xref: /dflybsd-src/sys/vm/vm_map.c (revision bc76a771df54af7e361532b257cecc26227736b4)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.24 2004/03/23 22:54:32 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93 
94 #include <sys/thread2.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139 
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142 
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150 		vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153 
154 void
155 vm_map_startup(void)
156 {
157 	mapzone = &mapzone_store;
158 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 		map_init, MAX_KMAP);
160 	mapentzone = &mapentzone_store;
161 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 		map_entry_init, MAX_MAPENT);
163 }
164 
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(vm_offset_t min, vm_offset_t max)
172 {
173 	struct vmspace *vm;
174 
175 	vm = zalloc(vmspace_zone);
176 	vm_map_init(&vm->vm_map, min, max);
177 	pmap_pinit(vmspace_pmap(vm));
178 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
179 	vm->vm_refcnt = 1;
180 	vm->vm_shm = NULL;
181 	vm->vm_exitingcnt = 0;
182 	return (vm);
183 }
184 
185 void
186 vm_init2(void)
187 {
188 	zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
189 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
190 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
191 	pmap_init2();
192 	vm_object_init2();
193 }
194 
195 static __inline void
196 vmspace_dofree(struct vmspace *vm)
197 {
198 	int count;
199 
200 	/*
201 	 * Make sure any SysV shm is freed, it might not have in
202 	 * exit1()
203 	 */
204 	shmexit(vm);
205 
206 	KKASSERT(vm->vm_upcalls == NULL);
207 
208 	/*
209 	 * Lock the map, to wait out all other references to it.
210 	 * Delete all of the mappings and pages they hold, then call
211 	 * the pmap module to reclaim anything left.
212 	 */
213 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
214 	vm_map_lock(&vm->vm_map);
215 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
216 		vm->vm_map.max_offset, &count);
217 	vm_map_unlock(&vm->vm_map);
218 	vm_map_entry_release(count);
219 
220 	pmap_release(vmspace_pmap(vm));
221 	zfree(vmspace_zone, vm);
222 }
223 
224 void
225 vmspace_free(struct vmspace *vm)
226 {
227 	if (vm->vm_refcnt == 0)
228 		panic("vmspace_free: attempt to free already freed vmspace");
229 
230 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
231 		vmspace_dofree(vm);
232 }
233 
234 void
235 vmspace_exitfree(struct proc *p)
236 {
237 	struct vmspace *vm;
238 
239 	vm = p->p_vmspace;
240 	p->p_vmspace = NULL;
241 
242 	/*
243 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
244 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
245 	 * exitingcnt may increment above 0 and drop back down to zero
246 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
247 	 * may also increment above 0 and drop back down to zero several
248 	 * times while vm_exitingcnt is held non-zero.
249 	 *
250 	 * The last wait on the exiting child's vmspace will clean up
251 	 * the remainder of the vmspace.
252 	 */
253 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
254 		vmspace_dofree(vm);
255 }
256 
257 /*
258  * vmspace_swap_count() - count the approximate swap useage in pages for a
259  *			  vmspace.
260  *
261  *	Swap useage is determined by taking the proportional swap used by
262  *	VM objects backing the VM map.  To make up for fractional losses,
263  *	if the VM object has any swap use at all the associated map entries
264  *	count for at least 1 swap page.
265  */
266 int
267 vmspace_swap_count(struct vmspace *vmspace)
268 {
269 	vm_map_t map = &vmspace->vm_map;
270 	vm_map_entry_t cur;
271 	int count = 0;
272 
273 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
274 		vm_object_t object;
275 
276 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
277 		    (object = cur->object.vm_object) != NULL &&
278 		    object->type == OBJT_SWAP
279 		) {
280 			int n = (cur->end - cur->start) / PAGE_SIZE;
281 
282 			if (object->un_pager.swp.swp_bcount) {
283 				count += object->un_pager.swp.swp_bcount *
284 				    SWAP_META_PAGES * n / object->size + 1;
285 			}
286 		}
287 	}
288 	return(count);
289 }
290 
291 
292 /*
293  *	vm_map_create:
294  *
295  *	Creates and returns a new empty VM map with
296  *	the given physical map structure, and having
297  *	the given lower and upper address bounds.
298  */
299 vm_map_t
300 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
301 {
302 	vm_map_t result;
303 
304 	result = zalloc(mapzone);
305 	vm_map_init(result, min, max);
306 	result->pmap = pmap;
307 	return (result);
308 }
309 
310 /*
311  * Initialize an existing vm_map structure
312  * such as that in the vmspace structure.
313  * The pmap is set elsewhere.
314  */
315 void
316 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
317 {
318 	map->header.next = map->header.prev = &map->header;
319 	map->nentries = 0;
320 	map->size = 0;
321 	map->system_map = 0;
322 	map->infork = 0;
323 	map->min_offset = min;
324 	map->max_offset = max;
325 	map->first_free = &map->header;
326 	map->hint = &map->header;
327 	map->timestamp = 0;
328 	lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
329 }
330 
331 /*
332  *      vm_map_entry_cpu_init:
333  *
334  *	Set an initial negative count so the first attempt to reserve
335  *	space preloads a bunch of vm_map_entry's for this cpu.  This
336  *	routine is called in early boot so we cannot just call
337  *	vm_map_entry_reserve().
338  *
339  *	May be called for a gd other then mycpu.
340  */
341 void
342 vm_map_entry_reserve_cpu_init(globaldata_t gd)
343 {
344 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
345 }
346 
347 /*
348  *	vm_map_entry_reserve:
349  *
350  *	Reserves vm_map_entry structures so code later on can manipulate
351  *	map_entry structures within a locked map without blocking trying
352  *	to allocate a new vm_map_entry.
353  */
354 int
355 vm_map_entry_reserve(int count)
356 {
357 	struct globaldata *gd = mycpu;
358 	vm_map_entry_t entry;
359 
360 	crit_enter();
361 	gd->gd_vme_avail -= count;
362 
363 	/*
364 	 * Make sure we have enough structures in gd_vme_base to handle
365 	 * the reservation request.
366 	 */
367 	while (gd->gd_vme_avail < 0) {
368 		entry = zalloc(mapentzone);
369 		entry->next = gd->gd_vme_base;
370 		gd->gd_vme_base = entry;
371 		++gd->gd_vme_avail;
372 	}
373 	crit_exit();
374 	return(count);
375 }
376 
377 /*
378  *	vm_map_entry_release:
379  *
380  *	Releases previously reserved vm_map_entry structures that were not
381  *	used.  If we have too much junk in our per-cpu cache clean some of
382  *	it out.
383  */
384 void
385 vm_map_entry_release(int count)
386 {
387 	struct globaldata *gd = mycpu;
388 	vm_map_entry_t entry;
389 
390 	crit_enter();
391 	gd->gd_vme_avail += count;
392 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
393 		entry = gd->gd_vme_base;
394 		KKASSERT(entry != NULL);
395 		gd->gd_vme_base = entry->next;
396 		--gd->gd_vme_avail;
397 		crit_exit();
398 		zfree(mapentzone, entry);
399 		crit_enter();
400 	}
401 	crit_exit();
402 }
403 
404 /*
405  *	vm_map_entry_kreserve:
406  *
407  *	Reserve map entry structures for use in kernel_map or (if it exists)
408  *	kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
409  *	basis when the map was inited.  This function is used by zalloc()
410  *	to avoid a recursion when zalloc() itself needs to allocate additional
411  *	kernel memory.
412  *
413  *	This function should only be used when the caller intends to later
414  *	call vm_map_entry_reserve() to 'normalize' the reserve cache.
415  */
416 int
417 vm_map_entry_kreserve(int count)
418 {
419 	struct globaldata *gd = mycpu;
420 
421 	crit_enter();
422 	gd->gd_vme_kdeficit += count;
423 	crit_exit();
424 	KKASSERT(gd->gd_vme_base != NULL);
425 	return(count);
426 }
427 
428 /*
429  *	vm_map_entry_krelease:
430  *
431  *	Release previously reserved map entries for kernel_map or kmem_map
432  *	use.  This routine determines how many entries were actually used and
433  *	replentishes the kernel reserve supply from vme_avail.
434  *
435  *	If there is insufficient supply vme_avail will go negative, which is
436  *	ok.  We cannot safely call zalloc in this function without getting
437  *	into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
438  *	to regenerate the lost entries.
439  */
440 void
441 vm_map_entry_krelease(int count)
442 {
443 	struct globaldata *gd = mycpu;
444 
445 	crit_enter();
446 	gd->gd_vme_kdeficit -= count;
447 	gd->gd_vme_avail -= gd->gd_vme_kdeficit;	/* can go negative */
448 	gd->gd_vme_kdeficit = 0;
449 	crit_exit();
450 }
451 
452 /*
453  *	vm_map_entry_create:	[ internal use only ]
454  *
455  *	Allocates a VM map entry for insertion.  No entry fields are filled
456  *	in.
457  *
458  *	This routine may be called from an interrupt thread but not a FAST
459  *	interrupt.  This routine may recurse the map lock.
460  */
461 static vm_map_entry_t
462 vm_map_entry_create(vm_map_t map, int *countp)
463 {
464 	struct globaldata *gd = mycpu;
465 	vm_map_entry_t entry;
466 
467 	KKASSERT(*countp > 0);
468 	--*countp;
469 	crit_enter();
470 	entry = gd->gd_vme_base;
471 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
472 	gd->gd_vme_base = entry->next;
473 	crit_exit();
474 	return(entry);
475 }
476 
477 /*
478  *	vm_map_entry_dispose:	[ internal use only ]
479  *
480  *	Dispose of a vm_map_entry that is no longer being referenced.  This
481  *	function may be called from an interrupt.
482  */
483 static void
484 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
485 {
486 	struct globaldata *gd = mycpu;
487 
488 	++*countp;
489 	crit_enter();
490 	entry->next = gd->gd_vme_base;
491 	gd->gd_vme_base = entry;
492 	crit_exit();
493 }
494 
495 
496 /*
497  *	vm_map_entry_{un,}link:
498  *
499  *	Insert/remove entries from maps.
500  */
501 static __inline void
502 vm_map_entry_link(vm_map_t map,
503 		  vm_map_entry_t after_where,
504 		  vm_map_entry_t entry)
505 {
506 	map->nentries++;
507 	entry->prev = after_where;
508 	entry->next = after_where->next;
509 	entry->next->prev = entry;
510 	after_where->next = entry;
511 }
512 
513 static __inline void
514 vm_map_entry_unlink(vm_map_t map,
515 		    vm_map_entry_t entry)
516 {
517 	vm_map_entry_t prev;
518 	vm_map_entry_t next;
519 
520 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
521 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
522 	prev = entry->prev;
523 	next = entry->next;
524 	next->prev = prev;
525 	prev->next = next;
526 	map->nentries--;
527 }
528 
529 /*
530  *	SAVE_HINT:
531  *
532  *	Saves the specified entry as the hint for
533  *	future lookups.
534  */
535 #define	SAVE_HINT(map,value) \
536 		(map)->hint = (value);
537 
538 /*
539  *	vm_map_lookup_entry:	[ internal use only ]
540  *
541  *	Finds the map entry containing (or
542  *	immediately preceding) the specified address
543  *	in the given map; the entry is returned
544  *	in the "entry" parameter.  The boolean
545  *	result indicates whether the address is
546  *	actually contained in the map.
547  */
548 boolean_t
549 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
550     vm_map_entry_t *entry /* OUT */)
551 {
552 	vm_map_entry_t cur;
553 	vm_map_entry_t last;
554 
555 	/*
556 	 * Start looking either from the head of the list, or from the hint.
557 	 */
558 
559 	cur = map->hint;
560 
561 	if (cur == &map->header)
562 		cur = cur->next;
563 
564 	if (address >= cur->start) {
565 		/*
566 		 * Go from hint to end of list.
567 		 *
568 		 * But first, make a quick check to see if we are already looking
569 		 * at the entry we want (which is usually the case). Note also
570 		 * that we don't need to save the hint here... it is the same
571 		 * hint (unless we are at the header, in which case the hint
572 		 * didn't buy us anything anyway).
573 		 */
574 		last = &map->header;
575 		if ((cur != last) && (cur->end > address)) {
576 			*entry = cur;
577 			return (TRUE);
578 		}
579 	} else {
580 		/*
581 		 * Go from start to hint, *inclusively*
582 		 */
583 		last = cur->next;
584 		cur = map->header.next;
585 	}
586 
587 	/*
588 	 * Search linearly
589 	 */
590 
591 	while (cur != last) {
592 		if (cur->end > address) {
593 			if (address >= cur->start) {
594 				/*
595 				 * Save this lookup for future hints, and
596 				 * return
597 				 */
598 
599 				*entry = cur;
600 				SAVE_HINT(map, cur);
601 				return (TRUE);
602 			}
603 			break;
604 		}
605 		cur = cur->next;
606 	}
607 	*entry = cur->prev;
608 	SAVE_HINT(map, *entry);
609 	return (FALSE);
610 }
611 
612 /*
613  *	vm_map_insert:
614  *
615  *	Inserts the given whole VM object into the target
616  *	map at the specified address range.  The object's
617  *	size should match that of the address range.
618  *
619  *	Requires that the map be locked, and leaves it so.  Requires that
620  *	sufficient vm_map_entry structures have been reserved and tracks
621  *	the use via countp.
622  *
623  *	If object is non-NULL, ref count must be bumped by caller
624  *	prior to making call to account for the new entry.
625  */
626 int
627 vm_map_insert(vm_map_t map, int *countp,
628 	      vm_object_t object, vm_ooffset_t offset,
629 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
630 	      int cow)
631 {
632 	vm_map_entry_t new_entry;
633 	vm_map_entry_t prev_entry;
634 	vm_map_entry_t temp_entry;
635 	vm_eflags_t protoeflags;
636 
637 	/*
638 	 * Check that the start and end points are not bogus.
639 	 */
640 
641 	if ((start < map->min_offset) || (end > map->max_offset) ||
642 	    (start >= end))
643 		return (KERN_INVALID_ADDRESS);
644 
645 	/*
646 	 * Find the entry prior to the proposed starting address; if it's part
647 	 * of an existing entry, this range is bogus.
648 	 */
649 
650 	if (vm_map_lookup_entry(map, start, &temp_entry))
651 		return (KERN_NO_SPACE);
652 
653 	prev_entry = temp_entry;
654 
655 	/*
656 	 * Assert that the next entry doesn't overlap the end point.
657 	 */
658 
659 	if ((prev_entry->next != &map->header) &&
660 	    (prev_entry->next->start < end))
661 		return (KERN_NO_SPACE);
662 
663 	protoeflags = 0;
664 
665 	if (cow & MAP_COPY_ON_WRITE)
666 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
667 
668 	if (cow & MAP_NOFAULT) {
669 		protoeflags |= MAP_ENTRY_NOFAULT;
670 
671 		KASSERT(object == NULL,
672 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
673 	}
674 	if (cow & MAP_DISABLE_SYNCER)
675 		protoeflags |= MAP_ENTRY_NOSYNC;
676 	if (cow & MAP_DISABLE_COREDUMP)
677 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
678 
679 	if (object) {
680 		/*
681 		 * When object is non-NULL, it could be shared with another
682 		 * process.  We have to set or clear OBJ_ONEMAPPING
683 		 * appropriately.
684 		 */
685 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
686 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
687 		}
688 	}
689 	else if ((prev_entry != &map->header) &&
690 		 (prev_entry->eflags == protoeflags) &&
691 		 (prev_entry->end == start) &&
692 		 (prev_entry->wired_count == 0) &&
693 		 ((prev_entry->object.vm_object == NULL) ||
694 		  vm_object_coalesce(prev_entry->object.vm_object,
695 				     OFF_TO_IDX(prev_entry->offset),
696 				     (vm_size_t)(prev_entry->end - prev_entry->start),
697 				     (vm_size_t)(end - prev_entry->end)))) {
698 		/*
699 		 * We were able to extend the object.  Determine if we
700 		 * can extend the previous map entry to include the
701 		 * new range as well.
702 		 */
703 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
704 		    (prev_entry->protection == prot) &&
705 		    (prev_entry->max_protection == max)) {
706 			map->size += (end - prev_entry->end);
707 			prev_entry->end = end;
708 			vm_map_simplify_entry(map, prev_entry, countp);
709 			return (KERN_SUCCESS);
710 		}
711 
712 		/*
713 		 * If we can extend the object but cannot extend the
714 		 * map entry, we have to create a new map entry.  We
715 		 * must bump the ref count on the extended object to
716 		 * account for it.  object may be NULL.
717 		 */
718 		object = prev_entry->object.vm_object;
719 		offset = prev_entry->offset +
720 			(prev_entry->end - prev_entry->start);
721 		vm_object_reference(object);
722 	}
723 
724 	/*
725 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
726 	 * in things like the buffer map where we manage kva but do not manage
727 	 * backing objects.
728 	 */
729 
730 	/*
731 	 * Create a new entry
732 	 */
733 
734 	new_entry = vm_map_entry_create(map, countp);
735 	new_entry->start = start;
736 	new_entry->end = end;
737 
738 	new_entry->eflags = protoeflags;
739 	new_entry->object.vm_object = object;
740 	new_entry->offset = offset;
741 	new_entry->avail_ssize = 0;
742 
743 	new_entry->inheritance = VM_INHERIT_DEFAULT;
744 	new_entry->protection = prot;
745 	new_entry->max_protection = max;
746 	new_entry->wired_count = 0;
747 
748 	/*
749 	 * Insert the new entry into the list
750 	 */
751 
752 	vm_map_entry_link(map, prev_entry, new_entry);
753 	map->size += new_entry->end - new_entry->start;
754 
755 	/*
756 	 * Update the free space hint
757 	 */
758 	if ((map->first_free == prev_entry) &&
759 	    (prev_entry->end >= new_entry->start)) {
760 		map->first_free = new_entry;
761 	}
762 
763 #if 0
764 	/*
765 	 * Temporarily removed to avoid MAP_STACK panic, due to
766 	 * MAP_STACK being a huge hack.  Will be added back in
767 	 * when MAP_STACK (and the user stack mapping) is fixed.
768 	 */
769 	/*
770 	 * It may be possible to simplify the entry
771 	 */
772 	vm_map_simplify_entry(map, new_entry, countp);
773 #endif
774 
775 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
776 		pmap_object_init_pt(map->pmap, start,
777 				    object, OFF_TO_IDX(offset), end - start,
778 				    cow & MAP_PREFAULT_PARTIAL);
779 	}
780 
781 	return (KERN_SUCCESS);
782 }
783 
784 /*
785  * Find sufficient space for `length' bytes in the given map, starting at
786  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
787  *
788  * This function will returned an arbitrarily aligned pointer.  If no
789  * particular alignment is required you should pass align as 1.  Note that
790  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
791  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
792  * argument.
793  *
794  * 'align' should be a power of 2 but is not required to be.
795  */
796 int
797 vm_map_findspace(
798 	vm_map_t map,
799 	vm_offset_t start,
800 	vm_size_t length,
801 	vm_offset_t align,
802 	vm_offset_t *addr)
803 {
804 	vm_map_entry_t entry, next;
805 	vm_offset_t end;
806 	vm_offset_t align_mask;
807 
808 	if (start < map->min_offset)
809 		start = map->min_offset;
810 	if (start > map->max_offset)
811 		return (1);
812 
813 	/*
814 	 * If the alignment is not a power of 2 we will have to use
815 	 * a mod/division, set align_mask to a special value.
816 	 */
817 	if ((align | (align - 1)) + 1 != (align << 1))
818 		align_mask = (vm_offset_t)-1;
819 	else
820 		align_mask = align - 1;
821 
822 retry:
823 	/*
824 	 * Look for the first possible address; if there's already something
825 	 * at this address, we have to start after it.
826 	 */
827 	if (start == map->min_offset) {
828 		if ((entry = map->first_free) != &map->header)
829 			start = entry->end;
830 	} else {
831 		vm_map_entry_t tmp;
832 
833 		if (vm_map_lookup_entry(map, start, &tmp))
834 			start = tmp->end;
835 		entry = tmp;
836 	}
837 
838 	/*
839 	 * Look through the rest of the map, trying to fit a new region in the
840 	 * gap between existing regions, or after the very last region.
841 	 */
842 	for (;; start = (entry = next)->end) {
843 		/*
844 		 * Adjust the proposed start by the requested alignment,
845 		 * be sure that we didn't wrap the address.
846 		 */
847 		if (align_mask == (vm_offset_t)-1)
848 			end = ((start + align - 1) / align) * align;
849 		else
850 			end = (start + align_mask) & ~align_mask;
851 		if (end < start)
852 			return (1);
853 		start = end;
854 		/*
855 		 * Find the end of the proposed new region.  Be sure we didn't
856 		 * go beyond the end of the map, or wrap around the address.
857 		 * Then check to see if this is the last entry or if the
858 		 * proposed end fits in the gap between this and the next
859 		 * entry.
860 		 */
861 		end = start + length;
862 		if (end > map->max_offset || end < start)
863 			return (1);
864 		next = entry->next;
865 		if (next == &map->header || next->start >= end)
866 			break;
867 	}
868 	SAVE_HINT(map, entry);
869 	if (map == kernel_map) {
870 		vm_offset_t ksize;
871 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
872 			pmap_growkernel(ksize);
873 			goto retry;
874 		}
875 	}
876 	*addr = start;
877 	return (0);
878 }
879 
880 /*
881  *	vm_map_find finds an unallocated region in the target address
882  *	map with the given length.  The search is defined to be
883  *	first-fit from the specified address; the region found is
884  *	returned in the same parameter.
885  *
886  *	If object is non-NULL, ref count must be bumped by caller
887  *	prior to making call to account for the new entry.
888  */
889 int
890 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
891 	    vm_offset_t *addr,	/* IN/OUT */
892 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
893 	    vm_prot_t max, int cow)
894 {
895 	vm_offset_t start;
896 	int result;
897 	int count;
898 
899 	start = *addr;
900 
901 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
902 	vm_map_lock(map);
903 	if (find_space) {
904 		if (vm_map_findspace(map, start, length, 1, addr)) {
905 			vm_map_unlock(map);
906 			vm_map_entry_release(count);
907 			return (KERN_NO_SPACE);
908 		}
909 		start = *addr;
910 	}
911 	result = vm_map_insert(map, &count, object, offset,
912 		start, start + length, prot, max, cow);
913 	vm_map_unlock(map);
914 	vm_map_entry_release(count);
915 
916 	return (result);
917 }
918 
919 /*
920  *	vm_map_simplify_entry:
921  *
922  *	Simplify the given map entry by merging with either neighbor.  This
923  *	routine also has the ability to merge with both neighbors.
924  *
925  *	The map must be locked.
926  *
927  *	This routine guarentees that the passed entry remains valid (though
928  *	possibly extended).  When merging, this routine may delete one or
929  *	both neighbors.  No action is taken on entries which have their
930  *	in-transition flag set.
931  */
932 void
933 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
934 {
935 	vm_map_entry_t next, prev;
936 	vm_size_t prevsize, esize;
937 
938 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
939 		++mycpu->gd_cnt.v_intrans_coll;
940 		return;
941 	}
942 
943 	prev = entry->prev;
944 	if (prev != &map->header) {
945 		prevsize = prev->end - prev->start;
946 		if ( (prev->end == entry->start) &&
947 		     (prev->object.vm_object == entry->object.vm_object) &&
948 		     (!prev->object.vm_object ||
949 			(prev->offset + prevsize == entry->offset)) &&
950 		     (prev->eflags == entry->eflags) &&
951 		     (prev->protection == entry->protection) &&
952 		     (prev->max_protection == entry->max_protection) &&
953 		     (prev->inheritance == entry->inheritance) &&
954 		     (prev->wired_count == entry->wired_count)) {
955 			if (map->first_free == prev)
956 				map->first_free = entry;
957 			if (map->hint == prev)
958 				map->hint = entry;
959 			vm_map_entry_unlink(map, prev);
960 			entry->start = prev->start;
961 			entry->offset = prev->offset;
962 			if (prev->object.vm_object)
963 				vm_object_deallocate(prev->object.vm_object);
964 			vm_map_entry_dispose(map, prev, countp);
965 		}
966 	}
967 
968 	next = entry->next;
969 	if (next != &map->header) {
970 		esize = entry->end - entry->start;
971 		if ((entry->end == next->start) &&
972 		    (next->object.vm_object == entry->object.vm_object) &&
973 		     (!entry->object.vm_object ||
974 			(entry->offset + esize == next->offset)) &&
975 		    (next->eflags == entry->eflags) &&
976 		    (next->protection == entry->protection) &&
977 		    (next->max_protection == entry->max_protection) &&
978 		    (next->inheritance == entry->inheritance) &&
979 		    (next->wired_count == entry->wired_count)) {
980 			if (map->first_free == next)
981 				map->first_free = entry;
982 			if (map->hint == next)
983 				map->hint = entry;
984 			vm_map_entry_unlink(map, next);
985 			entry->end = next->end;
986 			if (next->object.vm_object)
987 				vm_object_deallocate(next->object.vm_object);
988 			vm_map_entry_dispose(map, next, countp);
989 	        }
990 	}
991 }
992 /*
993  *	vm_map_clip_start:	[ internal use only ]
994  *
995  *	Asserts that the given entry begins at or after
996  *	the specified address; if necessary,
997  *	it splits the entry into two.
998  */
999 #define vm_map_clip_start(map, entry, startaddr, countp) \
1000 { \
1001 	if (startaddr > entry->start) \
1002 		_vm_map_clip_start(map, entry, startaddr, countp); \
1003 }
1004 
1005 /*
1006  *	This routine is called only when it is known that
1007  *	the entry must be split.
1008  */
1009 static void
1010 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1011 {
1012 	vm_map_entry_t new_entry;
1013 
1014 	/*
1015 	 * Split off the front portion -- note that we must insert the new
1016 	 * entry BEFORE this one, so that this entry has the specified
1017 	 * starting address.
1018 	 */
1019 
1020 	vm_map_simplify_entry(map, entry, countp);
1021 
1022 	/*
1023 	 * If there is no object backing this entry, we might as well create
1024 	 * one now.  If we defer it, an object can get created after the map
1025 	 * is clipped, and individual objects will be created for the split-up
1026 	 * map.  This is a bit of a hack, but is also about the best place to
1027 	 * put this improvement.
1028 	 */
1029 
1030 	if (entry->object.vm_object == NULL && !map->system_map) {
1031 		vm_object_t object;
1032 		object = vm_object_allocate(OBJT_DEFAULT,
1033 				atop(entry->end - entry->start));
1034 		entry->object.vm_object = object;
1035 		entry->offset = 0;
1036 	}
1037 
1038 	new_entry = vm_map_entry_create(map, countp);
1039 	*new_entry = *entry;
1040 
1041 	new_entry->end = start;
1042 	entry->offset += (start - entry->start);
1043 	entry->start = start;
1044 
1045 	vm_map_entry_link(map, entry->prev, new_entry);
1046 
1047 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1048 		vm_object_reference(new_entry->object.vm_object);
1049 	}
1050 }
1051 
1052 /*
1053  *	vm_map_clip_end:	[ internal use only ]
1054  *
1055  *	Asserts that the given entry ends at or before
1056  *	the specified address; if necessary,
1057  *	it splits the entry into two.
1058  */
1059 
1060 #define vm_map_clip_end(map, entry, endaddr, countp) \
1061 { \
1062 	if (endaddr < entry->end) \
1063 		_vm_map_clip_end(map, entry, endaddr, countp); \
1064 }
1065 
1066 /*
1067  *	This routine is called only when it is known that
1068  *	the entry must be split.
1069  */
1070 static void
1071 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1072 {
1073 	vm_map_entry_t new_entry;
1074 
1075 	/*
1076 	 * If there is no object backing this entry, we might as well create
1077 	 * one now.  If we defer it, an object can get created after the map
1078 	 * is clipped, and individual objects will be created for the split-up
1079 	 * map.  This is a bit of a hack, but is also about the best place to
1080 	 * put this improvement.
1081 	 */
1082 
1083 	if (entry->object.vm_object == NULL && !map->system_map) {
1084 		vm_object_t object;
1085 		object = vm_object_allocate(OBJT_DEFAULT,
1086 				atop(entry->end - entry->start));
1087 		entry->object.vm_object = object;
1088 		entry->offset = 0;
1089 	}
1090 
1091 	/*
1092 	 * Create a new entry and insert it AFTER the specified entry
1093 	 */
1094 
1095 	new_entry = vm_map_entry_create(map, countp);
1096 	*new_entry = *entry;
1097 
1098 	new_entry->start = entry->end = end;
1099 	new_entry->offset += (end - entry->start);
1100 
1101 	vm_map_entry_link(map, entry, new_entry);
1102 
1103 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1104 		vm_object_reference(new_entry->object.vm_object);
1105 	}
1106 }
1107 
1108 /*
1109  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1110  *
1111  *	Asserts that the starting and ending region
1112  *	addresses fall within the valid range of the map.
1113  */
1114 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1115 		{					\
1116 		if (start < vm_map_min(map))		\
1117 			start = vm_map_min(map);	\
1118 		if (end > vm_map_max(map))		\
1119 			end = vm_map_max(map);		\
1120 		if (start > end)			\
1121 			start = end;			\
1122 		}
1123 
1124 /*
1125  *	vm_map_transition_wait:	[ kernel use only ]
1126  *
1127  *	Used to block when an in-transition collison occurs.  The map
1128  *	is unlocked for the sleep and relocked before the return.
1129  */
1130 static
1131 void
1132 vm_map_transition_wait(vm_map_t map)
1133 {
1134 	vm_map_unlock(map);
1135 	tsleep(map, 0, "vment", 0);
1136 	vm_map_lock(map);
1137 }
1138 
1139 /*
1140  * CLIP_CHECK_BACK
1141  * CLIP_CHECK_FWD
1142  *
1143  *	When we do blocking operations with the map lock held it is
1144  *	possible that a clip might have occured on our in-transit entry,
1145  *	requiring an adjustment to the entry in our loop.  These macros
1146  *	help the pageable and clip_range code deal with the case.  The
1147  *	conditional costs virtually nothing if no clipping has occured.
1148  */
1149 
1150 #define CLIP_CHECK_BACK(entry, save_start)		\
1151     do {						\
1152 	    while (entry->start != save_start) {	\
1153 		    entry = entry->prev;		\
1154 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1155 	    }						\
1156     } while(0)
1157 
1158 #define CLIP_CHECK_FWD(entry, save_end)			\
1159     do {						\
1160 	    while (entry->end != save_end) {		\
1161 		    entry = entry->next;		\
1162 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1163 	    }						\
1164     } while(0)
1165 
1166 
1167 /*
1168  *	vm_map_clip_range:	[ kernel use only ]
1169  *
1170  *	Clip the specified range and return the base entry.  The
1171  *	range may cover several entries starting at the returned base
1172  *	and the first and last entry in the covering sequence will be
1173  *	properly clipped to the requested start and end address.
1174  *
1175  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1176  *	flag.
1177  *
1178  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1179  *	covered by the requested range.
1180  *
1181  *	The map must be exclusively locked on entry and will remain locked
1182  *	on return. If no range exists or the range contains holes and you
1183  *	specified that no holes were allowed, NULL will be returned.  This
1184  *	routine may temporarily unlock the map in order avoid a deadlock when
1185  *	sleeping.
1186  */
1187 static
1188 vm_map_entry_t
1189 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1190 	int *countp, int flags)
1191 {
1192 	vm_map_entry_t start_entry;
1193 	vm_map_entry_t entry;
1194 
1195 	/*
1196 	 * Locate the entry and effect initial clipping.  The in-transition
1197 	 * case does not occur very often so do not try to optimize it.
1198 	 */
1199 again:
1200 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1201 		return (NULL);
1202 	entry = start_entry;
1203 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1204 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1205 		++mycpu->gd_cnt.v_intrans_coll;
1206 		++mycpu->gd_cnt.v_intrans_wait;
1207 		vm_map_transition_wait(map);
1208 		/*
1209 		 * entry and/or start_entry may have been clipped while
1210 		 * we slept, or may have gone away entirely.  We have
1211 		 * to restart from the lookup.
1212 		 */
1213 		goto again;
1214 	}
1215 	/*
1216 	 * Since we hold an exclusive map lock we do not have to restart
1217 	 * after clipping, even though clipping may block in zalloc.
1218 	 */
1219 	vm_map_clip_start(map, entry, start, countp);
1220 	vm_map_clip_end(map, entry, end, countp);
1221 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1222 
1223 	/*
1224 	 * Scan entries covered by the range.  When working on the next
1225 	 * entry a restart need only re-loop on the current entry which
1226 	 * we have already locked, since 'next' may have changed.  Also,
1227 	 * even though entry is safe, it may have been clipped so we
1228 	 * have to iterate forwards through the clip after sleeping.
1229 	 */
1230 	while (entry->next != &map->header && entry->next->start < end) {
1231 		vm_map_entry_t next = entry->next;
1232 
1233 		if (flags & MAP_CLIP_NO_HOLES) {
1234 			if (next->start > entry->end) {
1235 				vm_map_unclip_range(map, start_entry,
1236 					start, entry->end, countp, flags);
1237 				return(NULL);
1238 			}
1239 		}
1240 
1241 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1242 			vm_offset_t save_end = entry->end;
1243 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1244 			++mycpu->gd_cnt.v_intrans_coll;
1245 			++mycpu->gd_cnt.v_intrans_wait;
1246 			vm_map_transition_wait(map);
1247 
1248 			/*
1249 			 * clips might have occured while we blocked.
1250 			 */
1251 			CLIP_CHECK_FWD(entry, save_end);
1252 			CLIP_CHECK_BACK(start_entry, start);
1253 			continue;
1254 		}
1255 		/*
1256 		 * No restart necessary even though clip_end may block, we
1257 		 * are holding the map lock.
1258 		 */
1259 		vm_map_clip_end(map, next, end, countp);
1260 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1261 		entry = next;
1262 	}
1263 	if (flags & MAP_CLIP_NO_HOLES) {
1264 		if (entry->end != end) {
1265 			vm_map_unclip_range(map, start_entry,
1266 				start, entry->end, countp, flags);
1267 			return(NULL);
1268 		}
1269 	}
1270 	return(start_entry);
1271 }
1272 
1273 /*
1274  *	vm_map_unclip_range:	[ kernel use only ]
1275  *
1276  *	Undo the effect of vm_map_clip_range().  You should pass the same
1277  *	flags and the same range that you passed to vm_map_clip_range().
1278  *	This code will clear the in-transition flag on the entries and
1279  *	wake up anyone waiting.  This code will also simplify the sequence
1280  *	and attempt to merge it with entries before and after the sequence.
1281  *
1282  *	The map must be locked on entry and will remain locked on return.
1283  *
1284  *	Note that you should also pass the start_entry returned by
1285  *	vm_map_clip_range().  However, if you block between the two calls
1286  *	with the map unlocked please be aware that the start_entry may
1287  *	have been clipped and you may need to scan it backwards to find
1288  *	the entry corresponding with the original start address.  You are
1289  *	responsible for this, vm_map_unclip_range() expects the correct
1290  *	start_entry to be passed to it and will KASSERT otherwise.
1291  */
1292 static
1293 void
1294 vm_map_unclip_range(
1295 	vm_map_t map,
1296 	vm_map_entry_t start_entry,
1297 	vm_offset_t start,
1298 	vm_offset_t end,
1299 	int *countp,
1300 	int flags)
1301 {
1302 	vm_map_entry_t entry;
1303 
1304 	entry = start_entry;
1305 
1306 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1307 	while (entry != &map->header && entry->start < end) {
1308 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1309 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1310 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1311 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1312 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1313 			wakeup(map);
1314 		}
1315 		entry = entry->next;
1316 	}
1317 
1318 	/*
1319 	 * Simplification does not block so there is no restart case.
1320 	 */
1321 	entry = start_entry;
1322 	while (entry != &map->header && entry->start < end) {
1323 		vm_map_simplify_entry(map, entry, countp);
1324 		entry = entry->next;
1325 	}
1326 }
1327 
1328 /*
1329  *	vm_map_submap:		[ kernel use only ]
1330  *
1331  *	Mark the given range as handled by a subordinate map.
1332  *
1333  *	This range must have been created with vm_map_find,
1334  *	and no other operations may have been performed on this
1335  *	range prior to calling vm_map_submap.
1336  *
1337  *	Only a limited number of operations can be performed
1338  *	within this rage after calling vm_map_submap:
1339  *		vm_fault
1340  *	[Don't try vm_map_copy!]
1341  *
1342  *	To remove a submapping, one must first remove the
1343  *	range from the superior map, and then destroy the
1344  *	submap (if desired).  [Better yet, don't try it.]
1345  */
1346 int
1347 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1348 {
1349 	vm_map_entry_t entry;
1350 	int result = KERN_INVALID_ARGUMENT;
1351 	int count;
1352 
1353 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1354 	vm_map_lock(map);
1355 
1356 	VM_MAP_RANGE_CHECK(map, start, end);
1357 
1358 	if (vm_map_lookup_entry(map, start, &entry)) {
1359 		vm_map_clip_start(map, entry, start, &count);
1360 	} else {
1361 		entry = entry->next;
1362 	}
1363 
1364 	vm_map_clip_end(map, entry, end, &count);
1365 
1366 	if ((entry->start == start) && (entry->end == end) &&
1367 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1368 	    (entry->object.vm_object == NULL)) {
1369 		entry->object.sub_map = submap;
1370 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1371 		result = KERN_SUCCESS;
1372 	}
1373 	vm_map_unlock(map);
1374 	vm_map_entry_release(count);
1375 
1376 	return (result);
1377 }
1378 
1379 /*
1380  *	vm_map_protect:
1381  *
1382  *	Sets the protection of the specified address
1383  *	region in the target map.  If "set_max" is
1384  *	specified, the maximum protection is to be set;
1385  *	otherwise, only the current protection is affected.
1386  */
1387 int
1388 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1389 	       vm_prot_t new_prot, boolean_t set_max)
1390 {
1391 	vm_map_entry_t current;
1392 	vm_map_entry_t entry;
1393 	int count;
1394 
1395 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1396 	vm_map_lock(map);
1397 
1398 	VM_MAP_RANGE_CHECK(map, start, end);
1399 
1400 	if (vm_map_lookup_entry(map, start, &entry)) {
1401 		vm_map_clip_start(map, entry, start, &count);
1402 	} else {
1403 		entry = entry->next;
1404 	}
1405 
1406 	/*
1407 	 * Make a first pass to check for protection violations.
1408 	 */
1409 
1410 	current = entry;
1411 	while ((current != &map->header) && (current->start < end)) {
1412 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1413 			vm_map_unlock(map);
1414 			vm_map_entry_release(count);
1415 			return (KERN_INVALID_ARGUMENT);
1416 		}
1417 		if ((new_prot & current->max_protection) != new_prot) {
1418 			vm_map_unlock(map);
1419 			vm_map_entry_release(count);
1420 			return (KERN_PROTECTION_FAILURE);
1421 		}
1422 		current = current->next;
1423 	}
1424 
1425 	/*
1426 	 * Go back and fix up protections. [Note that clipping is not
1427 	 * necessary the second time.]
1428 	 */
1429 	current = entry;
1430 
1431 	while ((current != &map->header) && (current->start < end)) {
1432 		vm_prot_t old_prot;
1433 
1434 		vm_map_clip_end(map, current, end, &count);
1435 
1436 		old_prot = current->protection;
1437 		if (set_max)
1438 			current->protection =
1439 			    (current->max_protection = new_prot) &
1440 			    old_prot;
1441 		else
1442 			current->protection = new_prot;
1443 
1444 		/*
1445 		 * Update physical map if necessary. Worry about copy-on-write
1446 		 * here -- CHECK THIS XXX
1447 		 */
1448 
1449 		if (current->protection != old_prot) {
1450 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1451 							VM_PROT_ALL)
1452 
1453 			pmap_protect(map->pmap, current->start,
1454 			    current->end,
1455 			    current->protection & MASK(current));
1456 #undef	MASK
1457 		}
1458 
1459 		vm_map_simplify_entry(map, current, &count);
1460 
1461 		current = current->next;
1462 	}
1463 
1464 	vm_map_unlock(map);
1465 	vm_map_entry_release(count);
1466 	return (KERN_SUCCESS);
1467 }
1468 
1469 /*
1470  *	vm_map_madvise:
1471  *
1472  * 	This routine traverses a processes map handling the madvise
1473  *	system call.  Advisories are classified as either those effecting
1474  *	the vm_map_entry structure, or those effecting the underlying
1475  *	objects.
1476  */
1477 
1478 int
1479 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1480 {
1481 	vm_map_entry_t current, entry;
1482 	int modify_map = 0;
1483 	int count;
1484 
1485 	/*
1486 	 * Some madvise calls directly modify the vm_map_entry, in which case
1487 	 * we need to use an exclusive lock on the map and we need to perform
1488 	 * various clipping operations.  Otherwise we only need a read-lock
1489 	 * on the map.
1490 	 */
1491 
1492 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1493 
1494 	switch(behav) {
1495 	case MADV_NORMAL:
1496 	case MADV_SEQUENTIAL:
1497 	case MADV_RANDOM:
1498 	case MADV_NOSYNC:
1499 	case MADV_AUTOSYNC:
1500 	case MADV_NOCORE:
1501 	case MADV_CORE:
1502 		modify_map = 1;
1503 		vm_map_lock(map);
1504 		break;
1505 	case MADV_WILLNEED:
1506 	case MADV_DONTNEED:
1507 	case MADV_FREE:
1508 		vm_map_lock_read(map);
1509 		break;
1510 	default:
1511 		vm_map_entry_release(count);
1512 		return (KERN_INVALID_ARGUMENT);
1513 	}
1514 
1515 	/*
1516 	 * Locate starting entry and clip if necessary.
1517 	 */
1518 
1519 	VM_MAP_RANGE_CHECK(map, start, end);
1520 
1521 	if (vm_map_lookup_entry(map, start, &entry)) {
1522 		if (modify_map)
1523 			vm_map_clip_start(map, entry, start, &count);
1524 	} else {
1525 		entry = entry->next;
1526 	}
1527 
1528 	if (modify_map) {
1529 		/*
1530 		 * madvise behaviors that are implemented in the vm_map_entry.
1531 		 *
1532 		 * We clip the vm_map_entry so that behavioral changes are
1533 		 * limited to the specified address range.
1534 		 */
1535 		for (current = entry;
1536 		     (current != &map->header) && (current->start < end);
1537 		     current = current->next
1538 		) {
1539 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1540 				continue;
1541 
1542 			vm_map_clip_end(map, current, end, &count);
1543 
1544 			switch (behav) {
1545 			case MADV_NORMAL:
1546 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1547 				break;
1548 			case MADV_SEQUENTIAL:
1549 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1550 				break;
1551 			case MADV_RANDOM:
1552 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1553 				break;
1554 			case MADV_NOSYNC:
1555 				current->eflags |= MAP_ENTRY_NOSYNC;
1556 				break;
1557 			case MADV_AUTOSYNC:
1558 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1559 				break;
1560 			case MADV_NOCORE:
1561 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1562 				break;
1563 			case MADV_CORE:
1564 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1565 				break;
1566 			default:
1567 				break;
1568 			}
1569 			vm_map_simplify_entry(map, current, &count);
1570 		}
1571 		vm_map_unlock(map);
1572 	} else {
1573 		vm_pindex_t pindex;
1574 		int count;
1575 
1576 		/*
1577 		 * madvise behaviors that are implemented in the underlying
1578 		 * vm_object.
1579 		 *
1580 		 * Since we don't clip the vm_map_entry, we have to clip
1581 		 * the vm_object pindex and count.
1582 		 */
1583 		for (current = entry;
1584 		     (current != &map->header) && (current->start < end);
1585 		     current = current->next
1586 		) {
1587 			vm_offset_t useStart;
1588 
1589 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1590 				continue;
1591 
1592 			pindex = OFF_TO_IDX(current->offset);
1593 			count = atop(current->end - current->start);
1594 			useStart = current->start;
1595 
1596 			if (current->start < start) {
1597 				pindex += atop(start - current->start);
1598 				count -= atop(start - current->start);
1599 				useStart = start;
1600 			}
1601 			if (current->end > end)
1602 				count -= atop(current->end - end);
1603 
1604 			if (count <= 0)
1605 				continue;
1606 
1607 			vm_object_madvise(current->object.vm_object,
1608 					  pindex, count, behav);
1609 			if (behav == MADV_WILLNEED) {
1610 				pmap_object_init_pt(
1611 				    map->pmap,
1612 				    useStart,
1613 				    current->object.vm_object,
1614 				    pindex,
1615 				    (count << PAGE_SHIFT),
1616 				    MAP_PREFAULT_MADVISE
1617 				);
1618 			}
1619 		}
1620 		vm_map_unlock_read(map);
1621 	}
1622 	vm_map_entry_release(count);
1623 	return(0);
1624 }
1625 
1626 
1627 /*
1628  *	vm_map_inherit:
1629  *
1630  *	Sets the inheritance of the specified address
1631  *	range in the target map.  Inheritance
1632  *	affects how the map will be shared with
1633  *	child maps at the time of vm_map_fork.
1634  */
1635 int
1636 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1637 	       vm_inherit_t new_inheritance)
1638 {
1639 	vm_map_entry_t entry;
1640 	vm_map_entry_t temp_entry;
1641 	int count;
1642 
1643 	switch (new_inheritance) {
1644 	case VM_INHERIT_NONE:
1645 	case VM_INHERIT_COPY:
1646 	case VM_INHERIT_SHARE:
1647 		break;
1648 	default:
1649 		return (KERN_INVALID_ARGUMENT);
1650 	}
1651 
1652 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1653 	vm_map_lock(map);
1654 
1655 	VM_MAP_RANGE_CHECK(map, start, end);
1656 
1657 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1658 		entry = temp_entry;
1659 		vm_map_clip_start(map, entry, start, &count);
1660 	} else
1661 		entry = temp_entry->next;
1662 
1663 	while ((entry != &map->header) && (entry->start < end)) {
1664 		vm_map_clip_end(map, entry, end, &count);
1665 
1666 		entry->inheritance = new_inheritance;
1667 
1668 		vm_map_simplify_entry(map, entry, &count);
1669 
1670 		entry = entry->next;
1671 	}
1672 	vm_map_unlock(map);
1673 	vm_map_entry_release(count);
1674 	return (KERN_SUCCESS);
1675 }
1676 
1677 /*
1678  * Implement the semantics of mlock
1679  */
1680 int
1681 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1682     boolean_t new_pageable)
1683 {
1684 	vm_map_entry_t entry;
1685 	vm_map_entry_t start_entry;
1686 	vm_offset_t end;
1687 	int rv = KERN_SUCCESS;
1688 	int count;
1689 
1690 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1691 	vm_map_lock(map);
1692 	VM_MAP_RANGE_CHECK(map, start, real_end);
1693 	end = real_end;
1694 
1695 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1696 	if (start_entry == NULL) {
1697 		vm_map_unlock(map);
1698 		vm_map_entry_release(count);
1699 		return (KERN_INVALID_ADDRESS);
1700 	}
1701 
1702 	if (new_pageable == 0) {
1703 		entry = start_entry;
1704 		while ((entry != &map->header) && (entry->start < end)) {
1705 			vm_offset_t save_start;
1706 			vm_offset_t save_end;
1707 
1708 			/*
1709 			 * Already user wired or hard wired (trivial cases)
1710 			 */
1711 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1712 				entry = entry->next;
1713 				continue;
1714 			}
1715 			if (entry->wired_count != 0) {
1716 				entry->wired_count++;
1717 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1718 				entry = entry->next;
1719 				continue;
1720 			}
1721 
1722 			/*
1723 			 * A new wiring requires instantiation of appropriate
1724 			 * management structures and the faulting in of the
1725 			 * page.
1726 			 */
1727 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1728 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1729 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1730 
1731 					vm_object_shadow(&entry->object.vm_object,
1732 					    &entry->offset,
1733 					    atop(entry->end - entry->start));
1734 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1735 
1736 				} else if (entry->object.vm_object == NULL &&
1737 					   !map->system_map) {
1738 
1739 					entry->object.vm_object =
1740 					    vm_object_allocate(OBJT_DEFAULT,
1741 						atop(entry->end - entry->start));
1742 					entry->offset = (vm_offset_t) 0;
1743 
1744 				}
1745 			}
1746 			entry->wired_count++;
1747 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1748 
1749 			/*
1750 			 * Now fault in the area.  The map lock needs to be
1751 			 * manipulated to avoid deadlocks.  The in-transition
1752 			 * flag protects the entries.
1753 			 */
1754 			save_start = entry->start;
1755 			save_end = entry->end;
1756 			vm_map_unlock(map);
1757 			map->timestamp++;
1758 			rv = vm_fault_user_wire(map, save_start, save_end);
1759 			vm_map_lock(map);
1760 			if (rv) {
1761 				CLIP_CHECK_BACK(entry, save_start);
1762 				for (;;) {
1763 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1764 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1765 					entry->wired_count = 0;
1766 					if (entry->end == save_end)
1767 						break;
1768 					entry = entry->next;
1769 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1770 				}
1771 				end = save_start;	/* unwire the rest */
1772 				break;
1773 			}
1774 			/*
1775 			 * note that even though the entry might have been
1776 			 * clipped, the USER_WIRED flag we set prevents
1777 			 * duplication so we do not have to do a
1778 			 * clip check.
1779 			 */
1780 			entry = entry->next;
1781 		}
1782 
1783 		/*
1784 		 * If we failed fall through to the unwiring section to
1785 		 * unwire what we had wired so far.  'end' has already
1786 		 * been adjusted.
1787 		 */
1788 		if (rv)
1789 			new_pageable = 1;
1790 
1791 		/*
1792 		 * start_entry might have been clipped if we unlocked the
1793 		 * map and blocked.  No matter how clipped it has gotten
1794 		 * there should be a fragment that is on our start boundary.
1795 		 */
1796 		CLIP_CHECK_BACK(start_entry, start);
1797 	}
1798 
1799 	/*
1800 	 * Deal with the unwiring case.
1801 	 */
1802 	if (new_pageable) {
1803 		/*
1804 		 * This is the unwiring case.  We must first ensure that the
1805 		 * range to be unwired is really wired down.  We know there
1806 		 * are no holes.
1807 		 */
1808 		entry = start_entry;
1809 		while ((entry != &map->header) && (entry->start < end)) {
1810 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1811 				rv = KERN_INVALID_ARGUMENT;
1812 				goto done;
1813 			}
1814 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1815 			entry = entry->next;
1816 		}
1817 
1818 		/*
1819 		 * Now decrement the wiring count for each region. If a region
1820 		 * becomes completely unwired, unwire its physical pages and
1821 		 * mappings.
1822 		 */
1823 		/*
1824 		 * The map entries are processed in a loop, checking to
1825 		 * make sure the entry is wired and asserting it has a wired
1826 		 * count. However, another loop was inserted more-or-less in
1827 		 * the middle of the unwiring path. This loop picks up the
1828 		 * "entry" loop variable from the first loop without first
1829 		 * setting it to start_entry. Naturally, the secound loop
1830 		 * is never entered and the pages backing the entries are
1831 		 * never unwired. This can lead to a leak of wired pages.
1832 		 */
1833 		entry = start_entry;
1834 		while ((entry != &map->header) && (entry->start < end)) {
1835 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1836 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1837 			entry->wired_count--;
1838 			if (entry->wired_count == 0)
1839 				vm_fault_unwire(map, entry->start, entry->end);
1840 			entry = entry->next;
1841 		}
1842 	}
1843 done:
1844 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1845 		MAP_CLIP_NO_HOLES);
1846 	map->timestamp++;
1847 	vm_map_unlock(map);
1848 	vm_map_entry_release(count);
1849 	return (rv);
1850 }
1851 
1852 /*
1853  *	vm_map_wire:
1854  *
1855  *	Sets the pageability of the specified address
1856  *	range in the target map.  Regions specified
1857  *	as not pageable require locked-down physical
1858  *	memory and physical page maps.
1859  *
1860  *	The map must not be locked, but a reference
1861  *	must remain to the map throughout the call.
1862  *
1863  *	This function may be called via the zalloc path and must properly
1864  *	reserve map entries for kernel_map.
1865  */
1866 int
1867 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1868 {
1869 	vm_map_entry_t entry;
1870 	vm_map_entry_t start_entry;
1871 	vm_offset_t end;
1872 	int rv = KERN_SUCCESS;
1873 	int count;
1874 	int s;
1875 
1876 	if (kmflags & KM_KRESERVE)
1877 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1878 	else
1879 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1880 	vm_map_lock(map);
1881 	VM_MAP_RANGE_CHECK(map, start, real_end);
1882 	end = real_end;
1883 
1884 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1885 	if (start_entry == NULL) {
1886 		vm_map_unlock(map);
1887 		rv = KERN_INVALID_ADDRESS;
1888 		goto failure;
1889 	}
1890 	if ((kmflags & KM_PAGEABLE) == 0) {
1891 		/*
1892 		 * Wiring.
1893 		 *
1894 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1895 		 * objects that need to be created. Then we clip each map
1896 		 * entry to the region to be wired and increment its wiring
1897 		 * count.  We create objects before clipping the map entries
1898 		 * to avoid object proliferation.
1899 		 *
1900 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1901 		 * fault in the pages for any newly wired area (wired_count is
1902 		 * 1).
1903 		 *
1904 		 * Downgrading to a read lock for vm_fault_wire avoids a
1905 		 * possible deadlock with another process that may have faulted
1906 		 * on one of the pages to be wired (it would mark the page busy,
1907 		 * blocking us, then in turn block on the map lock that we
1908 		 * hold).  Because of problems in the recursive lock package,
1909 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1910 		 * any actions that require the write lock must be done
1911 		 * beforehand.  Because we keep the read lock on the map, the
1912 		 * copy-on-write status of the entries we modify here cannot
1913 		 * change.
1914 		 */
1915 
1916 		entry = start_entry;
1917 		while ((entry != &map->header) && (entry->start < end)) {
1918 			/*
1919 			 * Trivial case if the entry is already wired
1920 			 */
1921 			if (entry->wired_count) {
1922 				entry->wired_count++;
1923 				entry = entry->next;
1924 				continue;
1925 			}
1926 
1927 			/*
1928 			 * The entry is being newly wired, we have to setup
1929 			 * appropriate management structures.  A shadow
1930 			 * object is required for a copy-on-write region,
1931 			 * or a normal object for a zero-fill region.  We
1932 			 * do not have to do this for entries that point to sub
1933 			 * maps because we won't hold the lock on the sub map.
1934 			 */
1935 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1936 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1937 				if (copyflag &&
1938 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1939 
1940 					vm_object_shadow(&entry->object.vm_object,
1941 					    &entry->offset,
1942 					    atop(entry->end - entry->start));
1943 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1944 				} else if (entry->object.vm_object == NULL &&
1945 					   !map->system_map) {
1946 					entry->object.vm_object =
1947 					    vm_object_allocate(OBJT_DEFAULT,
1948 						atop(entry->end - entry->start));
1949 					entry->offset = (vm_offset_t) 0;
1950 				}
1951 			}
1952 
1953 			entry->wired_count++;
1954 			entry = entry->next;
1955 		}
1956 
1957 		/*
1958 		 * Pass 2.
1959 		 */
1960 
1961 		/*
1962 		 * HACK HACK HACK HACK
1963 		 *
1964 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1965 		 * protects us from most changes but note that
1966 		 * clipping may still occur.  To prevent clipping from
1967 		 * occuring after the unlock, except for when we are
1968 		 * blocking in vm_fault_wire, we must run at splvm().
1969 		 * Otherwise our accesses to entry->start and entry->end
1970 		 * could be corrupted.  We have to set splvm() prior to
1971 		 * unlocking so start_entry does not change out from
1972 		 * under us at the very beginning of the loop.
1973 		 *
1974 		 * HACK HACK HACK HACK
1975 		 */
1976 
1977 		s = splvm();
1978 		vm_map_unlock(map);
1979 
1980 		entry = start_entry;
1981 		while (entry != &map->header && entry->start < end) {
1982 			/*
1983 			 * If vm_fault_wire fails for any page we need to undo
1984 			 * what has been done.  We decrement the wiring count
1985 			 * for those pages which have not yet been wired (now)
1986 			 * and unwire those that have (later).
1987 			 */
1988 			vm_offset_t save_start = entry->start;
1989 			vm_offset_t save_end = entry->end;
1990 
1991 			if (entry->wired_count == 1)
1992 				rv = vm_fault_wire(map, entry->start, entry->end);
1993 			if (rv) {
1994 				CLIP_CHECK_BACK(entry, save_start);
1995 				for (;;) {
1996 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1997 					entry->wired_count = 0;
1998 					if (entry->end == save_end)
1999 						break;
2000 					entry = entry->next;
2001 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2002 				}
2003 				end = save_start;
2004 				break;
2005 			}
2006 			CLIP_CHECK_FWD(entry, save_end);
2007 			entry = entry->next;
2008 		}
2009 		splx(s);
2010 
2011 		/*
2012 		 * relock.  start_entry is still IN_TRANSITION and must
2013 		 * still exist, but may have been clipped (handled just
2014 		 * below).
2015 		 */
2016 		vm_map_lock(map);
2017 
2018 		/*
2019 		 * If a failure occured undo everything by falling through
2020 		 * to the unwiring code.  'end' has already been adjusted
2021 		 * appropriately.
2022 		 */
2023 		if (rv)
2024 			kmflags |= KM_PAGEABLE;
2025 
2026 		/*
2027 		 * start_entry might have been clipped if we unlocked the
2028 		 * map and blocked.  No matter how clipped it has gotten
2029 		 * there should be a fragment that is on our start boundary.
2030 		 */
2031 		CLIP_CHECK_BACK(start_entry, start);
2032 	}
2033 
2034 	if (kmflags & KM_PAGEABLE) {
2035 		/*
2036 		 * This is the unwiring case.  We must first ensure that the
2037 		 * range to be unwired is really wired down.  We know there
2038 		 * are no holes.
2039 		 */
2040 		entry = start_entry;
2041 		while ((entry != &map->header) && (entry->start < end)) {
2042 			if (entry->wired_count == 0) {
2043 				rv = KERN_INVALID_ARGUMENT;
2044 				goto done;
2045 			}
2046 			entry = entry->next;
2047 		}
2048 
2049 		/*
2050 		 * Now decrement the wiring count for each region. If a region
2051 		 * becomes completely unwired, unwire its physical pages and
2052 		 * mappings.
2053 		 */
2054 		entry = start_entry;
2055 		while ((entry != &map->header) && (entry->start < end)) {
2056 			entry->wired_count--;
2057 			if (entry->wired_count == 0)
2058 				vm_fault_unwire(map, entry->start, entry->end);
2059 			entry = entry->next;
2060 		}
2061 	}
2062 done:
2063 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2064 		MAP_CLIP_NO_HOLES);
2065 	map->timestamp++;
2066 	vm_map_unlock(map);
2067 failure:
2068 	if (kmflags & KM_KRESERVE)
2069 		vm_map_entry_krelease(count);
2070 	else
2071 		vm_map_entry_release(count);
2072 	return (rv);
2073 }
2074 
2075 /*
2076  * vm_map_set_wired_quick()
2077  *
2078  *	Mark a newly allocated address range as wired but do not fault in
2079  *	the pages.  The caller is expected to load the pages into the object.
2080  *
2081  *	The map must be locked on entry and will remain locked on return.
2082  */
2083 void
2084 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2085 {
2086 	vm_map_entry_t scan;
2087 	vm_map_entry_t entry;
2088 
2089 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2090 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2091 	    KKASSERT(entry->wired_count == 0);
2092 	    entry->wired_count = 1;
2093 	}
2094 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2095 }
2096 
2097 /*
2098  * vm_map_clean
2099  *
2100  * Push any dirty cached pages in the address range to their pager.
2101  * If syncio is TRUE, dirty pages are written synchronously.
2102  * If invalidate is TRUE, any cached pages are freed as well.
2103  *
2104  * Returns an error if any part of the specified range is not mapped.
2105  */
2106 int
2107 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2108     boolean_t invalidate)
2109 {
2110 	vm_map_entry_t current;
2111 	vm_map_entry_t entry;
2112 	vm_size_t size;
2113 	vm_object_t object;
2114 	vm_ooffset_t offset;
2115 
2116 	vm_map_lock_read(map);
2117 	VM_MAP_RANGE_CHECK(map, start, end);
2118 	if (!vm_map_lookup_entry(map, start, &entry)) {
2119 		vm_map_unlock_read(map);
2120 		return (KERN_INVALID_ADDRESS);
2121 	}
2122 	/*
2123 	 * Make a first pass to check for holes.
2124 	 */
2125 	for (current = entry; current->start < end; current = current->next) {
2126 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2127 			vm_map_unlock_read(map);
2128 			return (KERN_INVALID_ARGUMENT);
2129 		}
2130 		if (end > current->end &&
2131 		    (current->next == &map->header ||
2132 			current->end != current->next->start)) {
2133 			vm_map_unlock_read(map);
2134 			return (KERN_INVALID_ADDRESS);
2135 		}
2136 	}
2137 
2138 	if (invalidate)
2139 		pmap_remove(vm_map_pmap(map), start, end);
2140 	/*
2141 	 * Make a second pass, cleaning/uncaching pages from the indicated
2142 	 * objects as we go.
2143 	 */
2144 	for (current = entry; current->start < end; current = current->next) {
2145 		offset = current->offset + (start - current->start);
2146 		size = (end <= current->end ? end : current->end) - start;
2147 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2148 			vm_map_t smap;
2149 			vm_map_entry_t tentry;
2150 			vm_size_t tsize;
2151 
2152 			smap = current->object.sub_map;
2153 			vm_map_lock_read(smap);
2154 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2155 			tsize = tentry->end - offset;
2156 			if (tsize < size)
2157 				size = tsize;
2158 			object = tentry->object.vm_object;
2159 			offset = tentry->offset + (offset - tentry->start);
2160 			vm_map_unlock_read(smap);
2161 		} else {
2162 			object = current->object.vm_object;
2163 		}
2164 		/*
2165 		 * Note that there is absolutely no sense in writing out
2166 		 * anonymous objects, so we track down the vnode object
2167 		 * to write out.
2168 		 * We invalidate (remove) all pages from the address space
2169 		 * anyway, for semantic correctness.
2170 		 *
2171 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2172 		 * may start out with a NULL object.
2173 		 */
2174 		while (object && object->backing_object) {
2175 			object = object->backing_object;
2176 			offset += object->backing_object_offset;
2177 			if (object->size < OFF_TO_IDX( offset + size))
2178 				size = IDX_TO_OFF(object->size) - offset;
2179 		}
2180 		if (object && (object->type == OBJT_VNODE) &&
2181 		    (current->protection & VM_PROT_WRITE)) {
2182 			/*
2183 			 * Flush pages if writing is allowed, invalidate them
2184 			 * if invalidation requested.  Pages undergoing I/O
2185 			 * will be ignored by vm_object_page_remove().
2186 			 *
2187 			 * We cannot lock the vnode and then wait for paging
2188 			 * to complete without deadlocking against vm_fault.
2189 			 * Instead we simply call vm_object_page_remove() and
2190 			 * allow it to block internally on a page-by-page
2191 			 * basis when it encounters pages undergoing async
2192 			 * I/O.
2193 			 */
2194 			int flags;
2195 
2196 			vm_object_reference(object);
2197 			vn_lock(object->handle, NULL,
2198 				LK_EXCLUSIVE | LK_RETRY, curthread);
2199 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2200 			flags |= invalidate ? OBJPC_INVAL : 0;
2201 			vm_object_page_clean(object,
2202 			    OFF_TO_IDX(offset),
2203 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2204 			    flags);
2205 			VOP_UNLOCK(object->handle, NULL, 0, curthread);
2206 			vm_object_deallocate(object);
2207 		}
2208 		if (object && invalidate &&
2209 		   ((object->type == OBJT_VNODE) ||
2210 		    (object->type == OBJT_DEVICE))) {
2211 			vm_object_reference(object);
2212 			vm_object_page_remove(object,
2213 			    OFF_TO_IDX(offset),
2214 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2215 			    FALSE);
2216 			vm_object_deallocate(object);
2217 		}
2218 		start += size;
2219 	}
2220 
2221 	vm_map_unlock_read(map);
2222 	return (KERN_SUCCESS);
2223 }
2224 
2225 /*
2226  *	vm_map_entry_unwire:	[ internal use only ]
2227  *
2228  *	Make the region specified by this entry pageable.
2229  *
2230  *	The map in question should be locked.
2231  *	[This is the reason for this routine's existence.]
2232  */
2233 static void
2234 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2235 {
2236 	vm_fault_unwire(map, entry->start, entry->end);
2237 	entry->wired_count = 0;
2238 }
2239 
2240 /*
2241  *	vm_map_entry_delete:	[ internal use only ]
2242  *
2243  *	Deallocate the given entry from the target map.
2244  */
2245 static void
2246 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2247 {
2248 	vm_map_entry_unlink(map, entry);
2249 	map->size -= entry->end - entry->start;
2250 
2251 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2252 		vm_object_deallocate(entry->object.vm_object);
2253 	}
2254 
2255 	vm_map_entry_dispose(map, entry, countp);
2256 }
2257 
2258 /*
2259  *	vm_map_delete:	[ internal use only ]
2260  *
2261  *	Deallocates the given address range from the target
2262  *	map.
2263  */
2264 int
2265 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2266 {
2267 	vm_object_t object;
2268 	vm_map_entry_t entry;
2269 	vm_map_entry_t first_entry;
2270 
2271 	/*
2272 	 * Find the start of the region, and clip it
2273 	 */
2274 
2275 again:
2276 	if (!vm_map_lookup_entry(map, start, &first_entry))
2277 		entry = first_entry->next;
2278 	else {
2279 		entry = first_entry;
2280 		vm_map_clip_start(map, entry, start, countp);
2281 		/*
2282 		 * Fix the lookup hint now, rather than each time though the
2283 		 * loop.
2284 		 */
2285 		SAVE_HINT(map, entry->prev);
2286 	}
2287 
2288 	/*
2289 	 * Save the free space hint
2290 	 */
2291 
2292 	if (entry == &map->header) {
2293 		map->first_free = &map->header;
2294 	} else if (map->first_free->start >= start) {
2295 		map->first_free = entry->prev;
2296 	}
2297 
2298 	/*
2299 	 * Step through all entries in this region
2300 	 */
2301 
2302 	while ((entry != &map->header) && (entry->start < end)) {
2303 		vm_map_entry_t next;
2304 		vm_offset_t s, e;
2305 		vm_pindex_t offidxstart, offidxend, count;
2306 
2307 		/*
2308 		 * If we hit an in-transition entry we have to sleep and
2309 		 * retry.  It's easier (and not really slower) to just retry
2310 		 * since this case occurs so rarely and the hint is already
2311 		 * pointing at the right place.  We have to reset the
2312 		 * start offset so as not to accidently delete an entry
2313 		 * another process just created in vacated space.
2314 		 */
2315 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2316 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2317 			start = entry->start;
2318 			++mycpu->gd_cnt.v_intrans_coll;
2319 			++mycpu->gd_cnt.v_intrans_wait;
2320 			vm_map_transition_wait(map);
2321 			goto again;
2322 		}
2323 		vm_map_clip_end(map, entry, end, countp);
2324 
2325 		s = entry->start;
2326 		e = entry->end;
2327 		next = entry->next;
2328 
2329 		offidxstart = OFF_TO_IDX(entry->offset);
2330 		count = OFF_TO_IDX(e - s);
2331 		object = entry->object.vm_object;
2332 
2333 		/*
2334 		 * Unwire before removing addresses from the pmap; otherwise,
2335 		 * unwiring will put the entries back in the pmap.
2336 		 */
2337 		if (entry->wired_count != 0) {
2338 			vm_map_entry_unwire(map, entry);
2339 		}
2340 
2341 		offidxend = offidxstart + count;
2342 
2343 		if ((object == kernel_object) || (object == kmem_object)) {
2344 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2345 		} else {
2346 			pmap_remove(map->pmap, s, e);
2347 			if (object != NULL &&
2348 			    object->ref_count != 1 &&
2349 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2350 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2351 				vm_object_collapse(object);
2352 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2353 				if (object->type == OBJT_SWAP) {
2354 					swap_pager_freespace(object, offidxstart, count);
2355 				}
2356 				if (offidxend >= object->size &&
2357 				    offidxstart < object->size) {
2358 					object->size = offidxstart;
2359 				}
2360 			}
2361 		}
2362 
2363 		/*
2364 		 * Delete the entry (which may delete the object) only after
2365 		 * removing all pmap entries pointing to its pages.
2366 		 * (Otherwise, its page frames may be reallocated, and any
2367 		 * modify bits will be set in the wrong object!)
2368 		 */
2369 		vm_map_entry_delete(map, entry, countp);
2370 		entry = next;
2371 	}
2372 	return (KERN_SUCCESS);
2373 }
2374 
2375 /*
2376  *	vm_map_remove:
2377  *
2378  *	Remove the given address range from the target map.
2379  *	This is the exported form of vm_map_delete.
2380  */
2381 int
2382 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2383 {
2384 	int result;
2385 	int count;
2386 
2387 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2388 	vm_map_lock(map);
2389 	VM_MAP_RANGE_CHECK(map, start, end);
2390 	result = vm_map_delete(map, start, end, &count);
2391 	vm_map_unlock(map);
2392 	vm_map_entry_release(count);
2393 
2394 	return (result);
2395 }
2396 
2397 /*
2398  *	vm_map_check_protection:
2399  *
2400  *	Assert that the target map allows the specified
2401  *	privilege on the entire address region given.
2402  *	The entire region must be allocated.
2403  */
2404 boolean_t
2405 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2406 			vm_prot_t protection)
2407 {
2408 	vm_map_entry_t entry;
2409 	vm_map_entry_t tmp_entry;
2410 
2411 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2412 		return (FALSE);
2413 	}
2414 	entry = tmp_entry;
2415 
2416 	while (start < end) {
2417 		if (entry == &map->header) {
2418 			return (FALSE);
2419 		}
2420 		/*
2421 		 * No holes allowed!
2422 		 */
2423 
2424 		if (start < entry->start) {
2425 			return (FALSE);
2426 		}
2427 		/*
2428 		 * Check protection associated with entry.
2429 		 */
2430 
2431 		if ((entry->protection & protection) != protection) {
2432 			return (FALSE);
2433 		}
2434 		/* go to next entry */
2435 
2436 		start = entry->end;
2437 		entry = entry->next;
2438 	}
2439 	return (TRUE);
2440 }
2441 
2442 /*
2443  * Split the pages in a map entry into a new object.  This affords
2444  * easier removal of unused pages, and keeps object inheritance from
2445  * being a negative impact on memory usage.
2446  */
2447 static void
2448 vm_map_split(vm_map_entry_t entry)
2449 {
2450 	vm_page_t m;
2451 	vm_object_t orig_object, new_object, source;
2452 	vm_offset_t s, e;
2453 	vm_pindex_t offidxstart, offidxend, idx;
2454 	vm_size_t size;
2455 	vm_ooffset_t offset;
2456 
2457 	orig_object = entry->object.vm_object;
2458 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2459 		return;
2460 	if (orig_object->ref_count <= 1)
2461 		return;
2462 
2463 	offset = entry->offset;
2464 	s = entry->start;
2465 	e = entry->end;
2466 
2467 	offidxstart = OFF_TO_IDX(offset);
2468 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2469 	size = offidxend - offidxstart;
2470 
2471 	new_object = vm_pager_allocate(orig_object->type,
2472 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2473 	if (new_object == NULL)
2474 		return;
2475 
2476 	source = orig_object->backing_object;
2477 	if (source != NULL) {
2478 		vm_object_reference(source);	/* Referenced by new_object */
2479 		LIST_INSERT_HEAD(&source->shadow_head,
2480 				  new_object, shadow_list);
2481 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2482 		new_object->backing_object_offset =
2483 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2484 		new_object->backing_object = source;
2485 		source->shadow_count++;
2486 		source->generation++;
2487 	}
2488 
2489 	for (idx = 0; idx < size; idx++) {
2490 		vm_page_t m;
2491 
2492 	retry:
2493 		m = vm_page_lookup(orig_object, offidxstart + idx);
2494 		if (m == NULL)
2495 			continue;
2496 
2497 		/*
2498 		 * We must wait for pending I/O to complete before we can
2499 		 * rename the page.
2500 		 *
2501 		 * We do not have to VM_PROT_NONE the page as mappings should
2502 		 * not be changed by this operation.
2503 		 */
2504 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2505 			goto retry;
2506 
2507 		vm_page_busy(m);
2508 		vm_page_rename(m, new_object, idx);
2509 		/* page automatically made dirty by rename and cache handled */
2510 		vm_page_busy(m);
2511 	}
2512 
2513 	if (orig_object->type == OBJT_SWAP) {
2514 		vm_object_pip_add(orig_object, 1);
2515 		/*
2516 		 * copy orig_object pages into new_object
2517 		 * and destroy unneeded pages in
2518 		 * shadow object.
2519 		 */
2520 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2521 		vm_object_pip_wakeup(orig_object);
2522 	}
2523 
2524 	for (idx = 0; idx < size; idx++) {
2525 		m = vm_page_lookup(new_object, idx);
2526 		if (m) {
2527 			vm_page_wakeup(m);
2528 		}
2529 	}
2530 
2531 	entry->object.vm_object = new_object;
2532 	entry->offset = 0LL;
2533 	vm_object_deallocate(orig_object);
2534 }
2535 
2536 /*
2537  *	vm_map_copy_entry:
2538  *
2539  *	Copies the contents of the source entry to the destination
2540  *	entry.  The entries *must* be aligned properly.
2541  */
2542 static void
2543 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2544 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2545 {
2546 	vm_object_t src_object;
2547 
2548 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2549 		return;
2550 
2551 	if (src_entry->wired_count == 0) {
2552 
2553 		/*
2554 		 * If the source entry is marked needs_copy, it is already
2555 		 * write-protected.
2556 		 */
2557 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2558 			pmap_protect(src_map->pmap,
2559 			    src_entry->start,
2560 			    src_entry->end,
2561 			    src_entry->protection & ~VM_PROT_WRITE);
2562 		}
2563 
2564 		/*
2565 		 * Make a copy of the object.
2566 		 */
2567 		if ((src_object = src_entry->object.vm_object) != NULL) {
2568 
2569 			if ((src_object->handle == NULL) &&
2570 				(src_object->type == OBJT_DEFAULT ||
2571 				 src_object->type == OBJT_SWAP)) {
2572 				vm_object_collapse(src_object);
2573 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2574 					vm_map_split(src_entry);
2575 					src_object = src_entry->object.vm_object;
2576 				}
2577 			}
2578 
2579 			vm_object_reference(src_object);
2580 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2581 			dst_entry->object.vm_object = src_object;
2582 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2583 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2584 			dst_entry->offset = src_entry->offset;
2585 		} else {
2586 			dst_entry->object.vm_object = NULL;
2587 			dst_entry->offset = 0;
2588 		}
2589 
2590 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2591 		    dst_entry->end - dst_entry->start, src_entry->start);
2592 	} else {
2593 		/*
2594 		 * Of course, wired down pages can't be set copy-on-write.
2595 		 * Cause wired pages to be copied into the new map by
2596 		 * simulating faults (the new pages are pageable)
2597 		 */
2598 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2599 	}
2600 }
2601 
2602 /*
2603  * vmspace_fork:
2604  * Create a new process vmspace structure and vm_map
2605  * based on those of an existing process.  The new map
2606  * is based on the old map, according to the inheritance
2607  * values on the regions in that map.
2608  *
2609  * The source map must not be locked.
2610  */
2611 struct vmspace *
2612 vmspace_fork(struct vmspace *vm1)
2613 {
2614 	struct vmspace *vm2;
2615 	vm_map_t old_map = &vm1->vm_map;
2616 	vm_map_t new_map;
2617 	vm_map_entry_t old_entry;
2618 	vm_map_entry_t new_entry;
2619 	vm_object_t object;
2620 	int count;
2621 
2622 	vm_map_lock(old_map);
2623 	old_map->infork = 1;
2624 
2625 	/*
2626 	 * XXX Note: upcalls are not copied.
2627 	 */
2628 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2629 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2630 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2631 	new_map = &vm2->vm_map;	/* XXX */
2632 	new_map->timestamp = 1;
2633 
2634 	count = 0;
2635 	old_entry = old_map->header.next;
2636 	while (old_entry != &old_map->header) {
2637 		++count;
2638 		old_entry = old_entry->next;
2639 	}
2640 
2641 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2642 
2643 	old_entry = old_map->header.next;
2644 	while (old_entry != &old_map->header) {
2645 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2646 			panic("vm_map_fork: encountered a submap");
2647 
2648 		switch (old_entry->inheritance) {
2649 		case VM_INHERIT_NONE:
2650 			break;
2651 
2652 		case VM_INHERIT_SHARE:
2653 			/*
2654 			 * Clone the entry, creating the shared object if necessary.
2655 			 */
2656 			object = old_entry->object.vm_object;
2657 			if (object == NULL) {
2658 				object = vm_object_allocate(OBJT_DEFAULT,
2659 					atop(old_entry->end - old_entry->start));
2660 				old_entry->object.vm_object = object;
2661 				old_entry->offset = (vm_offset_t) 0;
2662 			}
2663 
2664 			/*
2665 			 * Add the reference before calling vm_object_shadow
2666 			 * to insure that a shadow object is created.
2667 			 */
2668 			vm_object_reference(object);
2669 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2670 				vm_object_shadow(&old_entry->object.vm_object,
2671 					&old_entry->offset,
2672 					atop(old_entry->end - old_entry->start));
2673 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2674 				/* Transfer the second reference too. */
2675 				vm_object_reference(
2676 				    old_entry->object.vm_object);
2677 				vm_object_deallocate(object);
2678 				object = old_entry->object.vm_object;
2679 			}
2680 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2681 
2682 			/*
2683 			 * Clone the entry, referencing the shared object.
2684 			 */
2685 			new_entry = vm_map_entry_create(new_map, &count);
2686 			*new_entry = *old_entry;
2687 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2688 			new_entry->wired_count = 0;
2689 
2690 			/*
2691 			 * Insert the entry into the new map -- we know we're
2692 			 * inserting at the end of the new map.
2693 			 */
2694 
2695 			vm_map_entry_link(new_map, new_map->header.prev,
2696 			    new_entry);
2697 
2698 			/*
2699 			 * Update the physical map
2700 			 */
2701 
2702 			pmap_copy(new_map->pmap, old_map->pmap,
2703 			    new_entry->start,
2704 			    (old_entry->end - old_entry->start),
2705 			    old_entry->start);
2706 			break;
2707 
2708 		case VM_INHERIT_COPY:
2709 			/*
2710 			 * Clone the entry and link into the map.
2711 			 */
2712 			new_entry = vm_map_entry_create(new_map, &count);
2713 			*new_entry = *old_entry;
2714 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2715 			new_entry->wired_count = 0;
2716 			new_entry->object.vm_object = NULL;
2717 			vm_map_entry_link(new_map, new_map->header.prev,
2718 			    new_entry);
2719 			vm_map_copy_entry(old_map, new_map, old_entry,
2720 			    new_entry);
2721 			break;
2722 		}
2723 		old_entry = old_entry->next;
2724 	}
2725 
2726 	new_map->size = old_map->size;
2727 	old_map->infork = 0;
2728 	vm_map_unlock(old_map);
2729 	vm_map_entry_release(count);
2730 
2731 	return (vm2);
2732 }
2733 
2734 int
2735 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2736 	      vm_prot_t prot, vm_prot_t max, int cow)
2737 {
2738 	vm_map_entry_t prev_entry;
2739 	vm_map_entry_t new_stack_entry;
2740 	vm_size_t      init_ssize;
2741 	int            rv;
2742 	int		count;
2743 
2744 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2745 		return (KERN_NO_SPACE);
2746 
2747 	if (max_ssize < sgrowsiz)
2748 		init_ssize = max_ssize;
2749 	else
2750 		init_ssize = sgrowsiz;
2751 
2752 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2753 	vm_map_lock(map);
2754 
2755 	/* If addr is already mapped, no go */
2756 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2757 		vm_map_unlock(map);
2758 		vm_map_entry_release(count);
2759 		return (KERN_NO_SPACE);
2760 	}
2761 
2762 	/* If we would blow our VMEM resource limit, no go */
2763 	if (map->size + init_ssize >
2764 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2765 		vm_map_unlock(map);
2766 		vm_map_entry_release(count);
2767 		return (KERN_NO_SPACE);
2768 	}
2769 
2770 	/* If we can't accomodate max_ssize in the current mapping,
2771 	 * no go.  However, we need to be aware that subsequent user
2772 	 * mappings might map into the space we have reserved for
2773 	 * stack, and currently this space is not protected.
2774 	 *
2775 	 * Hopefully we will at least detect this condition
2776 	 * when we try to grow the stack.
2777 	 */
2778 	if ((prev_entry->next != &map->header) &&
2779 	    (prev_entry->next->start < addrbos + max_ssize)) {
2780 		vm_map_unlock(map);
2781 		vm_map_entry_release(count);
2782 		return (KERN_NO_SPACE);
2783 	}
2784 
2785 	/* We initially map a stack of only init_ssize.  We will
2786 	 * grow as needed later.  Since this is to be a grow
2787 	 * down stack, we map at the top of the range.
2788 	 *
2789 	 * Note: we would normally expect prot and max to be
2790 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2791 	 * eliminate these as input parameters, and just
2792 	 * pass these values here in the insert call.
2793 	 */
2794 	rv = vm_map_insert(map, &count,
2795 			   NULL, 0, addrbos + max_ssize - init_ssize,
2796 	                   addrbos + max_ssize, prot, max, cow);
2797 
2798 	/* Now set the avail_ssize amount */
2799 	if (rv == KERN_SUCCESS){
2800 		if (prev_entry != &map->header)
2801 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2802 		new_stack_entry = prev_entry->next;
2803 		if (new_stack_entry->end   != addrbos + max_ssize ||
2804 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2805 			panic ("Bad entry start/end for new stack entry");
2806 		else
2807 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2808 	}
2809 
2810 	vm_map_unlock(map);
2811 	vm_map_entry_release(count);
2812 	return (rv);
2813 }
2814 
2815 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2816  * desired address is already mapped, or if we successfully grow
2817  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2818  * stack range (this is strange, but preserves compatibility with
2819  * the grow function in vm_machdep.c).
2820  */
2821 int
2822 vm_map_growstack (struct proc *p, vm_offset_t addr)
2823 {
2824 	vm_map_entry_t prev_entry;
2825 	vm_map_entry_t stack_entry;
2826 	vm_map_entry_t new_stack_entry;
2827 	struct vmspace *vm = p->p_vmspace;
2828 	vm_map_t map = &vm->vm_map;
2829 	vm_offset_t    end;
2830 	int grow_amount;
2831 	int rv = KERN_SUCCESS;
2832 	int is_procstack;
2833 	int use_read_lock = 1;
2834 	int count;
2835 
2836 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2837 Retry:
2838 	if (use_read_lock)
2839 		vm_map_lock_read(map);
2840 	else
2841 		vm_map_lock(map);
2842 
2843 	/* If addr is already in the entry range, no need to grow.*/
2844 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2845 		goto done;
2846 
2847 	if ((stack_entry = prev_entry->next) == &map->header)
2848 		goto done;
2849 	if (prev_entry == &map->header)
2850 		end = stack_entry->start - stack_entry->avail_ssize;
2851 	else
2852 		end = prev_entry->end;
2853 
2854 	/* This next test mimics the old grow function in vm_machdep.c.
2855 	 * It really doesn't quite make sense, but we do it anyway
2856 	 * for compatibility.
2857 	 *
2858 	 * If not growable stack, return success.  This signals the
2859 	 * caller to proceed as he would normally with normal vm.
2860 	 */
2861 	if (stack_entry->avail_ssize < 1 ||
2862 	    addr >= stack_entry->start ||
2863 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2864 		goto done;
2865 	}
2866 
2867 	/* Find the minimum grow amount */
2868 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2869 	if (grow_amount > stack_entry->avail_ssize) {
2870 		rv = KERN_NO_SPACE;
2871 		goto done;
2872 	}
2873 
2874 	/* If there is no longer enough space between the entries
2875 	 * nogo, and adjust the available space.  Note: this
2876 	 * should only happen if the user has mapped into the
2877 	 * stack area after the stack was created, and is
2878 	 * probably an error.
2879 	 *
2880 	 * This also effectively destroys any guard page the user
2881 	 * might have intended by limiting the stack size.
2882 	 */
2883 	if (grow_amount > stack_entry->start - end) {
2884 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2885 			use_read_lock = 0;
2886 			goto Retry;
2887 		}
2888 		use_read_lock = 0;
2889 		stack_entry->avail_ssize = stack_entry->start - end;
2890 		rv = KERN_NO_SPACE;
2891 		goto done;
2892 	}
2893 
2894 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2895 
2896 	/* If this is the main process stack, see if we're over the
2897 	 * stack limit.
2898 	 */
2899 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2900 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2901 		rv = KERN_NO_SPACE;
2902 		goto done;
2903 	}
2904 
2905 	/* Round up the grow amount modulo SGROWSIZ */
2906 	grow_amount = roundup (grow_amount, sgrowsiz);
2907 	if (grow_amount > stack_entry->avail_ssize) {
2908 		grow_amount = stack_entry->avail_ssize;
2909 	}
2910 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2911 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2912 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2913 		              ctob(vm->vm_ssize);
2914 	}
2915 
2916 	/* If we would blow our VMEM resource limit, no go */
2917 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2918 		rv = KERN_NO_SPACE;
2919 		goto done;
2920 	}
2921 
2922 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2923 		use_read_lock = 0;
2924 		goto Retry;
2925 	}
2926 	use_read_lock = 0;
2927 
2928 	/* Get the preliminary new entry start value */
2929 	addr = stack_entry->start - grow_amount;
2930 
2931 	/* If this puts us into the previous entry, cut back our growth
2932 	 * to the available space.  Also, see the note above.
2933 	 */
2934 	if (addr < end) {
2935 		stack_entry->avail_ssize = stack_entry->start - end;
2936 		addr = end;
2937 	}
2938 
2939 	rv = vm_map_insert(map, &count,
2940 			   NULL, 0, addr, stack_entry->start,
2941 			   VM_PROT_ALL,
2942 			   VM_PROT_ALL,
2943 			   0);
2944 
2945 	/* Adjust the available stack space by the amount we grew. */
2946 	if (rv == KERN_SUCCESS) {
2947 		if (prev_entry != &map->header)
2948 			vm_map_clip_end(map, prev_entry, addr, &count);
2949 		new_stack_entry = prev_entry->next;
2950 		if (new_stack_entry->end   != stack_entry->start  ||
2951 		    new_stack_entry->start != addr)
2952 			panic ("Bad stack grow start/end in new stack entry");
2953 		else {
2954 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2955 							(new_stack_entry->end -
2956 							 new_stack_entry->start);
2957 			if (is_procstack)
2958 				vm->vm_ssize += btoc(new_stack_entry->end -
2959 						     new_stack_entry->start);
2960 		}
2961 	}
2962 
2963 done:
2964 	if (use_read_lock)
2965 		vm_map_unlock_read(map);
2966 	else
2967 		vm_map_unlock(map);
2968 	vm_map_entry_release(count);
2969 	return (rv);
2970 }
2971 
2972 /*
2973  * Unshare the specified VM space for exec.  If other processes are
2974  * mapped to it, then create a new one.  The new vmspace is null.
2975  */
2976 
2977 void
2978 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
2979 {
2980 	struct vmspace *oldvmspace = p->p_vmspace;
2981 	struct vmspace *newvmspace;
2982 	vm_map_t map = &p->p_vmspace->vm_map;
2983 
2984 	/*
2985 	 * If we are execing a resident vmspace we fork it, otherwise
2986 	 * we create a new vmspace.  Note that exitingcnt and upcalls
2987 	 * are not copied to the new vmspace.
2988 	 */
2989 	if (vmcopy)  {
2990 	    newvmspace = vmspace_fork(vmcopy);
2991 	} else {
2992 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2993 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2994 		(caddr_t)&oldvmspace->vm_endcopy -
2995 		    (caddr_t)&oldvmspace->vm_startcopy);
2996 	}
2997 
2998 	/*
2999 	 * This code is written like this for prototype purposes.  The
3000 	 * goal is to avoid running down the vmspace here, but let the
3001 	 * other process's that are still using the vmspace to finally
3002 	 * run it down.  Even though there is little or no chance of blocking
3003 	 * here, it is a good idea to keep this form for future mods.
3004 	 */
3005 	p->p_vmspace = newvmspace;
3006 	pmap_pinit2(vmspace_pmap(newvmspace));
3007 	if (p == curproc)
3008 		pmap_activate(p);
3009 	vmspace_free(oldvmspace);
3010 }
3011 
3012 /*
3013  * Unshare the specified VM space for forcing COW.  This
3014  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3015  *
3016  * The exitingcnt test is not strictly necessary but has been
3017  * included for code sanity (to make the code a bit more deterministic).
3018  */
3019 
3020 void
3021 vmspace_unshare(struct proc *p)
3022 {
3023 	struct vmspace *oldvmspace = p->p_vmspace;
3024 	struct vmspace *newvmspace;
3025 
3026 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3027 		return;
3028 	newvmspace = vmspace_fork(oldvmspace);
3029 	p->p_vmspace = newvmspace;
3030 	pmap_pinit2(vmspace_pmap(newvmspace));
3031 	if (p == curproc)
3032 		pmap_activate(p);
3033 	vmspace_free(oldvmspace);
3034 }
3035 
3036 /*
3037  *	vm_map_lookup:
3038  *
3039  *	Finds the VM object, offset, and
3040  *	protection for a given virtual address in the
3041  *	specified map, assuming a page fault of the
3042  *	type specified.
3043  *
3044  *	Leaves the map in question locked for read; return
3045  *	values are guaranteed until a vm_map_lookup_done
3046  *	call is performed.  Note that the map argument
3047  *	is in/out; the returned map must be used in
3048  *	the call to vm_map_lookup_done.
3049  *
3050  *	A handle (out_entry) is returned for use in
3051  *	vm_map_lookup_done, to make that fast.
3052  *
3053  *	If a lookup is requested with "write protection"
3054  *	specified, the map may be changed to perform virtual
3055  *	copying operations, although the data referenced will
3056  *	remain the same.
3057  */
3058 int
3059 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3060 	      vm_offset_t vaddr,
3061 	      vm_prot_t fault_typea,
3062 	      vm_map_entry_t *out_entry,	/* OUT */
3063 	      vm_object_t *object,		/* OUT */
3064 	      vm_pindex_t *pindex,		/* OUT */
3065 	      vm_prot_t *out_prot,		/* OUT */
3066 	      boolean_t *wired)			/* OUT */
3067 {
3068 	vm_map_entry_t entry;
3069 	vm_map_t map = *var_map;
3070 	vm_prot_t prot;
3071 	vm_prot_t fault_type = fault_typea;
3072 	int use_read_lock = 1;
3073 	int rv = KERN_SUCCESS;
3074 
3075 RetryLookup:
3076 	if (use_read_lock)
3077 		vm_map_lock_read(map);
3078 	else
3079 		vm_map_lock(map);
3080 
3081 	/*
3082 	 * If the map has an interesting hint, try it before calling full
3083 	 * blown lookup routine.
3084 	 */
3085 	entry = map->hint;
3086 	*out_entry = entry;
3087 
3088 	if ((entry == &map->header) ||
3089 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3090 		vm_map_entry_t tmp_entry;
3091 
3092 		/*
3093 		 * Entry was either not a valid hint, or the vaddr was not
3094 		 * contained in the entry, so do a full lookup.
3095 		 */
3096 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3097 			rv = KERN_INVALID_ADDRESS;
3098 			goto done;
3099 		}
3100 
3101 		entry = tmp_entry;
3102 		*out_entry = entry;
3103 	}
3104 
3105 	/*
3106 	 * Handle submaps.
3107 	 */
3108 
3109 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3110 		vm_map_t old_map = map;
3111 
3112 		*var_map = map = entry->object.sub_map;
3113 		if (use_read_lock)
3114 			vm_map_unlock_read(old_map);
3115 		else
3116 			vm_map_unlock(old_map);
3117 		use_read_lock = 1;
3118 		goto RetryLookup;
3119 	}
3120 
3121 	/*
3122 	 * Check whether this task is allowed to have this page.
3123 	 * Note the special case for MAP_ENTRY_COW
3124 	 * pages with an override.  This is to implement a forced
3125 	 * COW for debuggers.
3126 	 */
3127 
3128 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3129 		prot = entry->max_protection;
3130 	else
3131 		prot = entry->protection;
3132 
3133 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3134 	if ((fault_type & prot) != fault_type) {
3135 		rv = KERN_PROTECTION_FAILURE;
3136 		goto done;
3137 	}
3138 
3139 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3140 	    (entry->eflags & MAP_ENTRY_COW) &&
3141 	    (fault_type & VM_PROT_WRITE) &&
3142 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3143 		rv = KERN_PROTECTION_FAILURE;
3144 		goto done;
3145 	}
3146 
3147 	/*
3148 	 * If this page is not pageable, we have to get it for all possible
3149 	 * accesses.
3150 	 */
3151 
3152 	*wired = (entry->wired_count != 0);
3153 	if (*wired)
3154 		prot = fault_type = entry->protection;
3155 
3156 	/*
3157 	 * If the entry was copy-on-write, we either ...
3158 	 */
3159 
3160 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3161 		/*
3162 		 * If we want to write the page, we may as well handle that
3163 		 * now since we've got the map locked.
3164 		 *
3165 		 * If we don't need to write the page, we just demote the
3166 		 * permissions allowed.
3167 		 */
3168 
3169 		if (fault_type & VM_PROT_WRITE) {
3170 			/*
3171 			 * Make a new object, and place it in the object
3172 			 * chain.  Note that no new references have appeared
3173 			 * -- one just moved from the map to the new
3174 			 * object.
3175 			 */
3176 
3177 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3178 				use_read_lock = 0;
3179 				goto RetryLookup;
3180 			}
3181 			use_read_lock = 0;
3182 
3183 			vm_object_shadow(
3184 			    &entry->object.vm_object,
3185 			    &entry->offset,
3186 			    atop(entry->end - entry->start));
3187 
3188 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3189 		} else {
3190 			/*
3191 			 * We're attempting to read a copy-on-write page --
3192 			 * don't allow writes.
3193 			 */
3194 
3195 			prot &= ~VM_PROT_WRITE;
3196 		}
3197 	}
3198 
3199 	/*
3200 	 * Create an object if necessary.
3201 	 */
3202 	if (entry->object.vm_object == NULL &&
3203 	    !map->system_map) {
3204 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3205 			use_read_lock = 0;
3206 			goto RetryLookup;
3207 		}
3208 		use_read_lock = 0;
3209 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3210 		    atop(entry->end - entry->start));
3211 		entry->offset = 0;
3212 	}
3213 
3214 	/*
3215 	 * Return the object/offset from this entry.  If the entry was
3216 	 * copy-on-write or empty, it has been fixed up.
3217 	 */
3218 
3219 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3220 	*object = entry->object.vm_object;
3221 
3222 	/*
3223 	 * Return whether this is the only map sharing this data.  On
3224 	 * success we return with a read lock held on the map.  On failure
3225 	 * we return with the map unlocked.
3226 	 */
3227 	*out_prot = prot;
3228 done:
3229 	if (rv == KERN_SUCCESS) {
3230 		if (use_read_lock == 0)
3231 			vm_map_lock_downgrade(map);
3232 	} else if (use_read_lock) {
3233 		vm_map_unlock_read(map);
3234 	} else {
3235 		vm_map_unlock(map);
3236 	}
3237 	return (rv);
3238 }
3239 
3240 /*
3241  *	vm_map_lookup_done:
3242  *
3243  *	Releases locks acquired by a vm_map_lookup
3244  *	(according to the handle returned by that lookup).
3245  */
3246 
3247 void
3248 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3249 {
3250 	/*
3251 	 * Unlock the main-level map
3252 	 */
3253 	vm_map_unlock_read(map);
3254 	if (count)
3255 		vm_map_entry_release(count);
3256 }
3257 
3258 #ifdef ENABLE_VFS_IOOPT
3259 
3260 /*
3261  * Implement uiomove with VM operations.  This handles (and collateral changes)
3262  * support every combination of source object modification, and COW type
3263  * operations.
3264  */
3265 int
3266 vm_uiomove(vm_map_t mapa, vm_object_t srcobject, off_t cp, int cnta,
3267     vm_offset_t uaddra, int *npages)
3268 {
3269 	vm_map_t map;
3270 	vm_object_t first_object, oldobject, object;
3271 	vm_map_entry_t entry;
3272 	vm_prot_t prot;
3273 	boolean_t wired;
3274 	int tcnt, rv;
3275 	vm_offset_t uaddr, start, end, tend;
3276 	vm_pindex_t first_pindex, osize, oindex;
3277 	off_t ooffset;
3278 	int cnt;
3279 	int count;
3280 
3281 	if (npages)
3282 		*npages = 0;
3283 
3284 	cnt = cnta;
3285 	uaddr = uaddra;
3286 
3287 	while (cnt > 0) {
3288 		map = mapa;
3289 
3290 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3291 
3292 		if ((vm_map_lookup(&map, uaddr,
3293 			VM_PROT_READ, &entry, &first_object,
3294 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3295 			return EFAULT;
3296 		}
3297 
3298 		vm_map_clip_start(map, entry, uaddr, &count);
3299 
3300 		tcnt = cnt;
3301 		tend = uaddr + tcnt;
3302 		if (tend > entry->end) {
3303 			tcnt = entry->end - uaddr;
3304 			tend = entry->end;
3305 		}
3306 
3307 		vm_map_clip_end(map, entry, tend, &count);
3308 
3309 		start = entry->start;
3310 		end = entry->end;
3311 
3312 		osize = atop(tcnt);
3313 
3314 		oindex = OFF_TO_IDX(cp);
3315 		if (npages) {
3316 			vm_pindex_t idx;
3317 			for (idx = 0; idx < osize; idx++) {
3318 				vm_page_t m;
3319 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3320 					vm_map_lookup_done(map, entry, count);
3321 					return 0;
3322 				}
3323 				/*
3324 				 * disallow busy or invalid pages, but allow
3325 				 * m->busy pages if they are entirely valid.
3326 				 */
3327 				if ((m->flags & PG_BUSY) ||
3328 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3329 					vm_map_lookup_done(map, entry, count);
3330 					return 0;
3331 				}
3332 			}
3333 		}
3334 
3335 /*
3336  * If we are changing an existing map entry, just redirect
3337  * the object, and change mappings.
3338  */
3339 		if ((first_object->type == OBJT_VNODE) &&
3340 			((oldobject = entry->object.vm_object) == first_object)) {
3341 
3342 			if ((entry->offset != cp) || (oldobject != srcobject)) {
3343 				/*
3344    				* Remove old window into the file
3345    				*/
3346 				pmap_remove (map->pmap, uaddr, tend);
3347 
3348 				/*
3349    				* Force copy on write for mmaped regions
3350    				*/
3351 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3352 
3353 				/*
3354    				* Point the object appropriately
3355    				*/
3356 				if (oldobject != srcobject) {
3357 
3358 				/*
3359    				* Set the object optimization hint flag
3360    				*/
3361 					vm_object_set_flag(srcobject, OBJ_OPT);
3362 					vm_object_reference(srcobject);
3363 					entry->object.vm_object = srcobject;
3364 
3365 					if (oldobject) {
3366 						vm_object_deallocate(oldobject);
3367 					}
3368 				}
3369 
3370 				entry->offset = cp;
3371 				map->timestamp++;
3372 			} else {
3373 				pmap_remove (map->pmap, uaddr, tend);
3374 			}
3375 
3376 		} else if ((first_object->ref_count == 1) &&
3377 			(first_object->size == osize) &&
3378 			((first_object->type == OBJT_DEFAULT) ||
3379 				(first_object->type == OBJT_SWAP)) ) {
3380 
3381 			oldobject = first_object->backing_object;
3382 
3383 			if ((first_object->backing_object_offset != cp) ||
3384 				(oldobject != srcobject)) {
3385 				/*
3386    				* Remove old window into the file
3387    				*/
3388 				pmap_remove (map->pmap, uaddr, tend);
3389 
3390 				/*
3391 				 * Remove unneeded old pages
3392 				 */
3393 				vm_object_page_remove(first_object, 0, 0, 0);
3394 
3395 				/*
3396 				 * Invalidate swap space
3397 				 */
3398 				if (first_object->type == OBJT_SWAP) {
3399 					swap_pager_freespace(first_object,
3400 						0,
3401 						first_object->size);
3402 				}
3403 
3404 				/*
3405    				* Force copy on write for mmaped regions
3406    				*/
3407 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3408 
3409 				/*
3410    				* Point the object appropriately
3411    				*/
3412 				if (oldobject != srcobject) {
3413 
3414 				/*
3415    				* Set the object optimization hint flag
3416    				*/
3417 					vm_object_set_flag(srcobject, OBJ_OPT);
3418 					vm_object_reference(srcobject);
3419 
3420 					if (oldobject) {
3421 						LIST_REMOVE(
3422 							first_object, shadow_list);
3423 						oldobject->shadow_count--;
3424 						/* XXX bump generation? */
3425 						vm_object_deallocate(oldobject);
3426 					}
3427 
3428 					LIST_INSERT_HEAD(&srcobject->shadow_head,
3429 						first_object, shadow_list);
3430 					srcobject->shadow_count++;
3431 					/* XXX bump generation? */
3432 
3433 					first_object->backing_object = srcobject;
3434 				}
3435 				first_object->backing_object_offset = cp;
3436 				map->timestamp++;
3437 			} else {
3438 				pmap_remove (map->pmap, uaddr, tend);
3439 			}
3440 /*
3441  * Otherwise, we have to do a logical mmap.
3442  */
3443 		} else {
3444 
3445 			vm_object_set_flag(srcobject, OBJ_OPT);
3446 			vm_object_reference(srcobject);
3447 
3448 			pmap_remove (map->pmap, uaddr, tend);
3449 
3450 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3451 			vm_map_lock_upgrade(map);
3452 
3453 			if (entry == &map->header) {
3454 				map->first_free = &map->header;
3455 			} else if (map->first_free->start >= start) {
3456 				map->first_free = entry->prev;
3457 			}
3458 
3459 			SAVE_HINT(map, entry->prev);
3460 			vm_map_entry_delete(map, entry, &count);
3461 
3462 			object = srcobject;
3463 			ooffset = cp;
3464 
3465 			rv = vm_map_insert(map, &count,
3466 				object, ooffset, start, tend,
3467 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3468 
3469 			if (rv != KERN_SUCCESS)
3470 				panic("vm_uiomove: could not insert new entry: %d", rv);
3471 		}
3472 
3473 /*
3474  * Map the window directly, if it is already in memory
3475  */
3476 		pmap_object_init_pt(map->pmap, uaddr,
3477 			srcobject, oindex, tcnt, 0);
3478 
3479 		map->timestamp++;
3480 		vm_map_unlock(map);
3481 		vm_map_entry_release(count);
3482 
3483 		cnt -= tcnt;
3484 		uaddr += tcnt;
3485 		cp += tcnt;
3486 		if (npages)
3487 			*npages += osize;
3488 	}
3489 	return 0;
3490 }
3491 
3492 #endif
3493 
3494 /*
3495  * Performs the copy_on_write operations necessary to allow the virtual copies
3496  * into user space to work.  This has to be called for write(2) system calls
3497  * from other processes, file unlinking, and file size shrinkage.
3498  */
3499 void
3500 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3501 {
3502 	int rv;
3503 	vm_object_t robject;
3504 	vm_pindex_t idx;
3505 
3506 	if ((object == NULL) ||
3507 		((object->flags & OBJ_OPT) == 0))
3508 		return;
3509 
3510 	if (object->shadow_count > object->ref_count)
3511 		panic("vm_freeze_copyopts: sc > rc");
3512 
3513 	while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3514 		vm_pindex_t bo_pindex;
3515 		vm_page_t m_in, m_out;
3516 
3517 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3518 
3519 		vm_object_reference(robject);
3520 
3521 		vm_object_pip_wait(robject, "objfrz");
3522 
3523 		if (robject->ref_count == 1) {
3524 			vm_object_deallocate(robject);
3525 			continue;
3526 		}
3527 
3528 		vm_object_pip_add(robject, 1);
3529 
3530 		for (idx = 0; idx < robject->size; idx++) {
3531 
3532 			m_out = vm_page_grab(robject, idx,
3533 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3534 
3535 			if (m_out->valid == 0) {
3536 				m_in = vm_page_grab(object, bo_pindex + idx,
3537 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3538 				if (m_in->valid == 0) {
3539 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3540 					if (rv != VM_PAGER_OK) {
3541 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3542 						continue;
3543 					}
3544 					vm_page_deactivate(m_in);
3545 				}
3546 
3547 				vm_page_protect(m_in, VM_PROT_NONE);
3548 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3549 				m_out->valid = m_in->valid;
3550 				vm_page_dirty(m_out);
3551 				vm_page_activate(m_out);
3552 				vm_page_wakeup(m_in);
3553 			}
3554 			vm_page_wakeup(m_out);
3555 		}
3556 
3557 		object->shadow_count--;
3558 		object->ref_count--;
3559 		LIST_REMOVE(robject, shadow_list);
3560 		robject->backing_object = NULL;
3561 		robject->backing_object_offset = 0;
3562 
3563 		vm_object_pip_wakeup(robject);
3564 		vm_object_deallocate(robject);
3565 	}
3566 
3567 	vm_object_clear_flag(object, OBJ_OPT);
3568 }
3569 
3570 #include "opt_ddb.h"
3571 #ifdef DDB
3572 #include <sys/kernel.h>
3573 
3574 #include <ddb/ddb.h>
3575 
3576 /*
3577  *	vm_map_print:	[ debug ]
3578  */
3579 DB_SHOW_COMMAND(map, vm_map_print)
3580 {
3581 	static int nlines;
3582 	/* XXX convert args. */
3583 	vm_map_t map = (vm_map_t)addr;
3584 	boolean_t full = have_addr;
3585 
3586 	vm_map_entry_t entry;
3587 
3588 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3589 	    (void *)map,
3590 	    (void *)map->pmap, map->nentries, map->timestamp);
3591 	nlines++;
3592 
3593 	if (!full && db_indent)
3594 		return;
3595 
3596 	db_indent += 2;
3597 	for (entry = map->header.next; entry != &map->header;
3598 	    entry = entry->next) {
3599 		db_iprintf("map entry %p: start=%p, end=%p\n",
3600 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3601 		nlines++;
3602 		{
3603 			static char *inheritance_name[4] =
3604 			{"share", "copy", "none", "donate_copy"};
3605 
3606 			db_iprintf(" prot=%x/%x/%s",
3607 			    entry->protection,
3608 			    entry->max_protection,
3609 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3610 			if (entry->wired_count != 0)
3611 				db_printf(", wired");
3612 		}
3613 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3614 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3615 			db_printf(", share=%p, offset=0x%lx\n",
3616 			    (void *)entry->object.sub_map,
3617 			    (long)entry->offset);
3618 			nlines++;
3619 			if ((entry->prev == &map->header) ||
3620 			    (entry->prev->object.sub_map !=
3621 				entry->object.sub_map)) {
3622 				db_indent += 2;
3623 				vm_map_print((db_expr_t)(intptr_t)
3624 					     entry->object.sub_map,
3625 					     full, 0, (char *)0);
3626 				db_indent -= 2;
3627 			}
3628 		} else {
3629 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3630 			db_printf(", object=%p, offset=0x%lx",
3631 			    (void *)entry->object.vm_object,
3632 			    (long)entry->offset);
3633 			if (entry->eflags & MAP_ENTRY_COW)
3634 				db_printf(", copy (%s)",
3635 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3636 			db_printf("\n");
3637 			nlines++;
3638 
3639 			if ((entry->prev == &map->header) ||
3640 			    (entry->prev->object.vm_object !=
3641 				entry->object.vm_object)) {
3642 				db_indent += 2;
3643 				vm_object_print((db_expr_t)(intptr_t)
3644 						entry->object.vm_object,
3645 						full, 0, (char *)0);
3646 				nlines += 4;
3647 				db_indent -= 2;
3648 			}
3649 		}
3650 	}
3651 	db_indent -= 2;
3652 	if (db_indent == 0)
3653 		nlines = 0;
3654 }
3655 
3656 
3657 DB_SHOW_COMMAND(procvm, procvm)
3658 {
3659 	struct proc *p;
3660 
3661 	if (have_addr) {
3662 		p = (struct proc *) addr;
3663 	} else {
3664 		p = curproc;
3665 	}
3666 
3667 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3668 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3669 	    (void *)vmspace_pmap(p->p_vmspace));
3670 
3671 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3672 }
3673 
3674 #endif /* DDB */
3675