1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $ 66 */ 67 68 /* 69 * Virtual memory mapping module. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/kernel.h> 75 #include <sys/proc.h> 76 #include <sys/lock.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/shm.h> 82 #include <sys/tree.h> 83 #include <sys/malloc.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_zone.h> 96 97 #include <sys/thread2.h> 98 #include <sys/sysref2.h> 99 100 /* 101 * Virtual memory maps provide for the mapping, protection, 102 * and sharing of virtual memory objects. In addition, 103 * this module provides for an efficient virtual copy of 104 * memory from one map to another. 105 * 106 * Synchronization is required prior to most operations. 107 * 108 * Maps consist of an ordered doubly-linked list of simple 109 * entries; a single hint is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static void vmspace_terminate(struct vmspace *vm); 125 static void vmspace_lock(struct vmspace *vm); 126 static void vmspace_unlock(struct vmspace *vm); 127 static void vmspace_dtor(void *obj, void *private); 128 129 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 130 131 struct sysref_class vmspace_sysref_class = { 132 .name = "vmspace", 133 .mtype = M_VMSPACE, 134 .proto = SYSREF_PROTO_VMSPACE, 135 .offset = offsetof(struct vmspace, vm_sysref), 136 .objsize = sizeof(struct vmspace), 137 .mag_capacity = 32, 138 .flags = SRC_MANAGEDINIT, 139 .dtor = vmspace_dtor, 140 .ops = { 141 .terminate = (sysref_terminate_func_t)vmspace_terminate, 142 .lock = (sysref_lock_func_t)vmspace_lock, 143 .unlock = (sysref_lock_func_t)vmspace_unlock 144 } 145 }; 146 147 #define VMEPERCPU 2 148 149 static struct vm_zone mapentzone_store, mapzone_store; 150 static vm_zone_t mapentzone, mapzone; 151 static struct vm_object mapentobj, mapobj; 152 153 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 154 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 155 static struct vm_map map_init[MAX_KMAP]; 156 157 static void vm_map_entry_shadow(vm_map_entry_t entry); 158 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 159 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 160 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 161 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 162 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 163 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 164 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 165 vm_map_entry_t); 166 static void vm_map_split (vm_map_entry_t); 167 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 void 185 vm_map_startup(void) 186 { 187 mapzone = &mapzone_store; 188 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 189 map_init, MAX_KMAP); 190 mapentzone = &mapentzone_store; 191 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 192 map_entry_init, MAX_MAPENT); 193 } 194 195 /* 196 * vm_init2 - called prior to any vmspace allocations 197 */ 198 void 199 vm_init2(void) 200 { 201 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 202 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 203 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 204 pmap_init2(); 205 vm_object_init2(); 206 } 207 208 209 /* 210 * Red black tree functions 211 */ 212 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 213 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 214 215 /* a->start is address, and the only field has to be initialized */ 216 static int 217 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 218 { 219 if (a->start < b->start) 220 return(-1); 221 else if (a->start > b->start) 222 return(1); 223 return(0); 224 } 225 226 /* 227 * Allocate a vmspace structure, including a vm_map and pmap. 228 * Initialize numerous fields. While the initial allocation is zerod, 229 * subsequence reuse from the objcache leaves elements of the structure 230 * intact (particularly the pmap), so portions must be zerod. 231 * 232 * The structure is not considered activated until we call sysref_activate(). 233 */ 234 struct vmspace * 235 vmspace_alloc(vm_offset_t min, vm_offset_t max) 236 { 237 struct vmspace *vm; 238 239 vm = sysref_alloc(&vmspace_sysref_class); 240 bzero(&vm->vm_startcopy, 241 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 242 vm_map_init(&vm->vm_map, min, max, NULL); 243 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 244 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 245 vm->vm_shm = NULL; 246 vm->vm_exitingcnt = 0; 247 cpu_vmspace_alloc(vm); 248 sysref_activate(&vm->vm_sysref); 249 return (vm); 250 } 251 252 /* 253 * dtor function - Some elements of the pmap are retained in the 254 * free-cached vmspaces to improve performance. We have to clean them up 255 * here before returning the vmspace to the memory pool. 256 */ 257 static void 258 vmspace_dtor(void *obj, void *private) 259 { 260 struct vmspace *vm = obj; 261 262 pmap_puninit(vmspace_pmap(vm)); 263 } 264 265 /* 266 * Called in two cases: 267 * 268 * (1) When the last sysref is dropped, but exitingcnt might still be 269 * non-zero. 270 * 271 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the 272 * exitingcnt becomes zero 273 * 274 * sysref will not scrap the object until we call sysref_put() once more 275 * after the last ref has been dropped. 276 */ 277 static void 278 vmspace_terminate(struct vmspace *vm) 279 { 280 int count; 281 282 /* 283 * If exitingcnt is non-zero we can't get rid of the entire vmspace 284 * yet, but we can scrap user memory. 285 */ 286 if (vm->vm_exitingcnt) { 287 shmexit(vm); 288 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 289 VM_MAX_USER_ADDRESS); 290 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 291 VM_MAX_USER_ADDRESS); 292 293 return; 294 } 295 cpu_vmspace_free(vm); 296 297 /* 298 * Make sure any SysV shm is freed, it might not have in 299 * exit1() 300 */ 301 shmexit(vm); 302 303 KKASSERT(vm->vm_upcalls == NULL); 304 305 /* 306 * Lock the map, to wait out all other references to it. 307 * Delete all of the mappings and pages they hold, then call 308 * the pmap module to reclaim anything left. 309 */ 310 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 311 vm_map_lock(&vm->vm_map); 312 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 313 vm->vm_map.max_offset, &count); 314 vm_map_unlock(&vm->vm_map); 315 vm_map_entry_release(count); 316 317 pmap_release(vmspace_pmap(vm)); 318 sysref_put(&vm->vm_sysref); 319 } 320 321 static void 322 vmspace_lock(struct vmspace *vm __unused) 323 { 324 } 325 326 static void 327 vmspace_unlock(struct vmspace *vm __unused) 328 { 329 } 330 331 /* 332 * This is called in the wait*() handling code. The vmspace can be terminated 333 * after the last wait is finished using it. 334 */ 335 void 336 vmspace_exitfree(struct proc *p) 337 { 338 struct vmspace *vm; 339 340 vm = p->p_vmspace; 341 p->p_vmspace = NULL; 342 343 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref)) 344 vmspace_terminate(vm); 345 } 346 347 /* 348 * vmspace_swap_count() 349 * 350 * Swap useage is determined by taking the proportional swap used by 351 * VM objects backing the VM map. To make up for fractional losses, 352 * if the VM object has any swap use at all the associated map entries 353 * count for at least 1 swap page. 354 */ 355 int 356 vmspace_swap_count(struct vmspace *vmspace) 357 { 358 vm_map_t map = &vmspace->vm_map; 359 vm_map_entry_t cur; 360 vm_object_t object; 361 int count = 0; 362 int n; 363 364 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 365 switch(cur->maptype) { 366 case VM_MAPTYPE_NORMAL: 367 case VM_MAPTYPE_VPAGETABLE: 368 if ((object = cur->object.vm_object) == NULL) 369 break; 370 if (object->swblock_count) { 371 n = (cur->end - cur->start) / PAGE_SIZE; 372 count += object->swblock_count * 373 SWAP_META_PAGES * n / object->size + 1; 374 } 375 break; 376 default: 377 break; 378 } 379 } 380 return(count); 381 } 382 383 /* 384 * vmspace_anonymous_count() 385 * 386 * Calculate the approximate number of anonymous pages in use by 387 * this vmspace. To make up for fractional losses, we count each 388 * VM object as having at least 1 anonymous page. 389 */ 390 int 391 vmspace_anonymous_count(struct vmspace *vmspace) 392 { 393 vm_map_t map = &vmspace->vm_map; 394 vm_map_entry_t cur; 395 vm_object_t object; 396 int count = 0; 397 398 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 399 switch(cur->maptype) { 400 case VM_MAPTYPE_NORMAL: 401 case VM_MAPTYPE_VPAGETABLE: 402 if ((object = cur->object.vm_object) == NULL) 403 break; 404 if (object->type != OBJT_DEFAULT && 405 object->type != OBJT_SWAP) { 406 break; 407 } 408 count += object->resident_page_count; 409 break; 410 default: 411 break; 412 } 413 } 414 return(count); 415 } 416 417 418 419 420 /* 421 * vm_map_create: 422 * 423 * Creates and returns a new empty VM map with 424 * the given physical map structure, and having 425 * the given lower and upper address bounds. 426 */ 427 vm_map_t 428 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max) 429 { 430 if (result == NULL) 431 result = zalloc(mapzone); 432 vm_map_init(result, min, max, pmap); 433 return (result); 434 } 435 436 /* 437 * Initialize an existing vm_map structure 438 * such as that in the vmspace structure. 439 * The pmap is set elsewhere. 440 */ 441 void 442 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 443 { 444 map->header.next = map->header.prev = &map->header; 445 RB_INIT(&map->rb_root); 446 map->nentries = 0; 447 map->size = 0; 448 map->system_map = 0; 449 map->infork = 0; 450 map->min_offset = min; 451 map->max_offset = max; 452 map->pmap = pmap; 453 map->first_free = &map->header; 454 map->hint = &map->header; 455 map->timestamp = 0; 456 lockinit(&map->lock, "thrd_sleep", 0, 0); 457 } 458 459 /* 460 * Shadow the vm_map_entry's object. This typically needs to be done when 461 * a write fault is taken on an entry which had previously been cloned by 462 * fork(). The shared object (which might be NULL) must become private so 463 * we add a shadow layer above it. 464 * 465 * Object allocation for anonymous mappings is defered as long as possible. 466 * When creating a shadow, however, the underlying object must be instantiated 467 * so it can be shared. 468 * 469 * If the map segment is governed by a virtual page table then it is 470 * possible to address offsets beyond the mapped area. Just allocate 471 * a maximally sized object for this case. 472 */ 473 static 474 void 475 vm_map_entry_shadow(vm_map_entry_t entry) 476 { 477 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 478 vm_object_shadow(&entry->object.vm_object, &entry->offset, 479 0x7FFFFFFF); /* XXX */ 480 } else { 481 vm_object_shadow(&entry->object.vm_object, &entry->offset, 482 atop(entry->end - entry->start)); 483 } 484 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 485 } 486 487 /* 488 * Allocate an object for a vm_map_entry. 489 * 490 * Object allocation for anonymous mappings is defered as long as possible. 491 * This function is called when we can defer no longer, generally when a map 492 * entry might be split or forked or takes a page fault. 493 * 494 * If the map segment is governed by a virtual page table then it is 495 * possible to address offsets beyond the mapped area. Just allocate 496 * a maximally sized object for this case. 497 */ 498 void 499 vm_map_entry_allocate_object(vm_map_entry_t entry) 500 { 501 vm_object_t obj; 502 503 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 504 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 505 } else { 506 obj = vm_object_allocate(OBJT_DEFAULT, 507 atop(entry->end - entry->start)); 508 } 509 entry->object.vm_object = obj; 510 entry->offset = 0; 511 } 512 513 /* 514 * vm_map_entry_reserve_cpu_init: 515 * 516 * Set an initial negative count so the first attempt to reserve 517 * space preloads a bunch of vm_map_entry's for this cpu. Also 518 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 519 * map a new page for vm_map_entry structures. SMP systems are 520 * particularly sensitive. 521 * 522 * This routine is called in early boot so we cannot just call 523 * vm_map_entry_reserve(). 524 * 525 * May be called for a gd other then mycpu, but may only be called 526 * during early boot. 527 */ 528 void 529 vm_map_entry_reserve_cpu_init(globaldata_t gd) 530 { 531 vm_map_entry_t entry; 532 int i; 533 534 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 535 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 536 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 537 entry->next = gd->gd_vme_base; 538 gd->gd_vme_base = entry; 539 } 540 } 541 542 /* 543 * vm_map_entry_reserve: 544 * 545 * Reserves vm_map_entry structures so code later on can manipulate 546 * map_entry structures within a locked map without blocking trying 547 * to allocate a new vm_map_entry. 548 */ 549 int 550 vm_map_entry_reserve(int count) 551 { 552 struct globaldata *gd = mycpu; 553 vm_map_entry_t entry; 554 555 crit_enter(); 556 557 /* 558 * Make sure we have enough structures in gd_vme_base to handle 559 * the reservation request. 560 */ 561 while (gd->gd_vme_avail < count) { 562 entry = zalloc(mapentzone); 563 entry->next = gd->gd_vme_base; 564 gd->gd_vme_base = entry; 565 ++gd->gd_vme_avail; 566 } 567 gd->gd_vme_avail -= count; 568 crit_exit(); 569 return(count); 570 } 571 572 /* 573 * vm_map_entry_release: 574 * 575 * Releases previously reserved vm_map_entry structures that were not 576 * used. If we have too much junk in our per-cpu cache clean some of 577 * it out. 578 */ 579 void 580 vm_map_entry_release(int count) 581 { 582 struct globaldata *gd = mycpu; 583 vm_map_entry_t entry; 584 585 crit_enter(); 586 gd->gd_vme_avail += count; 587 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 588 entry = gd->gd_vme_base; 589 KKASSERT(entry != NULL); 590 gd->gd_vme_base = entry->next; 591 --gd->gd_vme_avail; 592 crit_exit(); 593 zfree(mapentzone, entry); 594 crit_enter(); 595 } 596 crit_exit(); 597 } 598 599 /* 600 * vm_map_entry_kreserve: 601 * 602 * Reserve map entry structures for use in kernel_map itself. These 603 * entries have *ALREADY* been reserved on a per-cpu basis when the map 604 * was inited. This function is used by zalloc() to avoid a recursion 605 * when zalloc() itself needs to allocate additional kernel memory. 606 * 607 * This function works like the normal reserve but does not load the 608 * vm_map_entry cache (because that would result in an infinite 609 * recursion). Note that gd_vme_avail may go negative. This is expected. 610 * 611 * Any caller of this function must be sure to renormalize after 612 * potentially eating entries to ensure that the reserve supply 613 * remains intact. 614 */ 615 int 616 vm_map_entry_kreserve(int count) 617 { 618 struct globaldata *gd = mycpu; 619 620 crit_enter(); 621 gd->gd_vme_avail -= count; 622 crit_exit(); 623 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail)); 624 return(count); 625 } 626 627 /* 628 * vm_map_entry_krelease: 629 * 630 * Release previously reserved map entries for kernel_map. We do not 631 * attempt to clean up like the normal release function as this would 632 * cause an unnecessary (but probably not fatal) deep procedure call. 633 */ 634 void 635 vm_map_entry_krelease(int count) 636 { 637 struct globaldata *gd = mycpu; 638 639 crit_enter(); 640 gd->gd_vme_avail += count; 641 crit_exit(); 642 } 643 644 /* 645 * vm_map_entry_create: [ internal use only ] 646 * 647 * Allocates a VM map entry for insertion. No entry fields are filled 648 * in. 649 * 650 * This routine may be called from an interrupt thread but not a FAST 651 * interrupt. This routine may recurse the map lock. 652 */ 653 static vm_map_entry_t 654 vm_map_entry_create(vm_map_t map, int *countp) 655 { 656 struct globaldata *gd = mycpu; 657 vm_map_entry_t entry; 658 659 KKASSERT(*countp > 0); 660 --*countp; 661 crit_enter(); 662 entry = gd->gd_vme_base; 663 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 664 gd->gd_vme_base = entry->next; 665 crit_exit(); 666 return(entry); 667 } 668 669 /* 670 * vm_map_entry_dispose: [ internal use only ] 671 * 672 * Dispose of a vm_map_entry that is no longer being referenced. This 673 * function may be called from an interrupt. 674 */ 675 static void 676 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 677 { 678 struct globaldata *gd = mycpu; 679 680 KKASSERT(map->hint != entry); 681 KKASSERT(map->first_free != entry); 682 683 ++*countp; 684 crit_enter(); 685 entry->next = gd->gd_vme_base; 686 gd->gd_vme_base = entry; 687 crit_exit(); 688 } 689 690 691 /* 692 * vm_map_entry_{un,}link: 693 * 694 * Insert/remove entries from maps. 695 */ 696 static __inline void 697 vm_map_entry_link(vm_map_t map, 698 vm_map_entry_t after_where, 699 vm_map_entry_t entry) 700 { 701 map->nentries++; 702 entry->prev = after_where; 703 entry->next = after_where->next; 704 entry->next->prev = entry; 705 after_where->next = entry; 706 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 707 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 708 } 709 710 static __inline void 711 vm_map_entry_unlink(vm_map_t map, 712 vm_map_entry_t entry) 713 { 714 vm_map_entry_t prev; 715 vm_map_entry_t next; 716 717 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) 718 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry); 719 prev = entry->prev; 720 next = entry->next; 721 next->prev = prev; 722 prev->next = next; 723 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 724 map->nentries--; 725 } 726 727 /* 728 * vm_map_lookup_entry: [ internal use only ] 729 * 730 * Finds the map entry containing (or 731 * immediately preceding) the specified address 732 * in the given map; the entry is returned 733 * in the "entry" parameter. The boolean 734 * result indicates whether the address is 735 * actually contained in the map. 736 */ 737 boolean_t 738 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, 739 vm_map_entry_t *entry /* OUT */) 740 { 741 vm_map_entry_t tmp; 742 vm_map_entry_t last; 743 744 #if 0 745 /* 746 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 747 * the hint code with the red-black lookup meets with system crashes 748 * and lockups. We do not yet know why. 749 * 750 * It is possible that the problem is related to the setting 751 * of the hint during map_entry deletion, in the code specified 752 * at the GGG comment later on in this file. 753 */ 754 /* 755 * Quickly check the cached hint, there's a good chance of a match. 756 */ 757 if (map->hint != &map->header) { 758 tmp = map->hint; 759 if (address >= tmp->start && address < tmp->end) { 760 *entry = tmp; 761 return(TRUE); 762 } 763 } 764 #endif 765 766 /* 767 * Locate the record from the top of the tree. 'last' tracks the 768 * closest prior record and is returned if no match is found, which 769 * in binary tree terms means tracking the most recent right-branch 770 * taken. If there is no prior record, &map->header is returned. 771 */ 772 last = &map->header; 773 tmp = RB_ROOT(&map->rb_root); 774 775 while (tmp) { 776 if (address >= tmp->start) { 777 if (address < tmp->end) { 778 *entry = tmp; 779 map->hint = tmp; 780 return(TRUE); 781 } 782 last = tmp; 783 tmp = RB_RIGHT(tmp, rb_entry); 784 } else { 785 tmp = RB_LEFT(tmp, rb_entry); 786 } 787 } 788 *entry = last; 789 return (FALSE); 790 } 791 792 /* 793 * vm_map_insert: 794 * 795 * Inserts the given whole VM object into the target 796 * map at the specified address range. The object's 797 * size should match that of the address range. 798 * 799 * Requires that the map be locked, and leaves it so. Requires that 800 * sufficient vm_map_entry structures have been reserved and tracks 801 * the use via countp. 802 * 803 * If object is non-NULL, ref count must be bumped by caller 804 * prior to making call to account for the new entry. 805 */ 806 int 807 vm_map_insert(vm_map_t map, int *countp, 808 vm_object_t object, vm_ooffset_t offset, 809 vm_offset_t start, vm_offset_t end, 810 vm_maptype_t maptype, 811 vm_prot_t prot, vm_prot_t max, 812 int cow) 813 { 814 vm_map_entry_t new_entry; 815 vm_map_entry_t prev_entry; 816 vm_map_entry_t temp_entry; 817 vm_eflags_t protoeflags; 818 819 /* 820 * Check that the start and end points are not bogus. 821 */ 822 823 if ((start < map->min_offset) || (end > map->max_offset) || 824 (start >= end)) 825 return (KERN_INVALID_ADDRESS); 826 827 /* 828 * Find the entry prior to the proposed starting address; if it's part 829 * of an existing entry, this range is bogus. 830 */ 831 832 if (vm_map_lookup_entry(map, start, &temp_entry)) 833 return (KERN_NO_SPACE); 834 835 prev_entry = temp_entry; 836 837 /* 838 * Assert that the next entry doesn't overlap the end point. 839 */ 840 841 if ((prev_entry->next != &map->header) && 842 (prev_entry->next->start < end)) 843 return (KERN_NO_SPACE); 844 845 protoeflags = 0; 846 847 if (cow & MAP_COPY_ON_WRITE) 848 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 849 850 if (cow & MAP_NOFAULT) { 851 protoeflags |= MAP_ENTRY_NOFAULT; 852 853 KASSERT(object == NULL, 854 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 855 } 856 if (cow & MAP_DISABLE_SYNCER) 857 protoeflags |= MAP_ENTRY_NOSYNC; 858 if (cow & MAP_DISABLE_COREDUMP) 859 protoeflags |= MAP_ENTRY_NOCOREDUMP; 860 if (cow & MAP_IS_STACK) 861 protoeflags |= MAP_ENTRY_STACK; 862 863 if (object) { 864 /* 865 * When object is non-NULL, it could be shared with another 866 * process. We have to set or clear OBJ_ONEMAPPING 867 * appropriately. 868 */ 869 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 870 vm_object_clear_flag(object, OBJ_ONEMAPPING); 871 } 872 } 873 else if ((prev_entry != &map->header) && 874 (prev_entry->eflags == protoeflags) && 875 (prev_entry->end == start) && 876 (prev_entry->wired_count == 0) && 877 prev_entry->maptype == maptype && 878 ((prev_entry->object.vm_object == NULL) || 879 vm_object_coalesce(prev_entry->object.vm_object, 880 OFF_TO_IDX(prev_entry->offset), 881 (vm_size_t)(prev_entry->end - prev_entry->start), 882 (vm_size_t)(end - prev_entry->end)))) { 883 /* 884 * We were able to extend the object. Determine if we 885 * can extend the previous map entry to include the 886 * new range as well. 887 */ 888 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 889 (prev_entry->protection == prot) && 890 (prev_entry->max_protection == max)) { 891 map->size += (end - prev_entry->end); 892 prev_entry->end = end; 893 vm_map_simplify_entry(map, prev_entry, countp); 894 return (KERN_SUCCESS); 895 } 896 897 /* 898 * If we can extend the object but cannot extend the 899 * map entry, we have to create a new map entry. We 900 * must bump the ref count on the extended object to 901 * account for it. object may be NULL. 902 */ 903 object = prev_entry->object.vm_object; 904 offset = prev_entry->offset + 905 (prev_entry->end - prev_entry->start); 906 vm_object_reference(object); 907 } 908 909 /* 910 * NOTE: if conditionals fail, object can be NULL here. This occurs 911 * in things like the buffer map where we manage kva but do not manage 912 * backing objects. 913 */ 914 915 /* 916 * Create a new entry 917 */ 918 919 new_entry = vm_map_entry_create(map, countp); 920 new_entry->start = start; 921 new_entry->end = end; 922 923 new_entry->maptype = maptype; 924 new_entry->eflags = protoeflags; 925 new_entry->object.vm_object = object; 926 new_entry->offset = offset; 927 new_entry->aux.master_pde = 0; 928 929 new_entry->inheritance = VM_INHERIT_DEFAULT; 930 new_entry->protection = prot; 931 new_entry->max_protection = max; 932 new_entry->wired_count = 0; 933 934 /* 935 * Insert the new entry into the list 936 */ 937 938 vm_map_entry_link(map, prev_entry, new_entry); 939 map->size += new_entry->end - new_entry->start; 940 941 /* 942 * Update the free space hint. Entries cannot overlap. 943 * An exact comparison is needed to avoid matching 944 * against the map->header. 945 */ 946 if ((map->first_free == prev_entry) && 947 (prev_entry->end == new_entry->start)) { 948 map->first_free = new_entry; 949 } 950 951 #if 0 952 /* 953 * Temporarily removed to avoid MAP_STACK panic, due to 954 * MAP_STACK being a huge hack. Will be added back in 955 * when MAP_STACK (and the user stack mapping) is fixed. 956 */ 957 /* 958 * It may be possible to simplify the entry 959 */ 960 vm_map_simplify_entry(map, new_entry, countp); 961 #endif 962 963 /* 964 * Try to pre-populate the page table. Mappings governed by virtual 965 * page tables cannot be prepopulated without a lot of work, so 966 * don't try. 967 */ 968 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 969 maptype != VM_MAPTYPE_VPAGETABLE) { 970 pmap_object_init_pt(map->pmap, start, prot, 971 object, OFF_TO_IDX(offset), end - start, 972 cow & MAP_PREFAULT_PARTIAL); 973 } 974 975 return (KERN_SUCCESS); 976 } 977 978 /* 979 * Find sufficient space for `length' bytes in the given map, starting at 980 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 981 * 982 * This function will returned an arbitrarily aligned pointer. If no 983 * particular alignment is required you should pass align as 1. Note that 984 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 985 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 986 * argument. 987 * 988 * 'align' should be a power of 2 but is not required to be. 989 */ 990 int 991 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 992 vm_size_t align, int flags, vm_offset_t *addr) 993 { 994 vm_map_entry_t entry, next; 995 vm_offset_t end; 996 vm_offset_t align_mask; 997 998 if (start < map->min_offset) 999 start = map->min_offset; 1000 if (start > map->max_offset) 1001 return (1); 1002 1003 /* 1004 * If the alignment is not a power of 2 we will have to use 1005 * a mod/division, set align_mask to a special value. 1006 */ 1007 if ((align | (align - 1)) + 1 != (align << 1)) 1008 align_mask = (vm_offset_t)-1; 1009 else 1010 align_mask = align - 1; 1011 1012 retry: 1013 /* 1014 * Look for the first possible address; if there's already something 1015 * at this address, we have to start after it. 1016 */ 1017 if (start == map->min_offset) { 1018 if ((entry = map->first_free) != &map->header) 1019 start = entry->end; 1020 } else { 1021 vm_map_entry_t tmp; 1022 1023 if (vm_map_lookup_entry(map, start, &tmp)) 1024 start = tmp->end; 1025 entry = tmp; 1026 } 1027 1028 /* 1029 * Look through the rest of the map, trying to fit a new region in the 1030 * gap between existing regions, or after the very last region. 1031 */ 1032 for (;; start = (entry = next)->end) { 1033 /* 1034 * Adjust the proposed start by the requested alignment, 1035 * be sure that we didn't wrap the address. 1036 */ 1037 if (align_mask == (vm_offset_t)-1) 1038 end = ((start + align - 1) / align) * align; 1039 else 1040 end = (start + align_mask) & ~align_mask; 1041 if (end < start) 1042 return (1); 1043 start = end; 1044 /* 1045 * Find the end of the proposed new region. Be sure we didn't 1046 * go beyond the end of the map, or wrap around the address. 1047 * Then check to see if this is the last entry or if the 1048 * proposed end fits in the gap between this and the next 1049 * entry. 1050 */ 1051 end = start + length; 1052 if (end > map->max_offset || end < start) 1053 return (1); 1054 next = entry->next; 1055 1056 /* 1057 * If the next entry's start address is beyond the desired 1058 * end address we may have found a good entry. 1059 * 1060 * If the next entry is a stack mapping we do not map into 1061 * the stack's reserved space. 1062 * 1063 * XXX continue to allow mapping into the stack's reserved 1064 * space if doing a MAP_STACK mapping inside a MAP_STACK 1065 * mapping, for backwards compatibility. But the caller 1066 * really should use MAP_STACK | MAP_TRYFIXED if they 1067 * want to do that. 1068 */ 1069 if (next == &map->header) 1070 break; 1071 if (next->start >= end) { 1072 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1073 break; 1074 if (flags & MAP_STACK) 1075 break; 1076 if (next->start - next->aux.avail_ssize >= end) 1077 break; 1078 } 1079 } 1080 map->hint = entry; 1081 if (map == &kernel_map) { 1082 vm_offset_t ksize; 1083 if ((ksize = round_page(start + length)) > kernel_vm_end) { 1084 pmap_growkernel(ksize); 1085 goto retry; 1086 } 1087 } 1088 *addr = start; 1089 return (0); 1090 } 1091 1092 /* 1093 * vm_map_find finds an unallocated region in the target address 1094 * map with the given length. The search is defined to be 1095 * first-fit from the specified address; the region found is 1096 * returned in the same parameter. 1097 * 1098 * If object is non-NULL, ref count must be bumped by caller 1099 * prior to making call to account for the new entry. 1100 */ 1101 int 1102 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1103 vm_offset_t *addr, vm_size_t length, vm_size_t align, 1104 boolean_t fitit, 1105 vm_maptype_t maptype, 1106 vm_prot_t prot, vm_prot_t max, 1107 int cow) 1108 { 1109 vm_offset_t start; 1110 int result; 1111 int count; 1112 1113 start = *addr; 1114 1115 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1116 vm_map_lock(map); 1117 if (fitit) { 1118 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1119 vm_map_unlock(map); 1120 vm_map_entry_release(count); 1121 return (KERN_NO_SPACE); 1122 } 1123 start = *addr; 1124 } 1125 result = vm_map_insert(map, &count, object, offset, 1126 start, start + length, 1127 maptype, 1128 prot, max, 1129 cow); 1130 vm_map_unlock(map); 1131 vm_map_entry_release(count); 1132 1133 return (result); 1134 } 1135 1136 /* 1137 * vm_map_simplify_entry: 1138 * 1139 * Simplify the given map entry by merging with either neighbor. This 1140 * routine also has the ability to merge with both neighbors. 1141 * 1142 * The map must be locked. 1143 * 1144 * This routine guarentees that the passed entry remains valid (though 1145 * possibly extended). When merging, this routine may delete one or 1146 * both neighbors. No action is taken on entries which have their 1147 * in-transition flag set. 1148 */ 1149 void 1150 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1151 { 1152 vm_map_entry_t next, prev; 1153 vm_size_t prevsize, esize; 1154 1155 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1156 ++mycpu->gd_cnt.v_intrans_coll; 1157 return; 1158 } 1159 1160 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1161 return; 1162 1163 prev = entry->prev; 1164 if (prev != &map->header) { 1165 prevsize = prev->end - prev->start; 1166 if ( (prev->end == entry->start) && 1167 (prev->maptype == entry->maptype) && 1168 (prev->object.vm_object == entry->object.vm_object) && 1169 (!prev->object.vm_object || 1170 (prev->offset + prevsize == entry->offset)) && 1171 (prev->eflags == entry->eflags) && 1172 (prev->protection == entry->protection) && 1173 (prev->max_protection == entry->max_protection) && 1174 (prev->inheritance == entry->inheritance) && 1175 (prev->wired_count == entry->wired_count)) { 1176 if (map->first_free == prev) 1177 map->first_free = entry; 1178 if (map->hint == prev) 1179 map->hint = entry; 1180 vm_map_entry_unlink(map, prev); 1181 entry->start = prev->start; 1182 entry->offset = prev->offset; 1183 if (prev->object.vm_object) 1184 vm_object_deallocate(prev->object.vm_object); 1185 vm_map_entry_dispose(map, prev, countp); 1186 } 1187 } 1188 1189 next = entry->next; 1190 if (next != &map->header) { 1191 esize = entry->end - entry->start; 1192 if ((entry->end == next->start) && 1193 (next->maptype == entry->maptype) && 1194 (next->object.vm_object == entry->object.vm_object) && 1195 (!entry->object.vm_object || 1196 (entry->offset + esize == next->offset)) && 1197 (next->eflags == entry->eflags) && 1198 (next->protection == entry->protection) && 1199 (next->max_protection == entry->max_protection) && 1200 (next->inheritance == entry->inheritance) && 1201 (next->wired_count == entry->wired_count)) { 1202 if (map->first_free == next) 1203 map->first_free = entry; 1204 if (map->hint == next) 1205 map->hint = entry; 1206 vm_map_entry_unlink(map, next); 1207 entry->end = next->end; 1208 if (next->object.vm_object) 1209 vm_object_deallocate(next->object.vm_object); 1210 vm_map_entry_dispose(map, next, countp); 1211 } 1212 } 1213 } 1214 /* 1215 * vm_map_clip_start: [ internal use only ] 1216 * 1217 * Asserts that the given entry begins at or after 1218 * the specified address; if necessary, 1219 * it splits the entry into two. 1220 */ 1221 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1222 { \ 1223 if (startaddr > entry->start) \ 1224 _vm_map_clip_start(map, entry, startaddr, countp); \ 1225 } 1226 1227 /* 1228 * This routine is called only when it is known that 1229 * the entry must be split. 1230 */ 1231 static void 1232 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp) 1233 { 1234 vm_map_entry_t new_entry; 1235 1236 /* 1237 * Split off the front portion -- note that we must insert the new 1238 * entry BEFORE this one, so that this entry has the specified 1239 * starting address. 1240 */ 1241 1242 vm_map_simplify_entry(map, entry, countp); 1243 1244 /* 1245 * If there is no object backing this entry, we might as well create 1246 * one now. If we defer it, an object can get created after the map 1247 * is clipped, and individual objects will be created for the split-up 1248 * map. This is a bit of a hack, but is also about the best place to 1249 * put this improvement. 1250 */ 1251 if (entry->object.vm_object == NULL && !map->system_map) { 1252 vm_map_entry_allocate_object(entry); 1253 } 1254 1255 new_entry = vm_map_entry_create(map, countp); 1256 *new_entry = *entry; 1257 1258 new_entry->end = start; 1259 entry->offset += (start - entry->start); 1260 entry->start = start; 1261 1262 vm_map_entry_link(map, entry->prev, new_entry); 1263 1264 switch(entry->maptype) { 1265 case VM_MAPTYPE_NORMAL: 1266 case VM_MAPTYPE_VPAGETABLE: 1267 vm_object_reference(new_entry->object.vm_object); 1268 break; 1269 default: 1270 break; 1271 } 1272 } 1273 1274 /* 1275 * vm_map_clip_end: [ internal use only ] 1276 * 1277 * Asserts that the given entry ends at or before 1278 * the specified address; if necessary, 1279 * it splits the entry into two. 1280 */ 1281 1282 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1283 { \ 1284 if (endaddr < entry->end) \ 1285 _vm_map_clip_end(map, entry, endaddr, countp); \ 1286 } 1287 1288 /* 1289 * This routine is called only when it is known that 1290 * the entry must be split. 1291 */ 1292 static void 1293 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp) 1294 { 1295 vm_map_entry_t new_entry; 1296 1297 /* 1298 * If there is no object backing this entry, we might as well create 1299 * one now. If we defer it, an object can get created after the map 1300 * is clipped, and individual objects will be created for the split-up 1301 * map. This is a bit of a hack, but is also about the best place to 1302 * put this improvement. 1303 */ 1304 1305 if (entry->object.vm_object == NULL && !map->system_map) { 1306 vm_map_entry_allocate_object(entry); 1307 } 1308 1309 /* 1310 * Create a new entry and insert it AFTER the specified entry 1311 */ 1312 1313 new_entry = vm_map_entry_create(map, countp); 1314 *new_entry = *entry; 1315 1316 new_entry->start = entry->end = end; 1317 new_entry->offset += (end - entry->start); 1318 1319 vm_map_entry_link(map, entry, new_entry); 1320 1321 switch(entry->maptype) { 1322 case VM_MAPTYPE_NORMAL: 1323 case VM_MAPTYPE_VPAGETABLE: 1324 vm_object_reference(new_entry->object.vm_object); 1325 break; 1326 default: 1327 break; 1328 } 1329 } 1330 1331 /* 1332 * VM_MAP_RANGE_CHECK: [ internal use only ] 1333 * 1334 * Asserts that the starting and ending region 1335 * addresses fall within the valid range of the map. 1336 */ 1337 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1338 { \ 1339 if (start < vm_map_min(map)) \ 1340 start = vm_map_min(map); \ 1341 if (end > vm_map_max(map)) \ 1342 end = vm_map_max(map); \ 1343 if (start > end) \ 1344 start = end; \ 1345 } 1346 1347 /* 1348 * vm_map_transition_wait: [ kernel use only ] 1349 * 1350 * Used to block when an in-transition collison occurs. The map 1351 * is unlocked for the sleep and relocked before the return. 1352 */ 1353 static 1354 void 1355 vm_map_transition_wait(vm_map_t map) 1356 { 1357 vm_map_unlock(map); 1358 tsleep(map, 0, "vment", 0); 1359 vm_map_lock(map); 1360 } 1361 1362 /* 1363 * CLIP_CHECK_BACK 1364 * CLIP_CHECK_FWD 1365 * 1366 * When we do blocking operations with the map lock held it is 1367 * possible that a clip might have occured on our in-transit entry, 1368 * requiring an adjustment to the entry in our loop. These macros 1369 * help the pageable and clip_range code deal with the case. The 1370 * conditional costs virtually nothing if no clipping has occured. 1371 */ 1372 1373 #define CLIP_CHECK_BACK(entry, save_start) \ 1374 do { \ 1375 while (entry->start != save_start) { \ 1376 entry = entry->prev; \ 1377 KASSERT(entry != &map->header, ("bad entry clip")); \ 1378 } \ 1379 } while(0) 1380 1381 #define CLIP_CHECK_FWD(entry, save_end) \ 1382 do { \ 1383 while (entry->end != save_end) { \ 1384 entry = entry->next; \ 1385 KASSERT(entry != &map->header, ("bad entry clip")); \ 1386 } \ 1387 } while(0) 1388 1389 1390 /* 1391 * vm_map_clip_range: [ kernel use only ] 1392 * 1393 * Clip the specified range and return the base entry. The 1394 * range may cover several entries starting at the returned base 1395 * and the first and last entry in the covering sequence will be 1396 * properly clipped to the requested start and end address. 1397 * 1398 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1399 * flag. 1400 * 1401 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1402 * covered by the requested range. 1403 * 1404 * The map must be exclusively locked on entry and will remain locked 1405 * on return. If no range exists or the range contains holes and you 1406 * specified that no holes were allowed, NULL will be returned. This 1407 * routine may temporarily unlock the map in order avoid a deadlock when 1408 * sleeping. 1409 */ 1410 static 1411 vm_map_entry_t 1412 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1413 int *countp, int flags) 1414 { 1415 vm_map_entry_t start_entry; 1416 vm_map_entry_t entry; 1417 1418 /* 1419 * Locate the entry and effect initial clipping. The in-transition 1420 * case does not occur very often so do not try to optimize it. 1421 */ 1422 again: 1423 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1424 return (NULL); 1425 entry = start_entry; 1426 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1427 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1428 ++mycpu->gd_cnt.v_intrans_coll; 1429 ++mycpu->gd_cnt.v_intrans_wait; 1430 vm_map_transition_wait(map); 1431 /* 1432 * entry and/or start_entry may have been clipped while 1433 * we slept, or may have gone away entirely. We have 1434 * to restart from the lookup. 1435 */ 1436 goto again; 1437 } 1438 /* 1439 * Since we hold an exclusive map lock we do not have to restart 1440 * after clipping, even though clipping may block in zalloc. 1441 */ 1442 vm_map_clip_start(map, entry, start, countp); 1443 vm_map_clip_end(map, entry, end, countp); 1444 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1445 1446 /* 1447 * Scan entries covered by the range. When working on the next 1448 * entry a restart need only re-loop on the current entry which 1449 * we have already locked, since 'next' may have changed. Also, 1450 * even though entry is safe, it may have been clipped so we 1451 * have to iterate forwards through the clip after sleeping. 1452 */ 1453 while (entry->next != &map->header && entry->next->start < end) { 1454 vm_map_entry_t next = entry->next; 1455 1456 if (flags & MAP_CLIP_NO_HOLES) { 1457 if (next->start > entry->end) { 1458 vm_map_unclip_range(map, start_entry, 1459 start, entry->end, countp, flags); 1460 return(NULL); 1461 } 1462 } 1463 1464 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1465 vm_offset_t save_end = entry->end; 1466 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1467 ++mycpu->gd_cnt.v_intrans_coll; 1468 ++mycpu->gd_cnt.v_intrans_wait; 1469 vm_map_transition_wait(map); 1470 1471 /* 1472 * clips might have occured while we blocked. 1473 */ 1474 CLIP_CHECK_FWD(entry, save_end); 1475 CLIP_CHECK_BACK(start_entry, start); 1476 continue; 1477 } 1478 /* 1479 * No restart necessary even though clip_end may block, we 1480 * are holding the map lock. 1481 */ 1482 vm_map_clip_end(map, next, end, countp); 1483 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1484 entry = next; 1485 } 1486 if (flags & MAP_CLIP_NO_HOLES) { 1487 if (entry->end != end) { 1488 vm_map_unclip_range(map, start_entry, 1489 start, entry->end, countp, flags); 1490 return(NULL); 1491 } 1492 } 1493 return(start_entry); 1494 } 1495 1496 /* 1497 * vm_map_unclip_range: [ kernel use only ] 1498 * 1499 * Undo the effect of vm_map_clip_range(). You should pass the same 1500 * flags and the same range that you passed to vm_map_clip_range(). 1501 * This code will clear the in-transition flag on the entries and 1502 * wake up anyone waiting. This code will also simplify the sequence 1503 * and attempt to merge it with entries before and after the sequence. 1504 * 1505 * The map must be locked on entry and will remain locked on return. 1506 * 1507 * Note that you should also pass the start_entry returned by 1508 * vm_map_clip_range(). However, if you block between the two calls 1509 * with the map unlocked please be aware that the start_entry may 1510 * have been clipped and you may need to scan it backwards to find 1511 * the entry corresponding with the original start address. You are 1512 * responsible for this, vm_map_unclip_range() expects the correct 1513 * start_entry to be passed to it and will KASSERT otherwise. 1514 */ 1515 static 1516 void 1517 vm_map_unclip_range( 1518 vm_map_t map, 1519 vm_map_entry_t start_entry, 1520 vm_offset_t start, 1521 vm_offset_t end, 1522 int *countp, 1523 int flags) 1524 { 1525 vm_map_entry_t entry; 1526 1527 entry = start_entry; 1528 1529 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1530 while (entry != &map->header && entry->start < end) { 1531 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry)); 1532 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped")); 1533 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1534 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1535 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1536 wakeup(map); 1537 } 1538 entry = entry->next; 1539 } 1540 1541 /* 1542 * Simplification does not block so there is no restart case. 1543 */ 1544 entry = start_entry; 1545 while (entry != &map->header && entry->start < end) { 1546 vm_map_simplify_entry(map, entry, countp); 1547 entry = entry->next; 1548 } 1549 } 1550 1551 /* 1552 * vm_map_submap: [ kernel use only ] 1553 * 1554 * Mark the given range as handled by a subordinate map. 1555 * 1556 * This range must have been created with vm_map_find, 1557 * and no other operations may have been performed on this 1558 * range prior to calling vm_map_submap. 1559 * 1560 * Only a limited number of operations can be performed 1561 * within this rage after calling vm_map_submap: 1562 * vm_fault 1563 * [Don't try vm_map_copy!] 1564 * 1565 * To remove a submapping, one must first remove the 1566 * range from the superior map, and then destroy the 1567 * submap (if desired). [Better yet, don't try it.] 1568 */ 1569 int 1570 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1571 { 1572 vm_map_entry_t entry; 1573 int result = KERN_INVALID_ARGUMENT; 1574 int count; 1575 1576 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1577 vm_map_lock(map); 1578 1579 VM_MAP_RANGE_CHECK(map, start, end); 1580 1581 if (vm_map_lookup_entry(map, start, &entry)) { 1582 vm_map_clip_start(map, entry, start, &count); 1583 } else { 1584 entry = entry->next; 1585 } 1586 1587 vm_map_clip_end(map, entry, end, &count); 1588 1589 if ((entry->start == start) && (entry->end == end) && 1590 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1591 (entry->object.vm_object == NULL)) { 1592 entry->object.sub_map = submap; 1593 entry->maptype = VM_MAPTYPE_SUBMAP; 1594 result = KERN_SUCCESS; 1595 } 1596 vm_map_unlock(map); 1597 vm_map_entry_release(count); 1598 1599 return (result); 1600 } 1601 1602 /* 1603 * vm_map_protect: 1604 * 1605 * Sets the protection of the specified address region in the target map. 1606 * If "set_max" is specified, the maximum protection is to be set; 1607 * otherwise, only the current protection is affected. 1608 * 1609 * The protection is not applicable to submaps, but is applicable to normal 1610 * maps and maps governed by virtual page tables. For example, when operating 1611 * on a virtual page table our protection basically controls how COW occurs 1612 * on the backing object, whereas the virtual page table abstraction itself 1613 * is an abstraction for userland. 1614 */ 1615 int 1616 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1617 vm_prot_t new_prot, boolean_t set_max) 1618 { 1619 vm_map_entry_t current; 1620 vm_map_entry_t entry; 1621 int count; 1622 1623 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1624 vm_map_lock(map); 1625 1626 VM_MAP_RANGE_CHECK(map, start, end); 1627 1628 if (vm_map_lookup_entry(map, start, &entry)) { 1629 vm_map_clip_start(map, entry, start, &count); 1630 } else { 1631 entry = entry->next; 1632 } 1633 1634 /* 1635 * Make a first pass to check for protection violations. 1636 */ 1637 current = entry; 1638 while ((current != &map->header) && (current->start < end)) { 1639 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1640 vm_map_unlock(map); 1641 vm_map_entry_release(count); 1642 return (KERN_INVALID_ARGUMENT); 1643 } 1644 if ((new_prot & current->max_protection) != new_prot) { 1645 vm_map_unlock(map); 1646 vm_map_entry_release(count); 1647 return (KERN_PROTECTION_FAILURE); 1648 } 1649 current = current->next; 1650 } 1651 1652 /* 1653 * Go back and fix up protections. [Note that clipping is not 1654 * necessary the second time.] 1655 */ 1656 current = entry; 1657 1658 while ((current != &map->header) && (current->start < end)) { 1659 vm_prot_t old_prot; 1660 1661 vm_map_clip_end(map, current, end, &count); 1662 1663 old_prot = current->protection; 1664 if (set_max) { 1665 current->protection = 1666 (current->max_protection = new_prot) & 1667 old_prot; 1668 } else { 1669 current->protection = new_prot; 1670 } 1671 1672 /* 1673 * Update physical map if necessary. Worry about copy-on-write 1674 * here -- CHECK THIS XXX 1675 */ 1676 1677 if (current->protection != old_prot) { 1678 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1679 VM_PROT_ALL) 1680 1681 pmap_protect(map->pmap, current->start, 1682 current->end, 1683 current->protection & MASK(current)); 1684 #undef MASK 1685 } 1686 1687 vm_map_simplify_entry(map, current, &count); 1688 1689 current = current->next; 1690 } 1691 1692 vm_map_unlock(map); 1693 vm_map_entry_release(count); 1694 return (KERN_SUCCESS); 1695 } 1696 1697 /* 1698 * vm_map_madvise: 1699 * 1700 * This routine traverses a processes map handling the madvise 1701 * system call. Advisories are classified as either those effecting 1702 * the vm_map_entry structure, or those effecting the underlying 1703 * objects. 1704 * 1705 * The <value> argument is used for extended madvise calls. 1706 */ 1707 int 1708 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1709 int behav, off_t value) 1710 { 1711 vm_map_entry_t current, entry; 1712 int modify_map = 0; 1713 int error = 0; 1714 int count; 1715 1716 /* 1717 * Some madvise calls directly modify the vm_map_entry, in which case 1718 * we need to use an exclusive lock on the map and we need to perform 1719 * various clipping operations. Otherwise we only need a read-lock 1720 * on the map. 1721 */ 1722 1723 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1724 1725 switch(behav) { 1726 case MADV_NORMAL: 1727 case MADV_SEQUENTIAL: 1728 case MADV_RANDOM: 1729 case MADV_NOSYNC: 1730 case MADV_AUTOSYNC: 1731 case MADV_NOCORE: 1732 case MADV_CORE: 1733 case MADV_SETMAP: 1734 case MADV_INVAL: 1735 modify_map = 1; 1736 vm_map_lock(map); 1737 break; 1738 case MADV_WILLNEED: 1739 case MADV_DONTNEED: 1740 case MADV_FREE: 1741 vm_map_lock_read(map); 1742 break; 1743 default: 1744 vm_map_entry_release(count); 1745 return (EINVAL); 1746 } 1747 1748 /* 1749 * Locate starting entry and clip if necessary. 1750 */ 1751 1752 VM_MAP_RANGE_CHECK(map, start, end); 1753 1754 if (vm_map_lookup_entry(map, start, &entry)) { 1755 if (modify_map) 1756 vm_map_clip_start(map, entry, start, &count); 1757 } else { 1758 entry = entry->next; 1759 } 1760 1761 if (modify_map) { 1762 /* 1763 * madvise behaviors that are implemented in the vm_map_entry. 1764 * 1765 * We clip the vm_map_entry so that behavioral changes are 1766 * limited to the specified address range. 1767 */ 1768 for (current = entry; 1769 (current != &map->header) && (current->start < end); 1770 current = current->next 1771 ) { 1772 if (current->maptype == VM_MAPTYPE_SUBMAP) 1773 continue; 1774 1775 vm_map_clip_end(map, current, end, &count); 1776 1777 switch (behav) { 1778 case MADV_NORMAL: 1779 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1780 break; 1781 case MADV_SEQUENTIAL: 1782 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1783 break; 1784 case MADV_RANDOM: 1785 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1786 break; 1787 case MADV_NOSYNC: 1788 current->eflags |= MAP_ENTRY_NOSYNC; 1789 break; 1790 case MADV_AUTOSYNC: 1791 current->eflags &= ~MAP_ENTRY_NOSYNC; 1792 break; 1793 case MADV_NOCORE: 1794 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1795 break; 1796 case MADV_CORE: 1797 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1798 break; 1799 case MADV_INVAL: 1800 /* 1801 * Invalidate the related pmap entries, used 1802 * to flush portions of the real kernel's 1803 * pmap when the caller has removed or 1804 * modified existing mappings in a virtual 1805 * page table. 1806 */ 1807 pmap_remove(map->pmap, 1808 current->start, current->end); 1809 break; 1810 case MADV_SETMAP: 1811 /* 1812 * Set the page directory page for a map 1813 * governed by a virtual page table. Mark 1814 * the entry as being governed by a virtual 1815 * page table if it is not. 1816 * 1817 * XXX the page directory page is stored 1818 * in the avail_ssize field if the map_entry. 1819 * 1820 * XXX the map simplification code does not 1821 * compare this field so weird things may 1822 * happen if you do not apply this function 1823 * to the entire mapping governed by the 1824 * virtual page table. 1825 */ 1826 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1827 error = EINVAL; 1828 break; 1829 } 1830 current->aux.master_pde = value; 1831 pmap_remove(map->pmap, 1832 current->start, current->end); 1833 break; 1834 default: 1835 error = EINVAL; 1836 break; 1837 } 1838 vm_map_simplify_entry(map, current, &count); 1839 } 1840 vm_map_unlock(map); 1841 } else { 1842 vm_pindex_t pindex; 1843 int count; 1844 1845 /* 1846 * madvise behaviors that are implemented in the underlying 1847 * vm_object. 1848 * 1849 * Since we don't clip the vm_map_entry, we have to clip 1850 * the vm_object pindex and count. 1851 * 1852 * NOTE! We currently do not support these functions on 1853 * virtual page tables. 1854 */ 1855 for (current = entry; 1856 (current != &map->header) && (current->start < end); 1857 current = current->next 1858 ) { 1859 vm_offset_t useStart; 1860 1861 if (current->maptype != VM_MAPTYPE_NORMAL) 1862 continue; 1863 1864 pindex = OFF_TO_IDX(current->offset); 1865 count = atop(current->end - current->start); 1866 useStart = current->start; 1867 1868 if (current->start < start) { 1869 pindex += atop(start - current->start); 1870 count -= atop(start - current->start); 1871 useStart = start; 1872 } 1873 if (current->end > end) 1874 count -= atop(current->end - end); 1875 1876 if (count <= 0) 1877 continue; 1878 1879 vm_object_madvise(current->object.vm_object, 1880 pindex, count, behav); 1881 1882 /* 1883 * Try to populate the page table. Mappings governed 1884 * by virtual page tables cannot be pre-populated 1885 * without a lot of work so don't try. 1886 */ 1887 if (behav == MADV_WILLNEED && 1888 current->maptype != VM_MAPTYPE_VPAGETABLE) { 1889 pmap_object_init_pt( 1890 map->pmap, 1891 useStart, 1892 current->protection, 1893 current->object.vm_object, 1894 pindex, 1895 (count << PAGE_SHIFT), 1896 MAP_PREFAULT_MADVISE 1897 ); 1898 } 1899 } 1900 vm_map_unlock_read(map); 1901 } 1902 vm_map_entry_release(count); 1903 return(error); 1904 } 1905 1906 1907 /* 1908 * vm_map_inherit: 1909 * 1910 * Sets the inheritance of the specified address 1911 * range in the target map. Inheritance 1912 * affects how the map will be shared with 1913 * child maps at the time of vm_map_fork. 1914 */ 1915 int 1916 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1917 vm_inherit_t new_inheritance) 1918 { 1919 vm_map_entry_t entry; 1920 vm_map_entry_t temp_entry; 1921 int count; 1922 1923 switch (new_inheritance) { 1924 case VM_INHERIT_NONE: 1925 case VM_INHERIT_COPY: 1926 case VM_INHERIT_SHARE: 1927 break; 1928 default: 1929 return (KERN_INVALID_ARGUMENT); 1930 } 1931 1932 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1933 vm_map_lock(map); 1934 1935 VM_MAP_RANGE_CHECK(map, start, end); 1936 1937 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1938 entry = temp_entry; 1939 vm_map_clip_start(map, entry, start, &count); 1940 } else 1941 entry = temp_entry->next; 1942 1943 while ((entry != &map->header) && (entry->start < end)) { 1944 vm_map_clip_end(map, entry, end, &count); 1945 1946 entry->inheritance = new_inheritance; 1947 1948 vm_map_simplify_entry(map, entry, &count); 1949 1950 entry = entry->next; 1951 } 1952 vm_map_unlock(map); 1953 vm_map_entry_release(count); 1954 return (KERN_SUCCESS); 1955 } 1956 1957 /* 1958 * Implement the semantics of mlock 1959 */ 1960 int 1961 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 1962 boolean_t new_pageable) 1963 { 1964 vm_map_entry_t entry; 1965 vm_map_entry_t start_entry; 1966 vm_offset_t end; 1967 int rv = KERN_SUCCESS; 1968 int count; 1969 1970 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1971 vm_map_lock(map); 1972 VM_MAP_RANGE_CHECK(map, start, real_end); 1973 end = real_end; 1974 1975 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1976 if (start_entry == NULL) { 1977 vm_map_unlock(map); 1978 vm_map_entry_release(count); 1979 return (KERN_INVALID_ADDRESS); 1980 } 1981 1982 if (new_pageable == 0) { 1983 entry = start_entry; 1984 while ((entry != &map->header) && (entry->start < end)) { 1985 vm_offset_t save_start; 1986 vm_offset_t save_end; 1987 1988 /* 1989 * Already user wired or hard wired (trivial cases) 1990 */ 1991 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1992 entry = entry->next; 1993 continue; 1994 } 1995 if (entry->wired_count != 0) { 1996 entry->wired_count++; 1997 entry->eflags |= MAP_ENTRY_USER_WIRED; 1998 entry = entry->next; 1999 continue; 2000 } 2001 2002 /* 2003 * A new wiring requires instantiation of appropriate 2004 * management structures and the faulting in of the 2005 * page. 2006 */ 2007 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2008 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 2009 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 2010 vm_map_entry_shadow(entry); 2011 } else if (entry->object.vm_object == NULL && 2012 !map->system_map) { 2013 vm_map_entry_allocate_object(entry); 2014 } 2015 } 2016 entry->wired_count++; 2017 entry->eflags |= MAP_ENTRY_USER_WIRED; 2018 2019 /* 2020 * Now fault in the area. Note that vm_fault_wire() 2021 * may release the map lock temporarily, it will be 2022 * relocked on return. The in-transition 2023 * flag protects the entries. 2024 */ 2025 save_start = entry->start; 2026 save_end = entry->end; 2027 rv = vm_fault_wire(map, entry, TRUE); 2028 if (rv) { 2029 CLIP_CHECK_BACK(entry, save_start); 2030 for (;;) { 2031 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2032 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2033 entry->wired_count = 0; 2034 if (entry->end == save_end) 2035 break; 2036 entry = entry->next; 2037 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2038 } 2039 end = save_start; /* unwire the rest */ 2040 break; 2041 } 2042 /* 2043 * note that even though the entry might have been 2044 * clipped, the USER_WIRED flag we set prevents 2045 * duplication so we do not have to do a 2046 * clip check. 2047 */ 2048 entry = entry->next; 2049 } 2050 2051 /* 2052 * If we failed fall through to the unwiring section to 2053 * unwire what we had wired so far. 'end' has already 2054 * been adjusted. 2055 */ 2056 if (rv) 2057 new_pageable = 1; 2058 2059 /* 2060 * start_entry might have been clipped if we unlocked the 2061 * map and blocked. No matter how clipped it has gotten 2062 * there should be a fragment that is on our start boundary. 2063 */ 2064 CLIP_CHECK_BACK(start_entry, start); 2065 } 2066 2067 /* 2068 * Deal with the unwiring case. 2069 */ 2070 if (new_pageable) { 2071 /* 2072 * This is the unwiring case. We must first ensure that the 2073 * range to be unwired is really wired down. We know there 2074 * are no holes. 2075 */ 2076 entry = start_entry; 2077 while ((entry != &map->header) && (entry->start < end)) { 2078 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2079 rv = KERN_INVALID_ARGUMENT; 2080 goto done; 2081 } 2082 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2083 entry = entry->next; 2084 } 2085 2086 /* 2087 * Now decrement the wiring count for each region. If a region 2088 * becomes completely unwired, unwire its physical pages and 2089 * mappings. 2090 */ 2091 /* 2092 * The map entries are processed in a loop, checking to 2093 * make sure the entry is wired and asserting it has a wired 2094 * count. However, another loop was inserted more-or-less in 2095 * the middle of the unwiring path. This loop picks up the 2096 * "entry" loop variable from the first loop without first 2097 * setting it to start_entry. Naturally, the secound loop 2098 * is never entered and the pages backing the entries are 2099 * never unwired. This can lead to a leak of wired pages. 2100 */ 2101 entry = start_entry; 2102 while ((entry != &map->header) && (entry->start < end)) { 2103 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2104 ("expected USER_WIRED on entry %p", entry)); 2105 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2106 entry->wired_count--; 2107 if (entry->wired_count == 0) 2108 vm_fault_unwire(map, entry); 2109 entry = entry->next; 2110 } 2111 } 2112 done: 2113 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2114 MAP_CLIP_NO_HOLES); 2115 map->timestamp++; 2116 vm_map_unlock(map); 2117 vm_map_entry_release(count); 2118 return (rv); 2119 } 2120 2121 /* 2122 * vm_map_wire: 2123 * 2124 * Sets the pageability of the specified address 2125 * range in the target map. Regions specified 2126 * as not pageable require locked-down physical 2127 * memory and physical page maps. 2128 * 2129 * The map must not be locked, but a reference 2130 * must remain to the map throughout the call. 2131 * 2132 * This function may be called via the zalloc path and must properly 2133 * reserve map entries for kernel_map. 2134 */ 2135 int 2136 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2137 { 2138 vm_map_entry_t entry; 2139 vm_map_entry_t start_entry; 2140 vm_offset_t end; 2141 int rv = KERN_SUCCESS; 2142 int count; 2143 2144 if (kmflags & KM_KRESERVE) 2145 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2146 else 2147 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2148 vm_map_lock(map); 2149 VM_MAP_RANGE_CHECK(map, start, real_end); 2150 end = real_end; 2151 2152 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 2153 if (start_entry == NULL) { 2154 vm_map_unlock(map); 2155 rv = KERN_INVALID_ADDRESS; 2156 goto failure; 2157 } 2158 if ((kmflags & KM_PAGEABLE) == 0) { 2159 /* 2160 * Wiring. 2161 * 2162 * 1. Holding the write lock, we create any shadow or zero-fill 2163 * objects that need to be created. Then we clip each map 2164 * entry to the region to be wired and increment its wiring 2165 * count. We create objects before clipping the map entries 2166 * to avoid object proliferation. 2167 * 2168 * 2. We downgrade to a read lock, and call vm_fault_wire to 2169 * fault in the pages for any newly wired area (wired_count is 2170 * 1). 2171 * 2172 * Downgrading to a read lock for vm_fault_wire avoids a 2173 * possible deadlock with another process that may have faulted 2174 * on one of the pages to be wired (it would mark the page busy, 2175 * blocking us, then in turn block on the map lock that we 2176 * hold). Because of problems in the recursive lock package, 2177 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2178 * any actions that require the write lock must be done 2179 * beforehand. Because we keep the read lock on the map, the 2180 * copy-on-write status of the entries we modify here cannot 2181 * change. 2182 */ 2183 2184 entry = start_entry; 2185 while ((entry != &map->header) && (entry->start < end)) { 2186 /* 2187 * Trivial case if the entry is already wired 2188 */ 2189 if (entry->wired_count) { 2190 entry->wired_count++; 2191 entry = entry->next; 2192 continue; 2193 } 2194 2195 /* 2196 * The entry is being newly wired, we have to setup 2197 * appropriate management structures. A shadow 2198 * object is required for a copy-on-write region, 2199 * or a normal object for a zero-fill region. We 2200 * do not have to do this for entries that point to sub 2201 * maps because we won't hold the lock on the sub map. 2202 */ 2203 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2204 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 2205 if (copyflag && 2206 ((entry->protection & VM_PROT_WRITE) != 0)) { 2207 vm_map_entry_shadow(entry); 2208 } else if (entry->object.vm_object == NULL && 2209 !map->system_map) { 2210 vm_map_entry_allocate_object(entry); 2211 } 2212 } 2213 2214 entry->wired_count++; 2215 entry = entry->next; 2216 } 2217 2218 /* 2219 * Pass 2. 2220 */ 2221 2222 /* 2223 * HACK HACK HACK HACK 2224 * 2225 * Unlock the map to avoid deadlocks. The in-transit flag 2226 * protects us from most changes but note that 2227 * clipping may still occur. To prevent clipping from 2228 * occuring after the unlock, except for when we are 2229 * blocking in vm_fault_wire, we must run in a critical 2230 * section, otherwise our accesses to entry->start and 2231 * entry->end could be corrupted. We have to enter the 2232 * critical section prior to unlocking so start_entry does 2233 * not change out from under us at the very beginning of the 2234 * loop. 2235 * 2236 * HACK HACK HACK HACK 2237 */ 2238 2239 crit_enter(); 2240 2241 entry = start_entry; 2242 while (entry != &map->header && entry->start < end) { 2243 /* 2244 * If vm_fault_wire fails for any page we need to undo 2245 * what has been done. We decrement the wiring count 2246 * for those pages which have not yet been wired (now) 2247 * and unwire those that have (later). 2248 */ 2249 vm_offset_t save_start = entry->start; 2250 vm_offset_t save_end = entry->end; 2251 2252 if (entry->wired_count == 1) 2253 rv = vm_fault_wire(map, entry, FALSE); 2254 if (rv) { 2255 CLIP_CHECK_BACK(entry, save_start); 2256 for (;;) { 2257 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2258 entry->wired_count = 0; 2259 if (entry->end == save_end) 2260 break; 2261 entry = entry->next; 2262 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2263 } 2264 end = save_start; 2265 break; 2266 } 2267 CLIP_CHECK_FWD(entry, save_end); 2268 entry = entry->next; 2269 } 2270 crit_exit(); 2271 2272 /* 2273 * If a failure occured undo everything by falling through 2274 * to the unwiring code. 'end' has already been adjusted 2275 * appropriately. 2276 */ 2277 if (rv) 2278 kmflags |= KM_PAGEABLE; 2279 2280 /* 2281 * start_entry is still IN_TRANSITION but may have been 2282 * clipped since vm_fault_wire() unlocks and relocks the 2283 * map. No matter how clipped it has gotten there should 2284 * be a fragment that is on our start boundary. 2285 */ 2286 CLIP_CHECK_BACK(start_entry, start); 2287 } 2288 2289 if (kmflags & KM_PAGEABLE) { 2290 /* 2291 * This is the unwiring case. We must first ensure that the 2292 * range to be unwired is really wired down. We know there 2293 * are no holes. 2294 */ 2295 entry = start_entry; 2296 while ((entry != &map->header) && (entry->start < end)) { 2297 if (entry->wired_count == 0) { 2298 rv = KERN_INVALID_ARGUMENT; 2299 goto done; 2300 } 2301 entry = entry->next; 2302 } 2303 2304 /* 2305 * Now decrement the wiring count for each region. If a region 2306 * becomes completely unwired, unwire its physical pages and 2307 * mappings. 2308 */ 2309 entry = start_entry; 2310 while ((entry != &map->header) && (entry->start < end)) { 2311 entry->wired_count--; 2312 if (entry->wired_count == 0) 2313 vm_fault_unwire(map, entry); 2314 entry = entry->next; 2315 } 2316 } 2317 done: 2318 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2319 MAP_CLIP_NO_HOLES); 2320 map->timestamp++; 2321 vm_map_unlock(map); 2322 failure: 2323 if (kmflags & KM_KRESERVE) 2324 vm_map_entry_krelease(count); 2325 else 2326 vm_map_entry_release(count); 2327 return (rv); 2328 } 2329 2330 /* 2331 * vm_map_set_wired_quick() 2332 * 2333 * Mark a newly allocated address range as wired but do not fault in 2334 * the pages. The caller is expected to load the pages into the object. 2335 * 2336 * The map must be locked on entry and will remain locked on return. 2337 */ 2338 void 2339 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp) 2340 { 2341 vm_map_entry_t scan; 2342 vm_map_entry_t entry; 2343 2344 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2345 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) { 2346 KKASSERT(entry->wired_count == 0); 2347 entry->wired_count = 1; 2348 } 2349 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2350 } 2351 2352 /* 2353 * vm_map_clean 2354 * 2355 * Push any dirty cached pages in the address range to their pager. 2356 * If syncio is TRUE, dirty pages are written synchronously. 2357 * If invalidate is TRUE, any cached pages are freed as well. 2358 * 2359 * This routine is called by sys_msync() 2360 * 2361 * Returns an error if any part of the specified range is not mapped. 2362 */ 2363 int 2364 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2365 boolean_t syncio, boolean_t invalidate) 2366 { 2367 vm_map_entry_t current; 2368 vm_map_entry_t entry; 2369 vm_size_t size; 2370 vm_object_t object; 2371 vm_ooffset_t offset; 2372 2373 vm_map_lock_read(map); 2374 VM_MAP_RANGE_CHECK(map, start, end); 2375 if (!vm_map_lookup_entry(map, start, &entry)) { 2376 vm_map_unlock_read(map); 2377 return (KERN_INVALID_ADDRESS); 2378 } 2379 /* 2380 * Make a first pass to check for holes. 2381 */ 2382 for (current = entry; current->start < end; current = current->next) { 2383 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2384 vm_map_unlock_read(map); 2385 return (KERN_INVALID_ARGUMENT); 2386 } 2387 if (end > current->end && 2388 (current->next == &map->header || 2389 current->end != current->next->start)) { 2390 vm_map_unlock_read(map); 2391 return (KERN_INVALID_ADDRESS); 2392 } 2393 } 2394 2395 if (invalidate) 2396 pmap_remove(vm_map_pmap(map), start, end); 2397 /* 2398 * Make a second pass, cleaning/uncaching pages from the indicated 2399 * objects as we go. 2400 */ 2401 for (current = entry; current->start < end; current = current->next) { 2402 offset = current->offset + (start - current->start); 2403 size = (end <= current->end ? end : current->end) - start; 2404 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2405 vm_map_t smap; 2406 vm_map_entry_t tentry; 2407 vm_size_t tsize; 2408 2409 smap = current->object.sub_map; 2410 vm_map_lock_read(smap); 2411 vm_map_lookup_entry(smap, offset, &tentry); 2412 tsize = tentry->end - offset; 2413 if (tsize < size) 2414 size = tsize; 2415 object = tentry->object.vm_object; 2416 offset = tentry->offset + (offset - tentry->start); 2417 vm_map_unlock_read(smap); 2418 } else { 2419 object = current->object.vm_object; 2420 } 2421 /* 2422 * Note that there is absolutely no sense in writing out 2423 * anonymous objects, so we track down the vnode object 2424 * to write out. 2425 * We invalidate (remove) all pages from the address space 2426 * anyway, for semantic correctness. 2427 * 2428 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2429 * may start out with a NULL object. 2430 */ 2431 while (object && object->backing_object) { 2432 offset += object->backing_object_offset; 2433 object = object->backing_object; 2434 if (object->size < OFF_TO_IDX( offset + size)) 2435 size = IDX_TO_OFF(object->size) - offset; 2436 } 2437 if (object && (object->type == OBJT_VNODE) && 2438 (current->protection & VM_PROT_WRITE) && 2439 (object->flags & OBJ_NOMSYNC) == 0) { 2440 /* 2441 * Flush pages if writing is allowed, invalidate them 2442 * if invalidation requested. Pages undergoing I/O 2443 * will be ignored by vm_object_page_remove(). 2444 * 2445 * We cannot lock the vnode and then wait for paging 2446 * to complete without deadlocking against vm_fault. 2447 * Instead we simply call vm_object_page_remove() and 2448 * allow it to block internally on a page-by-page 2449 * basis when it encounters pages undergoing async 2450 * I/O. 2451 */ 2452 int flags; 2453 2454 vm_object_reference(object); 2455 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2456 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2457 flags |= invalidate ? OBJPC_INVAL : 0; 2458 2459 /* 2460 * When operating on a virtual page table just 2461 * flush the whole object. XXX we probably ought 2462 * to 2463 */ 2464 switch(current->maptype) { 2465 case VM_MAPTYPE_NORMAL: 2466 vm_object_page_clean(object, 2467 OFF_TO_IDX(offset), 2468 OFF_TO_IDX(offset + size + PAGE_MASK), 2469 flags); 2470 break; 2471 case VM_MAPTYPE_VPAGETABLE: 2472 vm_object_page_clean(object, 0, 0, flags); 2473 break; 2474 } 2475 vn_unlock(((struct vnode *)object->handle)); 2476 vm_object_deallocate(object); 2477 } 2478 if (object && invalidate && 2479 ((object->type == OBJT_VNODE) || 2480 (object->type == OBJT_DEVICE))) { 2481 int clean_only = 2482 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2483 vm_object_reference(object); 2484 switch(current->maptype) { 2485 case VM_MAPTYPE_NORMAL: 2486 vm_object_page_remove(object, 2487 OFF_TO_IDX(offset), 2488 OFF_TO_IDX(offset + size + PAGE_MASK), 2489 clean_only); 2490 break; 2491 case VM_MAPTYPE_VPAGETABLE: 2492 vm_object_page_remove(object, 0, 0, clean_only); 2493 break; 2494 } 2495 vm_object_deallocate(object); 2496 } 2497 start += size; 2498 } 2499 2500 vm_map_unlock_read(map); 2501 return (KERN_SUCCESS); 2502 } 2503 2504 /* 2505 * vm_map_entry_unwire: [ internal use only ] 2506 * 2507 * Make the region specified by this entry pageable. 2508 * 2509 * The map in question should be locked. 2510 * [This is the reason for this routine's existence.] 2511 */ 2512 static void 2513 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2514 { 2515 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2516 entry->wired_count = 0; 2517 vm_fault_unwire(map, entry); 2518 } 2519 2520 /* 2521 * vm_map_entry_delete: [ internal use only ] 2522 * 2523 * Deallocate the given entry from the target map. 2524 */ 2525 static void 2526 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2527 { 2528 vm_map_entry_unlink(map, entry); 2529 map->size -= entry->end - entry->start; 2530 2531 switch(entry->maptype) { 2532 case VM_MAPTYPE_NORMAL: 2533 case VM_MAPTYPE_VPAGETABLE: 2534 vm_object_deallocate(entry->object.vm_object); 2535 break; 2536 default: 2537 break; 2538 } 2539 2540 vm_map_entry_dispose(map, entry, countp); 2541 } 2542 2543 /* 2544 * vm_map_delete: [ internal use only ] 2545 * 2546 * Deallocates the given address range from the target 2547 * map. 2548 */ 2549 int 2550 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2551 { 2552 vm_object_t object; 2553 vm_map_entry_t entry; 2554 vm_map_entry_t first_entry; 2555 2556 again: 2557 /* 2558 * Find the start of the region, and clip it. Set entry to point 2559 * at the first record containing the requested address or, if no 2560 * such record exists, the next record with a greater address. The 2561 * loop will run from this point until a record beyond the termination 2562 * address is encountered. 2563 * 2564 * map->hint must be adjusted to not point to anything we delete, 2565 * so set it to the entry prior to the one being deleted. 2566 * 2567 * GGG see other GGG comment. 2568 */ 2569 if (vm_map_lookup_entry(map, start, &first_entry)) { 2570 entry = first_entry; 2571 vm_map_clip_start(map, entry, start, countp); 2572 map->hint = entry->prev; /* possible problem XXX */ 2573 } else { 2574 map->hint = first_entry; /* possible problem XXX */ 2575 entry = first_entry->next; 2576 } 2577 2578 /* 2579 * If a hole opens up prior to the current first_free then 2580 * adjust first_free. As with map->hint, map->first_free 2581 * cannot be left set to anything we might delete. 2582 */ 2583 if (entry == &map->header) { 2584 map->first_free = &map->header; 2585 } else if (map->first_free->start >= start) { 2586 map->first_free = entry->prev; 2587 } 2588 2589 /* 2590 * Step through all entries in this region 2591 */ 2592 2593 while ((entry != &map->header) && (entry->start < end)) { 2594 vm_map_entry_t next; 2595 vm_offset_t s, e; 2596 vm_pindex_t offidxstart, offidxend, count; 2597 2598 /* 2599 * If we hit an in-transition entry we have to sleep and 2600 * retry. It's easier (and not really slower) to just retry 2601 * since this case occurs so rarely and the hint is already 2602 * pointing at the right place. We have to reset the 2603 * start offset so as not to accidently delete an entry 2604 * another process just created in vacated space. 2605 */ 2606 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2607 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2608 start = entry->start; 2609 ++mycpu->gd_cnt.v_intrans_coll; 2610 ++mycpu->gd_cnt.v_intrans_wait; 2611 vm_map_transition_wait(map); 2612 goto again; 2613 } 2614 vm_map_clip_end(map, entry, end, countp); 2615 2616 s = entry->start; 2617 e = entry->end; 2618 next = entry->next; 2619 2620 offidxstart = OFF_TO_IDX(entry->offset); 2621 count = OFF_TO_IDX(e - s); 2622 object = entry->object.vm_object; 2623 2624 /* 2625 * Unwire before removing addresses from the pmap; otherwise, 2626 * unwiring will put the entries back in the pmap. 2627 */ 2628 if (entry->wired_count != 0) 2629 vm_map_entry_unwire(map, entry); 2630 2631 offidxend = offidxstart + count; 2632 2633 if (object == &kernel_object) { 2634 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2635 } else { 2636 pmap_remove(map->pmap, s, e); 2637 if (object != NULL && 2638 object->ref_count != 1 && 2639 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2640 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2641 vm_object_collapse(object); 2642 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2643 if (object->type == OBJT_SWAP) { 2644 swap_pager_freespace(object, offidxstart, count); 2645 } 2646 if (offidxend >= object->size && 2647 offidxstart < object->size) { 2648 object->size = offidxstart; 2649 } 2650 } 2651 } 2652 2653 /* 2654 * Delete the entry (which may delete the object) only after 2655 * removing all pmap entries pointing to its pages. 2656 * (Otherwise, its page frames may be reallocated, and any 2657 * modify bits will be set in the wrong object!) 2658 */ 2659 vm_map_entry_delete(map, entry, countp); 2660 entry = next; 2661 } 2662 return (KERN_SUCCESS); 2663 } 2664 2665 /* 2666 * vm_map_remove: 2667 * 2668 * Remove the given address range from the target map. 2669 * This is the exported form of vm_map_delete. 2670 */ 2671 int 2672 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2673 { 2674 int result; 2675 int count; 2676 2677 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2678 vm_map_lock(map); 2679 VM_MAP_RANGE_CHECK(map, start, end); 2680 result = vm_map_delete(map, start, end, &count); 2681 vm_map_unlock(map); 2682 vm_map_entry_release(count); 2683 2684 return (result); 2685 } 2686 2687 /* 2688 * vm_map_check_protection: 2689 * 2690 * Assert that the target map allows the specified 2691 * privilege on the entire address region given. 2692 * The entire region must be allocated. 2693 */ 2694 boolean_t 2695 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2696 vm_prot_t protection) 2697 { 2698 vm_map_entry_t entry; 2699 vm_map_entry_t tmp_entry; 2700 2701 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2702 return (FALSE); 2703 } 2704 entry = tmp_entry; 2705 2706 while (start < end) { 2707 if (entry == &map->header) { 2708 return (FALSE); 2709 } 2710 /* 2711 * No holes allowed! 2712 */ 2713 2714 if (start < entry->start) { 2715 return (FALSE); 2716 } 2717 /* 2718 * Check protection associated with entry. 2719 */ 2720 2721 if ((entry->protection & protection) != protection) { 2722 return (FALSE); 2723 } 2724 /* go to next entry */ 2725 2726 start = entry->end; 2727 entry = entry->next; 2728 } 2729 return (TRUE); 2730 } 2731 2732 /* 2733 * Split the pages in a map entry into a new object. This affords 2734 * easier removal of unused pages, and keeps object inheritance from 2735 * being a negative impact on memory usage. 2736 */ 2737 static void 2738 vm_map_split(vm_map_entry_t entry) 2739 { 2740 vm_page_t m; 2741 vm_object_t orig_object, new_object, source; 2742 vm_offset_t s, e; 2743 vm_pindex_t offidxstart, offidxend, idx; 2744 vm_size_t size; 2745 vm_ooffset_t offset; 2746 2747 orig_object = entry->object.vm_object; 2748 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2749 return; 2750 if (orig_object->ref_count <= 1) 2751 return; 2752 2753 offset = entry->offset; 2754 s = entry->start; 2755 e = entry->end; 2756 2757 offidxstart = OFF_TO_IDX(offset); 2758 offidxend = offidxstart + OFF_TO_IDX(e - s); 2759 size = offidxend - offidxstart; 2760 2761 switch(orig_object->type) { 2762 case OBJT_DEFAULT: 2763 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size), 2764 VM_PROT_ALL, 0); 2765 break; 2766 case OBJT_SWAP: 2767 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size), 2768 VM_PROT_ALL, 0); 2769 break; 2770 default: 2771 /* not reached */ 2772 new_object = NULL; 2773 KKASSERT(0); 2774 } 2775 if (new_object == NULL) 2776 return; 2777 2778 source = orig_object->backing_object; 2779 if (source != NULL) { 2780 vm_object_reference(source); /* Referenced by new_object */ 2781 LIST_INSERT_HEAD(&source->shadow_head, 2782 new_object, shadow_list); 2783 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2784 new_object->backing_object_offset = 2785 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2786 new_object->backing_object = source; 2787 source->shadow_count++; 2788 source->generation++; 2789 } 2790 2791 for (idx = 0; idx < size; idx++) { 2792 vm_page_t m; 2793 2794 /* 2795 * A critical section is required to avoid a race between 2796 * the lookup and an interrupt/unbusy/free and our busy 2797 * check. 2798 */ 2799 crit_enter(); 2800 retry: 2801 m = vm_page_lookup(orig_object, offidxstart + idx); 2802 if (m == NULL) { 2803 crit_exit(); 2804 continue; 2805 } 2806 2807 /* 2808 * We must wait for pending I/O to complete before we can 2809 * rename the page. 2810 * 2811 * We do not have to VM_PROT_NONE the page as mappings should 2812 * not be changed by this operation. 2813 */ 2814 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2815 goto retry; 2816 vm_page_busy(m); 2817 vm_page_rename(m, new_object, idx); 2818 /* page automatically made dirty by rename and cache handled */ 2819 vm_page_busy(m); 2820 crit_exit(); 2821 } 2822 2823 if (orig_object->type == OBJT_SWAP) { 2824 vm_object_pip_add(orig_object, 1); 2825 /* 2826 * copy orig_object pages into new_object 2827 * and destroy unneeded pages in 2828 * shadow object. 2829 */ 2830 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2831 vm_object_pip_wakeup(orig_object); 2832 } 2833 2834 /* 2835 * Wakeup the pages we played with. No spl protection is needed 2836 * for a simple wakeup. 2837 */ 2838 for (idx = 0; idx < size; idx++) { 2839 m = vm_page_lookup(new_object, idx); 2840 if (m) 2841 vm_page_wakeup(m); 2842 } 2843 2844 entry->object.vm_object = new_object; 2845 entry->offset = 0LL; 2846 vm_object_deallocate(orig_object); 2847 } 2848 2849 /* 2850 * vm_map_copy_entry: 2851 * 2852 * Copies the contents of the source entry to the destination 2853 * entry. The entries *must* be aligned properly. 2854 */ 2855 static void 2856 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2857 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2858 { 2859 vm_object_t src_object; 2860 2861 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 2862 return; 2863 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 2864 return; 2865 2866 if (src_entry->wired_count == 0) { 2867 /* 2868 * If the source entry is marked needs_copy, it is already 2869 * write-protected. 2870 */ 2871 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2872 pmap_protect(src_map->pmap, 2873 src_entry->start, 2874 src_entry->end, 2875 src_entry->protection & ~VM_PROT_WRITE); 2876 } 2877 2878 /* 2879 * Make a copy of the object. 2880 */ 2881 if ((src_object = src_entry->object.vm_object) != NULL) { 2882 if ((src_object->handle == NULL) && 2883 (src_object->type == OBJT_DEFAULT || 2884 src_object->type == OBJT_SWAP)) { 2885 vm_object_collapse(src_object); 2886 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2887 vm_map_split(src_entry); 2888 src_object = src_entry->object.vm_object; 2889 } 2890 } 2891 2892 vm_object_reference(src_object); 2893 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2894 dst_entry->object.vm_object = src_object; 2895 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2896 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2897 dst_entry->offset = src_entry->offset; 2898 } else { 2899 dst_entry->object.vm_object = NULL; 2900 dst_entry->offset = 0; 2901 } 2902 2903 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2904 dst_entry->end - dst_entry->start, src_entry->start); 2905 } else { 2906 /* 2907 * Of course, wired down pages can't be set copy-on-write. 2908 * Cause wired pages to be copied into the new map by 2909 * simulating faults (the new pages are pageable) 2910 */ 2911 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2912 } 2913 } 2914 2915 /* 2916 * vmspace_fork: 2917 * Create a new process vmspace structure and vm_map 2918 * based on those of an existing process. The new map 2919 * is based on the old map, according to the inheritance 2920 * values on the regions in that map. 2921 * 2922 * The source map must not be locked. 2923 */ 2924 struct vmspace * 2925 vmspace_fork(struct vmspace *vm1) 2926 { 2927 struct vmspace *vm2; 2928 vm_map_t old_map = &vm1->vm_map; 2929 vm_map_t new_map; 2930 vm_map_entry_t old_entry; 2931 vm_map_entry_t new_entry; 2932 vm_object_t object; 2933 int count; 2934 2935 vm_map_lock(old_map); 2936 old_map->infork = 1; 2937 2938 /* 2939 * XXX Note: upcalls are not copied. 2940 */ 2941 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2942 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2943 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 2944 new_map = &vm2->vm_map; /* XXX */ 2945 new_map->timestamp = 1; 2946 2947 count = 0; 2948 old_entry = old_map->header.next; 2949 while (old_entry != &old_map->header) { 2950 ++count; 2951 old_entry = old_entry->next; 2952 } 2953 2954 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 2955 2956 old_entry = old_map->header.next; 2957 while (old_entry != &old_map->header) { 2958 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 2959 panic("vm_map_fork: encountered a submap"); 2960 2961 switch (old_entry->inheritance) { 2962 case VM_INHERIT_NONE: 2963 break; 2964 2965 case VM_INHERIT_SHARE: 2966 /* 2967 * Clone the entry, creating the shared object if 2968 * necessary. 2969 */ 2970 object = old_entry->object.vm_object; 2971 if (object == NULL) { 2972 vm_map_entry_allocate_object(old_entry); 2973 object = old_entry->object.vm_object; 2974 } 2975 2976 /* 2977 * Add the reference before calling vm_map_entry_shadow 2978 * to insure that a shadow object is created. 2979 */ 2980 vm_object_reference(object); 2981 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2982 vm_map_entry_shadow(old_entry); 2983 /* Transfer the second reference too. */ 2984 vm_object_reference( 2985 old_entry->object.vm_object); 2986 vm_object_deallocate(object); 2987 object = old_entry->object.vm_object; 2988 } 2989 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2990 2991 /* 2992 * Clone the entry, referencing the shared object. 2993 */ 2994 new_entry = vm_map_entry_create(new_map, &count); 2995 *new_entry = *old_entry; 2996 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2997 new_entry->wired_count = 0; 2998 2999 /* 3000 * Insert the entry into the new map -- we know we're 3001 * inserting at the end of the new map. 3002 */ 3003 3004 vm_map_entry_link(new_map, new_map->header.prev, 3005 new_entry); 3006 3007 /* 3008 * Update the physical map 3009 */ 3010 3011 pmap_copy(new_map->pmap, old_map->pmap, 3012 new_entry->start, 3013 (old_entry->end - old_entry->start), 3014 old_entry->start); 3015 break; 3016 3017 case VM_INHERIT_COPY: 3018 /* 3019 * Clone the entry and link into the map. 3020 */ 3021 new_entry = vm_map_entry_create(new_map, &count); 3022 *new_entry = *old_entry; 3023 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3024 new_entry->wired_count = 0; 3025 new_entry->object.vm_object = NULL; 3026 vm_map_entry_link(new_map, new_map->header.prev, 3027 new_entry); 3028 vm_map_copy_entry(old_map, new_map, old_entry, 3029 new_entry); 3030 break; 3031 } 3032 old_entry = old_entry->next; 3033 } 3034 3035 new_map->size = old_map->size; 3036 old_map->infork = 0; 3037 vm_map_unlock(old_map); 3038 vm_map_entry_release(count); 3039 3040 return (vm2); 3041 } 3042 3043 int 3044 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3045 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3046 { 3047 vm_map_entry_t prev_entry; 3048 vm_map_entry_t new_stack_entry; 3049 vm_size_t init_ssize; 3050 int rv; 3051 int count; 3052 vm_offset_t tmpaddr; 3053 3054 cow |= MAP_IS_STACK; 3055 3056 if (max_ssize < sgrowsiz) 3057 init_ssize = max_ssize; 3058 else 3059 init_ssize = sgrowsiz; 3060 3061 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3062 vm_map_lock(map); 3063 3064 /* 3065 * Find space for the mapping 3066 */ 3067 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3068 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3069 flags, &tmpaddr)) { 3070 vm_map_unlock(map); 3071 vm_map_entry_release(count); 3072 return (KERN_NO_SPACE); 3073 } 3074 addrbos = tmpaddr; 3075 } 3076 3077 /* If addr is already mapped, no go */ 3078 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3079 vm_map_unlock(map); 3080 vm_map_entry_release(count); 3081 return (KERN_NO_SPACE); 3082 } 3083 3084 #if 0 3085 /* XXX already handled by kern_mmap() */ 3086 /* If we would blow our VMEM resource limit, no go */ 3087 if (map->size + init_ssize > 3088 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3089 vm_map_unlock(map); 3090 vm_map_entry_release(count); 3091 return (KERN_NO_SPACE); 3092 } 3093 #endif 3094 3095 /* 3096 * If we can't accomodate max_ssize in the current mapping, 3097 * no go. However, we need to be aware that subsequent user 3098 * mappings might map into the space we have reserved for 3099 * stack, and currently this space is not protected. 3100 * 3101 * Hopefully we will at least detect this condition 3102 * when we try to grow the stack. 3103 */ 3104 if ((prev_entry->next != &map->header) && 3105 (prev_entry->next->start < addrbos + max_ssize)) { 3106 vm_map_unlock(map); 3107 vm_map_entry_release(count); 3108 return (KERN_NO_SPACE); 3109 } 3110 3111 /* 3112 * We initially map a stack of only init_ssize. We will 3113 * grow as needed later. Since this is to be a grow 3114 * down stack, we map at the top of the range. 3115 * 3116 * Note: we would normally expect prot and max to be 3117 * VM_PROT_ALL, and cow to be 0. Possibly we should 3118 * eliminate these as input parameters, and just 3119 * pass these values here in the insert call. 3120 */ 3121 rv = vm_map_insert(map, &count, 3122 NULL, 0, addrbos + max_ssize - init_ssize, 3123 addrbos + max_ssize, 3124 VM_MAPTYPE_NORMAL, 3125 prot, max, 3126 cow); 3127 3128 /* Now set the avail_ssize amount */ 3129 if (rv == KERN_SUCCESS) { 3130 if (prev_entry != &map->header) 3131 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3132 new_stack_entry = prev_entry->next; 3133 if (new_stack_entry->end != addrbos + max_ssize || 3134 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3135 panic ("Bad entry start/end for new stack entry"); 3136 else 3137 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3138 } 3139 3140 vm_map_unlock(map); 3141 vm_map_entry_release(count); 3142 return (rv); 3143 } 3144 3145 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3146 * desired address is already mapped, or if we successfully grow 3147 * the stack. Also returns KERN_SUCCESS if addr is outside the 3148 * stack range (this is strange, but preserves compatibility with 3149 * the grow function in vm_machdep.c). 3150 */ 3151 int 3152 vm_map_growstack (struct proc *p, vm_offset_t addr) 3153 { 3154 vm_map_entry_t prev_entry; 3155 vm_map_entry_t stack_entry; 3156 vm_map_entry_t new_stack_entry; 3157 struct vmspace *vm = p->p_vmspace; 3158 vm_map_t map = &vm->vm_map; 3159 vm_offset_t end; 3160 int grow_amount; 3161 int rv = KERN_SUCCESS; 3162 int is_procstack; 3163 int use_read_lock = 1; 3164 int count; 3165 3166 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3167 Retry: 3168 if (use_read_lock) 3169 vm_map_lock_read(map); 3170 else 3171 vm_map_lock(map); 3172 3173 /* If addr is already in the entry range, no need to grow.*/ 3174 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3175 goto done; 3176 3177 if ((stack_entry = prev_entry->next) == &map->header) 3178 goto done; 3179 if (prev_entry == &map->header) 3180 end = stack_entry->start - stack_entry->aux.avail_ssize; 3181 else 3182 end = prev_entry->end; 3183 3184 /* 3185 * This next test mimics the old grow function in vm_machdep.c. 3186 * It really doesn't quite make sense, but we do it anyway 3187 * for compatibility. 3188 * 3189 * If not growable stack, return success. This signals the 3190 * caller to proceed as he would normally with normal vm. 3191 */ 3192 if (stack_entry->aux.avail_ssize < 1 || 3193 addr >= stack_entry->start || 3194 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3195 goto done; 3196 } 3197 3198 /* Find the minimum grow amount */ 3199 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3200 if (grow_amount > stack_entry->aux.avail_ssize) { 3201 rv = KERN_NO_SPACE; 3202 goto done; 3203 } 3204 3205 /* 3206 * If there is no longer enough space between the entries 3207 * nogo, and adjust the available space. Note: this 3208 * should only happen if the user has mapped into the 3209 * stack area after the stack was created, and is 3210 * probably an error. 3211 * 3212 * This also effectively destroys any guard page the user 3213 * might have intended by limiting the stack size. 3214 */ 3215 if (grow_amount > stack_entry->start - end) { 3216 if (use_read_lock && vm_map_lock_upgrade(map)) { 3217 use_read_lock = 0; 3218 goto Retry; 3219 } 3220 use_read_lock = 0; 3221 stack_entry->aux.avail_ssize = stack_entry->start - end; 3222 rv = KERN_NO_SPACE; 3223 goto done; 3224 } 3225 3226 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3227 3228 /* If this is the main process stack, see if we're over the 3229 * stack limit. 3230 */ 3231 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3232 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3233 rv = KERN_NO_SPACE; 3234 goto done; 3235 } 3236 3237 /* Round up the grow amount modulo SGROWSIZ */ 3238 grow_amount = roundup (grow_amount, sgrowsiz); 3239 if (grow_amount > stack_entry->aux.avail_ssize) { 3240 grow_amount = stack_entry->aux.avail_ssize; 3241 } 3242 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3243 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3244 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3245 ctob(vm->vm_ssize); 3246 } 3247 3248 /* If we would blow our VMEM resource limit, no go */ 3249 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3250 rv = KERN_NO_SPACE; 3251 goto done; 3252 } 3253 3254 if (use_read_lock && vm_map_lock_upgrade(map)) { 3255 use_read_lock = 0; 3256 goto Retry; 3257 } 3258 use_read_lock = 0; 3259 3260 /* Get the preliminary new entry start value */ 3261 addr = stack_entry->start - grow_amount; 3262 3263 /* If this puts us into the previous entry, cut back our growth 3264 * to the available space. Also, see the note above. 3265 */ 3266 if (addr < end) { 3267 stack_entry->aux.avail_ssize = stack_entry->start - end; 3268 addr = end; 3269 } 3270 3271 rv = vm_map_insert(map, &count, 3272 NULL, 0, addr, stack_entry->start, 3273 VM_MAPTYPE_NORMAL, 3274 VM_PROT_ALL, VM_PROT_ALL, 3275 0); 3276 3277 /* Adjust the available stack space by the amount we grew. */ 3278 if (rv == KERN_SUCCESS) { 3279 if (prev_entry != &map->header) 3280 vm_map_clip_end(map, prev_entry, addr, &count); 3281 new_stack_entry = prev_entry->next; 3282 if (new_stack_entry->end != stack_entry->start || 3283 new_stack_entry->start != addr) 3284 panic ("Bad stack grow start/end in new stack entry"); 3285 else { 3286 new_stack_entry->aux.avail_ssize = 3287 stack_entry->aux.avail_ssize - 3288 (new_stack_entry->end - new_stack_entry->start); 3289 if (is_procstack) 3290 vm->vm_ssize += btoc(new_stack_entry->end - 3291 new_stack_entry->start); 3292 } 3293 } 3294 3295 done: 3296 if (use_read_lock) 3297 vm_map_unlock_read(map); 3298 else 3299 vm_map_unlock(map); 3300 vm_map_entry_release(count); 3301 return (rv); 3302 } 3303 3304 /* 3305 * Unshare the specified VM space for exec. If other processes are 3306 * mapped to it, then create a new one. The new vmspace is null. 3307 */ 3308 void 3309 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3310 { 3311 struct vmspace *oldvmspace = p->p_vmspace; 3312 struct vmspace *newvmspace; 3313 vm_map_t map = &p->p_vmspace->vm_map; 3314 3315 /* 3316 * If we are execing a resident vmspace we fork it, otherwise 3317 * we create a new vmspace. Note that exitingcnt and upcalls 3318 * are not copied to the new vmspace. 3319 */ 3320 if (vmcopy) { 3321 newvmspace = vmspace_fork(vmcopy); 3322 } else { 3323 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3324 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3325 (caddr_t)&oldvmspace->vm_endcopy - 3326 (caddr_t)&oldvmspace->vm_startcopy); 3327 } 3328 3329 /* 3330 * Finish initializing the vmspace before assigning it 3331 * to the process. The vmspace will become the current vmspace 3332 * if p == curproc. 3333 */ 3334 pmap_pinit2(vmspace_pmap(newvmspace)); 3335 pmap_replacevm(p, newvmspace, 0); 3336 sysref_put(&oldvmspace->vm_sysref); 3337 } 3338 3339 /* 3340 * Unshare the specified VM space for forcing COW. This 3341 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3342 * 3343 * The exitingcnt test is not strictly necessary but has been 3344 * included for code sanity (to make the code a bit more deterministic). 3345 */ 3346 3347 void 3348 vmspace_unshare(struct proc *p) 3349 { 3350 struct vmspace *oldvmspace = p->p_vmspace; 3351 struct vmspace *newvmspace; 3352 3353 if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3354 return; 3355 newvmspace = vmspace_fork(oldvmspace); 3356 pmap_pinit2(vmspace_pmap(newvmspace)); 3357 pmap_replacevm(p, newvmspace, 0); 3358 sysref_put(&oldvmspace->vm_sysref); 3359 } 3360 3361 /* 3362 * vm_map_lookup: 3363 * 3364 * Finds the VM object, offset, and 3365 * protection for a given virtual address in the 3366 * specified map, assuming a page fault of the 3367 * type specified. 3368 * 3369 * Leaves the map in question locked for read; return 3370 * values are guaranteed until a vm_map_lookup_done 3371 * call is performed. Note that the map argument 3372 * is in/out; the returned map must be used in 3373 * the call to vm_map_lookup_done. 3374 * 3375 * A handle (out_entry) is returned for use in 3376 * vm_map_lookup_done, to make that fast. 3377 * 3378 * If a lookup is requested with "write protection" 3379 * specified, the map may be changed to perform virtual 3380 * copying operations, although the data referenced will 3381 * remain the same. 3382 */ 3383 int 3384 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3385 vm_offset_t vaddr, 3386 vm_prot_t fault_typea, 3387 vm_map_entry_t *out_entry, /* OUT */ 3388 vm_object_t *object, /* OUT */ 3389 vm_pindex_t *pindex, /* OUT */ 3390 vm_prot_t *out_prot, /* OUT */ 3391 boolean_t *wired) /* OUT */ 3392 { 3393 vm_map_entry_t entry; 3394 vm_map_t map = *var_map; 3395 vm_prot_t prot; 3396 vm_prot_t fault_type = fault_typea; 3397 int use_read_lock = 1; 3398 int rv = KERN_SUCCESS; 3399 3400 RetryLookup: 3401 if (use_read_lock) 3402 vm_map_lock_read(map); 3403 else 3404 vm_map_lock(map); 3405 3406 /* 3407 * If the map has an interesting hint, try it before calling full 3408 * blown lookup routine. 3409 */ 3410 entry = map->hint; 3411 *out_entry = entry; 3412 3413 if ((entry == &map->header) || 3414 (vaddr < entry->start) || (vaddr >= entry->end)) { 3415 vm_map_entry_t tmp_entry; 3416 3417 /* 3418 * Entry was either not a valid hint, or the vaddr was not 3419 * contained in the entry, so do a full lookup. 3420 */ 3421 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3422 rv = KERN_INVALID_ADDRESS; 3423 goto done; 3424 } 3425 3426 entry = tmp_entry; 3427 *out_entry = entry; 3428 } 3429 3430 /* 3431 * Handle submaps. 3432 */ 3433 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3434 vm_map_t old_map = map; 3435 3436 *var_map = map = entry->object.sub_map; 3437 if (use_read_lock) 3438 vm_map_unlock_read(old_map); 3439 else 3440 vm_map_unlock(old_map); 3441 use_read_lock = 1; 3442 goto RetryLookup; 3443 } 3444 3445 /* 3446 * Check whether this task is allowed to have this page. 3447 * Note the special case for MAP_ENTRY_COW 3448 * pages with an override. This is to implement a forced 3449 * COW for debuggers. 3450 */ 3451 3452 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3453 prot = entry->max_protection; 3454 else 3455 prot = entry->protection; 3456 3457 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3458 if ((fault_type & prot) != fault_type) { 3459 rv = KERN_PROTECTION_FAILURE; 3460 goto done; 3461 } 3462 3463 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3464 (entry->eflags & MAP_ENTRY_COW) && 3465 (fault_type & VM_PROT_WRITE) && 3466 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3467 rv = KERN_PROTECTION_FAILURE; 3468 goto done; 3469 } 3470 3471 /* 3472 * If this page is not pageable, we have to get it for all possible 3473 * accesses. 3474 */ 3475 *wired = (entry->wired_count != 0); 3476 if (*wired) 3477 prot = fault_type = entry->protection; 3478 3479 /* 3480 * Virtual page tables may need to update the accessed (A) bit 3481 * in a page table entry. Upgrade the fault to a write fault for 3482 * that case if the map will support it. If the map does not support 3483 * it the page table entry simply will not be updated. 3484 */ 3485 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3486 if (prot & VM_PROT_WRITE) 3487 fault_type |= VM_PROT_WRITE; 3488 } 3489 3490 /* 3491 * If the entry was copy-on-write, we either ... 3492 */ 3493 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3494 /* 3495 * If we want to write the page, we may as well handle that 3496 * now since we've got the map locked. 3497 * 3498 * If we don't need to write the page, we just demote the 3499 * permissions allowed. 3500 */ 3501 3502 if (fault_type & VM_PROT_WRITE) { 3503 /* 3504 * Make a new object, and place it in the object 3505 * chain. Note that no new references have appeared 3506 * -- one just moved from the map to the new 3507 * object. 3508 */ 3509 3510 if (use_read_lock && vm_map_lock_upgrade(map)) { 3511 use_read_lock = 0; 3512 goto RetryLookup; 3513 } 3514 use_read_lock = 0; 3515 3516 vm_map_entry_shadow(entry); 3517 } else { 3518 /* 3519 * We're attempting to read a copy-on-write page -- 3520 * don't allow writes. 3521 */ 3522 3523 prot &= ~VM_PROT_WRITE; 3524 } 3525 } 3526 3527 /* 3528 * Create an object if necessary. 3529 */ 3530 if (entry->object.vm_object == NULL && 3531 !map->system_map) { 3532 if (use_read_lock && vm_map_lock_upgrade(map)) { 3533 use_read_lock = 0; 3534 goto RetryLookup; 3535 } 3536 use_read_lock = 0; 3537 vm_map_entry_allocate_object(entry); 3538 } 3539 3540 /* 3541 * Return the object/offset from this entry. If the entry was 3542 * copy-on-write or empty, it has been fixed up. 3543 */ 3544 3545 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3546 *object = entry->object.vm_object; 3547 3548 /* 3549 * Return whether this is the only map sharing this data. On 3550 * success we return with a read lock held on the map. On failure 3551 * we return with the map unlocked. 3552 */ 3553 *out_prot = prot; 3554 done: 3555 if (rv == KERN_SUCCESS) { 3556 if (use_read_lock == 0) 3557 vm_map_lock_downgrade(map); 3558 } else if (use_read_lock) { 3559 vm_map_unlock_read(map); 3560 } else { 3561 vm_map_unlock(map); 3562 } 3563 return (rv); 3564 } 3565 3566 /* 3567 * vm_map_lookup_done: 3568 * 3569 * Releases locks acquired by a vm_map_lookup 3570 * (according to the handle returned by that lookup). 3571 */ 3572 3573 void 3574 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3575 { 3576 /* 3577 * Unlock the main-level map 3578 */ 3579 vm_map_unlock_read(map); 3580 if (count) 3581 vm_map_entry_release(count); 3582 } 3583 3584 #include "opt_ddb.h" 3585 #ifdef DDB 3586 #include <sys/kernel.h> 3587 3588 #include <ddb/ddb.h> 3589 3590 /* 3591 * vm_map_print: [ debug ] 3592 */ 3593 DB_SHOW_COMMAND(map, vm_map_print) 3594 { 3595 static int nlines; 3596 /* XXX convert args. */ 3597 vm_map_t map = (vm_map_t)addr; 3598 boolean_t full = have_addr; 3599 3600 vm_map_entry_t entry; 3601 3602 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3603 (void *)map, 3604 (void *)map->pmap, map->nentries, map->timestamp); 3605 nlines++; 3606 3607 if (!full && db_indent) 3608 return; 3609 3610 db_indent += 2; 3611 for (entry = map->header.next; entry != &map->header; 3612 entry = entry->next) { 3613 db_iprintf("map entry %p: start=%p, end=%p\n", 3614 (void *)entry, (void *)entry->start, (void *)entry->end); 3615 nlines++; 3616 { 3617 static char *inheritance_name[4] = 3618 {"share", "copy", "none", "donate_copy"}; 3619 3620 db_iprintf(" prot=%x/%x/%s", 3621 entry->protection, 3622 entry->max_protection, 3623 inheritance_name[(int)(unsigned char)entry->inheritance]); 3624 if (entry->wired_count != 0) 3625 db_printf(", wired"); 3626 } 3627 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3628 /* XXX no %qd in kernel. Truncate entry->offset. */ 3629 db_printf(", share=%p, offset=0x%lx\n", 3630 (void *)entry->object.sub_map, 3631 (long)entry->offset); 3632 nlines++; 3633 if ((entry->prev == &map->header) || 3634 (entry->prev->object.sub_map != 3635 entry->object.sub_map)) { 3636 db_indent += 2; 3637 vm_map_print((db_expr_t)(intptr_t) 3638 entry->object.sub_map, 3639 full, 0, NULL); 3640 db_indent -= 2; 3641 } 3642 } else { 3643 /* XXX no %qd in kernel. Truncate entry->offset. */ 3644 db_printf(", object=%p, offset=0x%lx", 3645 (void *)entry->object.vm_object, 3646 (long)entry->offset); 3647 if (entry->eflags & MAP_ENTRY_COW) 3648 db_printf(", copy (%s)", 3649 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3650 db_printf("\n"); 3651 nlines++; 3652 3653 if ((entry->prev == &map->header) || 3654 (entry->prev->object.vm_object != 3655 entry->object.vm_object)) { 3656 db_indent += 2; 3657 vm_object_print((db_expr_t)(intptr_t) 3658 entry->object.vm_object, 3659 full, 0, NULL); 3660 nlines += 4; 3661 db_indent -= 2; 3662 } 3663 } 3664 } 3665 db_indent -= 2; 3666 if (db_indent == 0) 3667 nlines = 0; 3668 } 3669 3670 3671 DB_SHOW_COMMAND(procvm, procvm) 3672 { 3673 struct proc *p; 3674 3675 if (have_addr) { 3676 p = (struct proc *) addr; 3677 } else { 3678 p = curproc; 3679 } 3680 3681 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3682 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3683 (void *)vmspace_pmap(p->p_vmspace)); 3684 3685 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3686 } 3687 3688 #endif /* DDB */ 3689