size should match that of the address range.
798  *
799  *	Requires that the map be locked, and leaves it so.  Requires that
800  *	sufficient vm_map_entry structures have been reserved and tracks
801  *	the use via countp.
802  *
803  *	If object is non-NULL, ref count must be bumped by caller
804  *	prior to making call to account for the new entry.
805  */
806 int
807 vm_map_insert(vm_map_t map, int *countp,
808 	      vm_object_t object, vm_ooffset_t offset,
809 	      vm_offset_t start, vm_offset_t end,
810 	      vm_maptype_t maptype,
811 	      vm_prot_t prot, vm_prot_t max,
812 	      int cow)
813 {
814 	vm_map_entry_t new_entry;
815 	vm_map_entry_t prev_entry;
816 	vm_map_entry_t temp_entry;
817 	vm_eflags_t protoeflags;
818 
819 	/*
820 	 * Check that the start and end points are not bogus.
821 	 */
822 
823 	if ((start < map->min_offset) || (end > map->max_offset) ||
824 	    (start >= end))
825 		return (KERN_INVALID_ADDRESS);
826 
827 	/*
828 	 * Find the entry prior to the proposed starting address; if it's part
829 	 * of an existing entry, this range is bogus.
830 	 */
831 
832 	if (vm_map_lookup_entry(map, start, &temp_entry))
833 		return (KERN_NO_SPACE);
834 
835 	prev_entry = temp_entry;
836 
837 	/*
838 	 * Assert that the next entry doesn't overlap the end point.
839 	 */
840 
841 	if ((prev_entry->next != &map->header) &&
842 	    (prev_entry->next->start < end))
843 		return (KERN_NO_SPACE);
844 
845 	protoeflags = 0;
846 
847 	if (cow & MAP_COPY_ON_WRITE)
848 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
849 
850 	if (cow & MAP_NOFAULT) {
851 		protoeflags |= MAP_ENTRY_NOFAULT;
852 
853 		KASSERT(object == NULL,
854 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
855 	}
856 	if (cow & MAP_DISABLE_SYNCER)
857 		protoeflags |= MAP_ENTRY_NOSYNC;
858 	if (cow & MAP_DISABLE_COREDUMP)
859 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
860 	if (cow & MAP_IS_STACK)
861 		protoeflags |= MAP_ENTRY_STACK;
862 
863 	if (object) {
864 		/*
865 		 * When object is non-NULL, it could be shared with another
866 		 * process.  We have to set or clear OBJ_ONEMAPPING
867 		 * appropriately.
868 		 */
869 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
870 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
871 		}
872 	}
873 	else if ((prev_entry != &map->header) &&
874 		 (prev_entry->eflags == protoeflags) &&
875 		 (prev_entry->end == start) &&
876 		 (prev_entry->wired_count == 0) &&
877 		 prev_entry->maptype == maptype &&
878 		 ((prev_entry->object.vm_object == NULL) ||
879 		  vm_object_coalesce(prev_entry->object.vm_object,
880 				     OFF_TO_IDX(prev_entry->offset),
881 				     (vm_size_t)(prev_entry->end - prev_entry->start),
882 				     (vm_size_t)(end - prev_entry->end)))) {
883 		/*
884 		 * We were able to extend the object.  Determine if we
885 		 * can extend the previous map entry to include the
886 		 * new range as well.
887 		 */
888 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
889 		    (prev_entry->protection == prot) &&
890 		    (prev_entry->max_protection == max)) {
891 			map->size += (end - prev_entry->end);
892 			prev_entry->end = end;
893 			vm_map_simplify_entry(map, prev_entry, countp);
894 			return (KERN_SUCCESS);
895 		}
896 
897 		/*
898 		 * If we can extend the object but cannot extend the
899 		 * map entry, we have to create a new map entry.  We
900 		 * must bump the ref count on the extended object to
901 		 * account for it.  object may be NULL.
902 		 */
903 		object = prev_entry->object.vm_object;
904 		offset = prev_entry->offset +
905 			(prev_entry->end - prev_entry->start);
906 		vm_object_reference(object);
907 	}
908 
909 	/*
910 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
911 	 * in things like the buffer map where we manage kva but do not manage
912 	 * backing objects.
913 	 */
914 
915 	/*
916 	 * Create a new entry
917 	 */
918 
919 	new_entry = vm_map_entry_create(map, countp);
920 	new_entry->start = start;
921 	new_entry->end = end;
922 
923 	new_entry->maptype = maptype;
924 	new_entry->eflags = protoeflags;
925 	new_entry->object.vm_object = object;
926 	new_entry->offset = offset;
927 	new_entry->aux.master_pde = 0;
928 
929 	new_entry->inheritance = VM_INHERIT_DEFAULT;
930 	new_entry->protection = prot;
931 	new_entry->max_protection = max;
932 	new_entry->wired_count = 0;
933 
934 	/*
935 	 * Insert the new entry into the list
936 	 */
937 
938 	vm_map_entry_link(map, prev_entry, new_entry);
939 	map->size += new_entry->end - new_entry->start;
940 
941 	/*
942 	 * Update the free space hint.  Entries cannot overlap.
943 	 * An exact comparison is needed to avoid matching
944 	 * against the map->header.
945 	 */
946 	if ((map->first_free == prev_entry) &&
947 	    (prev_entry->end == new_entry->start)) {
948 		map->first_free = new_entry;
949 	}
950 
951 #if 0
952 	/*
953 	 * Temporarily removed to avoid MAP_STACK panic, due to
954 	 * MAP_STACK being a huge hack.  Will be added back in
955 	 * when MAP_STACK (and the user stack mapping) is fixed.
956 	 */
957 	/*
958 	 * It may be possible to simplify the entry
959 	 */
960 	vm_map_simplify_entry(map, new_entry, countp);
961 #endif
962 
963 	/*
964 	 * Try to pre-populate the page table.  Mappings governed by virtual
965 	 * page tables cannot be prepopulated without a lot of work, so
966 	 * don't try.
967 	 */
968 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
969 	    maptype != VM_MAPTYPE_VPAGETABLE) {
970 		pmap_object_init_pt(map->pmap, start, prot,
971 				    object, OFF_TO_IDX(offset), end - start,
972 				    cow & MAP_PREFAULT_PARTIAL);
973 	}
974 
975 	return (KERN_SUCCESS);
976 }
977 
978 /*
979  * Find sufficient space for `length' bytes in the given map, starting at
980  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
981  *
982  * This function will returned an arbitrarily aligned pointer.  If no
983  * particular alignment is required you should pass align as 1.  Note that
984  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
985  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
986  * argument.
987  *
988  * 'align' should be a power of 2 but is not required to be.
989  */
990 int
991 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
992 		 vm_size_t align, int flags, vm_offset_t *addr)
993 {
994 	vm_map_entry_t entry, next;
995 	vm_offset_t end;
996 	vm_offset_t align_mask;
997 
998 	if (start < map->min_offset)
999 		start = map->min_offset;
1000 	if (start > map->max_offset)
1001 		return (1);
1002 
1003 	/*
1004 	 * If the alignment is not a power of 2 we will have to use
1005 	 * a mod/division, set align_mask to a special value.
1006 	 */
1007 	if ((align | (align - 1)) + 1 != (align << 1))
1008 		align_mask = (vm_offset_t)-1;
1009 	else
1010 		align_mask = align - 1;
1011 
1012 retry:
1013 	/*
1014 	 * Look for the first possible address; if there's already something
1015 	 * at this address, we have to start after it.
1016 	 */
1017 	if (start == map->min_offset) {
1018 		if ((entry = map->first_free) != &map->header)
1019 			start = entry->end;
1020 	} else {
1021 		vm_map_entry_t tmp;
1022 
1023 		if (vm_map_lookup_entry(map, start, &tmp))
1024 			start = tmp->end;
1025 		entry = tmp;
1026 	}
1027 
1028 	/*
1029 	 * Look through the rest of the map, trying to fit a new region in the
1030 	 * gap between existing regions, or after the very last region.
1031 	 */
1032 	for (;; start = (entry = next)->end) {
1033 		/*
1034 		 * Adjust the proposed start by the requested alignment,
1035 		 * be sure that we didn't wrap the address.
1036 		 */
1037 		if (align_mask == (vm_offset_t)-1)
1038 			end = ((start + align - 1) / align) * align;
1039 		else
1040 			end = (start + align_mask) & ~align_mask;
1041 		if (end < start)
1042 			return (1);
1043 		start = end;
1044 		/*
1045 		 * Find the end of the proposed new region.  Be sure we didn't
1046 		 * go beyond the end of the map, or wrap around the address.
1047 		 * Then check to see if this is the last entry or if the
1048 		 * proposed end fits in the gap between this and the next
1049 		 * entry.
1050 		 */
1051 		end = start + length;
1052 		if (end > map->max_offset || end < start)
1053 			return (1);
1054 		next = entry->next;
1055 
1056 		/*
1057 		 * If the next entry's start address is beyond the desired
1058 		 * end address we may have found a good entry.
1059 		 *
1060 		 * If the next entry is a stack mapping we do not map into
1061 		 * the stack's reserved space.
1062 		 *
1063 		 * XXX continue to allow mapping into the stack's reserved
1064 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1065 		 * mapping, for backwards compatibility.  But the caller
1066 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1067 		 * want to do that.
1068 		 */
1069 		if (next == &map->header)
1070 			break;
1071 		if (next->start >= end) {
1072 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1073 				break;
1074 			if (flags & MAP_STACK)
1075 				break;
1076 			if (next->start - next->aux.avail_ssize >= end)
1077 				break;
1078 		}
1079 	}
1080 	map->hint = entry;
1081 	if (map == &kernel_map) {
1082 		vm_offset_t ksize;
1083 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
1084 			pmap_growkernel(ksize);
1085 			goto retry;
1086 		}
1087 	}
1088 	*addr = start;
1089 	return (0);
1090 }
1091 
1092 /*
1093  *	vm_map_find finds an unallocated region in the target address
1094  *	map with the given length.  The search is defined to be
1095  *	first-fit from the specified address; the region found is
1096  *	returned in the same parameter.
1097  *
1098  *	If object is non-NULL, ref count must be bumped by caller
1099  *	prior to making call to account for the new entry.
1100  */
1101 int
1102 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1103 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1104 	    boolean_t fitit,
1105 	    vm_maptype_t maptype,
1106 	    vm_prot_t prot, vm_prot_t max,
1107 	    int cow)
1108 {
1109 	vm_offset_t start;
1110 	int result;
1111 	int count;
1112 
1113 	start = *addr;
1114 
1115 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1116 	vm_map_lock(map);
1117 	if (fitit) {
1118 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1119 			vm_map_unlock(map);
1120 			vm_map_entry_release(count);
1121 			return (KERN_NO_SPACE);
1122 		}
1123 		start = *addr;
1124 	}
1125 	result = vm_map_insert(map, &count, object, offset,
1126 			       start, start + length,
1127 			       maptype,
1128 			       prot, max,
1129 			       cow);
1130 	vm_map_unlock(map);
1131 	vm_map_entry_release(count);
1132 
1133 	return (result);
1134 }
1135 
1136 /*
1137  *	vm_map_simplify_entry:
1138  *
1139  *	Simplify the given map entry by merging with either neighbor.  This
1140  *	routine also has the ability to merge with both neighbors.
1141  *
1142  *	The map must be locked.
1143  *
1144  *	This routine guarentees that the passed entry remains valid (though
1145  *	possibly extended).  When merging, this routine may delete one or
1146  *	both neighbors.  No action is taken on entries which have their
1147  *	in-transition flag set.
1148  */
1149 void
1150 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1151 {
1152 	vm_map_entry_t next, prev;
1153 	vm_size_t prevsize, esize;
1154 
1155 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1156 		++mycpu->gd_cnt.v_intrans_coll;
1157 		return;
1158 	}
1159 
1160 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1161 		return;
1162 
1163 	prev = entry->prev;
1164 	if (prev != &map->header) {
1165 		prevsize = prev->end - prev->start;
1166 		if ( (prev->end == entry->start) &&
1167 		     (prev->maptype == entry->maptype) &&
1168 		     (prev->object.vm_object == entry->object.vm_object) &&
1169 		     (!prev->object.vm_object ||
1170 			(prev->offset + prevsize == entry->offset)) &&
1171 		     (prev->eflags == entry->eflags) &&
1172 		     (prev->protection == entry->protection) &&
1173 		     (prev->max_protection == entry->max_protection) &&
1174 		     (prev->inheritance == entry->inheritance) &&
1175 		     (prev->wired_count == entry->wired_count)) {
1176 			if (map->first_free == prev)
1177 				map->first_free = entry;
1178 			if (map->hint == prev)
1179 				map->hint = entry;
1180 			vm_map_entry_unlink(map, prev);
1181 			entry->start = prev->start;
1182 			entry->offset = prev->offset;
1183 			if (prev->object.vm_object)
1184 				vm_object_deallocate(prev->object.vm_object);
1185 			vm_map_entry_dispose(map, prev, countp);
1186 		}
1187 	}
1188 
1189 	next = entry->next;
1190 	if (next != &map->header) {
1191 		esize = entry->end - entry->start;
1192 		if ((entry->end == next->start) &&
1193 		    (next->maptype == entry->maptype) &&
1194 		    (next->object.vm_object == entry->object.vm_object) &&
1195 		     (!entry->object.vm_object ||
1196 			(entry->offset + esize == next->offset)) &&
1197 		    (next->eflags == entry->eflags) &&
1198 		    (next->protection == entry->protection) &&
1199 		    (next->max_protection == entry->max_protection) &&
1200 		    (next->inheritance == entry->inheritance) &&
1201 		    (next->wired_count == entry->wired_count)) {
1202 			if (map->first_free == next)
1203 				map->first_free = entry;
1204 			if (map->hint == next)
1205 				map->hint = entry;
1206 			vm_map_entry_unlink(map, next);
1207 			entry->end = next->end;
1208 			if (next->object.vm_object)
1209 				vm_object_deallocate(next->object.vm_object);
1210 			vm_map_entry_dispose(map, next, countp);
1211 	        }
1212 	}
1213 }
1214 /*
1215  *	vm_map_clip_start:	[ internal use only ]
1216  *
1217  *	Asserts that the given entry begins at or after
1218  *	the specified address; if necessary,
1219  *	it splits the entry into two.
1220  */
1221 #define vm_map_clip_start(map, entry, startaddr, countp) \
1222 { \
1223 	if (startaddr > entry->start) \
1224 		_vm_map_clip_start(map, entry, startaddr, countp); \
1225 }
1226 
1227 /*
1228  *	This routine is called only when it is known that
1229  *	the entry must be split.
1230  */
1231 static void
1232 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1233 {
1234 	vm_map_entry_t new_entry;
1235 
1236 	/*
1237 	 * Split off the front portion -- note that we must insert the new
1238 	 * entry BEFORE this one, so that this entry has the specified
1239 	 * starting address.
1240 	 */
1241 
1242 	vm_map_simplify_entry(map, entry, countp);
1243 
1244 	/*
1245 	 * If there is no object backing this entry, we might as well create
1246 	 * one now.  If we defer it, an object can get created after the map
1247 	 * is clipped, and individual objects will be created for the split-up
1248 	 * map.  This is a bit of a hack, but is also about the best place to
1249 	 * put this improvement.
1250 	 */
1251 	if (entry->object.vm_object == NULL && !map->system_map) {
1252 		vm_map_entry_allocate_object(entry);
1253 	}
1254 
1255 	new_entry = vm_map_entry_create(map, countp);
1256 	*new_entry = *entry;
1257 
1258 	new_entry->end = start;
1259 	entry->offset += (start - entry->start);
1260 	entry->start = start;
1261 
1262 	vm_map_entry_link(map, entry->prev, new_entry);
1263 
1264 	switch(entry->maptype) {
1265 	case VM_MAPTYPE_NORMAL:
1266 	case VM_MAPTYPE_VPAGETABLE:
1267 		vm_object_reference(new_entry->object.vm_object);
1268 		break;
1269 	default:
1270 		break;
1271 	}
1272 }
1273 
1274 /*
1275  *	vm_map_clip_end:	[ internal use only ]
1276  *
1277  *	Asserts that the given entry ends at or before
1278  *	the specified address; if necessary,
1279  *	it splits the entry into two.
1280  */
1281 
1282 #define vm_map_clip_end(map, entry, endaddr, countp) \
1283 { \
1284 	if (endaddr < entry->end) \
1285 		_vm_map_clip_end(map, entry, endaddr, countp); \
1286 }
1287 
1288 /*
1289  *	This routine is called only when it is known that
1290  *	the entry must be split.
1291  */
1292 static void
1293 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1294 {
1295 	vm_map_entry_t new_entry;
1296 
1297 	/*
1298 	 * If there is no object backing this entry, we might as well create
1299 	 * one now.  If we defer it, an object can get created after the map
1300 	 * is clipped, and individual objects will be created for the split-up
1301 	 * map.  This is a bit of a hack, but is also about the best place to
1302 	 * put this improvement.
1303 	 */
1304 
1305 	if (entry->object.vm_object == NULL && !map->system_map) {
1306 		vm_map_entry_allocate_object(entry);
1307 	}
1308 
1309 	/*
1310 	 * Create a new entry and insert it AFTER the specified entry
1311 	 */
1312 
1313 	new_entry = vm_map_entry_create(map, countp);
1314 	*new_entry = *entry;
1315 
1316 	new_entry->start = entry->end = end;
1317 	new_entry->offset += (end - entry->start);
1318 
1319 	vm_map_entry_link(map, entry, new_entry);
1320 
1321 	switch(entry->maptype) {
1322 	case VM_MAPTYPE_NORMAL:
1323 	case VM_MAPTYPE_VPAGETABLE:
1324 		vm_object_reference(new_entry->object.vm_object);
1325 		break;
1326 	default:
1327 		break;
1328 	}
1329 }
1330 
1331 /*
1332  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1333  *
1334  *	Asserts that the starting and ending region
1335  *	addresses fall within the valid range of the map.
1336  */
1337 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1338 		{					\
1339 		if (start < vm_map_min(map))		\
1340 			start = vm_map_min(map);	\
1341 		if (end > vm_map_max(map))		\
1342 			end = vm_map_max(map);		\
1343 		if (start > end)			\
1344 			start = end;			\
1345 		}
1346 
1347 /*
1348  *	vm_map_transition_wait:	[ kernel use only ]
1349  *
1350  *	Used to block when an in-transition collison occurs.  The map
1351  *	is unlocked for the sleep and relocked before the return.
1352  */
1353 static
1354 void
1355 vm_map_transition_wait(vm_map_t map)
1356 {
1357 	vm_map_unlock(map);
1358 	tsleep(map, 0, "vment", 0);
1359 	vm_map_lock(map);
1360 }
1361 
1362 /*
1363  * CLIP_CHECK_BACK
1364  * CLIP_CHECK_FWD
1365  *
1366  *	When we do blocking operations with the map lock held it is
1367  *	possible that a clip might have occured on our in-transit entry,
1368  *	requiring an adjustment to the entry in our loop.  These macros
1369  *	help the pageable and clip_range code deal with the case.  The
1370  *	conditional costs virtually nothing if no clipping has occured.
1371  */
1372 
1373 #define CLIP_CHECK_BACK(entry, save_start)		\
1374     do {						\
1375 	    while (entry->start != save_start) {	\
1376 		    entry = entry->prev;		\
1377 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1378 	    }						\
1379     } while(0)
1380 
1381 #define CLIP_CHECK_FWD(entry, save_end)			\
1382     do {						\
1383 	    while (entry->end != save_end) {		\
1384 		    entry = entry->next;		\
1385 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1386 	    }						\
1387     } while(0)
1388 
1389 
1390 /*
1391  *	vm_map_clip_range:	[ kernel use only ]
1392  *
1393  *	Clip the specified range and return the base entry.  The
1394  *	range may cover several entries starting at the returned base
1395  *	and the first and last entry in the covering sequence will be
1396  *	properly clipped to the requested start and end address.
1397  *
1398  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1399  *	flag.
1400  *
1401  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1402  *	covered by the requested range.
1403  *
1404  *	The map must be exclusively locked on entry and will remain locked
1405  *	on return. If no range exists or the range contains holes and you
1406  *	specified that no holes were allowed, NULL will be returned.  This
1407  *	routine may temporarily unlock the map in order avoid a deadlock when
1408  *	sleeping.
1409  */
1410 static
1411 vm_map_entry_t
1412 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1413 	int *countp, int flags)
1414 {
1415 	vm_map_entry_t start_entry;
1416 	vm_map_entry_t entry;
1417 
1418 	/*
1419 	 * Locate the entry and effect initial clipping.  The in-transition
1420 	 * case does not occur very often so do not try to optimize it.
1421 	 */
1422 again:
1423 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1424 		return (NULL);
1425 	entry = start_entry;
1426 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1427 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1428 		++mycpu->gd_cnt.v_intrans_coll;
1429 		++mycpu->gd_cnt.v_intrans_wait;
1430 		vm_map_transition_wait(map);
1431 		/*
1432 		 * entry and/or start_entry may have been clipped while
1433 		 * we slept, or may have gone away entirely.  We have
1434 		 * to restart from the lookup.
1435 		 */
1436 		goto again;
1437 	}
1438 	/*
1439 	 * Since we hold an exclusive map lock we do not have to restart
1440 	 * after clipping, even though clipping may block in zalloc.
1441 	 */
1442 	vm_map_clip_start(map, entry, start, countp);
1443 	vm_map_clip_end(map, entry, end, countp);
1444 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1445 
1446 	/*
1447 	 * Scan entries covered by the range.  When working on the next
1448 	 * entry a restart need only re-loop on the current entry which
1449 	 * we have already locked, since 'next' may have changed.  Also,
1450 	 * even though entry is safe, it may have been clipped so we
1451 	 * have to iterate forwards through the clip after sleeping.
1452 	 */
1453 	while (entry->next != &map->header && entry->next->start < end) {
1454 		vm_map_entry_t next = entry->next;
1455 
1456 		if (flags & MAP_CLIP_NO_HOLES) {
1457 			if (next->start > entry->end) {
1458 				vm_map_unclip_range(map, start_entry,
1459 					start, entry->end, countp, flags);
1460 				return(NULL);
1461 			}
1462 		}
1463 
1464 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1465 			vm_offset_t save_end = entry->end;
1466 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1467 			++mycpu->gd_cnt.v_intrans_coll;
1468 			++mycpu->gd_cnt.v_intrans_wait;
1469 			vm_map_transition_wait(map);
1470 
1471 			/*
1472 			 * clips might have occured while we blocked.
1473 			 */
1474 			CLIP_CHECK_FWD(entry, save_end);
1475 			CLIP_CHECK_BACK(start_entry, start);
1476 			continue;
1477 		}
1478 		/*
1479 		 * No restart necessary even though clip_end may block, we
1480 		 * are holding the map lock.
1481 		 */
1482 		vm_map_clip_end(map, next, end, countp);
1483 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1484 		entry = next;
1485 	}
1486 	if (flags & MAP_CLIP_NO_HOLES) {
1487 		if (entry->end != end) {
1488 			vm_map_unclip_range(map, start_entry,
1489 				start, entry->end, countp, flags);
1490 			return(NULL);
1491 		}
1492 	}
1493 	return(start_entry);
1494 }
1495 
1496 /*
1497  *	vm_map_unclip_range:	[ kernel use only ]
1498  *
1499  *	Undo the effect of vm_map_clip_range().  You should pass the same
1500  *	flags and the same range that you passed to vm_map_clip_range().
1501  *	This code will clear the in-transition flag on the entries and
1502  *	wake up anyone waiting.  This code will also simplify the sequence
1503  *	and attempt to merge it with entries before and after the sequence.
1504  *
1505  *	The map must be locked on entry and will remain locked on return.
1506  *
1507  *	Note that you should also pass the start_entry returned by
1508  *	vm_map_clip_range().  However, if you block between the two calls
1509  *	with the map unlocked please be aware that the start_entry may
1510  *	have been clipped and you may need to scan it backwards to find
1511  *	the entry corresponding with the original start address.  You are
1512  *	responsible for this, vm_map_unclip_range() expects the correct
1513  *	start_entry to be passed to it and will KASSERT otherwise.
1514  */
1515 static
1516 void
1517 vm_map_unclip_range(
1518 	vm_map_t map,
1519 	vm_map_entry_t start_entry,
1520 	vm_offset_t start,
1521 	vm_offset_t end,
1522 	int *countp,
1523 	int flags)
1524 {
1525 	vm_map_entry_t entry;
1526 
1527 	entry = start_entry;
1528 
1529 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1530 	while (entry != &map->header && entry->start < end) {
1531 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1532 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1533 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1534 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1535 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1536 			wakeup(map);
1537 		}
1538 		entry = entry->next;
1539 	}
1540 
1541 	/*
1542 	 * Simplification does not block so there is no restart case.
1543 	 */
1544 	entry = start_entry;
1545 	while (entry != &map->header && entry->start < end) {
1546 		vm_map_simplify_entry(map, entry, countp);
1547 		entry = entry->next;
1548 	}
1549 }
1550 
1551 /*
1552  *	vm_map_submap:		[ kernel use only ]
1553  *
1554  *	Mark the given range as handled by a subordinate map.
1555  *
1556  *	This range must have been created with vm_map_find,
1557  *	and no other operations may have been performed on this
1558  *	range prior to calling vm_map_submap.
1559  *
1560  *	Only a limited number of operations can be performed
1561  *	within this rage after calling vm_map_submap:
1562  *		vm_fault
1563  *	[Don't try vm_map_copy!]
1564  *
1565  *	To remove a submapping, one must first remove the
1566  *	range from the superior map, and then destroy the
1567  *	submap (if desired).  [Better yet, don't try it.]
1568  */
1569 int
1570 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1571 {
1572 	vm_map_entry_t entry;
1573 	int result = KERN_INVALID_ARGUMENT;
1574 	int count;
1575 
1576 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1577 	vm_map_lock(map);
1578 
1579 	VM_MAP_RANGE_CHECK(map, start, end);
1580 
1581 	if (vm_map_lookup_entry(map, start, &entry)) {
1582 		vm_map_clip_start(map, entry, start, &count);
1583 	} else {
1584 		entry = entry->next;
1585 	}
1586 
1587 	vm_map_clip_end(map, entry, end, &count);
1588 
1589 	if ((entry->start == start) && (entry->end == end) &&
1590 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1591 	    (entry->object.vm_object == NULL)) {
1592 		entry->object.sub_map = submap;
1593 		entry->maptype = VM_MAPTYPE_SUBMAP;
1594 		result = KERN_SUCCESS;
1595 	}
1596 	vm_map_unlock(map);
1597 	vm_map_entry_release(count);
1598 
1599 	return (result);
1600 }
1601 
1602 /*
1603  * vm_map_protect:
1604  *
1605  * Sets the protection of the specified address region in the target map.
1606  * If "set_max" is specified, the maximum protection is to be set;
1607  * otherwise, only the current protection is affected.
1608  *
1609  * The protection is not applicable to submaps, but is applicable to normal
1610  * maps and maps governed by virtual page tables.  For example, when operating
1611  * on a virtual page table our protection basically controls how COW occurs
1612  * on the backing object, whereas the virtual page table abstraction itself
1613  * is an abstraction for userland.
1614  */
1615 int
1616 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1617 	       vm_prot_t new_prot, boolean_t set_max)
1618 {
1619 	vm_map_entry_t current;
1620 	vm_map_entry_t entry;
1621 	int count;
1622 
1623 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1624 	vm_map_lock(map);
1625 
1626 	VM_MAP_RANGE_CHECK(map, start, end);
1627 
1628 	if (vm_map_lookup_entry(map, start, &entry)) {
1629 		vm_map_clip_start(map, entry, start, &count);
1630 	} else {
1631 		entry = entry->next;
1632 	}
1633 
1634 	/*
1635 	 * Make a first pass to check for protection violations.
1636 	 */
1637 	current = entry;
1638 	while ((current != &map->header) && (current->start < end)) {
1639 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1640 			vm_map_unlock(map);
1641 			vm_map_entry_release(count);
1642 			return (KERN_INVALID_ARGUMENT);
1643 		}
1644 		if ((new_prot & current->max_protection) != new_prot) {
1645 			vm_map_unlock(map);
1646 			vm_map_entry_release(count);
1647 			return (KERN_PROTECTION_FAILURE);
1648 		}
1649 		current = current->next;
1650 	}
1651 
1652 	/*
1653 	 * Go back and fix up protections. [Note that clipping is not
1654 	 * necessary the second time.]
1655 	 */
1656 	current = entry;
1657 
1658 	while ((current != &map->header) && (current->start < end)) {
1659 		vm_prot_t old_prot;
1660 
1661 		vm_map_clip_end(map, current, end, &count);
1662 
1663 		old_prot = current->protection;
1664 		if (set_max) {
1665 			current->protection =
1666 			    (current->max_protection = new_prot) &
1667 			    old_prot;
1668 		} else {
1669 			current->protection = new_prot;
1670 		}
1671 
1672 		/*
1673 		 * Update physical map if necessary. Worry about copy-on-write
1674 		 * here -- CHECK THIS XXX
1675 		 */
1676 
1677 		if (current->protection != old_prot) {
1678 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1679 							VM_PROT_ALL)
1680 
1681 			pmap_protect(map->pmap, current->start,
1682 			    current->end,
1683 			    current->protection & MASK(current));
1684 #undef	MASK
1685 		}
1686 
1687 		vm_map_simplify_entry(map, current, &count);
1688 
1689 		current = current->next;
1690 	}
1691 
1692 	vm_map_unlock(map);
1693 	vm_map_entry_release(count);
1694 	return (KERN_SUCCESS);
1695 }
1696 
1697 /*
1698  *	vm_map_madvise:
1699  *
1700  * 	This routine traverses a processes map handling the madvise
1701  *	system call.  Advisories are classified as either those effecting
1702  *	the vm_map_entry structure, or those effecting the underlying
1703  *	objects.
1704  *
1705  *	The <value> argument is used for extended madvise calls.
1706  */
1707 int
1708 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1709 	       int behav, off_t value)
1710 {
1711 	vm_map_entry_t current, entry;
1712 	int modify_map = 0;
1713 	int error = 0;
1714 	int count;
1715 
1716 	/*
1717 	 * Some madvise calls directly modify the vm_map_entry, in which case
1718 	 * we need to use an exclusive lock on the map and we need to perform
1719 	 * various clipping operations.  Otherwise we only need a read-lock
1720 	 * on the map.
1721 	 */
1722 
1723 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1724 
1725 	switch(behav) {
1726 	case MADV_NORMAL:
1727 	case MADV_SEQUENTIAL:
1728 	case MADV_RANDOM:
1729 	case MADV_NOSYNC:
1730 	case MADV_AUTOSYNC:
1731 	case MADV_NOCORE:
1732 	case MADV_CORE:
1733 	case MADV_SETMAP:
1734 	case MADV_INVAL:
1735 		modify_map = 1;
1736 		vm_map_lock(map);
1737 		break;
1738 	case MADV_WILLNEED:
1739 	case MADV_DONTNEED:
1740 	case MADV_FREE:
1741 		vm_map_lock_read(map);
1742 		break;
1743 	default:
1744 		vm_map_entry_release(count);
1745 		return (EINVAL);
1746 	}
1747 
1748 	/*
1749 	 * Locate starting entry and clip if necessary.
1750 	 */
1751 
1752 	VM_MAP_RANGE_CHECK(map, start, end);
1753 
1754 	if (vm_map_lookup_entry(map, start, &entry)) {
1755 		if (modify_map)
1756 			vm_map_clip_start(map, entry, start, &count);
1757 	} else {
1758 		entry = entry->next;
1759 	}
1760 
1761 	if (modify_map) {
1762 		/*
1763 		 * madvise behaviors that are implemented in the vm_map_entry.
1764 		 *
1765 		 * We clip the vm_map_entry so that behavioral changes are
1766 		 * limited to the specified address range.
1767 		 */
1768 		for (current = entry;
1769 		     (current != &map->header) && (current->start < end);
1770 		     current = current->next
1771 		) {
1772 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1773 				continue;
1774 
1775 			vm_map_clip_end(map, current, end, &count);
1776 
1777 			switch (behav) {
1778 			case MADV_NORMAL:
1779 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1780 				break;
1781 			case MADV_SEQUENTIAL:
1782 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1783 				break;
1784 			case MADV_RANDOM:
1785 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1786 				break;
1787 			case MADV_NOSYNC:
1788 				current->eflags |= MAP_ENTRY_NOSYNC;
1789 				break;
1790 			case MADV_AUTOSYNC:
1791 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1792 				break;
1793 			case MADV_NOCORE:
1794 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1795 				break;
1796 			case MADV_CORE:
1797 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1798 				break;
1799 			case MADV_INVAL:
1800 				/*
1801 				 * Invalidate the related pmap entries, used
1802 				 * to flush portions of the real kernel's
1803 				 * pmap when the caller has removed or
1804 				 * modified existing mappings in a virtual
1805 				 * page table.
1806 				 */
1807 				pmap_remove(map->pmap,
1808 					    current->start, current->end);
1809 				break;
1810 			case MADV_SETMAP:
1811 				/*
1812 				 * Set the page directory page for a map
1813 				 * governed by a virtual page table.  Mark
1814 				 * the entry as being governed by a virtual
1815 				 * page table if it is not.
1816 				 *
1817 				 * XXX the page directory page is stored
1818 				 * in the avail_ssize field if the map_entry.
1819 				 *
1820 				 * XXX the map simplification code does not
1821 				 * compare this field so weird things may
1822 				 * happen if you do not apply this function
1823 				 * to the entire mapping governed by the
1824 				 * virtual page table.
1825 				 */
1826 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1827 					error = EINVAL;
1828 					break;
1829 				}
1830 				current->aux.master_pde = value;
1831 				pmap_remove(map->pmap,
1832 					    current->start, current->end);
1833 				break;
1834 			default:
1835 				error = EINVAL;
1836 				break;
1837 			}
1838 			vm_map_simplify_entry(map, current, &count);
1839 		}
1840 		vm_map_unlock(map);
1841 	} else {
1842 		vm_pindex_t pindex;
1843 		int count;
1844 
1845 		/*
1846 		 * madvise behaviors that are implemented in the underlying
1847 		 * vm_object.
1848 		 *
1849 		 * Since we don't clip the vm_map_entry, we have to clip
1850 		 * the vm_object pindex and count.
1851 		 *
1852 		 * NOTE!  We currently do not support these functions on
1853 		 * virtual page tables.
1854 		 */
1855 		for (current = entry;
1856 		     (current != &map->header) && (current->start < end);
1857 		     current = current->next
1858 		) {
1859 			vm_offset_t useStart;
1860 
1861 			if (current->maptype != VM_MAPTYPE_NORMAL)
1862 				continue;
1863 
1864 			pindex = OFF_TO_IDX(current->offset);
1865 			count = atop(current->end - current->start);
1866 			useStart = current->start;
1867 
1868 			if (current->start < start) {
1869 				pindex += atop(start - current->start);
1870 				count -= atop(start - current->start);
1871 				useStart = start;
1872 			}
1873 			if (current->end > end)
1874 				count -= atop(current->end - end);
1875 
1876 			if (count <= 0)
1877 				continue;
1878 
1879 			vm_object_madvise(current->object.vm_object,
1880 					  pindex, count, behav);
1881 
1882 			/*
1883 			 * Try to populate the page table.  Mappings governed
1884 			 * by virtual page tables cannot be pre-populated
1885 			 * without a lot of work so don't try.
1886 			 */
1887 			if (behav == MADV_WILLNEED &&
1888 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1889 				pmap_object_init_pt(
1890 				    map->pmap,
1891 				    useStart,
1892 				    current->protection,
1893 				    current->object.vm_object,
1894 				    pindex,
1895 				    (count << PAGE_SHIFT),
1896 				    MAP_PREFAULT_MADVISE
1897 				);
1898 			}
1899 		}
1900 		vm_map_unlock_read(map);
1901 	}
1902 	vm_map_entry_release(count);
1903 	return(error);
1904 }
1905 
1906 
1907 /*
1908  *	vm_map_inherit:
1909  *
1910  *	Sets the inheritance of the specified address
1911  *	range in the target map.  Inheritance
1912  *	affects how the map will be shared with
1913  *	child maps at the time of vm_map_fork.
1914  */
1915 int
1916 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1917 	       vm_inherit_t new_inheritance)
1918 {
1919 	vm_map_entry_t entry;
1920 	vm_map_entry_t temp_entry;
1921 	int count;
1922 
1923 	switch (new_inheritance) {
1924 	case VM_INHERIT_NONE:
1925 	case VM_INHERIT_COPY:
1926 	case VM_INHERIT_SHARE:
1927 		break;
1928 	default:
1929 		return (KERN_INVALID_ARGUMENT);
1930 	}
1931 
1932 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1933 	vm_map_lock(map);
1934 
1935 	VM_MAP_RANGE_CHECK(map, start, end);
1936 
1937 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1938 		entry = temp_entry;
1939 		vm_map_clip_start(map, entry, start, &count);
1940 	} else
1941 		entry = temp_entry->next;
1942 
1943 	while ((entry != &map->header) && (entry->start < end)) {
1944 		vm_map_clip_end(map, entry, end, &count);
1945 
1946 		entry->inheritance = new_inheritance;
1947 
1948 		vm_map_simplify_entry(map, entry, &count);
1949 
1950 		entry = entry->next;
1951 	}
1952 	vm_map_unlock(map);
1953 	vm_map_entry_release(count);
1954 	return (KERN_SUCCESS);
1955 }
1956 
1957 /*
1958  * Implement the semantics of mlock
1959  */
1960 int
1961 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1962     boolean_t new_pageable)
1963 {
1964 	vm_map_entry_t entry;
1965 	vm_map_entry_t start_entry;
1966 	vm_offset_t end;
1967 	int rv = KERN_SUCCESS;
1968 	int count;
1969 
1970 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1971 	vm_map_lock(map);
1972 	VM_MAP_RANGE_CHECK(map, start, real_end);
1973 	end = real_end;
1974 
1975 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1976 	if (start_entry == NULL) {
1977 		vm_map_unlock(map);
1978 		vm_map_entry_release(count);
1979 		return (KERN_INVALID_ADDRESS);
1980 	}
1981 
1982 	if (new_pageable == 0) {
1983 		entry = start_entry;
1984 		while ((entry != &map->header) && (entry->start < end)) {
1985 			vm_offset_t save_start;
1986 			vm_offset_t save_end;
1987 
1988 			/*
1989 			 * Already user wired or hard wired (trivial cases)
1990 			 */
1991 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1992 				entry = entry->next;
1993 				continue;
1994 			}
1995 			if (entry->wired_count != 0) {
1996 				entry->wired_count++;
1997 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1998 				entry = entry->next;
1999 				continue;
2000 			}
2001 
2002 			/*
2003 			 * A new wiring requires instantiation of appropriate
2004 			 * management structures and the faulting in of the
2005 			 * page.
2006 			 */
2007 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2008 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2009 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
2010 					vm_map_entry_shadow(entry);
2011 				} else if (entry->object.vm_object == NULL &&
2012 					   !map->system_map) {
2013 					vm_map_entry_allocate_object(entry);
2014 				}
2015 			}
2016 			entry->wired_count++;
2017 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2018 
2019 			/*
2020 			 * Now fault in the area.  Note that vm_fault_wire()
2021 			 * may release the map lock temporarily, it will be
2022 			 * relocked on return.  The in-transition
2023 			 * flag protects the entries.
2024 			 */
2025 			save_start = entry->start;
2026 			save_end = entry->end;
2027 			rv = vm_fault_wire(map, entry, TRUE);
2028 			if (rv) {
2029 				CLIP_CHECK_BACK(entry, save_start);
2030 				for (;;) {
2031 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2032 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2033 					entry->wired_count = 0;
2034 					if (entry->end == save_end)
2035 						break;
2036 					entry = entry->next;
2037 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2038 				}
2039 				end = save_start;	/* unwire the rest */
2040 				break;
2041 			}
2042 			/*
2043 			 * note that even though the entry might have been
2044 			 * clipped, the USER_WIRED flag we set prevents
2045 			 * duplication so we do not have to do a
2046 			 * clip check.
2047 			 */
2048 			entry = entry->next;
2049 		}
2050 
2051 		/*
2052 		 * If we failed fall through to the unwiring section to
2053 		 * unwire what we had wired so far.  'end' has already
2054 		 * been adjusted.
2055 		 */
2056 		if (rv)
2057 			new_pageable = 1;
2058 
2059 		/*
2060 		 * start_entry might have been clipped if we unlocked the
2061 		 * map and blocked.  No matter how clipped it has gotten
2062 		 * there should be a fragment that is on our start boundary.
2063 		 */
2064 		CLIP_CHECK_BACK(start_entry, start);
2065 	}
2066 
2067 	/*
2068 	 * Deal with the unwiring case.
2069 	 */
2070 	if (new_pageable) {
2071 		/*
2072 		 * This is the unwiring case.  We must first ensure that the
2073 		 * range to be unwired is really wired down.  We know there
2074 		 * are no holes.
2075 		 */
2076 		entry = start_entry;
2077 		while ((entry != &map->header) && (entry->start < end)) {
2078 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2079 				rv = KERN_INVALID_ARGUMENT;
2080 				goto done;
2081 			}
2082 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2083 			entry = entry->next;
2084 		}
2085 
2086 		/*
2087 		 * Now decrement the wiring count for each region. If a region
2088 		 * becomes completely unwired, unwire its physical pages and
2089 		 * mappings.
2090 		 */
2091 		/*
2092 		 * The map entries are processed in a loop, checking to
2093 		 * make sure the entry is wired and asserting it has a wired
2094 		 * count. However, another loop was inserted more-or-less in
2095 		 * the middle of the unwiring path. This loop picks up the
2096 		 * "entry" loop variable from the first loop without first
2097 		 * setting it to start_entry. Naturally, the secound loop
2098 		 * is never entered and the pages backing the entries are
2099 		 * never unwired. This can lead to a leak of wired pages.
2100 		 */
2101 		entry = start_entry;
2102 		while ((entry != &map->header) && (entry->start < end)) {
2103 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2104 				("expected USER_WIRED on entry %p", entry));
2105 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2106 			entry->wired_count--;
2107 			if (entry->wired_count == 0)
2108 				vm_fault_unwire(map, entry);
2109 			entry = entry->next;
2110 		}
2111 	}
2112 done:
2113 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2114 		MAP_CLIP_NO_HOLES);
2115 	map->timestamp++;
2116 	vm_map_unlock(map);
2117 	vm_map_entry_release(count);
2118 	return (rv);
2119 }
2120 
2121 /*
2122  *	vm_map_wire:
2123  *
2124  *	Sets the pageability of the specified address
2125  *	range in the target map.  Regions specified
2126  *	as not pageable require locked-down physical
2127  *	memory and physical page maps.
2128  *
2129  *	The map must not be locked, but a reference
2130  *	must remain to the map throughout the call.
2131  *
2132  *	This function may be called via the zalloc path and must properly
2133  *	reserve map entries for kernel_map.
2134  */
2135 int
2136 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2137 {
2138 	vm_map_entry_t entry;
2139 	vm_map_entry_t start_entry;
2140 	vm_offset_t end;
2141 	int rv = KERN_SUCCESS;
2142 	int count;
2143 
2144 	if (kmflags & KM_KRESERVE)
2145 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2146 	else
2147 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2148 	vm_map_lock(map);
2149 	VM_MAP_RANGE_CHECK(map, start, real_end);
2150 	end = real_end;
2151 
2152 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2153 	if (start_entry == NULL) {
2154 		vm_map_unlock(map);
2155 		rv = KERN_INVALID_ADDRESS;
2156 		goto failure;
2157 	}
2158 	if ((kmflags & KM_PAGEABLE) == 0) {
2159 		/*
2160 		 * Wiring.
2161 		 *
2162 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2163 		 * objects that need to be created. Then we clip each map
2164 		 * entry to the region to be wired and increment its wiring
2165 		 * count.  We create objects before clipping the map entries
2166 		 * to avoid object proliferation.
2167 		 *
2168 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2169 		 * fault in the pages for any newly wired area (wired_count is
2170 		 * 1).
2171 		 *
2172 		 * Downgrading to a read lock for vm_fault_wire avoids a
2173 		 * possible deadlock with another process that may have faulted
2174 		 * on one of the pages to be wired (it would mark the page busy,
2175 		 * blocking us, then in turn block on the map lock that we
2176 		 * hold).  Because of problems in the recursive lock package,
2177 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2178 		 * any actions that require the write lock must be done
2179 		 * beforehand.  Because we keep the read lock on the map, the
2180 		 * copy-on-write status of the entries we modify here cannot
2181 		 * change.
2182 		 */
2183 
2184 		entry = start_entry;
2185 		while ((entry != &map->header) && (entry->start < end)) {
2186 			/*
2187 			 * Trivial case if the entry is already wired
2188 			 */
2189 			if (entry->wired_count) {
2190 				entry->wired_count++;
2191 				entry = entry->next;
2192 				continue;
2193 			}
2194 
2195 			/*
2196 			 * The entry is being newly wired, we have to setup
2197 			 * appropriate management structures.  A shadow
2198 			 * object is required for a copy-on-write region,
2199 			 * or a normal object for a zero-fill region.  We
2200 			 * do not have to do this for entries that point to sub
2201 			 * maps because we won't hold the lock on the sub map.
2202 			 */
2203 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2204 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2205 				if (copyflag &&
2206 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2207 					vm_map_entry_shadow(entry);
2208 				} else if (entry->object.vm_object == NULL &&
2209 					   !map->system_map) {
2210 					vm_map_entry_allocate_object(entry);
2211 				}
2212 			}
2213 
2214 			entry->wired_count++;
2215 			entry = entry->next;
2216 		}
2217 
2218 		/*
2219 		 * Pass 2.
2220 		 */
2221 
2222 		/*
2223 		 * HACK HACK HACK HACK
2224 		 *
2225 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2226 		 * protects us from most changes but note that
2227 		 * clipping may still occur.  To prevent clipping from
2228 		 * occuring after the unlock, except for when we are
2229 		 * blocking in vm_fault_wire, we must run in a critical
2230 		 * section, otherwise our accesses to entry->start and
2231 		 * entry->end could be corrupted.  We have to enter the
2232 		 * critical section prior to unlocking so start_entry does
2233 		 * not change out from under us at the very beginning of the
2234 		 * loop.
2235 		 *
2236 		 * HACK HACK HACK HACK
2237 		 */
2238 
2239 		crit_enter();
2240 
2241 		entry = start_entry;
2242 		while (entry != &map->header && entry->start < end) {
2243 			/*
2244 			 * If vm_fault_wire fails for any page we need to undo
2245 			 * what has been done.  We decrement the wiring count
2246 			 * for those pages which have not yet been wired (now)
2247 			 * and unwire those that have (later).
2248 			 */
2249 			vm_offset_t save_start = entry->start;
2250 			vm_offset_t save_end = entry->end;
2251 
2252 			if (entry->wired_count == 1)
2253 				rv = vm_fault_wire(map, entry, FALSE);
2254 			if (rv) {
2255 				CLIP_CHECK_BACK(entry, save_start);
2256 				for (;;) {
2257 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2258 					entry->wired_count = 0;
2259 					if (entry->end == save_end)
2260 						break;
2261 					entry = entry->next;
2262 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2263 				}
2264 				end = save_start;
2265 				break;
2266 			}
2267 			CLIP_CHECK_FWD(entry, save_end);
2268 			entry = entry->next;
2269 		}
2270 		crit_exit();
2271 
2272 		/*
2273 		 * If a failure occured undo everything by falling through
2274 		 * to the unwiring code.  'end' has already been adjusted
2275 		 * appropriately.
2276 		 */
2277 		if (rv)
2278 			kmflags |= KM_PAGEABLE;
2279 
2280 		/*
2281 		 * start_entry is still IN_TRANSITION but may have been
2282 		 * clipped since vm_fault_wire() unlocks and relocks the
2283 		 * map.  No matter how clipped it has gotten there should
2284 		 * be a fragment that is on our start boundary.
2285 		 */
2286 		CLIP_CHECK_BACK(start_entry, start);
2287 	}
2288 
2289 	if (kmflags & KM_PAGEABLE) {
2290 		/*
2291 		 * This is the unwiring case.  We must first ensure that the
2292 		 * range to be unwired is really wired down.  We know there
2293 		 * are no holes.
2294 		 */
2295 		entry = start_entry;
2296 		while ((entry != &map->header) && (entry->start < end)) {
2297 			if (entry->wired_count == 0) {
2298 				rv = KERN_INVALID_ARGUMENT;
2299 				goto done;
2300 			}
2301 			entry = entry->next;
2302 		}
2303 
2304 		/*
2305 		 * Now decrement the wiring count for each region. If a region
2306 		 * becomes completely unwired, unwire its physical pages and
2307 		 * mappings.
2308 		 */
2309 		entry = start_entry;
2310 		while ((entry != &map->header) && (entry->start < end)) {
2311 			entry->wired_count--;
2312 			if (entry->wired_count == 0)
2313 				vm_fault_unwire(map, entry);
2314 			entry = entry->next;
2315 		}
2316 	}
2317 done:
2318 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2319 		MAP_CLIP_NO_HOLES);
2320 	map->timestamp++;
2321 	vm_map_unlock(map);
2322 failure:
2323 	if (kmflags & KM_KRESERVE)
2324 		vm_map_entry_krelease(count);
2325 	else
2326 		vm_map_entry_release(count);
2327 	return (rv);
2328 }
2329 
2330 /*
2331  * vm_map_set_wired_quick()
2332  *
2333  *	Mark a newly allocated address range as wired but do not fault in
2334  *	the pages.  The caller is expected to load the pages into the object.
2335  *
2336  *	The map must be locked on entry and will remain locked on return.
2337  */
2338 void
2339 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2340 {
2341 	vm_map_entry_t scan;
2342 	vm_map_entry_t entry;
2343 
2344 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2345 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2346 	    KKASSERT(entry->wired_count == 0);
2347 	    entry->wired_count = 1;
2348 	}
2349 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2350 }
2351 
2352 /*
2353  * vm_map_clean
2354  *
2355  * Push any dirty cached pages in the address range to their pager.
2356  * If syncio is TRUE, dirty pages are written synchronously.
2357  * If invalidate is TRUE, any cached pages are freed as well.
2358  *
2359  * This routine is called by sys_msync()
2360  *
2361  * Returns an error if any part of the specified range is not mapped.
2362  */
2363 int
2364 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2365 	     boolean_t syncio, boolean_t invalidate)
2366 {
2367 	vm_map_entry_t current;
2368 	vm_map_entry_t entry;
2369 	vm_size_t size;
2370 	vm_object_t object;
2371 	vm_ooffset_t offset;
2372 
2373 	vm_map_lock_read(map);
2374 	VM_MAP_RANGE_CHECK(map, start, end);
2375 	if (!vm_map_lookup_entry(map, start, &entry)) {
2376 		vm_map_unlock_read(map);
2377 		return (KERN_INVALID_ADDRESS);
2378 	}
2379 	/*
2380 	 * Make a first pass to check for holes.
2381 	 */
2382 	for (current = entry; current->start < end; current = current->next) {
2383 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2384 			vm_map_unlock_read(map);
2385 			return (KERN_INVALID_ARGUMENT);
2386 		}
2387 		if (end > current->end &&
2388 		    (current->next == &map->header ||
2389 			current->end != current->next->start)) {
2390 			vm_map_unlock_read(map);
2391 			return (KERN_INVALID_ADDRESS);
2392 		}
2393 	}
2394 
2395 	if (invalidate)
2396 		pmap_remove(vm_map_pmap(map), start, end);
2397 	/*
2398 	 * Make a second pass, cleaning/uncaching pages from the indicated
2399 	 * objects as we go.
2400 	 */
2401 	for (current = entry; current->start < end; current = current->next) {
2402 		offset = current->offset + (start - current->start);
2403 		size = (end <= current->end ? end : current->end) - start;
2404 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2405 			vm_map_t smap;
2406 			vm_map_entry_t tentry;
2407 			vm_size_t tsize;
2408 
2409 			smap = current->object.sub_map;
2410 			vm_map_lock_read(smap);
2411 			vm_map_lookup_entry(smap, offset, &tentry);
2412 			tsize = tentry->end - offset;
2413 			if (tsize < size)
2414 				size = tsize;
2415 			object = tentry->object.vm_object;
2416 			offset = tentry->offset + (offset - tentry->start);
2417 			vm_map_unlock_read(smap);
2418 		} else {
2419 			object = current->object.vm_object;
2420 		}
2421 		/*
2422 		 * Note that there is absolutely no sense in writing out
2423 		 * anonymous objects, so we track down the vnode object
2424 		 * to write out.
2425 		 * We invalidate (remove) all pages from the address space
2426 		 * anyway, for semantic correctness.
2427 		 *
2428 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2429 		 * may start out with a NULL object.
2430 		 */
2431 		while (object && object->backing_object) {
2432 			offset += object->backing_object_offset;
2433 			object = object->backing_object;
2434 			if (object->size < OFF_TO_IDX( offset + size))
2435 				size = IDX_TO_OFF(object->size) - offset;
2436 		}
2437 		if (object && (object->type == OBJT_VNODE) &&
2438 		    (current->protection & VM_PROT_WRITE) &&
2439 		    (object->flags & OBJ_NOMSYNC) == 0) {
2440 			/*
2441 			 * Flush pages if writing is allowed, invalidate them
2442 			 * if invalidation requested.  Pages undergoing I/O
2443 			 * will be ignored by vm_object_page_remove().
2444 			 *
2445 			 * We cannot lock the vnode and then wait for paging
2446 			 * to complete without deadlocking against vm_fault.
2447 			 * Instead we simply call vm_object_page_remove() and
2448 			 * allow it to block internally on a page-by-page
2449 			 * basis when it encounters pages undergoing async
2450 			 * I/O.
2451 			 */
2452 			int flags;
2453 
2454 			vm_object_reference(object);
2455 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2456 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2457 			flags |= invalidate ? OBJPC_INVAL : 0;
2458 
2459 			/*
2460 			 * When operating on a virtual page table just
2461 			 * flush the whole object.  XXX we probably ought
2462 			 * to
2463 			 */
2464 			switch(current->maptype) {
2465 			case VM_MAPTYPE_NORMAL:
2466 				vm_object_page_clean(object,
2467 				    OFF_TO_IDX(offset),
2468 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2469 				    flags);
2470 				break;
2471 			case VM_MAPTYPE_VPAGETABLE:
2472 				vm_object_page_clean(object, 0, 0, flags);
2473 				break;
2474 			}
2475 			vn_unlock(((struct vnode *)object->handle));
2476 			vm_object_deallocate(object);
2477 		}
2478 		if (object && invalidate &&
2479 		   ((object->type == OBJT_VNODE) ||
2480 		    (object->type == OBJT_DEVICE))) {
2481 			int clean_only =
2482 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2483 			vm_object_reference(object);
2484 			switch(current->maptype) {
2485 			case VM_MAPTYPE_NORMAL:
2486 				vm_object_page_remove(object,
2487 				    OFF_TO_IDX(offset),
2488 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2489 				    clean_only);
2490 				break;
2491 			case VM_MAPTYPE_VPAGETABLE:
2492 				vm_object_page_remove(object, 0, 0, clean_only);
2493 				break;
2494 			}
2495 			vm_object_deallocate(object);
2496 		}
2497 		start += size;
2498 	}
2499 
2500 	vm_map_unlock_read(map);
2501 	return (KERN_SUCCESS);
2502 }
2503 
2504 /*
2505  *	vm_map_entry_unwire:	[ internal use only ]
2506  *
2507  *	Make the region specified by this entry pageable.
2508  *
2509  *	The map in question should be locked.
2510  *	[This is the reason for this routine's existence.]
2511  */
2512 static void
2513 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2514 {
2515 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2516 	entry->wired_count = 0;
2517 	vm_fault_unwire(map, entry);
2518 }
2519 
2520 /*
2521  *	vm_map_entry_delete:	[ internal use only ]
2522  *
2523  *	Deallocate the given entry from the target map.
2524  */
2525 static void
2526 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2527 {
2528 	vm_map_entry_unlink(map, entry);
2529 	map->size -= entry->end - entry->start;
2530 
2531 	switch(entry->maptype) {
2532 	case VM_MAPTYPE_NORMAL:
2533 	case VM_MAPTYPE_VPAGETABLE:
2534 		vm_object_deallocate(entry->object.vm_object);
2535 		break;
2536 	default:
2537 		break;
2538 	}
2539 
2540 	vm_map_entry_dispose(map, entry, countp);
2541 }
2542 
2543 /*
2544  *	vm_map_delete:	[ internal use only ]
2545  *
2546  *	Deallocates the given address range from the target
2547  *	map.
2548  */
2549 int
2550 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2551 {
2552 	vm_object_t object;
2553 	vm_map_entry_t entry;
2554 	vm_map_entry_t first_entry;
2555 
2556 again:
2557 	/*
2558 	 * Find the start of the region, and clip it.  Set entry to point
2559 	 * at the first record containing the requested address or, if no
2560 	 * such record exists, the next record with a greater address.  The
2561 	 * loop will run from this point until a record beyond the termination
2562 	 * address is encountered.
2563 	 *
2564 	 * map->hint must be adjusted to not point to anything we delete,
2565 	 * so set it to the entry prior to the one being deleted.
2566 	 *
2567 	 * GGG see other GGG comment.
2568 	 */
2569 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2570 		entry = first_entry;
2571 		vm_map_clip_start(map, entry, start, countp);
2572 		map->hint = entry->prev;	/* possible problem XXX */
2573 	} else {
2574 		map->hint = first_entry;	/* possible problem XXX */
2575 		entry = first_entry->next;
2576 	}
2577 
2578 	/*
2579 	 * If a hole opens up prior to the current first_free then
2580 	 * adjust first_free.  As with map->hint, map->first_free
2581 	 * cannot be left set to anything we might delete.
2582 	 */
2583 	if (entry == &map->header) {
2584 		map->first_free = &map->header;
2585 	} else if (map->first_free->start >= start) {
2586 		map->first_free = entry->prev;
2587 	}
2588 
2589 	/*
2590 	 * Step through all entries in this region
2591 	 */
2592 
2593 	while ((entry != &map->header) && (entry->start < end)) {
2594 		vm_map_entry_t next;
2595 		vm_offset_t s, e;
2596 		vm_pindex_t offidxstart, offidxend, count;
2597 
2598 		/*
2599 		 * If we hit an in-transition entry we have to sleep and
2600 		 * retry.  It's easier (and not really slower) to just retry
2601 		 * since this case occurs so rarely and the hint is already
2602 		 * pointing at the right place.  We have to reset the
2603 		 * start offset so as not to accidently delete an entry
2604 		 * another process just created in vacated space.
2605 		 */
2606 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2607 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2608 			start = entry->start;
2609 			++mycpu->gd_cnt.v_intrans_coll;
2610 			++mycpu->gd_cnt.v_intrans_wait;
2611 			vm_map_transition_wait(map);
2612 			goto again;
2613 		}
2614 		vm_map_clip_end(map, entry, end, countp);
2615 
2616 		s = entry->start;
2617 		e = entry->end;
2618 		next = entry->next;
2619 
2620 		offidxstart = OFF_TO_IDX(entry->offset);
2621 		count = OFF_TO_IDX(e - s);
2622 		object = entry->object.vm_object;
2623 
2624 		/*
2625 		 * Unwire before removing addresses from the pmap; otherwise,
2626 		 * unwiring will put the entries back in the pmap.
2627 		 */
2628 		if (entry->wired_count != 0)
2629 			vm_map_entry_unwire(map, entry);
2630 
2631 		offidxend = offidxstart + count;
2632 
2633 		if (object == &kernel_object) {
2634 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2635 		} else {
2636 			pmap_remove(map->pmap, s, e);
2637 			if (object != NULL &&
2638 			    object->ref_count != 1 &&
2639 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2640 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2641 				vm_object_collapse(object);
2642 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2643 				if (object->type == OBJT_SWAP) {
2644 					swap_pager_freespace(object, offidxstart, count);
2645 				}
2646 				if (offidxend >= object->size &&
2647 				    offidxstart < object->size) {
2648 					object->size = offidxstart;
2649 				}
2650 			}
2651 		}
2652 
2653 		/*
2654 		 * Delete the entry (which may delete the object) only after
2655 		 * removing all pmap entries pointing to its pages.
2656 		 * (Otherwise, its page frames may be reallocated, and any
2657 		 * modify bits will be set in the wrong object!)
2658 		 */
2659 		vm_map_entry_delete(map, entry, countp);
2660 		entry = next;
2661 	}
2662 	return (KERN_SUCCESS);
2663 }
2664 
2665 /*
2666  *	vm_map_remove:
2667  *
2668  *	Remove the given address range from the target map.
2669  *	This is the exported form of vm_map_delete.
2670  */
2671 int
2672 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2673 {
2674 	int result;
2675 	int count;
2676 
2677 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2678 	vm_map_lock(map);
2679 	VM_MAP_RANGE_CHECK(map, start, end);
2680 	result = vm_map_delete(map, start, end, &count);
2681 	vm_map_unlock(map);
2682 	vm_map_entry_release(count);
2683 
2684 	return (result);
2685 }
2686 
2687 /*
2688  *	vm_map_check_protection:
2689  *
2690  *	Assert that the target map allows the specified
2691  *	privilege on the entire address region given.
2692  *	The entire region must be allocated.
2693  */
2694 boolean_t
2695 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2696 			vm_prot_t protection)
2697 {
2698 	vm_map_entry_t entry;
2699 	vm_map_entry_t tmp_entry;
2700 
2701 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2702 		return (FALSE);
2703 	}
2704 	entry = tmp_entry;
2705 
2706 	while (start < end) {
2707 		if (entry == &map->header) {
2708 			return (FALSE);
2709 		}
2710 		/*
2711 		 * No holes allowed!
2712 		 */
2713 
2714 		if (start < entry->start) {
2715 			return (FALSE);
2716 		}
2717 		/*
2718 		 * Check protection associated with entry.
2719 		 */
2720 
2721 		if ((entry->protection & protection) != protection) {
2722 			return (FALSE);
2723 		}
2724 		/* go to next entry */
2725 
2726 		start = entry->end;
2727 		entry = entry->next;
2728 	}
2729 	return (TRUE);
2730 }
2731 
2732 /*
2733  * Split the pages in a map entry into a new object.  This affords
2734  * easier removal of unused pages, and keeps object inheritance from
2735  * being a negative impact on memory usage.
2736  */
2737 static void
2738 vm_map_split(vm_map_entry_t entry)
2739 {
2740 	vm_page_t m;
2741 	vm_object_t orig_object, new_object, source;
2742 	vm_offset_t s, e;
2743 	vm_pindex_t offidxstart, offidxend, idx;
2744 	vm_size_t size;
2745 	vm_ooffset_t offset;
2746 
2747 	orig_object = entry->object.vm_object;
2748 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2749 		return;
2750 	if (orig_object->ref_count <= 1)
2751 		return;
2752 
2753 	offset = entry->offset;
2754 	s = entry->start;
2755 	e = entry->end;
2756 
2757 	offidxstart = OFF_TO_IDX(offset);
2758 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2759 	size = offidxend - offidxstart;
2760 
2761 	switch(orig_object->type) {
2762 	case OBJT_DEFAULT:
2763 		new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2764 						 VM_PROT_ALL, 0);
2765 		break;
2766 	case OBJT_SWAP:
2767 		new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2768 					      VM_PROT_ALL, 0);
2769 		break;
2770 	default:
2771 		/* not reached */
2772 		new_object = NULL;
2773 		KKASSERT(0);
2774 	}
2775 	if (new_object == NULL)
2776 		return;
2777 
2778 	source = orig_object->backing_object;
2779 	if (source != NULL) {
2780 		vm_object_reference(source);	/* Referenced by new_object */
2781 		LIST_INSERT_HEAD(&source->shadow_head,
2782 				  new_object, shadow_list);
2783 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2784 		new_object->backing_object_offset =
2785 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2786 		new_object->backing_object = source;
2787 		source->shadow_count++;
2788 		source->generation++;
2789 	}
2790 
2791 	for (idx = 0; idx < size; idx++) {
2792 		vm_page_t m;
2793 
2794 		/*
2795 		 * A critical section is required to avoid a race between
2796 		 * the lookup and an interrupt/unbusy/free and our busy
2797 		 * check.
2798 		 */
2799 		crit_enter();
2800 	retry:
2801 		m = vm_page_lookup(orig_object, offidxstart + idx);
2802 		if (m == NULL) {
2803 			crit_exit();
2804 			continue;
2805 		}
2806 
2807 		/*
2808 		 * We must wait for pending I/O to complete before we can
2809 		 * rename the page.
2810 		 *
2811 		 * We do not have to VM_PROT_NONE the page as mappings should
2812 		 * not be changed by this operation.
2813 		 */
2814 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2815 			goto retry;
2816 		vm_page_busy(m);
2817 		vm_page_rename(m, new_object, idx);
2818 		/* page automatically made dirty by rename and cache handled */
2819 		vm_page_busy(m);
2820 		crit_exit();
2821 	}
2822 
2823 	if (orig_object->type == OBJT_SWAP) {
2824 		vm_object_pip_add(orig_object, 1);
2825 		/*
2826 		 * copy orig_object pages into new_object
2827 		 * and destroy unneeded pages in
2828 		 * shadow object.
2829 		 */
2830 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2831 		vm_object_pip_wakeup(orig_object);
2832 	}
2833 
2834 	/*
2835 	 * Wakeup the pages we played with.  No spl protection is needed
2836 	 * for a simple wakeup.
2837 	 */
2838 	for (idx = 0; idx < size; idx++) {
2839 		m = vm_page_lookup(new_object, idx);
2840 		if (m)
2841 			vm_page_wakeup(m);
2842 	}
2843 
2844 	entry->object.vm_object = new_object;
2845 	entry->offset = 0LL;
2846 	vm_object_deallocate(orig_object);
2847 }
2848 
2849 /*
2850  *	vm_map_copy_entry:
2851  *
2852  *	Copies the contents of the source entry to the destination
2853  *	entry.  The entries *must* be aligned properly.
2854  */
2855 static void
2856 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2857 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2858 {
2859 	vm_object_t src_object;
2860 
2861 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2862 		return;
2863 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2864 		return;
2865 
2866 	if (src_entry->wired_count == 0) {
2867 		/*
2868 		 * If the source entry is marked needs_copy, it is already
2869 		 * write-protected.
2870 		 */
2871 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2872 			pmap_protect(src_map->pmap,
2873 			    src_entry->start,
2874 			    src_entry->end,
2875 			    src_entry->protection & ~VM_PROT_WRITE);
2876 		}
2877 
2878 		/*
2879 		 * Make a copy of the object.
2880 		 */
2881 		if ((src_object = src_entry->object.vm_object) != NULL) {
2882 			if ((src_object->handle == NULL) &&
2883 				(src_object->type == OBJT_DEFAULT ||
2884 				 src_object->type == OBJT_SWAP)) {
2885 				vm_object_collapse(src_object);
2886 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2887 					vm_map_split(src_entry);
2888 					src_object = src_entry->object.vm_object;
2889 				}
2890 			}
2891 
2892 			vm_object_reference(src_object);
2893 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2894 			dst_entry->object.vm_object = src_object;
2895 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2896 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2897 			dst_entry->offset = src_entry->offset;
2898 		} else {
2899 			dst_entry->object.vm_object = NULL;
2900 			dst_entry->offset = 0;
2901 		}
2902 
2903 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2904 		    dst_entry->end - dst_entry->start, src_entry->start);
2905 	} else {
2906 		/*
2907 		 * Of course, wired down pages can't be set copy-on-write.
2908 		 * Cause wired pages to be copied into the new map by
2909 		 * simulating faults (the new pages are pageable)
2910 		 */
2911 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2912 	}
2913 }
2914 
2915 /*
2916  * vmspace_fork:
2917  * Create a new process vmspace structure and vm_map
2918  * based on those of an existing process.  The new map
2919  * is based on the old map, according to the inheritance
2920  * values on the regions in that map.
2921  *
2922  * The source map must not be locked.
2923  */
2924 struct vmspace *
2925 vmspace_fork(struct vmspace *vm1)
2926 {
2927 	struct vmspace *vm2;
2928 	vm_map_t old_map = &vm1->vm_map;
2929 	vm_map_t new_map;
2930 	vm_map_entry_t old_entry;
2931 	vm_map_entry_t new_entry;
2932 	vm_object_t object;
2933 	int count;
2934 
2935 	vm_map_lock(old_map);
2936 	old_map->infork = 1;
2937 
2938 	/*
2939 	 * XXX Note: upcalls are not copied.
2940 	 */
2941 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2942 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2943 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2944 	new_map = &vm2->vm_map;	/* XXX */
2945 	new_map->timestamp = 1;
2946 
2947 	count = 0;
2948 	old_entry = old_map->header.next;
2949 	while (old_entry != &old_map->header) {
2950 		++count;
2951 		old_entry = old_entry->next;
2952 	}
2953 
2954 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2955 
2956 	old_entry = old_map->header.next;
2957 	while (old_entry != &old_map->header) {
2958 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2959 			panic("vm_map_fork: encountered a submap");
2960 
2961 		switch (old_entry->inheritance) {
2962 		case VM_INHERIT_NONE:
2963 			break;
2964 
2965 		case VM_INHERIT_SHARE:
2966 			/*
2967 			 * Clone the entry, creating the shared object if
2968 			 * necessary.
2969 			 */
2970 			object = old_entry->object.vm_object;
2971 			if (object == NULL) {
2972 				vm_map_entry_allocate_object(old_entry);
2973 				object = old_entry->object.vm_object;
2974 			}
2975 
2976 			/*
2977 			 * Add the reference before calling vm_map_entry_shadow
2978 			 * to insure that a shadow object is created.
2979 			 */
2980 			vm_object_reference(object);
2981 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2982 				vm_map_entry_shadow(old_entry);
2983 				/* Transfer the second reference too. */
2984 				vm_object_reference(
2985 				    old_entry->object.vm_object);
2986 				vm_object_deallocate(object);
2987 				object = old_entry->object.vm_object;
2988 			}
2989 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2990 
2991 			/*
2992 			 * Clone the entry, referencing the shared object.
2993 			 */
2994 			new_entry = vm_map_entry_create(new_map, &count);
2995 			*new_entry = *old_entry;
2996 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2997 			new_entry->wired_count = 0;
2998 
2999 			/*
3000 			 * Insert the entry into the new map -- we know we're
3001 			 * inserting at the end of the new map.
3002 			 */
3003 
3004 			vm_map_entry_link(new_map, new_map->header.prev,
3005 			    new_entry);
3006 
3007 			/*
3008 			 * Update the physical map
3009 			 */
3010 
3011 			pmap_copy(new_map->pmap, old_map->pmap,
3012 			    new_entry->start,
3013 			    (old_entry->end - old_entry->start),
3014 			    old_entry->start);
3015 			break;
3016 
3017 		case VM_INHERIT_COPY:
3018 			/*
3019 			 * Clone the entry and link into the map.
3020 			 */
3021 			new_entry = vm_map_entry_create(new_map, &count);
3022 			*new_entry = *old_entry;
3023 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3024 			new_entry->wired_count = 0;
3025 			new_entry->object.vm_object = NULL;
3026 			vm_map_entry_link(new_map, new_map->header.prev,
3027 			    new_entry);
3028 			vm_map_copy_entry(old_map, new_map, old_entry,
3029 			    new_entry);
3030 			break;
3031 		}
3032 		old_entry = old_entry->next;
3033 	}
3034 
3035 	new_map->size = old_map->size;
3036 	old_map->infork = 0;
3037 	vm_map_unlock(old_map);
3038 	vm_map_entry_release(count);
3039 
3040 	return (vm2);
3041 }
3042 
3043 int
3044 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3045 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3046 {
3047 	vm_map_entry_t	prev_entry;
3048 	vm_map_entry_t	new_stack_entry;
3049 	vm_size_t	init_ssize;
3050 	int		rv;
3051 	int		count;
3052 	vm_offset_t	tmpaddr;
3053 
3054 	cow |= MAP_IS_STACK;
3055 
3056 	if (max_ssize < sgrowsiz)
3057 		init_ssize = max_ssize;
3058 	else
3059 		init_ssize = sgrowsiz;
3060 
3061 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3062 	vm_map_lock(map);
3063 
3064 	/*
3065 	 * Find space for the mapping
3066 	 */
3067 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3068 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3069 				     flags, &tmpaddr)) {
3070 			vm_map_unlock(map);
3071 			vm_map_entry_release(count);
3072 			return (KERN_NO_SPACE);
3073 		}
3074 		addrbos = tmpaddr;
3075 	}
3076 
3077 	/* If addr is already mapped, no go */
3078 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3079 		vm_map_unlock(map);
3080 		vm_map_entry_release(count);
3081 		return (KERN_NO_SPACE);
3082 	}
3083 
3084 #if 0
3085 	/* XXX already handled by kern_mmap() */
3086 	/* If we would blow our VMEM resource limit, no go */
3087 	if (map->size + init_ssize >
3088 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3089 		vm_map_unlock(map);
3090 		vm_map_entry_release(count);
3091 		return (KERN_NO_SPACE);
3092 	}
3093 #endif
3094 
3095 	/*
3096 	 * If we can't accomodate max_ssize in the current mapping,
3097 	 * no go.  However, we need to be aware that subsequent user
3098 	 * mappings might map into the space we have reserved for
3099 	 * stack, and currently this space is not protected.
3100 	 *
3101 	 * Hopefully we will at least detect this condition
3102 	 * when we try to grow the stack.
3103 	 */
3104 	if ((prev_entry->next != &map->header) &&
3105 	    (prev_entry->next->start < addrbos + max_ssize)) {
3106 		vm_map_unlock(map);
3107 		vm_map_entry_release(count);
3108 		return (KERN_NO_SPACE);
3109 	}
3110 
3111 	/*
3112 	 * We initially map a stack of only init_ssize.  We will
3113 	 * grow as needed later.  Since this is to be a grow
3114 	 * down stack, we map at the top of the range.
3115 	 *
3116 	 * Note: we would normally expect prot and max to be
3117 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3118 	 * eliminate these as input parameters, and just
3119 	 * pass these values here in the insert call.
3120 	 */
3121 	rv = vm_map_insert(map, &count,
3122 			   NULL, 0, addrbos + max_ssize - init_ssize,
3123 	                   addrbos + max_ssize,
3124 			   VM_MAPTYPE_NORMAL,
3125 			   prot, max,
3126 			   cow);
3127 
3128 	/* Now set the avail_ssize amount */
3129 	if (rv == KERN_SUCCESS) {
3130 		if (prev_entry != &map->header)
3131 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3132 		new_stack_entry = prev_entry->next;
3133 		if (new_stack_entry->end   != addrbos + max_ssize ||
3134 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3135 			panic ("Bad entry start/end for new stack entry");
3136 		else
3137 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3138 	}
3139 
3140 	vm_map_unlock(map);
3141 	vm_map_entry_release(count);
3142 	return (rv);
3143 }
3144 
3145 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3146  * desired address is already mapped, or if we successfully grow
3147  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3148  * stack range (this is strange, but preserves compatibility with
3149  * the grow function in vm_machdep.c).
3150  */
3151 int
3152 vm_map_growstack (struct proc *p, vm_offset_t addr)
3153 {
3154 	vm_map_entry_t prev_entry;
3155 	vm_map_entry_t stack_entry;
3156 	vm_map_entry_t new_stack_entry;
3157 	struct vmspace *vm = p->p_vmspace;
3158 	vm_map_t map = &vm->vm_map;
3159 	vm_offset_t    end;
3160 	int grow_amount;
3161 	int rv = KERN_SUCCESS;
3162 	int is_procstack;
3163 	int use_read_lock = 1;
3164 	int count;
3165 
3166 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3167 Retry:
3168 	if (use_read_lock)
3169 		vm_map_lock_read(map);
3170 	else
3171 		vm_map_lock(map);
3172 
3173 	/* If addr is already in the entry range, no need to grow.*/
3174 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3175 		goto done;
3176 
3177 	if ((stack_entry = prev_entry->next) == &map->header)
3178 		goto done;
3179 	if (prev_entry == &map->header)
3180 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3181 	else
3182 		end = prev_entry->end;
3183 
3184 	/*
3185 	 * This next test mimics the old grow function in vm_machdep.c.
3186 	 * It really doesn't quite make sense, but we do it anyway
3187 	 * for compatibility.
3188 	 *
3189 	 * If not growable stack, return success.  This signals the
3190 	 * caller to proceed as he would normally with normal vm.
3191 	 */
3192 	if (stack_entry->aux.avail_ssize < 1 ||
3193 	    addr >= stack_entry->start ||
3194 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3195 		goto done;
3196 	}
3197 
3198 	/* Find the minimum grow amount */
3199 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3200 	if (grow_amount > stack_entry->aux.avail_ssize) {
3201 		rv = KERN_NO_SPACE;
3202 		goto done;
3203 	}
3204 
3205 	/*
3206 	 * If there is no longer enough space between the entries
3207 	 * nogo, and adjust the available space.  Note: this
3208 	 * should only happen if the user has mapped into the
3209 	 * stack area after the stack was created, and is
3210 	 * probably an error.
3211 	 *
3212 	 * This also effectively destroys any guard page the user
3213 	 * might have intended by limiting the stack size.
3214 	 */
3215 	if (grow_amount > stack_entry->start - end) {
3216 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3217 			use_read_lock = 0;
3218 			goto Retry;
3219 		}
3220 		use_read_lock = 0;
3221 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3222 		rv = KERN_NO_SPACE;
3223 		goto done;
3224 	}
3225 
3226 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3227 
3228 	/* If this is the main process stack, see if we're over the
3229 	 * stack limit.
3230 	 */
3231 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3232 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3233 		rv = KERN_NO_SPACE;
3234 		goto done;
3235 	}
3236 
3237 	/* Round up the grow amount modulo SGROWSIZ */
3238 	grow_amount = roundup (grow_amount, sgrowsiz);
3239 	if (grow_amount > stack_entry->aux.avail_ssize) {
3240 		grow_amount = stack_entry->aux.avail_ssize;
3241 	}
3242 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3243 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3244 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3245 		              ctob(vm->vm_ssize);
3246 	}
3247 
3248 	/* If we would blow our VMEM resource limit, no go */
3249 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3250 		rv = KERN_NO_SPACE;
3251 		goto done;
3252 	}
3253 
3254 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3255 		use_read_lock = 0;
3256 		goto Retry;
3257 	}
3258 	use_read_lock = 0;
3259 
3260 	/* Get the preliminary new entry start value */
3261 	addr = stack_entry->start - grow_amount;
3262 
3263 	/* If this puts us into the previous entry, cut back our growth
3264 	 * to the available space.  Also, see the note above.
3265 	 */
3266 	if (addr < end) {
3267 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3268 		addr = end;
3269 	}
3270 
3271 	rv = vm_map_insert(map, &count,
3272 			   NULL, 0, addr, stack_entry->start,
3273 			   VM_MAPTYPE_NORMAL,
3274 			   VM_PROT_ALL, VM_PROT_ALL,
3275 			   0);
3276 
3277 	/* Adjust the available stack space by the amount we grew. */
3278 	if (rv == KERN_SUCCESS) {
3279 		if (prev_entry != &map->header)
3280 			vm_map_clip_end(map, prev_entry, addr, &count);
3281 		new_stack_entry = prev_entry->next;
3282 		if (new_stack_entry->end   != stack_entry->start  ||
3283 		    new_stack_entry->start != addr)
3284 			panic ("Bad stack grow start/end in new stack entry");
3285 		else {
3286 			new_stack_entry->aux.avail_ssize =
3287 				stack_entry->aux.avail_ssize -
3288 				(new_stack_entry->end - new_stack_entry->start);
3289 			if (is_procstack)
3290 				vm->vm_ssize += btoc(new_stack_entry->end -
3291 						     new_stack_entry->start);
3292 		}
3293 	}
3294 
3295 done:
3296 	if (use_read_lock)
3297 		vm_map_unlock_read(map);
3298 	else
3299 		vm_map_unlock(map);
3300 	vm_map_entry_release(count);
3301 	return (rv);
3302 }
3303 
3304 /*
3305  * Unshare the specified VM space for exec.  If other processes are
3306  * mapped to it, then create a new one.  The new vmspace is null.
3307  */
3308 void
3309 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3310 {
3311 	struct vmspace *oldvmspace = p->p_vmspace;
3312 	struct vmspace *newvmspace;
3313 	vm_map_t map = &p->p_vmspace->vm_map;
3314 
3315 	/*
3316 	 * If we are execing a resident vmspace we fork it, otherwise
3317 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3318 	 * are not copied to the new vmspace.
3319 	 */
3320 	if (vmcopy)  {
3321 	    newvmspace = vmspace_fork(vmcopy);
3322 	} else {
3323 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3324 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3325 		(caddr_t)&oldvmspace->vm_endcopy -
3326 		    (caddr_t)&oldvmspace->vm_startcopy);
3327 	}
3328 
3329 	/*
3330 	 * Finish initializing the vmspace before assigning it
3331 	 * to the process.  The vmspace will become the current vmspace
3332 	 * if p == curproc.
3333 	 */
3334 	pmap_pinit2(vmspace_pmap(newvmspace));
3335 	pmap_replacevm(p, newvmspace, 0);
3336 	sysref_put(&oldvmspace->vm_sysref);
3337 }
3338 
3339 /*
3340  * Unshare the specified VM space for forcing COW.  This
3341  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3342  *
3343  * The exitingcnt test is not strictly necessary but has been
3344  * included for code sanity (to make the code a bit more deterministic).
3345  */
3346 
3347 void
3348 vmspace_unshare(struct proc *p)
3349 {
3350 	struct vmspace *oldvmspace = p->p_vmspace;
3351 	struct vmspace *newvmspace;
3352 
3353 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3354 		return;
3355 	newvmspace = vmspace_fork(oldvmspace);
3356 	pmap_pinit2(vmspace_pmap(newvmspace));
3357 	pmap_replacevm(p, newvmspace, 0);
3358 	sysref_put(&oldvmspace->vm_sysref);
3359 }
3360 
3361 /*
3362  *	vm_map_lookup:
3363  *
3364  *	Finds the VM object, offset, and
3365  *	protection for a given virtual address in the
3366  *	specified map, assuming a page fault of the
3367  *	type specified.
3368  *
3369  *	Leaves the map in question locked for read; return
3370  *	values are guaranteed until a vm_map_lookup_done
3371  *	call is performed.  Note that the map argument
3372  *	is in/out; the returned map must be used in
3373  *	the call to vm_map_lookup_done.
3374  *
3375  *	A handle (out_entry) is returned for use in
3376  *	vm_map_lookup_done, to make that fast.
3377  *
3378  *	If a lookup is requested with "write protection"
3379  *	specified, the map may be changed to perform virtual
3380  *	copying operations, although the data referenced will
3381  *	remain the same.
3382  */
3383 int
3384 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3385 	      vm_offset_t vaddr,
3386 	      vm_prot_t fault_typea,
3387 	      vm_map_entry_t *out_entry,	/* OUT */
3388 	      vm_object_t *object,		/* OUT */
3389 	      vm_pindex_t *pindex,		/* OUT */
3390 	      vm_prot_t *out_prot,		/* OUT */
3391 	      boolean_t *wired)			/* OUT */
3392 {
3393 	vm_map_entry_t entry;
3394 	vm_map_t map = *var_map;
3395 	vm_prot_t prot;
3396 	vm_prot_t fault_type = fault_typea;
3397 	int use_read_lock = 1;
3398 	int rv = KERN_SUCCESS;
3399 
3400 RetryLookup:
3401 	if (use_read_lock)
3402 		vm_map_lock_read(map);
3403 	else
3404 		vm_map_lock(map);
3405 
3406 	/*
3407 	 * If the map has an interesting hint, try it before calling full
3408 	 * blown lookup routine.
3409 	 */
3410 	entry = map->hint;
3411 	*out_entry = entry;
3412 
3413 	if ((entry == &map->header) ||
3414 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3415 		vm_map_entry_t tmp_entry;
3416 
3417 		/*
3418 		 * Entry was either not a valid hint, or the vaddr was not
3419 		 * contained in the entry, so do a full lookup.
3420 		 */
3421 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3422 			rv = KERN_INVALID_ADDRESS;
3423 			goto done;
3424 		}
3425 
3426 		entry = tmp_entry;
3427 		*out_entry = entry;
3428 	}
3429 
3430 	/*
3431 	 * Handle submaps.
3432 	 */
3433 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3434 		vm_map_t old_map = map;
3435 
3436 		*var_map = map = entry->object.sub_map;
3437 		if (use_read_lock)
3438 			vm_map_unlock_read(old_map);
3439 		else
3440 			vm_map_unlock(old_map);
3441 		use_read_lock = 1;
3442 		goto RetryLookup;
3443 	}
3444 
3445 	/*
3446 	 * Check whether this task is allowed to have this page.
3447 	 * Note the special case for MAP_ENTRY_COW
3448 	 * pages with an override.  This is to implement a forced
3449 	 * COW for debuggers.
3450 	 */
3451 
3452 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3453 		prot = entry->max_protection;
3454 	else
3455 		prot = entry->protection;
3456 
3457 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3458 	if ((fault_type & prot) != fault_type) {
3459 		rv = KERN_PROTECTION_FAILURE;
3460 		goto done;
3461 	}
3462 
3463 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3464 	    (entry->eflags & MAP_ENTRY_COW) &&
3465 	    (fault_type & VM_PROT_WRITE) &&
3466 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3467 		rv = KERN_PROTECTION_FAILURE;
3468 		goto done;
3469 	}
3470 
3471 	/*
3472 	 * If this page is not pageable, we have to get it for all possible
3473 	 * accesses.
3474 	 */
3475 	*wired = (entry->wired_count != 0);
3476 	if (*wired)
3477 		prot = fault_type = entry->protection;
3478 
3479 	/*
3480 	 * Virtual page tables may need to update the accessed (A) bit
3481 	 * in a page table entry.  Upgrade the fault to a write fault for
3482 	 * that case if the map will support it.  If the map does not support
3483 	 * it the page table entry simply will not be updated.
3484 	 */
3485 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3486 		if (prot & VM_PROT_WRITE)
3487 			fault_type |= VM_PROT_WRITE;
3488 	}
3489 
3490 	/*
3491 	 * If the entry was copy-on-write, we either ...
3492 	 */
3493 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3494 		/*
3495 		 * If we want to write the page, we may as well handle that
3496 		 * now since we've got the map locked.
3497 		 *
3498 		 * If we don't need to write the page, we just demote the
3499 		 * permissions allowed.
3500 		 */
3501 
3502 		if (fault_type & VM_PROT_WRITE) {
3503 			/*
3504 			 * Make a new object, and place it in the object
3505 			 * chain.  Note that no new references have appeared
3506 			 * -- one just moved from the map to the new
3507 			 * object.
3508 			 */
3509 
3510 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3511 				use_read_lock = 0;
3512 				goto RetryLookup;
3513 			}
3514 			use_read_lock = 0;
3515 
3516 			vm_map_entry_shadow(entry);
3517 		} else {
3518 			/*
3519 			 * We're attempting to read a copy-on-write page --
3520 			 * don't allow writes.
3521 			 */
3522 
3523 			prot &= ~VM_PROT_WRITE;
3524 		}
3525 	}
3526 
3527 	/*
3528 	 * Create an object if necessary.
3529 	 */
3530 	if (entry->object.vm_object == NULL &&
3531 	    !map->system_map) {
3532 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3533 			use_read_lock = 0;
3534 			goto RetryLookup;
3535 		}
3536 		use_read_lock = 0;
3537 		vm_map_entry_allocate_object(entry);
3538 	}
3539 
3540 	/*
3541 	 * Return the object/offset from this entry.  If the entry was
3542 	 * copy-on-write or empty, it has been fixed up.
3543 	 */
3544 
3545 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3546 	*object = entry->object.vm_object;
3547 
3548 	/*
3549 	 * Return whether this is the only map sharing this data.  On
3550 	 * success we return with a read lock held on the map.  On failure
3551 	 * we return with the map unlocked.
3552 	 */
3553 	*out_prot = prot;
3554 done:
3555 	if (rv == KERN_SUCCESS) {
3556 		if (use_read_lock == 0)
3557 			vm_map_lock_downgrade(map);
3558 	} else if (use_read_lock) {
3559 		vm_map_unlock_read(map);
3560 	} else {
3561 		vm_map_unlock(map);
3562 	}
3563 	return (rv);
3564 }
3565 
3566 /*
3567  *	vm_map_lookup_done:
3568  *
3569  *	Releases locks acquired by a vm_map_lookup
3570  *	(according to the handle returned by that lookup).
3571  */
3572 
3573 void
3574 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3575 {
3576 	/*
3577 	 * Unlock the main-level map
3578 	 */
3579 	vm_map_unlock_read(map);
3580 	if (count)
3581 		vm_map_entry_release(count);
3582 }
3583 
3584 #include "opt_ddb.h"
3585 #ifdef DDB
3586 #include <sys/kernel.h>
3587 
3588 #include <ddb/ddb.h>
3589 
3590 /*
3591  *	vm_map_print:	[ debug ]
3592  */
3593 DB_SHOW_COMMAND(map, vm_map_print)
3594 {
3595 	static int nlines;
3596 	/* XXX convert args. */
3597 	vm_map_t map = (vm_map_t)addr;
3598 	boolean_t full = have_addr;
3599 
3600 	vm_map_entry_t entry;
3601 
3602 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3603 	    (void *)map,
3604 	    (void *)map->pmap, map->nentries, map->timestamp);
3605 	nlines++;
3606 
3607 	if (!full && db_indent)
3608 		return;
3609 
3610 	db_indent += 2;
3611 	for (entry = map->header.next; entry != &map->header;
3612 	    entry = entry->next) {
3613 		db_iprintf("map entry %p: start=%p, end=%p\n",
3614 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3615 		nlines++;
3616 		{
3617 			static char *inheritance_name[4] =
3618 			{"share", "copy", "none", "donate_copy"};
3619 
3620 			db_iprintf(" prot=%x/%x/%s",
3621 			    entry->protection,
3622 			    entry->max_protection,
3623 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3624 			if (entry->wired_count != 0)
3625 				db_printf(", wired");
3626 		}
3627 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3628 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3629 			db_printf(", share=%p, offset=0x%lx\n",
3630 			    (void *)entry->object.sub_map,
3631 			    (long)entry->offset);
3632 			nlines++;
3633 			if ((entry->prev == &map->header) ||
3634 			    (entry->prev->object.sub_map !=
3635 				entry->object.sub_map)) {
3636 				db_indent += 2;
3637 				vm_map_print((db_expr_t)(intptr_t)
3638 					     entry->object.sub_map,
3639 					     full, 0, NULL);
3640 				db_indent -= 2;
3641 			}
3642 		} else {
3643 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3644 			db_printf(", object=%p, offset=0x%lx",
3645 			    (void *)entry->object.vm_object,
3646 			    (long)entry->offset);
3647 			if (entry->eflags & MAP_ENTRY_COW)
3648 				db_printf(", copy (%s)",
3649 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3650 			db_printf("\n");
3651 			nlines++;
3652 
3653 			if ((entry->prev == &map->header) ||
3654 			    (entry->prev->object.vm_object !=
3655 				entry->object.vm_object)) {
3656 				db_indent += 2;
3657 				vm_object_print((db_expr_t)(intptr_t)
3658 						entry->object.vm_object,
3659 						full, 0, NULL);
3660 				nlines += 4;
3661 				db_indent -= 2;
3662 			}
3663 		}
3664 	}
3665 	db_indent -= 2;
3666 	if (db_indent == 0)
3667 		nlines = 0;
3668 }
3669 
3670 
3671 DB_SHOW_COMMAND(procvm, procvm)
3672 {
3673 	struct proc *p;
3674 
3675 	if (have_addr) {
3676 		p = (struct proc *) addr;
3677 	} else {
3678 		p = curproc;
3679 	}
3680 
3681 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3682 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3683 	    (void *)vmspace_pmap(p->p_vmspace));
3684 
3685 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3686 }
3687 
3688 #endif /* DDB */
3689