1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 67 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $ 68 */ 69 70 /* 71 * Virtual memory mapping module. 72 */ 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/kernel.h> 77 #include <sys/proc.h> 78 #include <sys/lock.h> 79 #include <sys/vmmeter.h> 80 #include <sys/mman.h> 81 #include <sys/vnode.h> 82 #include <sys/resourcevar.h> 83 #include <sys/shm.h> 84 #include <sys/tree.h> 85 #include <sys/malloc.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_zone.h> 98 99 #include <sys/thread2.h> 100 #include <sys/sysref2.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, and sharing 104 * of virtual memory objects. In addition, this module provides for an 105 * efficient virtual copy of memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple entries. 110 * A hint and a RB tree is used to speed-up lookups. 111 * 112 * Callers looking to modify maps specify start/end addresses which cause 113 * the related map entry to be clipped if necessary, and then later 114 * recombined if the pieces remained compatible. 115 * 116 * Virtual copy operations are performed by copying VM object references 117 * from one map to another, and then marking both regions as copy-on-write. 118 */ 119 static void vmspace_terminate(struct vmspace *vm); 120 static void vmspace_lock(struct vmspace *vm); 121 static void vmspace_unlock(struct vmspace *vm); 122 static void vmspace_dtor(void *obj, void *private); 123 124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 125 126 struct sysref_class vmspace_sysref_class = { 127 .name = "vmspace", 128 .mtype = M_VMSPACE, 129 .proto = SYSREF_PROTO_VMSPACE, 130 .offset = offsetof(struct vmspace, vm_sysref), 131 .objsize = sizeof(struct vmspace), 132 .mag_capacity = 32, 133 .flags = SRC_MANAGEDINIT, 134 .dtor = vmspace_dtor, 135 .ops = { 136 .terminate = (sysref_terminate_func_t)vmspace_terminate, 137 .lock = (sysref_lock_func_t)vmspace_lock, 138 .unlock = (sysref_lock_func_t)vmspace_unlock 139 } 140 }; 141 142 #define VMEPERCPU 2 143 144 static struct vm_zone mapentzone_store, mapzone_store; 145 static vm_zone_t mapentzone, mapzone; 146 static struct vm_object mapentobj, mapobj; 147 148 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 149 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 150 static struct vm_map map_init[MAX_KMAP]; 151 152 static void vm_map_entry_shadow(vm_map_entry_t entry); 153 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 154 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 155 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 156 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 157 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 158 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 159 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 160 vm_map_entry_t); 161 static void vm_map_split (vm_map_entry_t); 162 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 163 164 /* 165 * Initialize the vm_map module. Must be called before any other vm_map 166 * routines. 167 * 168 * Map and entry structures are allocated from the general purpose 169 * memory pool with some exceptions: 170 * 171 * - The kernel map is allocated statically. 172 * - Initial kernel map entries are allocated out of a static pool. 173 * 174 * These restrictions are necessary since malloc() uses the 175 * maps and requires map entries. 176 * 177 * Called from the low level boot code only. 178 */ 179 void 180 vm_map_startup(void) 181 { 182 mapzone = &mapzone_store; 183 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 184 map_init, MAX_KMAP); 185 mapentzone = &mapentzone_store; 186 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 187 map_entry_init, MAX_MAPENT); 188 } 189 190 /* 191 * Called prior to any vmspace allocations. 192 * 193 * Called from the low level boot code only. 194 */ 195 void 196 vm_init2(void) 197 { 198 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 199 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 200 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 201 pmap_init2(); 202 vm_object_init2(); 203 } 204 205 206 /* 207 * Red black tree functions 208 * 209 * The caller must hold the related map lock. 210 */ 211 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 212 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 213 214 /* a->start is address, and the only field has to be initialized */ 215 static int 216 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 217 { 218 if (a->start < b->start) 219 return(-1); 220 else if (a->start > b->start) 221 return(1); 222 return(0); 223 } 224 225 /* 226 * Allocate a vmspace structure, including a vm_map and pmap. 227 * Initialize numerous fields. While the initial allocation is zerod, 228 * subsequence reuse from the objcache leaves elements of the structure 229 * intact (particularly the pmap), so portions must be zerod. 230 * 231 * The structure is not considered activated until we call sysref_activate(). 232 * 233 * No requirements. 234 */ 235 struct vmspace * 236 vmspace_alloc(vm_offset_t min, vm_offset_t max) 237 { 238 struct vmspace *vm; 239 240 lwkt_gettoken(&vmspace_token); 241 vm = sysref_alloc(&vmspace_sysref_class); 242 bzero(&vm->vm_startcopy, 243 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 244 vm_map_init(&vm->vm_map, min, max, NULL); 245 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 246 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 247 vm->vm_shm = NULL; 248 vm->vm_exitingcnt = 0; 249 cpu_vmspace_alloc(vm); 250 sysref_activate(&vm->vm_sysref); 251 lwkt_reltoken(&vmspace_token); 252 253 return (vm); 254 } 255 256 /* 257 * dtor function - Some elements of the pmap are retained in the 258 * free-cached vmspaces to improve performance. We have to clean them up 259 * here before returning the vmspace to the memory pool. 260 * 261 * No requirements. 262 */ 263 static void 264 vmspace_dtor(void *obj, void *private) 265 { 266 struct vmspace *vm = obj; 267 268 pmap_puninit(vmspace_pmap(vm)); 269 } 270 271 /* 272 * Called in two cases: 273 * 274 * (1) When the last sysref is dropped, but exitingcnt might still be 275 * non-zero. 276 * 277 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the 278 * exitingcnt becomes zero 279 * 280 * sysref will not scrap the object until we call sysref_put() once more 281 * after the last ref has been dropped. 282 * 283 * Interlocked by the sysref API. 284 */ 285 static void 286 vmspace_terminate(struct vmspace *vm) 287 { 288 int count; 289 290 /* 291 * If exitingcnt is non-zero we can't get rid of the entire vmspace 292 * yet, but we can scrap user memory. 293 */ 294 lwkt_gettoken(&vmspace_token); 295 if (vm->vm_exitingcnt) { 296 shmexit(vm); 297 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 298 VM_MAX_USER_ADDRESS); 299 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 300 VM_MAX_USER_ADDRESS); 301 lwkt_reltoken(&vmspace_token); 302 return; 303 } 304 cpu_vmspace_free(vm); 305 306 /* 307 * Make sure any SysV shm is freed, it might not have in 308 * exit1() 309 */ 310 shmexit(vm); 311 312 KKASSERT(vm->vm_upcalls == NULL); 313 314 /* 315 * Lock the map, to wait out all other references to it. 316 * Delete all of the mappings and pages they hold, then call 317 * the pmap module to reclaim anything left. 318 */ 319 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 320 vm_map_lock(&vm->vm_map); 321 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 322 vm->vm_map.max_offset, &count); 323 vm_map_unlock(&vm->vm_map); 324 vm_map_entry_release(count); 325 326 pmap_release(vmspace_pmap(vm)); 327 sysref_put(&vm->vm_sysref); 328 lwkt_reltoken(&vmspace_token); 329 } 330 331 /* 332 * vmspaces are not currently locked. 333 */ 334 static void 335 vmspace_lock(struct vmspace *vm __unused) 336 { 337 } 338 339 static void 340 vmspace_unlock(struct vmspace *vm __unused) 341 { 342 } 343 344 /* 345 * This is called during exit indicating that the vmspace is no 346 * longer in used by an exiting process, but the process has not yet 347 * been cleaned up. 348 * 349 * No requirements. 350 */ 351 void 352 vmspace_exitbump(struct vmspace *vm) 353 { 354 lwkt_gettoken(&vmspace_token); 355 ++vm->vm_exitingcnt; 356 lwkt_reltoken(&vmspace_token); 357 } 358 359 /* 360 * This is called in the wait*() handling code. The vmspace can be terminated 361 * after the last wait is finished using it. 362 * 363 * No requirements. 364 */ 365 void 366 vmspace_exitfree(struct proc *p) 367 { 368 struct vmspace *vm; 369 370 lwkt_gettoken(&vmspace_token); 371 vm = p->p_vmspace; 372 p->p_vmspace = NULL; 373 374 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref)) 375 vmspace_terminate(vm); 376 lwkt_reltoken(&vmspace_token); 377 } 378 379 /* 380 * Swap useage is determined by taking the proportional swap used by 381 * VM objects backing the VM map. To make up for fractional losses, 382 * if the VM object has any swap use at all the associated map entries 383 * count for at least 1 swap page. 384 * 385 * No requirements. 386 */ 387 int 388 vmspace_swap_count(struct vmspace *vmspace) 389 { 390 vm_map_t map = &vmspace->vm_map; 391 vm_map_entry_t cur; 392 vm_object_t object; 393 int count = 0; 394 int n; 395 396 lwkt_gettoken(&vmspace_token); 397 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 398 switch(cur->maptype) { 399 case VM_MAPTYPE_NORMAL: 400 case VM_MAPTYPE_VPAGETABLE: 401 if ((object = cur->object.vm_object) == NULL) 402 break; 403 if (object->swblock_count) { 404 n = (cur->end - cur->start) / PAGE_SIZE; 405 count += object->swblock_count * 406 SWAP_META_PAGES * n / object->size + 1; 407 } 408 break; 409 default: 410 break; 411 } 412 } 413 lwkt_reltoken(&vmspace_token); 414 return(count); 415 } 416 417 /* 418 * Calculate the approximate number of anonymous pages in use by 419 * this vmspace. To make up for fractional losses, we count each 420 * VM object as having at least 1 anonymous page. 421 * 422 * No requirements. 423 */ 424 int 425 vmspace_anonymous_count(struct vmspace *vmspace) 426 { 427 vm_map_t map = &vmspace->vm_map; 428 vm_map_entry_t cur; 429 vm_object_t object; 430 int count = 0; 431 432 lwkt_gettoken(&vmspace_token); 433 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 434 switch(cur->maptype) { 435 case VM_MAPTYPE_NORMAL: 436 case VM_MAPTYPE_VPAGETABLE: 437 if ((object = cur->object.vm_object) == NULL) 438 break; 439 if (object->type != OBJT_DEFAULT && 440 object->type != OBJT_SWAP) { 441 break; 442 } 443 count += object->resident_page_count; 444 break; 445 default: 446 break; 447 } 448 } 449 lwkt_reltoken(&vmspace_token); 450 return(count); 451 } 452 453 /* 454 * Creates and returns a new empty VM map with the given physical map 455 * structure, and having the given lower and upper address bounds. 456 * 457 * No requirements. 458 */ 459 vm_map_t 460 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max) 461 { 462 if (result == NULL) 463 result = zalloc(mapzone); 464 vm_map_init(result, min, max, pmap); 465 return (result); 466 } 467 468 /* 469 * Initialize an existing vm_map structure such as that in the vmspace 470 * structure. The pmap is initialized elsewhere. 471 * 472 * No requirements. 473 */ 474 void 475 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 476 { 477 map->header.next = map->header.prev = &map->header; 478 RB_INIT(&map->rb_root); 479 map->nentries = 0; 480 map->size = 0; 481 map->system_map = 0; 482 map->infork = 0; 483 map->min_offset = min; 484 map->max_offset = max; 485 map->pmap = pmap; 486 map->first_free = &map->header; 487 map->hint = &map->header; 488 map->timestamp = 0; 489 lockinit(&map->lock, "thrd_sleep", 0, 0); 490 } 491 492 /* 493 * Shadow the vm_map_entry's object. This typically needs to be done when 494 * a write fault is taken on an entry which had previously been cloned by 495 * fork(). The shared object (which might be NULL) must become private so 496 * we add a shadow layer above it. 497 * 498 * Object allocation for anonymous mappings is defered as long as possible. 499 * When creating a shadow, however, the underlying object must be instantiated 500 * so it can be shared. 501 * 502 * If the map segment is governed by a virtual page table then it is 503 * possible to address offsets beyond the mapped area. Just allocate 504 * a maximally sized object for this case. 505 * 506 * The vm_map must be exclusively locked. 507 * No other requirements. 508 */ 509 static 510 void 511 vm_map_entry_shadow(vm_map_entry_t entry) 512 { 513 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 514 vm_object_shadow(&entry->object.vm_object, &entry->offset, 515 0x7FFFFFFF); /* XXX */ 516 } else { 517 vm_object_shadow(&entry->object.vm_object, &entry->offset, 518 atop(entry->end - entry->start)); 519 } 520 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 521 } 522 523 /* 524 * Allocate an object for a vm_map_entry. 525 * 526 * Object allocation for anonymous mappings is defered as long as possible. 527 * This function is called when we can defer no longer, generally when a map 528 * entry might be split or forked or takes a page fault. 529 * 530 * If the map segment is governed by a virtual page table then it is 531 * possible to address offsets beyond the mapped area. Just allocate 532 * a maximally sized object for this case. 533 * 534 * The vm_map must be exclusively locked. 535 * No other requirements. 536 */ 537 void 538 vm_map_entry_allocate_object(vm_map_entry_t entry) 539 { 540 vm_object_t obj; 541 542 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 543 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 544 } else { 545 obj = vm_object_allocate(OBJT_DEFAULT, 546 atop(entry->end - entry->start)); 547 } 548 entry->object.vm_object = obj; 549 entry->offset = 0; 550 } 551 552 /* 553 * Set an initial negative count so the first attempt to reserve 554 * space preloads a bunch of vm_map_entry's for this cpu. Also 555 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 556 * map a new page for vm_map_entry structures. SMP systems are 557 * particularly sensitive. 558 * 559 * This routine is called in early boot so we cannot just call 560 * vm_map_entry_reserve(). 561 * 562 * Called from the low level boot code only (for each cpu) 563 */ 564 void 565 vm_map_entry_reserve_cpu_init(globaldata_t gd) 566 { 567 vm_map_entry_t entry; 568 int i; 569 570 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 571 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 572 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 573 entry->next = gd->gd_vme_base; 574 gd->gd_vme_base = entry; 575 } 576 } 577 578 /* 579 * Reserves vm_map_entry structures so code later on can manipulate 580 * map_entry structures within a locked map without blocking trying 581 * to allocate a new vm_map_entry. 582 * 583 * No requirements. 584 */ 585 int 586 vm_map_entry_reserve(int count) 587 { 588 struct globaldata *gd = mycpu; 589 vm_map_entry_t entry; 590 591 /* 592 * Make sure we have enough structures in gd_vme_base to handle 593 * the reservation request. 594 */ 595 crit_enter(); 596 while (gd->gd_vme_avail < count) { 597 entry = zalloc(mapentzone); 598 entry->next = gd->gd_vme_base; 599 gd->gd_vme_base = entry; 600 ++gd->gd_vme_avail; 601 } 602 gd->gd_vme_avail -= count; 603 crit_exit(); 604 605 return(count); 606 } 607 608 /* 609 * Releases previously reserved vm_map_entry structures that were not 610 * used. If we have too much junk in our per-cpu cache clean some of 611 * it out. 612 * 613 * No requirements. 614 */ 615 void 616 vm_map_entry_release(int count) 617 { 618 struct globaldata *gd = mycpu; 619 vm_map_entry_t entry; 620 621 crit_enter(); 622 gd->gd_vme_avail += count; 623 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 624 entry = gd->gd_vme_base; 625 KKASSERT(entry != NULL); 626 gd->gd_vme_base = entry->next; 627 --gd->gd_vme_avail; 628 crit_exit(); 629 zfree(mapentzone, entry); 630 crit_enter(); 631 } 632 crit_exit(); 633 } 634 635 /* 636 * Reserve map entry structures for use in kernel_map itself. These 637 * entries have *ALREADY* been reserved on a per-cpu basis when the map 638 * was inited. This function is used by zalloc() to avoid a recursion 639 * when zalloc() itself needs to allocate additional kernel memory. 640 * 641 * This function works like the normal reserve but does not load the 642 * vm_map_entry cache (because that would result in an infinite 643 * recursion). Note that gd_vme_avail may go negative. This is expected. 644 * 645 * Any caller of this function must be sure to renormalize after 646 * potentially eating entries to ensure that the reserve supply 647 * remains intact. 648 * 649 * No requirements. 650 */ 651 int 652 vm_map_entry_kreserve(int count) 653 { 654 struct globaldata *gd = mycpu; 655 656 crit_enter(); 657 gd->gd_vme_avail -= count; 658 crit_exit(); 659 KASSERT(gd->gd_vme_base != NULL, 660 ("no reserved entries left, gd_vme_avail = %d\n", 661 gd->gd_vme_avail)); 662 return(count); 663 } 664 665 /* 666 * Release previously reserved map entries for kernel_map. We do not 667 * attempt to clean up like the normal release function as this would 668 * cause an unnecessary (but probably not fatal) deep procedure call. 669 * 670 * No requirements. 671 */ 672 void 673 vm_map_entry_krelease(int count) 674 { 675 struct globaldata *gd = mycpu; 676 677 crit_enter(); 678 gd->gd_vme_avail += count; 679 crit_exit(); 680 } 681 682 /* 683 * Allocates a VM map entry for insertion. No entry fields are filled in. 684 * 685 * The entries should have previously been reserved. The reservation count 686 * is tracked in (*countp). 687 * 688 * No requirements. 689 */ 690 static vm_map_entry_t 691 vm_map_entry_create(vm_map_t map, int *countp) 692 { 693 struct globaldata *gd = mycpu; 694 vm_map_entry_t entry; 695 696 KKASSERT(*countp > 0); 697 --*countp; 698 crit_enter(); 699 entry = gd->gd_vme_base; 700 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 701 gd->gd_vme_base = entry->next; 702 crit_exit(); 703 704 return(entry); 705 } 706 707 /* 708 * Dispose of a vm_map_entry that is no longer being referenced. 709 * 710 * No requirements. 711 */ 712 static void 713 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 714 { 715 struct globaldata *gd = mycpu; 716 717 KKASSERT(map->hint != entry); 718 KKASSERT(map->first_free != entry); 719 720 ++*countp; 721 crit_enter(); 722 entry->next = gd->gd_vme_base; 723 gd->gd_vme_base = entry; 724 crit_exit(); 725 } 726 727 728 /* 729 * Insert/remove entries from maps. 730 * 731 * The related map must be exclusively locked. 732 * No other requirements. 733 * 734 * NOTE! We currently acquire the vmspace_token only to avoid races 735 * against the pageout daemon's calls to vmspace_*_count(), which 736 * are unable to safely lock the vm_map without potentially 737 * deadlocking. 738 */ 739 static __inline void 740 vm_map_entry_link(vm_map_t map, 741 vm_map_entry_t after_where, 742 vm_map_entry_t entry) 743 { 744 ASSERT_VM_MAP_LOCKED(map); 745 746 lwkt_gettoken(&vmspace_token); 747 map->nentries++; 748 entry->prev = after_where; 749 entry->next = after_where->next; 750 entry->next->prev = entry; 751 after_where->next = entry; 752 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 753 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 754 lwkt_reltoken(&vmspace_token); 755 } 756 757 static __inline void 758 vm_map_entry_unlink(vm_map_t map, 759 vm_map_entry_t entry) 760 { 761 vm_map_entry_t prev; 762 vm_map_entry_t next; 763 764 ASSERT_VM_MAP_LOCKED(map); 765 766 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 767 panic("vm_map_entry_unlink: attempt to mess with " 768 "locked entry! %p", entry); 769 } 770 lwkt_gettoken(&vmspace_token); 771 prev = entry->prev; 772 next = entry->next; 773 next->prev = prev; 774 prev->next = next; 775 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 776 map->nentries--; 777 lwkt_reltoken(&vmspace_token); 778 } 779 780 /* 781 * Finds the map entry containing (or immediately preceding) the specified 782 * address in the given map. The entry is returned in (*entry). 783 * 784 * The boolean result indicates whether the address is actually contained 785 * in the map. 786 * 787 * The related map must be locked. 788 * No other requirements. 789 */ 790 boolean_t 791 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 792 { 793 vm_map_entry_t tmp; 794 vm_map_entry_t last; 795 796 ASSERT_VM_MAP_LOCKED(map); 797 #if 0 798 /* 799 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 800 * the hint code with the red-black lookup meets with system crashes 801 * and lockups. We do not yet know why. 802 * 803 * It is possible that the problem is related to the setting 804 * of the hint during map_entry deletion, in the code specified 805 * at the GGG comment later on in this file. 806 */ 807 /* 808 * Quickly check the cached hint, there's a good chance of a match. 809 */ 810 if (map->hint != &map->header) { 811 tmp = map->hint; 812 if (address >= tmp->start && address < tmp->end) { 813 *entry = tmp; 814 return(TRUE); 815 } 816 } 817 #endif 818 819 /* 820 * Locate the record from the top of the tree. 'last' tracks the 821 * closest prior record and is returned if no match is found, which 822 * in binary tree terms means tracking the most recent right-branch 823 * taken. If there is no prior record, &map->header is returned. 824 */ 825 last = &map->header; 826 tmp = RB_ROOT(&map->rb_root); 827 828 while (tmp) { 829 if (address >= tmp->start) { 830 if (address < tmp->end) { 831 *entry = tmp; 832 map->hint = tmp; 833 return(TRUE); 834 } 835 last = tmp; 836 tmp = RB_RIGHT(tmp, rb_entry); 837 } else { 838 tmp = RB_LEFT(tmp, rb_entry); 839 } 840 } 841 *entry = last; 842 return (FALSE); 843 } 844 845 /* 846 * Inserts the given whole VM object into the target map at the specified 847 * address range. The object's size should match that of the address range. 848 * 849 * The map must be exclusively locked. 850 * The caller must have reserved sufficient vm_map_entry structures. 851 * 852 * If object is non-NULL, ref count must be bumped by caller 853 * prior to making call to account for the new entry. 854 */ 855 int 856 vm_map_insert(vm_map_t map, int *countp, 857 vm_object_t object, vm_ooffset_t offset, 858 vm_offset_t start, vm_offset_t end, 859 vm_maptype_t maptype, 860 vm_prot_t prot, vm_prot_t max, 861 int cow) 862 { 863 vm_map_entry_t new_entry; 864 vm_map_entry_t prev_entry; 865 vm_map_entry_t temp_entry; 866 vm_eflags_t protoeflags; 867 868 ASSERT_VM_MAP_LOCKED(map); 869 870 /* 871 * Check that the start and end points are not bogus. 872 */ 873 if ((start < map->min_offset) || (end > map->max_offset) || 874 (start >= end)) 875 return (KERN_INVALID_ADDRESS); 876 877 /* 878 * Find the entry prior to the proposed starting address; if it's part 879 * of an existing entry, this range is bogus. 880 */ 881 if (vm_map_lookup_entry(map, start, &temp_entry)) 882 return (KERN_NO_SPACE); 883 884 prev_entry = temp_entry; 885 886 /* 887 * Assert that the next entry doesn't overlap the end point. 888 */ 889 890 if ((prev_entry->next != &map->header) && 891 (prev_entry->next->start < end)) 892 return (KERN_NO_SPACE); 893 894 protoeflags = 0; 895 896 if (cow & MAP_COPY_ON_WRITE) 897 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 898 899 if (cow & MAP_NOFAULT) { 900 protoeflags |= MAP_ENTRY_NOFAULT; 901 902 KASSERT(object == NULL, 903 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 904 } 905 if (cow & MAP_DISABLE_SYNCER) 906 protoeflags |= MAP_ENTRY_NOSYNC; 907 if (cow & MAP_DISABLE_COREDUMP) 908 protoeflags |= MAP_ENTRY_NOCOREDUMP; 909 if (cow & MAP_IS_STACK) 910 protoeflags |= MAP_ENTRY_STACK; 911 if (cow & MAP_IS_KSTACK) 912 protoeflags |= MAP_ENTRY_KSTACK; 913 914 lwkt_gettoken(&vm_token); 915 lwkt_gettoken(&vmobj_token); 916 917 if (object) { 918 /* 919 * When object is non-NULL, it could be shared with another 920 * process. We have to set or clear OBJ_ONEMAPPING 921 * appropriately. 922 */ 923 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 924 vm_object_clear_flag(object, OBJ_ONEMAPPING); 925 } 926 } 927 else if ((prev_entry != &map->header) && 928 (prev_entry->eflags == protoeflags) && 929 (prev_entry->end == start) && 930 (prev_entry->wired_count == 0) && 931 prev_entry->maptype == maptype && 932 ((prev_entry->object.vm_object == NULL) || 933 vm_object_coalesce(prev_entry->object.vm_object, 934 OFF_TO_IDX(prev_entry->offset), 935 (vm_size_t)(prev_entry->end - prev_entry->start), 936 (vm_size_t)(end - prev_entry->end)))) { 937 /* 938 * We were able to extend the object. Determine if we 939 * can extend the previous map entry to include the 940 * new range as well. 941 */ 942 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 943 (prev_entry->protection == prot) && 944 (prev_entry->max_protection == max)) { 945 lwkt_reltoken(&vmobj_token); 946 lwkt_reltoken(&vm_token); 947 map->size += (end - prev_entry->end); 948 prev_entry->end = end; 949 vm_map_simplify_entry(map, prev_entry, countp); 950 return (KERN_SUCCESS); 951 } 952 953 /* 954 * If we can extend the object but cannot extend the 955 * map entry, we have to create a new map entry. We 956 * must bump the ref count on the extended object to 957 * account for it. object may be NULL. 958 */ 959 object = prev_entry->object.vm_object; 960 offset = prev_entry->offset + 961 (prev_entry->end - prev_entry->start); 962 vm_object_reference_locked(object); 963 } 964 965 lwkt_reltoken(&vmobj_token); 966 lwkt_reltoken(&vm_token); 967 968 /* 969 * NOTE: if conditionals fail, object can be NULL here. This occurs 970 * in things like the buffer map where we manage kva but do not manage 971 * backing objects. 972 */ 973 974 /* 975 * Create a new entry 976 */ 977 978 new_entry = vm_map_entry_create(map, countp); 979 new_entry->start = start; 980 new_entry->end = end; 981 982 new_entry->maptype = maptype; 983 new_entry->eflags = protoeflags; 984 new_entry->object.vm_object = object; 985 new_entry->offset = offset; 986 new_entry->aux.master_pde = 0; 987 988 new_entry->inheritance = VM_INHERIT_DEFAULT; 989 new_entry->protection = prot; 990 new_entry->max_protection = max; 991 new_entry->wired_count = 0; 992 993 /* 994 * Insert the new entry into the list 995 */ 996 997 vm_map_entry_link(map, prev_entry, new_entry); 998 map->size += new_entry->end - new_entry->start; 999 1000 /* 1001 * Update the free space hint. Entries cannot overlap. 1002 * An exact comparison is needed to avoid matching 1003 * against the map->header. 1004 */ 1005 if ((map->first_free == prev_entry) && 1006 (prev_entry->end == new_entry->start)) { 1007 map->first_free = new_entry; 1008 } 1009 1010 #if 0 1011 /* 1012 * Temporarily removed to avoid MAP_STACK panic, due to 1013 * MAP_STACK being a huge hack. Will be added back in 1014 * when MAP_STACK (and the user stack mapping) is fixed. 1015 */ 1016 /* 1017 * It may be possible to simplify the entry 1018 */ 1019 vm_map_simplify_entry(map, new_entry, countp); 1020 #endif 1021 1022 /* 1023 * Try to pre-populate the page table. Mappings governed by virtual 1024 * page tables cannot be prepopulated without a lot of work, so 1025 * don't try. 1026 */ 1027 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1028 maptype != VM_MAPTYPE_VPAGETABLE) { 1029 pmap_object_init_pt(map->pmap, start, prot, 1030 object, OFF_TO_IDX(offset), end - start, 1031 cow & MAP_PREFAULT_PARTIAL); 1032 } 1033 1034 return (KERN_SUCCESS); 1035 } 1036 1037 /* 1038 * Find sufficient space for `length' bytes in the given map, starting at 1039 * `start'. Returns 0 on success, 1 on no space. 1040 * 1041 * This function will returned an arbitrarily aligned pointer. If no 1042 * particular alignment is required you should pass align as 1. Note that 1043 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1044 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1045 * argument. 1046 * 1047 * 'align' should be a power of 2 but is not required to be. 1048 * 1049 * The map must be exclusively locked. 1050 * No other requirements. 1051 */ 1052 int 1053 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1054 vm_size_t align, int flags, vm_offset_t *addr) 1055 { 1056 vm_map_entry_t entry, next; 1057 vm_offset_t end; 1058 vm_offset_t align_mask; 1059 1060 if (start < map->min_offset) 1061 start = map->min_offset; 1062 if (start > map->max_offset) 1063 return (1); 1064 1065 /* 1066 * If the alignment is not a power of 2 we will have to use 1067 * a mod/division, set align_mask to a special value. 1068 */ 1069 if ((align | (align - 1)) + 1 != (align << 1)) 1070 align_mask = (vm_offset_t)-1; 1071 else 1072 align_mask = align - 1; 1073 1074 /* 1075 * Look for the first possible address; if there's already something 1076 * at this address, we have to start after it. 1077 */ 1078 if (start == map->min_offset) { 1079 if ((entry = map->first_free) != &map->header) 1080 start = entry->end; 1081 } else { 1082 vm_map_entry_t tmp; 1083 1084 if (vm_map_lookup_entry(map, start, &tmp)) 1085 start = tmp->end; 1086 entry = tmp; 1087 } 1088 1089 /* 1090 * Look through the rest of the map, trying to fit a new region in the 1091 * gap between existing regions, or after the very last region. 1092 */ 1093 for (;; start = (entry = next)->end) { 1094 /* 1095 * Adjust the proposed start by the requested alignment, 1096 * be sure that we didn't wrap the address. 1097 */ 1098 if (align_mask == (vm_offset_t)-1) 1099 end = ((start + align - 1) / align) * align; 1100 else 1101 end = (start + align_mask) & ~align_mask; 1102 if (end < start) 1103 return (1); 1104 start = end; 1105 /* 1106 * Find the end of the proposed new region. Be sure we didn't 1107 * go beyond the end of the map, or wrap around the address. 1108 * Then check to see if this is the last entry or if the 1109 * proposed end fits in the gap between this and the next 1110 * entry. 1111 */ 1112 end = start + length; 1113 if (end > map->max_offset || end < start) 1114 return (1); 1115 next = entry->next; 1116 1117 /* 1118 * If the next entry's start address is beyond the desired 1119 * end address we may have found a good entry. 1120 * 1121 * If the next entry is a stack mapping we do not map into 1122 * the stack's reserved space. 1123 * 1124 * XXX continue to allow mapping into the stack's reserved 1125 * space if doing a MAP_STACK mapping inside a MAP_STACK 1126 * mapping, for backwards compatibility. But the caller 1127 * really should use MAP_STACK | MAP_TRYFIXED if they 1128 * want to do that. 1129 */ 1130 if (next == &map->header) 1131 break; 1132 if (next->start >= end) { 1133 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1134 break; 1135 if (flags & MAP_STACK) 1136 break; 1137 if (next->start - next->aux.avail_ssize >= end) 1138 break; 1139 } 1140 } 1141 map->hint = entry; 1142 1143 /* 1144 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1145 * if it fails. The kernel_map is locked and nothing can steal 1146 * our address space if pmap_growkernel() blocks. 1147 * 1148 * NOTE: This may be unconditionally called for kldload areas on 1149 * x86_64 because these do not bump kernel_vm_end (which would 1150 * fill 128G worth of page tables!). Therefore we must not 1151 * retry. 1152 */ 1153 if (map == &kernel_map) { 1154 vm_offset_t kstop; 1155 1156 kstop = round_page(start + length); 1157 if (kstop > kernel_vm_end) 1158 pmap_growkernel(start, kstop); 1159 } 1160 *addr = start; 1161 return (0); 1162 } 1163 1164 /* 1165 * vm_map_find finds an unallocated region in the target address map with 1166 * the given length. The search is defined to be first-fit from the 1167 * specified address; the region found is returned in the same parameter. 1168 * 1169 * If object is non-NULL, ref count must be bumped by caller 1170 * prior to making call to account for the new entry. 1171 * 1172 * No requirements. This function will lock the map temporarily. 1173 */ 1174 int 1175 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1176 vm_offset_t *addr, vm_size_t length, vm_size_t align, 1177 boolean_t fitit, 1178 vm_maptype_t maptype, 1179 vm_prot_t prot, vm_prot_t max, 1180 int cow) 1181 { 1182 vm_offset_t start; 1183 int result; 1184 int count; 1185 1186 start = *addr; 1187 1188 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1189 vm_map_lock(map); 1190 if (fitit) { 1191 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1192 vm_map_unlock(map); 1193 vm_map_entry_release(count); 1194 return (KERN_NO_SPACE); 1195 } 1196 start = *addr; 1197 } 1198 result = vm_map_insert(map, &count, object, offset, 1199 start, start + length, 1200 maptype, 1201 prot, max, 1202 cow); 1203 vm_map_unlock(map); 1204 vm_map_entry_release(count); 1205 1206 return (result); 1207 } 1208 1209 /* 1210 * Simplify the given map entry by merging with either neighbor. This 1211 * routine also has the ability to merge with both neighbors. 1212 * 1213 * This routine guarentees that the passed entry remains valid (though 1214 * possibly extended). When merging, this routine may delete one or 1215 * both neighbors. No action is taken on entries which have their 1216 * in-transition flag set. 1217 * 1218 * The map must be exclusively locked. 1219 */ 1220 void 1221 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1222 { 1223 vm_map_entry_t next, prev; 1224 vm_size_t prevsize, esize; 1225 1226 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1227 ++mycpu->gd_cnt.v_intrans_coll; 1228 return; 1229 } 1230 1231 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1232 return; 1233 1234 prev = entry->prev; 1235 if (prev != &map->header) { 1236 prevsize = prev->end - prev->start; 1237 if ( (prev->end == entry->start) && 1238 (prev->maptype == entry->maptype) && 1239 (prev->object.vm_object == entry->object.vm_object) && 1240 (!prev->object.vm_object || 1241 (prev->offset + prevsize == entry->offset)) && 1242 (prev->eflags == entry->eflags) && 1243 (prev->protection == entry->protection) && 1244 (prev->max_protection == entry->max_protection) && 1245 (prev->inheritance == entry->inheritance) && 1246 (prev->wired_count == entry->wired_count)) { 1247 if (map->first_free == prev) 1248 map->first_free = entry; 1249 if (map->hint == prev) 1250 map->hint = entry; 1251 vm_map_entry_unlink(map, prev); 1252 entry->start = prev->start; 1253 entry->offset = prev->offset; 1254 if (prev->object.vm_object) 1255 vm_object_deallocate(prev->object.vm_object); 1256 vm_map_entry_dispose(map, prev, countp); 1257 } 1258 } 1259 1260 next = entry->next; 1261 if (next != &map->header) { 1262 esize = entry->end - entry->start; 1263 if ((entry->end == next->start) && 1264 (next->maptype == entry->maptype) && 1265 (next->object.vm_object == entry->object.vm_object) && 1266 (!entry->object.vm_object || 1267 (entry->offset + esize == next->offset)) && 1268 (next->eflags == entry->eflags) && 1269 (next->protection == entry->protection) && 1270 (next->max_protection == entry->max_protection) && 1271 (next->inheritance == entry->inheritance) && 1272 (next->wired_count == entry->wired_count)) { 1273 if (map->first_free == next) 1274 map->first_free = entry; 1275 if (map->hint == next) 1276 map->hint = entry; 1277 vm_map_entry_unlink(map, next); 1278 entry->end = next->end; 1279 if (next->object.vm_object) 1280 vm_object_deallocate(next->object.vm_object); 1281 vm_map_entry_dispose(map, next, countp); 1282 } 1283 } 1284 } 1285 1286 /* 1287 * Asserts that the given entry begins at or after the specified address. 1288 * If necessary, it splits the entry into two. 1289 */ 1290 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1291 { \ 1292 if (startaddr > entry->start) \ 1293 _vm_map_clip_start(map, entry, startaddr, countp); \ 1294 } 1295 1296 /* 1297 * This routine is called only when it is known that the entry must be split. 1298 * 1299 * The map must be exclusively locked. 1300 */ 1301 static void 1302 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1303 int *countp) 1304 { 1305 vm_map_entry_t new_entry; 1306 1307 /* 1308 * Split off the front portion -- note that we must insert the new 1309 * entry BEFORE this one, so that this entry has the specified 1310 * starting address. 1311 */ 1312 1313 vm_map_simplify_entry(map, entry, countp); 1314 1315 /* 1316 * If there is no object backing this entry, we might as well create 1317 * one now. If we defer it, an object can get created after the map 1318 * is clipped, and individual objects will be created for the split-up 1319 * map. This is a bit of a hack, but is also about the best place to 1320 * put this improvement. 1321 */ 1322 if (entry->object.vm_object == NULL && !map->system_map) { 1323 vm_map_entry_allocate_object(entry); 1324 } 1325 1326 new_entry = vm_map_entry_create(map, countp); 1327 *new_entry = *entry; 1328 1329 new_entry->end = start; 1330 entry->offset += (start - entry->start); 1331 entry->start = start; 1332 1333 vm_map_entry_link(map, entry->prev, new_entry); 1334 1335 switch(entry->maptype) { 1336 case VM_MAPTYPE_NORMAL: 1337 case VM_MAPTYPE_VPAGETABLE: 1338 vm_object_reference(new_entry->object.vm_object); 1339 break; 1340 default: 1341 break; 1342 } 1343 } 1344 1345 /* 1346 * Asserts that the given entry ends at or before the specified address. 1347 * If necessary, it splits the entry into two. 1348 * 1349 * The map must be exclusively locked. 1350 */ 1351 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1352 { \ 1353 if (endaddr < entry->end) \ 1354 _vm_map_clip_end(map, entry, endaddr, countp); \ 1355 } 1356 1357 /* 1358 * This routine is called only when it is known that the entry must be split. 1359 * 1360 * The map must be exclusively locked. 1361 */ 1362 static void 1363 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1364 int *countp) 1365 { 1366 vm_map_entry_t new_entry; 1367 1368 /* 1369 * If there is no object backing this entry, we might as well create 1370 * one now. If we defer it, an object can get created after the map 1371 * is clipped, and individual objects will be created for the split-up 1372 * map. This is a bit of a hack, but is also about the best place to 1373 * put this improvement. 1374 */ 1375 1376 if (entry->object.vm_object == NULL && !map->system_map) { 1377 vm_map_entry_allocate_object(entry); 1378 } 1379 1380 /* 1381 * Create a new entry and insert it AFTER the specified entry 1382 */ 1383 1384 new_entry = vm_map_entry_create(map, countp); 1385 *new_entry = *entry; 1386 1387 new_entry->start = entry->end = end; 1388 new_entry->offset += (end - entry->start); 1389 1390 vm_map_entry_link(map, entry, new_entry); 1391 1392 switch(entry->maptype) { 1393 case VM_MAPTYPE_NORMAL: 1394 case VM_MAPTYPE_VPAGETABLE: 1395 vm_object_reference(new_entry->object.vm_object); 1396 break; 1397 default: 1398 break; 1399 } 1400 } 1401 1402 /* 1403 * Asserts that the starting and ending region addresses fall within the 1404 * valid range for the map. 1405 */ 1406 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1407 { \ 1408 if (start < vm_map_min(map)) \ 1409 start = vm_map_min(map); \ 1410 if (end > vm_map_max(map)) \ 1411 end = vm_map_max(map); \ 1412 if (start > end) \ 1413 start = end; \ 1414 } 1415 1416 /* 1417 * Used to block when an in-transition collison occurs. The map 1418 * is unlocked for the sleep and relocked before the return. 1419 */ 1420 static 1421 void 1422 vm_map_transition_wait(vm_map_t map) 1423 { 1424 vm_map_unlock(map); 1425 tsleep(map, 0, "vment", 0); 1426 vm_map_lock(map); 1427 } 1428 1429 /* 1430 * When we do blocking operations with the map lock held it is 1431 * possible that a clip might have occured on our in-transit entry, 1432 * requiring an adjustment to the entry in our loop. These macros 1433 * help the pageable and clip_range code deal with the case. The 1434 * conditional costs virtually nothing if no clipping has occured. 1435 */ 1436 1437 #define CLIP_CHECK_BACK(entry, save_start) \ 1438 do { \ 1439 while (entry->start != save_start) { \ 1440 entry = entry->prev; \ 1441 KASSERT(entry != &map->header, ("bad entry clip")); \ 1442 } \ 1443 } while(0) 1444 1445 #define CLIP_CHECK_FWD(entry, save_end) \ 1446 do { \ 1447 while (entry->end != save_end) { \ 1448 entry = entry->next; \ 1449 KASSERT(entry != &map->header, ("bad entry clip")); \ 1450 } \ 1451 } while(0) 1452 1453 1454 /* 1455 * Clip the specified range and return the base entry. The 1456 * range may cover several entries starting at the returned base 1457 * and the first and last entry in the covering sequence will be 1458 * properly clipped to the requested start and end address. 1459 * 1460 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1461 * flag. 1462 * 1463 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1464 * covered by the requested range. 1465 * 1466 * The map must be exclusively locked on entry and will remain locked 1467 * on return. If no range exists or the range contains holes and you 1468 * specified that no holes were allowed, NULL will be returned. This 1469 * routine may temporarily unlock the map in order avoid a deadlock when 1470 * sleeping. 1471 */ 1472 static 1473 vm_map_entry_t 1474 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1475 int *countp, int flags) 1476 { 1477 vm_map_entry_t start_entry; 1478 vm_map_entry_t entry; 1479 1480 /* 1481 * Locate the entry and effect initial clipping. The in-transition 1482 * case does not occur very often so do not try to optimize it. 1483 */ 1484 again: 1485 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1486 return (NULL); 1487 entry = start_entry; 1488 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1489 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1490 ++mycpu->gd_cnt.v_intrans_coll; 1491 ++mycpu->gd_cnt.v_intrans_wait; 1492 vm_map_transition_wait(map); 1493 /* 1494 * entry and/or start_entry may have been clipped while 1495 * we slept, or may have gone away entirely. We have 1496 * to restart from the lookup. 1497 */ 1498 goto again; 1499 } 1500 1501 /* 1502 * Since we hold an exclusive map lock we do not have to restart 1503 * after clipping, even though clipping may block in zalloc. 1504 */ 1505 vm_map_clip_start(map, entry, start, countp); 1506 vm_map_clip_end(map, entry, end, countp); 1507 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1508 1509 /* 1510 * Scan entries covered by the range. When working on the next 1511 * entry a restart need only re-loop on the current entry which 1512 * we have already locked, since 'next' may have changed. Also, 1513 * even though entry is safe, it may have been clipped so we 1514 * have to iterate forwards through the clip after sleeping. 1515 */ 1516 while (entry->next != &map->header && entry->next->start < end) { 1517 vm_map_entry_t next = entry->next; 1518 1519 if (flags & MAP_CLIP_NO_HOLES) { 1520 if (next->start > entry->end) { 1521 vm_map_unclip_range(map, start_entry, 1522 start, entry->end, countp, flags); 1523 return(NULL); 1524 } 1525 } 1526 1527 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1528 vm_offset_t save_end = entry->end; 1529 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1530 ++mycpu->gd_cnt.v_intrans_coll; 1531 ++mycpu->gd_cnt.v_intrans_wait; 1532 vm_map_transition_wait(map); 1533 1534 /* 1535 * clips might have occured while we blocked. 1536 */ 1537 CLIP_CHECK_FWD(entry, save_end); 1538 CLIP_CHECK_BACK(start_entry, start); 1539 continue; 1540 } 1541 /* 1542 * No restart necessary even though clip_end may block, we 1543 * are holding the map lock. 1544 */ 1545 vm_map_clip_end(map, next, end, countp); 1546 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1547 entry = next; 1548 } 1549 if (flags & MAP_CLIP_NO_HOLES) { 1550 if (entry->end != end) { 1551 vm_map_unclip_range(map, start_entry, 1552 start, entry->end, countp, flags); 1553 return(NULL); 1554 } 1555 } 1556 return(start_entry); 1557 } 1558 1559 /* 1560 * Undo the effect of vm_map_clip_range(). You should pass the same 1561 * flags and the same range that you passed to vm_map_clip_range(). 1562 * This code will clear the in-transition flag on the entries and 1563 * wake up anyone waiting. This code will also simplify the sequence 1564 * and attempt to merge it with entries before and after the sequence. 1565 * 1566 * The map must be locked on entry and will remain locked on return. 1567 * 1568 * Note that you should also pass the start_entry returned by 1569 * vm_map_clip_range(). However, if you block between the two calls 1570 * with the map unlocked please be aware that the start_entry may 1571 * have been clipped and you may need to scan it backwards to find 1572 * the entry corresponding with the original start address. You are 1573 * responsible for this, vm_map_unclip_range() expects the correct 1574 * start_entry to be passed to it and will KASSERT otherwise. 1575 */ 1576 static 1577 void 1578 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1579 vm_offset_t start, vm_offset_t end, 1580 int *countp, int flags) 1581 { 1582 vm_map_entry_t entry; 1583 1584 entry = start_entry; 1585 1586 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1587 while (entry != &map->header && entry->start < end) { 1588 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1589 ("in-transition flag not set during unclip on: %p", 1590 entry)); 1591 KASSERT(entry->end <= end, 1592 ("unclip_range: tail wasn't clipped")); 1593 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1594 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1595 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1596 wakeup(map); 1597 } 1598 entry = entry->next; 1599 } 1600 1601 /* 1602 * Simplification does not block so there is no restart case. 1603 */ 1604 entry = start_entry; 1605 while (entry != &map->header && entry->start < end) { 1606 vm_map_simplify_entry(map, entry, countp); 1607 entry = entry->next; 1608 } 1609 } 1610 1611 /* 1612 * Mark the given range as handled by a subordinate map. 1613 * 1614 * This range must have been created with vm_map_find(), and no other 1615 * operations may have been performed on this range prior to calling 1616 * vm_map_submap(). 1617 * 1618 * Submappings cannot be removed. 1619 * 1620 * No requirements. 1621 */ 1622 int 1623 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1624 { 1625 vm_map_entry_t entry; 1626 int result = KERN_INVALID_ARGUMENT; 1627 int count; 1628 1629 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1630 vm_map_lock(map); 1631 1632 VM_MAP_RANGE_CHECK(map, start, end); 1633 1634 if (vm_map_lookup_entry(map, start, &entry)) { 1635 vm_map_clip_start(map, entry, start, &count); 1636 } else { 1637 entry = entry->next; 1638 } 1639 1640 vm_map_clip_end(map, entry, end, &count); 1641 1642 if ((entry->start == start) && (entry->end == end) && 1643 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1644 (entry->object.vm_object == NULL)) { 1645 entry->object.sub_map = submap; 1646 entry->maptype = VM_MAPTYPE_SUBMAP; 1647 result = KERN_SUCCESS; 1648 } 1649 vm_map_unlock(map); 1650 vm_map_entry_release(count); 1651 1652 return (result); 1653 } 1654 1655 /* 1656 * Sets the protection of the specified address region in the target map. 1657 * If "set_max" is specified, the maximum protection is to be set; 1658 * otherwise, only the current protection is affected. 1659 * 1660 * The protection is not applicable to submaps, but is applicable to normal 1661 * maps and maps governed by virtual page tables. For example, when operating 1662 * on a virtual page table our protection basically controls how COW occurs 1663 * on the backing object, whereas the virtual page table abstraction itself 1664 * is an abstraction for userland. 1665 * 1666 * No requirements. 1667 */ 1668 int 1669 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1670 vm_prot_t new_prot, boolean_t set_max) 1671 { 1672 vm_map_entry_t current; 1673 vm_map_entry_t entry; 1674 int count; 1675 1676 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1677 vm_map_lock(map); 1678 1679 VM_MAP_RANGE_CHECK(map, start, end); 1680 1681 if (vm_map_lookup_entry(map, start, &entry)) { 1682 vm_map_clip_start(map, entry, start, &count); 1683 } else { 1684 entry = entry->next; 1685 } 1686 1687 /* 1688 * Make a first pass to check for protection violations. 1689 */ 1690 current = entry; 1691 while ((current != &map->header) && (current->start < end)) { 1692 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1693 vm_map_unlock(map); 1694 vm_map_entry_release(count); 1695 return (KERN_INVALID_ARGUMENT); 1696 } 1697 if ((new_prot & current->max_protection) != new_prot) { 1698 vm_map_unlock(map); 1699 vm_map_entry_release(count); 1700 return (KERN_PROTECTION_FAILURE); 1701 } 1702 current = current->next; 1703 } 1704 1705 /* 1706 * Go back and fix up protections. [Note that clipping is not 1707 * necessary the second time.] 1708 */ 1709 current = entry; 1710 1711 while ((current != &map->header) && (current->start < end)) { 1712 vm_prot_t old_prot; 1713 1714 vm_map_clip_end(map, current, end, &count); 1715 1716 old_prot = current->protection; 1717 if (set_max) { 1718 current->protection = 1719 (current->max_protection = new_prot) & 1720 old_prot; 1721 } else { 1722 current->protection = new_prot; 1723 } 1724 1725 /* 1726 * Update physical map if necessary. Worry about copy-on-write 1727 * here -- CHECK THIS XXX 1728 */ 1729 1730 if (current->protection != old_prot) { 1731 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1732 VM_PROT_ALL) 1733 1734 pmap_protect(map->pmap, current->start, 1735 current->end, 1736 current->protection & MASK(current)); 1737 #undef MASK 1738 } 1739 1740 vm_map_simplify_entry(map, current, &count); 1741 1742 current = current->next; 1743 } 1744 1745 vm_map_unlock(map); 1746 vm_map_entry_release(count); 1747 return (KERN_SUCCESS); 1748 } 1749 1750 /* 1751 * This routine traverses a processes map handling the madvise 1752 * system call. Advisories are classified as either those effecting 1753 * the vm_map_entry structure, or those effecting the underlying 1754 * objects. 1755 * 1756 * The <value> argument is used for extended madvise calls. 1757 * 1758 * No requirements. 1759 */ 1760 int 1761 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1762 int behav, off_t value) 1763 { 1764 vm_map_entry_t current, entry; 1765 int modify_map = 0; 1766 int error = 0; 1767 int count; 1768 1769 /* 1770 * Some madvise calls directly modify the vm_map_entry, in which case 1771 * we need to use an exclusive lock on the map and we need to perform 1772 * various clipping operations. Otherwise we only need a read-lock 1773 * on the map. 1774 */ 1775 1776 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1777 1778 switch(behav) { 1779 case MADV_NORMAL: 1780 case MADV_SEQUENTIAL: 1781 case MADV_RANDOM: 1782 case MADV_NOSYNC: 1783 case MADV_AUTOSYNC: 1784 case MADV_NOCORE: 1785 case MADV_CORE: 1786 case MADV_SETMAP: 1787 case MADV_INVAL: 1788 modify_map = 1; 1789 vm_map_lock(map); 1790 break; 1791 case MADV_WILLNEED: 1792 case MADV_DONTNEED: 1793 case MADV_FREE: 1794 vm_map_lock_read(map); 1795 break; 1796 default: 1797 vm_map_entry_release(count); 1798 return (EINVAL); 1799 } 1800 1801 /* 1802 * Locate starting entry and clip if necessary. 1803 */ 1804 1805 VM_MAP_RANGE_CHECK(map, start, end); 1806 1807 if (vm_map_lookup_entry(map, start, &entry)) { 1808 if (modify_map) 1809 vm_map_clip_start(map, entry, start, &count); 1810 } else { 1811 entry = entry->next; 1812 } 1813 1814 if (modify_map) { 1815 /* 1816 * madvise behaviors that are implemented in the vm_map_entry. 1817 * 1818 * We clip the vm_map_entry so that behavioral changes are 1819 * limited to the specified address range. 1820 */ 1821 for (current = entry; 1822 (current != &map->header) && (current->start < end); 1823 current = current->next 1824 ) { 1825 if (current->maptype == VM_MAPTYPE_SUBMAP) 1826 continue; 1827 1828 vm_map_clip_end(map, current, end, &count); 1829 1830 switch (behav) { 1831 case MADV_NORMAL: 1832 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1833 break; 1834 case MADV_SEQUENTIAL: 1835 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1836 break; 1837 case MADV_RANDOM: 1838 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1839 break; 1840 case MADV_NOSYNC: 1841 current->eflags |= MAP_ENTRY_NOSYNC; 1842 break; 1843 case MADV_AUTOSYNC: 1844 current->eflags &= ~MAP_ENTRY_NOSYNC; 1845 break; 1846 case MADV_NOCORE: 1847 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1848 break; 1849 case MADV_CORE: 1850 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1851 break; 1852 case MADV_INVAL: 1853 /* 1854 * Invalidate the related pmap entries, used 1855 * to flush portions of the real kernel's 1856 * pmap when the caller has removed or 1857 * modified existing mappings in a virtual 1858 * page table. 1859 */ 1860 pmap_remove(map->pmap, 1861 current->start, current->end); 1862 break; 1863 case MADV_SETMAP: 1864 /* 1865 * Set the page directory page for a map 1866 * governed by a virtual page table. Mark 1867 * the entry as being governed by a virtual 1868 * page table if it is not. 1869 * 1870 * XXX the page directory page is stored 1871 * in the avail_ssize field if the map_entry. 1872 * 1873 * XXX the map simplification code does not 1874 * compare this field so weird things may 1875 * happen if you do not apply this function 1876 * to the entire mapping governed by the 1877 * virtual page table. 1878 */ 1879 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1880 error = EINVAL; 1881 break; 1882 } 1883 current->aux.master_pde = value; 1884 pmap_remove(map->pmap, 1885 current->start, current->end); 1886 break; 1887 default: 1888 error = EINVAL; 1889 break; 1890 } 1891 vm_map_simplify_entry(map, current, &count); 1892 } 1893 vm_map_unlock(map); 1894 } else { 1895 vm_pindex_t pindex; 1896 int count; 1897 1898 /* 1899 * madvise behaviors that are implemented in the underlying 1900 * vm_object. 1901 * 1902 * Since we don't clip the vm_map_entry, we have to clip 1903 * the vm_object pindex and count. 1904 * 1905 * NOTE! We currently do not support these functions on 1906 * virtual page tables. 1907 */ 1908 for (current = entry; 1909 (current != &map->header) && (current->start < end); 1910 current = current->next 1911 ) { 1912 vm_offset_t useStart; 1913 1914 if (current->maptype != VM_MAPTYPE_NORMAL) 1915 continue; 1916 1917 pindex = OFF_TO_IDX(current->offset); 1918 count = atop(current->end - current->start); 1919 useStart = current->start; 1920 1921 if (current->start < start) { 1922 pindex += atop(start - current->start); 1923 count -= atop(start - current->start); 1924 useStart = start; 1925 } 1926 if (current->end > end) 1927 count -= atop(current->end - end); 1928 1929 if (count <= 0) 1930 continue; 1931 1932 vm_object_madvise(current->object.vm_object, 1933 pindex, count, behav); 1934 1935 /* 1936 * Try to populate the page table. Mappings governed 1937 * by virtual page tables cannot be pre-populated 1938 * without a lot of work so don't try. 1939 */ 1940 if (behav == MADV_WILLNEED && 1941 current->maptype != VM_MAPTYPE_VPAGETABLE) { 1942 pmap_object_init_pt( 1943 map->pmap, 1944 useStart, 1945 current->protection, 1946 current->object.vm_object, 1947 pindex, 1948 (count << PAGE_SHIFT), 1949 MAP_PREFAULT_MADVISE 1950 ); 1951 } 1952 } 1953 vm_map_unlock_read(map); 1954 } 1955 vm_map_entry_release(count); 1956 return(error); 1957 } 1958 1959 1960 /* 1961 * Sets the inheritance of the specified address range in the target map. 1962 * Inheritance affects how the map will be shared with child maps at the 1963 * time of vm_map_fork. 1964 */ 1965 int 1966 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1967 vm_inherit_t new_inheritance) 1968 { 1969 vm_map_entry_t entry; 1970 vm_map_entry_t temp_entry; 1971 int count; 1972 1973 switch (new_inheritance) { 1974 case VM_INHERIT_NONE: 1975 case VM_INHERIT_COPY: 1976 case VM_INHERIT_SHARE: 1977 break; 1978 default: 1979 return (KERN_INVALID_ARGUMENT); 1980 } 1981 1982 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1983 vm_map_lock(map); 1984 1985 VM_MAP_RANGE_CHECK(map, start, end); 1986 1987 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1988 entry = temp_entry; 1989 vm_map_clip_start(map, entry, start, &count); 1990 } else 1991 entry = temp_entry->next; 1992 1993 while ((entry != &map->header) && (entry->start < end)) { 1994 vm_map_clip_end(map, entry, end, &count); 1995 1996 entry->inheritance = new_inheritance; 1997 1998 vm_map_simplify_entry(map, entry, &count); 1999 2000 entry = entry->next; 2001 } 2002 vm_map_unlock(map); 2003 vm_map_entry_release(count); 2004 return (KERN_SUCCESS); 2005 } 2006 2007 /* 2008 * Implement the semantics of mlock 2009 */ 2010 int 2011 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2012 boolean_t new_pageable) 2013 { 2014 vm_map_entry_t entry; 2015 vm_map_entry_t start_entry; 2016 vm_offset_t end; 2017 int rv = KERN_SUCCESS; 2018 int count; 2019 2020 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2021 vm_map_lock(map); 2022 VM_MAP_RANGE_CHECK(map, start, real_end); 2023 end = real_end; 2024 2025 start_entry = vm_map_clip_range(map, start, end, &count, 2026 MAP_CLIP_NO_HOLES); 2027 if (start_entry == NULL) { 2028 vm_map_unlock(map); 2029 vm_map_entry_release(count); 2030 return (KERN_INVALID_ADDRESS); 2031 } 2032 2033 if (new_pageable == 0) { 2034 entry = start_entry; 2035 while ((entry != &map->header) && (entry->start < end)) { 2036 vm_offset_t save_start; 2037 vm_offset_t save_end; 2038 2039 /* 2040 * Already user wired or hard wired (trivial cases) 2041 */ 2042 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2043 entry = entry->next; 2044 continue; 2045 } 2046 if (entry->wired_count != 0) { 2047 entry->wired_count++; 2048 entry->eflags |= MAP_ENTRY_USER_WIRED; 2049 entry = entry->next; 2050 continue; 2051 } 2052 2053 /* 2054 * A new wiring requires instantiation of appropriate 2055 * management structures and the faulting in of the 2056 * page. 2057 */ 2058 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2059 int copyflag = entry->eflags & 2060 MAP_ENTRY_NEEDS_COPY; 2061 if (copyflag && ((entry->protection & 2062 VM_PROT_WRITE) != 0)) { 2063 vm_map_entry_shadow(entry); 2064 } else if (entry->object.vm_object == NULL && 2065 !map->system_map) { 2066 vm_map_entry_allocate_object(entry); 2067 } 2068 } 2069 entry->wired_count++; 2070 entry->eflags |= MAP_ENTRY_USER_WIRED; 2071 2072 /* 2073 * Now fault in the area. Note that vm_fault_wire() 2074 * may release the map lock temporarily, it will be 2075 * relocked on return. The in-transition 2076 * flag protects the entries. 2077 */ 2078 save_start = entry->start; 2079 save_end = entry->end; 2080 rv = vm_fault_wire(map, entry, TRUE); 2081 if (rv) { 2082 CLIP_CHECK_BACK(entry, save_start); 2083 for (;;) { 2084 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2085 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2086 entry->wired_count = 0; 2087 if (entry->end == save_end) 2088 break; 2089 entry = entry->next; 2090 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2091 } 2092 end = save_start; /* unwire the rest */ 2093 break; 2094 } 2095 /* 2096 * note that even though the entry might have been 2097 * clipped, the USER_WIRED flag we set prevents 2098 * duplication so we do not have to do a 2099 * clip check. 2100 */ 2101 entry = entry->next; 2102 } 2103 2104 /* 2105 * If we failed fall through to the unwiring section to 2106 * unwire what we had wired so far. 'end' has already 2107 * been adjusted. 2108 */ 2109 if (rv) 2110 new_pageable = 1; 2111 2112 /* 2113 * start_entry might have been clipped if we unlocked the 2114 * map and blocked. No matter how clipped it has gotten 2115 * there should be a fragment that is on our start boundary. 2116 */ 2117 CLIP_CHECK_BACK(start_entry, start); 2118 } 2119 2120 /* 2121 * Deal with the unwiring case. 2122 */ 2123 if (new_pageable) { 2124 /* 2125 * This is the unwiring case. We must first ensure that the 2126 * range to be unwired is really wired down. We know there 2127 * are no holes. 2128 */ 2129 entry = start_entry; 2130 while ((entry != &map->header) && (entry->start < end)) { 2131 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2132 rv = KERN_INVALID_ARGUMENT; 2133 goto done; 2134 } 2135 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2136 entry = entry->next; 2137 } 2138 2139 /* 2140 * Now decrement the wiring count for each region. If a region 2141 * becomes completely unwired, unwire its physical pages and 2142 * mappings. 2143 */ 2144 /* 2145 * The map entries are processed in a loop, checking to 2146 * make sure the entry is wired and asserting it has a wired 2147 * count. However, another loop was inserted more-or-less in 2148 * the middle of the unwiring path. This loop picks up the 2149 * "entry" loop variable from the first loop without first 2150 * setting it to start_entry. Naturally, the secound loop 2151 * is never entered and the pages backing the entries are 2152 * never unwired. This can lead to a leak of wired pages. 2153 */ 2154 entry = start_entry; 2155 while ((entry != &map->header) && (entry->start < end)) { 2156 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2157 ("expected USER_WIRED on entry %p", entry)); 2158 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2159 entry->wired_count--; 2160 if (entry->wired_count == 0) 2161 vm_fault_unwire(map, entry); 2162 entry = entry->next; 2163 } 2164 } 2165 done: 2166 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2167 MAP_CLIP_NO_HOLES); 2168 map->timestamp++; 2169 vm_map_unlock(map); 2170 vm_map_entry_release(count); 2171 return (rv); 2172 } 2173 2174 /* 2175 * Sets the pageability of the specified address range in the target map. 2176 * Regions specified as not pageable require locked-down physical 2177 * memory and physical page maps. 2178 * 2179 * The map must not be locked, but a reference must remain to the map 2180 * throughout the call. 2181 * 2182 * This function may be called via the zalloc path and must properly 2183 * reserve map entries for kernel_map. 2184 * 2185 * No requirements. 2186 */ 2187 int 2188 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2189 { 2190 vm_map_entry_t entry; 2191 vm_map_entry_t start_entry; 2192 vm_offset_t end; 2193 int rv = KERN_SUCCESS; 2194 int count; 2195 2196 if (kmflags & KM_KRESERVE) 2197 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2198 else 2199 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2200 vm_map_lock(map); 2201 VM_MAP_RANGE_CHECK(map, start, real_end); 2202 end = real_end; 2203 2204 start_entry = vm_map_clip_range(map, start, end, &count, 2205 MAP_CLIP_NO_HOLES); 2206 if (start_entry == NULL) { 2207 vm_map_unlock(map); 2208 rv = KERN_INVALID_ADDRESS; 2209 goto failure; 2210 } 2211 if ((kmflags & KM_PAGEABLE) == 0) { 2212 /* 2213 * Wiring. 2214 * 2215 * 1. Holding the write lock, we create any shadow or zero-fill 2216 * objects that need to be created. Then we clip each map 2217 * entry to the region to be wired and increment its wiring 2218 * count. We create objects before clipping the map entries 2219 * to avoid object proliferation. 2220 * 2221 * 2. We downgrade to a read lock, and call vm_fault_wire to 2222 * fault in the pages for any newly wired area (wired_count is 2223 * 1). 2224 * 2225 * Downgrading to a read lock for vm_fault_wire avoids a 2226 * possible deadlock with another process that may have faulted 2227 * on one of the pages to be wired (it would mark the page busy, 2228 * blocking us, then in turn block on the map lock that we 2229 * hold). Because of problems in the recursive lock package, 2230 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2231 * any actions that require the write lock must be done 2232 * beforehand. Because we keep the read lock on the map, the 2233 * copy-on-write status of the entries we modify here cannot 2234 * change. 2235 */ 2236 entry = start_entry; 2237 while ((entry != &map->header) && (entry->start < end)) { 2238 /* 2239 * Trivial case if the entry is already wired 2240 */ 2241 if (entry->wired_count) { 2242 entry->wired_count++; 2243 entry = entry->next; 2244 continue; 2245 } 2246 2247 /* 2248 * The entry is being newly wired, we have to setup 2249 * appropriate management structures. A shadow 2250 * object is required for a copy-on-write region, 2251 * or a normal object for a zero-fill region. We 2252 * do not have to do this for entries that point to sub 2253 * maps because we won't hold the lock on the sub map. 2254 */ 2255 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2256 int copyflag = entry->eflags & 2257 MAP_ENTRY_NEEDS_COPY; 2258 if (copyflag && ((entry->protection & 2259 VM_PROT_WRITE) != 0)) { 2260 vm_map_entry_shadow(entry); 2261 } else if (entry->object.vm_object == NULL && 2262 !map->system_map) { 2263 vm_map_entry_allocate_object(entry); 2264 } 2265 } 2266 2267 entry->wired_count++; 2268 entry = entry->next; 2269 } 2270 2271 /* 2272 * Pass 2. 2273 */ 2274 2275 /* 2276 * HACK HACK HACK HACK 2277 * 2278 * vm_fault_wire() temporarily unlocks the map to avoid 2279 * deadlocks. The in-transition flag from vm_map_clip_range 2280 * call should protect us from changes while the map is 2281 * unlocked. T 2282 * 2283 * NOTE: Previously this comment stated that clipping might 2284 * still occur while the entry is unlocked, but from 2285 * what I can tell it actually cannot. 2286 * 2287 * It is unclear whether the CLIP_CHECK_*() calls 2288 * are still needed but we keep them in anyway. 2289 * 2290 * HACK HACK HACK HACK 2291 */ 2292 2293 entry = start_entry; 2294 while (entry != &map->header && entry->start < end) { 2295 /* 2296 * If vm_fault_wire fails for any page we need to undo 2297 * what has been done. We decrement the wiring count 2298 * for those pages which have not yet been wired (now) 2299 * and unwire those that have (later). 2300 */ 2301 vm_offset_t save_start = entry->start; 2302 vm_offset_t save_end = entry->end; 2303 2304 if (entry->wired_count == 1) 2305 rv = vm_fault_wire(map, entry, FALSE); 2306 if (rv) { 2307 CLIP_CHECK_BACK(entry, save_start); 2308 for (;;) { 2309 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2310 entry->wired_count = 0; 2311 if (entry->end == save_end) 2312 break; 2313 entry = entry->next; 2314 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2315 } 2316 end = save_start; 2317 break; 2318 } 2319 CLIP_CHECK_FWD(entry, save_end); 2320 entry = entry->next; 2321 } 2322 2323 /* 2324 * If a failure occured undo everything by falling through 2325 * to the unwiring code. 'end' has already been adjusted 2326 * appropriately. 2327 */ 2328 if (rv) 2329 kmflags |= KM_PAGEABLE; 2330 2331 /* 2332 * start_entry is still IN_TRANSITION but may have been 2333 * clipped since vm_fault_wire() unlocks and relocks the 2334 * map. No matter how clipped it has gotten there should 2335 * be a fragment that is on our start boundary. 2336 */ 2337 CLIP_CHECK_BACK(start_entry, start); 2338 } 2339 2340 if (kmflags & KM_PAGEABLE) { 2341 /* 2342 * This is the unwiring case. We must first ensure that the 2343 * range to be unwired is really wired down. We know there 2344 * are no holes. 2345 */ 2346 entry = start_entry; 2347 while ((entry != &map->header) && (entry->start < end)) { 2348 if (entry->wired_count == 0) { 2349 rv = KERN_INVALID_ARGUMENT; 2350 goto done; 2351 } 2352 entry = entry->next; 2353 } 2354 2355 /* 2356 * Now decrement the wiring count for each region. If a region 2357 * becomes completely unwired, unwire its physical pages and 2358 * mappings. 2359 */ 2360 entry = start_entry; 2361 while ((entry != &map->header) && (entry->start < end)) { 2362 entry->wired_count--; 2363 if (entry->wired_count == 0) 2364 vm_fault_unwire(map, entry); 2365 entry = entry->next; 2366 } 2367 } 2368 done: 2369 vm_map_unclip_range(map, start_entry, start, real_end, 2370 &count, MAP_CLIP_NO_HOLES); 2371 map->timestamp++; 2372 vm_map_unlock(map); 2373 failure: 2374 if (kmflags & KM_KRESERVE) 2375 vm_map_entry_krelease(count); 2376 else 2377 vm_map_entry_release(count); 2378 return (rv); 2379 } 2380 2381 /* 2382 * Mark a newly allocated address range as wired but do not fault in 2383 * the pages. The caller is expected to load the pages into the object. 2384 * 2385 * The map must be locked on entry and will remain locked on return. 2386 * No other requirements. 2387 */ 2388 void 2389 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2390 int *countp) 2391 { 2392 vm_map_entry_t scan; 2393 vm_map_entry_t entry; 2394 2395 entry = vm_map_clip_range(map, addr, addr + size, 2396 countp, MAP_CLIP_NO_HOLES); 2397 for (scan = entry; 2398 scan != &map->header && scan->start < addr + size; 2399 scan = scan->next) { 2400 KKASSERT(entry->wired_count == 0); 2401 entry->wired_count = 1; 2402 } 2403 vm_map_unclip_range(map, entry, addr, addr + size, 2404 countp, MAP_CLIP_NO_HOLES); 2405 } 2406 2407 /* 2408 * Push any dirty cached pages in the address range to their pager. 2409 * If syncio is TRUE, dirty pages are written synchronously. 2410 * If invalidate is TRUE, any cached pages are freed as well. 2411 * 2412 * This routine is called by sys_msync() 2413 * 2414 * Returns an error if any part of the specified range is not mapped. 2415 * 2416 * No requirements. 2417 */ 2418 int 2419 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2420 boolean_t syncio, boolean_t invalidate) 2421 { 2422 vm_map_entry_t current; 2423 vm_map_entry_t entry; 2424 vm_size_t size; 2425 vm_object_t object; 2426 vm_ooffset_t offset; 2427 2428 vm_map_lock_read(map); 2429 VM_MAP_RANGE_CHECK(map, start, end); 2430 if (!vm_map_lookup_entry(map, start, &entry)) { 2431 vm_map_unlock_read(map); 2432 return (KERN_INVALID_ADDRESS); 2433 } 2434 /* 2435 * Make a first pass to check for holes. 2436 */ 2437 for (current = entry; current->start < end; current = current->next) { 2438 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2439 vm_map_unlock_read(map); 2440 return (KERN_INVALID_ARGUMENT); 2441 } 2442 if (end > current->end && 2443 (current->next == &map->header || 2444 current->end != current->next->start)) { 2445 vm_map_unlock_read(map); 2446 return (KERN_INVALID_ADDRESS); 2447 } 2448 } 2449 2450 if (invalidate) 2451 pmap_remove(vm_map_pmap(map), start, end); 2452 2453 /* 2454 * Make a second pass, cleaning/uncaching pages from the indicated 2455 * objects as we go. 2456 * 2457 * Hold vm_token to avoid blocking in vm_object_reference() 2458 */ 2459 lwkt_gettoken(&vm_token); 2460 lwkt_gettoken(&vmobj_token); 2461 2462 for (current = entry; current->start < end; current = current->next) { 2463 offset = current->offset + (start - current->start); 2464 size = (end <= current->end ? end : current->end) - start; 2465 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2466 vm_map_t smap; 2467 vm_map_entry_t tentry; 2468 vm_size_t tsize; 2469 2470 smap = current->object.sub_map; 2471 vm_map_lock_read(smap); 2472 vm_map_lookup_entry(smap, offset, &tentry); 2473 tsize = tentry->end - offset; 2474 if (tsize < size) 2475 size = tsize; 2476 object = tentry->object.vm_object; 2477 offset = tentry->offset + (offset - tentry->start); 2478 vm_map_unlock_read(smap); 2479 } else { 2480 object = current->object.vm_object; 2481 } 2482 /* 2483 * Note that there is absolutely no sense in writing out 2484 * anonymous objects, so we track down the vnode object 2485 * to write out. 2486 * We invalidate (remove) all pages from the address space 2487 * anyway, for semantic correctness. 2488 * 2489 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2490 * may start out with a NULL object. 2491 */ 2492 while (object && object->backing_object) { 2493 offset += object->backing_object_offset; 2494 object = object->backing_object; 2495 if (object->size < OFF_TO_IDX( offset + size)) 2496 size = IDX_TO_OFF(object->size) - offset; 2497 } 2498 if (object && (object->type == OBJT_VNODE) && 2499 (current->protection & VM_PROT_WRITE) && 2500 (object->flags & OBJ_NOMSYNC) == 0) { 2501 /* 2502 * Flush pages if writing is allowed, invalidate them 2503 * if invalidation requested. Pages undergoing I/O 2504 * will be ignored by vm_object_page_remove(). 2505 * 2506 * We cannot lock the vnode and then wait for paging 2507 * to complete without deadlocking against vm_fault. 2508 * Instead we simply call vm_object_page_remove() and 2509 * allow it to block internally on a page-by-page 2510 * basis when it encounters pages undergoing async 2511 * I/O. 2512 */ 2513 int flags; 2514 2515 vm_object_reference_locked(object); 2516 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2517 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2518 flags |= invalidate ? OBJPC_INVAL : 0; 2519 2520 /* 2521 * When operating on a virtual page table just 2522 * flush the whole object. XXX we probably ought 2523 * to 2524 */ 2525 switch(current->maptype) { 2526 case VM_MAPTYPE_NORMAL: 2527 vm_object_page_clean(object, 2528 OFF_TO_IDX(offset), 2529 OFF_TO_IDX(offset + size + PAGE_MASK), 2530 flags); 2531 break; 2532 case VM_MAPTYPE_VPAGETABLE: 2533 vm_object_page_clean(object, 0, 0, flags); 2534 break; 2535 } 2536 vn_unlock(((struct vnode *)object->handle)); 2537 vm_object_deallocate_locked(object); 2538 } 2539 if (object && invalidate && 2540 ((object->type == OBJT_VNODE) || 2541 (object->type == OBJT_DEVICE))) { 2542 int clean_only = 2543 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2544 vm_object_reference_locked(object); 2545 switch(current->maptype) { 2546 case VM_MAPTYPE_NORMAL: 2547 vm_object_page_remove(object, 2548 OFF_TO_IDX(offset), 2549 OFF_TO_IDX(offset + size + PAGE_MASK), 2550 clean_only); 2551 break; 2552 case VM_MAPTYPE_VPAGETABLE: 2553 vm_object_page_remove(object, 0, 0, clean_only); 2554 break; 2555 } 2556 vm_object_deallocate_locked(object); 2557 } 2558 start += size; 2559 } 2560 2561 lwkt_reltoken(&vmobj_token); 2562 lwkt_reltoken(&vm_token); 2563 vm_map_unlock_read(map); 2564 2565 return (KERN_SUCCESS); 2566 } 2567 2568 /* 2569 * Make the region specified by this entry pageable. 2570 * 2571 * The vm_map must be exclusively locked. 2572 */ 2573 static void 2574 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2575 { 2576 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2577 entry->wired_count = 0; 2578 vm_fault_unwire(map, entry); 2579 } 2580 2581 /* 2582 * Deallocate the given entry from the target map. 2583 * 2584 * The vm_map must be exclusively locked. 2585 */ 2586 static void 2587 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2588 { 2589 vm_map_entry_unlink(map, entry); 2590 map->size -= entry->end - entry->start; 2591 2592 switch(entry->maptype) { 2593 case VM_MAPTYPE_NORMAL: 2594 case VM_MAPTYPE_VPAGETABLE: 2595 vm_object_deallocate(entry->object.vm_object); 2596 break; 2597 default: 2598 break; 2599 } 2600 2601 vm_map_entry_dispose(map, entry, countp); 2602 } 2603 2604 /* 2605 * Deallocates the given address range from the target map. 2606 * 2607 * The vm_map must be exclusively locked. 2608 */ 2609 int 2610 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2611 { 2612 vm_object_t object; 2613 vm_map_entry_t entry; 2614 vm_map_entry_t first_entry; 2615 2616 ASSERT_VM_MAP_LOCKED(map); 2617 again: 2618 /* 2619 * Find the start of the region, and clip it. Set entry to point 2620 * at the first record containing the requested address or, if no 2621 * such record exists, the next record with a greater address. The 2622 * loop will run from this point until a record beyond the termination 2623 * address is encountered. 2624 * 2625 * map->hint must be adjusted to not point to anything we delete, 2626 * so set it to the entry prior to the one being deleted. 2627 * 2628 * GGG see other GGG comment. 2629 */ 2630 if (vm_map_lookup_entry(map, start, &first_entry)) { 2631 entry = first_entry; 2632 vm_map_clip_start(map, entry, start, countp); 2633 map->hint = entry->prev; /* possible problem XXX */ 2634 } else { 2635 map->hint = first_entry; /* possible problem XXX */ 2636 entry = first_entry->next; 2637 } 2638 2639 /* 2640 * If a hole opens up prior to the current first_free then 2641 * adjust first_free. As with map->hint, map->first_free 2642 * cannot be left set to anything we might delete. 2643 */ 2644 if (entry == &map->header) { 2645 map->first_free = &map->header; 2646 } else if (map->first_free->start >= start) { 2647 map->first_free = entry->prev; 2648 } 2649 2650 /* 2651 * Step through all entries in this region 2652 */ 2653 while ((entry != &map->header) && (entry->start < end)) { 2654 vm_map_entry_t next; 2655 vm_offset_t s, e; 2656 vm_pindex_t offidxstart, offidxend, count; 2657 2658 /* 2659 * If we hit an in-transition entry we have to sleep and 2660 * retry. It's easier (and not really slower) to just retry 2661 * since this case occurs so rarely and the hint is already 2662 * pointing at the right place. We have to reset the 2663 * start offset so as not to accidently delete an entry 2664 * another process just created in vacated space. 2665 */ 2666 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2667 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2668 start = entry->start; 2669 ++mycpu->gd_cnt.v_intrans_coll; 2670 ++mycpu->gd_cnt.v_intrans_wait; 2671 vm_map_transition_wait(map); 2672 goto again; 2673 } 2674 vm_map_clip_end(map, entry, end, countp); 2675 2676 s = entry->start; 2677 e = entry->end; 2678 next = entry->next; 2679 2680 offidxstart = OFF_TO_IDX(entry->offset); 2681 count = OFF_TO_IDX(e - s); 2682 object = entry->object.vm_object; 2683 2684 /* 2685 * Unwire before removing addresses from the pmap; otherwise, 2686 * unwiring will put the entries back in the pmap. 2687 */ 2688 if (entry->wired_count != 0) 2689 vm_map_entry_unwire(map, entry); 2690 2691 offidxend = offidxstart + count; 2692 2693 /* 2694 * Hold vm_token when manipulating vm_objects, 2695 * 2696 * Hold vmobj_token when potentially adding or removing 2697 * objects (collapse requires both). 2698 */ 2699 lwkt_gettoken(&vm_token); 2700 lwkt_gettoken(&vmobj_token); 2701 2702 if (object == &kernel_object) { 2703 vm_object_page_remove(object, offidxstart, 2704 offidxend, FALSE); 2705 } else { 2706 pmap_remove(map->pmap, s, e); 2707 2708 if (object != NULL && 2709 object->ref_count != 1 && 2710 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 2711 OBJ_ONEMAPPING && 2712 (object->type == OBJT_DEFAULT || 2713 object->type == OBJT_SWAP)) { 2714 vm_object_collapse(object); 2715 vm_object_page_remove(object, offidxstart, 2716 offidxend, FALSE); 2717 if (object->type == OBJT_SWAP) { 2718 swap_pager_freespace(object, 2719 offidxstart, 2720 count); 2721 } 2722 if (offidxend >= object->size && 2723 offidxstart < object->size) { 2724 object->size = offidxstart; 2725 } 2726 } 2727 } 2728 lwkt_reltoken(&vmobj_token); 2729 lwkt_reltoken(&vm_token); 2730 2731 /* 2732 * Delete the entry (which may delete the object) only after 2733 * removing all pmap entries pointing to its pages. 2734 * (Otherwise, its page frames may be reallocated, and any 2735 * modify bits will be set in the wrong object!) 2736 */ 2737 vm_map_entry_delete(map, entry, countp); 2738 entry = next; 2739 } 2740 return (KERN_SUCCESS); 2741 } 2742 2743 /* 2744 * Remove the given address range from the target map. 2745 * This is the exported form of vm_map_delete. 2746 * 2747 * No requirements. 2748 */ 2749 int 2750 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2751 { 2752 int result; 2753 int count; 2754 2755 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2756 vm_map_lock(map); 2757 VM_MAP_RANGE_CHECK(map, start, end); 2758 result = vm_map_delete(map, start, end, &count); 2759 vm_map_unlock(map); 2760 vm_map_entry_release(count); 2761 2762 return (result); 2763 } 2764 2765 /* 2766 * Assert that the target map allows the specified privilege on the 2767 * entire address region given. The entire region must be allocated. 2768 * 2769 * The caller must specify whether the vm_map is already locked or not. 2770 */ 2771 boolean_t 2772 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2773 vm_prot_t protection, boolean_t have_lock) 2774 { 2775 vm_map_entry_t entry; 2776 vm_map_entry_t tmp_entry; 2777 boolean_t result; 2778 2779 if (have_lock == FALSE) 2780 vm_map_lock_read(map); 2781 2782 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2783 if (have_lock == FALSE) 2784 vm_map_unlock_read(map); 2785 return (FALSE); 2786 } 2787 entry = tmp_entry; 2788 2789 result = TRUE; 2790 while (start < end) { 2791 if (entry == &map->header) { 2792 result = FALSE; 2793 break; 2794 } 2795 /* 2796 * No holes allowed! 2797 */ 2798 2799 if (start < entry->start) { 2800 result = FALSE; 2801 break; 2802 } 2803 /* 2804 * Check protection associated with entry. 2805 */ 2806 2807 if ((entry->protection & protection) != protection) { 2808 result = FALSE; 2809 break; 2810 } 2811 /* go to next entry */ 2812 2813 start = entry->end; 2814 entry = entry->next; 2815 } 2816 if (have_lock == FALSE) 2817 vm_map_unlock_read(map); 2818 return (result); 2819 } 2820 2821 /* 2822 * Split the pages in a map entry into a new object. This affords 2823 * easier removal of unused pages, and keeps object inheritance from 2824 * being a negative impact on memory usage. 2825 * 2826 * The vm_map must be exclusively locked. 2827 */ 2828 static void 2829 vm_map_split(vm_map_entry_t entry) 2830 { 2831 vm_page_t m; 2832 vm_object_t orig_object, new_object, source; 2833 vm_offset_t s, e; 2834 vm_pindex_t offidxstart, offidxend, idx; 2835 vm_size_t size; 2836 vm_ooffset_t offset; 2837 2838 orig_object = entry->object.vm_object; 2839 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2840 return; 2841 if (orig_object->ref_count <= 1) 2842 return; 2843 2844 offset = entry->offset; 2845 s = entry->start; 2846 e = entry->end; 2847 2848 offidxstart = OFF_TO_IDX(offset); 2849 offidxend = offidxstart + OFF_TO_IDX(e - s); 2850 size = offidxend - offidxstart; 2851 2852 switch(orig_object->type) { 2853 case OBJT_DEFAULT: 2854 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size), 2855 VM_PROT_ALL, 0); 2856 break; 2857 case OBJT_SWAP: 2858 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size), 2859 VM_PROT_ALL, 0); 2860 break; 2861 default: 2862 /* not reached */ 2863 new_object = NULL; 2864 KKASSERT(0); 2865 } 2866 if (new_object == NULL) 2867 return; 2868 2869 /* 2870 * vm_token required when manipulating vm_objects. 2871 */ 2872 lwkt_gettoken(&vm_token); 2873 lwkt_gettoken(&vmobj_token); 2874 2875 source = orig_object->backing_object; 2876 if (source != NULL) { 2877 /* Referenced by new_object */ 2878 vm_object_reference_locked(source); 2879 LIST_INSERT_HEAD(&source->shadow_head, 2880 new_object, shadow_list); 2881 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2882 new_object->backing_object_offset = 2883 orig_object->backing_object_offset + 2884 IDX_TO_OFF(offidxstart); 2885 new_object->backing_object = source; 2886 source->shadow_count++; 2887 source->generation++; 2888 } 2889 2890 for (idx = 0; idx < size; idx++) { 2891 vm_page_t m; 2892 2893 retry: 2894 m = vm_page_lookup(orig_object, offidxstart + idx); 2895 if (m == NULL) 2896 continue; 2897 2898 /* 2899 * We must wait for pending I/O to complete before we can 2900 * rename the page. 2901 * 2902 * We do not have to VM_PROT_NONE the page as mappings should 2903 * not be changed by this operation. 2904 */ 2905 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2906 goto retry; 2907 vm_page_busy(m); 2908 vm_page_rename(m, new_object, idx); 2909 /* page automatically made dirty by rename and cache handled */ 2910 vm_page_busy(m); 2911 } 2912 2913 if (orig_object->type == OBJT_SWAP) { 2914 vm_object_pip_add(orig_object, 1); 2915 /* 2916 * copy orig_object pages into new_object 2917 * and destroy unneeded pages in 2918 * shadow object. 2919 */ 2920 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2921 vm_object_pip_wakeup(orig_object); 2922 } 2923 2924 /* 2925 * Wakeup the pages we played with. No spl protection is needed 2926 * for a simple wakeup. 2927 */ 2928 for (idx = 0; idx < size; idx++) { 2929 m = vm_page_lookup(new_object, idx); 2930 if (m) 2931 vm_page_wakeup(m); 2932 } 2933 2934 entry->object.vm_object = new_object; 2935 entry->offset = 0LL; 2936 vm_object_deallocate_locked(orig_object); 2937 lwkt_reltoken(&vmobj_token); 2938 lwkt_reltoken(&vm_token); 2939 } 2940 2941 /* 2942 * Copies the contents of the source entry to the destination 2943 * entry. The entries *must* be aligned properly. 2944 * 2945 * The vm_map must be exclusively locked. 2946 * vm_token must be held 2947 */ 2948 static void 2949 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2950 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2951 { 2952 vm_object_t src_object; 2953 2954 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 2955 return; 2956 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 2957 return; 2958 2959 ASSERT_LWKT_TOKEN_HELD(&vm_token); 2960 lwkt_gettoken(&vmobj_token); /* required for collapse */ 2961 2962 if (src_entry->wired_count == 0) { 2963 /* 2964 * If the source entry is marked needs_copy, it is already 2965 * write-protected. 2966 */ 2967 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2968 pmap_protect(src_map->pmap, 2969 src_entry->start, 2970 src_entry->end, 2971 src_entry->protection & ~VM_PROT_WRITE); 2972 } 2973 2974 /* 2975 * Make a copy of the object. 2976 */ 2977 if ((src_object = src_entry->object.vm_object) != NULL) { 2978 if ((src_object->handle == NULL) && 2979 (src_object->type == OBJT_DEFAULT || 2980 src_object->type == OBJT_SWAP)) { 2981 vm_object_collapse(src_object); 2982 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2983 vm_map_split(src_entry); 2984 src_object = src_entry->object.vm_object; 2985 } 2986 } 2987 2988 vm_object_reference_locked(src_object); 2989 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2990 dst_entry->object.vm_object = src_object; 2991 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2992 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2993 dst_entry->offset = src_entry->offset; 2994 } else { 2995 dst_entry->object.vm_object = NULL; 2996 dst_entry->offset = 0; 2997 } 2998 2999 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3000 dst_entry->end - dst_entry->start, src_entry->start); 3001 } else { 3002 /* 3003 * Of course, wired down pages can't be set copy-on-write. 3004 * Cause wired pages to be copied into the new map by 3005 * simulating faults (the new pages are pageable) 3006 */ 3007 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3008 } 3009 lwkt_reltoken(&vmobj_token); 3010 } 3011 3012 /* 3013 * vmspace_fork: 3014 * Create a new process vmspace structure and vm_map 3015 * based on those of an existing process. The new map 3016 * is based on the old map, according to the inheritance 3017 * values on the regions in that map. 3018 * 3019 * The source map must not be locked. 3020 * No requirements. 3021 */ 3022 struct vmspace * 3023 vmspace_fork(struct vmspace *vm1) 3024 { 3025 struct vmspace *vm2; 3026 vm_map_t old_map = &vm1->vm_map; 3027 vm_map_t new_map; 3028 vm_map_entry_t old_entry; 3029 vm_map_entry_t new_entry; 3030 vm_object_t object; 3031 int count; 3032 3033 lwkt_gettoken(&vm_token); 3034 lwkt_gettoken(&vmspace_token); 3035 lwkt_gettoken(&vmobj_token); 3036 vm_map_lock(old_map); 3037 old_map->infork = 1; 3038 3039 /* 3040 * XXX Note: upcalls are not copied. 3041 */ 3042 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3043 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3044 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3045 new_map = &vm2->vm_map; /* XXX */ 3046 new_map->timestamp = 1; 3047 3048 vm_map_lock(new_map); 3049 3050 count = 0; 3051 old_entry = old_map->header.next; 3052 while (old_entry != &old_map->header) { 3053 ++count; 3054 old_entry = old_entry->next; 3055 } 3056 3057 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3058 3059 old_entry = old_map->header.next; 3060 while (old_entry != &old_map->header) { 3061 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 3062 panic("vm_map_fork: encountered a submap"); 3063 3064 switch (old_entry->inheritance) { 3065 case VM_INHERIT_NONE: 3066 break; 3067 case VM_INHERIT_SHARE: 3068 /* 3069 * Clone the entry, creating the shared object if 3070 * necessary. 3071 */ 3072 object = old_entry->object.vm_object; 3073 if (object == NULL) { 3074 vm_map_entry_allocate_object(old_entry); 3075 object = old_entry->object.vm_object; 3076 } 3077 3078 /* 3079 * Add the reference before calling vm_map_entry_shadow 3080 * to insure that a shadow object is created. 3081 */ 3082 vm_object_reference_locked(object); 3083 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3084 vm_map_entry_shadow(old_entry); 3085 /* Transfer the second reference too. */ 3086 vm_object_reference_locked( 3087 old_entry->object.vm_object); 3088 vm_object_deallocate_locked(object); 3089 object = old_entry->object.vm_object; 3090 } 3091 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3092 3093 /* 3094 * Clone the entry, referencing the shared object. 3095 */ 3096 new_entry = vm_map_entry_create(new_map, &count); 3097 *new_entry = *old_entry; 3098 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3099 new_entry->wired_count = 0; 3100 3101 /* 3102 * Insert the entry into the new map -- we know we're 3103 * inserting at the end of the new map. 3104 */ 3105 3106 vm_map_entry_link(new_map, new_map->header.prev, 3107 new_entry); 3108 3109 /* 3110 * Update the physical map 3111 */ 3112 pmap_copy(new_map->pmap, old_map->pmap, 3113 new_entry->start, 3114 (old_entry->end - old_entry->start), 3115 old_entry->start); 3116 break; 3117 case VM_INHERIT_COPY: 3118 /* 3119 * Clone the entry and link into the map. 3120 */ 3121 new_entry = vm_map_entry_create(new_map, &count); 3122 *new_entry = *old_entry; 3123 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3124 new_entry->wired_count = 0; 3125 new_entry->object.vm_object = NULL; 3126 vm_map_entry_link(new_map, new_map->header.prev, 3127 new_entry); 3128 vm_map_copy_entry(old_map, new_map, old_entry, 3129 new_entry); 3130 break; 3131 } 3132 old_entry = old_entry->next; 3133 } 3134 3135 new_map->size = old_map->size; 3136 old_map->infork = 0; 3137 vm_map_unlock(old_map); 3138 vm_map_unlock(new_map); 3139 vm_map_entry_release(count); 3140 3141 lwkt_reltoken(&vmobj_token); 3142 lwkt_reltoken(&vmspace_token); 3143 lwkt_reltoken(&vm_token); 3144 3145 return (vm2); 3146 } 3147 3148 /* 3149 * Create an auto-grow stack entry 3150 * 3151 * No requirements. 3152 */ 3153 int 3154 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3155 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3156 { 3157 vm_map_entry_t prev_entry; 3158 vm_map_entry_t new_stack_entry; 3159 vm_size_t init_ssize; 3160 int rv; 3161 int count; 3162 vm_offset_t tmpaddr; 3163 3164 cow |= MAP_IS_STACK; 3165 3166 if (max_ssize < sgrowsiz) 3167 init_ssize = max_ssize; 3168 else 3169 init_ssize = sgrowsiz; 3170 3171 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3172 vm_map_lock(map); 3173 3174 /* 3175 * Find space for the mapping 3176 */ 3177 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3178 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3179 flags, &tmpaddr)) { 3180 vm_map_unlock(map); 3181 vm_map_entry_release(count); 3182 return (KERN_NO_SPACE); 3183 } 3184 addrbos = tmpaddr; 3185 } 3186 3187 /* If addr is already mapped, no go */ 3188 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3189 vm_map_unlock(map); 3190 vm_map_entry_release(count); 3191 return (KERN_NO_SPACE); 3192 } 3193 3194 #if 0 3195 /* XXX already handled by kern_mmap() */ 3196 /* If we would blow our VMEM resource limit, no go */ 3197 if (map->size + init_ssize > 3198 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3199 vm_map_unlock(map); 3200 vm_map_entry_release(count); 3201 return (KERN_NO_SPACE); 3202 } 3203 #endif 3204 3205 /* 3206 * If we can't accomodate max_ssize in the current mapping, 3207 * no go. However, we need to be aware that subsequent user 3208 * mappings might map into the space we have reserved for 3209 * stack, and currently this space is not protected. 3210 * 3211 * Hopefully we will at least detect this condition 3212 * when we try to grow the stack. 3213 */ 3214 if ((prev_entry->next != &map->header) && 3215 (prev_entry->next->start < addrbos + max_ssize)) { 3216 vm_map_unlock(map); 3217 vm_map_entry_release(count); 3218 return (KERN_NO_SPACE); 3219 } 3220 3221 /* 3222 * We initially map a stack of only init_ssize. We will 3223 * grow as needed later. Since this is to be a grow 3224 * down stack, we map at the top of the range. 3225 * 3226 * Note: we would normally expect prot and max to be 3227 * VM_PROT_ALL, and cow to be 0. Possibly we should 3228 * eliminate these as input parameters, and just 3229 * pass these values here in the insert call. 3230 */ 3231 rv = vm_map_insert(map, &count, 3232 NULL, 0, addrbos + max_ssize - init_ssize, 3233 addrbos + max_ssize, 3234 VM_MAPTYPE_NORMAL, 3235 prot, max, 3236 cow); 3237 3238 /* Now set the avail_ssize amount */ 3239 if (rv == KERN_SUCCESS) { 3240 if (prev_entry != &map->header) 3241 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3242 new_stack_entry = prev_entry->next; 3243 if (new_stack_entry->end != addrbos + max_ssize || 3244 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3245 panic ("Bad entry start/end for new stack entry"); 3246 else 3247 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3248 } 3249 3250 vm_map_unlock(map); 3251 vm_map_entry_release(count); 3252 return (rv); 3253 } 3254 3255 /* 3256 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3257 * desired address is already mapped, or if we successfully grow 3258 * the stack. Also returns KERN_SUCCESS if addr is outside the 3259 * stack range (this is strange, but preserves compatibility with 3260 * the grow function in vm_machdep.c). 3261 * 3262 * No requirements. 3263 */ 3264 int 3265 vm_map_growstack (struct proc *p, vm_offset_t addr) 3266 { 3267 vm_map_entry_t prev_entry; 3268 vm_map_entry_t stack_entry; 3269 vm_map_entry_t new_stack_entry; 3270 struct vmspace *vm = p->p_vmspace; 3271 vm_map_t map = &vm->vm_map; 3272 vm_offset_t end; 3273 int grow_amount; 3274 int rv = KERN_SUCCESS; 3275 int is_procstack; 3276 int use_read_lock = 1; 3277 int count; 3278 3279 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3280 Retry: 3281 if (use_read_lock) 3282 vm_map_lock_read(map); 3283 else 3284 vm_map_lock(map); 3285 3286 /* If addr is already in the entry range, no need to grow.*/ 3287 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3288 goto done; 3289 3290 if ((stack_entry = prev_entry->next) == &map->header) 3291 goto done; 3292 if (prev_entry == &map->header) 3293 end = stack_entry->start - stack_entry->aux.avail_ssize; 3294 else 3295 end = prev_entry->end; 3296 3297 /* 3298 * This next test mimics the old grow function in vm_machdep.c. 3299 * It really doesn't quite make sense, but we do it anyway 3300 * for compatibility. 3301 * 3302 * If not growable stack, return success. This signals the 3303 * caller to proceed as he would normally with normal vm. 3304 */ 3305 if (stack_entry->aux.avail_ssize < 1 || 3306 addr >= stack_entry->start || 3307 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3308 goto done; 3309 } 3310 3311 /* Find the minimum grow amount */ 3312 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3313 if (grow_amount > stack_entry->aux.avail_ssize) { 3314 rv = KERN_NO_SPACE; 3315 goto done; 3316 } 3317 3318 /* 3319 * If there is no longer enough space between the entries 3320 * nogo, and adjust the available space. Note: this 3321 * should only happen if the user has mapped into the 3322 * stack area after the stack was created, and is 3323 * probably an error. 3324 * 3325 * This also effectively destroys any guard page the user 3326 * might have intended by limiting the stack size. 3327 */ 3328 if (grow_amount > stack_entry->start - end) { 3329 if (use_read_lock && vm_map_lock_upgrade(map)) { 3330 use_read_lock = 0; 3331 goto Retry; 3332 } 3333 use_read_lock = 0; 3334 stack_entry->aux.avail_ssize = stack_entry->start - end; 3335 rv = KERN_NO_SPACE; 3336 goto done; 3337 } 3338 3339 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3340 3341 /* If this is the main process stack, see if we're over the 3342 * stack limit. 3343 */ 3344 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3345 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3346 rv = KERN_NO_SPACE; 3347 goto done; 3348 } 3349 3350 /* Round up the grow amount modulo SGROWSIZ */ 3351 grow_amount = roundup (grow_amount, sgrowsiz); 3352 if (grow_amount > stack_entry->aux.avail_ssize) { 3353 grow_amount = stack_entry->aux.avail_ssize; 3354 } 3355 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3356 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3357 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3358 ctob(vm->vm_ssize); 3359 } 3360 3361 /* If we would blow our VMEM resource limit, no go */ 3362 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3363 rv = KERN_NO_SPACE; 3364 goto done; 3365 } 3366 3367 if (use_read_lock && vm_map_lock_upgrade(map)) { 3368 use_read_lock = 0; 3369 goto Retry; 3370 } 3371 use_read_lock = 0; 3372 3373 /* Get the preliminary new entry start value */ 3374 addr = stack_entry->start - grow_amount; 3375 3376 /* If this puts us into the previous entry, cut back our growth 3377 * to the available space. Also, see the note above. 3378 */ 3379 if (addr < end) { 3380 stack_entry->aux.avail_ssize = stack_entry->start - end; 3381 addr = end; 3382 } 3383 3384 rv = vm_map_insert(map, &count, 3385 NULL, 0, addr, stack_entry->start, 3386 VM_MAPTYPE_NORMAL, 3387 VM_PROT_ALL, VM_PROT_ALL, 3388 0); 3389 3390 /* Adjust the available stack space by the amount we grew. */ 3391 if (rv == KERN_SUCCESS) { 3392 if (prev_entry != &map->header) 3393 vm_map_clip_end(map, prev_entry, addr, &count); 3394 new_stack_entry = prev_entry->next; 3395 if (new_stack_entry->end != stack_entry->start || 3396 new_stack_entry->start != addr) 3397 panic ("Bad stack grow start/end in new stack entry"); 3398 else { 3399 new_stack_entry->aux.avail_ssize = 3400 stack_entry->aux.avail_ssize - 3401 (new_stack_entry->end - new_stack_entry->start); 3402 if (is_procstack) 3403 vm->vm_ssize += btoc(new_stack_entry->end - 3404 new_stack_entry->start); 3405 } 3406 } 3407 3408 done: 3409 if (use_read_lock) 3410 vm_map_unlock_read(map); 3411 else 3412 vm_map_unlock(map); 3413 vm_map_entry_release(count); 3414 return (rv); 3415 } 3416 3417 /* 3418 * Unshare the specified VM space for exec. If other processes are 3419 * mapped to it, then create a new one. The new vmspace is null. 3420 * 3421 * No requirements. 3422 */ 3423 void 3424 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3425 { 3426 struct vmspace *oldvmspace = p->p_vmspace; 3427 struct vmspace *newvmspace; 3428 vm_map_t map = &p->p_vmspace->vm_map; 3429 3430 /* 3431 * If we are execing a resident vmspace we fork it, otherwise 3432 * we create a new vmspace. Note that exitingcnt and upcalls 3433 * are not copied to the new vmspace. 3434 */ 3435 lwkt_gettoken(&vmspace_token); 3436 if (vmcopy) { 3437 newvmspace = vmspace_fork(vmcopy); 3438 } else { 3439 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3440 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3441 (caddr_t)&oldvmspace->vm_endcopy - 3442 (caddr_t)&oldvmspace->vm_startcopy); 3443 } 3444 3445 /* 3446 * Finish initializing the vmspace before assigning it 3447 * to the process. The vmspace will become the current vmspace 3448 * if p == curproc. 3449 */ 3450 pmap_pinit2(vmspace_pmap(newvmspace)); 3451 pmap_replacevm(p, newvmspace, 0); 3452 sysref_put(&oldvmspace->vm_sysref); 3453 lwkt_reltoken(&vmspace_token); 3454 } 3455 3456 /* 3457 * Unshare the specified VM space for forcing COW. This 3458 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3459 * 3460 * The exitingcnt test is not strictly necessary but has been 3461 * included for code sanity (to make the code a bit more deterministic). 3462 */ 3463 void 3464 vmspace_unshare(struct proc *p) 3465 { 3466 struct vmspace *oldvmspace = p->p_vmspace; 3467 struct vmspace *newvmspace; 3468 3469 lwkt_gettoken(&vmspace_token); 3470 if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3471 return; 3472 newvmspace = vmspace_fork(oldvmspace); 3473 pmap_pinit2(vmspace_pmap(newvmspace)); 3474 pmap_replacevm(p, newvmspace, 0); 3475 sysref_put(&oldvmspace->vm_sysref); 3476 lwkt_reltoken(&vmspace_token); 3477 } 3478 3479 /* 3480 * Finds the VM object, offset, and protection for a given virtual address 3481 * in the specified map, assuming a page fault of the type specified. 3482 * 3483 * Leaves the map in question locked for read; return values are guaranteed 3484 * until a vm_map_lookup_done call is performed. Note that the map argument 3485 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 3486 * 3487 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 3488 * that fast. 3489 * 3490 * If a lookup is requested with "write protection" specified, the map may 3491 * be changed to perform virtual copying operations, although the data 3492 * referenced will remain the same. 3493 * 3494 * No requirements. 3495 */ 3496 int 3497 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3498 vm_offset_t vaddr, 3499 vm_prot_t fault_typea, 3500 vm_map_entry_t *out_entry, /* OUT */ 3501 vm_object_t *object, /* OUT */ 3502 vm_pindex_t *pindex, /* OUT */ 3503 vm_prot_t *out_prot, /* OUT */ 3504 boolean_t *wired) /* OUT */ 3505 { 3506 vm_map_entry_t entry; 3507 vm_map_t map = *var_map; 3508 vm_prot_t prot; 3509 vm_prot_t fault_type = fault_typea; 3510 int use_read_lock = 1; 3511 int rv = KERN_SUCCESS; 3512 3513 RetryLookup: 3514 if (use_read_lock) 3515 vm_map_lock_read(map); 3516 else 3517 vm_map_lock(map); 3518 3519 /* 3520 * If the map has an interesting hint, try it before calling full 3521 * blown lookup routine. 3522 */ 3523 entry = map->hint; 3524 *out_entry = entry; 3525 3526 if ((entry == &map->header) || 3527 (vaddr < entry->start) || (vaddr >= entry->end)) { 3528 vm_map_entry_t tmp_entry; 3529 3530 /* 3531 * Entry was either not a valid hint, or the vaddr was not 3532 * contained in the entry, so do a full lookup. 3533 */ 3534 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3535 rv = KERN_INVALID_ADDRESS; 3536 goto done; 3537 } 3538 3539 entry = tmp_entry; 3540 *out_entry = entry; 3541 } 3542 3543 /* 3544 * Handle submaps. 3545 */ 3546 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3547 vm_map_t old_map = map; 3548 3549 *var_map = map = entry->object.sub_map; 3550 if (use_read_lock) 3551 vm_map_unlock_read(old_map); 3552 else 3553 vm_map_unlock(old_map); 3554 use_read_lock = 1; 3555 goto RetryLookup; 3556 } 3557 3558 /* 3559 * Check whether this task is allowed to have this page. 3560 * Note the special case for MAP_ENTRY_COW 3561 * pages with an override. This is to implement a forced 3562 * COW for debuggers. 3563 */ 3564 3565 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3566 prot = entry->max_protection; 3567 else 3568 prot = entry->protection; 3569 3570 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3571 if ((fault_type & prot) != fault_type) { 3572 rv = KERN_PROTECTION_FAILURE; 3573 goto done; 3574 } 3575 3576 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3577 (entry->eflags & MAP_ENTRY_COW) && 3578 (fault_type & VM_PROT_WRITE) && 3579 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3580 rv = KERN_PROTECTION_FAILURE; 3581 goto done; 3582 } 3583 3584 /* 3585 * If this page is not pageable, we have to get it for all possible 3586 * accesses. 3587 */ 3588 *wired = (entry->wired_count != 0); 3589 if (*wired) 3590 prot = fault_type = entry->protection; 3591 3592 /* 3593 * Virtual page tables may need to update the accessed (A) bit 3594 * in a page table entry. Upgrade the fault to a write fault for 3595 * that case if the map will support it. If the map does not support 3596 * it the page table entry simply will not be updated. 3597 */ 3598 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3599 if (prot & VM_PROT_WRITE) 3600 fault_type |= VM_PROT_WRITE; 3601 } 3602 3603 /* 3604 * If the entry was copy-on-write, we either ... 3605 */ 3606 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3607 /* 3608 * If we want to write the page, we may as well handle that 3609 * now since we've got the map locked. 3610 * 3611 * If we don't need to write the page, we just demote the 3612 * permissions allowed. 3613 */ 3614 3615 if (fault_type & VM_PROT_WRITE) { 3616 /* 3617 * Make a new object, and place it in the object 3618 * chain. Note that no new references have appeared 3619 * -- one just moved from the map to the new 3620 * object. 3621 */ 3622 3623 if (use_read_lock && vm_map_lock_upgrade(map)) { 3624 use_read_lock = 0; 3625 goto RetryLookup; 3626 } 3627 use_read_lock = 0; 3628 3629 vm_map_entry_shadow(entry); 3630 } else { 3631 /* 3632 * We're attempting to read a copy-on-write page -- 3633 * don't allow writes. 3634 */ 3635 3636 prot &= ~VM_PROT_WRITE; 3637 } 3638 } 3639 3640 /* 3641 * Create an object if necessary. 3642 */ 3643 if (entry->object.vm_object == NULL && 3644 !map->system_map) { 3645 if (use_read_lock && vm_map_lock_upgrade(map)) { 3646 use_read_lock = 0; 3647 goto RetryLookup; 3648 } 3649 use_read_lock = 0; 3650 vm_map_entry_allocate_object(entry); 3651 } 3652 3653 /* 3654 * Return the object/offset from this entry. If the entry was 3655 * copy-on-write or empty, it has been fixed up. 3656 */ 3657 3658 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3659 *object = entry->object.vm_object; 3660 3661 /* 3662 * Return whether this is the only map sharing this data. On 3663 * success we return with a read lock held on the map. On failure 3664 * we return with the map unlocked. 3665 */ 3666 *out_prot = prot; 3667 done: 3668 if (rv == KERN_SUCCESS) { 3669 if (use_read_lock == 0) 3670 vm_map_lock_downgrade(map); 3671 } else if (use_read_lock) { 3672 vm_map_unlock_read(map); 3673 } else { 3674 vm_map_unlock(map); 3675 } 3676 return (rv); 3677 } 3678 3679 /* 3680 * Releases locks acquired by a vm_map_lookup() 3681 * (according to the handle returned by that lookup). 3682 * 3683 * No other requirements. 3684 */ 3685 void 3686 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3687 { 3688 /* 3689 * Unlock the main-level map 3690 */ 3691 vm_map_unlock_read(map); 3692 if (count) 3693 vm_map_entry_release(count); 3694 } 3695 3696 #include "opt_ddb.h" 3697 #ifdef DDB 3698 #include <sys/kernel.h> 3699 3700 #include <ddb/ddb.h> 3701 3702 /* 3703 * Debugging only 3704 */ 3705 DB_SHOW_COMMAND(map, vm_map_print) 3706 { 3707 static int nlines; 3708 /* XXX convert args. */ 3709 vm_map_t map = (vm_map_t)addr; 3710 boolean_t full = have_addr; 3711 3712 vm_map_entry_t entry; 3713 3714 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3715 (void *)map, 3716 (void *)map->pmap, map->nentries, map->timestamp); 3717 nlines++; 3718 3719 if (!full && db_indent) 3720 return; 3721 3722 db_indent += 2; 3723 for (entry = map->header.next; entry != &map->header; 3724 entry = entry->next) { 3725 db_iprintf("map entry %p: start=%p, end=%p\n", 3726 (void *)entry, (void *)entry->start, (void *)entry->end); 3727 nlines++; 3728 { 3729 static char *inheritance_name[4] = 3730 {"share", "copy", "none", "donate_copy"}; 3731 3732 db_iprintf(" prot=%x/%x/%s", 3733 entry->protection, 3734 entry->max_protection, 3735 inheritance_name[(int)(unsigned char)entry->inheritance]); 3736 if (entry->wired_count != 0) 3737 db_printf(", wired"); 3738 } 3739 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3740 /* XXX no %qd in kernel. Truncate entry->offset. */ 3741 db_printf(", share=%p, offset=0x%lx\n", 3742 (void *)entry->object.sub_map, 3743 (long)entry->offset); 3744 nlines++; 3745 if ((entry->prev == &map->header) || 3746 (entry->prev->object.sub_map != 3747 entry->object.sub_map)) { 3748 db_indent += 2; 3749 vm_map_print((db_expr_t)(intptr_t) 3750 entry->object.sub_map, 3751 full, 0, NULL); 3752 db_indent -= 2; 3753 } 3754 } else { 3755 /* XXX no %qd in kernel. Truncate entry->offset. */ 3756 db_printf(", object=%p, offset=0x%lx", 3757 (void *)entry->object.vm_object, 3758 (long)entry->offset); 3759 if (entry->eflags & MAP_ENTRY_COW) 3760 db_printf(", copy (%s)", 3761 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3762 db_printf("\n"); 3763 nlines++; 3764 3765 if ((entry->prev == &map->header) || 3766 (entry->prev->object.vm_object != 3767 entry->object.vm_object)) { 3768 db_indent += 2; 3769 vm_object_print((db_expr_t)(intptr_t) 3770 entry->object.vm_object, 3771 full, 0, NULL); 3772 nlines += 4; 3773 db_indent -= 2; 3774 } 3775 } 3776 } 3777 db_indent -= 2; 3778 if (db_indent == 0) 3779 nlines = 0; 3780 } 3781 3782 /* 3783 * Debugging only 3784 */ 3785 DB_SHOW_COMMAND(procvm, procvm) 3786 { 3787 struct proc *p; 3788 3789 if (have_addr) { 3790 p = (struct proc *) addr; 3791 } else { 3792 p = curproc; 3793 } 3794 3795 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3796 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3797 (void *)vmspace_pmap(p->p_vmspace)); 3798 3799 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3800 } 3801 3802 #endif /* DDB */ 3803