xref: /dflybsd-src/sys/vm/vm_map.c (revision 8d1ea4cc63e8cedbe8f670822d4606adf2cf7d45)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2003-2017 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/serialize.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
85 #include <sys/kern_syscall.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98 
99 #include <sys/random.h>
100 #include <sys/sysctl.h>
101 #include <sys/spinlock.h>
102 
103 #include <sys/thread2.h>
104 #include <sys/spinlock2.h>
105 
106 /*
107  * Virtual memory maps provide for the mapping, protection, and sharing
108  * of virtual memory objects.  In addition, this module provides for an
109  * efficient virtual copy of memory from one map to another.
110  *
111  * Synchronization is required prior to most operations.
112  *
113  * Maps consist of an ordered doubly-linked list of simple entries.
114  * A hint and a RB tree is used to speed-up lookups.
115  *
116  * Callers looking to modify maps specify start/end addresses which cause
117  * the related map entry to be clipped if necessary, and then later
118  * recombined if the pieces remained compatible.
119  *
120  * Virtual copy operations are performed by copying VM object references
121  * from one map to another, and then marking both regions as copy-on-write.
122  */
123 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
124 static void vmspace_dtor(void *obj, void *privdata);
125 static void vmspace_terminate(struct vmspace *vm, int final);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 static struct objcache *vmspace_cache;
129 
130 /*
131  * per-cpu page table cross mappings are initialized in early boot
132  * and might require a considerable number of vm_map_entry structures.
133  */
134 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
135 #define MAPENTRYAP_CACHE	8
136 
137 /*
138  * Partioning threaded programs with large anonymous memory areas can
139  * improve concurrent fault performance.
140  */
141 #define MAP_ENTRY_PARTITION_SIZE	((vm_offset_t)(32 * 1024 * 1024))
142 #define MAP_ENTRY_PARTITION_MASK	(MAP_ENTRY_PARTITION_SIZE - 1)
143 
144 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry)	\
145 	((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
146 
147 static struct vm_zone mapentzone_store;
148 static vm_zone_t mapentzone;
149 
150 static struct vm_map_entry map_entry_init[MAX_MAPENT];
151 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
152 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
153 
154 static int randomize_mmap;
155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
156     "Randomize mmap offsets");
157 static int vm_map_relock_enable = 1;
158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
159 	   &vm_map_relock_enable, 0, "insert pop pgtable optimization");
160 static int vm_map_partition_enable = 1;
161 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
162 	   &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
163 
164 static void vmspace_drop_notoken(struct vmspace *vm);
165 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
166 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
167 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
168 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
170 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
171 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
172 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
173 		vm_map_entry_t);
174 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
175 		vm_offset_t start, vm_offset_t end, int *countp, int flags);
176 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
177 		vm_offset_t vaddr, int *countp);
178 
179 /*
180  * Initialize the vm_map module.  Must be called before any other vm_map
181  * routines.
182  *
183  * Map and entry structures are allocated from the general purpose
184  * memory pool with some exceptions:
185  *
186  *	- The kernel map is allocated statically.
187  *	- Initial kernel map entries are allocated out of a static pool.
188  *	- We must set ZONE_SPECIAL here or the early boot code can get
189  *	  stuck if there are >63 cores.
190  *
191  *	These restrictions are necessary since malloc() uses the
192  *	maps and requires map entries.
193  *
194  * Called from the low level boot code only.
195  */
196 void
197 vm_map_startup(void)
198 {
199 	mapentzone = &mapentzone_store;
200 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
201 		  map_entry_init, MAX_MAPENT);
202 	mapentzone_store.zflags |= ZONE_SPECIAL;
203 }
204 
205 /*
206  * Called prior to any vmspace allocations.
207  *
208  * Called from the low level boot code only.
209  */
210 void
211 vm_init2(void)
212 {
213 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
214 						sizeof(struct vmspace),
215 						0, ncpus * 4,
216 						vmspace_ctor, vmspace_dtor,
217 						NULL);
218 	zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
219 	pmap_init2();
220 	vm_object_init2();
221 }
222 
223 /*
224  * objcache support.  We leave the pmap root cached as long as possible
225  * for performance reasons.
226  */
227 static
228 boolean_t
229 vmspace_ctor(void *obj, void *privdata, int ocflags)
230 {
231 	struct vmspace *vm = obj;
232 
233 	bzero(vm, sizeof(*vm));
234 	vm->vm_refcnt = VM_REF_DELETED;
235 
236 	return 1;
237 }
238 
239 static
240 void
241 vmspace_dtor(void *obj, void *privdata)
242 {
243 	struct vmspace *vm = obj;
244 
245 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
246 	pmap_puninit(vmspace_pmap(vm));
247 }
248 
249 /*
250  * Red black tree functions
251  *
252  * The caller must hold the related map lock.
253  */
254 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
255 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
256 
257 /* a->start is address, and the only field has to be initialized */
258 static int
259 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
260 {
261 	if (a->start < b->start)
262 		return(-1);
263 	else if (a->start > b->start)
264 		return(1);
265 	return(0);
266 }
267 
268 /*
269  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
270  * every refcnt.
271  */
272 void
273 vmspace_initrefs(struct vmspace *vm)
274 {
275 	vm->vm_refcnt = 1;
276 	vm->vm_holdcnt = 1;
277 }
278 
279 /*
280  * Allocate a vmspace structure, including a vm_map and pmap.
281  * Initialize numerous fields.  While the initial allocation is zerod,
282  * subsequence reuse from the objcache leaves elements of the structure
283  * intact (particularly the pmap), so portions must be zerod.
284  *
285  * Returns a referenced vmspace.
286  *
287  * No requirements.
288  */
289 struct vmspace *
290 vmspace_alloc(vm_offset_t min, vm_offset_t max)
291 {
292 	struct vmspace *vm;
293 
294 	vm = objcache_get(vmspace_cache, M_WAITOK);
295 
296 	bzero(&vm->vm_startcopy,
297 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
298 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
299 
300 	/*
301 	 * NOTE: hold to acquires token for safety.
302 	 *
303 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
304 	 * each refcnt also has a holdcnt.  There can be additional holds
305 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
306 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
307 	 */
308 	KKASSERT(vm->vm_holdcnt == 0);
309 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
310 	vmspace_initrefs(vm);
311 	vmspace_hold(vm);
312 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
313 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
314 	vm->vm_shm = NULL;
315 	vm->vm_flags = 0;
316 	cpu_vmspace_alloc(vm);
317 	vmspace_drop(vm);
318 
319 	return (vm);
320 }
321 
322 /*
323  * NOTE: Can return 0 if the vmspace is exiting.
324  */
325 int
326 vmspace_getrefs(struct vmspace *vm)
327 {
328 	int32_t n;
329 
330 	n = vm->vm_refcnt;
331 	cpu_ccfence();
332 	if (n & VM_REF_DELETED)
333 		n = -1;
334 	return n;
335 }
336 
337 void
338 vmspace_hold(struct vmspace *vm)
339 {
340 	atomic_add_int(&vm->vm_holdcnt, 1);
341 	lwkt_gettoken(&vm->vm_map.token);
342 }
343 
344 /*
345  * Drop with final termination interlock.
346  */
347 void
348 vmspace_drop(struct vmspace *vm)
349 {
350 	lwkt_reltoken(&vm->vm_map.token);
351 	vmspace_drop_notoken(vm);
352 }
353 
354 static void
355 vmspace_drop_notoken(struct vmspace *vm)
356 {
357 	if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
358 		if (vm->vm_refcnt & VM_REF_DELETED)
359 			vmspace_terminate(vm, 1);
360 	}
361 }
362 
363 /*
364  * A vmspace object must not be in a terminated state to be able to obtain
365  * additional refs on it.
366  *
367  * These are official references to the vmspace, the count is used to check
368  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
369  *
370  * XXX we need to combine hold & ref together into one 64-bit field to allow
371  * holds to prevent stage-1 termination.
372  */
373 void
374 vmspace_ref(struct vmspace *vm)
375 {
376 	uint32_t n;
377 
378 	atomic_add_int(&vm->vm_holdcnt, 1);
379 	n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
380 	KKASSERT((n & VM_REF_DELETED) == 0);
381 }
382 
383 /*
384  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
385  * termination of the vmspace.  Then, on the final drop of the hold we
386  * will do stage-2 final termination.
387  */
388 void
389 vmspace_rel(struct vmspace *vm)
390 {
391 	uint32_t n;
392 
393 	/*
394 	 * Drop refs.  Each ref also has a hold which is also dropped.
395 	 *
396 	 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
397 	 * prevent finalization) to start termination processing.
398 	 * Finalization occurs when the last hold count drops to 0.
399 	 */
400 	n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
401 	while (n == 0) {
402 		if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
403 			vmspace_terminate(vm, 0);
404 			break;
405 		}
406 		n = vm->vm_refcnt;
407 		cpu_ccfence();
408 	}
409 	vmspace_drop_notoken(vm);
410 }
411 
412 /*
413  * This is called during exit indicating that the vmspace is no
414  * longer in used by an exiting process, but the process has not yet
415  * been reaped.
416  *
417  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
418  * to prevent stage-2 until the process is reaped.  Note hte order of
419  * operation, we must hold first.
420  *
421  * No requirements.
422  */
423 void
424 vmspace_relexit(struct vmspace *vm)
425 {
426 	atomic_add_int(&vm->vm_holdcnt, 1);
427 	vmspace_rel(vm);
428 }
429 
430 /*
431  * Called during reap to disconnect the remainder of the vmspace from
432  * the process.  On the hold drop the vmspace termination is finalized.
433  *
434  * No requirements.
435  */
436 void
437 vmspace_exitfree(struct proc *p)
438 {
439 	struct vmspace *vm;
440 
441 	vm = p->p_vmspace;
442 	p->p_vmspace = NULL;
443 	vmspace_drop_notoken(vm);
444 }
445 
446 /*
447  * Called in two cases:
448  *
449  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
450  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
451  *     and holdcnt will still be non-zero.
452  *
453  * (2) When holdcnt becomes 0, called with final == 1.  There should no
454  *     longer be anyone with access to the vmspace.
455  *
456  * VMSPACE_EXIT1 flags the primary deactivation
457  * VMSPACE_EXIT2 flags the last reap
458  */
459 static void
460 vmspace_terminate(struct vmspace *vm, int final)
461 {
462 	int count;
463 
464 	lwkt_gettoken(&vm->vm_map.token);
465 	if (final == 0) {
466 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
467 		vm->vm_flags |= VMSPACE_EXIT1;
468 
469 		/*
470 		 * Get rid of most of the resources.  Leave the kernel pmap
471 		 * intact.
472 		 *
473 		 * If the pmap does not contain wired pages we can bulk-delete
474 		 * the pmap as a performance optimization before removing the
475 		 * related mappings.
476 		 *
477 		 * If the pmap contains wired pages we cannot do this
478 		 * pre-optimization because currently vm_fault_unwire()
479 		 * expects the pmap pages to exist and will not decrement
480 		 * p->wire_count if they do not.
481 		 */
482 		shmexit(vm);
483 		if (vmspace_pmap(vm)->pm_stats.wired_count) {
484 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
485 				      VM_MAX_USER_ADDRESS);
486 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
487 					  VM_MAX_USER_ADDRESS);
488 		} else {
489 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
490 					  VM_MAX_USER_ADDRESS);
491 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
492 				      VM_MAX_USER_ADDRESS);
493 		}
494 		lwkt_reltoken(&vm->vm_map.token);
495 	} else {
496 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
497 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
498 
499 		/*
500 		 * Get rid of remaining basic resources.
501 		 */
502 		vm->vm_flags |= VMSPACE_EXIT2;
503 		shmexit(vm);
504 
505 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
506 		vm_map_lock(&vm->vm_map);
507 		cpu_vmspace_free(vm);
508 
509 		/*
510 		 * Lock the map, to wait out all other references to it.
511 		 * Delete all of the mappings and pages they hold, then call
512 		 * the pmap module to reclaim anything left.
513 		 */
514 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
515 			      vm->vm_map.max_offset, &count);
516 		vm_map_unlock(&vm->vm_map);
517 		vm_map_entry_release(count);
518 
519 		pmap_release(vmspace_pmap(vm));
520 		lwkt_reltoken(&vm->vm_map.token);
521 		objcache_put(vmspace_cache, vm);
522 	}
523 }
524 
525 /*
526  * Swap useage is determined by taking the proportional swap used by
527  * VM objects backing the VM map.  To make up for fractional losses,
528  * if the VM object has any swap use at all the associated map entries
529  * count for at least 1 swap page.
530  *
531  * No requirements.
532  */
533 vm_offset_t
534 vmspace_swap_count(struct vmspace *vm)
535 {
536 	vm_map_t map = &vm->vm_map;
537 	vm_map_entry_t cur;
538 	vm_object_t object;
539 	vm_offset_t count = 0;
540 	vm_offset_t n;
541 
542 	vmspace_hold(vm);
543 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
544 		switch(cur->maptype) {
545 		case VM_MAPTYPE_NORMAL:
546 		case VM_MAPTYPE_VPAGETABLE:
547 			if ((object = cur->object.vm_object) == NULL)
548 				break;
549 			if (object->swblock_count) {
550 				n = (cur->end - cur->start) / PAGE_SIZE;
551 				count += object->swblock_count *
552 				    SWAP_META_PAGES * n / object->size + 1;
553 			}
554 			break;
555 		default:
556 			break;
557 		}
558 	}
559 	vmspace_drop(vm);
560 
561 	return(count);
562 }
563 
564 /*
565  * Calculate the approximate number of anonymous pages in use by
566  * this vmspace.  To make up for fractional losses, we count each
567  * VM object as having at least 1 anonymous page.
568  *
569  * No requirements.
570  */
571 vm_offset_t
572 vmspace_anonymous_count(struct vmspace *vm)
573 {
574 	vm_map_t map = &vm->vm_map;
575 	vm_map_entry_t cur;
576 	vm_object_t object;
577 	vm_offset_t count = 0;
578 
579 	vmspace_hold(vm);
580 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
581 		switch(cur->maptype) {
582 		case VM_MAPTYPE_NORMAL:
583 		case VM_MAPTYPE_VPAGETABLE:
584 			if ((object = cur->object.vm_object) == NULL)
585 				break;
586 			if (object->type != OBJT_DEFAULT &&
587 			    object->type != OBJT_SWAP) {
588 				break;
589 			}
590 			count += object->resident_page_count;
591 			break;
592 		default:
593 			break;
594 		}
595 	}
596 	vmspace_drop(vm);
597 
598 	return(count);
599 }
600 
601 /*
602  * Initialize an existing vm_map structure such as that in the vmspace
603  * structure.  The pmap is initialized elsewhere.
604  *
605  * No requirements.
606  */
607 void
608 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
609 {
610 	map->header.next = map->header.prev = &map->header;
611 	RB_INIT(&map->rb_root);
612 	spin_init(&map->ilock_spin, "ilock");
613 	map->ilock_base = NULL;
614 	map->nentries = 0;
615 	map->size = 0;
616 	map->system_map = 0;
617 	map->min_offset = min;
618 	map->max_offset = max;
619 	map->pmap = pmap;
620 	map->timestamp = 0;
621 	map->flags = 0;
622 	bzero(&map->freehint, sizeof(map->freehint));
623 	lwkt_token_init(&map->token, "vm_map");
624 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
625 }
626 
627 /*
628  * Find the first possible free address for the specified request length.
629  * Returns 0 if we don't have one cached.
630  */
631 static
632 vm_offset_t
633 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
634 {
635 	vm_map_freehint_t *scan;
636 
637 	scan = &map->freehint[0];
638 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
639 		if (scan->length == length && scan->align == align)
640 			return(scan->start);
641 		++scan;
642 	}
643 	return 0;
644 }
645 
646 /*
647  * Unconditionally set the freehint.  Called by vm_map_findspace() after
648  * it finds an address.  This will help us iterate optimally on the next
649  * similar findspace.
650  */
651 static
652 void
653 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
654 		       vm_size_t length, vm_size_t align)
655 {
656 	vm_map_freehint_t *scan;
657 
658 	scan = &map->freehint[0];
659 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
660 		if (scan->length == length && scan->align == align) {
661 			scan->start = start;
662 			return;
663 		}
664 		++scan;
665 	}
666 	scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
667 	scan->start = start;
668 	scan->align = align;
669 	scan->length = length;
670 	++map->freehint_newindex;
671 }
672 
673 /*
674  * Update any existing freehints (for any alignment), for the hole we just
675  * added.
676  */
677 static
678 void
679 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
680 {
681 	vm_map_freehint_t *scan;
682 
683 	scan = &map->freehint[0];
684 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
685 		if (scan->length <= length && scan->start > start)
686 			scan->start = start;
687 		++scan;
688 	}
689 }
690 
691 /*
692  * Shadow the vm_map_entry's object.  This typically needs to be done when
693  * a write fault is taken on an entry which had previously been cloned by
694  * fork().  The shared object (which might be NULL) must become private so
695  * we add a shadow layer above it.
696  *
697  * Object allocation for anonymous mappings is defered as long as possible.
698  * When creating a shadow, however, the underlying object must be instantiated
699  * so it can be shared.
700  *
701  * If the map segment is governed by a virtual page table then it is
702  * possible to address offsets beyond the mapped area.  Just allocate
703  * a maximally sized object for this case.
704  *
705  * If addref is non-zero an additional reference is added to the returned
706  * entry.  This mechanic exists because the additional reference might have
707  * to be added atomically and not after return to prevent a premature
708  * collapse.
709  *
710  * The vm_map must be exclusively locked.
711  * No other requirements.
712  */
713 static
714 void
715 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
716 {
717 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
718 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
719 				 0x7FFFFFFF, addref);	/* XXX */
720 	} else {
721 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
722 				 atop(entry->end - entry->start), addref);
723 	}
724 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
725 }
726 
727 /*
728  * Allocate an object for a vm_map_entry.
729  *
730  * Object allocation for anonymous mappings is defered as long as possible.
731  * This function is called when we can defer no longer, generally when a map
732  * entry might be split or forked or takes a page fault.
733  *
734  * If the map segment is governed by a virtual page table then it is
735  * possible to address offsets beyond the mapped area.  Just allocate
736  * a maximally sized object for this case.
737  *
738  * The vm_map must be exclusively locked.
739  * No other requirements.
740  */
741 void
742 vm_map_entry_allocate_object(vm_map_entry_t entry)
743 {
744 	vm_object_t obj;
745 
746 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
747 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
748 	} else {
749 		obj = vm_object_allocate(OBJT_DEFAULT,
750 					 atop(entry->end - entry->start));
751 	}
752 	entry->object.vm_object = obj;
753 	entry->offset = 0;
754 }
755 
756 /*
757  * Set an initial negative count so the first attempt to reserve
758  * space preloads a bunch of vm_map_entry's for this cpu.  Also
759  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
760  * map a new page for vm_map_entry structures.  SMP systems are
761  * particularly sensitive.
762  *
763  * This routine is called in early boot so we cannot just call
764  * vm_map_entry_reserve().
765  *
766  * Called from the low level boot code only (for each cpu)
767  *
768  * WARNING! Take care not to have too-big a static/BSS structure here
769  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
770  *	    can get blown out by the kernel plus the initrd image.
771  */
772 void
773 vm_map_entry_reserve_cpu_init(globaldata_t gd)
774 {
775 	vm_map_entry_t entry;
776 	int count;
777 	int i;
778 
779 	atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
780 	if (gd->gd_cpuid == 0) {
781 		entry = &cpu_map_entry_init_bsp[0];
782 		count = MAPENTRYBSP_CACHE;
783 	} else {
784 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
785 		count = MAPENTRYAP_CACHE;
786 	}
787 	for (i = 0; i < count; ++i, ++entry) {
788 		entry->next = gd->gd_vme_base;
789 		gd->gd_vme_base = entry;
790 	}
791 }
792 
793 /*
794  * Reserves vm_map_entry structures so code later-on can manipulate
795  * map_entry structures within a locked map without blocking trying
796  * to allocate a new vm_map_entry.
797  *
798  * No requirements.
799  *
800  * WARNING!  We must not decrement gd_vme_avail until after we have
801  *	     ensured that sufficient entries exist, otherwise we can
802  *	     get into an endless call recursion in the zalloc code
803  *	     itself.
804  */
805 int
806 vm_map_entry_reserve(int count)
807 {
808 	struct globaldata *gd = mycpu;
809 	vm_map_entry_t entry;
810 
811 	/*
812 	 * Make sure we have enough structures in gd_vme_base to handle
813 	 * the reservation request.
814 	 *
815 	 * Use a critical section to protect against VM faults.  It might
816 	 * not be needed, but we have to be careful here.
817 	 */
818 	if (gd->gd_vme_avail < count) {
819 		crit_enter();
820 		while (gd->gd_vme_avail < count) {
821 			entry = zalloc(mapentzone);
822 			entry->next = gd->gd_vme_base;
823 			gd->gd_vme_base = entry;
824 			atomic_add_int(&gd->gd_vme_avail, 1);
825 		}
826 		crit_exit();
827 	}
828 	atomic_add_int(&gd->gd_vme_avail, -count);
829 
830 	return(count);
831 }
832 
833 /*
834  * Releases previously reserved vm_map_entry structures that were not
835  * used.  If we have too much junk in our per-cpu cache clean some of
836  * it out.
837  *
838  * No requirements.
839  */
840 void
841 vm_map_entry_release(int count)
842 {
843 	struct globaldata *gd = mycpu;
844 	vm_map_entry_t entry;
845 	vm_map_entry_t efree;
846 
847 	count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
848 	if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
849 		efree = NULL;
850 		crit_enter();
851 		while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
852 			entry = gd->gd_vme_base;
853 			KKASSERT(entry != NULL);
854 			gd->gd_vme_base = entry->next;
855 			atomic_add_int(&gd->gd_vme_avail, -1);
856 			entry->next = efree;
857 			efree = entry;
858 		}
859 		crit_exit();
860 		while ((entry = efree) != NULL) {
861 			efree = efree->next;
862 			zfree(mapentzone, entry);
863 		}
864 	}
865 }
866 
867 /*
868  * Reserve map entry structures for use in kernel_map itself.  These
869  * entries have *ALREADY* been reserved on a per-cpu basis when the map
870  * was inited.  This function is used by zalloc() to avoid a recursion
871  * when zalloc() itself needs to allocate additional kernel memory.
872  *
873  * This function works like the normal reserve but does not load the
874  * vm_map_entry cache (because that would result in an infinite
875  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
876  *
877  * Any caller of this function must be sure to renormalize after
878  * potentially eating entries to ensure that the reserve supply
879  * remains intact.
880  *
881  * No requirements.
882  */
883 int
884 vm_map_entry_kreserve(int count)
885 {
886 	struct globaldata *gd = mycpu;
887 
888 	atomic_add_int(&gd->gd_vme_avail, -count);
889 	KASSERT(gd->gd_vme_base != NULL,
890 		("no reserved entries left, gd_vme_avail = %d",
891 		gd->gd_vme_avail));
892 	return(count);
893 }
894 
895 /*
896  * Release previously reserved map entries for kernel_map.  We do not
897  * attempt to clean up like the normal release function as this would
898  * cause an unnecessary (but probably not fatal) deep procedure call.
899  *
900  * No requirements.
901  */
902 void
903 vm_map_entry_krelease(int count)
904 {
905 	struct globaldata *gd = mycpu;
906 
907 	atomic_add_int(&gd->gd_vme_avail, count);
908 }
909 
910 /*
911  * Allocates a VM map entry for insertion.  No entry fields are filled in.
912  *
913  * The entries should have previously been reserved.  The reservation count
914  * is tracked in (*countp).
915  *
916  * No requirements.
917  */
918 static vm_map_entry_t
919 vm_map_entry_create(vm_map_t map, int *countp)
920 {
921 	struct globaldata *gd = mycpu;
922 	vm_map_entry_t entry;
923 
924 	KKASSERT(*countp > 0);
925 	--*countp;
926 	crit_enter();
927 	entry = gd->gd_vme_base;
928 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
929 	gd->gd_vme_base = entry->next;
930 	crit_exit();
931 
932 	return(entry);
933 }
934 
935 /*
936  * Dispose of a vm_map_entry that is no longer being referenced.
937  *
938  * No requirements.
939  */
940 static void
941 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
942 {
943 	struct globaldata *gd = mycpu;
944 
945 	++*countp;
946 	crit_enter();
947 	entry->next = gd->gd_vme_base;
948 	gd->gd_vme_base = entry;
949 	crit_exit();
950 }
951 
952 
953 /*
954  * Insert/remove entries from maps.
955  *
956  * The related map must be exclusively locked.
957  * The caller must hold map->token
958  * No other requirements.
959  */
960 static __inline void
961 vm_map_entry_link(vm_map_t map,
962 		  vm_map_entry_t after_where,
963 		  vm_map_entry_t entry)
964 {
965 	ASSERT_VM_MAP_LOCKED(map);
966 
967 	map->nentries++;
968 	entry->prev = after_where;
969 	entry->next = after_where->next;
970 	entry->next->prev = entry;
971 	after_where->next = entry;
972 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
973 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
974 }
975 
976 static __inline void
977 vm_map_entry_unlink(vm_map_t map,
978 		    vm_map_entry_t entry)
979 {
980 	vm_map_entry_t prev;
981 	vm_map_entry_t next;
982 
983 	ASSERT_VM_MAP_LOCKED(map);
984 
985 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
986 		panic("vm_map_entry_unlink: attempt to mess with "
987 		      "locked entry! %p", entry);
988 	}
989 	prev = entry->prev;
990 	next = entry->next;
991 	next->prev = prev;
992 	prev->next = next;
993 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
994 	map->nentries--;
995 }
996 
997 /*
998  * Finds the map entry containing (or immediately preceding) the specified
999  * address in the given map.  The entry is returned in (*entry).
1000  *
1001  * The boolean result indicates whether the address is actually contained
1002  * in the map.
1003  *
1004  * The related map must be locked.
1005  * No other requirements.
1006  */
1007 boolean_t
1008 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
1009 {
1010 	vm_map_entry_t tmp;
1011 	vm_map_entry_t last;
1012 
1013 	ASSERT_VM_MAP_LOCKED(map);
1014 
1015 	/*
1016 	 * Locate the record from the top of the tree.  'last' tracks the
1017 	 * closest prior record and is returned if no match is found, which
1018 	 * in binary tree terms means tracking the most recent right-branch
1019 	 * taken.  If there is no prior record, &map->header is returned.
1020 	 */
1021 	last = &map->header;
1022 	tmp = RB_ROOT(&map->rb_root);
1023 
1024 	while (tmp) {
1025 		if (address >= tmp->start) {
1026 			if (address < tmp->end) {
1027 				*entry = tmp;
1028 				return(TRUE);
1029 			}
1030 			last = tmp;
1031 			tmp = RB_RIGHT(tmp, rb_entry);
1032 		} else {
1033 			tmp = RB_LEFT(tmp, rb_entry);
1034 		}
1035 	}
1036 	*entry = last;
1037 	return (FALSE);
1038 }
1039 
1040 /*
1041  * Inserts the given whole VM object into the target map at the specified
1042  * address range.  The object's size should match that of the address range.
1043  *
1044  * The map must be exclusively locked.
1045  * The object must be held.
1046  * The caller must have reserved sufficient vm_map_entry structures.
1047  *
1048  * If object is non-NULL, ref count must be bumped by caller prior to
1049  * making call to account for the new entry.
1050  */
1051 int
1052 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1053 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1054 	      vm_maptype_t maptype, vm_subsys_t id,
1055 	      vm_prot_t prot, vm_prot_t max, int cow)
1056 {
1057 	vm_map_entry_t new_entry;
1058 	vm_map_entry_t prev_entry;
1059 	vm_map_entry_t temp_entry;
1060 	vm_eflags_t protoeflags;
1061 	int must_drop = 0;
1062 	vm_object_t object;
1063 
1064 	if (maptype == VM_MAPTYPE_UKSMAP)
1065 		object = NULL;
1066 	else
1067 		object = map_object;
1068 
1069 	ASSERT_VM_MAP_LOCKED(map);
1070 	if (object)
1071 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1072 
1073 	/*
1074 	 * Check that the start and end points are not bogus.
1075 	 */
1076 	if ((start < map->min_offset) || (end > map->max_offset) ||
1077 	    (start >= end))
1078 		return (KERN_INVALID_ADDRESS);
1079 
1080 	/*
1081 	 * Find the entry prior to the proposed starting address; if it's part
1082 	 * of an existing entry, this range is bogus.
1083 	 */
1084 	if (vm_map_lookup_entry(map, start, &temp_entry))
1085 		return (KERN_NO_SPACE);
1086 
1087 	prev_entry = temp_entry;
1088 
1089 	/*
1090 	 * Assert that the next entry doesn't overlap the end point.
1091 	 */
1092 
1093 	if ((prev_entry->next != &map->header) &&
1094 	    (prev_entry->next->start < end))
1095 		return (KERN_NO_SPACE);
1096 
1097 	protoeflags = 0;
1098 
1099 	if (cow & MAP_COPY_ON_WRITE)
1100 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1101 
1102 	if (cow & MAP_NOFAULT) {
1103 		protoeflags |= MAP_ENTRY_NOFAULT;
1104 
1105 		KASSERT(object == NULL,
1106 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1107 	}
1108 	if (cow & MAP_DISABLE_SYNCER)
1109 		protoeflags |= MAP_ENTRY_NOSYNC;
1110 	if (cow & MAP_DISABLE_COREDUMP)
1111 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1112 	if (cow & MAP_IS_STACK)
1113 		protoeflags |= MAP_ENTRY_STACK;
1114 	if (cow & MAP_IS_KSTACK)
1115 		protoeflags |= MAP_ENTRY_KSTACK;
1116 
1117 	lwkt_gettoken(&map->token);
1118 
1119 	if (object) {
1120 		/*
1121 		 * When object is non-NULL, it could be shared with another
1122 		 * process.  We have to set or clear OBJ_ONEMAPPING
1123 		 * appropriately.
1124 		 *
1125 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1126 		 *	 objects and will already be clear in other types
1127 		 *	 of objects, so a shared object lock is ok for
1128 		 *	 VNODE objects.
1129 		 */
1130 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1131 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1132 		}
1133 	}
1134 	else if ((prev_entry != &map->header) &&
1135 		 (prev_entry->eflags == protoeflags) &&
1136 		 (prev_entry->end == start) &&
1137 		 (prev_entry->wired_count == 0) &&
1138 		 (prev_entry->id == id) &&
1139 		 prev_entry->maptype == maptype &&
1140 		 maptype == VM_MAPTYPE_NORMAL &&
1141 		 ((prev_entry->object.vm_object == NULL) ||
1142 		  vm_object_coalesce(prev_entry->object.vm_object,
1143 				     OFF_TO_IDX(prev_entry->offset),
1144 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1145 				     (vm_size_t)(end - prev_entry->end)))) {
1146 		/*
1147 		 * We were able to extend the object.  Determine if we
1148 		 * can extend the previous map entry to include the
1149 		 * new range as well.
1150 		 */
1151 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1152 		    (prev_entry->protection == prot) &&
1153 		    (prev_entry->max_protection == max)) {
1154 			map->size += (end - prev_entry->end);
1155 			prev_entry->end = end;
1156 			vm_map_simplify_entry(map, prev_entry, countp);
1157 			lwkt_reltoken(&map->token);
1158 			return (KERN_SUCCESS);
1159 		}
1160 
1161 		/*
1162 		 * If we can extend the object but cannot extend the
1163 		 * map entry, we have to create a new map entry.  We
1164 		 * must bump the ref count on the extended object to
1165 		 * account for it.  object may be NULL.
1166 		 *
1167 		 * XXX if object is NULL should we set offset to 0 here ?
1168 		 */
1169 		object = prev_entry->object.vm_object;
1170 		offset = prev_entry->offset +
1171 			(prev_entry->end - prev_entry->start);
1172 		if (object) {
1173 			vm_object_hold(object);
1174 			vm_object_chain_wait(object, 0);
1175 			vm_object_reference_locked(object);
1176 			must_drop = 1;
1177 			map_object = object;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1183 	 * in things like the buffer map where we manage kva but do not manage
1184 	 * backing objects.
1185 	 */
1186 
1187 	/*
1188 	 * Create a new entry
1189 	 */
1190 
1191 	new_entry = vm_map_entry_create(map, countp);
1192 	new_entry->start = start;
1193 	new_entry->end = end;
1194 	new_entry->id = id;
1195 
1196 	new_entry->maptype = maptype;
1197 	new_entry->eflags = protoeflags;
1198 	new_entry->object.map_object = map_object;
1199 	new_entry->aux.master_pde = 0;		/* in case size is different */
1200 	new_entry->aux.map_aux = map_aux;
1201 	new_entry->offset = offset;
1202 
1203 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1204 	new_entry->protection = prot;
1205 	new_entry->max_protection = max;
1206 	new_entry->wired_count = 0;
1207 
1208 	/*
1209 	 * Insert the new entry into the list
1210 	 */
1211 
1212 	vm_map_entry_link(map, prev_entry, new_entry);
1213 	map->size += new_entry->end - new_entry->start;
1214 
1215 	/*
1216 	 * Don't worry about updating freehint[] when inserting, allow
1217 	 * addresses to be lower than the actual first free spot.
1218 	 */
1219 #if 0
1220 	/*
1221 	 * Temporarily removed to avoid MAP_STACK panic, due to
1222 	 * MAP_STACK being a huge hack.  Will be added back in
1223 	 * when MAP_STACK (and the user stack mapping) is fixed.
1224 	 */
1225 	/*
1226 	 * It may be possible to simplify the entry
1227 	 */
1228 	vm_map_simplify_entry(map, new_entry, countp);
1229 #endif
1230 
1231 	/*
1232 	 * Try to pre-populate the page table.  Mappings governed by virtual
1233 	 * page tables cannot be prepopulated without a lot of work, so
1234 	 * don't try.
1235 	 */
1236 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1237 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1238 	    maptype != VM_MAPTYPE_UKSMAP) {
1239 		int dorelock = 0;
1240 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1241 			dorelock = 1;
1242 			vm_object_lock_swap();
1243 			vm_object_drop(object);
1244 		}
1245 		pmap_object_init_pt(map->pmap, start, prot,
1246 				    object, OFF_TO_IDX(offset), end - start,
1247 				    cow & MAP_PREFAULT_PARTIAL);
1248 		if (dorelock) {
1249 			vm_object_hold(object);
1250 			vm_object_lock_swap();
1251 		}
1252 	}
1253 	if (must_drop)
1254 		vm_object_drop(object);
1255 
1256 	lwkt_reltoken(&map->token);
1257 	return (KERN_SUCCESS);
1258 }
1259 
1260 /*
1261  * Find sufficient space for `length' bytes in the given map, starting at
1262  * `start'.  Returns 0 on success, 1 on no space.
1263  *
1264  * This function will returned an arbitrarily aligned pointer.  If no
1265  * particular alignment is required you should pass align as 1.  Note that
1266  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1267  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1268  * argument.
1269  *
1270  * 'align' should be a power of 2 but is not required to be.
1271  *
1272  * The map must be exclusively locked.
1273  * No other requirements.
1274  */
1275 int
1276 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1277 		 vm_size_t align, int flags, vm_offset_t *addr)
1278 {
1279 	vm_map_entry_t entry, next;
1280 	vm_map_entry_t tmp;
1281 	vm_offset_t hole_start;
1282 	vm_offset_t end;
1283 	vm_offset_t align_mask;
1284 
1285 	if (start < map->min_offset)
1286 		start = map->min_offset;
1287 	if (start > map->max_offset)
1288 		return (1);
1289 
1290 	/*
1291 	 * If the alignment is not a power of 2 we will have to use
1292 	 * a mod/division, set align_mask to a special value.
1293 	 */
1294 	if ((align | (align - 1)) + 1 != (align << 1))
1295 		align_mask = (vm_offset_t)-1;
1296 	else
1297 		align_mask = align - 1;
1298 
1299 	/*
1300 	 * Use freehint to adjust the start point, hopefully reducing
1301 	 * the iteration to O(1).
1302 	 */
1303 	hole_start = vm_map_freehint_find(map, length, align);
1304 	if (start < hole_start)
1305 		start = hole_start;
1306 	if (vm_map_lookup_entry(map, start, &tmp))
1307 		start = tmp->end;
1308 	entry = tmp;
1309 
1310 	/*
1311 	 * Look through the rest of the map, trying to fit a new region in the
1312 	 * gap between existing regions, or after the very last region.
1313 	 */
1314 	for (;; start = (entry = next)->end) {
1315 		/*
1316 		 * Adjust the proposed start by the requested alignment,
1317 		 * be sure that we didn't wrap the address.
1318 		 */
1319 		if (align_mask == (vm_offset_t)-1)
1320 			end = roundup(start, align);
1321 		else
1322 			end = (start + align_mask) & ~align_mask;
1323 		if (end < start)
1324 			return (1);
1325 		start = end;
1326 
1327 		/*
1328 		 * Find the end of the proposed new region.  Be sure we didn't
1329 		 * go beyond the end of the map, or wrap around the address.
1330 		 * Then check to see if this is the last entry or if the
1331 		 * proposed end fits in the gap between this and the next
1332 		 * entry.
1333 		 */
1334 		end = start + length;
1335 		if (end > map->max_offset || end < start)
1336 			return (1);
1337 		next = entry->next;
1338 
1339 		/*
1340 		 * If the next entry's start address is beyond the desired
1341 		 * end address we may have found a good entry.
1342 		 *
1343 		 * If the next entry is a stack mapping we do not map into
1344 		 * the stack's reserved space.
1345 		 *
1346 		 * XXX continue to allow mapping into the stack's reserved
1347 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1348 		 * mapping, for backwards compatibility.  But the caller
1349 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1350 		 * want to do that.
1351 		 */
1352 		if (next == &map->header)
1353 			break;
1354 		if (next->start >= end) {
1355 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1356 				break;
1357 			if (flags & MAP_STACK)
1358 				break;
1359 			if (next->start - next->aux.avail_ssize >= end)
1360 				break;
1361 		}
1362 	}
1363 
1364 	/*
1365 	 * Update the freehint
1366 	 */
1367 	vm_map_freehint_update(map, start, length, align);
1368 
1369 	/*
1370 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1371 	 * if it fails.  The kernel_map is locked and nothing can steal
1372 	 * our address space if pmap_growkernel() blocks.
1373 	 *
1374 	 * NOTE: This may be unconditionally called for kldload areas on
1375 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1376 	 *	 fill 128G worth of page tables!).  Therefore we must not
1377 	 *	 retry.
1378 	 */
1379 	if (map == &kernel_map) {
1380 		vm_offset_t kstop;
1381 
1382 		kstop = round_page(start + length);
1383 		if (kstop > kernel_vm_end)
1384 			pmap_growkernel(start, kstop);
1385 	}
1386 	*addr = start;
1387 	return (0);
1388 }
1389 
1390 /*
1391  * vm_map_find finds an unallocated region in the target address map with
1392  * the given length and allocates it.  The search is defined to be first-fit
1393  * from the specified address; the region found is returned in the same
1394  * parameter.
1395  *
1396  * If object is non-NULL, ref count must be bumped by caller
1397  * prior to making call to account for the new entry.
1398  *
1399  * No requirements.  This function will lock the map temporarily.
1400  */
1401 int
1402 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1403 	    vm_ooffset_t offset, vm_offset_t *addr,
1404 	    vm_size_t length, vm_size_t align, boolean_t fitit,
1405 	    vm_maptype_t maptype, vm_subsys_t id,
1406 	    vm_prot_t prot, vm_prot_t max, int cow)
1407 {
1408 	vm_offset_t start;
1409 	vm_object_t object;
1410 	int result;
1411 	int count;
1412 
1413 	if (maptype == VM_MAPTYPE_UKSMAP)
1414 		object = NULL;
1415 	else
1416 		object = map_object;
1417 
1418 	start = *addr;
1419 
1420 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1421 	vm_map_lock(map);
1422 	if (object)
1423 		vm_object_hold_shared(object);
1424 	if (fitit) {
1425 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1426 			if (object)
1427 				vm_object_drop(object);
1428 			vm_map_unlock(map);
1429 			vm_map_entry_release(count);
1430 			return (KERN_NO_SPACE);
1431 		}
1432 		start = *addr;
1433 	}
1434 	result = vm_map_insert(map, &count, map_object, map_aux,
1435 			       offset, start, start + length,
1436 			       maptype, id, prot, max, cow);
1437 	if (object)
1438 		vm_object_drop(object);
1439 	vm_map_unlock(map);
1440 	vm_map_entry_release(count);
1441 
1442 	return (result);
1443 }
1444 
1445 /*
1446  * Simplify the given map entry by merging with either neighbor.  This
1447  * routine also has the ability to merge with both neighbors.
1448  *
1449  * This routine guarentees that the passed entry remains valid (though
1450  * possibly extended).  When merging, this routine may delete one or
1451  * both neighbors.  No action is taken on entries which have their
1452  * in-transition flag set.
1453  *
1454  * The map must be exclusively locked.
1455  */
1456 void
1457 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1458 {
1459 	vm_map_entry_t next, prev;
1460 	vm_size_t prevsize, esize;
1461 
1462 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1463 		++mycpu->gd_cnt.v_intrans_coll;
1464 		return;
1465 	}
1466 
1467 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1468 		return;
1469 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1470 		return;
1471 
1472 	prev = entry->prev;
1473 	if (prev != &map->header) {
1474 		prevsize = prev->end - prev->start;
1475 		if ( (prev->end == entry->start) &&
1476 		     (prev->maptype == entry->maptype) &&
1477 		     (prev->object.vm_object == entry->object.vm_object) &&
1478 		     (!prev->object.vm_object ||
1479 			(prev->offset + prevsize == entry->offset)) &&
1480 		     (prev->eflags == entry->eflags) &&
1481 		     (prev->protection == entry->protection) &&
1482 		     (prev->max_protection == entry->max_protection) &&
1483 		     (prev->inheritance == entry->inheritance) &&
1484 		     (prev->id == entry->id) &&
1485 		     (prev->wired_count == entry->wired_count)) {
1486 			vm_map_entry_unlink(map, prev);
1487 			entry->start = prev->start;
1488 			entry->offset = prev->offset;
1489 			if (prev->object.vm_object)
1490 				vm_object_deallocate(prev->object.vm_object);
1491 			vm_map_entry_dispose(map, prev, countp);
1492 		}
1493 	}
1494 
1495 	next = entry->next;
1496 	if (next != &map->header) {
1497 		esize = entry->end - entry->start;
1498 		if ((entry->end == next->start) &&
1499 		    (next->maptype == entry->maptype) &&
1500 		    (next->object.vm_object == entry->object.vm_object) &&
1501 		     (!entry->object.vm_object ||
1502 			(entry->offset + esize == next->offset)) &&
1503 		    (next->eflags == entry->eflags) &&
1504 		    (next->protection == entry->protection) &&
1505 		    (next->max_protection == entry->max_protection) &&
1506 		    (next->inheritance == entry->inheritance) &&
1507 		    (next->id == entry->id) &&
1508 		    (next->wired_count == entry->wired_count)) {
1509 			vm_map_entry_unlink(map, next);
1510 			entry->end = next->end;
1511 			if (next->object.vm_object)
1512 				vm_object_deallocate(next->object.vm_object);
1513 			vm_map_entry_dispose(map, next, countp);
1514 	        }
1515 	}
1516 }
1517 
1518 /*
1519  * Asserts that the given entry begins at or after the specified address.
1520  * If necessary, it splits the entry into two.
1521  */
1522 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1523 {									\
1524 	if (startaddr > entry->start)					\
1525 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1526 }
1527 
1528 /*
1529  * This routine is called only when it is known that the entry must be split.
1530  *
1531  * The map must be exclusively locked.
1532  */
1533 static void
1534 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1535 		   int *countp)
1536 {
1537 	vm_map_entry_t new_entry;
1538 
1539 	/*
1540 	 * Split off the front portion -- note that we must insert the new
1541 	 * entry BEFORE this one, so that this entry has the specified
1542 	 * starting address.
1543 	 */
1544 
1545 	vm_map_simplify_entry(map, entry, countp);
1546 
1547 	/*
1548 	 * If there is no object backing this entry, we might as well create
1549 	 * one now.  If we defer it, an object can get created after the map
1550 	 * is clipped, and individual objects will be created for the split-up
1551 	 * map.  This is a bit of a hack, but is also about the best place to
1552 	 * put this improvement.
1553 	 */
1554 	if (entry->object.vm_object == NULL && !map->system_map &&
1555 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1556 		vm_map_entry_allocate_object(entry);
1557 	}
1558 
1559 	new_entry = vm_map_entry_create(map, countp);
1560 	*new_entry = *entry;
1561 
1562 	new_entry->end = start;
1563 	entry->offset += (start - entry->start);
1564 	entry->start = start;
1565 
1566 	vm_map_entry_link(map, entry->prev, new_entry);
1567 
1568 	switch(entry->maptype) {
1569 	case VM_MAPTYPE_NORMAL:
1570 	case VM_MAPTYPE_VPAGETABLE:
1571 		if (new_entry->object.vm_object) {
1572 			vm_object_hold(new_entry->object.vm_object);
1573 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1574 			vm_object_reference_locked(new_entry->object.vm_object);
1575 			vm_object_drop(new_entry->object.vm_object);
1576 		}
1577 		break;
1578 	default:
1579 		break;
1580 	}
1581 }
1582 
1583 /*
1584  * Asserts that the given entry ends at or before the specified address.
1585  * If necessary, it splits the entry into two.
1586  *
1587  * The map must be exclusively locked.
1588  */
1589 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1590 {								\
1591 	if (endaddr < entry->end)				\
1592 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1593 }
1594 
1595 /*
1596  * This routine is called only when it is known that the entry must be split.
1597  *
1598  * The map must be exclusively locked.
1599  */
1600 static void
1601 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1602 		 int *countp)
1603 {
1604 	vm_map_entry_t new_entry;
1605 
1606 	/*
1607 	 * If there is no object backing this entry, we might as well create
1608 	 * one now.  If we defer it, an object can get created after the map
1609 	 * is clipped, and individual objects will be created for the split-up
1610 	 * map.  This is a bit of a hack, but is also about the best place to
1611 	 * put this improvement.
1612 	 */
1613 
1614 	if (entry->object.vm_object == NULL && !map->system_map &&
1615 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1616 		vm_map_entry_allocate_object(entry);
1617 	}
1618 
1619 	/*
1620 	 * Create a new entry and insert it AFTER the specified entry
1621 	 */
1622 	new_entry = vm_map_entry_create(map, countp);
1623 	*new_entry = *entry;
1624 
1625 	new_entry->start = entry->end = end;
1626 	new_entry->offset += (end - entry->start);
1627 
1628 	vm_map_entry_link(map, entry, new_entry);
1629 
1630 	switch(entry->maptype) {
1631 	case VM_MAPTYPE_NORMAL:
1632 	case VM_MAPTYPE_VPAGETABLE:
1633 		if (new_entry->object.vm_object) {
1634 			vm_object_hold(new_entry->object.vm_object);
1635 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1636 			vm_object_reference_locked(new_entry->object.vm_object);
1637 			vm_object_drop(new_entry->object.vm_object);
1638 		}
1639 		break;
1640 	default:
1641 		break;
1642 	}
1643 }
1644 
1645 /*
1646  * Asserts that the starting and ending region addresses fall within the
1647  * valid range for the map.
1648  */
1649 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1650 {						\
1651 	if (start < vm_map_min(map))		\
1652 		start = vm_map_min(map);	\
1653 	if (end > vm_map_max(map))		\
1654 		end = vm_map_max(map);		\
1655 	if (start > end)			\
1656 		start = end;			\
1657 }
1658 
1659 /*
1660  * Used to block when an in-transition collison occurs.  The map
1661  * is unlocked for the sleep and relocked before the return.
1662  */
1663 void
1664 vm_map_transition_wait(vm_map_t map, int relock)
1665 {
1666 	tsleep_interlock(map, 0);
1667 	vm_map_unlock(map);
1668 	tsleep(map, PINTERLOCKED, "vment", 0);
1669 	if (relock)
1670 		vm_map_lock(map);
1671 }
1672 
1673 /*
1674  * When we do blocking operations with the map lock held it is
1675  * possible that a clip might have occured on our in-transit entry,
1676  * requiring an adjustment to the entry in our loop.  These macros
1677  * help the pageable and clip_range code deal with the case.  The
1678  * conditional costs virtually nothing if no clipping has occured.
1679  */
1680 
1681 #define CLIP_CHECK_BACK(entry, save_start)		\
1682     do {						\
1683 	    while (entry->start != save_start) {	\
1684 		    entry = entry->prev;		\
1685 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1686 	    }						\
1687     } while(0)
1688 
1689 #define CLIP_CHECK_FWD(entry, save_end)			\
1690     do {						\
1691 	    while (entry->end != save_end) {		\
1692 		    entry = entry->next;		\
1693 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1694 	    }						\
1695     } while(0)
1696 
1697 
1698 /*
1699  * Clip the specified range and return the base entry.  The
1700  * range may cover several entries starting at the returned base
1701  * and the first and last entry in the covering sequence will be
1702  * properly clipped to the requested start and end address.
1703  *
1704  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1705  * flag.
1706  *
1707  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1708  * covered by the requested range.
1709  *
1710  * The map must be exclusively locked on entry and will remain locked
1711  * on return. If no range exists or the range contains holes and you
1712  * specified that no holes were allowed, NULL will be returned.  This
1713  * routine may temporarily unlock the map in order avoid a deadlock when
1714  * sleeping.
1715  */
1716 static
1717 vm_map_entry_t
1718 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1719 		  int *countp, int flags)
1720 {
1721 	vm_map_entry_t start_entry;
1722 	vm_map_entry_t entry;
1723 
1724 	/*
1725 	 * Locate the entry and effect initial clipping.  The in-transition
1726 	 * case does not occur very often so do not try to optimize it.
1727 	 */
1728 again:
1729 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1730 		return (NULL);
1731 	entry = start_entry;
1732 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1733 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1734 		++mycpu->gd_cnt.v_intrans_coll;
1735 		++mycpu->gd_cnt.v_intrans_wait;
1736 		vm_map_transition_wait(map, 1);
1737 		/*
1738 		 * entry and/or start_entry may have been clipped while
1739 		 * we slept, or may have gone away entirely.  We have
1740 		 * to restart from the lookup.
1741 		 */
1742 		goto again;
1743 	}
1744 
1745 	/*
1746 	 * Since we hold an exclusive map lock we do not have to restart
1747 	 * after clipping, even though clipping may block in zalloc.
1748 	 */
1749 	vm_map_clip_start(map, entry, start, countp);
1750 	vm_map_clip_end(map, entry, end, countp);
1751 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1752 
1753 	/*
1754 	 * Scan entries covered by the range.  When working on the next
1755 	 * entry a restart need only re-loop on the current entry which
1756 	 * we have already locked, since 'next' may have changed.  Also,
1757 	 * even though entry is safe, it may have been clipped so we
1758 	 * have to iterate forwards through the clip after sleeping.
1759 	 */
1760 	while (entry->next != &map->header && entry->next->start < end) {
1761 		vm_map_entry_t next = entry->next;
1762 
1763 		if (flags & MAP_CLIP_NO_HOLES) {
1764 			if (next->start > entry->end) {
1765 				vm_map_unclip_range(map, start_entry,
1766 					start, entry->end, countp, flags);
1767 				return(NULL);
1768 			}
1769 		}
1770 
1771 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1772 			vm_offset_t save_end = entry->end;
1773 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1774 			++mycpu->gd_cnt.v_intrans_coll;
1775 			++mycpu->gd_cnt.v_intrans_wait;
1776 			vm_map_transition_wait(map, 1);
1777 
1778 			/*
1779 			 * clips might have occured while we blocked.
1780 			 */
1781 			CLIP_CHECK_FWD(entry, save_end);
1782 			CLIP_CHECK_BACK(start_entry, start);
1783 			continue;
1784 		}
1785 
1786 		/*
1787 		 * No restart necessary even though clip_end may block, we
1788 		 * are holding the map lock.
1789 		 */
1790 		vm_map_clip_end(map, next, end, countp);
1791 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1792 		entry = next;
1793 	}
1794 	if (flags & MAP_CLIP_NO_HOLES) {
1795 		if (entry->end != end) {
1796 			vm_map_unclip_range(map, start_entry,
1797 				start, entry->end, countp, flags);
1798 			return(NULL);
1799 		}
1800 	}
1801 	return(start_entry);
1802 }
1803 
1804 /*
1805  * Undo the effect of vm_map_clip_range().  You should pass the same
1806  * flags and the same range that you passed to vm_map_clip_range().
1807  * This code will clear the in-transition flag on the entries and
1808  * wake up anyone waiting.  This code will also simplify the sequence
1809  * and attempt to merge it with entries before and after the sequence.
1810  *
1811  * The map must be locked on entry and will remain locked on return.
1812  *
1813  * Note that you should also pass the start_entry returned by
1814  * vm_map_clip_range().  However, if you block between the two calls
1815  * with the map unlocked please be aware that the start_entry may
1816  * have been clipped and you may need to scan it backwards to find
1817  * the entry corresponding with the original start address.  You are
1818  * responsible for this, vm_map_unclip_range() expects the correct
1819  * start_entry to be passed to it and will KASSERT otherwise.
1820  */
1821 static
1822 void
1823 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1824 		    vm_offset_t start, vm_offset_t end,
1825 		    int *countp, int flags)
1826 {
1827 	vm_map_entry_t entry;
1828 
1829 	entry = start_entry;
1830 
1831 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1832 	while (entry != &map->header && entry->start < end) {
1833 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1834 			("in-transition flag not set during unclip on: %p",
1835 			entry));
1836 		KASSERT(entry->end <= end,
1837 			("unclip_range: tail wasn't clipped"));
1838 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1839 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1840 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1841 			wakeup(map);
1842 		}
1843 		entry = entry->next;
1844 	}
1845 
1846 	/*
1847 	 * Simplification does not block so there is no restart case.
1848 	 */
1849 	entry = start_entry;
1850 	while (entry != &map->header && entry->start < end) {
1851 		vm_map_simplify_entry(map, entry, countp);
1852 		entry = entry->next;
1853 	}
1854 }
1855 
1856 /*
1857  * Mark the given range as handled by a subordinate map.
1858  *
1859  * This range must have been created with vm_map_find(), and no other
1860  * operations may have been performed on this range prior to calling
1861  * vm_map_submap().
1862  *
1863  * Submappings cannot be removed.
1864  *
1865  * No requirements.
1866  */
1867 int
1868 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1869 {
1870 	vm_map_entry_t entry;
1871 	int result = KERN_INVALID_ARGUMENT;
1872 	int count;
1873 
1874 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1875 	vm_map_lock(map);
1876 
1877 	VM_MAP_RANGE_CHECK(map, start, end);
1878 
1879 	if (vm_map_lookup_entry(map, start, &entry)) {
1880 		vm_map_clip_start(map, entry, start, &count);
1881 	} else {
1882 		entry = entry->next;
1883 	}
1884 
1885 	vm_map_clip_end(map, entry, end, &count);
1886 
1887 	if ((entry->start == start) && (entry->end == end) &&
1888 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1889 	    (entry->object.vm_object == NULL)) {
1890 		entry->object.sub_map = submap;
1891 		entry->maptype = VM_MAPTYPE_SUBMAP;
1892 		result = KERN_SUCCESS;
1893 	}
1894 	vm_map_unlock(map);
1895 	vm_map_entry_release(count);
1896 
1897 	return (result);
1898 }
1899 
1900 /*
1901  * Sets the protection of the specified address region in the target map.
1902  * If "set_max" is specified, the maximum protection is to be set;
1903  * otherwise, only the current protection is affected.
1904  *
1905  * The protection is not applicable to submaps, but is applicable to normal
1906  * maps and maps governed by virtual page tables.  For example, when operating
1907  * on a virtual page table our protection basically controls how COW occurs
1908  * on the backing object, whereas the virtual page table abstraction itself
1909  * is an abstraction for userland.
1910  *
1911  * No requirements.
1912  */
1913 int
1914 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1915 	       vm_prot_t new_prot, boolean_t set_max)
1916 {
1917 	vm_map_entry_t current;
1918 	vm_map_entry_t entry;
1919 	int count;
1920 
1921 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1922 	vm_map_lock(map);
1923 
1924 	VM_MAP_RANGE_CHECK(map, start, end);
1925 
1926 	if (vm_map_lookup_entry(map, start, &entry)) {
1927 		vm_map_clip_start(map, entry, start, &count);
1928 	} else {
1929 		entry = entry->next;
1930 	}
1931 
1932 	/*
1933 	 * Make a first pass to check for protection violations.
1934 	 */
1935 	current = entry;
1936 	while ((current != &map->header) && (current->start < end)) {
1937 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1938 			vm_map_unlock(map);
1939 			vm_map_entry_release(count);
1940 			return (KERN_INVALID_ARGUMENT);
1941 		}
1942 		if ((new_prot & current->max_protection) != new_prot) {
1943 			vm_map_unlock(map);
1944 			vm_map_entry_release(count);
1945 			return (KERN_PROTECTION_FAILURE);
1946 		}
1947 
1948 		/*
1949 		 * When making a SHARED+RW file mmap writable, update
1950 		 * v_lastwrite_ts.
1951 		 */
1952 		if (new_prot & PROT_WRITE &&
1953 		    (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
1954 		    (current->maptype == VM_MAPTYPE_NORMAL ||
1955 		     current->maptype == VM_MAPTYPE_VPAGETABLE) &&
1956 		    current->object.vm_object &&
1957 		    current->object.vm_object->type == OBJT_VNODE) {
1958 			struct vnode *vp;
1959 
1960 			vp = current->object.vm_object->handle;
1961 			if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) {
1962 				vfs_timestamp(&vp->v_lastwrite_ts);
1963 				vsetflags(vp, VLASTWRITETS);
1964 				vn_unlock(vp);
1965 			}
1966 		}
1967 		current = current->next;
1968 	}
1969 
1970 	/*
1971 	 * Go back and fix up protections. [Note that clipping is not
1972 	 * necessary the second time.]
1973 	 */
1974 	current = entry;
1975 
1976 	while ((current != &map->header) && (current->start < end)) {
1977 		vm_prot_t old_prot;
1978 
1979 		vm_map_clip_end(map, current, end, &count);
1980 
1981 		old_prot = current->protection;
1982 		if (set_max) {
1983 			current->max_protection = new_prot;
1984 			current->protection = new_prot & old_prot;
1985 		} else {
1986 			current->protection = new_prot;
1987 		}
1988 
1989 		/*
1990 		 * Update physical map if necessary. Worry about copy-on-write
1991 		 * here -- CHECK THIS XXX
1992 		 */
1993 		if (current->protection != old_prot) {
1994 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1995 							VM_PROT_ALL)
1996 
1997 			pmap_protect(map->pmap, current->start,
1998 			    current->end,
1999 			    current->protection & MASK(current));
2000 #undef	MASK
2001 		}
2002 
2003 		vm_map_simplify_entry(map, current, &count);
2004 
2005 		current = current->next;
2006 	}
2007 	vm_map_unlock(map);
2008 	vm_map_entry_release(count);
2009 	return (KERN_SUCCESS);
2010 }
2011 
2012 /*
2013  * This routine traverses a processes map handling the madvise
2014  * system call.  Advisories are classified as either those effecting
2015  * the vm_map_entry structure, or those effecting the underlying
2016  * objects.
2017  *
2018  * The <value> argument is used for extended madvise calls.
2019  *
2020  * No requirements.
2021  */
2022 int
2023 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2024 	       int behav, off_t value)
2025 {
2026 	vm_map_entry_t current, entry;
2027 	int modify_map = 0;
2028 	int error = 0;
2029 	int count;
2030 
2031 	/*
2032 	 * Some madvise calls directly modify the vm_map_entry, in which case
2033 	 * we need to use an exclusive lock on the map and we need to perform
2034 	 * various clipping operations.  Otherwise we only need a read-lock
2035 	 * on the map.
2036 	 */
2037 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2038 
2039 	switch(behav) {
2040 	case MADV_NORMAL:
2041 	case MADV_SEQUENTIAL:
2042 	case MADV_RANDOM:
2043 	case MADV_NOSYNC:
2044 	case MADV_AUTOSYNC:
2045 	case MADV_NOCORE:
2046 	case MADV_CORE:
2047 	case MADV_SETMAP:
2048 		modify_map = 1;
2049 		vm_map_lock(map);
2050 		break;
2051 	case MADV_INVAL:
2052 	case MADV_WILLNEED:
2053 	case MADV_DONTNEED:
2054 	case MADV_FREE:
2055 		vm_map_lock_read(map);
2056 		break;
2057 	default:
2058 		vm_map_entry_release(count);
2059 		return (EINVAL);
2060 	}
2061 
2062 	/*
2063 	 * Locate starting entry and clip if necessary.
2064 	 */
2065 
2066 	VM_MAP_RANGE_CHECK(map, start, end);
2067 
2068 	if (vm_map_lookup_entry(map, start, &entry)) {
2069 		if (modify_map)
2070 			vm_map_clip_start(map, entry, start, &count);
2071 	} else {
2072 		entry = entry->next;
2073 	}
2074 
2075 	if (modify_map) {
2076 		/*
2077 		 * madvise behaviors that are implemented in the vm_map_entry.
2078 		 *
2079 		 * We clip the vm_map_entry so that behavioral changes are
2080 		 * limited to the specified address range.
2081 		 */
2082 		for (current = entry;
2083 		     (current != &map->header) && (current->start < end);
2084 		     current = current->next
2085 		) {
2086 			if (current->maptype == VM_MAPTYPE_SUBMAP)
2087 				continue;
2088 
2089 			vm_map_clip_end(map, current, end, &count);
2090 
2091 			switch (behav) {
2092 			case MADV_NORMAL:
2093 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2094 				break;
2095 			case MADV_SEQUENTIAL:
2096 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2097 				break;
2098 			case MADV_RANDOM:
2099 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2100 				break;
2101 			case MADV_NOSYNC:
2102 				current->eflags |= MAP_ENTRY_NOSYNC;
2103 				break;
2104 			case MADV_AUTOSYNC:
2105 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2106 				break;
2107 			case MADV_NOCORE:
2108 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2109 				break;
2110 			case MADV_CORE:
2111 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2112 				break;
2113 			case MADV_SETMAP:
2114 				/*
2115 				 * Set the page directory page for a map
2116 				 * governed by a virtual page table.  Mark
2117 				 * the entry as being governed by a virtual
2118 				 * page table if it is not.
2119 				 *
2120 				 * XXX the page directory page is stored
2121 				 * in the avail_ssize field if the map_entry.
2122 				 *
2123 				 * XXX the map simplification code does not
2124 				 * compare this field so weird things may
2125 				 * happen if you do not apply this function
2126 				 * to the entire mapping governed by the
2127 				 * virtual page table.
2128 				 */
2129 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2130 					error = EINVAL;
2131 					break;
2132 				}
2133 				current->aux.master_pde = value;
2134 				pmap_remove(map->pmap,
2135 					    current->start, current->end);
2136 				break;
2137 			case MADV_INVAL:
2138 				/*
2139 				 * Invalidate the related pmap entries, used
2140 				 * to flush portions of the real kernel's
2141 				 * pmap when the caller has removed or
2142 				 * modified existing mappings in a virtual
2143 				 * page table.
2144 				 *
2145 				 * (exclusive locked map version does not
2146 				 * need the range interlock).
2147 				 */
2148 				pmap_remove(map->pmap,
2149 					    current->start, current->end);
2150 				break;
2151 			default:
2152 				error = EINVAL;
2153 				break;
2154 			}
2155 			vm_map_simplify_entry(map, current, &count);
2156 		}
2157 		vm_map_unlock(map);
2158 	} else {
2159 		vm_pindex_t pindex;
2160 		vm_pindex_t delta;
2161 
2162 		/*
2163 		 * madvise behaviors that are implemented in the underlying
2164 		 * vm_object.
2165 		 *
2166 		 * Since we don't clip the vm_map_entry, we have to clip
2167 		 * the vm_object pindex and count.
2168 		 *
2169 		 * NOTE!  These functions are only supported on normal maps,
2170 		 *	  except MADV_INVAL which is also supported on
2171 		 *	  virtual page tables.
2172 		 */
2173 		for (current = entry;
2174 		     (current != &map->header) && (current->start < end);
2175 		     current = current->next
2176 		) {
2177 			vm_offset_t useStart;
2178 
2179 			if (current->maptype != VM_MAPTYPE_NORMAL &&
2180 			    (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2181 			     behav != MADV_INVAL)) {
2182 				continue;
2183 			}
2184 
2185 			pindex = OFF_TO_IDX(current->offset);
2186 			delta = atop(current->end - current->start);
2187 			useStart = current->start;
2188 
2189 			if (current->start < start) {
2190 				pindex += atop(start - current->start);
2191 				delta -= atop(start - current->start);
2192 				useStart = start;
2193 			}
2194 			if (current->end > end)
2195 				delta -= atop(current->end - end);
2196 
2197 			if ((vm_spindex_t)delta <= 0)
2198 				continue;
2199 
2200 			if (behav == MADV_INVAL) {
2201 				/*
2202 				 * Invalidate the related pmap entries, used
2203 				 * to flush portions of the real kernel's
2204 				 * pmap when the caller has removed or
2205 				 * modified existing mappings in a virtual
2206 				 * page table.
2207 				 *
2208 				 * (shared locked map version needs the
2209 				 * interlock, see vm_fault()).
2210 				 */
2211 				struct vm_map_ilock ilock;
2212 
2213 				KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2214 					    useStart + ptoa(delta) <=
2215 					    VM_MAX_USER_ADDRESS,
2216 					 ("Bad range %016jx-%016jx (%016jx)",
2217 					 useStart, useStart + ptoa(delta),
2218 					 delta));
2219 				vm_map_interlock(map, &ilock,
2220 						 useStart,
2221 						 useStart + ptoa(delta));
2222 				pmap_remove(map->pmap,
2223 					    useStart,
2224 					    useStart + ptoa(delta));
2225 				vm_map_deinterlock(map, &ilock);
2226 			} else {
2227 				vm_object_madvise(current->object.vm_object,
2228 						  pindex, delta, behav);
2229 			}
2230 
2231 			/*
2232 			 * Try to populate the page table.  Mappings governed
2233 			 * by virtual page tables cannot be pre-populated
2234 			 * without a lot of work so don't try.
2235 			 */
2236 			if (behav == MADV_WILLNEED &&
2237 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2238 				pmap_object_init_pt(
2239 				    map->pmap,
2240 				    useStart,
2241 				    current->protection,
2242 				    current->object.vm_object,
2243 				    pindex,
2244 				    (count << PAGE_SHIFT),
2245 				    MAP_PREFAULT_MADVISE
2246 				);
2247 			}
2248 		}
2249 		vm_map_unlock_read(map);
2250 	}
2251 	vm_map_entry_release(count);
2252 	return(error);
2253 }
2254 
2255 
2256 /*
2257  * Sets the inheritance of the specified address range in the target map.
2258  * Inheritance affects how the map will be shared with child maps at the
2259  * time of vm_map_fork.
2260  */
2261 int
2262 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2263 	       vm_inherit_t new_inheritance)
2264 {
2265 	vm_map_entry_t entry;
2266 	vm_map_entry_t temp_entry;
2267 	int count;
2268 
2269 	switch (new_inheritance) {
2270 	case VM_INHERIT_NONE:
2271 	case VM_INHERIT_COPY:
2272 	case VM_INHERIT_SHARE:
2273 		break;
2274 	default:
2275 		return (KERN_INVALID_ARGUMENT);
2276 	}
2277 
2278 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2279 	vm_map_lock(map);
2280 
2281 	VM_MAP_RANGE_CHECK(map, start, end);
2282 
2283 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2284 		entry = temp_entry;
2285 		vm_map_clip_start(map, entry, start, &count);
2286 	} else
2287 		entry = temp_entry->next;
2288 
2289 	while ((entry != &map->header) && (entry->start < end)) {
2290 		vm_map_clip_end(map, entry, end, &count);
2291 
2292 		entry->inheritance = new_inheritance;
2293 
2294 		vm_map_simplify_entry(map, entry, &count);
2295 
2296 		entry = entry->next;
2297 	}
2298 	vm_map_unlock(map);
2299 	vm_map_entry_release(count);
2300 	return (KERN_SUCCESS);
2301 }
2302 
2303 /*
2304  * Implement the semantics of mlock
2305  */
2306 int
2307 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2308 	      boolean_t new_pageable)
2309 {
2310 	vm_map_entry_t entry;
2311 	vm_map_entry_t start_entry;
2312 	vm_offset_t end;
2313 	int rv = KERN_SUCCESS;
2314 	int count;
2315 
2316 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2317 	vm_map_lock(map);
2318 	VM_MAP_RANGE_CHECK(map, start, real_end);
2319 	end = real_end;
2320 
2321 	start_entry = vm_map_clip_range(map, start, end, &count,
2322 					MAP_CLIP_NO_HOLES);
2323 	if (start_entry == NULL) {
2324 		vm_map_unlock(map);
2325 		vm_map_entry_release(count);
2326 		return (KERN_INVALID_ADDRESS);
2327 	}
2328 
2329 	if (new_pageable == 0) {
2330 		entry = start_entry;
2331 		while ((entry != &map->header) && (entry->start < end)) {
2332 			vm_offset_t save_start;
2333 			vm_offset_t save_end;
2334 
2335 			/*
2336 			 * Already user wired or hard wired (trivial cases)
2337 			 */
2338 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2339 				entry = entry->next;
2340 				continue;
2341 			}
2342 			if (entry->wired_count != 0) {
2343 				entry->wired_count++;
2344 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2345 				entry = entry->next;
2346 				continue;
2347 			}
2348 
2349 			/*
2350 			 * A new wiring requires instantiation of appropriate
2351 			 * management structures and the faulting in of the
2352 			 * page.
2353 			 */
2354 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2355 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2356 				int copyflag = entry->eflags &
2357 					       MAP_ENTRY_NEEDS_COPY;
2358 				if (copyflag && ((entry->protection &
2359 						  VM_PROT_WRITE) != 0)) {
2360 					vm_map_entry_shadow(entry, 0);
2361 				} else if (entry->object.vm_object == NULL &&
2362 					   !map->system_map) {
2363 					vm_map_entry_allocate_object(entry);
2364 				}
2365 			}
2366 			entry->wired_count++;
2367 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2368 
2369 			/*
2370 			 * Now fault in the area.  Note that vm_fault_wire()
2371 			 * may release the map lock temporarily, it will be
2372 			 * relocked on return.  The in-transition
2373 			 * flag protects the entries.
2374 			 */
2375 			save_start = entry->start;
2376 			save_end = entry->end;
2377 			rv = vm_fault_wire(map, entry, TRUE, 0);
2378 			if (rv) {
2379 				CLIP_CHECK_BACK(entry, save_start);
2380 				for (;;) {
2381 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2382 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2383 					entry->wired_count = 0;
2384 					if (entry->end == save_end)
2385 						break;
2386 					entry = entry->next;
2387 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2388 				}
2389 				end = save_start;	/* unwire the rest */
2390 				break;
2391 			}
2392 			/*
2393 			 * note that even though the entry might have been
2394 			 * clipped, the USER_WIRED flag we set prevents
2395 			 * duplication so we do not have to do a
2396 			 * clip check.
2397 			 */
2398 			entry = entry->next;
2399 		}
2400 
2401 		/*
2402 		 * If we failed fall through to the unwiring section to
2403 		 * unwire what we had wired so far.  'end' has already
2404 		 * been adjusted.
2405 		 */
2406 		if (rv)
2407 			new_pageable = 1;
2408 
2409 		/*
2410 		 * start_entry might have been clipped if we unlocked the
2411 		 * map and blocked.  No matter how clipped it has gotten
2412 		 * there should be a fragment that is on our start boundary.
2413 		 */
2414 		CLIP_CHECK_BACK(start_entry, start);
2415 	}
2416 
2417 	/*
2418 	 * Deal with the unwiring case.
2419 	 */
2420 	if (new_pageable) {
2421 		/*
2422 		 * This is the unwiring case.  We must first ensure that the
2423 		 * range to be unwired is really wired down.  We know there
2424 		 * are no holes.
2425 		 */
2426 		entry = start_entry;
2427 		while ((entry != &map->header) && (entry->start < end)) {
2428 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2429 				rv = KERN_INVALID_ARGUMENT;
2430 				goto done;
2431 			}
2432 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2433 			entry = entry->next;
2434 		}
2435 
2436 		/*
2437 		 * Now decrement the wiring count for each region. If a region
2438 		 * becomes completely unwired, unwire its physical pages and
2439 		 * mappings.
2440 		 */
2441 		/*
2442 		 * The map entries are processed in a loop, checking to
2443 		 * make sure the entry is wired and asserting it has a wired
2444 		 * count. However, another loop was inserted more-or-less in
2445 		 * the middle of the unwiring path. This loop picks up the
2446 		 * "entry" loop variable from the first loop without first
2447 		 * setting it to start_entry. Naturally, the secound loop
2448 		 * is never entered and the pages backing the entries are
2449 		 * never unwired. This can lead to a leak of wired pages.
2450 		 */
2451 		entry = start_entry;
2452 		while ((entry != &map->header) && (entry->start < end)) {
2453 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2454 				("expected USER_WIRED on entry %p", entry));
2455 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2456 			entry->wired_count--;
2457 			if (entry->wired_count == 0)
2458 				vm_fault_unwire(map, entry);
2459 			entry = entry->next;
2460 		}
2461 	}
2462 done:
2463 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2464 		MAP_CLIP_NO_HOLES);
2465 	vm_map_unlock(map);
2466 	vm_map_entry_release(count);
2467 
2468 	return (rv);
2469 }
2470 
2471 /*
2472  * Sets the pageability of the specified address range in the target map.
2473  * Regions specified as not pageable require locked-down physical
2474  * memory and physical page maps.
2475  *
2476  * The map must not be locked, but a reference must remain to the map
2477  * throughout the call.
2478  *
2479  * This function may be called via the zalloc path and must properly
2480  * reserve map entries for kernel_map.
2481  *
2482  * No requirements.
2483  */
2484 int
2485 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2486 {
2487 	vm_map_entry_t entry;
2488 	vm_map_entry_t start_entry;
2489 	vm_offset_t end;
2490 	int rv = KERN_SUCCESS;
2491 	int count;
2492 
2493 	if (kmflags & KM_KRESERVE)
2494 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2495 	else
2496 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2497 	vm_map_lock(map);
2498 	VM_MAP_RANGE_CHECK(map, start, real_end);
2499 	end = real_end;
2500 
2501 	start_entry = vm_map_clip_range(map, start, end, &count,
2502 					MAP_CLIP_NO_HOLES);
2503 	if (start_entry == NULL) {
2504 		vm_map_unlock(map);
2505 		rv = KERN_INVALID_ADDRESS;
2506 		goto failure;
2507 	}
2508 	if ((kmflags & KM_PAGEABLE) == 0) {
2509 		/*
2510 		 * Wiring.
2511 		 *
2512 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2513 		 * objects that need to be created. Then we clip each map
2514 		 * entry to the region to be wired and increment its wiring
2515 		 * count.  We create objects before clipping the map entries
2516 		 * to avoid object proliferation.
2517 		 *
2518 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2519 		 * fault in the pages for any newly wired area (wired_count is
2520 		 * 1).
2521 		 *
2522 		 * Downgrading to a read lock for vm_fault_wire avoids a
2523 		 * possible deadlock with another process that may have faulted
2524 		 * on one of the pages to be wired (it would mark the page busy,
2525 		 * blocking us, then in turn block on the map lock that we
2526 		 * hold).  Because of problems in the recursive lock package,
2527 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2528 		 * any actions that require the write lock must be done
2529 		 * beforehand.  Because we keep the read lock on the map, the
2530 		 * copy-on-write status of the entries we modify here cannot
2531 		 * change.
2532 		 */
2533 		entry = start_entry;
2534 		while ((entry != &map->header) && (entry->start < end)) {
2535 			/*
2536 			 * Trivial case if the entry is already wired
2537 			 */
2538 			if (entry->wired_count) {
2539 				entry->wired_count++;
2540 				entry = entry->next;
2541 				continue;
2542 			}
2543 
2544 			/*
2545 			 * The entry is being newly wired, we have to setup
2546 			 * appropriate management structures.  A shadow
2547 			 * object is required for a copy-on-write region,
2548 			 * or a normal object for a zero-fill region.  We
2549 			 * do not have to do this for entries that point to sub
2550 			 * maps because we won't hold the lock on the sub map.
2551 			 */
2552 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2553 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2554 				int copyflag = entry->eflags &
2555 					       MAP_ENTRY_NEEDS_COPY;
2556 				if (copyflag && ((entry->protection &
2557 						  VM_PROT_WRITE) != 0)) {
2558 					vm_map_entry_shadow(entry, 0);
2559 				} else if (entry->object.vm_object == NULL &&
2560 					   !map->system_map) {
2561 					vm_map_entry_allocate_object(entry);
2562 				}
2563 			}
2564 
2565 			entry->wired_count++;
2566 			entry = entry->next;
2567 		}
2568 
2569 		/*
2570 		 * Pass 2.
2571 		 */
2572 
2573 		/*
2574 		 * HACK HACK HACK HACK
2575 		 *
2576 		 * vm_fault_wire() temporarily unlocks the map to avoid
2577 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2578 		 * call should protect us from changes while the map is
2579 		 * unlocked.  T
2580 		 *
2581 		 * NOTE: Previously this comment stated that clipping might
2582 		 *	 still occur while the entry is unlocked, but from
2583 		 *	 what I can tell it actually cannot.
2584 		 *
2585 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2586 		 *	 are still needed but we keep them in anyway.
2587 		 *
2588 		 * HACK HACK HACK HACK
2589 		 */
2590 
2591 		entry = start_entry;
2592 		while (entry != &map->header && entry->start < end) {
2593 			/*
2594 			 * If vm_fault_wire fails for any page we need to undo
2595 			 * what has been done.  We decrement the wiring count
2596 			 * for those pages which have not yet been wired (now)
2597 			 * and unwire those that have (later).
2598 			 */
2599 			vm_offset_t save_start = entry->start;
2600 			vm_offset_t save_end = entry->end;
2601 
2602 			if (entry->wired_count == 1)
2603 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2604 			if (rv) {
2605 				CLIP_CHECK_BACK(entry, save_start);
2606 				for (;;) {
2607 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2608 					entry->wired_count = 0;
2609 					if (entry->end == save_end)
2610 						break;
2611 					entry = entry->next;
2612 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2613 				}
2614 				end = save_start;
2615 				break;
2616 			}
2617 			CLIP_CHECK_FWD(entry, save_end);
2618 			entry = entry->next;
2619 		}
2620 
2621 		/*
2622 		 * If a failure occured undo everything by falling through
2623 		 * to the unwiring code.  'end' has already been adjusted
2624 		 * appropriately.
2625 		 */
2626 		if (rv)
2627 			kmflags |= KM_PAGEABLE;
2628 
2629 		/*
2630 		 * start_entry is still IN_TRANSITION but may have been
2631 		 * clipped since vm_fault_wire() unlocks and relocks the
2632 		 * map.  No matter how clipped it has gotten there should
2633 		 * be a fragment that is on our start boundary.
2634 		 */
2635 		CLIP_CHECK_BACK(start_entry, start);
2636 	}
2637 
2638 	if (kmflags & KM_PAGEABLE) {
2639 		/*
2640 		 * This is the unwiring case.  We must first ensure that the
2641 		 * range to be unwired is really wired down.  We know there
2642 		 * are no holes.
2643 		 */
2644 		entry = start_entry;
2645 		while ((entry != &map->header) && (entry->start < end)) {
2646 			if (entry->wired_count == 0) {
2647 				rv = KERN_INVALID_ARGUMENT;
2648 				goto done;
2649 			}
2650 			entry = entry->next;
2651 		}
2652 
2653 		/*
2654 		 * Now decrement the wiring count for each region. If a region
2655 		 * becomes completely unwired, unwire its physical pages and
2656 		 * mappings.
2657 		 */
2658 		entry = start_entry;
2659 		while ((entry != &map->header) && (entry->start < end)) {
2660 			entry->wired_count--;
2661 			if (entry->wired_count == 0)
2662 				vm_fault_unwire(map, entry);
2663 			entry = entry->next;
2664 		}
2665 	}
2666 done:
2667 	vm_map_unclip_range(map, start_entry, start, real_end,
2668 			    &count, MAP_CLIP_NO_HOLES);
2669 	vm_map_unlock(map);
2670 failure:
2671 	if (kmflags & KM_KRESERVE)
2672 		vm_map_entry_krelease(count);
2673 	else
2674 		vm_map_entry_release(count);
2675 	return (rv);
2676 }
2677 
2678 /*
2679  * Mark a newly allocated address range as wired but do not fault in
2680  * the pages.  The caller is expected to load the pages into the object.
2681  *
2682  * The map must be locked on entry and will remain locked on return.
2683  * No other requirements.
2684  */
2685 void
2686 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2687 		       int *countp)
2688 {
2689 	vm_map_entry_t scan;
2690 	vm_map_entry_t entry;
2691 
2692 	entry = vm_map_clip_range(map, addr, addr + size,
2693 				  countp, MAP_CLIP_NO_HOLES);
2694 	for (scan = entry;
2695 	     scan != &map->header && scan->start < addr + size;
2696 	     scan = scan->next) {
2697 	    KKASSERT(scan->wired_count == 0);
2698 	    scan->wired_count = 1;
2699 	}
2700 	vm_map_unclip_range(map, entry, addr, addr + size,
2701 			    countp, MAP_CLIP_NO_HOLES);
2702 }
2703 
2704 /*
2705  * Push any dirty cached pages in the address range to their pager.
2706  * If syncio is TRUE, dirty pages are written synchronously.
2707  * If invalidate is TRUE, any cached pages are freed as well.
2708  *
2709  * This routine is called by sys_msync()
2710  *
2711  * Returns an error if any part of the specified range is not mapped.
2712  *
2713  * No requirements.
2714  */
2715 int
2716 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2717 	     boolean_t syncio, boolean_t invalidate)
2718 {
2719 	vm_map_entry_t current;
2720 	vm_map_entry_t entry;
2721 	vm_size_t size;
2722 	vm_object_t object;
2723 	vm_object_t tobj;
2724 	vm_ooffset_t offset;
2725 
2726 	vm_map_lock_read(map);
2727 	VM_MAP_RANGE_CHECK(map, start, end);
2728 	if (!vm_map_lookup_entry(map, start, &entry)) {
2729 		vm_map_unlock_read(map);
2730 		return (KERN_INVALID_ADDRESS);
2731 	}
2732 	lwkt_gettoken(&map->token);
2733 
2734 	/*
2735 	 * Make a first pass to check for holes.
2736 	 */
2737 	for (current = entry; current->start < end; current = current->next) {
2738 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2739 			lwkt_reltoken(&map->token);
2740 			vm_map_unlock_read(map);
2741 			return (KERN_INVALID_ARGUMENT);
2742 		}
2743 		if (end > current->end &&
2744 		    (current->next == &map->header ||
2745 			current->end != current->next->start)) {
2746 			lwkt_reltoken(&map->token);
2747 			vm_map_unlock_read(map);
2748 			return (KERN_INVALID_ADDRESS);
2749 		}
2750 	}
2751 
2752 	if (invalidate)
2753 		pmap_remove(vm_map_pmap(map), start, end);
2754 
2755 	/*
2756 	 * Make a second pass, cleaning/uncaching pages from the indicated
2757 	 * objects as we go.
2758 	 */
2759 	for (current = entry; current->start < end; current = current->next) {
2760 		offset = current->offset + (start - current->start);
2761 		size = (end <= current->end ? end : current->end) - start;
2762 
2763 		switch(current->maptype) {
2764 		case VM_MAPTYPE_SUBMAP:
2765 		{
2766 			vm_map_t smap;
2767 			vm_map_entry_t tentry;
2768 			vm_size_t tsize;
2769 
2770 			smap = current->object.sub_map;
2771 			vm_map_lock_read(smap);
2772 			vm_map_lookup_entry(smap, offset, &tentry);
2773 			tsize = tentry->end - offset;
2774 			if (tsize < size)
2775 				size = tsize;
2776 			object = tentry->object.vm_object;
2777 			offset = tentry->offset + (offset - tentry->start);
2778 			vm_map_unlock_read(smap);
2779 			break;
2780 		}
2781 		case VM_MAPTYPE_NORMAL:
2782 		case VM_MAPTYPE_VPAGETABLE:
2783 			object = current->object.vm_object;
2784 			break;
2785 		default:
2786 			object = NULL;
2787 			break;
2788 		}
2789 
2790 		if (object)
2791 			vm_object_hold(object);
2792 
2793 		/*
2794 		 * Note that there is absolutely no sense in writing out
2795 		 * anonymous objects, so we track down the vnode object
2796 		 * to write out.
2797 		 * We invalidate (remove) all pages from the address space
2798 		 * anyway, for semantic correctness.
2799 		 *
2800 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2801 		 * may start out with a NULL object.
2802 		 */
2803 		while (object && (tobj = object->backing_object) != NULL) {
2804 			vm_object_hold(tobj);
2805 			if (tobj == object->backing_object) {
2806 				vm_object_lock_swap();
2807 				offset += object->backing_object_offset;
2808 				vm_object_drop(object);
2809 				object = tobj;
2810 				if (object->size < OFF_TO_IDX(offset + size))
2811 					size = IDX_TO_OFF(object->size) -
2812 					       offset;
2813 				break;
2814 			}
2815 			vm_object_drop(tobj);
2816 		}
2817 		if (object && (object->type == OBJT_VNODE) &&
2818 		    (current->protection & VM_PROT_WRITE) &&
2819 		    (object->flags & OBJ_NOMSYNC) == 0) {
2820 			/*
2821 			 * Flush pages if writing is allowed, invalidate them
2822 			 * if invalidation requested.  Pages undergoing I/O
2823 			 * will be ignored by vm_object_page_remove().
2824 			 *
2825 			 * We cannot lock the vnode and then wait for paging
2826 			 * to complete without deadlocking against vm_fault.
2827 			 * Instead we simply call vm_object_page_remove() and
2828 			 * allow it to block internally on a page-by-page
2829 			 * basis when it encounters pages undergoing async
2830 			 * I/O.
2831 			 */
2832 			int flags;
2833 
2834 			/* no chain wait needed for vnode objects */
2835 			vm_object_reference_locked(object);
2836 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2837 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2838 			flags |= invalidate ? OBJPC_INVAL : 0;
2839 
2840 			/*
2841 			 * When operating on a virtual page table just
2842 			 * flush the whole object.  XXX we probably ought
2843 			 * to
2844 			 */
2845 			switch(current->maptype) {
2846 			case VM_MAPTYPE_NORMAL:
2847 				vm_object_page_clean(object,
2848 				    OFF_TO_IDX(offset),
2849 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2850 				    flags);
2851 				break;
2852 			case VM_MAPTYPE_VPAGETABLE:
2853 				vm_object_page_clean(object, 0, 0, flags);
2854 				break;
2855 			}
2856 			vn_unlock(((struct vnode *)object->handle));
2857 			vm_object_deallocate_locked(object);
2858 		}
2859 		if (object && invalidate &&
2860 		   ((object->type == OBJT_VNODE) ||
2861 		    (object->type == OBJT_DEVICE) ||
2862 		    (object->type == OBJT_MGTDEVICE))) {
2863 			int clean_only =
2864 				((object->type == OBJT_DEVICE) ||
2865 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2866 			/* no chain wait needed for vnode/device objects */
2867 			vm_object_reference_locked(object);
2868 			switch(current->maptype) {
2869 			case VM_MAPTYPE_NORMAL:
2870 				vm_object_page_remove(object,
2871 				    OFF_TO_IDX(offset),
2872 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2873 				    clean_only);
2874 				break;
2875 			case VM_MAPTYPE_VPAGETABLE:
2876 				vm_object_page_remove(object, 0, 0, clean_only);
2877 				break;
2878 			}
2879 			vm_object_deallocate_locked(object);
2880 		}
2881 		start += size;
2882 		if (object)
2883 			vm_object_drop(object);
2884 	}
2885 
2886 	lwkt_reltoken(&map->token);
2887 	vm_map_unlock_read(map);
2888 
2889 	return (KERN_SUCCESS);
2890 }
2891 
2892 /*
2893  * Make the region specified by this entry pageable.
2894  *
2895  * The vm_map must be exclusively locked.
2896  */
2897 static void
2898 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2899 {
2900 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2901 	entry->wired_count = 0;
2902 	vm_fault_unwire(map, entry);
2903 }
2904 
2905 /*
2906  * Deallocate the given entry from the target map.
2907  *
2908  * The vm_map must be exclusively locked.
2909  */
2910 static void
2911 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2912 {
2913 	vm_map_entry_unlink(map, entry);
2914 	map->size -= entry->end - entry->start;
2915 
2916 	switch(entry->maptype) {
2917 	case VM_MAPTYPE_NORMAL:
2918 	case VM_MAPTYPE_VPAGETABLE:
2919 	case VM_MAPTYPE_SUBMAP:
2920 		vm_object_deallocate(entry->object.vm_object);
2921 		break;
2922 	case VM_MAPTYPE_UKSMAP:
2923 		/* XXX TODO */
2924 		break;
2925 	default:
2926 		break;
2927 	}
2928 
2929 	vm_map_entry_dispose(map, entry, countp);
2930 }
2931 
2932 /*
2933  * Deallocates the given address range from the target map.
2934  *
2935  * The vm_map must be exclusively locked.
2936  */
2937 int
2938 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2939 {
2940 	vm_object_t object;
2941 	vm_map_entry_t entry;
2942 	vm_map_entry_t first_entry;
2943 	vm_offset_t hole_start;
2944 
2945 	ASSERT_VM_MAP_LOCKED(map);
2946 	lwkt_gettoken(&map->token);
2947 again:
2948 	/*
2949 	 * Find the start of the region, and clip it.  Set entry to point
2950 	 * at the first record containing the requested address or, if no
2951 	 * such record exists, the next record with a greater address.  The
2952 	 * loop will run from this point until a record beyond the termination
2953 	 * address is encountered.
2954 	 *
2955 	 * Adjust freehint[] for either the clip case or the extension case.
2956 	 *
2957 	 * GGG see other GGG comment.
2958 	 */
2959 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2960 		entry = first_entry;
2961 		vm_map_clip_start(map, entry, start, countp);
2962 		hole_start = start;
2963 	} else {
2964 		entry = first_entry->next;
2965 		if (entry == &map->header)
2966 			hole_start = first_entry->start;
2967 		else
2968 			hole_start = first_entry->end;
2969 	}
2970 
2971 	/*
2972 	 * Step through all entries in this region
2973 	 */
2974 	while ((entry != &map->header) && (entry->start < end)) {
2975 		vm_map_entry_t next;
2976 		vm_offset_t s, e;
2977 		vm_pindex_t offidxstart, offidxend, count;
2978 
2979 		/*
2980 		 * If we hit an in-transition entry we have to sleep and
2981 		 * retry.  It's easier (and not really slower) to just retry
2982 		 * since this case occurs so rarely and the hint is already
2983 		 * pointing at the right place.  We have to reset the
2984 		 * start offset so as not to accidently delete an entry
2985 		 * another process just created in vacated space.
2986 		 */
2987 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2988 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2989 			start = entry->start;
2990 			++mycpu->gd_cnt.v_intrans_coll;
2991 			++mycpu->gd_cnt.v_intrans_wait;
2992 			vm_map_transition_wait(map, 1);
2993 			goto again;
2994 		}
2995 		vm_map_clip_end(map, entry, end, countp);
2996 
2997 		s = entry->start;
2998 		e = entry->end;
2999 		next = entry->next;
3000 
3001 		offidxstart = OFF_TO_IDX(entry->offset);
3002 		count = OFF_TO_IDX(e - s);
3003 
3004 		switch(entry->maptype) {
3005 		case VM_MAPTYPE_NORMAL:
3006 		case VM_MAPTYPE_VPAGETABLE:
3007 		case VM_MAPTYPE_SUBMAP:
3008 			object = entry->object.vm_object;
3009 			break;
3010 		default:
3011 			object = NULL;
3012 			break;
3013 		}
3014 
3015 		/*
3016 		 * Unwire before removing addresses from the pmap; otherwise,
3017 		 * unwiring will put the entries back in the pmap.
3018 		 *
3019 		 * Generally speaking, doing a bulk pmap_remove() before
3020 		 * removing the pages from the VM object is better at
3021 		 * reducing unnecessary IPIs.  The pmap code is now optimized
3022 		 * to not blindly iterate the range when pt and pd pages
3023 		 * are missing.
3024 		 */
3025 		if (entry->wired_count != 0)
3026 			vm_map_entry_unwire(map, entry);
3027 
3028 		offidxend = offidxstart + count;
3029 
3030 		if (object == &kernel_object) {
3031 			pmap_remove(map->pmap, s, e);
3032 			vm_object_hold(object);
3033 			vm_object_page_remove(object, offidxstart,
3034 					      offidxend, FALSE);
3035 			vm_object_drop(object);
3036 		} else if (object && object->type != OBJT_DEFAULT &&
3037 			   object->type != OBJT_SWAP) {
3038 			/*
3039 			 * vnode object routines cannot be chain-locked,
3040 			 * but since we aren't removing pages from the
3041 			 * object here we can use a shared hold.
3042 			 */
3043 			vm_object_hold_shared(object);
3044 			pmap_remove(map->pmap, s, e);
3045 			vm_object_drop(object);
3046 		} else if (object) {
3047 			vm_object_hold(object);
3048 			vm_object_chain_acquire(object, 0);
3049 			pmap_remove(map->pmap, s, e);
3050 
3051 			if (object != NULL &&
3052 			    object->ref_count != 1 &&
3053 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3054 			     OBJ_ONEMAPPING &&
3055 			    (object->type == OBJT_DEFAULT ||
3056 			     object->type == OBJT_SWAP)) {
3057 				/*
3058 				 * When ONEMAPPING is set we can destroy the
3059 				 * pages underlying the entry's range.
3060 				 */
3061 				vm_object_collapse(object, NULL);
3062 				vm_object_page_remove(object, offidxstart,
3063 						      offidxend, FALSE);
3064 				if (object->type == OBJT_SWAP) {
3065 					swap_pager_freespace(object,
3066 							     offidxstart,
3067 							     count);
3068 				}
3069 				if (offidxend >= object->size &&
3070 				    offidxstart < object->size) {
3071 					object->size = offidxstart;
3072 				}
3073 			}
3074 			vm_object_chain_release(object);
3075 			vm_object_drop(object);
3076 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3077 			pmap_remove(map->pmap, s, e);
3078 		}
3079 
3080 		/*
3081 		 * Delete the entry (which may delete the object) only after
3082 		 * removing all pmap entries pointing to its pages.
3083 		 * (Otherwise, its page frames may be reallocated, and any
3084 		 * modify bits will be set in the wrong object!)
3085 		 */
3086 		vm_map_entry_delete(map, entry, countp);
3087 		entry = next;
3088 	}
3089 	if (entry == &map->header)
3090 		vm_map_freehint_hole(map, hole_start, entry->end - hole_start);
3091 	else
3092 		vm_map_freehint_hole(map, hole_start,
3093 				     entry->start - hole_start);
3094 
3095 	lwkt_reltoken(&map->token);
3096 
3097 	return (KERN_SUCCESS);
3098 }
3099 
3100 /*
3101  * Remove the given address range from the target map.
3102  * This is the exported form of vm_map_delete.
3103  *
3104  * No requirements.
3105  */
3106 int
3107 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3108 {
3109 	int result;
3110 	int count;
3111 
3112 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3113 	vm_map_lock(map);
3114 	VM_MAP_RANGE_CHECK(map, start, end);
3115 	result = vm_map_delete(map, start, end, &count);
3116 	vm_map_unlock(map);
3117 	vm_map_entry_release(count);
3118 
3119 	return (result);
3120 }
3121 
3122 /*
3123  * Assert that the target map allows the specified privilege on the
3124  * entire address region given.  The entire region must be allocated.
3125  *
3126  * The caller must specify whether the vm_map is already locked or not.
3127  */
3128 boolean_t
3129 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3130 			vm_prot_t protection, boolean_t have_lock)
3131 {
3132 	vm_map_entry_t entry;
3133 	vm_map_entry_t tmp_entry;
3134 	boolean_t result;
3135 
3136 	if (have_lock == FALSE)
3137 		vm_map_lock_read(map);
3138 
3139 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3140 		if (have_lock == FALSE)
3141 			vm_map_unlock_read(map);
3142 		return (FALSE);
3143 	}
3144 	entry = tmp_entry;
3145 
3146 	result = TRUE;
3147 	while (start < end) {
3148 		if (entry == &map->header) {
3149 			result = FALSE;
3150 			break;
3151 		}
3152 		/*
3153 		 * No holes allowed!
3154 		 */
3155 
3156 		if (start < entry->start) {
3157 			result = FALSE;
3158 			break;
3159 		}
3160 		/*
3161 		 * Check protection associated with entry.
3162 		 */
3163 
3164 		if ((entry->protection & protection) != protection) {
3165 			result = FALSE;
3166 			break;
3167 		}
3168 		/* go to next entry */
3169 
3170 		start = entry->end;
3171 		entry = entry->next;
3172 	}
3173 	if (have_lock == FALSE)
3174 		vm_map_unlock_read(map);
3175 	return (result);
3176 }
3177 
3178 /*
3179  * If appropriate this function shadows the original object with a new object
3180  * and moves the VM pages from the original object to the new object.
3181  * The original object will also be collapsed, if possible.
3182  *
3183  * Caller must supply entry->object.vm_object held and chain_acquired, and
3184  * should chain_release and drop the object upon return.
3185  *
3186  * We can only do this for normal memory objects with a single mapping, and
3187  * it only makes sense to do it if there are 2 or more refs on the original
3188  * object.  i.e. typically a memory object that has been extended into
3189  * multiple vm_map_entry's with non-overlapping ranges.
3190  *
3191  * This makes it easier to remove unused pages and keeps object inheritance
3192  * from being a negative impact on memory usage.
3193  *
3194  * On return the (possibly new) entry->object.vm_object will have an
3195  * additional ref on it for the caller to dispose of (usually by cloning
3196  * the vm_map_entry).  The additional ref had to be done in this routine
3197  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3198  * cleared.
3199  *
3200  * The vm_map must be locked and its token held.
3201  */
3202 static void
3203 vm_map_split(vm_map_entry_t entry, vm_object_t oobject)
3204 {
3205 	/* OPTIMIZED */
3206 	vm_object_t nobject, bobject;
3207 	vm_offset_t s, e;
3208 	vm_page_t m;
3209 	vm_pindex_t offidxstart, offidxend, idx;
3210 	vm_size_t size;
3211 	vm_ooffset_t offset;
3212 	int useshadowlist;
3213 
3214 	/*
3215 	 * Optimize away object locks for vnode objects.  Important exit/exec
3216 	 * critical path.
3217 	 *
3218 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3219 	 * anyway.
3220 	 */
3221 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3222 		vm_object_reference_quick(oobject);
3223 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3224 		return;
3225 	}
3226 
3227 #if 0
3228 	/*
3229 	 * Original object cannot be split?
3230 	 */
3231 	if (oobject->handle == NULL) {
3232 		vm_object_reference_locked_chain_held(oobject);
3233 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3234 		return;
3235 	}
3236 #endif
3237 
3238 	/*
3239 	 * Collapse original object with its backing store as an
3240 	 * optimization to reduce chain lengths when possible.
3241 	 *
3242 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3243 	 * for oobject, so there's no point collapsing it.
3244 	 *
3245 	 * Then re-check whether the object can be split.
3246 	 */
3247 	vm_object_collapse(oobject, NULL);
3248 
3249 	if (oobject->ref_count <= 1 ||
3250 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3251 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3252 		vm_object_reference_locked_chain_held(oobject);
3253 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3254 		return;
3255 	}
3256 
3257 	/*
3258 	 * Acquire the chain lock on the backing object.
3259 	 *
3260 	 * Give bobject an additional ref count for when it will be shadowed
3261 	 * by nobject.
3262 	 */
3263 	useshadowlist = 0;
3264 	if ((bobject = oobject->backing_object) != NULL) {
3265 		if (bobject->type != OBJT_VNODE) {
3266 			useshadowlist = 1;
3267 			vm_object_hold(bobject);
3268 			vm_object_chain_wait(bobject, 0);
3269 			/* ref for shadowing below */
3270 			vm_object_reference_locked(bobject);
3271 			vm_object_chain_acquire(bobject, 0);
3272 			KKASSERT(oobject->backing_object == bobject);
3273 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3274 		} else {
3275 			/*
3276 			 * vnodes are not placed on the shadow list but
3277 			 * they still get another ref for the backing_object
3278 			 * reference.
3279 			 */
3280 			vm_object_reference_quick(bobject);
3281 		}
3282 	}
3283 
3284 	/*
3285 	 * Calculate the object page range and allocate the new object.
3286 	 */
3287 	offset = entry->offset;
3288 	s = entry->start;
3289 	e = entry->end;
3290 
3291 	offidxstart = OFF_TO_IDX(offset);
3292 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3293 	size = offidxend - offidxstart;
3294 
3295 	switch(oobject->type) {
3296 	case OBJT_DEFAULT:
3297 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3298 					      VM_PROT_ALL, 0);
3299 		break;
3300 	case OBJT_SWAP:
3301 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3302 					   VM_PROT_ALL, 0);
3303 		break;
3304 	default:
3305 		/* not reached */
3306 		nobject = NULL;
3307 		KKASSERT(0);
3308 	}
3309 
3310 	/*
3311 	 * If we could not allocate nobject just clear ONEMAPPING on
3312 	 * oobject and return.
3313 	 */
3314 	if (nobject == NULL) {
3315 		if (bobject) {
3316 			if (useshadowlist) {
3317 				vm_object_chain_release(bobject);
3318 				vm_object_deallocate(bobject);
3319 				vm_object_drop(bobject);
3320 			} else {
3321 				vm_object_deallocate(bobject);
3322 			}
3323 		}
3324 		vm_object_reference_locked_chain_held(oobject);
3325 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3326 		return;
3327 	}
3328 
3329 	/*
3330 	 * The new object will replace entry->object.vm_object so it needs
3331 	 * a second reference (the caller expects an additional ref).
3332 	 */
3333 	vm_object_hold(nobject);
3334 	vm_object_reference_locked(nobject);
3335 	vm_object_chain_acquire(nobject, 0);
3336 
3337 	/*
3338 	 * nobject shadows bobject (oobject already shadows bobject).
3339 	 *
3340 	 * Adding an object to bobject's shadow list requires refing bobject
3341 	 * which we did above in the useshadowlist case.
3342 	 *
3343 	 * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3344 	 *     or not.
3345 	 */
3346 	if (bobject) {
3347 		nobject->backing_object_offset =
3348 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3349 		nobject->backing_object = bobject;
3350 		if (useshadowlist) {
3351 			bobject->shadow_count++;
3352 			atomic_add_int(&bobject->generation, 1);
3353 			LIST_INSERT_HEAD(&bobject->shadow_head,
3354 					 nobject, shadow_list);
3355 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3356 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3357 		}
3358 	}
3359 
3360 	/*
3361 	 * Move the VM pages from oobject to nobject
3362 	 */
3363 	for (idx = 0; idx < size; idx++) {
3364 		vm_page_t m;
3365 
3366 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3367 					     TRUE, "vmpg");
3368 		if (m == NULL)
3369 			continue;
3370 
3371 		/*
3372 		 * We must wait for pending I/O to complete before we can
3373 		 * rename the page.
3374 		 *
3375 		 * We do not have to VM_PROT_NONE the page as mappings should
3376 		 * not be changed by this operation.
3377 		 *
3378 		 * NOTE: The act of renaming a page updates chaingen for both
3379 		 *	 objects.
3380 		 */
3381 		vm_page_rename(m, nobject, idx);
3382 		/* page automatically made dirty by rename and cache handled */
3383 		/* page remains busy */
3384 	}
3385 
3386 	if (oobject->type == OBJT_SWAP) {
3387 		vm_object_pip_add(oobject, 1);
3388 		/*
3389 		 * copy oobject pages into nobject and destroy unneeded
3390 		 * pages in shadow object.
3391 		 */
3392 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3393 		vm_object_pip_wakeup(oobject);
3394 	}
3395 
3396 	/*
3397 	 * Wakeup the pages we played with.  No spl protection is needed
3398 	 * for a simple wakeup.
3399 	 */
3400 	for (idx = 0; idx < size; idx++) {
3401 		m = vm_page_lookup(nobject, idx);
3402 		if (m) {
3403 			KKASSERT(m->busy_count & PBUSY_LOCKED);
3404 			vm_page_wakeup(m);
3405 		}
3406 	}
3407 	entry->object.vm_object = nobject;
3408 	entry->offset = 0LL;
3409 
3410 	/*
3411 	 * The map is being split and nobject is going to wind up on both
3412 	 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3413 	 * nobject.
3414 	 */
3415 	vm_object_clear_flag(nobject, OBJ_ONEMAPPING);
3416 
3417 	/*
3418 	 * Cleanup
3419 	 *
3420 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3421 	 *	 related pages were moved and are no longer applicable to the
3422 	 *	 original object.
3423 	 *
3424 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3425 	 *	 replaced by nobject).
3426 	 */
3427 	vm_object_chain_release(nobject);
3428 	vm_object_drop(nobject);
3429 	if (bobject && useshadowlist) {
3430 		vm_object_chain_release(bobject);
3431 		vm_object_drop(bobject);
3432 	}
3433 
3434 #if 0
3435 	if (oobject->resident_page_count) {
3436 		kprintf("oobject %p still contains %jd pages!\n",
3437 			oobject, (intmax_t)oobject->resident_page_count);
3438 		for (idx = 0; idx < size; idx++) {
3439 			vm_page_t m;
3440 
3441 			m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3442 						     TRUE, "vmpg");
3443 			if (m) {
3444 				kprintf("oobject %p idx %jd\n",
3445 					oobject,
3446 					offidxstart + idx);
3447 				vm_page_wakeup(m);
3448 			}
3449 		}
3450 	}
3451 #endif
3452 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3453 	vm_object_deallocate_locked(oobject);
3454 }
3455 
3456 /*
3457  * Copies the contents of the source entry to the destination
3458  * entry.  The entries *must* be aligned properly.
3459  *
3460  * The vm_maps must be exclusively locked.
3461  * The vm_map's token must be held.
3462  *
3463  * Because the maps are locked no faults can be in progress during the
3464  * operation.
3465  */
3466 static void
3467 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3468 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3469 {
3470 	vm_object_t src_object;
3471 	vm_object_t oobject;
3472 
3473 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3474 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3475 		return;
3476 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3477 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3478 		return;
3479 
3480 	if (src_entry->wired_count == 0) {
3481 		/*
3482 		 * If the source entry is marked needs_copy, it is already
3483 		 * write-protected.
3484 		 *
3485 		 * To avoid interacting with a vm_fault that might have
3486 		 * released its vm_map, we must acquire the fronting
3487 		 * object.
3488 		 */
3489 		oobject = src_entry->object.vm_object;
3490 		if (oobject) {
3491 			vm_object_hold(oobject);
3492 			vm_object_chain_acquire(oobject, 0);
3493 		}
3494 
3495 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3496 			pmap_protect(src_map->pmap,
3497 			    src_entry->start,
3498 			    src_entry->end,
3499 			    src_entry->protection & ~VM_PROT_WRITE);
3500 		}
3501 
3502 		/*
3503 		 * Make a copy of the object.
3504 		 *
3505 		 * The object must be locked prior to checking the object type
3506 		 * and for the call to vm_object_collapse() and vm_map_split().
3507 		 * We cannot use *_hold() here because the split code will
3508 		 * probably try to destroy the object.  The lock is a pool
3509 		 * token and doesn't care.
3510 		 *
3511 		 * We must bump src_map->timestamp when setting
3512 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3513 		 * to retry, otherwise the concurrent fault might improperly
3514 		 * install a RW pte when its supposed to be a RO(COW) pte.
3515 		 * This race can occur because a vnode-backed fault may have
3516 		 * to temporarily release the map lock.  This was handled
3517 		 * when the caller locked the map exclusively.
3518 		 */
3519 		if (oobject) {
3520 			vm_map_split(src_entry, oobject);
3521 
3522 			src_object = src_entry->object.vm_object;
3523 			dst_entry->object.vm_object = src_object;
3524 			src_entry->eflags |= (MAP_ENTRY_COW |
3525 					      MAP_ENTRY_NEEDS_COPY);
3526 			dst_entry->eflags |= (MAP_ENTRY_COW |
3527 					      MAP_ENTRY_NEEDS_COPY);
3528 			dst_entry->offset = src_entry->offset;
3529 		} else {
3530 			dst_entry->object.vm_object = NULL;
3531 			dst_entry->offset = 0;
3532 		}
3533 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3534 			  dst_entry->end - dst_entry->start,
3535 			  src_entry->start);
3536 		if (oobject) {
3537 			vm_object_chain_release(oobject);
3538 			vm_object_drop(oobject);
3539 		}
3540 	} else {
3541 		/*
3542 		 * Of course, wired down pages can't be set copy-on-write.
3543 		 * Cause wired pages to be copied into the new map by
3544 		 * simulating faults (the new pages are pageable)
3545 		 */
3546 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3547 	}
3548 }
3549 
3550 /*
3551  * vmspace_fork:
3552  * Create a new process vmspace structure and vm_map
3553  * based on those of an existing process.  The new map
3554  * is based on the old map, according to the inheritance
3555  * values on the regions in that map.
3556  *
3557  * The source map must not be locked.
3558  * No requirements.
3559  */
3560 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3561 			  vm_map_entry_t old_entry, int *countp);
3562 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3563 			  vm_map_entry_t old_entry, int *countp);
3564 
3565 struct vmspace *
3566 vmspace_fork(struct vmspace *vm1)
3567 {
3568 	struct vmspace *vm2;
3569 	vm_map_t old_map = &vm1->vm_map;
3570 	vm_map_t new_map;
3571 	vm_map_entry_t old_entry;
3572 	int count;
3573 
3574 	lwkt_gettoken(&vm1->vm_map.token);
3575 	vm_map_lock(old_map);
3576 
3577 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3578 	lwkt_gettoken(&vm2->vm_map.token);
3579 
3580 	/*
3581 	 * We must bump the timestamp to force any concurrent fault
3582 	 * to retry.
3583 	 */
3584 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3585 	      (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3586 	new_map = &vm2->vm_map;	/* XXX */
3587 	new_map->timestamp = 1;
3588 
3589 	vm_map_lock(new_map);
3590 
3591 	count = 0;
3592 	old_entry = old_map->header.next;
3593 	while (old_entry != &old_map->header) {
3594 		++count;
3595 		old_entry = old_entry->next;
3596 	}
3597 
3598 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3599 
3600 	old_entry = old_map->header.next;
3601 	while (old_entry != &old_map->header) {
3602 		switch(old_entry->maptype) {
3603 		case VM_MAPTYPE_SUBMAP:
3604 			panic("vm_map_fork: encountered a submap");
3605 			break;
3606 		case VM_MAPTYPE_UKSMAP:
3607 			vmspace_fork_uksmap_entry(old_map, new_map,
3608 						  old_entry, &count);
3609 			break;
3610 		case VM_MAPTYPE_NORMAL:
3611 		case VM_MAPTYPE_VPAGETABLE:
3612 			vmspace_fork_normal_entry(old_map, new_map,
3613 						  old_entry, &count);
3614 			break;
3615 		}
3616 		old_entry = old_entry->next;
3617 	}
3618 
3619 	new_map->size = old_map->size;
3620 	vm_map_unlock(old_map);
3621 	vm_map_unlock(new_map);
3622 	vm_map_entry_release(count);
3623 
3624 	lwkt_reltoken(&vm2->vm_map.token);
3625 	lwkt_reltoken(&vm1->vm_map.token);
3626 
3627 	return (vm2);
3628 }
3629 
3630 static
3631 void
3632 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3633 			  vm_map_entry_t old_entry, int *countp)
3634 {
3635 	vm_map_entry_t new_entry;
3636 	vm_object_t object;
3637 
3638 	switch (old_entry->inheritance) {
3639 	case VM_INHERIT_NONE:
3640 		break;
3641 	case VM_INHERIT_SHARE:
3642 		/*
3643 		 * Clone the entry, creating the shared object if
3644 		 * necessary.
3645 		 */
3646 		if (old_entry->object.vm_object == NULL)
3647 			vm_map_entry_allocate_object(old_entry);
3648 
3649 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3650 			/*
3651 			 * Shadow a map_entry which needs a copy,
3652 			 * replacing its object with a new object
3653 			 * that points to the old one.  Ask the
3654 			 * shadow code to automatically add an
3655 			 * additional ref.  We can't do it afterwords
3656 			 * because we might race a collapse.  The call
3657 			 * to vm_map_entry_shadow() will also clear
3658 			 * OBJ_ONEMAPPING.
3659 			 */
3660 			vm_map_entry_shadow(old_entry, 1);
3661 		} else if (old_entry->object.vm_object) {
3662 			/*
3663 			 * We will make a shared copy of the object,
3664 			 * and must clear OBJ_ONEMAPPING.
3665 			 *
3666 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3667 			 * is non-applicable but clear it anyway,
3668 			 * and its terminal so we don't have to deal
3669 			 * with chains.  Reduces SMP conflicts.
3670 			 *
3671 			 * XXX assert that object.vm_object != NULL
3672 			 *     since we allocate it above.
3673 			 */
3674 			object = old_entry->object.vm_object;
3675 			if (object->type == OBJT_VNODE) {
3676 				vm_object_reference_quick(object);
3677 				vm_object_clear_flag(object,
3678 						     OBJ_ONEMAPPING);
3679 			} else {
3680 				vm_object_hold(object);
3681 				vm_object_chain_wait(object, 0);
3682 				vm_object_reference_locked(object);
3683 				vm_object_clear_flag(object,
3684 						     OBJ_ONEMAPPING);
3685 				vm_object_drop(object);
3686 			}
3687 		}
3688 
3689 		/*
3690 		 * Clone the entry.  We've already bumped the ref on
3691 		 * any vm_object.
3692 		 */
3693 		new_entry = vm_map_entry_create(new_map, countp);
3694 		*new_entry = *old_entry;
3695 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3696 		new_entry->wired_count = 0;
3697 
3698 		/*
3699 		 * Insert the entry into the new map -- we know we're
3700 		 * inserting at the end of the new map.
3701 		 */
3702 		vm_map_entry_link(new_map, new_map->header.prev,
3703 				  new_entry);
3704 
3705 		/*
3706 		 * Update the physical map
3707 		 */
3708 		pmap_copy(new_map->pmap, old_map->pmap,
3709 			  new_entry->start,
3710 			  (old_entry->end - old_entry->start),
3711 			  old_entry->start);
3712 		break;
3713 	case VM_INHERIT_COPY:
3714 		/*
3715 		 * Clone the entry and link into the map.
3716 		 */
3717 		new_entry = vm_map_entry_create(new_map, countp);
3718 		*new_entry = *old_entry;
3719 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3720 		new_entry->wired_count = 0;
3721 		new_entry->object.vm_object = NULL;
3722 		vm_map_entry_link(new_map, new_map->header.prev,
3723 				  new_entry);
3724 		vm_map_copy_entry(old_map, new_map, old_entry,
3725 				  new_entry);
3726 		break;
3727 	}
3728 }
3729 
3730 /*
3731  * When forking user-kernel shared maps, the map might change in the
3732  * child so do not try to copy the underlying pmap entries.
3733  */
3734 static
3735 void
3736 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3737 			  vm_map_entry_t old_entry, int *countp)
3738 {
3739 	vm_map_entry_t new_entry;
3740 
3741 	new_entry = vm_map_entry_create(new_map, countp);
3742 	*new_entry = *old_entry;
3743 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3744 	new_entry->wired_count = 0;
3745 	vm_map_entry_link(new_map, new_map->header.prev,
3746 			  new_entry);
3747 }
3748 
3749 /*
3750  * Create an auto-grow stack entry
3751  *
3752  * No requirements.
3753  */
3754 int
3755 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3756 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3757 {
3758 	vm_map_entry_t	prev_entry;
3759 	vm_map_entry_t	new_stack_entry;
3760 	vm_size_t	init_ssize;
3761 	int		rv;
3762 	int		count;
3763 	vm_offset_t	tmpaddr;
3764 
3765 	cow |= MAP_IS_STACK;
3766 
3767 	if (max_ssize < sgrowsiz)
3768 		init_ssize = max_ssize;
3769 	else
3770 		init_ssize = sgrowsiz;
3771 
3772 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3773 	vm_map_lock(map);
3774 
3775 	/*
3776 	 * Find space for the mapping
3777 	 */
3778 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3779 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3780 				     flags, &tmpaddr)) {
3781 			vm_map_unlock(map);
3782 			vm_map_entry_release(count);
3783 			return (KERN_NO_SPACE);
3784 		}
3785 		addrbos = tmpaddr;
3786 	}
3787 
3788 	/* If addr is already mapped, no go */
3789 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3790 		vm_map_unlock(map);
3791 		vm_map_entry_release(count);
3792 		return (KERN_NO_SPACE);
3793 	}
3794 
3795 #if 0
3796 	/* XXX already handled by kern_mmap() */
3797 	/* If we would blow our VMEM resource limit, no go */
3798 	if (map->size + init_ssize >
3799 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3800 		vm_map_unlock(map);
3801 		vm_map_entry_release(count);
3802 		return (KERN_NO_SPACE);
3803 	}
3804 #endif
3805 
3806 	/*
3807 	 * If we can't accomodate max_ssize in the current mapping,
3808 	 * no go.  However, we need to be aware that subsequent user
3809 	 * mappings might map into the space we have reserved for
3810 	 * stack, and currently this space is not protected.
3811 	 *
3812 	 * Hopefully we will at least detect this condition
3813 	 * when we try to grow the stack.
3814 	 */
3815 	if ((prev_entry->next != &map->header) &&
3816 	    (prev_entry->next->start < addrbos + max_ssize)) {
3817 		vm_map_unlock(map);
3818 		vm_map_entry_release(count);
3819 		return (KERN_NO_SPACE);
3820 	}
3821 
3822 	/*
3823 	 * We initially map a stack of only init_ssize.  We will
3824 	 * grow as needed later.  Since this is to be a grow
3825 	 * down stack, we map at the top of the range.
3826 	 *
3827 	 * Note: we would normally expect prot and max to be
3828 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3829 	 * eliminate these as input parameters, and just
3830 	 * pass these values here in the insert call.
3831 	 */
3832 	rv = vm_map_insert(map, &count, NULL, NULL,
3833 			   0, addrbos + max_ssize - init_ssize,
3834 	                   addrbos + max_ssize,
3835 			   VM_MAPTYPE_NORMAL,
3836 			   VM_SUBSYS_STACK, prot, max, cow);
3837 
3838 	/* Now set the avail_ssize amount */
3839 	if (rv == KERN_SUCCESS) {
3840 		if (prev_entry != &map->header)
3841 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3842 		new_stack_entry = prev_entry->next;
3843 		if (new_stack_entry->end   != addrbos + max_ssize ||
3844 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3845 			panic ("Bad entry start/end for new stack entry");
3846 		else
3847 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3848 	}
3849 
3850 	vm_map_unlock(map);
3851 	vm_map_entry_release(count);
3852 	return (rv);
3853 }
3854 
3855 /*
3856  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3857  * desired address is already mapped, or if we successfully grow
3858  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3859  * stack range (this is strange, but preserves compatibility with
3860  * the grow function in vm_machdep.c).
3861  *
3862  * No requirements.
3863  */
3864 int
3865 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3866 {
3867 	vm_map_entry_t prev_entry;
3868 	vm_map_entry_t stack_entry;
3869 	vm_map_entry_t new_stack_entry;
3870 	struct vmspace *vm;
3871 	struct lwp *lp;
3872 	struct proc *p;
3873 	vm_offset_t    end;
3874 	int grow_amount;
3875 	int rv = KERN_SUCCESS;
3876 	int is_procstack;
3877 	int use_read_lock = 1;
3878 	int count;
3879 
3880 	/*
3881 	 * Find the vm
3882 	 */
3883 	lp = curthread->td_lwp;
3884 	p = curthread->td_proc;
3885 	KKASSERT(lp != NULL);
3886 	vm = lp->lwp_vmspace;
3887 
3888 	/*
3889 	 * Growstack is only allowed on the current process.  We disallow
3890 	 * other use cases, e.g. trying to access memory via procfs that
3891 	 * the stack hasn't grown into.
3892 	 */
3893 	if (map != &vm->vm_map) {
3894 		return KERN_FAILURE;
3895 	}
3896 
3897 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3898 Retry:
3899 	if (use_read_lock)
3900 		vm_map_lock_read(map);
3901 	else
3902 		vm_map_lock(map);
3903 
3904 	/* If addr is already in the entry range, no need to grow.*/
3905 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3906 		goto done;
3907 
3908 	if ((stack_entry = prev_entry->next) == &map->header)
3909 		goto done;
3910 	if (prev_entry == &map->header)
3911 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3912 	else
3913 		end = prev_entry->end;
3914 
3915 	/*
3916 	 * This next test mimics the old grow function in vm_machdep.c.
3917 	 * It really doesn't quite make sense, but we do it anyway
3918 	 * for compatibility.
3919 	 *
3920 	 * If not growable stack, return success.  This signals the
3921 	 * caller to proceed as he would normally with normal vm.
3922 	 */
3923 	if (stack_entry->aux.avail_ssize < 1 ||
3924 	    addr >= stack_entry->start ||
3925 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3926 		goto done;
3927 	}
3928 
3929 	/* Find the minimum grow amount */
3930 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3931 	if (grow_amount > stack_entry->aux.avail_ssize) {
3932 		rv = KERN_NO_SPACE;
3933 		goto done;
3934 	}
3935 
3936 	/*
3937 	 * If there is no longer enough space between the entries
3938 	 * nogo, and adjust the available space.  Note: this
3939 	 * should only happen if the user has mapped into the
3940 	 * stack area after the stack was created, and is
3941 	 * probably an error.
3942 	 *
3943 	 * This also effectively destroys any guard page the user
3944 	 * might have intended by limiting the stack size.
3945 	 */
3946 	if (grow_amount > stack_entry->start - end) {
3947 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3948 			/* lost lock */
3949 			use_read_lock = 0;
3950 			goto Retry;
3951 		}
3952 		use_read_lock = 0;
3953 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3954 		rv = KERN_NO_SPACE;
3955 		goto done;
3956 	}
3957 
3958 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3959 
3960 	/* If this is the main process stack, see if we're over the
3961 	 * stack limit.
3962 	 */
3963 	if (is_procstack && (vm->vm_ssize + grow_amount >
3964 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3965 		rv = KERN_NO_SPACE;
3966 		goto done;
3967 	}
3968 
3969 	/* Round up the grow amount modulo SGROWSIZ */
3970 	grow_amount = roundup (grow_amount, sgrowsiz);
3971 	if (grow_amount > stack_entry->aux.avail_ssize) {
3972 		grow_amount = stack_entry->aux.avail_ssize;
3973 	}
3974 	if (is_procstack && (vm->vm_ssize + grow_amount >
3975 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3976 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - vm->vm_ssize;
3977 	}
3978 
3979 	/* If we would blow our VMEM resource limit, no go */
3980 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3981 		rv = KERN_NO_SPACE;
3982 		goto done;
3983 	}
3984 
3985 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3986 		/* lost lock */
3987 		use_read_lock = 0;
3988 		goto Retry;
3989 	}
3990 	use_read_lock = 0;
3991 
3992 	/* Get the preliminary new entry start value */
3993 	addr = stack_entry->start - grow_amount;
3994 
3995 	/* If this puts us into the previous entry, cut back our growth
3996 	 * to the available space.  Also, see the note above.
3997 	 */
3998 	if (addr < end) {
3999 		stack_entry->aux.avail_ssize = stack_entry->start - end;
4000 		addr = end;
4001 	}
4002 
4003 	rv = vm_map_insert(map, &count, NULL, NULL,
4004 			   0, addr, stack_entry->start,
4005 			   VM_MAPTYPE_NORMAL,
4006 			   VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
4007 
4008 	/* Adjust the available stack space by the amount we grew. */
4009 	if (rv == KERN_SUCCESS) {
4010 		if (prev_entry != &map->header)
4011 			vm_map_clip_end(map, prev_entry, addr, &count);
4012 		new_stack_entry = prev_entry->next;
4013 		if (new_stack_entry->end   != stack_entry->start  ||
4014 		    new_stack_entry->start != addr)
4015 			panic ("Bad stack grow start/end in new stack entry");
4016 		else {
4017 			new_stack_entry->aux.avail_ssize =
4018 				stack_entry->aux.avail_ssize -
4019 				(new_stack_entry->end - new_stack_entry->start);
4020 			if (is_procstack) {
4021 				vm->vm_ssize += new_stack_entry->end -
4022 						new_stack_entry->start;
4023 			}
4024 		}
4025 
4026 		if (map->flags & MAP_WIREFUTURE)
4027 			vm_map_unwire(map, new_stack_entry->start,
4028 				      new_stack_entry->end, FALSE);
4029 	}
4030 
4031 done:
4032 	if (use_read_lock)
4033 		vm_map_unlock_read(map);
4034 	else
4035 		vm_map_unlock(map);
4036 	vm_map_entry_release(count);
4037 	return (rv);
4038 }
4039 
4040 /*
4041  * Unshare the specified VM space for exec.  If other processes are
4042  * mapped to it, then create a new one.  The new vmspace is null.
4043  *
4044  * No requirements.
4045  */
4046 void
4047 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
4048 {
4049 	struct vmspace *oldvmspace = p->p_vmspace;
4050 	struct vmspace *newvmspace;
4051 	vm_map_t map = &p->p_vmspace->vm_map;
4052 
4053 	/*
4054 	 * If we are execing a resident vmspace we fork it, otherwise
4055 	 * we create a new vmspace.  Note that exitingcnt is not
4056 	 * copied to the new vmspace.
4057 	 */
4058 	lwkt_gettoken(&oldvmspace->vm_map.token);
4059 	if (vmcopy)  {
4060 		newvmspace = vmspace_fork(vmcopy);
4061 		lwkt_gettoken(&newvmspace->vm_map.token);
4062 	} else {
4063 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
4064 		lwkt_gettoken(&newvmspace->vm_map.token);
4065 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4066 		      (caddr_t)&oldvmspace->vm_endcopy -
4067 		       (caddr_t)&oldvmspace->vm_startcopy);
4068 	}
4069 
4070 	/*
4071 	 * Finish initializing the vmspace before assigning it
4072 	 * to the process.  The vmspace will become the current vmspace
4073 	 * if p == curproc.
4074 	 */
4075 	pmap_pinit2(vmspace_pmap(newvmspace));
4076 	pmap_replacevm(p, newvmspace, 0);
4077 	lwkt_reltoken(&newvmspace->vm_map.token);
4078 	lwkt_reltoken(&oldvmspace->vm_map.token);
4079 	vmspace_rel(oldvmspace);
4080 }
4081 
4082 /*
4083  * Unshare the specified VM space for forcing COW.  This
4084  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4085  */
4086 void
4087 vmspace_unshare(struct proc *p)
4088 {
4089 	struct vmspace *oldvmspace = p->p_vmspace;
4090 	struct vmspace *newvmspace;
4091 
4092 	lwkt_gettoken(&oldvmspace->vm_map.token);
4093 	if (vmspace_getrefs(oldvmspace) == 1) {
4094 		lwkt_reltoken(&oldvmspace->vm_map.token);
4095 		return;
4096 	}
4097 	newvmspace = vmspace_fork(oldvmspace);
4098 	lwkt_gettoken(&newvmspace->vm_map.token);
4099 	pmap_pinit2(vmspace_pmap(newvmspace));
4100 	pmap_replacevm(p, newvmspace, 0);
4101 	lwkt_reltoken(&newvmspace->vm_map.token);
4102 	lwkt_reltoken(&oldvmspace->vm_map.token);
4103 	vmspace_rel(oldvmspace);
4104 }
4105 
4106 /*
4107  * vm_map_hint: return the beginning of the best area suitable for
4108  * creating a new mapping with "prot" protection.
4109  *
4110  * No requirements.
4111  */
4112 vm_offset_t
4113 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4114 {
4115 	struct vmspace *vms = p->p_vmspace;
4116 	struct rlimit limit;
4117 	rlim_t dsiz;
4118 
4119 	/*
4120 	 * Acquire datasize limit for mmap() operation,
4121 	 * calculate nearest power of 2.
4122 	 */
4123 	if (kern_getrlimit(RLIMIT_DATA, &limit))
4124 		limit.rlim_cur = maxdsiz;
4125 	dsiz = limit.rlim_cur;
4126 
4127 	if (!randomize_mmap || addr != 0) {
4128 		/*
4129 		 * Set a reasonable start point for the hint if it was
4130 		 * not specified or if it falls within the heap space.
4131 		 * Hinted mmap()s do not allocate out of the heap space.
4132 		 */
4133 		if (addr == 0 ||
4134 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4135 		     addr < round_page((vm_offset_t)vms->vm_daddr + dsiz))) {
4136 			addr = round_page((vm_offset_t)vms->vm_daddr + dsiz);
4137 		}
4138 
4139 		return addr;
4140 	}
4141 
4142 	/*
4143 	 * randomize_mmap && addr == 0.  For now randomize the
4144 	 * address within a dsiz range beyond the data limit.
4145 	 */
4146 	addr = (vm_offset_t)vms->vm_daddr + dsiz;
4147 	if (dsiz)
4148 		addr += (karc4random64() & 0x7FFFFFFFFFFFFFFFLU) % dsiz;
4149 	return (round_page(addr));
4150 }
4151 
4152 /*
4153  * Finds the VM object, offset, and protection for a given virtual address
4154  * in the specified map, assuming a page fault of the type specified.
4155  *
4156  * Leaves the map in question locked for read; return values are guaranteed
4157  * until a vm_map_lookup_done call is performed.  Note that the map argument
4158  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4159  *
4160  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4161  * that fast.
4162  *
4163  * If a lookup is requested with "write protection" specified, the map may
4164  * be changed to perform virtual copying operations, although the data
4165  * referenced will remain the same.
4166  *
4167  * No requirements.
4168  */
4169 int
4170 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4171 	      vm_offset_t vaddr,
4172 	      vm_prot_t fault_typea,
4173 	      vm_map_entry_t *out_entry,	/* OUT */
4174 	      vm_object_t *object,		/* OUT */
4175 	      vm_pindex_t *pindex,		/* OUT */
4176 	      vm_prot_t *out_prot,		/* OUT */
4177 	      int *wflags)			/* OUT */
4178 {
4179 	vm_map_entry_t entry;
4180 	vm_map_t map = *var_map;
4181 	vm_prot_t prot;
4182 	vm_prot_t fault_type = fault_typea;
4183 	int use_read_lock = 1;
4184 	int rv = KERN_SUCCESS;
4185 	int count;
4186 	thread_t td = curthread;
4187 
4188 	/*
4189 	 * vm_map_entry_reserve() implements an important mitigation
4190 	 * against mmap() span running the kernel out of vm_map_entry
4191 	 * structures, but it can also cause an infinite call recursion.
4192 	 * Use td_nest_count to prevent an infinite recursion (allows
4193 	 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4194 	 */
4195 	count = 0;
4196 	if (td->td_nest_count == 0) {
4197 		++td->td_nest_count;
4198 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4199 		--td->td_nest_count;
4200 	}
4201 RetryLookup:
4202 	if (use_read_lock)
4203 		vm_map_lock_read(map);
4204 	else
4205 		vm_map_lock(map);
4206 
4207 	/*
4208 	 * Always do a full lookup.  The hint doesn't get us much anymore
4209 	 * now that the map is RB'd.
4210 	 */
4211 	cpu_ccfence();
4212 	*out_entry = &map->header;
4213 	*object = NULL;
4214 
4215 	{
4216 		vm_map_entry_t tmp_entry;
4217 
4218 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4219 			rv = KERN_INVALID_ADDRESS;
4220 			goto done;
4221 		}
4222 		entry = tmp_entry;
4223 		*out_entry = entry;
4224 	}
4225 
4226 	/*
4227 	 * Handle submaps.
4228 	 */
4229 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4230 		vm_map_t old_map = map;
4231 
4232 		*var_map = map = entry->object.sub_map;
4233 		if (use_read_lock)
4234 			vm_map_unlock_read(old_map);
4235 		else
4236 			vm_map_unlock(old_map);
4237 		use_read_lock = 1;
4238 		goto RetryLookup;
4239 	}
4240 
4241 	/*
4242 	 * Check whether this task is allowed to have this page.
4243 	 * Note the special case for MAP_ENTRY_COW pages with an override.
4244 	 * This is to implement a forced COW for debuggers.
4245 	 */
4246 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4247 		prot = entry->max_protection;
4248 	else
4249 		prot = entry->protection;
4250 
4251 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4252 	if ((fault_type & prot) != fault_type) {
4253 		rv = KERN_PROTECTION_FAILURE;
4254 		goto done;
4255 	}
4256 
4257 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4258 	    (entry->eflags & MAP_ENTRY_COW) &&
4259 	    (fault_type & VM_PROT_WRITE) &&
4260 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4261 		rv = KERN_PROTECTION_FAILURE;
4262 		goto done;
4263 	}
4264 
4265 	/*
4266 	 * If this page is not pageable, we have to get it for all possible
4267 	 * accesses.
4268 	 */
4269 	*wflags = 0;
4270 	if (entry->wired_count) {
4271 		*wflags |= FW_WIRED;
4272 		prot = fault_type = entry->protection;
4273 	}
4274 
4275 	/*
4276 	 * Virtual page tables may need to update the accessed (A) bit
4277 	 * in a page table entry.  Upgrade the fault to a write fault for
4278 	 * that case if the map will support it.  If the map does not support
4279 	 * it the page table entry simply will not be updated.
4280 	 */
4281 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4282 		if (prot & VM_PROT_WRITE)
4283 			fault_type |= VM_PROT_WRITE;
4284 	}
4285 
4286 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4287 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4288 		if ((prot & VM_PROT_WRITE) == 0)
4289 			fault_type |= VM_PROT_WRITE;
4290 	}
4291 
4292 	/*
4293 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4294 	 */
4295 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4296 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4297 		*object = NULL;
4298 		goto skip;
4299 	}
4300 
4301 	/*
4302 	 * If the entry was copy-on-write, we either ...
4303 	 */
4304 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4305 		/*
4306 		 * If we want to write the page, we may as well handle that
4307 		 * now since we've got the map locked.
4308 		 *
4309 		 * If we don't need to write the page, we just demote the
4310 		 * permissions allowed.
4311 		 */
4312 		if (fault_type & VM_PROT_WRITE) {
4313 			/*
4314 			 * Not allowed if TDF_NOFAULT is set as the shadowing
4315 			 * operation can deadlock against the faulting
4316 			 * function due to the copy-on-write.
4317 			 */
4318 			if (curthread->td_flags & TDF_NOFAULT) {
4319 				rv = KERN_FAILURE_NOFAULT;
4320 				goto done;
4321 			}
4322 
4323 			/*
4324 			 * Make a new object, and place it in the object
4325 			 * chain.  Note that no new references have appeared
4326 			 * -- one just moved from the map to the new
4327 			 * object.
4328 			 */
4329 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4330 				/* lost lock */
4331 				use_read_lock = 0;
4332 				goto RetryLookup;
4333 			}
4334 			use_read_lock = 0;
4335 			vm_map_entry_shadow(entry, 0);
4336 			*wflags |= FW_DIDCOW;
4337 		} else {
4338 			/*
4339 			 * We're attempting to read a copy-on-write page --
4340 			 * don't allow writes.
4341 			 */
4342 			prot &= ~VM_PROT_WRITE;
4343 		}
4344 	}
4345 
4346 	/*
4347 	 * Create an object if necessary.  This code also handles
4348 	 * partitioning large entries to improve vm_fault performance.
4349 	 */
4350 	if (entry->object.vm_object == NULL && !map->system_map) {
4351 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4352 			/* lost lock */
4353 			use_read_lock = 0;
4354 			goto RetryLookup;
4355 		}
4356 		use_read_lock = 0;
4357 
4358 		/*
4359 		 * Partition large entries, giving each its own VM object,
4360 		 * to improve concurrent fault performance.  This is only
4361 		 * applicable to userspace.
4362 		 */
4363 		if (map != &kernel_map &&
4364 		    entry->maptype == VM_MAPTYPE_NORMAL &&
4365 		    ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) &&
4366 		    vm_map_partition_enable) {
4367 			if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4368 				entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4369 				++mycpu->gd_cnt.v_intrans_coll;
4370 				++mycpu->gd_cnt.v_intrans_wait;
4371 				vm_map_transition_wait(map, 0);
4372 				goto RetryLookup;
4373 			}
4374 			vm_map_entry_partition(map, entry, vaddr, &count);
4375 		}
4376 		vm_map_entry_allocate_object(entry);
4377 	}
4378 
4379 	/*
4380 	 * Return the object/offset from this entry.  If the entry was
4381 	 * copy-on-write or empty, it has been fixed up.
4382 	 */
4383 	*object = entry->object.vm_object;
4384 
4385 skip:
4386 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4387 
4388 	/*
4389 	 * Return whether this is the only map sharing this data.  On
4390 	 * success we return with a read lock held on the map.  On failure
4391 	 * we return with the map unlocked.
4392 	 */
4393 	*out_prot = prot;
4394 done:
4395 	if (rv == KERN_SUCCESS) {
4396 		if (use_read_lock == 0)
4397 			vm_map_lock_downgrade(map);
4398 	} else if (use_read_lock) {
4399 		vm_map_unlock_read(map);
4400 	} else {
4401 		vm_map_unlock(map);
4402 	}
4403 	if (count > 0)
4404 		vm_map_entry_release(count);
4405 
4406 	return (rv);
4407 }
4408 
4409 /*
4410  * Releases locks acquired by a vm_map_lookup()
4411  * (according to the handle returned by that lookup).
4412  *
4413  * No other requirements.
4414  */
4415 void
4416 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4417 {
4418 	/*
4419 	 * Unlock the main-level map
4420 	 */
4421 	vm_map_unlock_read(map);
4422 	if (count)
4423 		vm_map_entry_release(count);
4424 }
4425 
4426 static void
4427 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4428 		       vm_offset_t vaddr, int *countp)
4429 {
4430 	vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4431 	vm_map_clip_start(map, entry, vaddr, countp);
4432 	vaddr += MAP_ENTRY_PARTITION_SIZE;
4433 	vm_map_clip_end(map, entry, vaddr, countp);
4434 }
4435 
4436 /*
4437  * Quick hack, needs some help to make it more SMP friendly.
4438  */
4439 void
4440 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4441 		 vm_offset_t ran_beg, vm_offset_t ran_end)
4442 {
4443 	struct vm_map_ilock *scan;
4444 
4445 	ilock->ran_beg = ran_beg;
4446 	ilock->ran_end = ran_end;
4447 	ilock->flags = 0;
4448 
4449 	spin_lock(&map->ilock_spin);
4450 restart:
4451 	for (scan = map->ilock_base; scan; scan = scan->next) {
4452 		if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4453 			scan->flags |= ILOCK_WAITING;
4454 			ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4455 			goto restart;
4456 		}
4457 	}
4458 	ilock->next = map->ilock_base;
4459 	map->ilock_base = ilock;
4460 	spin_unlock(&map->ilock_spin);
4461 }
4462 
4463 void
4464 vm_map_deinterlock(vm_map_t map, struct  vm_map_ilock *ilock)
4465 {
4466 	struct vm_map_ilock *scan;
4467 	struct vm_map_ilock **scanp;
4468 
4469 	spin_lock(&map->ilock_spin);
4470 	scanp = &map->ilock_base;
4471 	while ((scan = *scanp) != NULL) {
4472 		if (scan == ilock) {
4473 			*scanp = ilock->next;
4474 			spin_unlock(&map->ilock_spin);
4475 			if (ilock->flags & ILOCK_WAITING)
4476 				wakeup(ilock);
4477 			return;
4478 		}
4479 		scanp = &scan->next;
4480 	}
4481 	spin_unlock(&map->ilock_spin);
4482 	panic("vm_map_deinterlock: missing ilock!");
4483 }
4484 
4485 #include "opt_ddb.h"
4486 #ifdef DDB
4487 #include <ddb/ddb.h>
4488 
4489 /*
4490  * Debugging only
4491  */
4492 DB_SHOW_COMMAND(map, vm_map_print)
4493 {
4494 	static int nlines;
4495 	/* XXX convert args. */
4496 	vm_map_t map = (vm_map_t)addr;
4497 	boolean_t full = have_addr;
4498 
4499 	vm_map_entry_t entry;
4500 
4501 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4502 	    (void *)map,
4503 	    (void *)map->pmap, map->nentries, map->timestamp);
4504 	nlines++;
4505 
4506 	if (!full && db_indent)
4507 		return;
4508 
4509 	db_indent += 2;
4510 	for (entry = map->header.next; entry != &map->header;
4511 	    entry = entry->next) {
4512 		db_iprintf("map entry %p: start=%p, end=%p\n",
4513 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4514 		nlines++;
4515 		{
4516 			static char *inheritance_name[4] =
4517 			{"share", "copy", "none", "donate_copy"};
4518 
4519 			db_iprintf(" prot=%x/%x/%s",
4520 			    entry->protection,
4521 			    entry->max_protection,
4522 			    inheritance_name[(int)(unsigned char)
4523 						entry->inheritance]);
4524 			if (entry->wired_count != 0)
4525 				db_printf(", wired");
4526 		}
4527 		switch(entry->maptype) {
4528 		case VM_MAPTYPE_SUBMAP:
4529 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4530 			db_printf(", share=%p, offset=0x%lx\n",
4531 			    (void *)entry->object.sub_map,
4532 			    (long)entry->offset);
4533 			nlines++;
4534 			if ((entry->prev == &map->header) ||
4535 			    (entry->prev->object.sub_map !=
4536 				entry->object.sub_map)) {
4537 				db_indent += 2;
4538 				vm_map_print((db_expr_t)(intptr_t)
4539 					     entry->object.sub_map,
4540 					     full, 0, NULL);
4541 				db_indent -= 2;
4542 			}
4543 			break;
4544 		case VM_MAPTYPE_NORMAL:
4545 		case VM_MAPTYPE_VPAGETABLE:
4546 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4547 			db_printf(", object=%p, offset=0x%lx",
4548 			    (void *)entry->object.vm_object,
4549 			    (long)entry->offset);
4550 			if (entry->eflags & MAP_ENTRY_COW)
4551 				db_printf(", copy (%s)",
4552 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4553 			db_printf("\n");
4554 			nlines++;
4555 
4556 			if ((entry->prev == &map->header) ||
4557 			    (entry->prev->object.vm_object !=
4558 				entry->object.vm_object)) {
4559 				db_indent += 2;
4560 				vm_object_print((db_expr_t)(intptr_t)
4561 						entry->object.vm_object,
4562 						full, 0, NULL);
4563 				nlines += 4;
4564 				db_indent -= 2;
4565 			}
4566 			break;
4567 		case VM_MAPTYPE_UKSMAP:
4568 			db_printf(", uksmap=%p, offset=0x%lx",
4569 			    (void *)entry->object.uksmap,
4570 			    (long)entry->offset);
4571 			if (entry->eflags & MAP_ENTRY_COW)
4572 				db_printf(", copy (%s)",
4573 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4574 			db_printf("\n");
4575 			nlines++;
4576 			break;
4577 		default:
4578 			break;
4579 		}
4580 	}
4581 	db_indent -= 2;
4582 	if (db_indent == 0)
4583 		nlines = 0;
4584 }
4585 
4586 /*
4587  * Debugging only
4588  */
4589 DB_SHOW_COMMAND(procvm, procvm)
4590 {
4591 	struct proc *p;
4592 
4593 	if (have_addr) {
4594 		p = (struct proc *) addr;
4595 	} else {
4596 		p = curproc;
4597 	}
4598 
4599 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4600 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4601 	    (void *)vmspace_pmap(p->p_vmspace));
4602 
4603 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4604 }
4605 
4606 #endif /* DDB */
4607