1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 * 62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 63 */ 64 65 /* 66 * Virtual memory mapping module. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/proc.h> 73 #include <sys/serialize.h> 74 #include <sys/lock.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 #include <sys/shm.h> 80 #include <sys/tree.h> 81 #include <sys/malloc.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/swap_pager.h> 93 #include <vm/vm_zone.h> 94 95 #include <sys/thread2.h> 96 #include <sys/sysref2.h> 97 #include <sys/random.h> 98 #include <sys/sysctl.h> 99 100 /* 101 * Virtual memory maps provide for the mapping, protection, and sharing 102 * of virtual memory objects. In addition, this module provides for an 103 * efficient virtual copy of memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple entries. 108 * A hint and a RB tree is used to speed-up lookups. 109 * 110 * Callers looking to modify maps specify start/end addresses which cause 111 * the related map entry to be clipped if necessary, and then later 112 * recombined if the pieces remained compatible. 113 * 114 * Virtual copy operations are performed by copying VM object references 115 * from one map to another, and then marking both regions as copy-on-write. 116 */ 117 static void vmspace_terminate(struct vmspace *vm); 118 static void vmspace_lock(struct vmspace *vm); 119 static void vmspace_unlock(struct vmspace *vm); 120 static void vmspace_dtor(void *obj, void *private); 121 122 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 123 124 struct sysref_class vmspace_sysref_class = { 125 .name = "vmspace", 126 .mtype = M_VMSPACE, 127 .proto = SYSREF_PROTO_VMSPACE, 128 .offset = offsetof(struct vmspace, vm_sysref), 129 .objsize = sizeof(struct vmspace), 130 .nom_cache = 32, 131 .flags = SRC_MANAGEDINIT, 132 .dtor = vmspace_dtor, 133 .ops = { 134 .terminate = (sysref_terminate_func_t)vmspace_terminate, 135 .lock = (sysref_lock_func_t)vmspace_lock, 136 .unlock = (sysref_lock_func_t)vmspace_unlock 137 } 138 }; 139 140 /* 141 * per-cpu page table cross mappings are initialized in early boot 142 * and might require a considerable number of vm_map_entry structures. 143 */ 144 #define VMEPERCPU (MAXCPU+1) 145 146 static struct vm_zone mapentzone_store, mapzone_store; 147 static vm_zone_t mapentzone, mapzone; 148 static struct vm_object mapentobj, mapobj; 149 150 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 151 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 152 static struct vm_map map_init[MAX_KMAP]; 153 154 static int randomize_mmap; 155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0, 156 "Randomize mmap offsets"); 157 static int vm_map_relock_enable = 1; 158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW, 159 &vm_map_relock_enable, 0, "Randomize mmap offsets"); 160 161 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref); 162 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 163 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 164 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 165 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 166 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 167 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 168 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 169 vm_map_entry_t); 170 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 171 172 /* 173 * Initialize the vm_map module. Must be called before any other vm_map 174 * routines. 175 * 176 * Map and entry structures are allocated from the general purpose 177 * memory pool with some exceptions: 178 * 179 * - The kernel map is allocated statically. 180 * - Initial kernel map entries are allocated out of a static pool. 181 * - We must set ZONE_SPECIAL here or the early boot code can get 182 * stuck if there are >63 cores. 183 * 184 * These restrictions are necessary since malloc() uses the 185 * maps and requires map entries. 186 * 187 * Called from the low level boot code only. 188 */ 189 void 190 vm_map_startup(void) 191 { 192 mapzone = &mapzone_store; 193 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 194 map_init, MAX_KMAP); 195 mapentzone = &mapentzone_store; 196 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 197 map_entry_init, MAX_MAPENT); 198 mapentzone_store.zflags |= ZONE_SPECIAL; 199 } 200 201 /* 202 * Called prior to any vmspace allocations. 203 * 204 * Called from the low level boot code only. 205 */ 206 void 207 vm_init2(void) 208 { 209 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 210 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 211 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 212 pmap_init2(); 213 vm_object_init2(); 214 } 215 216 217 /* 218 * Red black tree functions 219 * 220 * The caller must hold the related map lock. 221 */ 222 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 223 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 224 225 /* a->start is address, and the only field has to be initialized */ 226 static int 227 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 228 { 229 if (a->start < b->start) 230 return(-1); 231 else if (a->start > b->start) 232 return(1); 233 return(0); 234 } 235 236 /* 237 * Allocate a vmspace structure, including a vm_map and pmap. 238 * Initialize numerous fields. While the initial allocation is zerod, 239 * subsequence reuse from the objcache leaves elements of the structure 240 * intact (particularly the pmap), so portions must be zerod. 241 * 242 * The structure is not considered activated until we call sysref_activate(). 243 * 244 * No requirements. 245 */ 246 struct vmspace * 247 vmspace_alloc(vm_offset_t min, vm_offset_t max) 248 { 249 struct vmspace *vm; 250 251 vm = sysref_alloc(&vmspace_sysref_class); 252 bzero(&vm->vm_startcopy, 253 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 254 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */ 255 256 /* 257 * Use a hold to prevent any additional racing hold from terminating 258 * the vmspace before we manage to activate it. This also acquires 259 * the token for safety. 260 */ 261 KKASSERT(vm->vm_holdcount == 0); 262 KKASSERT(vm->vm_exitingcnt == 0); 263 vmspace_hold(vm); 264 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 265 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 266 vm->vm_shm = NULL; 267 vm->vm_flags = 0; 268 cpu_vmspace_alloc(vm); 269 sysref_activate(&vm->vm_sysref); 270 vmspace_drop(vm); 271 272 return (vm); 273 } 274 275 /* 276 * Free a primary reference to a vmspace. This can trigger a 277 * stage-1 termination. 278 */ 279 void 280 vmspace_free(struct vmspace *vm) 281 { 282 /* 283 * We want all finalization to occur via vmspace_drop() so we 284 * need to hold the vm around the put. 285 */ 286 vmspace_hold(vm); 287 sysref_put(&vm->vm_sysref); 288 vmspace_drop(vm); 289 } 290 291 void 292 vmspace_ref(struct vmspace *vm) 293 { 294 sysref_get(&vm->vm_sysref); 295 } 296 297 void 298 vmspace_hold(struct vmspace *vm) 299 { 300 refcount_acquire(&vm->vm_holdcount); 301 lwkt_gettoken(&vm->vm_map.token); 302 } 303 304 void 305 vmspace_drop(struct vmspace *vm) 306 { 307 lwkt_reltoken(&vm->vm_map.token); 308 if (refcount_release(&vm->vm_holdcount)) { 309 if (vm->vm_exitingcnt == 0 && 310 sysref_isinactive(&vm->vm_sysref)) { 311 vmspace_terminate(vm); 312 } 313 } 314 } 315 316 /* 317 * dtor function - Some elements of the pmap are retained in the 318 * free-cached vmspaces to improve performance. We have to clean them up 319 * here before returning the vmspace to the memory pool. 320 * 321 * No requirements. 322 */ 323 static void 324 vmspace_dtor(void *obj, void *private) 325 { 326 struct vmspace *vm = obj; 327 328 pmap_puninit(vmspace_pmap(vm)); 329 } 330 331 /* 332 * Called in three cases: 333 * 334 * (1) When the last sysref is dropped and the vmspace becomes inactive. 335 * (holdcount will not be 0 because the vmspace is held through the op) 336 * 337 * (2) When exitingcount becomes 0 on the last reap 338 * (holdcount will not be 0 because the vmspace is held through the op) 339 * 340 * (3) When the holdcount becomes 0 in addition to the above two 341 * 342 * sysref will not scrap the object until we call sysref_put() once more 343 * after the last ref has been dropped. 344 * 345 * VMSPACE_EXIT1 flags the primary deactivation 346 * VMSPACE_EXIT2 flags the last reap 347 */ 348 static void 349 vmspace_terminate(struct vmspace *vm) 350 { 351 int count; 352 353 /* 354 * 355 */ 356 lwkt_gettoken(&vm->vm_map.token); 357 if ((vm->vm_flags & VMSPACE_EXIT1) == 0) { 358 vm->vm_flags |= VMSPACE_EXIT1; 359 shmexit(vm); 360 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 361 VM_MAX_USER_ADDRESS); 362 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 363 VM_MAX_USER_ADDRESS); 364 } 365 if ((vm->vm_flags & VMSPACE_EXIT2) == 0 && vm->vm_exitingcnt == 0) { 366 vm->vm_flags |= VMSPACE_EXIT2; 367 cpu_vmspace_free(vm); 368 shmexit(vm); 369 370 /* 371 * Lock the map, to wait out all other references to it. 372 * Delete all of the mappings and pages they hold, then call 373 * the pmap module to reclaim anything left. 374 */ 375 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 376 vm_map_lock(&vm->vm_map); 377 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 378 vm->vm_map.max_offset, &count); 379 vm_map_unlock(&vm->vm_map); 380 vm_map_entry_release(count); 381 382 lwkt_gettoken(&vmspace_pmap(vm)->pm_token); 383 pmap_release(vmspace_pmap(vm)); 384 lwkt_reltoken(&vmspace_pmap(vm)->pm_token); 385 } 386 387 lwkt_reltoken(&vm->vm_map.token); 388 if (vm->vm_exitingcnt == 0 && vm->vm_holdcount == 0) { 389 KKASSERT(vm->vm_flags & VMSPACE_EXIT1); 390 KKASSERT(vm->vm_flags & VMSPACE_EXIT2); 391 sysref_put(&vm->vm_sysref); 392 } 393 } 394 395 /* 396 * vmspaces are not currently locked. 397 */ 398 static void 399 vmspace_lock(struct vmspace *vm __unused) 400 { 401 } 402 403 static void 404 vmspace_unlock(struct vmspace *vm __unused) 405 { 406 } 407 408 /* 409 * This is called during exit indicating that the vmspace is no 410 * longer in used by an exiting process, but the process has not yet 411 * been reaped. 412 * 413 * No requirements. 414 */ 415 void 416 vmspace_exitbump(struct vmspace *vm) 417 { 418 vmspace_hold(vm); 419 ++vm->vm_exitingcnt; 420 vmspace_drop(vm); /* handles termination sequencing */ 421 } 422 423 /* 424 * Decrement the exitingcnt and issue the stage-2 termination if it becomes 425 * zero and the stage1 termination has already occured. 426 * 427 * No requirements. 428 */ 429 void 430 vmspace_exitfree(struct proc *p) 431 { 432 struct vmspace *vm; 433 434 vm = p->p_vmspace; 435 p->p_vmspace = NULL; 436 vmspace_hold(vm); 437 KKASSERT(vm->vm_exitingcnt > 0); 438 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref)) 439 vmspace_terminate(vm); 440 vmspace_drop(vm); /* handles termination sequencing */ 441 } 442 443 /* 444 * Swap useage is determined by taking the proportional swap used by 445 * VM objects backing the VM map. To make up for fractional losses, 446 * if the VM object has any swap use at all the associated map entries 447 * count for at least 1 swap page. 448 * 449 * No requirements. 450 */ 451 int 452 vmspace_swap_count(struct vmspace *vm) 453 { 454 vm_map_t map = &vm->vm_map; 455 vm_map_entry_t cur; 456 vm_object_t object; 457 int count = 0; 458 int n; 459 460 vmspace_hold(vm); 461 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 462 switch(cur->maptype) { 463 case VM_MAPTYPE_NORMAL: 464 case VM_MAPTYPE_VPAGETABLE: 465 if ((object = cur->object.vm_object) == NULL) 466 break; 467 if (object->swblock_count) { 468 n = (cur->end - cur->start) / PAGE_SIZE; 469 count += object->swblock_count * 470 SWAP_META_PAGES * n / object->size + 1; 471 } 472 break; 473 default: 474 break; 475 } 476 } 477 vmspace_drop(vm); 478 479 return(count); 480 } 481 482 /* 483 * Calculate the approximate number of anonymous pages in use by 484 * this vmspace. To make up for fractional losses, we count each 485 * VM object as having at least 1 anonymous page. 486 * 487 * No requirements. 488 */ 489 int 490 vmspace_anonymous_count(struct vmspace *vm) 491 { 492 vm_map_t map = &vm->vm_map; 493 vm_map_entry_t cur; 494 vm_object_t object; 495 int count = 0; 496 497 vmspace_hold(vm); 498 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 499 switch(cur->maptype) { 500 case VM_MAPTYPE_NORMAL: 501 case VM_MAPTYPE_VPAGETABLE: 502 if ((object = cur->object.vm_object) == NULL) 503 break; 504 if (object->type != OBJT_DEFAULT && 505 object->type != OBJT_SWAP) { 506 break; 507 } 508 count += object->resident_page_count; 509 break; 510 default: 511 break; 512 } 513 } 514 vmspace_drop(vm); 515 516 return(count); 517 } 518 519 /* 520 * Creates and returns a new empty VM map with the given physical map 521 * structure, and having the given lower and upper address bounds. 522 * 523 * No requirements. 524 */ 525 vm_map_t 526 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max) 527 { 528 if (result == NULL) 529 result = zalloc(mapzone); 530 vm_map_init(result, min, max, pmap); 531 return (result); 532 } 533 534 /* 535 * Initialize an existing vm_map structure such as that in the vmspace 536 * structure. The pmap is initialized elsewhere. 537 * 538 * No requirements. 539 */ 540 void 541 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 542 { 543 map->header.next = map->header.prev = &map->header; 544 RB_INIT(&map->rb_root); 545 map->nentries = 0; 546 map->size = 0; 547 map->system_map = 0; 548 map->min_offset = min; 549 map->max_offset = max; 550 map->pmap = pmap; 551 map->first_free = &map->header; 552 map->hint = &map->header; 553 map->timestamp = 0; 554 map->flags = 0; 555 lwkt_token_init(&map->token, "vm_map"); 556 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0); 557 TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache); 558 } 559 560 /* 561 * Shadow the vm_map_entry's object. This typically needs to be done when 562 * a write fault is taken on an entry which had previously been cloned by 563 * fork(). The shared object (which might be NULL) must become private so 564 * we add a shadow layer above it. 565 * 566 * Object allocation for anonymous mappings is defered as long as possible. 567 * When creating a shadow, however, the underlying object must be instantiated 568 * so it can be shared. 569 * 570 * If the map segment is governed by a virtual page table then it is 571 * possible to address offsets beyond the mapped area. Just allocate 572 * a maximally sized object for this case. 573 * 574 * The vm_map must be exclusively locked. 575 * No other requirements. 576 */ 577 static 578 void 579 vm_map_entry_shadow(vm_map_entry_t entry, int addref) 580 { 581 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 582 vm_object_shadow(&entry->object.vm_object, &entry->offset, 583 0x7FFFFFFF, addref); /* XXX */ 584 } else { 585 vm_object_shadow(&entry->object.vm_object, &entry->offset, 586 atop(entry->end - entry->start), addref); 587 } 588 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 589 } 590 591 /* 592 * Allocate an object for a vm_map_entry. 593 * 594 * Object allocation for anonymous mappings is defered as long as possible. 595 * This function is called when we can defer no longer, generally when a map 596 * entry might be split or forked or takes a page fault. 597 * 598 * If the map segment is governed by a virtual page table then it is 599 * possible to address offsets beyond the mapped area. Just allocate 600 * a maximally sized object for this case. 601 * 602 * The vm_map must be exclusively locked. 603 * No other requirements. 604 */ 605 void 606 vm_map_entry_allocate_object(vm_map_entry_t entry) 607 { 608 vm_object_t obj; 609 610 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 611 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 612 } else { 613 obj = vm_object_allocate(OBJT_DEFAULT, 614 atop(entry->end - entry->start)); 615 } 616 entry->object.vm_object = obj; 617 entry->offset = 0; 618 } 619 620 /* 621 * Set an initial negative count so the first attempt to reserve 622 * space preloads a bunch of vm_map_entry's for this cpu. Also 623 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 624 * map a new page for vm_map_entry structures. SMP systems are 625 * particularly sensitive. 626 * 627 * This routine is called in early boot so we cannot just call 628 * vm_map_entry_reserve(). 629 * 630 * Called from the low level boot code only (for each cpu) 631 */ 632 void 633 vm_map_entry_reserve_cpu_init(globaldata_t gd) 634 { 635 vm_map_entry_t entry; 636 int i; 637 638 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 639 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 640 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 641 entry->next = gd->gd_vme_base; 642 gd->gd_vme_base = entry; 643 } 644 } 645 646 /* 647 * Reserves vm_map_entry structures so code later on can manipulate 648 * map_entry structures within a locked map without blocking trying 649 * to allocate a new vm_map_entry. 650 * 651 * No requirements. 652 */ 653 int 654 vm_map_entry_reserve(int count) 655 { 656 struct globaldata *gd = mycpu; 657 vm_map_entry_t entry; 658 659 /* 660 * Make sure we have enough structures in gd_vme_base to handle 661 * the reservation request. 662 * 663 * The critical section protects access to the per-cpu gd. 664 */ 665 crit_enter(); 666 while (gd->gd_vme_avail < count) { 667 entry = zalloc(mapentzone); 668 entry->next = gd->gd_vme_base; 669 gd->gd_vme_base = entry; 670 ++gd->gd_vme_avail; 671 } 672 gd->gd_vme_avail -= count; 673 crit_exit(); 674 675 return(count); 676 } 677 678 /* 679 * Releases previously reserved vm_map_entry structures that were not 680 * used. If we have too much junk in our per-cpu cache clean some of 681 * it out. 682 * 683 * No requirements. 684 */ 685 void 686 vm_map_entry_release(int count) 687 { 688 struct globaldata *gd = mycpu; 689 vm_map_entry_t entry; 690 691 crit_enter(); 692 gd->gd_vme_avail += count; 693 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 694 entry = gd->gd_vme_base; 695 KKASSERT(entry != NULL); 696 gd->gd_vme_base = entry->next; 697 --gd->gd_vme_avail; 698 crit_exit(); 699 zfree(mapentzone, entry); 700 crit_enter(); 701 } 702 crit_exit(); 703 } 704 705 /* 706 * Reserve map entry structures for use in kernel_map itself. These 707 * entries have *ALREADY* been reserved on a per-cpu basis when the map 708 * was inited. This function is used by zalloc() to avoid a recursion 709 * when zalloc() itself needs to allocate additional kernel memory. 710 * 711 * This function works like the normal reserve but does not load the 712 * vm_map_entry cache (because that would result in an infinite 713 * recursion). Note that gd_vme_avail may go negative. This is expected. 714 * 715 * Any caller of this function must be sure to renormalize after 716 * potentially eating entries to ensure that the reserve supply 717 * remains intact. 718 * 719 * No requirements. 720 */ 721 int 722 vm_map_entry_kreserve(int count) 723 { 724 struct globaldata *gd = mycpu; 725 726 crit_enter(); 727 gd->gd_vme_avail -= count; 728 crit_exit(); 729 KASSERT(gd->gd_vme_base != NULL, 730 ("no reserved entries left, gd_vme_avail = %d", 731 gd->gd_vme_avail)); 732 return(count); 733 } 734 735 /* 736 * Release previously reserved map entries for kernel_map. We do not 737 * attempt to clean up like the normal release function as this would 738 * cause an unnecessary (but probably not fatal) deep procedure call. 739 * 740 * No requirements. 741 */ 742 void 743 vm_map_entry_krelease(int count) 744 { 745 struct globaldata *gd = mycpu; 746 747 crit_enter(); 748 gd->gd_vme_avail += count; 749 crit_exit(); 750 } 751 752 /* 753 * Allocates a VM map entry for insertion. No entry fields are filled in. 754 * 755 * The entries should have previously been reserved. The reservation count 756 * is tracked in (*countp). 757 * 758 * No requirements. 759 */ 760 static vm_map_entry_t 761 vm_map_entry_create(vm_map_t map, int *countp) 762 { 763 struct globaldata *gd = mycpu; 764 vm_map_entry_t entry; 765 766 KKASSERT(*countp > 0); 767 --*countp; 768 crit_enter(); 769 entry = gd->gd_vme_base; 770 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 771 gd->gd_vme_base = entry->next; 772 crit_exit(); 773 774 return(entry); 775 } 776 777 /* 778 * Dispose of a vm_map_entry that is no longer being referenced. 779 * 780 * No requirements. 781 */ 782 static void 783 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 784 { 785 struct globaldata *gd = mycpu; 786 787 KKASSERT(map->hint != entry); 788 KKASSERT(map->first_free != entry); 789 790 ++*countp; 791 crit_enter(); 792 entry->next = gd->gd_vme_base; 793 gd->gd_vme_base = entry; 794 crit_exit(); 795 } 796 797 798 /* 799 * Insert/remove entries from maps. 800 * 801 * The related map must be exclusively locked. 802 * The caller must hold map->token 803 * No other requirements. 804 */ 805 static __inline void 806 vm_map_entry_link(vm_map_t map, 807 vm_map_entry_t after_where, 808 vm_map_entry_t entry) 809 { 810 ASSERT_VM_MAP_LOCKED(map); 811 812 map->nentries++; 813 entry->prev = after_where; 814 entry->next = after_where->next; 815 entry->next->prev = entry; 816 after_where->next = entry; 817 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 818 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 819 } 820 821 static __inline void 822 vm_map_entry_unlink(vm_map_t map, 823 vm_map_entry_t entry) 824 { 825 vm_map_entry_t prev; 826 vm_map_entry_t next; 827 828 ASSERT_VM_MAP_LOCKED(map); 829 830 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 831 panic("vm_map_entry_unlink: attempt to mess with " 832 "locked entry! %p", entry); 833 } 834 prev = entry->prev; 835 next = entry->next; 836 next->prev = prev; 837 prev->next = next; 838 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 839 map->nentries--; 840 } 841 842 /* 843 * Finds the map entry containing (or immediately preceding) the specified 844 * address in the given map. The entry is returned in (*entry). 845 * 846 * The boolean result indicates whether the address is actually contained 847 * in the map. 848 * 849 * The related map must be locked. 850 * No other requirements. 851 */ 852 boolean_t 853 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 854 { 855 vm_map_entry_t tmp; 856 vm_map_entry_t last; 857 858 ASSERT_VM_MAP_LOCKED(map); 859 #if 0 860 /* 861 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 862 * the hint code with the red-black lookup meets with system crashes 863 * and lockups. We do not yet know why. 864 * 865 * It is possible that the problem is related to the setting 866 * of the hint during map_entry deletion, in the code specified 867 * at the GGG comment later on in this file. 868 * 869 * YYY More likely it's because this function can be called with 870 * a shared lock on the map, resulting in map->hint updates possibly 871 * racing. Fixed now but untested. 872 */ 873 /* 874 * Quickly check the cached hint, there's a good chance of a match. 875 */ 876 tmp = map->hint; 877 cpu_ccfence(); 878 if (tmp != &map->header) { 879 if (address >= tmp->start && address < tmp->end) { 880 *entry = tmp; 881 return(TRUE); 882 } 883 } 884 #endif 885 886 /* 887 * Locate the record from the top of the tree. 'last' tracks the 888 * closest prior record and is returned if no match is found, which 889 * in binary tree terms means tracking the most recent right-branch 890 * taken. If there is no prior record, &map->header is returned. 891 */ 892 last = &map->header; 893 tmp = RB_ROOT(&map->rb_root); 894 895 while (tmp) { 896 if (address >= tmp->start) { 897 if (address < tmp->end) { 898 *entry = tmp; 899 map->hint = tmp; 900 return(TRUE); 901 } 902 last = tmp; 903 tmp = RB_RIGHT(tmp, rb_entry); 904 } else { 905 tmp = RB_LEFT(tmp, rb_entry); 906 } 907 } 908 *entry = last; 909 return (FALSE); 910 } 911 912 /* 913 * Inserts the given whole VM object into the target map at the specified 914 * address range. The object's size should match that of the address range. 915 * 916 * The map must be exclusively locked. 917 * The object must be held. 918 * The caller must have reserved sufficient vm_map_entry structures. 919 * 920 * If object is non-NULL, ref count must be bumped by caller prior to 921 * making call to account for the new entry. 922 */ 923 int 924 vm_map_insert(vm_map_t map, int *countp, 925 vm_object_t object, vm_ooffset_t offset, 926 vm_offset_t start, vm_offset_t end, 927 vm_maptype_t maptype, 928 vm_prot_t prot, vm_prot_t max, 929 int cow) 930 { 931 vm_map_entry_t new_entry; 932 vm_map_entry_t prev_entry; 933 vm_map_entry_t temp_entry; 934 vm_eflags_t protoeflags; 935 int must_drop = 0; 936 937 ASSERT_VM_MAP_LOCKED(map); 938 if (object) 939 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 940 941 /* 942 * Check that the start and end points are not bogus. 943 */ 944 if ((start < map->min_offset) || (end > map->max_offset) || 945 (start >= end)) 946 return (KERN_INVALID_ADDRESS); 947 948 /* 949 * Find the entry prior to the proposed starting address; if it's part 950 * of an existing entry, this range is bogus. 951 */ 952 if (vm_map_lookup_entry(map, start, &temp_entry)) 953 return (KERN_NO_SPACE); 954 955 prev_entry = temp_entry; 956 957 /* 958 * Assert that the next entry doesn't overlap the end point. 959 */ 960 961 if ((prev_entry->next != &map->header) && 962 (prev_entry->next->start < end)) 963 return (KERN_NO_SPACE); 964 965 protoeflags = 0; 966 967 if (cow & MAP_COPY_ON_WRITE) 968 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 969 970 if (cow & MAP_NOFAULT) { 971 protoeflags |= MAP_ENTRY_NOFAULT; 972 973 KASSERT(object == NULL, 974 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 975 } 976 if (cow & MAP_DISABLE_SYNCER) 977 protoeflags |= MAP_ENTRY_NOSYNC; 978 if (cow & MAP_DISABLE_COREDUMP) 979 protoeflags |= MAP_ENTRY_NOCOREDUMP; 980 if (cow & MAP_IS_STACK) 981 protoeflags |= MAP_ENTRY_STACK; 982 if (cow & MAP_IS_KSTACK) 983 protoeflags |= MAP_ENTRY_KSTACK; 984 985 lwkt_gettoken(&map->token); 986 987 if (object) { 988 /* 989 * When object is non-NULL, it could be shared with another 990 * process. We have to set or clear OBJ_ONEMAPPING 991 * appropriately. 992 * 993 * NOTE: This flag is only applicable to DEFAULT and SWAP 994 * objects and will already be clear in other types 995 * of objects, so a shared object lock is ok for 996 * VNODE objects. 997 */ 998 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 999 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1000 } 1001 } 1002 else if ((prev_entry != &map->header) && 1003 (prev_entry->eflags == protoeflags) && 1004 (prev_entry->end == start) && 1005 (prev_entry->wired_count == 0) && 1006 prev_entry->maptype == maptype && 1007 ((prev_entry->object.vm_object == NULL) || 1008 vm_object_coalesce(prev_entry->object.vm_object, 1009 OFF_TO_IDX(prev_entry->offset), 1010 (vm_size_t)(prev_entry->end - prev_entry->start), 1011 (vm_size_t)(end - prev_entry->end)))) { 1012 /* 1013 * We were able to extend the object. Determine if we 1014 * can extend the previous map entry to include the 1015 * new range as well. 1016 */ 1017 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1018 (prev_entry->protection == prot) && 1019 (prev_entry->max_protection == max)) { 1020 map->size += (end - prev_entry->end); 1021 prev_entry->end = end; 1022 vm_map_simplify_entry(map, prev_entry, countp); 1023 lwkt_reltoken(&map->token); 1024 return (KERN_SUCCESS); 1025 } 1026 1027 /* 1028 * If we can extend the object but cannot extend the 1029 * map entry, we have to create a new map entry. We 1030 * must bump the ref count on the extended object to 1031 * account for it. object may be NULL. 1032 */ 1033 object = prev_entry->object.vm_object; 1034 offset = prev_entry->offset + 1035 (prev_entry->end - prev_entry->start); 1036 if (object) { 1037 vm_object_hold(object); 1038 vm_object_chain_wait(object, 0); 1039 vm_object_reference_locked(object); 1040 must_drop = 1; 1041 } 1042 } 1043 1044 /* 1045 * NOTE: if conditionals fail, object can be NULL here. This occurs 1046 * in things like the buffer map where we manage kva but do not manage 1047 * backing objects. 1048 */ 1049 1050 /* 1051 * Create a new entry 1052 */ 1053 1054 new_entry = vm_map_entry_create(map, countp); 1055 new_entry->start = start; 1056 new_entry->end = end; 1057 1058 new_entry->maptype = maptype; 1059 new_entry->eflags = protoeflags; 1060 new_entry->object.vm_object = object; 1061 new_entry->offset = offset; 1062 new_entry->aux.master_pde = 0; 1063 1064 new_entry->inheritance = VM_INHERIT_DEFAULT; 1065 new_entry->protection = prot; 1066 new_entry->max_protection = max; 1067 new_entry->wired_count = 0; 1068 1069 /* 1070 * Insert the new entry into the list 1071 */ 1072 1073 vm_map_entry_link(map, prev_entry, new_entry); 1074 map->size += new_entry->end - new_entry->start; 1075 1076 /* 1077 * Update the free space hint. Entries cannot overlap. 1078 * An exact comparison is needed to avoid matching 1079 * against the map->header. 1080 */ 1081 if ((map->first_free == prev_entry) && 1082 (prev_entry->end == new_entry->start)) { 1083 map->first_free = new_entry; 1084 } 1085 1086 #if 0 1087 /* 1088 * Temporarily removed to avoid MAP_STACK panic, due to 1089 * MAP_STACK being a huge hack. Will be added back in 1090 * when MAP_STACK (and the user stack mapping) is fixed. 1091 */ 1092 /* 1093 * It may be possible to simplify the entry 1094 */ 1095 vm_map_simplify_entry(map, new_entry, countp); 1096 #endif 1097 1098 /* 1099 * Try to pre-populate the page table. Mappings governed by virtual 1100 * page tables cannot be prepopulated without a lot of work, so 1101 * don't try. 1102 */ 1103 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1104 maptype != VM_MAPTYPE_VPAGETABLE) { 1105 int dorelock = 0; 1106 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) { 1107 dorelock = 1; 1108 vm_object_lock_swap(); 1109 vm_object_drop(object); 1110 } 1111 pmap_object_init_pt(map->pmap, start, prot, 1112 object, OFF_TO_IDX(offset), end - start, 1113 cow & MAP_PREFAULT_PARTIAL); 1114 if (dorelock) { 1115 vm_object_hold(object); 1116 vm_object_lock_swap(); 1117 } 1118 } 1119 if (must_drop) 1120 vm_object_drop(object); 1121 1122 lwkt_reltoken(&map->token); 1123 return (KERN_SUCCESS); 1124 } 1125 1126 /* 1127 * Find sufficient space for `length' bytes in the given map, starting at 1128 * `start'. Returns 0 on success, 1 on no space. 1129 * 1130 * This function will returned an arbitrarily aligned pointer. If no 1131 * particular alignment is required you should pass align as 1. Note that 1132 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1133 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1134 * argument. 1135 * 1136 * 'align' should be a power of 2 but is not required to be. 1137 * 1138 * The map must be exclusively locked. 1139 * No other requirements. 1140 */ 1141 int 1142 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1143 vm_size_t align, int flags, vm_offset_t *addr) 1144 { 1145 vm_map_entry_t entry, next; 1146 vm_offset_t end; 1147 vm_offset_t align_mask; 1148 1149 if (start < map->min_offset) 1150 start = map->min_offset; 1151 if (start > map->max_offset) 1152 return (1); 1153 1154 /* 1155 * If the alignment is not a power of 2 we will have to use 1156 * a mod/division, set align_mask to a special value. 1157 */ 1158 if ((align | (align - 1)) + 1 != (align << 1)) 1159 align_mask = (vm_offset_t)-1; 1160 else 1161 align_mask = align - 1; 1162 1163 /* 1164 * Look for the first possible address; if there's already something 1165 * at this address, we have to start after it. 1166 */ 1167 if (start == map->min_offset) { 1168 if ((entry = map->first_free) != &map->header) 1169 start = entry->end; 1170 } else { 1171 vm_map_entry_t tmp; 1172 1173 if (vm_map_lookup_entry(map, start, &tmp)) 1174 start = tmp->end; 1175 entry = tmp; 1176 } 1177 1178 /* 1179 * Look through the rest of the map, trying to fit a new region in the 1180 * gap between existing regions, or after the very last region. 1181 */ 1182 for (;; start = (entry = next)->end) { 1183 /* 1184 * Adjust the proposed start by the requested alignment, 1185 * be sure that we didn't wrap the address. 1186 */ 1187 if (align_mask == (vm_offset_t)-1) 1188 end = ((start + align - 1) / align) * align; 1189 else 1190 end = (start + align_mask) & ~align_mask; 1191 if (end < start) 1192 return (1); 1193 start = end; 1194 /* 1195 * Find the end of the proposed new region. Be sure we didn't 1196 * go beyond the end of the map, or wrap around the address. 1197 * Then check to see if this is the last entry or if the 1198 * proposed end fits in the gap between this and the next 1199 * entry. 1200 */ 1201 end = start + length; 1202 if (end > map->max_offset || end < start) 1203 return (1); 1204 next = entry->next; 1205 1206 /* 1207 * If the next entry's start address is beyond the desired 1208 * end address we may have found a good entry. 1209 * 1210 * If the next entry is a stack mapping we do not map into 1211 * the stack's reserved space. 1212 * 1213 * XXX continue to allow mapping into the stack's reserved 1214 * space if doing a MAP_STACK mapping inside a MAP_STACK 1215 * mapping, for backwards compatibility. But the caller 1216 * really should use MAP_STACK | MAP_TRYFIXED if they 1217 * want to do that. 1218 */ 1219 if (next == &map->header) 1220 break; 1221 if (next->start >= end) { 1222 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1223 break; 1224 if (flags & MAP_STACK) 1225 break; 1226 if (next->start - next->aux.avail_ssize >= end) 1227 break; 1228 } 1229 } 1230 map->hint = entry; 1231 1232 /* 1233 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1234 * if it fails. The kernel_map is locked and nothing can steal 1235 * our address space if pmap_growkernel() blocks. 1236 * 1237 * NOTE: This may be unconditionally called for kldload areas on 1238 * x86_64 because these do not bump kernel_vm_end (which would 1239 * fill 128G worth of page tables!). Therefore we must not 1240 * retry. 1241 */ 1242 if (map == &kernel_map) { 1243 vm_offset_t kstop; 1244 1245 kstop = round_page(start + length); 1246 if (kstop > kernel_vm_end) 1247 pmap_growkernel(start, kstop); 1248 } 1249 *addr = start; 1250 return (0); 1251 } 1252 1253 /* 1254 * vm_map_find finds an unallocated region in the target address map with 1255 * the given length and allocates it. The search is defined to be first-fit 1256 * from the specified address; the region found is returned in the same 1257 * parameter. 1258 * 1259 * If object is non-NULL, ref count must be bumped by caller 1260 * prior to making call to account for the new entry. 1261 * 1262 * No requirements. This function will lock the map temporarily. 1263 */ 1264 int 1265 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1266 vm_offset_t *addr, vm_size_t length, vm_size_t align, 1267 boolean_t fitit, 1268 vm_maptype_t maptype, 1269 vm_prot_t prot, vm_prot_t max, 1270 int cow) 1271 { 1272 vm_offset_t start; 1273 int result; 1274 int count; 1275 1276 start = *addr; 1277 1278 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1279 vm_map_lock(map); 1280 if (object) 1281 vm_object_hold_shared(object); 1282 if (fitit) { 1283 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1284 if (object) 1285 vm_object_drop(object); 1286 vm_map_unlock(map); 1287 vm_map_entry_release(count); 1288 return (KERN_NO_SPACE); 1289 } 1290 start = *addr; 1291 } 1292 result = vm_map_insert(map, &count, object, offset, 1293 start, start + length, 1294 maptype, 1295 prot, max, 1296 cow); 1297 if (object) 1298 vm_object_drop(object); 1299 vm_map_unlock(map); 1300 vm_map_entry_release(count); 1301 1302 return (result); 1303 } 1304 1305 /* 1306 * Simplify the given map entry by merging with either neighbor. This 1307 * routine also has the ability to merge with both neighbors. 1308 * 1309 * This routine guarentees that the passed entry remains valid (though 1310 * possibly extended). When merging, this routine may delete one or 1311 * both neighbors. No action is taken on entries which have their 1312 * in-transition flag set. 1313 * 1314 * The map must be exclusively locked. 1315 */ 1316 void 1317 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1318 { 1319 vm_map_entry_t next, prev; 1320 vm_size_t prevsize, esize; 1321 1322 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1323 ++mycpu->gd_cnt.v_intrans_coll; 1324 return; 1325 } 1326 1327 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1328 return; 1329 1330 prev = entry->prev; 1331 if (prev != &map->header) { 1332 prevsize = prev->end - prev->start; 1333 if ( (prev->end == entry->start) && 1334 (prev->maptype == entry->maptype) && 1335 (prev->object.vm_object == entry->object.vm_object) && 1336 (!prev->object.vm_object || 1337 (prev->offset + prevsize == entry->offset)) && 1338 (prev->eflags == entry->eflags) && 1339 (prev->protection == entry->protection) && 1340 (prev->max_protection == entry->max_protection) && 1341 (prev->inheritance == entry->inheritance) && 1342 (prev->wired_count == entry->wired_count)) { 1343 if (map->first_free == prev) 1344 map->first_free = entry; 1345 if (map->hint == prev) 1346 map->hint = entry; 1347 vm_map_entry_unlink(map, prev); 1348 entry->start = prev->start; 1349 entry->offset = prev->offset; 1350 if (prev->object.vm_object) 1351 vm_object_deallocate(prev->object.vm_object); 1352 vm_map_entry_dispose(map, prev, countp); 1353 } 1354 } 1355 1356 next = entry->next; 1357 if (next != &map->header) { 1358 esize = entry->end - entry->start; 1359 if ((entry->end == next->start) && 1360 (next->maptype == entry->maptype) && 1361 (next->object.vm_object == entry->object.vm_object) && 1362 (!entry->object.vm_object || 1363 (entry->offset + esize == next->offset)) && 1364 (next->eflags == entry->eflags) && 1365 (next->protection == entry->protection) && 1366 (next->max_protection == entry->max_protection) && 1367 (next->inheritance == entry->inheritance) && 1368 (next->wired_count == entry->wired_count)) { 1369 if (map->first_free == next) 1370 map->first_free = entry; 1371 if (map->hint == next) 1372 map->hint = entry; 1373 vm_map_entry_unlink(map, next); 1374 entry->end = next->end; 1375 if (next->object.vm_object) 1376 vm_object_deallocate(next->object.vm_object); 1377 vm_map_entry_dispose(map, next, countp); 1378 } 1379 } 1380 } 1381 1382 /* 1383 * Asserts that the given entry begins at or after the specified address. 1384 * If necessary, it splits the entry into two. 1385 */ 1386 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1387 { \ 1388 if (startaddr > entry->start) \ 1389 _vm_map_clip_start(map, entry, startaddr, countp); \ 1390 } 1391 1392 /* 1393 * This routine is called only when it is known that the entry must be split. 1394 * 1395 * The map must be exclusively locked. 1396 */ 1397 static void 1398 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1399 int *countp) 1400 { 1401 vm_map_entry_t new_entry; 1402 1403 /* 1404 * Split off the front portion -- note that we must insert the new 1405 * entry BEFORE this one, so that this entry has the specified 1406 * starting address. 1407 */ 1408 1409 vm_map_simplify_entry(map, entry, countp); 1410 1411 /* 1412 * If there is no object backing this entry, we might as well create 1413 * one now. If we defer it, an object can get created after the map 1414 * is clipped, and individual objects will be created for the split-up 1415 * map. This is a bit of a hack, but is also about the best place to 1416 * put this improvement. 1417 */ 1418 if (entry->object.vm_object == NULL && !map->system_map) { 1419 vm_map_entry_allocate_object(entry); 1420 } 1421 1422 new_entry = vm_map_entry_create(map, countp); 1423 *new_entry = *entry; 1424 1425 new_entry->end = start; 1426 entry->offset += (start - entry->start); 1427 entry->start = start; 1428 1429 vm_map_entry_link(map, entry->prev, new_entry); 1430 1431 switch(entry->maptype) { 1432 case VM_MAPTYPE_NORMAL: 1433 case VM_MAPTYPE_VPAGETABLE: 1434 if (new_entry->object.vm_object) { 1435 vm_object_hold(new_entry->object.vm_object); 1436 vm_object_chain_wait(new_entry->object.vm_object, 0); 1437 vm_object_reference_locked(new_entry->object.vm_object); 1438 vm_object_drop(new_entry->object.vm_object); 1439 } 1440 break; 1441 default: 1442 break; 1443 } 1444 } 1445 1446 /* 1447 * Asserts that the given entry ends at or before the specified address. 1448 * If necessary, it splits the entry into two. 1449 * 1450 * The map must be exclusively locked. 1451 */ 1452 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1453 { \ 1454 if (endaddr < entry->end) \ 1455 _vm_map_clip_end(map, entry, endaddr, countp); \ 1456 } 1457 1458 /* 1459 * This routine is called only when it is known that the entry must be split. 1460 * 1461 * The map must be exclusively locked. 1462 */ 1463 static void 1464 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1465 int *countp) 1466 { 1467 vm_map_entry_t new_entry; 1468 1469 /* 1470 * If there is no object backing this entry, we might as well create 1471 * one now. If we defer it, an object can get created after the map 1472 * is clipped, and individual objects will be created for the split-up 1473 * map. This is a bit of a hack, but is also about the best place to 1474 * put this improvement. 1475 */ 1476 1477 if (entry->object.vm_object == NULL && !map->system_map) { 1478 vm_map_entry_allocate_object(entry); 1479 } 1480 1481 /* 1482 * Create a new entry and insert it AFTER the specified entry 1483 */ 1484 1485 new_entry = vm_map_entry_create(map, countp); 1486 *new_entry = *entry; 1487 1488 new_entry->start = entry->end = end; 1489 new_entry->offset += (end - entry->start); 1490 1491 vm_map_entry_link(map, entry, new_entry); 1492 1493 switch(entry->maptype) { 1494 case VM_MAPTYPE_NORMAL: 1495 case VM_MAPTYPE_VPAGETABLE: 1496 if (new_entry->object.vm_object) { 1497 vm_object_hold(new_entry->object.vm_object); 1498 vm_object_chain_wait(new_entry->object.vm_object, 0); 1499 vm_object_reference_locked(new_entry->object.vm_object); 1500 vm_object_drop(new_entry->object.vm_object); 1501 } 1502 break; 1503 default: 1504 break; 1505 } 1506 } 1507 1508 /* 1509 * Asserts that the starting and ending region addresses fall within the 1510 * valid range for the map. 1511 */ 1512 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1513 { \ 1514 if (start < vm_map_min(map)) \ 1515 start = vm_map_min(map); \ 1516 if (end > vm_map_max(map)) \ 1517 end = vm_map_max(map); \ 1518 if (start > end) \ 1519 start = end; \ 1520 } 1521 1522 /* 1523 * Used to block when an in-transition collison occurs. The map 1524 * is unlocked for the sleep and relocked before the return. 1525 */ 1526 void 1527 vm_map_transition_wait(vm_map_t map) 1528 { 1529 tsleep_interlock(map, 0); 1530 vm_map_unlock(map); 1531 tsleep(map, PINTERLOCKED, "vment", 0); 1532 vm_map_lock(map); 1533 } 1534 1535 /* 1536 * When we do blocking operations with the map lock held it is 1537 * possible that a clip might have occured on our in-transit entry, 1538 * requiring an adjustment to the entry in our loop. These macros 1539 * help the pageable and clip_range code deal with the case. The 1540 * conditional costs virtually nothing if no clipping has occured. 1541 */ 1542 1543 #define CLIP_CHECK_BACK(entry, save_start) \ 1544 do { \ 1545 while (entry->start != save_start) { \ 1546 entry = entry->prev; \ 1547 KASSERT(entry != &map->header, ("bad entry clip")); \ 1548 } \ 1549 } while(0) 1550 1551 #define CLIP_CHECK_FWD(entry, save_end) \ 1552 do { \ 1553 while (entry->end != save_end) { \ 1554 entry = entry->next; \ 1555 KASSERT(entry != &map->header, ("bad entry clip")); \ 1556 } \ 1557 } while(0) 1558 1559 1560 /* 1561 * Clip the specified range and return the base entry. The 1562 * range may cover several entries starting at the returned base 1563 * and the first and last entry in the covering sequence will be 1564 * properly clipped to the requested start and end address. 1565 * 1566 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1567 * flag. 1568 * 1569 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1570 * covered by the requested range. 1571 * 1572 * The map must be exclusively locked on entry and will remain locked 1573 * on return. If no range exists or the range contains holes and you 1574 * specified that no holes were allowed, NULL will be returned. This 1575 * routine may temporarily unlock the map in order avoid a deadlock when 1576 * sleeping. 1577 */ 1578 static 1579 vm_map_entry_t 1580 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1581 int *countp, int flags) 1582 { 1583 vm_map_entry_t start_entry; 1584 vm_map_entry_t entry; 1585 1586 /* 1587 * Locate the entry and effect initial clipping. The in-transition 1588 * case does not occur very often so do not try to optimize it. 1589 */ 1590 again: 1591 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1592 return (NULL); 1593 entry = start_entry; 1594 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1595 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1596 ++mycpu->gd_cnt.v_intrans_coll; 1597 ++mycpu->gd_cnt.v_intrans_wait; 1598 vm_map_transition_wait(map); 1599 /* 1600 * entry and/or start_entry may have been clipped while 1601 * we slept, or may have gone away entirely. We have 1602 * to restart from the lookup. 1603 */ 1604 goto again; 1605 } 1606 1607 /* 1608 * Since we hold an exclusive map lock we do not have to restart 1609 * after clipping, even though clipping may block in zalloc. 1610 */ 1611 vm_map_clip_start(map, entry, start, countp); 1612 vm_map_clip_end(map, entry, end, countp); 1613 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1614 1615 /* 1616 * Scan entries covered by the range. When working on the next 1617 * entry a restart need only re-loop on the current entry which 1618 * we have already locked, since 'next' may have changed. Also, 1619 * even though entry is safe, it may have been clipped so we 1620 * have to iterate forwards through the clip after sleeping. 1621 */ 1622 while (entry->next != &map->header && entry->next->start < end) { 1623 vm_map_entry_t next = entry->next; 1624 1625 if (flags & MAP_CLIP_NO_HOLES) { 1626 if (next->start > entry->end) { 1627 vm_map_unclip_range(map, start_entry, 1628 start, entry->end, countp, flags); 1629 return(NULL); 1630 } 1631 } 1632 1633 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1634 vm_offset_t save_end = entry->end; 1635 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1636 ++mycpu->gd_cnt.v_intrans_coll; 1637 ++mycpu->gd_cnt.v_intrans_wait; 1638 vm_map_transition_wait(map); 1639 1640 /* 1641 * clips might have occured while we blocked. 1642 */ 1643 CLIP_CHECK_FWD(entry, save_end); 1644 CLIP_CHECK_BACK(start_entry, start); 1645 continue; 1646 } 1647 /* 1648 * No restart necessary even though clip_end may block, we 1649 * are holding the map lock. 1650 */ 1651 vm_map_clip_end(map, next, end, countp); 1652 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1653 entry = next; 1654 } 1655 if (flags & MAP_CLIP_NO_HOLES) { 1656 if (entry->end != end) { 1657 vm_map_unclip_range(map, start_entry, 1658 start, entry->end, countp, flags); 1659 return(NULL); 1660 } 1661 } 1662 return(start_entry); 1663 } 1664 1665 /* 1666 * Undo the effect of vm_map_clip_range(). You should pass the same 1667 * flags and the same range that you passed to vm_map_clip_range(). 1668 * This code will clear the in-transition flag on the entries and 1669 * wake up anyone waiting. This code will also simplify the sequence 1670 * and attempt to merge it with entries before and after the sequence. 1671 * 1672 * The map must be locked on entry and will remain locked on return. 1673 * 1674 * Note that you should also pass the start_entry returned by 1675 * vm_map_clip_range(). However, if you block between the two calls 1676 * with the map unlocked please be aware that the start_entry may 1677 * have been clipped and you may need to scan it backwards to find 1678 * the entry corresponding with the original start address. You are 1679 * responsible for this, vm_map_unclip_range() expects the correct 1680 * start_entry to be passed to it and will KASSERT otherwise. 1681 */ 1682 static 1683 void 1684 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1685 vm_offset_t start, vm_offset_t end, 1686 int *countp, int flags) 1687 { 1688 vm_map_entry_t entry; 1689 1690 entry = start_entry; 1691 1692 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1693 while (entry != &map->header && entry->start < end) { 1694 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1695 ("in-transition flag not set during unclip on: %p", 1696 entry)); 1697 KASSERT(entry->end <= end, 1698 ("unclip_range: tail wasn't clipped")); 1699 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1700 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1701 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1702 wakeup(map); 1703 } 1704 entry = entry->next; 1705 } 1706 1707 /* 1708 * Simplification does not block so there is no restart case. 1709 */ 1710 entry = start_entry; 1711 while (entry != &map->header && entry->start < end) { 1712 vm_map_simplify_entry(map, entry, countp); 1713 entry = entry->next; 1714 } 1715 } 1716 1717 /* 1718 * Mark the given range as handled by a subordinate map. 1719 * 1720 * This range must have been created with vm_map_find(), and no other 1721 * operations may have been performed on this range prior to calling 1722 * vm_map_submap(). 1723 * 1724 * Submappings cannot be removed. 1725 * 1726 * No requirements. 1727 */ 1728 int 1729 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1730 { 1731 vm_map_entry_t entry; 1732 int result = KERN_INVALID_ARGUMENT; 1733 int count; 1734 1735 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1736 vm_map_lock(map); 1737 1738 VM_MAP_RANGE_CHECK(map, start, end); 1739 1740 if (vm_map_lookup_entry(map, start, &entry)) { 1741 vm_map_clip_start(map, entry, start, &count); 1742 } else { 1743 entry = entry->next; 1744 } 1745 1746 vm_map_clip_end(map, entry, end, &count); 1747 1748 if ((entry->start == start) && (entry->end == end) && 1749 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1750 (entry->object.vm_object == NULL)) { 1751 entry->object.sub_map = submap; 1752 entry->maptype = VM_MAPTYPE_SUBMAP; 1753 result = KERN_SUCCESS; 1754 } 1755 vm_map_unlock(map); 1756 vm_map_entry_release(count); 1757 1758 return (result); 1759 } 1760 1761 /* 1762 * Sets the protection of the specified address region in the target map. 1763 * If "set_max" is specified, the maximum protection is to be set; 1764 * otherwise, only the current protection is affected. 1765 * 1766 * The protection is not applicable to submaps, but is applicable to normal 1767 * maps and maps governed by virtual page tables. For example, when operating 1768 * on a virtual page table our protection basically controls how COW occurs 1769 * on the backing object, whereas the virtual page table abstraction itself 1770 * is an abstraction for userland. 1771 * 1772 * No requirements. 1773 */ 1774 int 1775 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1776 vm_prot_t new_prot, boolean_t set_max) 1777 { 1778 vm_map_entry_t current; 1779 vm_map_entry_t entry; 1780 int count; 1781 1782 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1783 vm_map_lock(map); 1784 1785 VM_MAP_RANGE_CHECK(map, start, end); 1786 1787 if (vm_map_lookup_entry(map, start, &entry)) { 1788 vm_map_clip_start(map, entry, start, &count); 1789 } else { 1790 entry = entry->next; 1791 } 1792 1793 /* 1794 * Make a first pass to check for protection violations. 1795 */ 1796 current = entry; 1797 while ((current != &map->header) && (current->start < end)) { 1798 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1799 vm_map_unlock(map); 1800 vm_map_entry_release(count); 1801 return (KERN_INVALID_ARGUMENT); 1802 } 1803 if ((new_prot & current->max_protection) != new_prot) { 1804 vm_map_unlock(map); 1805 vm_map_entry_release(count); 1806 return (KERN_PROTECTION_FAILURE); 1807 } 1808 current = current->next; 1809 } 1810 1811 /* 1812 * Go back and fix up protections. [Note that clipping is not 1813 * necessary the second time.] 1814 */ 1815 current = entry; 1816 1817 while ((current != &map->header) && (current->start < end)) { 1818 vm_prot_t old_prot; 1819 1820 vm_map_clip_end(map, current, end, &count); 1821 1822 old_prot = current->protection; 1823 if (set_max) { 1824 current->protection = 1825 (current->max_protection = new_prot) & 1826 old_prot; 1827 } else { 1828 current->protection = new_prot; 1829 } 1830 1831 /* 1832 * Update physical map if necessary. Worry about copy-on-write 1833 * here -- CHECK THIS XXX 1834 */ 1835 1836 if (current->protection != old_prot) { 1837 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1838 VM_PROT_ALL) 1839 1840 pmap_protect(map->pmap, current->start, 1841 current->end, 1842 current->protection & MASK(current)); 1843 #undef MASK 1844 } 1845 1846 vm_map_simplify_entry(map, current, &count); 1847 1848 current = current->next; 1849 } 1850 1851 vm_map_unlock(map); 1852 vm_map_entry_release(count); 1853 return (KERN_SUCCESS); 1854 } 1855 1856 /* 1857 * This routine traverses a processes map handling the madvise 1858 * system call. Advisories are classified as either those effecting 1859 * the vm_map_entry structure, or those effecting the underlying 1860 * objects. 1861 * 1862 * The <value> argument is used for extended madvise calls. 1863 * 1864 * No requirements. 1865 */ 1866 int 1867 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1868 int behav, off_t value) 1869 { 1870 vm_map_entry_t current, entry; 1871 int modify_map = 0; 1872 int error = 0; 1873 int count; 1874 1875 /* 1876 * Some madvise calls directly modify the vm_map_entry, in which case 1877 * we need to use an exclusive lock on the map and we need to perform 1878 * various clipping operations. Otherwise we only need a read-lock 1879 * on the map. 1880 */ 1881 1882 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1883 1884 switch(behav) { 1885 case MADV_NORMAL: 1886 case MADV_SEQUENTIAL: 1887 case MADV_RANDOM: 1888 case MADV_NOSYNC: 1889 case MADV_AUTOSYNC: 1890 case MADV_NOCORE: 1891 case MADV_CORE: 1892 case MADV_SETMAP: 1893 case MADV_INVAL: 1894 modify_map = 1; 1895 vm_map_lock(map); 1896 break; 1897 case MADV_WILLNEED: 1898 case MADV_DONTNEED: 1899 case MADV_FREE: 1900 vm_map_lock_read(map); 1901 break; 1902 default: 1903 vm_map_entry_release(count); 1904 return (EINVAL); 1905 } 1906 1907 /* 1908 * Locate starting entry and clip if necessary. 1909 */ 1910 1911 VM_MAP_RANGE_CHECK(map, start, end); 1912 1913 if (vm_map_lookup_entry(map, start, &entry)) { 1914 if (modify_map) 1915 vm_map_clip_start(map, entry, start, &count); 1916 } else { 1917 entry = entry->next; 1918 } 1919 1920 if (modify_map) { 1921 /* 1922 * madvise behaviors that are implemented in the vm_map_entry. 1923 * 1924 * We clip the vm_map_entry so that behavioral changes are 1925 * limited to the specified address range. 1926 */ 1927 for (current = entry; 1928 (current != &map->header) && (current->start < end); 1929 current = current->next 1930 ) { 1931 if (current->maptype == VM_MAPTYPE_SUBMAP) 1932 continue; 1933 1934 vm_map_clip_end(map, current, end, &count); 1935 1936 switch (behav) { 1937 case MADV_NORMAL: 1938 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1939 break; 1940 case MADV_SEQUENTIAL: 1941 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1942 break; 1943 case MADV_RANDOM: 1944 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1945 break; 1946 case MADV_NOSYNC: 1947 current->eflags |= MAP_ENTRY_NOSYNC; 1948 break; 1949 case MADV_AUTOSYNC: 1950 current->eflags &= ~MAP_ENTRY_NOSYNC; 1951 break; 1952 case MADV_NOCORE: 1953 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1954 break; 1955 case MADV_CORE: 1956 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1957 break; 1958 case MADV_INVAL: 1959 /* 1960 * Invalidate the related pmap entries, used 1961 * to flush portions of the real kernel's 1962 * pmap when the caller has removed or 1963 * modified existing mappings in a virtual 1964 * page table. 1965 */ 1966 pmap_remove(map->pmap, 1967 current->start, current->end); 1968 break; 1969 case MADV_SETMAP: 1970 /* 1971 * Set the page directory page for a map 1972 * governed by a virtual page table. Mark 1973 * the entry as being governed by a virtual 1974 * page table if it is not. 1975 * 1976 * XXX the page directory page is stored 1977 * in the avail_ssize field if the map_entry. 1978 * 1979 * XXX the map simplification code does not 1980 * compare this field so weird things may 1981 * happen if you do not apply this function 1982 * to the entire mapping governed by the 1983 * virtual page table. 1984 */ 1985 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1986 error = EINVAL; 1987 break; 1988 } 1989 current->aux.master_pde = value; 1990 pmap_remove(map->pmap, 1991 current->start, current->end); 1992 break; 1993 default: 1994 error = EINVAL; 1995 break; 1996 } 1997 vm_map_simplify_entry(map, current, &count); 1998 } 1999 vm_map_unlock(map); 2000 } else { 2001 vm_pindex_t pindex; 2002 int count; 2003 2004 /* 2005 * madvise behaviors that are implemented in the underlying 2006 * vm_object. 2007 * 2008 * Since we don't clip the vm_map_entry, we have to clip 2009 * the vm_object pindex and count. 2010 * 2011 * NOTE! We currently do not support these functions on 2012 * virtual page tables. 2013 */ 2014 for (current = entry; 2015 (current != &map->header) && (current->start < end); 2016 current = current->next 2017 ) { 2018 vm_offset_t useStart; 2019 2020 if (current->maptype != VM_MAPTYPE_NORMAL) 2021 continue; 2022 2023 pindex = OFF_TO_IDX(current->offset); 2024 count = atop(current->end - current->start); 2025 useStart = current->start; 2026 2027 if (current->start < start) { 2028 pindex += atop(start - current->start); 2029 count -= atop(start - current->start); 2030 useStart = start; 2031 } 2032 if (current->end > end) 2033 count -= atop(current->end - end); 2034 2035 if (count <= 0) 2036 continue; 2037 2038 vm_object_madvise(current->object.vm_object, 2039 pindex, count, behav); 2040 2041 /* 2042 * Try to populate the page table. Mappings governed 2043 * by virtual page tables cannot be pre-populated 2044 * without a lot of work so don't try. 2045 */ 2046 if (behav == MADV_WILLNEED && 2047 current->maptype != VM_MAPTYPE_VPAGETABLE) { 2048 pmap_object_init_pt( 2049 map->pmap, 2050 useStart, 2051 current->protection, 2052 current->object.vm_object, 2053 pindex, 2054 (count << PAGE_SHIFT), 2055 MAP_PREFAULT_MADVISE 2056 ); 2057 } 2058 } 2059 vm_map_unlock_read(map); 2060 } 2061 vm_map_entry_release(count); 2062 return(error); 2063 } 2064 2065 2066 /* 2067 * Sets the inheritance of the specified address range in the target map. 2068 * Inheritance affects how the map will be shared with child maps at the 2069 * time of vm_map_fork. 2070 */ 2071 int 2072 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2073 vm_inherit_t new_inheritance) 2074 { 2075 vm_map_entry_t entry; 2076 vm_map_entry_t temp_entry; 2077 int count; 2078 2079 switch (new_inheritance) { 2080 case VM_INHERIT_NONE: 2081 case VM_INHERIT_COPY: 2082 case VM_INHERIT_SHARE: 2083 break; 2084 default: 2085 return (KERN_INVALID_ARGUMENT); 2086 } 2087 2088 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2089 vm_map_lock(map); 2090 2091 VM_MAP_RANGE_CHECK(map, start, end); 2092 2093 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2094 entry = temp_entry; 2095 vm_map_clip_start(map, entry, start, &count); 2096 } else 2097 entry = temp_entry->next; 2098 2099 while ((entry != &map->header) && (entry->start < end)) { 2100 vm_map_clip_end(map, entry, end, &count); 2101 2102 entry->inheritance = new_inheritance; 2103 2104 vm_map_simplify_entry(map, entry, &count); 2105 2106 entry = entry->next; 2107 } 2108 vm_map_unlock(map); 2109 vm_map_entry_release(count); 2110 return (KERN_SUCCESS); 2111 } 2112 2113 /* 2114 * Implement the semantics of mlock 2115 */ 2116 int 2117 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2118 boolean_t new_pageable) 2119 { 2120 vm_map_entry_t entry; 2121 vm_map_entry_t start_entry; 2122 vm_offset_t end; 2123 int rv = KERN_SUCCESS; 2124 int count; 2125 2126 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2127 vm_map_lock(map); 2128 VM_MAP_RANGE_CHECK(map, start, real_end); 2129 end = real_end; 2130 2131 start_entry = vm_map_clip_range(map, start, end, &count, 2132 MAP_CLIP_NO_HOLES); 2133 if (start_entry == NULL) { 2134 vm_map_unlock(map); 2135 vm_map_entry_release(count); 2136 return (KERN_INVALID_ADDRESS); 2137 } 2138 2139 if (new_pageable == 0) { 2140 entry = start_entry; 2141 while ((entry != &map->header) && (entry->start < end)) { 2142 vm_offset_t save_start; 2143 vm_offset_t save_end; 2144 2145 /* 2146 * Already user wired or hard wired (trivial cases) 2147 */ 2148 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2149 entry = entry->next; 2150 continue; 2151 } 2152 if (entry->wired_count != 0) { 2153 entry->wired_count++; 2154 entry->eflags |= MAP_ENTRY_USER_WIRED; 2155 entry = entry->next; 2156 continue; 2157 } 2158 2159 /* 2160 * A new wiring requires instantiation of appropriate 2161 * management structures and the faulting in of the 2162 * page. 2163 */ 2164 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2165 int copyflag = entry->eflags & 2166 MAP_ENTRY_NEEDS_COPY; 2167 if (copyflag && ((entry->protection & 2168 VM_PROT_WRITE) != 0)) { 2169 vm_map_entry_shadow(entry, 0); 2170 } else if (entry->object.vm_object == NULL && 2171 !map->system_map) { 2172 vm_map_entry_allocate_object(entry); 2173 } 2174 } 2175 entry->wired_count++; 2176 entry->eflags |= MAP_ENTRY_USER_WIRED; 2177 2178 /* 2179 * Now fault in the area. Note that vm_fault_wire() 2180 * may release the map lock temporarily, it will be 2181 * relocked on return. The in-transition 2182 * flag protects the entries. 2183 */ 2184 save_start = entry->start; 2185 save_end = entry->end; 2186 rv = vm_fault_wire(map, entry, TRUE, 0); 2187 if (rv) { 2188 CLIP_CHECK_BACK(entry, save_start); 2189 for (;;) { 2190 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2191 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2192 entry->wired_count = 0; 2193 if (entry->end == save_end) 2194 break; 2195 entry = entry->next; 2196 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2197 } 2198 end = save_start; /* unwire the rest */ 2199 break; 2200 } 2201 /* 2202 * note that even though the entry might have been 2203 * clipped, the USER_WIRED flag we set prevents 2204 * duplication so we do not have to do a 2205 * clip check. 2206 */ 2207 entry = entry->next; 2208 } 2209 2210 /* 2211 * If we failed fall through to the unwiring section to 2212 * unwire what we had wired so far. 'end' has already 2213 * been adjusted. 2214 */ 2215 if (rv) 2216 new_pageable = 1; 2217 2218 /* 2219 * start_entry might have been clipped if we unlocked the 2220 * map and blocked. No matter how clipped it has gotten 2221 * there should be a fragment that is on our start boundary. 2222 */ 2223 CLIP_CHECK_BACK(start_entry, start); 2224 } 2225 2226 /* 2227 * Deal with the unwiring case. 2228 */ 2229 if (new_pageable) { 2230 /* 2231 * This is the unwiring case. We must first ensure that the 2232 * range to be unwired is really wired down. We know there 2233 * are no holes. 2234 */ 2235 entry = start_entry; 2236 while ((entry != &map->header) && (entry->start < end)) { 2237 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2238 rv = KERN_INVALID_ARGUMENT; 2239 goto done; 2240 } 2241 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2242 entry = entry->next; 2243 } 2244 2245 /* 2246 * Now decrement the wiring count for each region. If a region 2247 * becomes completely unwired, unwire its physical pages and 2248 * mappings. 2249 */ 2250 /* 2251 * The map entries are processed in a loop, checking to 2252 * make sure the entry is wired and asserting it has a wired 2253 * count. However, another loop was inserted more-or-less in 2254 * the middle of the unwiring path. This loop picks up the 2255 * "entry" loop variable from the first loop without first 2256 * setting it to start_entry. Naturally, the secound loop 2257 * is never entered and the pages backing the entries are 2258 * never unwired. This can lead to a leak of wired pages. 2259 */ 2260 entry = start_entry; 2261 while ((entry != &map->header) && (entry->start < end)) { 2262 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2263 ("expected USER_WIRED on entry %p", entry)); 2264 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2265 entry->wired_count--; 2266 if (entry->wired_count == 0) 2267 vm_fault_unwire(map, entry); 2268 entry = entry->next; 2269 } 2270 } 2271 done: 2272 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2273 MAP_CLIP_NO_HOLES); 2274 map->timestamp++; 2275 vm_map_unlock(map); 2276 vm_map_entry_release(count); 2277 return (rv); 2278 } 2279 2280 /* 2281 * Sets the pageability of the specified address range in the target map. 2282 * Regions specified as not pageable require locked-down physical 2283 * memory and physical page maps. 2284 * 2285 * The map must not be locked, but a reference must remain to the map 2286 * throughout the call. 2287 * 2288 * This function may be called via the zalloc path and must properly 2289 * reserve map entries for kernel_map. 2290 * 2291 * No requirements. 2292 */ 2293 int 2294 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2295 { 2296 vm_map_entry_t entry; 2297 vm_map_entry_t start_entry; 2298 vm_offset_t end; 2299 int rv = KERN_SUCCESS; 2300 int count; 2301 2302 if (kmflags & KM_KRESERVE) 2303 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2304 else 2305 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2306 vm_map_lock(map); 2307 VM_MAP_RANGE_CHECK(map, start, real_end); 2308 end = real_end; 2309 2310 start_entry = vm_map_clip_range(map, start, end, &count, 2311 MAP_CLIP_NO_HOLES); 2312 if (start_entry == NULL) { 2313 vm_map_unlock(map); 2314 rv = KERN_INVALID_ADDRESS; 2315 goto failure; 2316 } 2317 if ((kmflags & KM_PAGEABLE) == 0) { 2318 /* 2319 * Wiring. 2320 * 2321 * 1. Holding the write lock, we create any shadow or zero-fill 2322 * objects that need to be created. Then we clip each map 2323 * entry to the region to be wired and increment its wiring 2324 * count. We create objects before clipping the map entries 2325 * to avoid object proliferation. 2326 * 2327 * 2. We downgrade to a read lock, and call vm_fault_wire to 2328 * fault in the pages for any newly wired area (wired_count is 2329 * 1). 2330 * 2331 * Downgrading to a read lock for vm_fault_wire avoids a 2332 * possible deadlock with another process that may have faulted 2333 * on one of the pages to be wired (it would mark the page busy, 2334 * blocking us, then in turn block on the map lock that we 2335 * hold). Because of problems in the recursive lock package, 2336 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2337 * any actions that require the write lock must be done 2338 * beforehand. Because we keep the read lock on the map, the 2339 * copy-on-write status of the entries we modify here cannot 2340 * change. 2341 */ 2342 entry = start_entry; 2343 while ((entry != &map->header) && (entry->start < end)) { 2344 /* 2345 * Trivial case if the entry is already wired 2346 */ 2347 if (entry->wired_count) { 2348 entry->wired_count++; 2349 entry = entry->next; 2350 continue; 2351 } 2352 2353 /* 2354 * The entry is being newly wired, we have to setup 2355 * appropriate management structures. A shadow 2356 * object is required for a copy-on-write region, 2357 * or a normal object for a zero-fill region. We 2358 * do not have to do this for entries that point to sub 2359 * maps because we won't hold the lock on the sub map. 2360 */ 2361 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2362 int copyflag = entry->eflags & 2363 MAP_ENTRY_NEEDS_COPY; 2364 if (copyflag && ((entry->protection & 2365 VM_PROT_WRITE) != 0)) { 2366 vm_map_entry_shadow(entry, 0); 2367 } else if (entry->object.vm_object == NULL && 2368 !map->system_map) { 2369 vm_map_entry_allocate_object(entry); 2370 } 2371 } 2372 2373 entry->wired_count++; 2374 entry = entry->next; 2375 } 2376 2377 /* 2378 * Pass 2. 2379 */ 2380 2381 /* 2382 * HACK HACK HACK HACK 2383 * 2384 * vm_fault_wire() temporarily unlocks the map to avoid 2385 * deadlocks. The in-transition flag from vm_map_clip_range 2386 * call should protect us from changes while the map is 2387 * unlocked. T 2388 * 2389 * NOTE: Previously this comment stated that clipping might 2390 * still occur while the entry is unlocked, but from 2391 * what I can tell it actually cannot. 2392 * 2393 * It is unclear whether the CLIP_CHECK_*() calls 2394 * are still needed but we keep them in anyway. 2395 * 2396 * HACK HACK HACK HACK 2397 */ 2398 2399 entry = start_entry; 2400 while (entry != &map->header && entry->start < end) { 2401 /* 2402 * If vm_fault_wire fails for any page we need to undo 2403 * what has been done. We decrement the wiring count 2404 * for those pages which have not yet been wired (now) 2405 * and unwire those that have (later). 2406 */ 2407 vm_offset_t save_start = entry->start; 2408 vm_offset_t save_end = entry->end; 2409 2410 if (entry->wired_count == 1) 2411 rv = vm_fault_wire(map, entry, FALSE, kmflags); 2412 if (rv) { 2413 CLIP_CHECK_BACK(entry, save_start); 2414 for (;;) { 2415 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2416 entry->wired_count = 0; 2417 if (entry->end == save_end) 2418 break; 2419 entry = entry->next; 2420 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2421 } 2422 end = save_start; 2423 break; 2424 } 2425 CLIP_CHECK_FWD(entry, save_end); 2426 entry = entry->next; 2427 } 2428 2429 /* 2430 * If a failure occured undo everything by falling through 2431 * to the unwiring code. 'end' has already been adjusted 2432 * appropriately. 2433 */ 2434 if (rv) 2435 kmflags |= KM_PAGEABLE; 2436 2437 /* 2438 * start_entry is still IN_TRANSITION but may have been 2439 * clipped since vm_fault_wire() unlocks and relocks the 2440 * map. No matter how clipped it has gotten there should 2441 * be a fragment that is on our start boundary. 2442 */ 2443 CLIP_CHECK_BACK(start_entry, start); 2444 } 2445 2446 if (kmflags & KM_PAGEABLE) { 2447 /* 2448 * This is the unwiring case. We must first ensure that the 2449 * range to be unwired is really wired down. We know there 2450 * are no holes. 2451 */ 2452 entry = start_entry; 2453 while ((entry != &map->header) && (entry->start < end)) { 2454 if (entry->wired_count == 0) { 2455 rv = KERN_INVALID_ARGUMENT; 2456 goto done; 2457 } 2458 entry = entry->next; 2459 } 2460 2461 /* 2462 * Now decrement the wiring count for each region. If a region 2463 * becomes completely unwired, unwire its physical pages and 2464 * mappings. 2465 */ 2466 entry = start_entry; 2467 while ((entry != &map->header) && (entry->start < end)) { 2468 entry->wired_count--; 2469 if (entry->wired_count == 0) 2470 vm_fault_unwire(map, entry); 2471 entry = entry->next; 2472 } 2473 } 2474 done: 2475 vm_map_unclip_range(map, start_entry, start, real_end, 2476 &count, MAP_CLIP_NO_HOLES); 2477 map->timestamp++; 2478 vm_map_unlock(map); 2479 failure: 2480 if (kmflags & KM_KRESERVE) 2481 vm_map_entry_krelease(count); 2482 else 2483 vm_map_entry_release(count); 2484 return (rv); 2485 } 2486 2487 /* 2488 * Mark a newly allocated address range as wired but do not fault in 2489 * the pages. The caller is expected to load the pages into the object. 2490 * 2491 * The map must be locked on entry and will remain locked on return. 2492 * No other requirements. 2493 */ 2494 void 2495 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2496 int *countp) 2497 { 2498 vm_map_entry_t scan; 2499 vm_map_entry_t entry; 2500 2501 entry = vm_map_clip_range(map, addr, addr + size, 2502 countp, MAP_CLIP_NO_HOLES); 2503 for (scan = entry; 2504 scan != &map->header && scan->start < addr + size; 2505 scan = scan->next) { 2506 KKASSERT(scan->wired_count == 0); 2507 scan->wired_count = 1; 2508 } 2509 vm_map_unclip_range(map, entry, addr, addr + size, 2510 countp, MAP_CLIP_NO_HOLES); 2511 } 2512 2513 /* 2514 * Push any dirty cached pages in the address range to their pager. 2515 * If syncio is TRUE, dirty pages are written synchronously. 2516 * If invalidate is TRUE, any cached pages are freed as well. 2517 * 2518 * This routine is called by sys_msync() 2519 * 2520 * Returns an error if any part of the specified range is not mapped. 2521 * 2522 * No requirements. 2523 */ 2524 int 2525 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2526 boolean_t syncio, boolean_t invalidate) 2527 { 2528 vm_map_entry_t current; 2529 vm_map_entry_t entry; 2530 vm_size_t size; 2531 vm_object_t object; 2532 vm_object_t tobj; 2533 vm_ooffset_t offset; 2534 2535 vm_map_lock_read(map); 2536 VM_MAP_RANGE_CHECK(map, start, end); 2537 if (!vm_map_lookup_entry(map, start, &entry)) { 2538 vm_map_unlock_read(map); 2539 return (KERN_INVALID_ADDRESS); 2540 } 2541 lwkt_gettoken(&map->token); 2542 2543 /* 2544 * Make a first pass to check for holes. 2545 */ 2546 for (current = entry; current->start < end; current = current->next) { 2547 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2548 lwkt_reltoken(&map->token); 2549 vm_map_unlock_read(map); 2550 return (KERN_INVALID_ARGUMENT); 2551 } 2552 if (end > current->end && 2553 (current->next == &map->header || 2554 current->end != current->next->start)) { 2555 lwkt_reltoken(&map->token); 2556 vm_map_unlock_read(map); 2557 return (KERN_INVALID_ADDRESS); 2558 } 2559 } 2560 2561 if (invalidate) 2562 pmap_remove(vm_map_pmap(map), start, end); 2563 2564 /* 2565 * Make a second pass, cleaning/uncaching pages from the indicated 2566 * objects as we go. 2567 */ 2568 for (current = entry; current->start < end; current = current->next) { 2569 offset = current->offset + (start - current->start); 2570 size = (end <= current->end ? end : current->end) - start; 2571 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2572 vm_map_t smap; 2573 vm_map_entry_t tentry; 2574 vm_size_t tsize; 2575 2576 smap = current->object.sub_map; 2577 vm_map_lock_read(smap); 2578 vm_map_lookup_entry(smap, offset, &tentry); 2579 tsize = tentry->end - offset; 2580 if (tsize < size) 2581 size = tsize; 2582 object = tentry->object.vm_object; 2583 offset = tentry->offset + (offset - tentry->start); 2584 vm_map_unlock_read(smap); 2585 } else { 2586 object = current->object.vm_object; 2587 } 2588 2589 if (object) 2590 vm_object_hold(object); 2591 2592 /* 2593 * Note that there is absolutely no sense in writing out 2594 * anonymous objects, so we track down the vnode object 2595 * to write out. 2596 * We invalidate (remove) all pages from the address space 2597 * anyway, for semantic correctness. 2598 * 2599 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2600 * may start out with a NULL object. 2601 */ 2602 while (object && (tobj = object->backing_object) != NULL) { 2603 vm_object_hold(tobj); 2604 if (tobj == object->backing_object) { 2605 vm_object_lock_swap(); 2606 offset += object->backing_object_offset; 2607 vm_object_drop(object); 2608 object = tobj; 2609 if (object->size < OFF_TO_IDX(offset + size)) 2610 size = IDX_TO_OFF(object->size) - 2611 offset; 2612 break; 2613 } 2614 vm_object_drop(tobj); 2615 } 2616 if (object && (object->type == OBJT_VNODE) && 2617 (current->protection & VM_PROT_WRITE) && 2618 (object->flags & OBJ_NOMSYNC) == 0) { 2619 /* 2620 * Flush pages if writing is allowed, invalidate them 2621 * if invalidation requested. Pages undergoing I/O 2622 * will be ignored by vm_object_page_remove(). 2623 * 2624 * We cannot lock the vnode and then wait for paging 2625 * to complete without deadlocking against vm_fault. 2626 * Instead we simply call vm_object_page_remove() and 2627 * allow it to block internally on a page-by-page 2628 * basis when it encounters pages undergoing async 2629 * I/O. 2630 */ 2631 int flags; 2632 2633 /* no chain wait needed for vnode objects */ 2634 vm_object_reference_locked(object); 2635 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2636 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2637 flags |= invalidate ? OBJPC_INVAL : 0; 2638 2639 /* 2640 * When operating on a virtual page table just 2641 * flush the whole object. XXX we probably ought 2642 * to 2643 */ 2644 switch(current->maptype) { 2645 case VM_MAPTYPE_NORMAL: 2646 vm_object_page_clean(object, 2647 OFF_TO_IDX(offset), 2648 OFF_TO_IDX(offset + size + PAGE_MASK), 2649 flags); 2650 break; 2651 case VM_MAPTYPE_VPAGETABLE: 2652 vm_object_page_clean(object, 0, 0, flags); 2653 break; 2654 } 2655 vn_unlock(((struct vnode *)object->handle)); 2656 vm_object_deallocate_locked(object); 2657 } 2658 if (object && invalidate && 2659 ((object->type == OBJT_VNODE) || 2660 (object->type == OBJT_DEVICE) || 2661 (object->type == OBJT_MGTDEVICE))) { 2662 int clean_only = 2663 ((object->type == OBJT_DEVICE) || 2664 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE; 2665 /* no chain wait needed for vnode/device objects */ 2666 vm_object_reference_locked(object); 2667 switch(current->maptype) { 2668 case VM_MAPTYPE_NORMAL: 2669 vm_object_page_remove(object, 2670 OFF_TO_IDX(offset), 2671 OFF_TO_IDX(offset + size + PAGE_MASK), 2672 clean_only); 2673 break; 2674 case VM_MAPTYPE_VPAGETABLE: 2675 vm_object_page_remove(object, 0, 0, clean_only); 2676 break; 2677 } 2678 vm_object_deallocate_locked(object); 2679 } 2680 start += size; 2681 if (object) 2682 vm_object_drop(object); 2683 } 2684 2685 lwkt_reltoken(&map->token); 2686 vm_map_unlock_read(map); 2687 2688 return (KERN_SUCCESS); 2689 } 2690 2691 /* 2692 * Make the region specified by this entry pageable. 2693 * 2694 * The vm_map must be exclusively locked. 2695 */ 2696 static void 2697 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2698 { 2699 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2700 entry->wired_count = 0; 2701 vm_fault_unwire(map, entry); 2702 } 2703 2704 /* 2705 * Deallocate the given entry from the target map. 2706 * 2707 * The vm_map must be exclusively locked. 2708 */ 2709 static void 2710 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2711 { 2712 vm_map_entry_unlink(map, entry); 2713 map->size -= entry->end - entry->start; 2714 2715 switch(entry->maptype) { 2716 case VM_MAPTYPE_NORMAL: 2717 case VM_MAPTYPE_VPAGETABLE: 2718 vm_object_deallocate(entry->object.vm_object); 2719 break; 2720 default: 2721 break; 2722 } 2723 2724 vm_map_entry_dispose(map, entry, countp); 2725 } 2726 2727 /* 2728 * Deallocates the given address range from the target map. 2729 * 2730 * The vm_map must be exclusively locked. 2731 */ 2732 int 2733 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2734 { 2735 vm_object_t object; 2736 vm_map_entry_t entry; 2737 vm_map_entry_t first_entry; 2738 2739 ASSERT_VM_MAP_LOCKED(map); 2740 lwkt_gettoken(&map->token); 2741 again: 2742 /* 2743 * Find the start of the region, and clip it. Set entry to point 2744 * at the first record containing the requested address or, if no 2745 * such record exists, the next record with a greater address. The 2746 * loop will run from this point until a record beyond the termination 2747 * address is encountered. 2748 * 2749 * map->hint must be adjusted to not point to anything we delete, 2750 * so set it to the entry prior to the one being deleted. 2751 * 2752 * GGG see other GGG comment. 2753 */ 2754 if (vm_map_lookup_entry(map, start, &first_entry)) { 2755 entry = first_entry; 2756 vm_map_clip_start(map, entry, start, countp); 2757 map->hint = entry->prev; /* possible problem XXX */ 2758 } else { 2759 map->hint = first_entry; /* possible problem XXX */ 2760 entry = first_entry->next; 2761 } 2762 2763 /* 2764 * If a hole opens up prior to the current first_free then 2765 * adjust first_free. As with map->hint, map->first_free 2766 * cannot be left set to anything we might delete. 2767 */ 2768 if (entry == &map->header) { 2769 map->first_free = &map->header; 2770 } else if (map->first_free->start >= start) { 2771 map->first_free = entry->prev; 2772 } 2773 2774 /* 2775 * Step through all entries in this region 2776 */ 2777 while ((entry != &map->header) && (entry->start < end)) { 2778 vm_map_entry_t next; 2779 vm_offset_t s, e; 2780 vm_pindex_t offidxstart, offidxend, count; 2781 2782 /* 2783 * If we hit an in-transition entry we have to sleep and 2784 * retry. It's easier (and not really slower) to just retry 2785 * since this case occurs so rarely and the hint is already 2786 * pointing at the right place. We have to reset the 2787 * start offset so as not to accidently delete an entry 2788 * another process just created in vacated space. 2789 */ 2790 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2791 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2792 start = entry->start; 2793 ++mycpu->gd_cnt.v_intrans_coll; 2794 ++mycpu->gd_cnt.v_intrans_wait; 2795 vm_map_transition_wait(map); 2796 goto again; 2797 } 2798 vm_map_clip_end(map, entry, end, countp); 2799 2800 s = entry->start; 2801 e = entry->end; 2802 next = entry->next; 2803 2804 offidxstart = OFF_TO_IDX(entry->offset); 2805 count = OFF_TO_IDX(e - s); 2806 object = entry->object.vm_object; 2807 2808 /* 2809 * Unwire before removing addresses from the pmap; otherwise, 2810 * unwiring will put the entries back in the pmap. 2811 */ 2812 if (entry->wired_count != 0) 2813 vm_map_entry_unwire(map, entry); 2814 2815 offidxend = offidxstart + count; 2816 2817 if (object == &kernel_object) { 2818 vm_object_hold(object); 2819 vm_object_page_remove(object, offidxstart, 2820 offidxend, FALSE); 2821 vm_object_drop(object); 2822 } else if (object && object->type != OBJT_DEFAULT && 2823 object->type != OBJT_SWAP) { 2824 /* 2825 * vnode object routines cannot be chain-locked, 2826 * but since we aren't removing pages from the 2827 * object here we can use a shared hold. 2828 */ 2829 vm_object_hold_shared(object); 2830 pmap_remove(map->pmap, s, e); 2831 vm_object_drop(object); 2832 } else if (object) { 2833 vm_object_hold(object); 2834 vm_object_chain_acquire(object, 0); 2835 pmap_remove(map->pmap, s, e); 2836 2837 if (object != NULL && 2838 object->ref_count != 1 && 2839 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 2840 OBJ_ONEMAPPING && 2841 (object->type == OBJT_DEFAULT || 2842 object->type == OBJT_SWAP)) { 2843 vm_object_collapse(object, NULL); 2844 vm_object_page_remove(object, offidxstart, 2845 offidxend, FALSE); 2846 if (object->type == OBJT_SWAP) { 2847 swap_pager_freespace(object, 2848 offidxstart, 2849 count); 2850 } 2851 if (offidxend >= object->size && 2852 offidxstart < object->size) { 2853 object->size = offidxstart; 2854 } 2855 } 2856 vm_object_chain_release(object); 2857 vm_object_drop(object); 2858 } 2859 2860 /* 2861 * Delete the entry (which may delete the object) only after 2862 * removing all pmap entries pointing to its pages. 2863 * (Otherwise, its page frames may be reallocated, and any 2864 * modify bits will be set in the wrong object!) 2865 */ 2866 vm_map_entry_delete(map, entry, countp); 2867 entry = next; 2868 } 2869 lwkt_reltoken(&map->token); 2870 return (KERN_SUCCESS); 2871 } 2872 2873 /* 2874 * Remove the given address range from the target map. 2875 * This is the exported form of vm_map_delete. 2876 * 2877 * No requirements. 2878 */ 2879 int 2880 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2881 { 2882 int result; 2883 int count; 2884 2885 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2886 vm_map_lock(map); 2887 VM_MAP_RANGE_CHECK(map, start, end); 2888 result = vm_map_delete(map, start, end, &count); 2889 vm_map_unlock(map); 2890 vm_map_entry_release(count); 2891 2892 return (result); 2893 } 2894 2895 /* 2896 * Assert that the target map allows the specified privilege on the 2897 * entire address region given. The entire region must be allocated. 2898 * 2899 * The caller must specify whether the vm_map is already locked or not. 2900 */ 2901 boolean_t 2902 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2903 vm_prot_t protection, boolean_t have_lock) 2904 { 2905 vm_map_entry_t entry; 2906 vm_map_entry_t tmp_entry; 2907 boolean_t result; 2908 2909 if (have_lock == FALSE) 2910 vm_map_lock_read(map); 2911 2912 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2913 if (have_lock == FALSE) 2914 vm_map_unlock_read(map); 2915 return (FALSE); 2916 } 2917 entry = tmp_entry; 2918 2919 result = TRUE; 2920 while (start < end) { 2921 if (entry == &map->header) { 2922 result = FALSE; 2923 break; 2924 } 2925 /* 2926 * No holes allowed! 2927 */ 2928 2929 if (start < entry->start) { 2930 result = FALSE; 2931 break; 2932 } 2933 /* 2934 * Check protection associated with entry. 2935 */ 2936 2937 if ((entry->protection & protection) != protection) { 2938 result = FALSE; 2939 break; 2940 } 2941 /* go to next entry */ 2942 2943 start = entry->end; 2944 entry = entry->next; 2945 } 2946 if (have_lock == FALSE) 2947 vm_map_unlock_read(map); 2948 return (result); 2949 } 2950 2951 /* 2952 * If appropriate this function shadows the original object with a new object 2953 * and moves the VM pages from the original object to the new object. 2954 * The original object will also be collapsed, if possible. 2955 * 2956 * We can only do this for normal memory objects with a single mapping, and 2957 * it only makes sense to do it if there are 2 or more refs on the original 2958 * object. i.e. typically a memory object that has been extended into 2959 * multiple vm_map_entry's with non-overlapping ranges. 2960 * 2961 * This makes it easier to remove unused pages and keeps object inheritance 2962 * from being a negative impact on memory usage. 2963 * 2964 * On return the (possibly new) entry->object.vm_object will have an 2965 * additional ref on it for the caller to dispose of (usually by cloning 2966 * the vm_map_entry). The additional ref had to be done in this routine 2967 * to avoid racing a collapse. The object's ONEMAPPING flag will also be 2968 * cleared. 2969 * 2970 * The vm_map must be locked and its token held. 2971 */ 2972 static void 2973 vm_map_split(vm_map_entry_t entry) 2974 { 2975 /* OPTIMIZED */ 2976 vm_object_t oobject, nobject, bobject; 2977 vm_offset_t s, e; 2978 vm_page_t m; 2979 vm_pindex_t offidxstart, offidxend, idx; 2980 vm_size_t size; 2981 vm_ooffset_t offset; 2982 int useshadowlist; 2983 2984 /* 2985 * Optimize away object locks for vnode objects. Important exit/exec 2986 * critical path. 2987 * 2988 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag 2989 * anyway. 2990 */ 2991 oobject = entry->object.vm_object; 2992 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) { 2993 vm_object_reference_quick(oobject); 2994 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 2995 return; 2996 } 2997 2998 /* 2999 * Setup. Chain lock the original object throughout the entire 3000 * routine to prevent new page faults from occuring. 3001 * 3002 * XXX can madvise WILLNEED interfere with us too? 3003 */ 3004 vm_object_hold(oobject); 3005 vm_object_chain_acquire(oobject, 0); 3006 3007 /* 3008 * Original object cannot be split? Might have also changed state. 3009 */ 3010 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT && 3011 oobject->type != OBJT_SWAP)) { 3012 vm_object_chain_release(oobject); 3013 vm_object_reference_locked(oobject); 3014 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3015 vm_object_drop(oobject); 3016 return; 3017 } 3018 3019 /* 3020 * Collapse original object with its backing store as an 3021 * optimization to reduce chain lengths when possible. 3022 * 3023 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's 3024 * for oobject, so there's no point collapsing it. 3025 * 3026 * Then re-check whether the object can be split. 3027 */ 3028 vm_object_collapse(oobject, NULL); 3029 3030 if (oobject->ref_count <= 1 || 3031 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) || 3032 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) { 3033 vm_object_chain_release(oobject); 3034 vm_object_reference_locked(oobject); 3035 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3036 vm_object_drop(oobject); 3037 return; 3038 } 3039 3040 /* 3041 * Acquire the chain lock on the backing object. 3042 * 3043 * Give bobject an additional ref count for when it will be shadowed 3044 * by nobject. 3045 */ 3046 useshadowlist = 0; 3047 if ((bobject = oobject->backing_object) != NULL) { 3048 if (bobject->type != OBJT_VNODE) { 3049 useshadowlist = 1; 3050 vm_object_hold(bobject); 3051 vm_object_chain_wait(bobject, 0); 3052 vm_object_reference_locked(bobject); 3053 vm_object_chain_acquire(bobject, 0); 3054 KKASSERT(bobject->backing_object == bobject); 3055 KKASSERT((bobject->flags & OBJ_DEAD) == 0); 3056 } else { 3057 vm_object_reference_quick(bobject); 3058 } 3059 } 3060 3061 /* 3062 * Calculate the object page range and allocate the new object. 3063 */ 3064 offset = entry->offset; 3065 s = entry->start; 3066 e = entry->end; 3067 3068 offidxstart = OFF_TO_IDX(offset); 3069 offidxend = offidxstart + OFF_TO_IDX(e - s); 3070 size = offidxend - offidxstart; 3071 3072 switch(oobject->type) { 3073 case OBJT_DEFAULT: 3074 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size), 3075 VM_PROT_ALL, 0); 3076 break; 3077 case OBJT_SWAP: 3078 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size), 3079 VM_PROT_ALL, 0); 3080 break; 3081 default: 3082 /* not reached */ 3083 nobject = NULL; 3084 KKASSERT(0); 3085 } 3086 3087 if (nobject == NULL) { 3088 if (bobject) { 3089 if (useshadowlist) { 3090 vm_object_chain_release(bobject); 3091 vm_object_deallocate(bobject); 3092 vm_object_drop(bobject); 3093 } else { 3094 vm_object_deallocate(bobject); 3095 } 3096 } 3097 vm_object_chain_release(oobject); 3098 vm_object_reference_locked(oobject); 3099 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3100 vm_object_drop(oobject); 3101 return; 3102 } 3103 3104 /* 3105 * The new object will replace entry->object.vm_object so it needs 3106 * a second reference (the caller expects an additional ref). 3107 */ 3108 vm_object_hold(nobject); 3109 vm_object_reference_locked(nobject); 3110 vm_object_chain_acquire(nobject, 0); 3111 3112 /* 3113 * nobject shadows bobject (oobject already shadows bobject). 3114 */ 3115 if (bobject) { 3116 nobject->backing_object_offset = 3117 oobject->backing_object_offset + IDX_TO_OFF(offidxstart); 3118 nobject->backing_object = bobject; 3119 if (useshadowlist) { 3120 bobject->shadow_count++; 3121 bobject->generation++; 3122 LIST_INSERT_HEAD(&bobject->shadow_head, 3123 nobject, shadow_list); 3124 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/ 3125 vm_object_chain_release(bobject); 3126 vm_object_drop(bobject); 3127 vm_object_set_flag(nobject, OBJ_ONSHADOW); 3128 } 3129 } 3130 3131 /* 3132 * Move the VM pages from oobject to nobject 3133 */ 3134 for (idx = 0; idx < size; idx++) { 3135 vm_page_t m; 3136 3137 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx, 3138 TRUE, "vmpg"); 3139 if (m == NULL) 3140 continue; 3141 3142 /* 3143 * We must wait for pending I/O to complete before we can 3144 * rename the page. 3145 * 3146 * We do not have to VM_PROT_NONE the page as mappings should 3147 * not be changed by this operation. 3148 * 3149 * NOTE: The act of renaming a page updates chaingen for both 3150 * objects. 3151 */ 3152 vm_page_rename(m, nobject, idx); 3153 /* page automatically made dirty by rename and cache handled */ 3154 /* page remains busy */ 3155 } 3156 3157 if (oobject->type == OBJT_SWAP) { 3158 vm_object_pip_add(oobject, 1); 3159 /* 3160 * copy oobject pages into nobject and destroy unneeded 3161 * pages in shadow object. 3162 */ 3163 swap_pager_copy(oobject, nobject, offidxstart, 0); 3164 vm_object_pip_wakeup(oobject); 3165 } 3166 3167 /* 3168 * Wakeup the pages we played with. No spl protection is needed 3169 * for a simple wakeup. 3170 */ 3171 for (idx = 0; idx < size; idx++) { 3172 m = vm_page_lookup(nobject, idx); 3173 if (m) { 3174 KKASSERT(m->flags & PG_BUSY); 3175 vm_page_wakeup(m); 3176 } 3177 } 3178 entry->object.vm_object = nobject; 3179 entry->offset = 0LL; 3180 3181 /* 3182 * Cleanup 3183 * 3184 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the 3185 * related pages were moved and are no longer applicable to the 3186 * original object. 3187 * 3188 * NOTE: Deallocate oobject (due to its entry->object.vm_object being 3189 * replaced by nobject). 3190 */ 3191 vm_object_chain_release(nobject); 3192 vm_object_drop(nobject); 3193 if (bobject && useshadowlist) { 3194 vm_object_chain_release(bobject); 3195 vm_object_drop(bobject); 3196 } 3197 vm_object_chain_release(oobject); 3198 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/ 3199 vm_object_deallocate_locked(oobject); 3200 vm_object_drop(oobject); 3201 } 3202 3203 /* 3204 * Copies the contents of the source entry to the destination 3205 * entry. The entries *must* be aligned properly. 3206 * 3207 * The vm_maps must be exclusively locked. 3208 * The vm_map's token must be held. 3209 * 3210 * Because the maps are locked no faults can be in progress during the 3211 * operation. 3212 */ 3213 static void 3214 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 3215 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 3216 { 3217 vm_object_t src_object; 3218 3219 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 3220 return; 3221 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 3222 return; 3223 3224 if (src_entry->wired_count == 0) { 3225 /* 3226 * If the source entry is marked needs_copy, it is already 3227 * write-protected. 3228 */ 3229 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3230 pmap_protect(src_map->pmap, 3231 src_entry->start, 3232 src_entry->end, 3233 src_entry->protection & ~VM_PROT_WRITE); 3234 } 3235 3236 /* 3237 * Make a copy of the object. 3238 * 3239 * The object must be locked prior to checking the object type 3240 * and for the call to vm_object_collapse() and vm_map_split(). 3241 * We cannot use *_hold() here because the split code will 3242 * probably try to destroy the object. The lock is a pool 3243 * token and doesn't care. 3244 * 3245 * We must bump src_map->timestamp when setting 3246 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault 3247 * to retry, otherwise the concurrent fault might improperly 3248 * install a RW pte when its supposed to be a RO(COW) pte. 3249 * This race can occur because a vnode-backed fault may have 3250 * to temporarily release the map lock. 3251 */ 3252 if (src_entry->object.vm_object != NULL) { 3253 vm_map_split(src_entry); 3254 src_object = src_entry->object.vm_object; 3255 dst_entry->object.vm_object = src_object; 3256 src_entry->eflags |= (MAP_ENTRY_COW | 3257 MAP_ENTRY_NEEDS_COPY); 3258 dst_entry->eflags |= (MAP_ENTRY_COW | 3259 MAP_ENTRY_NEEDS_COPY); 3260 dst_entry->offset = src_entry->offset; 3261 ++src_map->timestamp; 3262 } else { 3263 dst_entry->object.vm_object = NULL; 3264 dst_entry->offset = 0; 3265 } 3266 3267 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3268 dst_entry->end - dst_entry->start, src_entry->start); 3269 } else { 3270 /* 3271 * Of course, wired down pages can't be set copy-on-write. 3272 * Cause wired pages to be copied into the new map by 3273 * simulating faults (the new pages are pageable) 3274 */ 3275 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3276 } 3277 } 3278 3279 /* 3280 * vmspace_fork: 3281 * Create a new process vmspace structure and vm_map 3282 * based on those of an existing process. The new map 3283 * is based on the old map, according to the inheritance 3284 * values on the regions in that map. 3285 * 3286 * The source map must not be locked. 3287 * No requirements. 3288 */ 3289 struct vmspace * 3290 vmspace_fork(struct vmspace *vm1) 3291 { 3292 struct vmspace *vm2; 3293 vm_map_t old_map = &vm1->vm_map; 3294 vm_map_t new_map; 3295 vm_map_entry_t old_entry; 3296 vm_map_entry_t new_entry; 3297 vm_object_t object; 3298 int count; 3299 3300 lwkt_gettoken(&vm1->vm_map.token); 3301 vm_map_lock(old_map); 3302 3303 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3304 lwkt_gettoken(&vm2->vm_map.token); 3305 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3306 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3307 new_map = &vm2->vm_map; /* XXX */ 3308 new_map->timestamp = 1; 3309 3310 vm_map_lock(new_map); 3311 3312 count = 0; 3313 old_entry = old_map->header.next; 3314 while (old_entry != &old_map->header) { 3315 ++count; 3316 old_entry = old_entry->next; 3317 } 3318 3319 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3320 3321 old_entry = old_map->header.next; 3322 while (old_entry != &old_map->header) { 3323 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 3324 panic("vm_map_fork: encountered a submap"); 3325 3326 switch (old_entry->inheritance) { 3327 case VM_INHERIT_NONE: 3328 break; 3329 case VM_INHERIT_SHARE: 3330 /* 3331 * Clone the entry, creating the shared object if 3332 * necessary. 3333 */ 3334 if (old_entry->object.vm_object == NULL) 3335 vm_map_entry_allocate_object(old_entry); 3336 3337 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3338 /* 3339 * Shadow a map_entry which needs a copy, 3340 * replacing its object with a new object 3341 * that points to the old one. Ask the 3342 * shadow code to automatically add an 3343 * additional ref. We can't do it afterwords 3344 * because we might race a collapse. The call 3345 * to vm_map_entry_shadow() will also clear 3346 * OBJ_ONEMAPPING. 3347 */ 3348 vm_map_entry_shadow(old_entry, 1); 3349 } else if (old_entry->object.vm_object) { 3350 /* 3351 * We will make a shared copy of the object, 3352 * and must clear OBJ_ONEMAPPING. 3353 * 3354 * Optimize vnode objects. OBJ_ONEMAPPING 3355 * is non-applicable but clear it anyway, 3356 * and its terminal so we don'th ave to deal 3357 * with chains. Reduces SMP conflicts. 3358 * 3359 * XXX assert that object.vm_object != NULL 3360 * since we allocate it above. 3361 */ 3362 object = old_entry->object.vm_object; 3363 if (object->type == OBJT_VNODE) { 3364 vm_object_reference_quick(object); 3365 vm_object_clear_flag(object, 3366 OBJ_ONEMAPPING); 3367 } else { 3368 vm_object_hold(object); 3369 vm_object_chain_wait(object, 0); 3370 vm_object_reference_locked(object); 3371 vm_object_clear_flag(object, 3372 OBJ_ONEMAPPING); 3373 vm_object_drop(object); 3374 } 3375 } 3376 3377 /* 3378 * Clone the entry. We've already bumped the ref on 3379 * any vm_object. 3380 */ 3381 new_entry = vm_map_entry_create(new_map, &count); 3382 *new_entry = *old_entry; 3383 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3384 new_entry->wired_count = 0; 3385 3386 /* 3387 * Insert the entry into the new map -- we know we're 3388 * inserting at the end of the new map. 3389 */ 3390 3391 vm_map_entry_link(new_map, new_map->header.prev, 3392 new_entry); 3393 3394 /* 3395 * Update the physical map 3396 */ 3397 pmap_copy(new_map->pmap, old_map->pmap, 3398 new_entry->start, 3399 (old_entry->end - old_entry->start), 3400 old_entry->start); 3401 break; 3402 case VM_INHERIT_COPY: 3403 /* 3404 * Clone the entry and link into the map. 3405 */ 3406 new_entry = vm_map_entry_create(new_map, &count); 3407 *new_entry = *old_entry; 3408 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3409 new_entry->wired_count = 0; 3410 new_entry->object.vm_object = NULL; 3411 vm_map_entry_link(new_map, new_map->header.prev, 3412 new_entry); 3413 vm_map_copy_entry(old_map, new_map, old_entry, 3414 new_entry); 3415 break; 3416 } 3417 old_entry = old_entry->next; 3418 } 3419 3420 new_map->size = old_map->size; 3421 vm_map_unlock(old_map); 3422 vm_map_unlock(new_map); 3423 vm_map_entry_release(count); 3424 3425 lwkt_reltoken(&vm2->vm_map.token); 3426 lwkt_reltoken(&vm1->vm_map.token); 3427 3428 return (vm2); 3429 } 3430 3431 /* 3432 * Create an auto-grow stack entry 3433 * 3434 * No requirements. 3435 */ 3436 int 3437 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3438 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3439 { 3440 vm_map_entry_t prev_entry; 3441 vm_map_entry_t new_stack_entry; 3442 vm_size_t init_ssize; 3443 int rv; 3444 int count; 3445 vm_offset_t tmpaddr; 3446 3447 cow |= MAP_IS_STACK; 3448 3449 if (max_ssize < sgrowsiz) 3450 init_ssize = max_ssize; 3451 else 3452 init_ssize = sgrowsiz; 3453 3454 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3455 vm_map_lock(map); 3456 3457 /* 3458 * Find space for the mapping 3459 */ 3460 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3461 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3462 flags, &tmpaddr)) { 3463 vm_map_unlock(map); 3464 vm_map_entry_release(count); 3465 return (KERN_NO_SPACE); 3466 } 3467 addrbos = tmpaddr; 3468 } 3469 3470 /* If addr is already mapped, no go */ 3471 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3472 vm_map_unlock(map); 3473 vm_map_entry_release(count); 3474 return (KERN_NO_SPACE); 3475 } 3476 3477 #if 0 3478 /* XXX already handled by kern_mmap() */ 3479 /* If we would blow our VMEM resource limit, no go */ 3480 if (map->size + init_ssize > 3481 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3482 vm_map_unlock(map); 3483 vm_map_entry_release(count); 3484 return (KERN_NO_SPACE); 3485 } 3486 #endif 3487 3488 /* 3489 * If we can't accomodate max_ssize in the current mapping, 3490 * no go. However, we need to be aware that subsequent user 3491 * mappings might map into the space we have reserved for 3492 * stack, and currently this space is not protected. 3493 * 3494 * Hopefully we will at least detect this condition 3495 * when we try to grow the stack. 3496 */ 3497 if ((prev_entry->next != &map->header) && 3498 (prev_entry->next->start < addrbos + max_ssize)) { 3499 vm_map_unlock(map); 3500 vm_map_entry_release(count); 3501 return (KERN_NO_SPACE); 3502 } 3503 3504 /* 3505 * We initially map a stack of only init_ssize. We will 3506 * grow as needed later. Since this is to be a grow 3507 * down stack, we map at the top of the range. 3508 * 3509 * Note: we would normally expect prot and max to be 3510 * VM_PROT_ALL, and cow to be 0. Possibly we should 3511 * eliminate these as input parameters, and just 3512 * pass these values here in the insert call. 3513 */ 3514 rv = vm_map_insert(map, &count, 3515 NULL, 0, addrbos + max_ssize - init_ssize, 3516 addrbos + max_ssize, 3517 VM_MAPTYPE_NORMAL, 3518 prot, max, 3519 cow); 3520 3521 /* Now set the avail_ssize amount */ 3522 if (rv == KERN_SUCCESS) { 3523 if (prev_entry != &map->header) 3524 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3525 new_stack_entry = prev_entry->next; 3526 if (new_stack_entry->end != addrbos + max_ssize || 3527 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3528 panic ("Bad entry start/end for new stack entry"); 3529 else 3530 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3531 } 3532 3533 vm_map_unlock(map); 3534 vm_map_entry_release(count); 3535 return (rv); 3536 } 3537 3538 /* 3539 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3540 * desired address is already mapped, or if we successfully grow 3541 * the stack. Also returns KERN_SUCCESS if addr is outside the 3542 * stack range (this is strange, but preserves compatibility with 3543 * the grow function in vm_machdep.c). 3544 * 3545 * No requirements. 3546 */ 3547 int 3548 vm_map_growstack (struct proc *p, vm_offset_t addr) 3549 { 3550 vm_map_entry_t prev_entry; 3551 vm_map_entry_t stack_entry; 3552 vm_map_entry_t new_stack_entry; 3553 struct vmspace *vm = p->p_vmspace; 3554 vm_map_t map = &vm->vm_map; 3555 vm_offset_t end; 3556 int grow_amount; 3557 int rv = KERN_SUCCESS; 3558 int is_procstack; 3559 int use_read_lock = 1; 3560 int count; 3561 3562 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3563 Retry: 3564 if (use_read_lock) 3565 vm_map_lock_read(map); 3566 else 3567 vm_map_lock(map); 3568 3569 /* If addr is already in the entry range, no need to grow.*/ 3570 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3571 goto done; 3572 3573 if ((stack_entry = prev_entry->next) == &map->header) 3574 goto done; 3575 if (prev_entry == &map->header) 3576 end = stack_entry->start - stack_entry->aux.avail_ssize; 3577 else 3578 end = prev_entry->end; 3579 3580 /* 3581 * This next test mimics the old grow function in vm_machdep.c. 3582 * It really doesn't quite make sense, but we do it anyway 3583 * for compatibility. 3584 * 3585 * If not growable stack, return success. This signals the 3586 * caller to proceed as he would normally with normal vm. 3587 */ 3588 if (stack_entry->aux.avail_ssize < 1 || 3589 addr >= stack_entry->start || 3590 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3591 goto done; 3592 } 3593 3594 /* Find the minimum grow amount */ 3595 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3596 if (grow_amount > stack_entry->aux.avail_ssize) { 3597 rv = KERN_NO_SPACE; 3598 goto done; 3599 } 3600 3601 /* 3602 * If there is no longer enough space between the entries 3603 * nogo, and adjust the available space. Note: this 3604 * should only happen if the user has mapped into the 3605 * stack area after the stack was created, and is 3606 * probably an error. 3607 * 3608 * This also effectively destroys any guard page the user 3609 * might have intended by limiting the stack size. 3610 */ 3611 if (grow_amount > stack_entry->start - end) { 3612 if (use_read_lock && vm_map_lock_upgrade(map)) { 3613 /* lost lock */ 3614 use_read_lock = 0; 3615 goto Retry; 3616 } 3617 use_read_lock = 0; 3618 stack_entry->aux.avail_ssize = stack_entry->start - end; 3619 rv = KERN_NO_SPACE; 3620 goto done; 3621 } 3622 3623 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3624 3625 /* If this is the main process stack, see if we're over the 3626 * stack limit. 3627 */ 3628 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3629 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3630 rv = KERN_NO_SPACE; 3631 goto done; 3632 } 3633 3634 /* Round up the grow amount modulo SGROWSIZ */ 3635 grow_amount = roundup (grow_amount, sgrowsiz); 3636 if (grow_amount > stack_entry->aux.avail_ssize) { 3637 grow_amount = stack_entry->aux.avail_ssize; 3638 } 3639 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3640 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3641 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3642 ctob(vm->vm_ssize); 3643 } 3644 3645 /* If we would blow our VMEM resource limit, no go */ 3646 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3647 rv = KERN_NO_SPACE; 3648 goto done; 3649 } 3650 3651 if (use_read_lock && vm_map_lock_upgrade(map)) { 3652 /* lost lock */ 3653 use_read_lock = 0; 3654 goto Retry; 3655 } 3656 use_read_lock = 0; 3657 3658 /* Get the preliminary new entry start value */ 3659 addr = stack_entry->start - grow_amount; 3660 3661 /* If this puts us into the previous entry, cut back our growth 3662 * to the available space. Also, see the note above. 3663 */ 3664 if (addr < end) { 3665 stack_entry->aux.avail_ssize = stack_entry->start - end; 3666 addr = end; 3667 } 3668 3669 rv = vm_map_insert(map, &count, 3670 NULL, 0, addr, stack_entry->start, 3671 VM_MAPTYPE_NORMAL, 3672 VM_PROT_ALL, VM_PROT_ALL, 3673 0); 3674 3675 /* Adjust the available stack space by the amount we grew. */ 3676 if (rv == KERN_SUCCESS) { 3677 if (prev_entry != &map->header) 3678 vm_map_clip_end(map, prev_entry, addr, &count); 3679 new_stack_entry = prev_entry->next; 3680 if (new_stack_entry->end != stack_entry->start || 3681 new_stack_entry->start != addr) 3682 panic ("Bad stack grow start/end in new stack entry"); 3683 else { 3684 new_stack_entry->aux.avail_ssize = 3685 stack_entry->aux.avail_ssize - 3686 (new_stack_entry->end - new_stack_entry->start); 3687 if (is_procstack) 3688 vm->vm_ssize += btoc(new_stack_entry->end - 3689 new_stack_entry->start); 3690 } 3691 3692 if (map->flags & MAP_WIREFUTURE) 3693 vm_map_unwire(map, new_stack_entry->start, 3694 new_stack_entry->end, FALSE); 3695 } 3696 3697 done: 3698 if (use_read_lock) 3699 vm_map_unlock_read(map); 3700 else 3701 vm_map_unlock(map); 3702 vm_map_entry_release(count); 3703 return (rv); 3704 } 3705 3706 /* 3707 * Unshare the specified VM space for exec. If other processes are 3708 * mapped to it, then create a new one. The new vmspace is null. 3709 * 3710 * No requirements. 3711 */ 3712 void 3713 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3714 { 3715 struct vmspace *oldvmspace = p->p_vmspace; 3716 struct vmspace *newvmspace; 3717 vm_map_t map = &p->p_vmspace->vm_map; 3718 3719 /* 3720 * If we are execing a resident vmspace we fork it, otherwise 3721 * we create a new vmspace. Note that exitingcnt is not 3722 * copied to the new vmspace. 3723 */ 3724 lwkt_gettoken(&oldvmspace->vm_map.token); 3725 if (vmcopy) { 3726 newvmspace = vmspace_fork(vmcopy); 3727 lwkt_gettoken(&newvmspace->vm_map.token); 3728 } else { 3729 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3730 lwkt_gettoken(&newvmspace->vm_map.token); 3731 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3732 (caddr_t)&oldvmspace->vm_endcopy - 3733 (caddr_t)&oldvmspace->vm_startcopy); 3734 } 3735 3736 /* 3737 * Finish initializing the vmspace before assigning it 3738 * to the process. The vmspace will become the current vmspace 3739 * if p == curproc. 3740 */ 3741 pmap_pinit2(vmspace_pmap(newvmspace)); 3742 pmap_replacevm(p, newvmspace, 0); 3743 lwkt_reltoken(&newvmspace->vm_map.token); 3744 lwkt_reltoken(&oldvmspace->vm_map.token); 3745 vmspace_free(oldvmspace); 3746 } 3747 3748 /* 3749 * Unshare the specified VM space for forcing COW. This 3750 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3751 */ 3752 void 3753 vmspace_unshare(struct proc *p) 3754 { 3755 struct vmspace *oldvmspace = p->p_vmspace; 3756 struct vmspace *newvmspace; 3757 3758 lwkt_gettoken(&oldvmspace->vm_map.token); 3759 if (oldvmspace->vm_sysref.refcnt == 1) { 3760 lwkt_reltoken(&oldvmspace->vm_map.token); 3761 return; 3762 } 3763 newvmspace = vmspace_fork(oldvmspace); 3764 lwkt_gettoken(&newvmspace->vm_map.token); 3765 pmap_pinit2(vmspace_pmap(newvmspace)); 3766 pmap_replacevm(p, newvmspace, 0); 3767 lwkt_reltoken(&newvmspace->vm_map.token); 3768 lwkt_reltoken(&oldvmspace->vm_map.token); 3769 vmspace_free(oldvmspace); 3770 } 3771 3772 /* 3773 * vm_map_hint: return the beginning of the best area suitable for 3774 * creating a new mapping with "prot" protection. 3775 * 3776 * No requirements. 3777 */ 3778 vm_offset_t 3779 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot) 3780 { 3781 struct vmspace *vms = p->p_vmspace; 3782 3783 if (!randomize_mmap || addr != 0) { 3784 /* 3785 * Set a reasonable start point for the hint if it was 3786 * not specified or if it falls within the heap space. 3787 * Hinted mmap()s do not allocate out of the heap space. 3788 */ 3789 if (addr == 0 || 3790 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 3791 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) { 3792 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz); 3793 } 3794 3795 return addr; 3796 } 3797 3798 #ifdef notyet 3799 #ifdef __i386__ 3800 /* 3801 * If executable skip first two pages, otherwise start 3802 * after data + heap region. 3803 */ 3804 if ((prot & VM_PROT_EXECUTE) && 3805 ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) { 3806 addr = (PAGE_SIZE * 2) + 3807 (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1)); 3808 return (round_page(addr)); 3809 } 3810 #endif /* __i386__ */ 3811 #endif /* notyet */ 3812 3813 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ; 3814 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1); 3815 3816 return (round_page(addr)); 3817 } 3818 3819 /* 3820 * Finds the VM object, offset, and protection for a given virtual address 3821 * in the specified map, assuming a page fault of the type specified. 3822 * 3823 * Leaves the map in question locked for read; return values are guaranteed 3824 * until a vm_map_lookup_done call is performed. Note that the map argument 3825 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 3826 * 3827 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 3828 * that fast. 3829 * 3830 * If a lookup is requested with "write protection" specified, the map may 3831 * be changed to perform virtual copying operations, although the data 3832 * referenced will remain the same. 3833 * 3834 * No requirements. 3835 */ 3836 int 3837 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3838 vm_offset_t vaddr, 3839 vm_prot_t fault_typea, 3840 vm_map_entry_t *out_entry, /* OUT */ 3841 vm_object_t *object, /* OUT */ 3842 vm_pindex_t *pindex, /* OUT */ 3843 vm_prot_t *out_prot, /* OUT */ 3844 boolean_t *wired) /* OUT */ 3845 { 3846 vm_map_entry_t entry; 3847 vm_map_t map = *var_map; 3848 vm_prot_t prot; 3849 vm_prot_t fault_type = fault_typea; 3850 int use_read_lock = 1; 3851 int rv = KERN_SUCCESS; 3852 3853 RetryLookup: 3854 if (use_read_lock) 3855 vm_map_lock_read(map); 3856 else 3857 vm_map_lock(map); 3858 3859 /* 3860 * If the map has an interesting hint, try it before calling full 3861 * blown lookup routine. 3862 */ 3863 entry = map->hint; 3864 cpu_ccfence(); 3865 *out_entry = entry; 3866 *object = NULL; 3867 3868 if ((entry == &map->header) || 3869 (vaddr < entry->start) || (vaddr >= entry->end)) { 3870 vm_map_entry_t tmp_entry; 3871 3872 /* 3873 * Entry was either not a valid hint, or the vaddr was not 3874 * contained in the entry, so do a full lookup. 3875 */ 3876 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3877 rv = KERN_INVALID_ADDRESS; 3878 goto done; 3879 } 3880 3881 entry = tmp_entry; 3882 *out_entry = entry; 3883 } 3884 3885 /* 3886 * Handle submaps. 3887 */ 3888 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3889 vm_map_t old_map = map; 3890 3891 *var_map = map = entry->object.sub_map; 3892 if (use_read_lock) 3893 vm_map_unlock_read(old_map); 3894 else 3895 vm_map_unlock(old_map); 3896 use_read_lock = 1; 3897 goto RetryLookup; 3898 } 3899 3900 /* 3901 * Check whether this task is allowed to have this page. 3902 * Note the special case for MAP_ENTRY_COW 3903 * pages with an override. This is to implement a forced 3904 * COW for debuggers. 3905 */ 3906 3907 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3908 prot = entry->max_protection; 3909 else 3910 prot = entry->protection; 3911 3912 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3913 if ((fault_type & prot) != fault_type) { 3914 rv = KERN_PROTECTION_FAILURE; 3915 goto done; 3916 } 3917 3918 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3919 (entry->eflags & MAP_ENTRY_COW) && 3920 (fault_type & VM_PROT_WRITE) && 3921 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3922 rv = KERN_PROTECTION_FAILURE; 3923 goto done; 3924 } 3925 3926 /* 3927 * If this page is not pageable, we have to get it for all possible 3928 * accesses. 3929 */ 3930 *wired = (entry->wired_count != 0); 3931 if (*wired) 3932 prot = fault_type = entry->protection; 3933 3934 /* 3935 * Virtual page tables may need to update the accessed (A) bit 3936 * in a page table entry. Upgrade the fault to a write fault for 3937 * that case if the map will support it. If the map does not support 3938 * it the page table entry simply will not be updated. 3939 */ 3940 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3941 if (prot & VM_PROT_WRITE) 3942 fault_type |= VM_PROT_WRITE; 3943 } 3944 3945 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace && 3946 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) { 3947 if ((prot & VM_PROT_WRITE) == 0) 3948 fault_type |= VM_PROT_WRITE; 3949 } 3950 3951 /* 3952 * If the entry was copy-on-write, we either ... 3953 */ 3954 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3955 /* 3956 * If we want to write the page, we may as well handle that 3957 * now since we've got the map locked. 3958 * 3959 * If we don't need to write the page, we just demote the 3960 * permissions allowed. 3961 */ 3962 3963 if (fault_type & VM_PROT_WRITE) { 3964 /* 3965 * Make a new object, and place it in the object 3966 * chain. Note that no new references have appeared 3967 * -- one just moved from the map to the new 3968 * object. 3969 */ 3970 3971 if (use_read_lock && vm_map_lock_upgrade(map)) { 3972 /* lost lock */ 3973 use_read_lock = 0; 3974 goto RetryLookup; 3975 } 3976 use_read_lock = 0; 3977 3978 vm_map_entry_shadow(entry, 0); 3979 } else { 3980 /* 3981 * We're attempting to read a copy-on-write page -- 3982 * don't allow writes. 3983 */ 3984 3985 prot &= ~VM_PROT_WRITE; 3986 } 3987 } 3988 3989 /* 3990 * Create an object if necessary. 3991 */ 3992 if (entry->object.vm_object == NULL && !map->system_map) { 3993 if (use_read_lock && vm_map_lock_upgrade(map)) { 3994 /* lost lock */ 3995 use_read_lock = 0; 3996 goto RetryLookup; 3997 } 3998 use_read_lock = 0; 3999 vm_map_entry_allocate_object(entry); 4000 } 4001 4002 /* 4003 * Return the object/offset from this entry. If the entry was 4004 * copy-on-write or empty, it has been fixed up. 4005 */ 4006 4007 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4008 *object = entry->object.vm_object; 4009 4010 /* 4011 * Return whether this is the only map sharing this data. On 4012 * success we return with a read lock held on the map. On failure 4013 * we return with the map unlocked. 4014 */ 4015 *out_prot = prot; 4016 done: 4017 if (rv == KERN_SUCCESS) { 4018 if (use_read_lock == 0) 4019 vm_map_lock_downgrade(map); 4020 } else if (use_read_lock) { 4021 vm_map_unlock_read(map); 4022 } else { 4023 vm_map_unlock(map); 4024 } 4025 return (rv); 4026 } 4027 4028 /* 4029 * Releases locks acquired by a vm_map_lookup() 4030 * (according to the handle returned by that lookup). 4031 * 4032 * No other requirements. 4033 */ 4034 void 4035 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 4036 { 4037 /* 4038 * Unlock the main-level map 4039 */ 4040 vm_map_unlock_read(map); 4041 if (count) 4042 vm_map_entry_release(count); 4043 } 4044 4045 #include "opt_ddb.h" 4046 #ifdef DDB 4047 #include <sys/kernel.h> 4048 4049 #include <ddb/ddb.h> 4050 4051 /* 4052 * Debugging only 4053 */ 4054 DB_SHOW_COMMAND(map, vm_map_print) 4055 { 4056 static int nlines; 4057 /* XXX convert args. */ 4058 vm_map_t map = (vm_map_t)addr; 4059 boolean_t full = have_addr; 4060 4061 vm_map_entry_t entry; 4062 4063 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4064 (void *)map, 4065 (void *)map->pmap, map->nentries, map->timestamp); 4066 nlines++; 4067 4068 if (!full && db_indent) 4069 return; 4070 4071 db_indent += 2; 4072 for (entry = map->header.next; entry != &map->header; 4073 entry = entry->next) { 4074 db_iprintf("map entry %p: start=%p, end=%p\n", 4075 (void *)entry, (void *)entry->start, (void *)entry->end); 4076 nlines++; 4077 { 4078 static char *inheritance_name[4] = 4079 {"share", "copy", "none", "donate_copy"}; 4080 4081 db_iprintf(" prot=%x/%x/%s", 4082 entry->protection, 4083 entry->max_protection, 4084 inheritance_name[(int)(unsigned char)entry->inheritance]); 4085 if (entry->wired_count != 0) 4086 db_printf(", wired"); 4087 } 4088 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 4089 /* XXX no %qd in kernel. Truncate entry->offset. */ 4090 db_printf(", share=%p, offset=0x%lx\n", 4091 (void *)entry->object.sub_map, 4092 (long)entry->offset); 4093 nlines++; 4094 if ((entry->prev == &map->header) || 4095 (entry->prev->object.sub_map != 4096 entry->object.sub_map)) { 4097 db_indent += 2; 4098 vm_map_print((db_expr_t)(intptr_t) 4099 entry->object.sub_map, 4100 full, 0, NULL); 4101 db_indent -= 2; 4102 } 4103 } else { 4104 /* XXX no %qd in kernel. Truncate entry->offset. */ 4105 db_printf(", object=%p, offset=0x%lx", 4106 (void *)entry->object.vm_object, 4107 (long)entry->offset); 4108 if (entry->eflags & MAP_ENTRY_COW) 4109 db_printf(", copy (%s)", 4110 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4111 db_printf("\n"); 4112 nlines++; 4113 4114 if ((entry->prev == &map->header) || 4115 (entry->prev->object.vm_object != 4116 entry->object.vm_object)) { 4117 db_indent += 2; 4118 vm_object_print((db_expr_t)(intptr_t) 4119 entry->object.vm_object, 4120 full, 0, NULL); 4121 nlines += 4; 4122 db_indent -= 2; 4123 } 4124 } 4125 } 4126 db_indent -= 2; 4127 if (db_indent == 0) 4128 nlines = 0; 4129 } 4130 4131 /* 4132 * Debugging only 4133 */ 4134 DB_SHOW_COMMAND(procvm, procvm) 4135 { 4136 struct proc *p; 4137 4138 if (have_addr) { 4139 p = (struct proc *) addr; 4140 } else { 4141 p = curproc; 4142 } 4143 4144 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4145 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4146 (void *)vmspace_pmap(p->p_vmspace)); 4147 4148 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4149 } 4150 4151 #endif /* DDB */ 4152