xref: /dflybsd-src/sys/vm/vm_map.c (revision 88abd8b5763f2e5d4b4db5c5dc1b5bb4c489698b)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory mapping module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/lock.h>
79 #include <sys/vmmeter.h>
80 #include <sys/mman.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/shm.h>
84 #include <sys/tree.h>
85 #include <sys/malloc.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/sysref2.h>
101 
102 /*
103  * Virtual memory maps provide for the mapping, protection, and sharing
104  * of virtual memory objects.  In addition, this module provides for an
105  * efficient virtual copy of memory from one map to another.
106  *
107  * Synchronization is required prior to most operations.
108  *
109  * Maps consist of an ordered doubly-linked list of simple entries.
110  * A hint and a RB tree is used to speed-up lookups.
111  *
112  * Callers looking to modify maps specify start/end addresses which cause
113  * the related map entry to be clipped if necessary, and then later
114  * recombined if the pieces remained compatible.
115  *
116  * Virtual copy operations are performed by copying VM object references
117  * from one map to another, and then marking both regions as copy-on-write.
118  */
119 static void vmspace_terminate(struct vmspace *vm);
120 static void vmspace_lock(struct vmspace *vm);
121 static void vmspace_unlock(struct vmspace *vm);
122 static void vmspace_dtor(void *obj, void *private);
123 
124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
125 
126 struct sysref_class vmspace_sysref_class = {
127 	.name =		"vmspace",
128 	.mtype =	M_VMSPACE,
129 	.proto =	SYSREF_PROTO_VMSPACE,
130 	.offset =	offsetof(struct vmspace, vm_sysref),
131 	.objsize =	sizeof(struct vmspace),
132 	.mag_capacity =	32,
133 	.flags = SRC_MANAGEDINIT,
134 	.dtor = vmspace_dtor,
135 	.ops = {
136 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
137 		.lock = (sysref_lock_func_t)vmspace_lock,
138 		.unlock = (sysref_lock_func_t)vmspace_unlock
139 	}
140 };
141 
142 #define VMEPERCPU	2
143 
144 static struct vm_zone mapentzone_store, mapzone_store;
145 static vm_zone_t mapentzone, mapzone;
146 static struct vm_object mapentobj, mapobj;
147 
148 static struct vm_map_entry map_entry_init[MAX_MAPENT];
149 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
150 static struct vm_map map_init[MAX_KMAP];
151 
152 static void vm_map_entry_shadow(vm_map_entry_t entry);
153 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
154 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
155 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
156 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
158 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
159 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
160 		vm_map_entry_t);
161 static void vm_map_split (vm_map_entry_t);
162 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
163 
164 /*
165  * Initialize the vm_map module.  Must be called before any other vm_map
166  * routines.
167  *
168  * Map and entry structures are allocated from the general purpose
169  * memory pool with some exceptions:
170  *
171  *	- The kernel map is allocated statically.
172  *	- Initial kernel map entries are allocated out of a static pool.
173  *
174  *	These restrictions are necessary since malloc() uses the
175  *	maps and requires map entries.
176  *
177  * Called from the low level boot code only.
178  */
179 void
180 vm_map_startup(void)
181 {
182 	mapzone = &mapzone_store;
183 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
184 		map_init, MAX_KMAP);
185 	mapentzone = &mapentzone_store;
186 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
187 		map_entry_init, MAX_MAPENT);
188 }
189 
190 /*
191  * Called prior to any vmspace allocations.
192  *
193  * Called from the low level boot code only.
194  */
195 void
196 vm_init2(void)
197 {
198 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
199 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
200 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
201 	pmap_init2();
202 	vm_object_init2();
203 }
204 
205 
206 /*
207  * Red black tree functions
208  *
209  * The caller must hold the related map lock.
210  */
211 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
212 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
213 
214 /* a->start is address, and the only field has to be initialized */
215 static int
216 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
217 {
218 	if (a->start < b->start)
219 		return(-1);
220 	else if (a->start > b->start)
221 		return(1);
222 	return(0);
223 }
224 
225 /*
226  * Allocate a vmspace structure, including a vm_map and pmap.
227  * Initialize numerous fields.  While the initial allocation is zerod,
228  * subsequence reuse from the objcache leaves elements of the structure
229  * intact (particularly the pmap), so portions must be zerod.
230  *
231  * The structure is not considered activated until we call sysref_activate().
232  *
233  * No requirements.
234  */
235 struct vmspace *
236 vmspace_alloc(vm_offset_t min, vm_offset_t max)
237 {
238 	struct vmspace *vm;
239 
240 	lwkt_gettoken(&vmspace_token);
241 	vm = sysref_alloc(&vmspace_sysref_class);
242 	bzero(&vm->vm_startcopy,
243 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
244 	vm_map_init(&vm->vm_map, min, max, NULL);
245 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
246 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
247 	vm->vm_shm = NULL;
248 	vm->vm_exitingcnt = 0;
249 	cpu_vmspace_alloc(vm);
250 	sysref_activate(&vm->vm_sysref);
251 	lwkt_reltoken(&vmspace_token);
252 
253 	return (vm);
254 }
255 
256 /*
257  * dtor function - Some elements of the pmap are retained in the
258  * free-cached vmspaces to improve performance.  We have to clean them up
259  * here before returning the vmspace to the memory pool.
260  *
261  * No requirements.
262  */
263 static void
264 vmspace_dtor(void *obj, void *private)
265 {
266 	struct vmspace *vm = obj;
267 
268 	pmap_puninit(vmspace_pmap(vm));
269 }
270 
271 /*
272  * Called in two cases:
273  *
274  * (1) When the last sysref is dropped, but exitingcnt might still be
275  *     non-zero.
276  *
277  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
278  *     exitingcnt becomes zero
279  *
280  * sysref will not scrap the object until we call sysref_put() once more
281  * after the last ref has been dropped.
282  *
283  * Interlocked by the sysref API.
284  */
285 static void
286 vmspace_terminate(struct vmspace *vm)
287 {
288 	int count;
289 
290 	/*
291 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
292 	 * yet, but we can scrap user memory.
293 	 */
294 	lwkt_gettoken(&vmspace_token);
295 	if (vm->vm_exitingcnt) {
296 		shmexit(vm);
297 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
298 				  VM_MAX_USER_ADDRESS);
299 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
300 			      VM_MAX_USER_ADDRESS);
301 		lwkt_reltoken(&vmspace_token);
302 		return;
303 	}
304 	cpu_vmspace_free(vm);
305 
306 	/*
307 	 * Make sure any SysV shm is freed, it might not have in
308 	 * exit1()
309 	 */
310 	shmexit(vm);
311 
312 	KKASSERT(vm->vm_upcalls == NULL);
313 
314 	/*
315 	 * Lock the map, to wait out all other references to it.
316 	 * Delete all of the mappings and pages they hold, then call
317 	 * the pmap module to reclaim anything left.
318 	 */
319 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
320 	vm_map_lock(&vm->vm_map);
321 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
322 		vm->vm_map.max_offset, &count);
323 	vm_map_unlock(&vm->vm_map);
324 	vm_map_entry_release(count);
325 
326 	pmap_release(vmspace_pmap(vm));
327 	sysref_put(&vm->vm_sysref);
328 	lwkt_reltoken(&vmspace_token);
329 }
330 
331 /*
332  * vmspaces are not currently locked.
333  */
334 static void
335 vmspace_lock(struct vmspace *vm __unused)
336 {
337 }
338 
339 static void
340 vmspace_unlock(struct vmspace *vm __unused)
341 {
342 }
343 
344 /*
345  * This is called during exit indicating that the vmspace is no
346  * longer in used by an exiting process, but the process has not yet
347  * been cleaned up.
348  *
349  * No requirements.
350  */
351 void
352 vmspace_exitbump(struct vmspace *vm)
353 {
354 	lwkt_gettoken(&vmspace_token);
355 	++vm->vm_exitingcnt;
356 	lwkt_reltoken(&vmspace_token);
357 }
358 
359 /*
360  * This is called in the wait*() handling code.  The vmspace can be terminated
361  * after the last wait is finished using it.
362  *
363  * No requirements.
364  */
365 void
366 vmspace_exitfree(struct proc *p)
367 {
368 	struct vmspace *vm;
369 
370 	lwkt_gettoken(&vmspace_token);
371 	vm = p->p_vmspace;
372 	p->p_vmspace = NULL;
373 
374 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
375 		vmspace_terminate(vm);
376 	lwkt_reltoken(&vmspace_token);
377 }
378 
379 /*
380  * Swap useage is determined by taking the proportional swap used by
381  * VM objects backing the VM map.  To make up for fractional losses,
382  * if the VM object has any swap use at all the associated map entries
383  * count for at least 1 swap page.
384  *
385  * No requirements.
386  */
387 int
388 vmspace_swap_count(struct vmspace *vmspace)
389 {
390 	vm_map_t map = &vmspace->vm_map;
391 	vm_map_entry_t cur;
392 	vm_object_t object;
393 	int count = 0;
394 	int n;
395 
396 	lwkt_gettoken(&vmspace_token);
397 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
398 		switch(cur->maptype) {
399 		case VM_MAPTYPE_NORMAL:
400 		case VM_MAPTYPE_VPAGETABLE:
401 			if ((object = cur->object.vm_object) == NULL)
402 				break;
403 			if (object->swblock_count) {
404 				n = (cur->end - cur->start) / PAGE_SIZE;
405 				count += object->swblock_count *
406 				    SWAP_META_PAGES * n / object->size + 1;
407 			}
408 			break;
409 		default:
410 			break;
411 		}
412 	}
413 	lwkt_reltoken(&vmspace_token);
414 	return(count);
415 }
416 
417 /*
418  * Calculate the approximate number of anonymous pages in use by
419  * this vmspace.  To make up for fractional losses, we count each
420  * VM object as having at least 1 anonymous page.
421  *
422  * No requirements.
423  */
424 int
425 vmspace_anonymous_count(struct vmspace *vmspace)
426 {
427 	vm_map_t map = &vmspace->vm_map;
428 	vm_map_entry_t cur;
429 	vm_object_t object;
430 	int count = 0;
431 
432 	lwkt_gettoken(&vmspace_token);
433 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
434 		switch(cur->maptype) {
435 		case VM_MAPTYPE_NORMAL:
436 		case VM_MAPTYPE_VPAGETABLE:
437 			if ((object = cur->object.vm_object) == NULL)
438 				break;
439 			if (object->type != OBJT_DEFAULT &&
440 			    object->type != OBJT_SWAP) {
441 				break;
442 			}
443 			count += object->resident_page_count;
444 			break;
445 		default:
446 			break;
447 		}
448 	}
449 	lwkt_reltoken(&vmspace_token);
450 	return(count);
451 }
452 
453 /*
454  * Creates and returns a new empty VM map with the given physical map
455  * structure, and having the given lower and upper address bounds.
456  *
457  * No requirements.
458  */
459 vm_map_t
460 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
461 {
462 	if (result == NULL)
463 		result = zalloc(mapzone);
464 	vm_map_init(result, min, max, pmap);
465 	return (result);
466 }
467 
468 /*
469  * Initialize an existing vm_map structure such as that in the vmspace
470  * structure.  The pmap is initialized elsewhere.
471  *
472  * No requirements.
473  */
474 void
475 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
476 {
477 	map->header.next = map->header.prev = &map->header;
478 	RB_INIT(&map->rb_root);
479 	map->nentries = 0;
480 	map->size = 0;
481 	map->system_map = 0;
482 	map->infork = 0;
483 	map->min_offset = min;
484 	map->max_offset = max;
485 	map->pmap = pmap;
486 	map->first_free = &map->header;
487 	map->hint = &map->header;
488 	map->timestamp = 0;
489 	lockinit(&map->lock, "thrd_sleep", 0, 0);
490 }
491 
492 /*
493  * Shadow the vm_map_entry's object.  This typically needs to be done when
494  * a write fault is taken on an entry which had previously been cloned by
495  * fork().  The shared object (which might be NULL) must become private so
496  * we add a shadow layer above it.
497  *
498  * Object allocation for anonymous mappings is defered as long as possible.
499  * When creating a shadow, however, the underlying object must be instantiated
500  * so it can be shared.
501  *
502  * If the map segment is governed by a virtual page table then it is
503  * possible to address offsets beyond the mapped area.  Just allocate
504  * a maximally sized object for this case.
505  *
506  * The vm_map must be exclusively locked.
507  * No other requirements.
508  */
509 static
510 void
511 vm_map_entry_shadow(vm_map_entry_t entry)
512 {
513 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
514 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
515 				 0x7FFFFFFF);	/* XXX */
516 	} else {
517 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
518 				 atop(entry->end - entry->start));
519 	}
520 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
521 }
522 
523 /*
524  * Allocate an object for a vm_map_entry.
525  *
526  * Object allocation for anonymous mappings is defered as long as possible.
527  * This function is called when we can defer no longer, generally when a map
528  * entry might be split or forked or takes a page fault.
529  *
530  * If the map segment is governed by a virtual page table then it is
531  * possible to address offsets beyond the mapped area.  Just allocate
532  * a maximally sized object for this case.
533  *
534  * The vm_map must be exclusively locked.
535  * No other requirements.
536  */
537 void
538 vm_map_entry_allocate_object(vm_map_entry_t entry)
539 {
540 	vm_object_t obj;
541 
542 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
543 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
544 	} else {
545 		obj = vm_object_allocate(OBJT_DEFAULT,
546 					 atop(entry->end - entry->start));
547 	}
548 	entry->object.vm_object = obj;
549 	entry->offset = 0;
550 }
551 
552 /*
553  * Set an initial negative count so the first attempt to reserve
554  * space preloads a bunch of vm_map_entry's for this cpu.  Also
555  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
556  * map a new page for vm_map_entry structures.  SMP systems are
557  * particularly sensitive.
558  *
559  * This routine is called in early boot so we cannot just call
560  * vm_map_entry_reserve().
561  *
562  * Called from the low level boot code only (for each cpu)
563  */
564 void
565 vm_map_entry_reserve_cpu_init(globaldata_t gd)
566 {
567 	vm_map_entry_t entry;
568 	int i;
569 
570 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
571 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
572 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
573 		entry->next = gd->gd_vme_base;
574 		gd->gd_vme_base = entry;
575 	}
576 }
577 
578 /*
579  * Reserves vm_map_entry structures so code later on can manipulate
580  * map_entry structures within a locked map without blocking trying
581  * to allocate a new vm_map_entry.
582  *
583  * No requirements.
584  */
585 int
586 vm_map_entry_reserve(int count)
587 {
588 	struct globaldata *gd = mycpu;
589 	vm_map_entry_t entry;
590 
591 	/*
592 	 * Make sure we have enough structures in gd_vme_base to handle
593 	 * the reservation request.
594 	 */
595 	crit_enter();
596 	while (gd->gd_vme_avail < count) {
597 		entry = zalloc(mapentzone);
598 		entry->next = gd->gd_vme_base;
599 		gd->gd_vme_base = entry;
600 		++gd->gd_vme_avail;
601 	}
602 	gd->gd_vme_avail -= count;
603 	crit_exit();
604 
605 	return(count);
606 }
607 
608 /*
609  * Releases previously reserved vm_map_entry structures that were not
610  * used.  If we have too much junk in our per-cpu cache clean some of
611  * it out.
612  *
613  * No requirements.
614  */
615 void
616 vm_map_entry_release(int count)
617 {
618 	struct globaldata *gd = mycpu;
619 	vm_map_entry_t entry;
620 
621 	crit_enter();
622 	gd->gd_vme_avail += count;
623 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
624 		entry = gd->gd_vme_base;
625 		KKASSERT(entry != NULL);
626 		gd->gd_vme_base = entry->next;
627 		--gd->gd_vme_avail;
628 		crit_exit();
629 		zfree(mapentzone, entry);
630 		crit_enter();
631 	}
632 	crit_exit();
633 }
634 
635 /*
636  * Reserve map entry structures for use in kernel_map itself.  These
637  * entries have *ALREADY* been reserved on a per-cpu basis when the map
638  * was inited.  This function is used by zalloc() to avoid a recursion
639  * when zalloc() itself needs to allocate additional kernel memory.
640  *
641  * This function works like the normal reserve but does not load the
642  * vm_map_entry cache (because that would result in an infinite
643  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
644  *
645  * Any caller of this function must be sure to renormalize after
646  * potentially eating entries to ensure that the reserve supply
647  * remains intact.
648  *
649  * No requirements.
650  */
651 int
652 vm_map_entry_kreserve(int count)
653 {
654 	struct globaldata *gd = mycpu;
655 
656 	crit_enter();
657 	gd->gd_vme_avail -= count;
658 	crit_exit();
659 	KASSERT(gd->gd_vme_base != NULL,
660 		("no reserved entries left, gd_vme_avail = %d\n",
661 		gd->gd_vme_avail));
662 	return(count);
663 }
664 
665 /*
666  * Release previously reserved map entries for kernel_map.  We do not
667  * attempt to clean up like the normal release function as this would
668  * cause an unnecessary (but probably not fatal) deep procedure call.
669  *
670  * No requirements.
671  */
672 void
673 vm_map_entry_krelease(int count)
674 {
675 	struct globaldata *gd = mycpu;
676 
677 	crit_enter();
678 	gd->gd_vme_avail += count;
679 	crit_exit();
680 }
681 
682 /*
683  * Allocates a VM map entry for insertion.  No entry fields are filled in.
684  *
685  * The entries should have previously been reserved.  The reservation count
686  * is tracked in (*countp).
687  *
688  * No requirements.
689  */
690 static vm_map_entry_t
691 vm_map_entry_create(vm_map_t map, int *countp)
692 {
693 	struct globaldata *gd = mycpu;
694 	vm_map_entry_t entry;
695 
696 	KKASSERT(*countp > 0);
697 	--*countp;
698 	crit_enter();
699 	entry = gd->gd_vme_base;
700 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
701 	gd->gd_vme_base = entry->next;
702 	crit_exit();
703 
704 	return(entry);
705 }
706 
707 /*
708  * Dispose of a vm_map_entry that is no longer being referenced.
709  *
710  * No requirements.
711  */
712 static void
713 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
714 {
715 	struct globaldata *gd = mycpu;
716 
717 	KKASSERT(map->hint != entry);
718 	KKASSERT(map->first_free != entry);
719 
720 	++*countp;
721 	crit_enter();
722 	entry->next = gd->gd_vme_base;
723 	gd->gd_vme_base = entry;
724 	crit_exit();
725 }
726 
727 
728 /*
729  * Insert/remove entries from maps.
730  *
731  * The related map must be exclusively locked.
732  * No other requirements.
733  *
734  * NOTE! We currently acquire the vmspace_token only to avoid races
735  *	 against the pageout daemon's calls to vmspace_*_count(), which
736  *	 are unable to safely lock the vm_map without potentially
737  *	 deadlocking.
738  */
739 static __inline void
740 vm_map_entry_link(vm_map_t map,
741 		  vm_map_entry_t after_where,
742 		  vm_map_entry_t entry)
743 {
744 	ASSERT_VM_MAP_LOCKED(map);
745 
746 	lwkt_gettoken(&vmspace_token);
747 	map->nentries++;
748 	entry->prev = after_where;
749 	entry->next = after_where->next;
750 	entry->next->prev = entry;
751 	after_where->next = entry;
752 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
753 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
754 	lwkt_reltoken(&vmspace_token);
755 }
756 
757 static __inline void
758 vm_map_entry_unlink(vm_map_t map,
759 		    vm_map_entry_t entry)
760 {
761 	vm_map_entry_t prev;
762 	vm_map_entry_t next;
763 
764 	ASSERT_VM_MAP_LOCKED(map);
765 
766 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
767 		panic("vm_map_entry_unlink: attempt to mess with "
768 		      "locked entry! %p", entry);
769 	}
770 	lwkt_gettoken(&vmspace_token);
771 	prev = entry->prev;
772 	next = entry->next;
773 	next->prev = prev;
774 	prev->next = next;
775 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
776 	map->nentries--;
777 	lwkt_reltoken(&vmspace_token);
778 }
779 
780 /*
781  * Finds the map entry containing (or immediately preceding) the specified
782  * address in the given map.  The entry is returned in (*entry).
783  *
784  * The boolean result indicates whether the address is actually contained
785  * in the map.
786  *
787  * The related map must be locked.
788  * No other requirements.
789  */
790 boolean_t
791 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
792 {
793 	vm_map_entry_t tmp;
794 	vm_map_entry_t last;
795 
796 	ASSERT_VM_MAP_LOCKED(map);
797 #if 0
798 	/*
799 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
800 	 * the hint code with the red-black lookup meets with system crashes
801 	 * and lockups.  We do not yet know why.
802 	 *
803 	 * It is possible that the problem is related to the setting
804 	 * of the hint during map_entry deletion, in the code specified
805 	 * at the GGG comment later on in this file.
806 	 */
807 	/*
808 	 * Quickly check the cached hint, there's a good chance of a match.
809 	 */
810 	if (map->hint != &map->header) {
811 		tmp = map->hint;
812 		if (address >= tmp->start && address < tmp->end) {
813 			*entry = tmp;
814 			return(TRUE);
815 		}
816 	}
817 #endif
818 
819 	/*
820 	 * Locate the record from the top of the tree.  'last' tracks the
821 	 * closest prior record and is returned if no match is found, which
822 	 * in binary tree terms means tracking the most recent right-branch
823 	 * taken.  If there is no prior record, &map->header is returned.
824 	 */
825 	last = &map->header;
826 	tmp = RB_ROOT(&map->rb_root);
827 
828 	while (tmp) {
829 		if (address >= tmp->start) {
830 			if (address < tmp->end) {
831 				*entry = tmp;
832 				map->hint = tmp;
833 				return(TRUE);
834 			}
835 			last = tmp;
836 			tmp = RB_RIGHT(tmp, rb_entry);
837 		} else {
838 			tmp = RB_LEFT(tmp, rb_entry);
839 		}
840 	}
841 	*entry = last;
842 	return (FALSE);
843 }
844 
845 /*
846  * Inserts the given whole VM object into the target map at the specified
847  * address range.  The object's size should match that of the address range.
848  *
849  * The map must be exclusively locked.
850  * The caller must have reserved sufficient vm_map_entry structures.
851  *
852  * If object is non-NULL, ref count must be bumped by caller
853  * prior to making call to account for the new entry.
854  */
855 int
856 vm_map_insert(vm_map_t map, int *countp,
857 	      vm_object_t object, vm_ooffset_t offset,
858 	      vm_offset_t start, vm_offset_t end,
859 	      vm_maptype_t maptype,
860 	      vm_prot_t prot, vm_prot_t max,
861 	      int cow)
862 {
863 	vm_map_entry_t new_entry;
864 	vm_map_entry_t prev_entry;
865 	vm_map_entry_t temp_entry;
866 	vm_eflags_t protoeflags;
867 
868 	ASSERT_VM_MAP_LOCKED(map);
869 
870 	/*
871 	 * Check that the start and end points are not bogus.
872 	 */
873 	if ((start < map->min_offset) || (end > map->max_offset) ||
874 	    (start >= end))
875 		return (KERN_INVALID_ADDRESS);
876 
877 	/*
878 	 * Find the entry prior to the proposed starting address; if it's part
879 	 * of an existing entry, this range is bogus.
880 	 */
881 	if (vm_map_lookup_entry(map, start, &temp_entry))
882 		return (KERN_NO_SPACE);
883 
884 	prev_entry = temp_entry;
885 
886 	/*
887 	 * Assert that the next entry doesn't overlap the end point.
888 	 */
889 
890 	if ((prev_entry->next != &map->header) &&
891 	    (prev_entry->next->start < end))
892 		return (KERN_NO_SPACE);
893 
894 	protoeflags = 0;
895 
896 	if (cow & MAP_COPY_ON_WRITE)
897 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
898 
899 	if (cow & MAP_NOFAULT) {
900 		protoeflags |= MAP_ENTRY_NOFAULT;
901 
902 		KASSERT(object == NULL,
903 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
904 	}
905 	if (cow & MAP_DISABLE_SYNCER)
906 		protoeflags |= MAP_ENTRY_NOSYNC;
907 	if (cow & MAP_DISABLE_COREDUMP)
908 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
909 	if (cow & MAP_IS_STACK)
910 		protoeflags |= MAP_ENTRY_STACK;
911 	if (cow & MAP_IS_KSTACK)
912 		protoeflags |= MAP_ENTRY_KSTACK;
913 
914 	lwkt_gettoken(&vm_token);
915 	lwkt_gettoken(&vmobj_token);
916 
917 	if (object) {
918 		/*
919 		 * When object is non-NULL, it could be shared with another
920 		 * process.  We have to set or clear OBJ_ONEMAPPING
921 		 * appropriately.
922 		 */
923 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
924 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
925 		}
926 	}
927 	else if ((prev_entry != &map->header) &&
928 		 (prev_entry->eflags == protoeflags) &&
929 		 (prev_entry->end == start) &&
930 		 (prev_entry->wired_count == 0) &&
931 		 prev_entry->maptype == maptype &&
932 		 ((prev_entry->object.vm_object == NULL) ||
933 		  vm_object_coalesce(prev_entry->object.vm_object,
934 				     OFF_TO_IDX(prev_entry->offset),
935 				     (vm_size_t)(prev_entry->end - prev_entry->start),
936 				     (vm_size_t)(end - prev_entry->end)))) {
937 		/*
938 		 * We were able to extend the object.  Determine if we
939 		 * can extend the previous map entry to include the
940 		 * new range as well.
941 		 */
942 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
943 		    (prev_entry->protection == prot) &&
944 		    (prev_entry->max_protection == max)) {
945 			lwkt_reltoken(&vmobj_token);
946 			lwkt_reltoken(&vm_token);
947 			map->size += (end - prev_entry->end);
948 			prev_entry->end = end;
949 			vm_map_simplify_entry(map, prev_entry, countp);
950 			return (KERN_SUCCESS);
951 		}
952 
953 		/*
954 		 * If we can extend the object but cannot extend the
955 		 * map entry, we have to create a new map entry.  We
956 		 * must bump the ref count on the extended object to
957 		 * account for it.  object may be NULL.
958 		 */
959 		object = prev_entry->object.vm_object;
960 		offset = prev_entry->offset +
961 			(prev_entry->end - prev_entry->start);
962 		vm_object_reference_locked(object);
963 	}
964 
965 	lwkt_reltoken(&vmobj_token);
966 	lwkt_reltoken(&vm_token);
967 
968 	/*
969 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
970 	 * in things like the buffer map where we manage kva but do not manage
971 	 * backing objects.
972 	 */
973 
974 	/*
975 	 * Create a new entry
976 	 */
977 
978 	new_entry = vm_map_entry_create(map, countp);
979 	new_entry->start = start;
980 	new_entry->end = end;
981 
982 	new_entry->maptype = maptype;
983 	new_entry->eflags = protoeflags;
984 	new_entry->object.vm_object = object;
985 	new_entry->offset = offset;
986 	new_entry->aux.master_pde = 0;
987 
988 	new_entry->inheritance = VM_INHERIT_DEFAULT;
989 	new_entry->protection = prot;
990 	new_entry->max_protection = max;
991 	new_entry->wired_count = 0;
992 
993 	/*
994 	 * Insert the new entry into the list
995 	 */
996 
997 	vm_map_entry_link(map, prev_entry, new_entry);
998 	map->size += new_entry->end - new_entry->start;
999 
1000 	/*
1001 	 * Update the free space hint.  Entries cannot overlap.
1002 	 * An exact comparison is needed to avoid matching
1003 	 * against the map->header.
1004 	 */
1005 	if ((map->first_free == prev_entry) &&
1006 	    (prev_entry->end == new_entry->start)) {
1007 		map->first_free = new_entry;
1008 	}
1009 
1010 #if 0
1011 	/*
1012 	 * Temporarily removed to avoid MAP_STACK panic, due to
1013 	 * MAP_STACK being a huge hack.  Will be added back in
1014 	 * when MAP_STACK (and the user stack mapping) is fixed.
1015 	 */
1016 	/*
1017 	 * It may be possible to simplify the entry
1018 	 */
1019 	vm_map_simplify_entry(map, new_entry, countp);
1020 #endif
1021 
1022 	/*
1023 	 * Try to pre-populate the page table.  Mappings governed by virtual
1024 	 * page tables cannot be prepopulated without a lot of work, so
1025 	 * don't try.
1026 	 */
1027 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1028 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1029 		pmap_object_init_pt(map->pmap, start, prot,
1030 				    object, OFF_TO_IDX(offset), end - start,
1031 				    cow & MAP_PREFAULT_PARTIAL);
1032 	}
1033 
1034 	return (KERN_SUCCESS);
1035 }
1036 
1037 /*
1038  * Find sufficient space for `length' bytes in the given map, starting at
1039  * `start'.  Returns 0 on success, 1 on no space.
1040  *
1041  * This function will returned an arbitrarily aligned pointer.  If no
1042  * particular alignment is required you should pass align as 1.  Note that
1043  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1044  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1045  * argument.
1046  *
1047  * 'align' should be a power of 2 but is not required to be.
1048  *
1049  * The map must be exclusively locked.
1050  * No other requirements.
1051  */
1052 int
1053 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1054 		 vm_size_t align, int flags, vm_offset_t *addr)
1055 {
1056 	vm_map_entry_t entry, next;
1057 	vm_offset_t end;
1058 	vm_offset_t align_mask;
1059 
1060 	if (start < map->min_offset)
1061 		start = map->min_offset;
1062 	if (start > map->max_offset)
1063 		return (1);
1064 
1065 	/*
1066 	 * If the alignment is not a power of 2 we will have to use
1067 	 * a mod/division, set align_mask to a special value.
1068 	 */
1069 	if ((align | (align - 1)) + 1 != (align << 1))
1070 		align_mask = (vm_offset_t)-1;
1071 	else
1072 		align_mask = align - 1;
1073 
1074 	/*
1075 	 * Look for the first possible address; if there's already something
1076 	 * at this address, we have to start after it.
1077 	 */
1078 	if (start == map->min_offset) {
1079 		if ((entry = map->first_free) != &map->header)
1080 			start = entry->end;
1081 	} else {
1082 		vm_map_entry_t tmp;
1083 
1084 		if (vm_map_lookup_entry(map, start, &tmp))
1085 			start = tmp->end;
1086 		entry = tmp;
1087 	}
1088 
1089 	/*
1090 	 * Look through the rest of the map, trying to fit a new region in the
1091 	 * gap between existing regions, or after the very last region.
1092 	 */
1093 	for (;; start = (entry = next)->end) {
1094 		/*
1095 		 * Adjust the proposed start by the requested alignment,
1096 		 * be sure that we didn't wrap the address.
1097 		 */
1098 		if (align_mask == (vm_offset_t)-1)
1099 			end = ((start + align - 1) / align) * align;
1100 		else
1101 			end = (start + align_mask) & ~align_mask;
1102 		if (end < start)
1103 			return (1);
1104 		start = end;
1105 		/*
1106 		 * Find the end of the proposed new region.  Be sure we didn't
1107 		 * go beyond the end of the map, or wrap around the address.
1108 		 * Then check to see if this is the last entry or if the
1109 		 * proposed end fits in the gap between this and the next
1110 		 * entry.
1111 		 */
1112 		end = start + length;
1113 		if (end > map->max_offset || end < start)
1114 			return (1);
1115 		next = entry->next;
1116 
1117 		/*
1118 		 * If the next entry's start address is beyond the desired
1119 		 * end address we may have found a good entry.
1120 		 *
1121 		 * If the next entry is a stack mapping we do not map into
1122 		 * the stack's reserved space.
1123 		 *
1124 		 * XXX continue to allow mapping into the stack's reserved
1125 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1126 		 * mapping, for backwards compatibility.  But the caller
1127 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1128 		 * want to do that.
1129 		 */
1130 		if (next == &map->header)
1131 			break;
1132 		if (next->start >= end) {
1133 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1134 				break;
1135 			if (flags & MAP_STACK)
1136 				break;
1137 			if (next->start - next->aux.avail_ssize >= end)
1138 				break;
1139 		}
1140 	}
1141 	map->hint = entry;
1142 
1143 	/*
1144 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1145 	 * if it fails.  The kernel_map is locked and nothing can steal
1146 	 * our address space if pmap_growkernel() blocks.
1147 	 *
1148 	 * NOTE: This may be unconditionally called for kldload areas on
1149 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1150 	 *	 fill 128G worth of page tables!).  Therefore we must not
1151 	 *	 retry.
1152 	 */
1153 	if (map == &kernel_map) {
1154 		vm_offset_t kstop;
1155 
1156 		kstop = round_page(start + length);
1157 		if (kstop > kernel_vm_end)
1158 			pmap_growkernel(start, kstop);
1159 	}
1160 	*addr = start;
1161 	return (0);
1162 }
1163 
1164 /*
1165  * vm_map_find finds an unallocated region in the target address map with
1166  * the given length.  The search is defined to be first-fit from the
1167  * specified address; the region found is returned in the same parameter.
1168  *
1169  * If object is non-NULL, ref count must be bumped by caller
1170  * prior to making call to account for the new entry.
1171  *
1172  * No requirements.  This function will lock the map temporarily.
1173  */
1174 int
1175 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1176 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1177 	    boolean_t fitit,
1178 	    vm_maptype_t maptype,
1179 	    vm_prot_t prot, vm_prot_t max,
1180 	    int cow)
1181 {
1182 	vm_offset_t start;
1183 	int result;
1184 	int count;
1185 
1186 	start = *addr;
1187 
1188 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1189 	vm_map_lock(map);
1190 	if (fitit) {
1191 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1192 			vm_map_unlock(map);
1193 			vm_map_entry_release(count);
1194 			return (KERN_NO_SPACE);
1195 		}
1196 		start = *addr;
1197 	}
1198 	result = vm_map_insert(map, &count, object, offset,
1199 			       start, start + length,
1200 			       maptype,
1201 			       prot, max,
1202 			       cow);
1203 	vm_map_unlock(map);
1204 	vm_map_entry_release(count);
1205 
1206 	return (result);
1207 }
1208 
1209 /*
1210  * Simplify the given map entry by merging with either neighbor.  This
1211  * routine also has the ability to merge with both neighbors.
1212  *
1213  * This routine guarentees that the passed entry remains valid (though
1214  * possibly extended).  When merging, this routine may delete one or
1215  * both neighbors.  No action is taken on entries which have their
1216  * in-transition flag set.
1217  *
1218  * The map must be exclusively locked.
1219  */
1220 void
1221 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1222 {
1223 	vm_map_entry_t next, prev;
1224 	vm_size_t prevsize, esize;
1225 
1226 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1227 		++mycpu->gd_cnt.v_intrans_coll;
1228 		return;
1229 	}
1230 
1231 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1232 		return;
1233 
1234 	prev = entry->prev;
1235 	if (prev != &map->header) {
1236 		prevsize = prev->end - prev->start;
1237 		if ( (prev->end == entry->start) &&
1238 		     (prev->maptype == entry->maptype) &&
1239 		     (prev->object.vm_object == entry->object.vm_object) &&
1240 		     (!prev->object.vm_object ||
1241 			(prev->offset + prevsize == entry->offset)) &&
1242 		     (prev->eflags == entry->eflags) &&
1243 		     (prev->protection == entry->protection) &&
1244 		     (prev->max_protection == entry->max_protection) &&
1245 		     (prev->inheritance == entry->inheritance) &&
1246 		     (prev->wired_count == entry->wired_count)) {
1247 			if (map->first_free == prev)
1248 				map->first_free = entry;
1249 			if (map->hint == prev)
1250 				map->hint = entry;
1251 			vm_map_entry_unlink(map, prev);
1252 			entry->start = prev->start;
1253 			entry->offset = prev->offset;
1254 			if (prev->object.vm_object)
1255 				vm_object_deallocate(prev->object.vm_object);
1256 			vm_map_entry_dispose(map, prev, countp);
1257 		}
1258 	}
1259 
1260 	next = entry->next;
1261 	if (next != &map->header) {
1262 		esize = entry->end - entry->start;
1263 		if ((entry->end == next->start) &&
1264 		    (next->maptype == entry->maptype) &&
1265 		    (next->object.vm_object == entry->object.vm_object) &&
1266 		     (!entry->object.vm_object ||
1267 			(entry->offset + esize == next->offset)) &&
1268 		    (next->eflags == entry->eflags) &&
1269 		    (next->protection == entry->protection) &&
1270 		    (next->max_protection == entry->max_protection) &&
1271 		    (next->inheritance == entry->inheritance) &&
1272 		    (next->wired_count == entry->wired_count)) {
1273 			if (map->first_free == next)
1274 				map->first_free = entry;
1275 			if (map->hint == next)
1276 				map->hint = entry;
1277 			vm_map_entry_unlink(map, next);
1278 			entry->end = next->end;
1279 			if (next->object.vm_object)
1280 				vm_object_deallocate(next->object.vm_object);
1281 			vm_map_entry_dispose(map, next, countp);
1282 	        }
1283 	}
1284 }
1285 
1286 /*
1287  * Asserts that the given entry begins at or after the specified address.
1288  * If necessary, it splits the entry into two.
1289  */
1290 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1291 {									\
1292 	if (startaddr > entry->start)					\
1293 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1294 }
1295 
1296 /*
1297  * This routine is called only when it is known that the entry must be split.
1298  *
1299  * The map must be exclusively locked.
1300  */
1301 static void
1302 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1303 		   int *countp)
1304 {
1305 	vm_map_entry_t new_entry;
1306 
1307 	/*
1308 	 * Split off the front portion -- note that we must insert the new
1309 	 * entry BEFORE this one, so that this entry has the specified
1310 	 * starting address.
1311 	 */
1312 
1313 	vm_map_simplify_entry(map, entry, countp);
1314 
1315 	/*
1316 	 * If there is no object backing this entry, we might as well create
1317 	 * one now.  If we defer it, an object can get created after the map
1318 	 * is clipped, and individual objects will be created for the split-up
1319 	 * map.  This is a bit of a hack, but is also about the best place to
1320 	 * put this improvement.
1321 	 */
1322 	if (entry->object.vm_object == NULL && !map->system_map) {
1323 		vm_map_entry_allocate_object(entry);
1324 	}
1325 
1326 	new_entry = vm_map_entry_create(map, countp);
1327 	*new_entry = *entry;
1328 
1329 	new_entry->end = start;
1330 	entry->offset += (start - entry->start);
1331 	entry->start = start;
1332 
1333 	vm_map_entry_link(map, entry->prev, new_entry);
1334 
1335 	switch(entry->maptype) {
1336 	case VM_MAPTYPE_NORMAL:
1337 	case VM_MAPTYPE_VPAGETABLE:
1338 		vm_object_reference(new_entry->object.vm_object);
1339 		break;
1340 	default:
1341 		break;
1342 	}
1343 }
1344 
1345 /*
1346  * Asserts that the given entry ends at or before the specified address.
1347  * If necessary, it splits the entry into two.
1348  *
1349  * The map must be exclusively locked.
1350  */
1351 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1352 {								\
1353 	if (endaddr < entry->end)				\
1354 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1355 }
1356 
1357 /*
1358  * This routine is called only when it is known that the entry must be split.
1359  *
1360  * The map must be exclusively locked.
1361  */
1362 static void
1363 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1364 		 int *countp)
1365 {
1366 	vm_map_entry_t new_entry;
1367 
1368 	/*
1369 	 * If there is no object backing this entry, we might as well create
1370 	 * one now.  If we defer it, an object can get created after the map
1371 	 * is clipped, and individual objects will be created for the split-up
1372 	 * map.  This is a bit of a hack, but is also about the best place to
1373 	 * put this improvement.
1374 	 */
1375 
1376 	if (entry->object.vm_object == NULL && !map->system_map) {
1377 		vm_map_entry_allocate_object(entry);
1378 	}
1379 
1380 	/*
1381 	 * Create a new entry and insert it AFTER the specified entry
1382 	 */
1383 
1384 	new_entry = vm_map_entry_create(map, countp);
1385 	*new_entry = *entry;
1386 
1387 	new_entry->start = entry->end = end;
1388 	new_entry->offset += (end - entry->start);
1389 
1390 	vm_map_entry_link(map, entry, new_entry);
1391 
1392 	switch(entry->maptype) {
1393 	case VM_MAPTYPE_NORMAL:
1394 	case VM_MAPTYPE_VPAGETABLE:
1395 		vm_object_reference(new_entry->object.vm_object);
1396 		break;
1397 	default:
1398 		break;
1399 	}
1400 }
1401 
1402 /*
1403  * Asserts that the starting and ending region addresses fall within the
1404  * valid range for the map.
1405  */
1406 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1407 {						\
1408 	if (start < vm_map_min(map))		\
1409 		start = vm_map_min(map);	\
1410 	if (end > vm_map_max(map))		\
1411 		end = vm_map_max(map);		\
1412 	if (start > end)			\
1413 		start = end;			\
1414 }
1415 
1416 /*
1417  * Used to block when an in-transition collison occurs.  The map
1418  * is unlocked for the sleep and relocked before the return.
1419  */
1420 static
1421 void
1422 vm_map_transition_wait(vm_map_t map)
1423 {
1424 	vm_map_unlock(map);
1425 	tsleep(map, 0, "vment", 0);
1426 	vm_map_lock(map);
1427 }
1428 
1429 /*
1430  * When we do blocking operations with the map lock held it is
1431  * possible that a clip might have occured on our in-transit entry,
1432  * requiring an adjustment to the entry in our loop.  These macros
1433  * help the pageable and clip_range code deal with the case.  The
1434  * conditional costs virtually nothing if no clipping has occured.
1435  */
1436 
1437 #define CLIP_CHECK_BACK(entry, save_start)		\
1438     do {						\
1439 	    while (entry->start != save_start) {	\
1440 		    entry = entry->prev;		\
1441 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1442 	    }						\
1443     } while(0)
1444 
1445 #define CLIP_CHECK_FWD(entry, save_end)			\
1446     do {						\
1447 	    while (entry->end != save_end) {		\
1448 		    entry = entry->next;		\
1449 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1450 	    }						\
1451     } while(0)
1452 
1453 
1454 /*
1455  * Clip the specified range and return the base entry.  The
1456  * range may cover several entries starting at the returned base
1457  * and the first and last entry in the covering sequence will be
1458  * properly clipped to the requested start and end address.
1459  *
1460  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1461  * flag.
1462  *
1463  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1464  * covered by the requested range.
1465  *
1466  * The map must be exclusively locked on entry and will remain locked
1467  * on return. If no range exists or the range contains holes and you
1468  * specified that no holes were allowed, NULL will be returned.  This
1469  * routine may temporarily unlock the map in order avoid a deadlock when
1470  * sleeping.
1471  */
1472 static
1473 vm_map_entry_t
1474 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1475 		  int *countp, int flags)
1476 {
1477 	vm_map_entry_t start_entry;
1478 	vm_map_entry_t entry;
1479 
1480 	/*
1481 	 * Locate the entry and effect initial clipping.  The in-transition
1482 	 * case does not occur very often so do not try to optimize it.
1483 	 */
1484 again:
1485 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1486 		return (NULL);
1487 	entry = start_entry;
1488 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1489 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1490 		++mycpu->gd_cnt.v_intrans_coll;
1491 		++mycpu->gd_cnt.v_intrans_wait;
1492 		vm_map_transition_wait(map);
1493 		/*
1494 		 * entry and/or start_entry may have been clipped while
1495 		 * we slept, or may have gone away entirely.  We have
1496 		 * to restart from the lookup.
1497 		 */
1498 		goto again;
1499 	}
1500 
1501 	/*
1502 	 * Since we hold an exclusive map lock we do not have to restart
1503 	 * after clipping, even though clipping may block in zalloc.
1504 	 */
1505 	vm_map_clip_start(map, entry, start, countp);
1506 	vm_map_clip_end(map, entry, end, countp);
1507 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1508 
1509 	/*
1510 	 * Scan entries covered by the range.  When working on the next
1511 	 * entry a restart need only re-loop on the current entry which
1512 	 * we have already locked, since 'next' may have changed.  Also,
1513 	 * even though entry is safe, it may have been clipped so we
1514 	 * have to iterate forwards through the clip after sleeping.
1515 	 */
1516 	while (entry->next != &map->header && entry->next->start < end) {
1517 		vm_map_entry_t next = entry->next;
1518 
1519 		if (flags & MAP_CLIP_NO_HOLES) {
1520 			if (next->start > entry->end) {
1521 				vm_map_unclip_range(map, start_entry,
1522 					start, entry->end, countp, flags);
1523 				return(NULL);
1524 			}
1525 		}
1526 
1527 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1528 			vm_offset_t save_end = entry->end;
1529 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1530 			++mycpu->gd_cnt.v_intrans_coll;
1531 			++mycpu->gd_cnt.v_intrans_wait;
1532 			vm_map_transition_wait(map);
1533 
1534 			/*
1535 			 * clips might have occured while we blocked.
1536 			 */
1537 			CLIP_CHECK_FWD(entry, save_end);
1538 			CLIP_CHECK_BACK(start_entry, start);
1539 			continue;
1540 		}
1541 		/*
1542 		 * No restart necessary even though clip_end may block, we
1543 		 * are holding the map lock.
1544 		 */
1545 		vm_map_clip_end(map, next, end, countp);
1546 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1547 		entry = next;
1548 	}
1549 	if (flags & MAP_CLIP_NO_HOLES) {
1550 		if (entry->end != end) {
1551 			vm_map_unclip_range(map, start_entry,
1552 				start, entry->end, countp, flags);
1553 			return(NULL);
1554 		}
1555 	}
1556 	return(start_entry);
1557 }
1558 
1559 /*
1560  * Undo the effect of vm_map_clip_range().  You should pass the same
1561  * flags and the same range that you passed to vm_map_clip_range().
1562  * This code will clear the in-transition flag on the entries and
1563  * wake up anyone waiting.  This code will also simplify the sequence
1564  * and attempt to merge it with entries before and after the sequence.
1565  *
1566  * The map must be locked on entry and will remain locked on return.
1567  *
1568  * Note that you should also pass the start_entry returned by
1569  * vm_map_clip_range().  However, if you block between the two calls
1570  * with the map unlocked please be aware that the start_entry may
1571  * have been clipped and you may need to scan it backwards to find
1572  * the entry corresponding with the original start address.  You are
1573  * responsible for this, vm_map_unclip_range() expects the correct
1574  * start_entry to be passed to it and will KASSERT otherwise.
1575  */
1576 static
1577 void
1578 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1579 		    vm_offset_t start, vm_offset_t end,
1580 		    int *countp, int flags)
1581 {
1582 	vm_map_entry_t entry;
1583 
1584 	entry = start_entry;
1585 
1586 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1587 	while (entry != &map->header && entry->start < end) {
1588 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1589 			("in-transition flag not set during unclip on: %p",
1590 			entry));
1591 		KASSERT(entry->end <= end,
1592 			("unclip_range: tail wasn't clipped"));
1593 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1594 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1595 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1596 			wakeup(map);
1597 		}
1598 		entry = entry->next;
1599 	}
1600 
1601 	/*
1602 	 * Simplification does not block so there is no restart case.
1603 	 */
1604 	entry = start_entry;
1605 	while (entry != &map->header && entry->start < end) {
1606 		vm_map_simplify_entry(map, entry, countp);
1607 		entry = entry->next;
1608 	}
1609 }
1610 
1611 /*
1612  * Mark the given range as handled by a subordinate map.
1613  *
1614  * This range must have been created with vm_map_find(), and no other
1615  * operations may have been performed on this range prior to calling
1616  * vm_map_submap().
1617  *
1618  * Submappings cannot be removed.
1619  *
1620  * No requirements.
1621  */
1622 int
1623 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1624 {
1625 	vm_map_entry_t entry;
1626 	int result = KERN_INVALID_ARGUMENT;
1627 	int count;
1628 
1629 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1630 	vm_map_lock(map);
1631 
1632 	VM_MAP_RANGE_CHECK(map, start, end);
1633 
1634 	if (vm_map_lookup_entry(map, start, &entry)) {
1635 		vm_map_clip_start(map, entry, start, &count);
1636 	} else {
1637 		entry = entry->next;
1638 	}
1639 
1640 	vm_map_clip_end(map, entry, end, &count);
1641 
1642 	if ((entry->start == start) && (entry->end == end) &&
1643 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1644 	    (entry->object.vm_object == NULL)) {
1645 		entry->object.sub_map = submap;
1646 		entry->maptype = VM_MAPTYPE_SUBMAP;
1647 		result = KERN_SUCCESS;
1648 	}
1649 	vm_map_unlock(map);
1650 	vm_map_entry_release(count);
1651 
1652 	return (result);
1653 }
1654 
1655 /*
1656  * Sets the protection of the specified address region in the target map.
1657  * If "set_max" is specified, the maximum protection is to be set;
1658  * otherwise, only the current protection is affected.
1659  *
1660  * The protection is not applicable to submaps, but is applicable to normal
1661  * maps and maps governed by virtual page tables.  For example, when operating
1662  * on a virtual page table our protection basically controls how COW occurs
1663  * on the backing object, whereas the virtual page table abstraction itself
1664  * is an abstraction for userland.
1665  *
1666  * No requirements.
1667  */
1668 int
1669 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1670 	       vm_prot_t new_prot, boolean_t set_max)
1671 {
1672 	vm_map_entry_t current;
1673 	vm_map_entry_t entry;
1674 	int count;
1675 
1676 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1677 	vm_map_lock(map);
1678 
1679 	VM_MAP_RANGE_CHECK(map, start, end);
1680 
1681 	if (vm_map_lookup_entry(map, start, &entry)) {
1682 		vm_map_clip_start(map, entry, start, &count);
1683 	} else {
1684 		entry = entry->next;
1685 	}
1686 
1687 	/*
1688 	 * Make a first pass to check for protection violations.
1689 	 */
1690 	current = entry;
1691 	while ((current != &map->header) && (current->start < end)) {
1692 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1693 			vm_map_unlock(map);
1694 			vm_map_entry_release(count);
1695 			return (KERN_INVALID_ARGUMENT);
1696 		}
1697 		if ((new_prot & current->max_protection) != new_prot) {
1698 			vm_map_unlock(map);
1699 			vm_map_entry_release(count);
1700 			return (KERN_PROTECTION_FAILURE);
1701 		}
1702 		current = current->next;
1703 	}
1704 
1705 	/*
1706 	 * Go back and fix up protections. [Note that clipping is not
1707 	 * necessary the second time.]
1708 	 */
1709 	current = entry;
1710 
1711 	while ((current != &map->header) && (current->start < end)) {
1712 		vm_prot_t old_prot;
1713 
1714 		vm_map_clip_end(map, current, end, &count);
1715 
1716 		old_prot = current->protection;
1717 		if (set_max) {
1718 			current->protection =
1719 			    (current->max_protection = new_prot) &
1720 			    old_prot;
1721 		} else {
1722 			current->protection = new_prot;
1723 		}
1724 
1725 		/*
1726 		 * Update physical map if necessary. Worry about copy-on-write
1727 		 * here -- CHECK THIS XXX
1728 		 */
1729 
1730 		if (current->protection != old_prot) {
1731 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1732 							VM_PROT_ALL)
1733 
1734 			pmap_protect(map->pmap, current->start,
1735 			    current->end,
1736 			    current->protection & MASK(current));
1737 #undef	MASK
1738 		}
1739 
1740 		vm_map_simplify_entry(map, current, &count);
1741 
1742 		current = current->next;
1743 	}
1744 
1745 	vm_map_unlock(map);
1746 	vm_map_entry_release(count);
1747 	return (KERN_SUCCESS);
1748 }
1749 
1750 /*
1751  * This routine traverses a processes map handling the madvise
1752  * system call.  Advisories are classified as either those effecting
1753  * the vm_map_entry structure, or those effecting the underlying
1754  * objects.
1755  *
1756  * The <value> argument is used for extended madvise calls.
1757  *
1758  * No requirements.
1759  */
1760 int
1761 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1762 	       int behav, off_t value)
1763 {
1764 	vm_map_entry_t current, entry;
1765 	int modify_map = 0;
1766 	int error = 0;
1767 	int count;
1768 
1769 	/*
1770 	 * Some madvise calls directly modify the vm_map_entry, in which case
1771 	 * we need to use an exclusive lock on the map and we need to perform
1772 	 * various clipping operations.  Otherwise we only need a read-lock
1773 	 * on the map.
1774 	 */
1775 
1776 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1777 
1778 	switch(behav) {
1779 	case MADV_NORMAL:
1780 	case MADV_SEQUENTIAL:
1781 	case MADV_RANDOM:
1782 	case MADV_NOSYNC:
1783 	case MADV_AUTOSYNC:
1784 	case MADV_NOCORE:
1785 	case MADV_CORE:
1786 	case MADV_SETMAP:
1787 	case MADV_INVAL:
1788 		modify_map = 1;
1789 		vm_map_lock(map);
1790 		break;
1791 	case MADV_WILLNEED:
1792 	case MADV_DONTNEED:
1793 	case MADV_FREE:
1794 		vm_map_lock_read(map);
1795 		break;
1796 	default:
1797 		vm_map_entry_release(count);
1798 		return (EINVAL);
1799 	}
1800 
1801 	/*
1802 	 * Locate starting entry and clip if necessary.
1803 	 */
1804 
1805 	VM_MAP_RANGE_CHECK(map, start, end);
1806 
1807 	if (vm_map_lookup_entry(map, start, &entry)) {
1808 		if (modify_map)
1809 			vm_map_clip_start(map, entry, start, &count);
1810 	} else {
1811 		entry = entry->next;
1812 	}
1813 
1814 	if (modify_map) {
1815 		/*
1816 		 * madvise behaviors that are implemented in the vm_map_entry.
1817 		 *
1818 		 * We clip the vm_map_entry so that behavioral changes are
1819 		 * limited to the specified address range.
1820 		 */
1821 		for (current = entry;
1822 		     (current != &map->header) && (current->start < end);
1823 		     current = current->next
1824 		) {
1825 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1826 				continue;
1827 
1828 			vm_map_clip_end(map, current, end, &count);
1829 
1830 			switch (behav) {
1831 			case MADV_NORMAL:
1832 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1833 				break;
1834 			case MADV_SEQUENTIAL:
1835 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1836 				break;
1837 			case MADV_RANDOM:
1838 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1839 				break;
1840 			case MADV_NOSYNC:
1841 				current->eflags |= MAP_ENTRY_NOSYNC;
1842 				break;
1843 			case MADV_AUTOSYNC:
1844 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1845 				break;
1846 			case MADV_NOCORE:
1847 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1848 				break;
1849 			case MADV_CORE:
1850 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1851 				break;
1852 			case MADV_INVAL:
1853 				/*
1854 				 * Invalidate the related pmap entries, used
1855 				 * to flush portions of the real kernel's
1856 				 * pmap when the caller has removed or
1857 				 * modified existing mappings in a virtual
1858 				 * page table.
1859 				 */
1860 				pmap_remove(map->pmap,
1861 					    current->start, current->end);
1862 				break;
1863 			case MADV_SETMAP:
1864 				/*
1865 				 * Set the page directory page for a map
1866 				 * governed by a virtual page table.  Mark
1867 				 * the entry as being governed by a virtual
1868 				 * page table if it is not.
1869 				 *
1870 				 * XXX the page directory page is stored
1871 				 * in the avail_ssize field if the map_entry.
1872 				 *
1873 				 * XXX the map simplification code does not
1874 				 * compare this field so weird things may
1875 				 * happen if you do not apply this function
1876 				 * to the entire mapping governed by the
1877 				 * virtual page table.
1878 				 */
1879 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1880 					error = EINVAL;
1881 					break;
1882 				}
1883 				current->aux.master_pde = value;
1884 				pmap_remove(map->pmap,
1885 					    current->start, current->end);
1886 				break;
1887 			default:
1888 				error = EINVAL;
1889 				break;
1890 			}
1891 			vm_map_simplify_entry(map, current, &count);
1892 		}
1893 		vm_map_unlock(map);
1894 	} else {
1895 		vm_pindex_t pindex;
1896 		int count;
1897 
1898 		/*
1899 		 * madvise behaviors that are implemented in the underlying
1900 		 * vm_object.
1901 		 *
1902 		 * Since we don't clip the vm_map_entry, we have to clip
1903 		 * the vm_object pindex and count.
1904 		 *
1905 		 * NOTE!  We currently do not support these functions on
1906 		 * virtual page tables.
1907 		 */
1908 		for (current = entry;
1909 		     (current != &map->header) && (current->start < end);
1910 		     current = current->next
1911 		) {
1912 			vm_offset_t useStart;
1913 
1914 			if (current->maptype != VM_MAPTYPE_NORMAL)
1915 				continue;
1916 
1917 			pindex = OFF_TO_IDX(current->offset);
1918 			count = atop(current->end - current->start);
1919 			useStart = current->start;
1920 
1921 			if (current->start < start) {
1922 				pindex += atop(start - current->start);
1923 				count -= atop(start - current->start);
1924 				useStart = start;
1925 			}
1926 			if (current->end > end)
1927 				count -= atop(current->end - end);
1928 
1929 			if (count <= 0)
1930 				continue;
1931 
1932 			vm_object_madvise(current->object.vm_object,
1933 					  pindex, count, behav);
1934 
1935 			/*
1936 			 * Try to populate the page table.  Mappings governed
1937 			 * by virtual page tables cannot be pre-populated
1938 			 * without a lot of work so don't try.
1939 			 */
1940 			if (behav == MADV_WILLNEED &&
1941 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1942 				pmap_object_init_pt(
1943 				    map->pmap,
1944 				    useStart,
1945 				    current->protection,
1946 				    current->object.vm_object,
1947 				    pindex,
1948 				    (count << PAGE_SHIFT),
1949 				    MAP_PREFAULT_MADVISE
1950 				);
1951 			}
1952 		}
1953 		vm_map_unlock_read(map);
1954 	}
1955 	vm_map_entry_release(count);
1956 	return(error);
1957 }
1958 
1959 
1960 /*
1961  * Sets the inheritance of the specified address range in the target map.
1962  * Inheritance affects how the map will be shared with child maps at the
1963  * time of vm_map_fork.
1964  */
1965 int
1966 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1967 	       vm_inherit_t new_inheritance)
1968 {
1969 	vm_map_entry_t entry;
1970 	vm_map_entry_t temp_entry;
1971 	int count;
1972 
1973 	switch (new_inheritance) {
1974 	case VM_INHERIT_NONE:
1975 	case VM_INHERIT_COPY:
1976 	case VM_INHERIT_SHARE:
1977 		break;
1978 	default:
1979 		return (KERN_INVALID_ARGUMENT);
1980 	}
1981 
1982 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1983 	vm_map_lock(map);
1984 
1985 	VM_MAP_RANGE_CHECK(map, start, end);
1986 
1987 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1988 		entry = temp_entry;
1989 		vm_map_clip_start(map, entry, start, &count);
1990 	} else
1991 		entry = temp_entry->next;
1992 
1993 	while ((entry != &map->header) && (entry->start < end)) {
1994 		vm_map_clip_end(map, entry, end, &count);
1995 
1996 		entry->inheritance = new_inheritance;
1997 
1998 		vm_map_simplify_entry(map, entry, &count);
1999 
2000 		entry = entry->next;
2001 	}
2002 	vm_map_unlock(map);
2003 	vm_map_entry_release(count);
2004 	return (KERN_SUCCESS);
2005 }
2006 
2007 /*
2008  * Implement the semantics of mlock
2009  */
2010 int
2011 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2012 	      boolean_t new_pageable)
2013 {
2014 	vm_map_entry_t entry;
2015 	vm_map_entry_t start_entry;
2016 	vm_offset_t end;
2017 	int rv = KERN_SUCCESS;
2018 	int count;
2019 
2020 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2021 	vm_map_lock(map);
2022 	VM_MAP_RANGE_CHECK(map, start, real_end);
2023 	end = real_end;
2024 
2025 	start_entry = vm_map_clip_range(map, start, end, &count,
2026 					MAP_CLIP_NO_HOLES);
2027 	if (start_entry == NULL) {
2028 		vm_map_unlock(map);
2029 		vm_map_entry_release(count);
2030 		return (KERN_INVALID_ADDRESS);
2031 	}
2032 
2033 	if (new_pageable == 0) {
2034 		entry = start_entry;
2035 		while ((entry != &map->header) && (entry->start < end)) {
2036 			vm_offset_t save_start;
2037 			vm_offset_t save_end;
2038 
2039 			/*
2040 			 * Already user wired or hard wired (trivial cases)
2041 			 */
2042 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2043 				entry = entry->next;
2044 				continue;
2045 			}
2046 			if (entry->wired_count != 0) {
2047 				entry->wired_count++;
2048 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2049 				entry = entry->next;
2050 				continue;
2051 			}
2052 
2053 			/*
2054 			 * A new wiring requires instantiation of appropriate
2055 			 * management structures and the faulting in of the
2056 			 * page.
2057 			 */
2058 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2059 				int copyflag = entry->eflags &
2060 					       MAP_ENTRY_NEEDS_COPY;
2061 				if (copyflag && ((entry->protection &
2062 						  VM_PROT_WRITE) != 0)) {
2063 					vm_map_entry_shadow(entry);
2064 				} else if (entry->object.vm_object == NULL &&
2065 					   !map->system_map) {
2066 					vm_map_entry_allocate_object(entry);
2067 				}
2068 			}
2069 			entry->wired_count++;
2070 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2071 
2072 			/*
2073 			 * Now fault in the area.  Note that vm_fault_wire()
2074 			 * may release the map lock temporarily, it will be
2075 			 * relocked on return.  The in-transition
2076 			 * flag protects the entries.
2077 			 */
2078 			save_start = entry->start;
2079 			save_end = entry->end;
2080 			rv = vm_fault_wire(map, entry, TRUE);
2081 			if (rv) {
2082 				CLIP_CHECK_BACK(entry, save_start);
2083 				for (;;) {
2084 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2085 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2086 					entry->wired_count = 0;
2087 					if (entry->end == save_end)
2088 						break;
2089 					entry = entry->next;
2090 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2091 				}
2092 				end = save_start;	/* unwire the rest */
2093 				break;
2094 			}
2095 			/*
2096 			 * note that even though the entry might have been
2097 			 * clipped, the USER_WIRED flag we set prevents
2098 			 * duplication so we do not have to do a
2099 			 * clip check.
2100 			 */
2101 			entry = entry->next;
2102 		}
2103 
2104 		/*
2105 		 * If we failed fall through to the unwiring section to
2106 		 * unwire what we had wired so far.  'end' has already
2107 		 * been adjusted.
2108 		 */
2109 		if (rv)
2110 			new_pageable = 1;
2111 
2112 		/*
2113 		 * start_entry might have been clipped if we unlocked the
2114 		 * map and blocked.  No matter how clipped it has gotten
2115 		 * there should be a fragment that is on our start boundary.
2116 		 */
2117 		CLIP_CHECK_BACK(start_entry, start);
2118 	}
2119 
2120 	/*
2121 	 * Deal with the unwiring case.
2122 	 */
2123 	if (new_pageable) {
2124 		/*
2125 		 * This is the unwiring case.  We must first ensure that the
2126 		 * range to be unwired is really wired down.  We know there
2127 		 * are no holes.
2128 		 */
2129 		entry = start_entry;
2130 		while ((entry != &map->header) && (entry->start < end)) {
2131 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2132 				rv = KERN_INVALID_ARGUMENT;
2133 				goto done;
2134 			}
2135 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2136 			entry = entry->next;
2137 		}
2138 
2139 		/*
2140 		 * Now decrement the wiring count for each region. If a region
2141 		 * becomes completely unwired, unwire its physical pages and
2142 		 * mappings.
2143 		 */
2144 		/*
2145 		 * The map entries are processed in a loop, checking to
2146 		 * make sure the entry is wired and asserting it has a wired
2147 		 * count. However, another loop was inserted more-or-less in
2148 		 * the middle of the unwiring path. This loop picks up the
2149 		 * "entry" loop variable from the first loop without first
2150 		 * setting it to start_entry. Naturally, the secound loop
2151 		 * is never entered and the pages backing the entries are
2152 		 * never unwired. This can lead to a leak of wired pages.
2153 		 */
2154 		entry = start_entry;
2155 		while ((entry != &map->header) && (entry->start < end)) {
2156 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2157 				("expected USER_WIRED on entry %p", entry));
2158 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2159 			entry->wired_count--;
2160 			if (entry->wired_count == 0)
2161 				vm_fault_unwire(map, entry);
2162 			entry = entry->next;
2163 		}
2164 	}
2165 done:
2166 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2167 		MAP_CLIP_NO_HOLES);
2168 	map->timestamp++;
2169 	vm_map_unlock(map);
2170 	vm_map_entry_release(count);
2171 	return (rv);
2172 }
2173 
2174 /*
2175  * Sets the pageability of the specified address range in the target map.
2176  * Regions specified as not pageable require locked-down physical
2177  * memory and physical page maps.
2178  *
2179  * The map must not be locked, but a reference must remain to the map
2180  * throughout the call.
2181  *
2182  * This function may be called via the zalloc path and must properly
2183  * reserve map entries for kernel_map.
2184  *
2185  * No requirements.
2186  */
2187 int
2188 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2189 {
2190 	vm_map_entry_t entry;
2191 	vm_map_entry_t start_entry;
2192 	vm_offset_t end;
2193 	int rv = KERN_SUCCESS;
2194 	int count;
2195 
2196 	if (kmflags & KM_KRESERVE)
2197 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2198 	else
2199 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2200 	vm_map_lock(map);
2201 	VM_MAP_RANGE_CHECK(map, start, real_end);
2202 	end = real_end;
2203 
2204 	start_entry = vm_map_clip_range(map, start, end, &count,
2205 					MAP_CLIP_NO_HOLES);
2206 	if (start_entry == NULL) {
2207 		vm_map_unlock(map);
2208 		rv = KERN_INVALID_ADDRESS;
2209 		goto failure;
2210 	}
2211 	if ((kmflags & KM_PAGEABLE) == 0) {
2212 		/*
2213 		 * Wiring.
2214 		 *
2215 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2216 		 * objects that need to be created. Then we clip each map
2217 		 * entry to the region to be wired and increment its wiring
2218 		 * count.  We create objects before clipping the map entries
2219 		 * to avoid object proliferation.
2220 		 *
2221 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2222 		 * fault in the pages for any newly wired area (wired_count is
2223 		 * 1).
2224 		 *
2225 		 * Downgrading to a read lock for vm_fault_wire avoids a
2226 		 * possible deadlock with another process that may have faulted
2227 		 * on one of the pages to be wired (it would mark the page busy,
2228 		 * blocking us, then in turn block on the map lock that we
2229 		 * hold).  Because of problems in the recursive lock package,
2230 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2231 		 * any actions that require the write lock must be done
2232 		 * beforehand.  Because we keep the read lock on the map, the
2233 		 * copy-on-write status of the entries we modify here cannot
2234 		 * change.
2235 		 */
2236 		entry = start_entry;
2237 		while ((entry != &map->header) && (entry->start < end)) {
2238 			/*
2239 			 * Trivial case if the entry is already wired
2240 			 */
2241 			if (entry->wired_count) {
2242 				entry->wired_count++;
2243 				entry = entry->next;
2244 				continue;
2245 			}
2246 
2247 			/*
2248 			 * The entry is being newly wired, we have to setup
2249 			 * appropriate management structures.  A shadow
2250 			 * object is required for a copy-on-write region,
2251 			 * or a normal object for a zero-fill region.  We
2252 			 * do not have to do this for entries that point to sub
2253 			 * maps because we won't hold the lock on the sub map.
2254 			 */
2255 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2256 				int copyflag = entry->eflags &
2257 					       MAP_ENTRY_NEEDS_COPY;
2258 				if (copyflag && ((entry->protection &
2259 						  VM_PROT_WRITE) != 0)) {
2260 					vm_map_entry_shadow(entry);
2261 				} else if (entry->object.vm_object == NULL &&
2262 					   !map->system_map) {
2263 					vm_map_entry_allocate_object(entry);
2264 				}
2265 			}
2266 
2267 			entry->wired_count++;
2268 			entry = entry->next;
2269 		}
2270 
2271 		/*
2272 		 * Pass 2.
2273 		 */
2274 
2275 		/*
2276 		 * HACK HACK HACK HACK
2277 		 *
2278 		 * vm_fault_wire() temporarily unlocks the map to avoid
2279 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2280 		 * call should protect us from changes while the map is
2281 		 * unlocked.  T
2282 		 *
2283 		 * NOTE: Previously this comment stated that clipping might
2284 		 *	 still occur while the entry is unlocked, but from
2285 		 *	 what I can tell it actually cannot.
2286 		 *
2287 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2288 		 *	 are still needed but we keep them in anyway.
2289 		 *
2290 		 * HACK HACK HACK HACK
2291 		 */
2292 
2293 		entry = start_entry;
2294 		while (entry != &map->header && entry->start < end) {
2295 			/*
2296 			 * If vm_fault_wire fails for any page we need to undo
2297 			 * what has been done.  We decrement the wiring count
2298 			 * for those pages which have not yet been wired (now)
2299 			 * and unwire those that have (later).
2300 			 */
2301 			vm_offset_t save_start = entry->start;
2302 			vm_offset_t save_end = entry->end;
2303 
2304 			if (entry->wired_count == 1)
2305 				rv = vm_fault_wire(map, entry, FALSE);
2306 			if (rv) {
2307 				CLIP_CHECK_BACK(entry, save_start);
2308 				for (;;) {
2309 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2310 					entry->wired_count = 0;
2311 					if (entry->end == save_end)
2312 						break;
2313 					entry = entry->next;
2314 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2315 				}
2316 				end = save_start;
2317 				break;
2318 			}
2319 			CLIP_CHECK_FWD(entry, save_end);
2320 			entry = entry->next;
2321 		}
2322 
2323 		/*
2324 		 * If a failure occured undo everything by falling through
2325 		 * to the unwiring code.  'end' has already been adjusted
2326 		 * appropriately.
2327 		 */
2328 		if (rv)
2329 			kmflags |= KM_PAGEABLE;
2330 
2331 		/*
2332 		 * start_entry is still IN_TRANSITION but may have been
2333 		 * clipped since vm_fault_wire() unlocks and relocks the
2334 		 * map.  No matter how clipped it has gotten there should
2335 		 * be a fragment that is on our start boundary.
2336 		 */
2337 		CLIP_CHECK_BACK(start_entry, start);
2338 	}
2339 
2340 	if (kmflags & KM_PAGEABLE) {
2341 		/*
2342 		 * This is the unwiring case.  We must first ensure that the
2343 		 * range to be unwired is really wired down.  We know there
2344 		 * are no holes.
2345 		 */
2346 		entry = start_entry;
2347 		while ((entry != &map->header) && (entry->start < end)) {
2348 			if (entry->wired_count == 0) {
2349 				rv = KERN_INVALID_ARGUMENT;
2350 				goto done;
2351 			}
2352 			entry = entry->next;
2353 		}
2354 
2355 		/*
2356 		 * Now decrement the wiring count for each region. If a region
2357 		 * becomes completely unwired, unwire its physical pages and
2358 		 * mappings.
2359 		 */
2360 		entry = start_entry;
2361 		while ((entry != &map->header) && (entry->start < end)) {
2362 			entry->wired_count--;
2363 			if (entry->wired_count == 0)
2364 				vm_fault_unwire(map, entry);
2365 			entry = entry->next;
2366 		}
2367 	}
2368 done:
2369 	vm_map_unclip_range(map, start_entry, start, real_end,
2370 			    &count, MAP_CLIP_NO_HOLES);
2371 	map->timestamp++;
2372 	vm_map_unlock(map);
2373 failure:
2374 	if (kmflags & KM_KRESERVE)
2375 		vm_map_entry_krelease(count);
2376 	else
2377 		vm_map_entry_release(count);
2378 	return (rv);
2379 }
2380 
2381 /*
2382  * Mark a newly allocated address range as wired but do not fault in
2383  * the pages.  The caller is expected to load the pages into the object.
2384  *
2385  * The map must be locked on entry and will remain locked on return.
2386  * No other requirements.
2387  */
2388 void
2389 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2390 		       int *countp)
2391 {
2392 	vm_map_entry_t scan;
2393 	vm_map_entry_t entry;
2394 
2395 	entry = vm_map_clip_range(map, addr, addr + size,
2396 				  countp, MAP_CLIP_NO_HOLES);
2397 	for (scan = entry;
2398 	     scan != &map->header && scan->start < addr + size;
2399 	     scan = scan->next) {
2400 	    KKASSERT(entry->wired_count == 0);
2401 	    entry->wired_count = 1;
2402 	}
2403 	vm_map_unclip_range(map, entry, addr, addr + size,
2404 			    countp, MAP_CLIP_NO_HOLES);
2405 }
2406 
2407 /*
2408  * Push any dirty cached pages in the address range to their pager.
2409  * If syncio is TRUE, dirty pages are written synchronously.
2410  * If invalidate is TRUE, any cached pages are freed as well.
2411  *
2412  * This routine is called by sys_msync()
2413  *
2414  * Returns an error if any part of the specified range is not mapped.
2415  *
2416  * No requirements.
2417  */
2418 int
2419 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2420 	     boolean_t syncio, boolean_t invalidate)
2421 {
2422 	vm_map_entry_t current;
2423 	vm_map_entry_t entry;
2424 	vm_size_t size;
2425 	vm_object_t object;
2426 	vm_ooffset_t offset;
2427 
2428 	vm_map_lock_read(map);
2429 	VM_MAP_RANGE_CHECK(map, start, end);
2430 	if (!vm_map_lookup_entry(map, start, &entry)) {
2431 		vm_map_unlock_read(map);
2432 		return (KERN_INVALID_ADDRESS);
2433 	}
2434 	/*
2435 	 * Make a first pass to check for holes.
2436 	 */
2437 	for (current = entry; current->start < end; current = current->next) {
2438 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2439 			vm_map_unlock_read(map);
2440 			return (KERN_INVALID_ARGUMENT);
2441 		}
2442 		if (end > current->end &&
2443 		    (current->next == &map->header ||
2444 			current->end != current->next->start)) {
2445 			vm_map_unlock_read(map);
2446 			return (KERN_INVALID_ADDRESS);
2447 		}
2448 	}
2449 
2450 	if (invalidate)
2451 		pmap_remove(vm_map_pmap(map), start, end);
2452 
2453 	/*
2454 	 * Make a second pass, cleaning/uncaching pages from the indicated
2455 	 * objects as we go.
2456 	 *
2457 	 * Hold vm_token to avoid blocking in vm_object_reference()
2458 	 */
2459 	lwkt_gettoken(&vm_token);
2460 	lwkt_gettoken(&vmobj_token);
2461 
2462 	for (current = entry; current->start < end; current = current->next) {
2463 		offset = current->offset + (start - current->start);
2464 		size = (end <= current->end ? end : current->end) - start;
2465 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2466 			vm_map_t smap;
2467 			vm_map_entry_t tentry;
2468 			vm_size_t tsize;
2469 
2470 			smap = current->object.sub_map;
2471 			vm_map_lock_read(smap);
2472 			vm_map_lookup_entry(smap, offset, &tentry);
2473 			tsize = tentry->end - offset;
2474 			if (tsize < size)
2475 				size = tsize;
2476 			object = tentry->object.vm_object;
2477 			offset = tentry->offset + (offset - tentry->start);
2478 			vm_map_unlock_read(smap);
2479 		} else {
2480 			object = current->object.vm_object;
2481 		}
2482 		/*
2483 		 * Note that there is absolutely no sense in writing out
2484 		 * anonymous objects, so we track down the vnode object
2485 		 * to write out.
2486 		 * We invalidate (remove) all pages from the address space
2487 		 * anyway, for semantic correctness.
2488 		 *
2489 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2490 		 * may start out with a NULL object.
2491 		 */
2492 		while (object && object->backing_object) {
2493 			offset += object->backing_object_offset;
2494 			object = object->backing_object;
2495 			if (object->size < OFF_TO_IDX( offset + size))
2496 				size = IDX_TO_OFF(object->size) - offset;
2497 		}
2498 		if (object && (object->type == OBJT_VNODE) &&
2499 		    (current->protection & VM_PROT_WRITE) &&
2500 		    (object->flags & OBJ_NOMSYNC) == 0) {
2501 			/*
2502 			 * Flush pages if writing is allowed, invalidate them
2503 			 * if invalidation requested.  Pages undergoing I/O
2504 			 * will be ignored by vm_object_page_remove().
2505 			 *
2506 			 * We cannot lock the vnode and then wait for paging
2507 			 * to complete without deadlocking against vm_fault.
2508 			 * Instead we simply call vm_object_page_remove() and
2509 			 * allow it to block internally on a page-by-page
2510 			 * basis when it encounters pages undergoing async
2511 			 * I/O.
2512 			 */
2513 			int flags;
2514 
2515 			vm_object_reference_locked(object);
2516 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2517 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2518 			flags |= invalidate ? OBJPC_INVAL : 0;
2519 
2520 			/*
2521 			 * When operating on a virtual page table just
2522 			 * flush the whole object.  XXX we probably ought
2523 			 * to
2524 			 */
2525 			switch(current->maptype) {
2526 			case VM_MAPTYPE_NORMAL:
2527 				vm_object_page_clean(object,
2528 				    OFF_TO_IDX(offset),
2529 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2530 				    flags);
2531 				break;
2532 			case VM_MAPTYPE_VPAGETABLE:
2533 				vm_object_page_clean(object, 0, 0, flags);
2534 				break;
2535 			}
2536 			vn_unlock(((struct vnode *)object->handle));
2537 			vm_object_deallocate_locked(object);
2538 		}
2539 		if (object && invalidate &&
2540 		   ((object->type == OBJT_VNODE) ||
2541 		    (object->type == OBJT_DEVICE))) {
2542 			int clean_only =
2543 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2544 			vm_object_reference_locked(object);
2545 			switch(current->maptype) {
2546 			case VM_MAPTYPE_NORMAL:
2547 				vm_object_page_remove(object,
2548 				    OFF_TO_IDX(offset),
2549 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2550 				    clean_only);
2551 				break;
2552 			case VM_MAPTYPE_VPAGETABLE:
2553 				vm_object_page_remove(object, 0, 0, clean_only);
2554 				break;
2555 			}
2556 			vm_object_deallocate_locked(object);
2557 		}
2558 		start += size;
2559 	}
2560 
2561 	lwkt_reltoken(&vmobj_token);
2562 	lwkt_reltoken(&vm_token);
2563 	vm_map_unlock_read(map);
2564 
2565 	return (KERN_SUCCESS);
2566 }
2567 
2568 /*
2569  * Make the region specified by this entry pageable.
2570  *
2571  * The vm_map must be exclusively locked.
2572  */
2573 static void
2574 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2575 {
2576 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2577 	entry->wired_count = 0;
2578 	vm_fault_unwire(map, entry);
2579 }
2580 
2581 /*
2582  * Deallocate the given entry from the target map.
2583  *
2584  * The vm_map must be exclusively locked.
2585  */
2586 static void
2587 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2588 {
2589 	vm_map_entry_unlink(map, entry);
2590 	map->size -= entry->end - entry->start;
2591 
2592 	switch(entry->maptype) {
2593 	case VM_MAPTYPE_NORMAL:
2594 	case VM_MAPTYPE_VPAGETABLE:
2595 		vm_object_deallocate(entry->object.vm_object);
2596 		break;
2597 	default:
2598 		break;
2599 	}
2600 
2601 	vm_map_entry_dispose(map, entry, countp);
2602 }
2603 
2604 /*
2605  * Deallocates the given address range from the target map.
2606  *
2607  * The vm_map must be exclusively locked.
2608  */
2609 int
2610 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2611 {
2612 	vm_object_t object;
2613 	vm_map_entry_t entry;
2614 	vm_map_entry_t first_entry;
2615 
2616 	ASSERT_VM_MAP_LOCKED(map);
2617 again:
2618 	/*
2619 	 * Find the start of the region, and clip it.  Set entry to point
2620 	 * at the first record containing the requested address or, if no
2621 	 * such record exists, the next record with a greater address.  The
2622 	 * loop will run from this point until a record beyond the termination
2623 	 * address is encountered.
2624 	 *
2625 	 * map->hint must be adjusted to not point to anything we delete,
2626 	 * so set it to the entry prior to the one being deleted.
2627 	 *
2628 	 * GGG see other GGG comment.
2629 	 */
2630 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2631 		entry = first_entry;
2632 		vm_map_clip_start(map, entry, start, countp);
2633 		map->hint = entry->prev;	/* possible problem XXX */
2634 	} else {
2635 		map->hint = first_entry;	/* possible problem XXX */
2636 		entry = first_entry->next;
2637 	}
2638 
2639 	/*
2640 	 * If a hole opens up prior to the current first_free then
2641 	 * adjust first_free.  As with map->hint, map->first_free
2642 	 * cannot be left set to anything we might delete.
2643 	 */
2644 	if (entry == &map->header) {
2645 		map->first_free = &map->header;
2646 	} else if (map->first_free->start >= start) {
2647 		map->first_free = entry->prev;
2648 	}
2649 
2650 	/*
2651 	 * Step through all entries in this region
2652 	 */
2653 	while ((entry != &map->header) && (entry->start < end)) {
2654 		vm_map_entry_t next;
2655 		vm_offset_t s, e;
2656 		vm_pindex_t offidxstart, offidxend, count;
2657 
2658 		/*
2659 		 * If we hit an in-transition entry we have to sleep and
2660 		 * retry.  It's easier (and not really slower) to just retry
2661 		 * since this case occurs so rarely and the hint is already
2662 		 * pointing at the right place.  We have to reset the
2663 		 * start offset so as not to accidently delete an entry
2664 		 * another process just created in vacated space.
2665 		 */
2666 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2667 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2668 			start = entry->start;
2669 			++mycpu->gd_cnt.v_intrans_coll;
2670 			++mycpu->gd_cnt.v_intrans_wait;
2671 			vm_map_transition_wait(map);
2672 			goto again;
2673 		}
2674 		vm_map_clip_end(map, entry, end, countp);
2675 
2676 		s = entry->start;
2677 		e = entry->end;
2678 		next = entry->next;
2679 
2680 		offidxstart = OFF_TO_IDX(entry->offset);
2681 		count = OFF_TO_IDX(e - s);
2682 		object = entry->object.vm_object;
2683 
2684 		/*
2685 		 * Unwire before removing addresses from the pmap; otherwise,
2686 		 * unwiring will put the entries back in the pmap.
2687 		 */
2688 		if (entry->wired_count != 0)
2689 			vm_map_entry_unwire(map, entry);
2690 
2691 		offidxend = offidxstart + count;
2692 
2693 		/*
2694 		 * Hold vm_token when manipulating vm_objects,
2695 		 *
2696 		 * Hold vmobj_token when potentially adding or removing
2697 		 * objects (collapse requires both).
2698 		 */
2699 		lwkt_gettoken(&vm_token);
2700 		lwkt_gettoken(&vmobj_token);
2701 
2702 		if (object == &kernel_object) {
2703 			vm_object_page_remove(object, offidxstart,
2704 					      offidxend, FALSE);
2705 		} else {
2706 			pmap_remove(map->pmap, s, e);
2707 
2708 			if (object != NULL &&
2709 			    object->ref_count != 1 &&
2710 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2711 			     OBJ_ONEMAPPING &&
2712 			    (object->type == OBJT_DEFAULT ||
2713 			     object->type == OBJT_SWAP)) {
2714 				vm_object_collapse(object);
2715 				vm_object_page_remove(object, offidxstart,
2716 						      offidxend, FALSE);
2717 				if (object->type == OBJT_SWAP) {
2718 					swap_pager_freespace(object,
2719 							     offidxstart,
2720 							     count);
2721 				}
2722 				if (offidxend >= object->size &&
2723 				    offidxstart < object->size) {
2724 					object->size = offidxstart;
2725 				}
2726 			}
2727 		}
2728 		lwkt_reltoken(&vmobj_token);
2729 		lwkt_reltoken(&vm_token);
2730 
2731 		/*
2732 		 * Delete the entry (which may delete the object) only after
2733 		 * removing all pmap entries pointing to its pages.
2734 		 * (Otherwise, its page frames may be reallocated, and any
2735 		 * modify bits will be set in the wrong object!)
2736 		 */
2737 		vm_map_entry_delete(map, entry, countp);
2738 		entry = next;
2739 	}
2740 	return (KERN_SUCCESS);
2741 }
2742 
2743 /*
2744  * Remove the given address range from the target map.
2745  * This is the exported form of vm_map_delete.
2746  *
2747  * No requirements.
2748  */
2749 int
2750 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2751 {
2752 	int result;
2753 	int count;
2754 
2755 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2756 	vm_map_lock(map);
2757 	VM_MAP_RANGE_CHECK(map, start, end);
2758 	result = vm_map_delete(map, start, end, &count);
2759 	vm_map_unlock(map);
2760 	vm_map_entry_release(count);
2761 
2762 	return (result);
2763 }
2764 
2765 /*
2766  * Assert that the target map allows the specified privilege on the
2767  * entire address region given.  The entire region must be allocated.
2768  *
2769  * The caller must specify whether the vm_map is already locked or not.
2770  */
2771 boolean_t
2772 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2773 			vm_prot_t protection, boolean_t have_lock)
2774 {
2775 	vm_map_entry_t entry;
2776 	vm_map_entry_t tmp_entry;
2777 	boolean_t result;
2778 
2779 	if (have_lock == FALSE)
2780 		vm_map_lock_read(map);
2781 
2782 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2783 		if (have_lock == FALSE)
2784 			vm_map_unlock_read(map);
2785 		return (FALSE);
2786 	}
2787 	entry = tmp_entry;
2788 
2789 	result = TRUE;
2790 	while (start < end) {
2791 		if (entry == &map->header) {
2792 			result = FALSE;
2793 			break;
2794 		}
2795 		/*
2796 		 * No holes allowed!
2797 		 */
2798 
2799 		if (start < entry->start) {
2800 			result = FALSE;
2801 			break;
2802 		}
2803 		/*
2804 		 * Check protection associated with entry.
2805 		 */
2806 
2807 		if ((entry->protection & protection) != protection) {
2808 			result = FALSE;
2809 			break;
2810 		}
2811 		/* go to next entry */
2812 
2813 		start = entry->end;
2814 		entry = entry->next;
2815 	}
2816 	if (have_lock == FALSE)
2817 		vm_map_unlock_read(map);
2818 	return (result);
2819 }
2820 
2821 /*
2822  * Split the pages in a map entry into a new object.  This affords
2823  * easier removal of unused pages, and keeps object inheritance from
2824  * being a negative impact on memory usage.
2825  *
2826  * The vm_map must be exclusively locked.
2827  */
2828 static void
2829 vm_map_split(vm_map_entry_t entry)
2830 {
2831 	vm_page_t m;
2832 	vm_object_t orig_object, new_object, source;
2833 	vm_offset_t s, e;
2834 	vm_pindex_t offidxstart, offidxend, idx;
2835 	vm_size_t size;
2836 	vm_ooffset_t offset;
2837 
2838 	orig_object = entry->object.vm_object;
2839 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2840 		return;
2841 	if (orig_object->ref_count <= 1)
2842 		return;
2843 
2844 	offset = entry->offset;
2845 	s = entry->start;
2846 	e = entry->end;
2847 
2848 	offidxstart = OFF_TO_IDX(offset);
2849 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2850 	size = offidxend - offidxstart;
2851 
2852 	switch(orig_object->type) {
2853 	case OBJT_DEFAULT:
2854 		new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2855 						 VM_PROT_ALL, 0);
2856 		break;
2857 	case OBJT_SWAP:
2858 		new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2859 					      VM_PROT_ALL, 0);
2860 		break;
2861 	default:
2862 		/* not reached */
2863 		new_object = NULL;
2864 		KKASSERT(0);
2865 	}
2866 	if (new_object == NULL)
2867 		return;
2868 
2869 	/*
2870 	 * vm_token required when manipulating vm_objects.
2871 	 */
2872 	lwkt_gettoken(&vm_token);
2873 	lwkt_gettoken(&vmobj_token);
2874 
2875 	source = orig_object->backing_object;
2876 	if (source != NULL) {
2877 		/* Referenced by new_object */
2878 		vm_object_reference_locked(source);
2879 		LIST_INSERT_HEAD(&source->shadow_head,
2880 				 new_object, shadow_list);
2881 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2882 		new_object->backing_object_offset =
2883 			orig_object->backing_object_offset +
2884 			IDX_TO_OFF(offidxstart);
2885 		new_object->backing_object = source;
2886 		source->shadow_count++;
2887 		source->generation++;
2888 	}
2889 
2890 	for (idx = 0; idx < size; idx++) {
2891 		vm_page_t m;
2892 
2893 	retry:
2894 		m = vm_page_lookup(orig_object, offidxstart + idx);
2895 		if (m == NULL)
2896 			continue;
2897 
2898 		/*
2899 		 * We must wait for pending I/O to complete before we can
2900 		 * rename the page.
2901 		 *
2902 		 * We do not have to VM_PROT_NONE the page as mappings should
2903 		 * not be changed by this operation.
2904 		 */
2905 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2906 			goto retry;
2907 		vm_page_busy(m);
2908 		vm_page_rename(m, new_object, idx);
2909 		/* page automatically made dirty by rename and cache handled */
2910 		vm_page_busy(m);
2911 	}
2912 
2913 	if (orig_object->type == OBJT_SWAP) {
2914 		vm_object_pip_add(orig_object, 1);
2915 		/*
2916 		 * copy orig_object pages into new_object
2917 		 * and destroy unneeded pages in
2918 		 * shadow object.
2919 		 */
2920 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2921 		vm_object_pip_wakeup(orig_object);
2922 	}
2923 
2924 	/*
2925 	 * Wakeup the pages we played with.  No spl protection is needed
2926 	 * for a simple wakeup.
2927 	 */
2928 	for (idx = 0; idx < size; idx++) {
2929 		m = vm_page_lookup(new_object, idx);
2930 		if (m)
2931 			vm_page_wakeup(m);
2932 	}
2933 
2934 	entry->object.vm_object = new_object;
2935 	entry->offset = 0LL;
2936 	vm_object_deallocate_locked(orig_object);
2937 	lwkt_reltoken(&vmobj_token);
2938 	lwkt_reltoken(&vm_token);
2939 }
2940 
2941 /*
2942  * Copies the contents of the source entry to the destination
2943  * entry.  The entries *must* be aligned properly.
2944  *
2945  * The vm_map must be exclusively locked.
2946  * vm_token must be held
2947  */
2948 static void
2949 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2950 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2951 {
2952 	vm_object_t src_object;
2953 
2954 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2955 		return;
2956 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2957 		return;
2958 
2959 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
2960 	lwkt_gettoken(&vmobj_token);		/* required for collapse */
2961 
2962 	if (src_entry->wired_count == 0) {
2963 		/*
2964 		 * If the source entry is marked needs_copy, it is already
2965 		 * write-protected.
2966 		 */
2967 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2968 			pmap_protect(src_map->pmap,
2969 			    src_entry->start,
2970 			    src_entry->end,
2971 			    src_entry->protection & ~VM_PROT_WRITE);
2972 		}
2973 
2974 		/*
2975 		 * Make a copy of the object.
2976 		 */
2977 		if ((src_object = src_entry->object.vm_object) != NULL) {
2978 			if ((src_object->handle == NULL) &&
2979 				(src_object->type == OBJT_DEFAULT ||
2980 				 src_object->type == OBJT_SWAP)) {
2981 				vm_object_collapse(src_object);
2982 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2983 					vm_map_split(src_entry);
2984 					src_object = src_entry->object.vm_object;
2985 				}
2986 			}
2987 
2988 			vm_object_reference_locked(src_object);
2989 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2990 			dst_entry->object.vm_object = src_object;
2991 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2992 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2993 			dst_entry->offset = src_entry->offset;
2994 		} else {
2995 			dst_entry->object.vm_object = NULL;
2996 			dst_entry->offset = 0;
2997 		}
2998 
2999 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3000 		    dst_entry->end - dst_entry->start, src_entry->start);
3001 	} else {
3002 		/*
3003 		 * Of course, wired down pages can't be set copy-on-write.
3004 		 * Cause wired pages to be copied into the new map by
3005 		 * simulating faults (the new pages are pageable)
3006 		 */
3007 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3008 	}
3009 	lwkt_reltoken(&vmobj_token);
3010 }
3011 
3012 /*
3013  * vmspace_fork:
3014  * Create a new process vmspace structure and vm_map
3015  * based on those of an existing process.  The new map
3016  * is based on the old map, according to the inheritance
3017  * values on the regions in that map.
3018  *
3019  * The source map must not be locked.
3020  * No requirements.
3021  */
3022 struct vmspace *
3023 vmspace_fork(struct vmspace *vm1)
3024 {
3025 	struct vmspace *vm2;
3026 	vm_map_t old_map = &vm1->vm_map;
3027 	vm_map_t new_map;
3028 	vm_map_entry_t old_entry;
3029 	vm_map_entry_t new_entry;
3030 	vm_object_t object;
3031 	int count;
3032 
3033 	lwkt_gettoken(&vm_token);
3034 	lwkt_gettoken(&vmspace_token);
3035 	lwkt_gettoken(&vmobj_token);
3036 	vm_map_lock(old_map);
3037 	old_map->infork = 1;
3038 
3039 	/*
3040 	 * XXX Note: upcalls are not copied.
3041 	 */
3042 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3043 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3044 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3045 	new_map = &vm2->vm_map;	/* XXX */
3046 	new_map->timestamp = 1;
3047 
3048 	vm_map_lock(new_map);
3049 
3050 	count = 0;
3051 	old_entry = old_map->header.next;
3052 	while (old_entry != &old_map->header) {
3053 		++count;
3054 		old_entry = old_entry->next;
3055 	}
3056 
3057 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3058 
3059 	old_entry = old_map->header.next;
3060 	while (old_entry != &old_map->header) {
3061 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3062 			panic("vm_map_fork: encountered a submap");
3063 
3064 		switch (old_entry->inheritance) {
3065 		case VM_INHERIT_NONE:
3066 			break;
3067 		case VM_INHERIT_SHARE:
3068 			/*
3069 			 * Clone the entry, creating the shared object if
3070 			 * necessary.
3071 			 */
3072 			object = old_entry->object.vm_object;
3073 			if (object == NULL) {
3074 				vm_map_entry_allocate_object(old_entry);
3075 				object = old_entry->object.vm_object;
3076 			}
3077 
3078 			/*
3079 			 * Add the reference before calling vm_map_entry_shadow
3080 			 * to insure that a shadow object is created.
3081 			 */
3082 			vm_object_reference_locked(object);
3083 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3084 				vm_map_entry_shadow(old_entry);
3085 				/* Transfer the second reference too. */
3086 				vm_object_reference_locked(
3087 				    old_entry->object.vm_object);
3088 				vm_object_deallocate_locked(object);
3089 				object = old_entry->object.vm_object;
3090 			}
3091 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3092 
3093 			/*
3094 			 * Clone the entry, referencing the shared object.
3095 			 */
3096 			new_entry = vm_map_entry_create(new_map, &count);
3097 			*new_entry = *old_entry;
3098 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3099 			new_entry->wired_count = 0;
3100 
3101 			/*
3102 			 * Insert the entry into the new map -- we know we're
3103 			 * inserting at the end of the new map.
3104 			 */
3105 
3106 			vm_map_entry_link(new_map, new_map->header.prev,
3107 					  new_entry);
3108 
3109 			/*
3110 			 * Update the physical map
3111 			 */
3112 			pmap_copy(new_map->pmap, old_map->pmap,
3113 			    new_entry->start,
3114 			    (old_entry->end - old_entry->start),
3115 			    old_entry->start);
3116 			break;
3117 		case VM_INHERIT_COPY:
3118 			/*
3119 			 * Clone the entry and link into the map.
3120 			 */
3121 			new_entry = vm_map_entry_create(new_map, &count);
3122 			*new_entry = *old_entry;
3123 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3124 			new_entry->wired_count = 0;
3125 			new_entry->object.vm_object = NULL;
3126 			vm_map_entry_link(new_map, new_map->header.prev,
3127 					  new_entry);
3128 			vm_map_copy_entry(old_map, new_map, old_entry,
3129 					  new_entry);
3130 			break;
3131 		}
3132 		old_entry = old_entry->next;
3133 	}
3134 
3135 	new_map->size = old_map->size;
3136 	old_map->infork = 0;
3137 	vm_map_unlock(old_map);
3138 	vm_map_unlock(new_map);
3139 	vm_map_entry_release(count);
3140 
3141 	lwkt_reltoken(&vmobj_token);
3142 	lwkt_reltoken(&vmspace_token);
3143 	lwkt_reltoken(&vm_token);
3144 
3145 	return (vm2);
3146 }
3147 
3148 /*
3149  * Create an auto-grow stack entry
3150  *
3151  * No requirements.
3152  */
3153 int
3154 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3155 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3156 {
3157 	vm_map_entry_t	prev_entry;
3158 	vm_map_entry_t	new_stack_entry;
3159 	vm_size_t	init_ssize;
3160 	int		rv;
3161 	int		count;
3162 	vm_offset_t	tmpaddr;
3163 
3164 	cow |= MAP_IS_STACK;
3165 
3166 	if (max_ssize < sgrowsiz)
3167 		init_ssize = max_ssize;
3168 	else
3169 		init_ssize = sgrowsiz;
3170 
3171 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3172 	vm_map_lock(map);
3173 
3174 	/*
3175 	 * Find space for the mapping
3176 	 */
3177 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3178 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3179 				     flags, &tmpaddr)) {
3180 			vm_map_unlock(map);
3181 			vm_map_entry_release(count);
3182 			return (KERN_NO_SPACE);
3183 		}
3184 		addrbos = tmpaddr;
3185 	}
3186 
3187 	/* If addr is already mapped, no go */
3188 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3189 		vm_map_unlock(map);
3190 		vm_map_entry_release(count);
3191 		return (KERN_NO_SPACE);
3192 	}
3193 
3194 #if 0
3195 	/* XXX already handled by kern_mmap() */
3196 	/* If we would blow our VMEM resource limit, no go */
3197 	if (map->size + init_ssize >
3198 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3199 		vm_map_unlock(map);
3200 		vm_map_entry_release(count);
3201 		return (KERN_NO_SPACE);
3202 	}
3203 #endif
3204 
3205 	/*
3206 	 * If we can't accomodate max_ssize in the current mapping,
3207 	 * no go.  However, we need to be aware that subsequent user
3208 	 * mappings might map into the space we have reserved for
3209 	 * stack, and currently this space is not protected.
3210 	 *
3211 	 * Hopefully we will at least detect this condition
3212 	 * when we try to grow the stack.
3213 	 */
3214 	if ((prev_entry->next != &map->header) &&
3215 	    (prev_entry->next->start < addrbos + max_ssize)) {
3216 		vm_map_unlock(map);
3217 		vm_map_entry_release(count);
3218 		return (KERN_NO_SPACE);
3219 	}
3220 
3221 	/*
3222 	 * We initially map a stack of only init_ssize.  We will
3223 	 * grow as needed later.  Since this is to be a grow
3224 	 * down stack, we map at the top of the range.
3225 	 *
3226 	 * Note: we would normally expect prot and max to be
3227 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3228 	 * eliminate these as input parameters, and just
3229 	 * pass these values here in the insert call.
3230 	 */
3231 	rv = vm_map_insert(map, &count,
3232 			   NULL, 0, addrbos + max_ssize - init_ssize,
3233 	                   addrbos + max_ssize,
3234 			   VM_MAPTYPE_NORMAL,
3235 			   prot, max,
3236 			   cow);
3237 
3238 	/* Now set the avail_ssize amount */
3239 	if (rv == KERN_SUCCESS) {
3240 		if (prev_entry != &map->header)
3241 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3242 		new_stack_entry = prev_entry->next;
3243 		if (new_stack_entry->end   != addrbos + max_ssize ||
3244 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3245 			panic ("Bad entry start/end for new stack entry");
3246 		else
3247 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3248 	}
3249 
3250 	vm_map_unlock(map);
3251 	vm_map_entry_release(count);
3252 	return (rv);
3253 }
3254 
3255 /*
3256  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3257  * desired address is already mapped, or if we successfully grow
3258  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3259  * stack range (this is strange, but preserves compatibility with
3260  * the grow function in vm_machdep.c).
3261  *
3262  * No requirements.
3263  */
3264 int
3265 vm_map_growstack (struct proc *p, vm_offset_t addr)
3266 {
3267 	vm_map_entry_t prev_entry;
3268 	vm_map_entry_t stack_entry;
3269 	vm_map_entry_t new_stack_entry;
3270 	struct vmspace *vm = p->p_vmspace;
3271 	vm_map_t map = &vm->vm_map;
3272 	vm_offset_t    end;
3273 	int grow_amount;
3274 	int rv = KERN_SUCCESS;
3275 	int is_procstack;
3276 	int use_read_lock = 1;
3277 	int count;
3278 
3279 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3280 Retry:
3281 	if (use_read_lock)
3282 		vm_map_lock_read(map);
3283 	else
3284 		vm_map_lock(map);
3285 
3286 	/* If addr is already in the entry range, no need to grow.*/
3287 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3288 		goto done;
3289 
3290 	if ((stack_entry = prev_entry->next) == &map->header)
3291 		goto done;
3292 	if (prev_entry == &map->header)
3293 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3294 	else
3295 		end = prev_entry->end;
3296 
3297 	/*
3298 	 * This next test mimics the old grow function in vm_machdep.c.
3299 	 * It really doesn't quite make sense, but we do it anyway
3300 	 * for compatibility.
3301 	 *
3302 	 * If not growable stack, return success.  This signals the
3303 	 * caller to proceed as he would normally with normal vm.
3304 	 */
3305 	if (stack_entry->aux.avail_ssize < 1 ||
3306 	    addr >= stack_entry->start ||
3307 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3308 		goto done;
3309 	}
3310 
3311 	/* Find the minimum grow amount */
3312 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3313 	if (grow_amount > stack_entry->aux.avail_ssize) {
3314 		rv = KERN_NO_SPACE;
3315 		goto done;
3316 	}
3317 
3318 	/*
3319 	 * If there is no longer enough space between the entries
3320 	 * nogo, and adjust the available space.  Note: this
3321 	 * should only happen if the user has mapped into the
3322 	 * stack area after the stack was created, and is
3323 	 * probably an error.
3324 	 *
3325 	 * This also effectively destroys any guard page the user
3326 	 * might have intended by limiting the stack size.
3327 	 */
3328 	if (grow_amount > stack_entry->start - end) {
3329 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3330 			use_read_lock = 0;
3331 			goto Retry;
3332 		}
3333 		use_read_lock = 0;
3334 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3335 		rv = KERN_NO_SPACE;
3336 		goto done;
3337 	}
3338 
3339 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3340 
3341 	/* If this is the main process stack, see if we're over the
3342 	 * stack limit.
3343 	 */
3344 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3345 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3346 		rv = KERN_NO_SPACE;
3347 		goto done;
3348 	}
3349 
3350 	/* Round up the grow amount modulo SGROWSIZ */
3351 	grow_amount = roundup (grow_amount, sgrowsiz);
3352 	if (grow_amount > stack_entry->aux.avail_ssize) {
3353 		grow_amount = stack_entry->aux.avail_ssize;
3354 	}
3355 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3356 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3357 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3358 		              ctob(vm->vm_ssize);
3359 	}
3360 
3361 	/* If we would blow our VMEM resource limit, no go */
3362 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3363 		rv = KERN_NO_SPACE;
3364 		goto done;
3365 	}
3366 
3367 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3368 		use_read_lock = 0;
3369 		goto Retry;
3370 	}
3371 	use_read_lock = 0;
3372 
3373 	/* Get the preliminary new entry start value */
3374 	addr = stack_entry->start - grow_amount;
3375 
3376 	/* If this puts us into the previous entry, cut back our growth
3377 	 * to the available space.  Also, see the note above.
3378 	 */
3379 	if (addr < end) {
3380 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3381 		addr = end;
3382 	}
3383 
3384 	rv = vm_map_insert(map, &count,
3385 			   NULL, 0, addr, stack_entry->start,
3386 			   VM_MAPTYPE_NORMAL,
3387 			   VM_PROT_ALL, VM_PROT_ALL,
3388 			   0);
3389 
3390 	/* Adjust the available stack space by the amount we grew. */
3391 	if (rv == KERN_SUCCESS) {
3392 		if (prev_entry != &map->header)
3393 			vm_map_clip_end(map, prev_entry, addr, &count);
3394 		new_stack_entry = prev_entry->next;
3395 		if (new_stack_entry->end   != stack_entry->start  ||
3396 		    new_stack_entry->start != addr)
3397 			panic ("Bad stack grow start/end in new stack entry");
3398 		else {
3399 			new_stack_entry->aux.avail_ssize =
3400 				stack_entry->aux.avail_ssize -
3401 				(new_stack_entry->end - new_stack_entry->start);
3402 			if (is_procstack)
3403 				vm->vm_ssize += btoc(new_stack_entry->end -
3404 						     new_stack_entry->start);
3405 		}
3406 	}
3407 
3408 done:
3409 	if (use_read_lock)
3410 		vm_map_unlock_read(map);
3411 	else
3412 		vm_map_unlock(map);
3413 	vm_map_entry_release(count);
3414 	return (rv);
3415 }
3416 
3417 /*
3418  * Unshare the specified VM space for exec.  If other processes are
3419  * mapped to it, then create a new one.  The new vmspace is null.
3420  *
3421  * No requirements.
3422  */
3423 void
3424 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3425 {
3426 	struct vmspace *oldvmspace = p->p_vmspace;
3427 	struct vmspace *newvmspace;
3428 	vm_map_t map = &p->p_vmspace->vm_map;
3429 
3430 	/*
3431 	 * If we are execing a resident vmspace we fork it, otherwise
3432 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3433 	 * are not copied to the new vmspace.
3434 	 */
3435 	lwkt_gettoken(&vmspace_token);
3436 	if (vmcopy)  {
3437 		newvmspace = vmspace_fork(vmcopy);
3438 	} else {
3439 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3440 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3441 		      (caddr_t)&oldvmspace->vm_endcopy -
3442 		       (caddr_t)&oldvmspace->vm_startcopy);
3443 	}
3444 
3445 	/*
3446 	 * Finish initializing the vmspace before assigning it
3447 	 * to the process.  The vmspace will become the current vmspace
3448 	 * if p == curproc.
3449 	 */
3450 	pmap_pinit2(vmspace_pmap(newvmspace));
3451 	pmap_replacevm(p, newvmspace, 0);
3452 	sysref_put(&oldvmspace->vm_sysref);
3453 	lwkt_reltoken(&vmspace_token);
3454 }
3455 
3456 /*
3457  * Unshare the specified VM space for forcing COW.  This
3458  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3459  *
3460  * The exitingcnt test is not strictly necessary but has been
3461  * included for code sanity (to make the code a bit more deterministic).
3462  */
3463 void
3464 vmspace_unshare(struct proc *p)
3465 {
3466 	struct vmspace *oldvmspace = p->p_vmspace;
3467 	struct vmspace *newvmspace;
3468 
3469 	lwkt_gettoken(&vmspace_token);
3470 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3471 		return;
3472 	newvmspace = vmspace_fork(oldvmspace);
3473 	pmap_pinit2(vmspace_pmap(newvmspace));
3474 	pmap_replacevm(p, newvmspace, 0);
3475 	sysref_put(&oldvmspace->vm_sysref);
3476 	lwkt_reltoken(&vmspace_token);
3477 }
3478 
3479 /*
3480  * Finds the VM object, offset, and protection for a given virtual address
3481  * in the specified map, assuming a page fault of the type specified.
3482  *
3483  * Leaves the map in question locked for read; return values are guaranteed
3484  * until a vm_map_lookup_done call is performed.  Note that the map argument
3485  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3486  *
3487  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3488  * that fast.
3489  *
3490  * If a lookup is requested with "write protection" specified, the map may
3491  * be changed to perform virtual copying operations, although the data
3492  * referenced will remain the same.
3493  *
3494  * No requirements.
3495  */
3496 int
3497 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3498 	      vm_offset_t vaddr,
3499 	      vm_prot_t fault_typea,
3500 	      vm_map_entry_t *out_entry,	/* OUT */
3501 	      vm_object_t *object,		/* OUT */
3502 	      vm_pindex_t *pindex,		/* OUT */
3503 	      vm_prot_t *out_prot,		/* OUT */
3504 	      boolean_t *wired)			/* OUT */
3505 {
3506 	vm_map_entry_t entry;
3507 	vm_map_t map = *var_map;
3508 	vm_prot_t prot;
3509 	vm_prot_t fault_type = fault_typea;
3510 	int use_read_lock = 1;
3511 	int rv = KERN_SUCCESS;
3512 
3513 RetryLookup:
3514 	if (use_read_lock)
3515 		vm_map_lock_read(map);
3516 	else
3517 		vm_map_lock(map);
3518 
3519 	/*
3520 	 * If the map has an interesting hint, try it before calling full
3521 	 * blown lookup routine.
3522 	 */
3523 	entry = map->hint;
3524 	*out_entry = entry;
3525 
3526 	if ((entry == &map->header) ||
3527 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3528 		vm_map_entry_t tmp_entry;
3529 
3530 		/*
3531 		 * Entry was either not a valid hint, or the vaddr was not
3532 		 * contained in the entry, so do a full lookup.
3533 		 */
3534 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3535 			rv = KERN_INVALID_ADDRESS;
3536 			goto done;
3537 		}
3538 
3539 		entry = tmp_entry;
3540 		*out_entry = entry;
3541 	}
3542 
3543 	/*
3544 	 * Handle submaps.
3545 	 */
3546 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3547 		vm_map_t old_map = map;
3548 
3549 		*var_map = map = entry->object.sub_map;
3550 		if (use_read_lock)
3551 			vm_map_unlock_read(old_map);
3552 		else
3553 			vm_map_unlock(old_map);
3554 		use_read_lock = 1;
3555 		goto RetryLookup;
3556 	}
3557 
3558 	/*
3559 	 * Check whether this task is allowed to have this page.
3560 	 * Note the special case for MAP_ENTRY_COW
3561 	 * pages with an override.  This is to implement a forced
3562 	 * COW for debuggers.
3563 	 */
3564 
3565 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3566 		prot = entry->max_protection;
3567 	else
3568 		prot = entry->protection;
3569 
3570 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3571 	if ((fault_type & prot) != fault_type) {
3572 		rv = KERN_PROTECTION_FAILURE;
3573 		goto done;
3574 	}
3575 
3576 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3577 	    (entry->eflags & MAP_ENTRY_COW) &&
3578 	    (fault_type & VM_PROT_WRITE) &&
3579 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3580 		rv = KERN_PROTECTION_FAILURE;
3581 		goto done;
3582 	}
3583 
3584 	/*
3585 	 * If this page is not pageable, we have to get it for all possible
3586 	 * accesses.
3587 	 */
3588 	*wired = (entry->wired_count != 0);
3589 	if (*wired)
3590 		prot = fault_type = entry->protection;
3591 
3592 	/*
3593 	 * Virtual page tables may need to update the accessed (A) bit
3594 	 * in a page table entry.  Upgrade the fault to a write fault for
3595 	 * that case if the map will support it.  If the map does not support
3596 	 * it the page table entry simply will not be updated.
3597 	 */
3598 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3599 		if (prot & VM_PROT_WRITE)
3600 			fault_type |= VM_PROT_WRITE;
3601 	}
3602 
3603 	/*
3604 	 * If the entry was copy-on-write, we either ...
3605 	 */
3606 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3607 		/*
3608 		 * If we want to write the page, we may as well handle that
3609 		 * now since we've got the map locked.
3610 		 *
3611 		 * If we don't need to write the page, we just demote the
3612 		 * permissions allowed.
3613 		 */
3614 
3615 		if (fault_type & VM_PROT_WRITE) {
3616 			/*
3617 			 * Make a new object, and place it in the object
3618 			 * chain.  Note that no new references have appeared
3619 			 * -- one just moved from the map to the new
3620 			 * object.
3621 			 */
3622 
3623 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3624 				use_read_lock = 0;
3625 				goto RetryLookup;
3626 			}
3627 			use_read_lock = 0;
3628 
3629 			vm_map_entry_shadow(entry);
3630 		} else {
3631 			/*
3632 			 * We're attempting to read a copy-on-write page --
3633 			 * don't allow writes.
3634 			 */
3635 
3636 			prot &= ~VM_PROT_WRITE;
3637 		}
3638 	}
3639 
3640 	/*
3641 	 * Create an object if necessary.
3642 	 */
3643 	if (entry->object.vm_object == NULL &&
3644 	    !map->system_map) {
3645 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3646 			use_read_lock = 0;
3647 			goto RetryLookup;
3648 		}
3649 		use_read_lock = 0;
3650 		vm_map_entry_allocate_object(entry);
3651 	}
3652 
3653 	/*
3654 	 * Return the object/offset from this entry.  If the entry was
3655 	 * copy-on-write or empty, it has been fixed up.
3656 	 */
3657 
3658 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3659 	*object = entry->object.vm_object;
3660 
3661 	/*
3662 	 * Return whether this is the only map sharing this data.  On
3663 	 * success we return with a read lock held on the map.  On failure
3664 	 * we return with the map unlocked.
3665 	 */
3666 	*out_prot = prot;
3667 done:
3668 	if (rv == KERN_SUCCESS) {
3669 		if (use_read_lock == 0)
3670 			vm_map_lock_downgrade(map);
3671 	} else if (use_read_lock) {
3672 		vm_map_unlock_read(map);
3673 	} else {
3674 		vm_map_unlock(map);
3675 	}
3676 	return (rv);
3677 }
3678 
3679 /*
3680  * Releases locks acquired by a vm_map_lookup()
3681  * (according to the handle returned by that lookup).
3682  *
3683  * No other requirements.
3684  */
3685 void
3686 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3687 {
3688 	/*
3689 	 * Unlock the main-level map
3690 	 */
3691 	vm_map_unlock_read(map);
3692 	if (count)
3693 		vm_map_entry_release(count);
3694 }
3695 
3696 #include "opt_ddb.h"
3697 #ifdef DDB
3698 #include <sys/kernel.h>
3699 
3700 #include <ddb/ddb.h>
3701 
3702 /*
3703  * Debugging only
3704  */
3705 DB_SHOW_COMMAND(map, vm_map_print)
3706 {
3707 	static int nlines;
3708 	/* XXX convert args. */
3709 	vm_map_t map = (vm_map_t)addr;
3710 	boolean_t full = have_addr;
3711 
3712 	vm_map_entry_t entry;
3713 
3714 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3715 	    (void *)map,
3716 	    (void *)map->pmap, map->nentries, map->timestamp);
3717 	nlines++;
3718 
3719 	if (!full && db_indent)
3720 		return;
3721 
3722 	db_indent += 2;
3723 	for (entry = map->header.next; entry != &map->header;
3724 	    entry = entry->next) {
3725 		db_iprintf("map entry %p: start=%p, end=%p\n",
3726 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3727 		nlines++;
3728 		{
3729 			static char *inheritance_name[4] =
3730 			{"share", "copy", "none", "donate_copy"};
3731 
3732 			db_iprintf(" prot=%x/%x/%s",
3733 			    entry->protection,
3734 			    entry->max_protection,
3735 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3736 			if (entry->wired_count != 0)
3737 				db_printf(", wired");
3738 		}
3739 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3740 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3741 			db_printf(", share=%p, offset=0x%lx\n",
3742 			    (void *)entry->object.sub_map,
3743 			    (long)entry->offset);
3744 			nlines++;
3745 			if ((entry->prev == &map->header) ||
3746 			    (entry->prev->object.sub_map !=
3747 				entry->object.sub_map)) {
3748 				db_indent += 2;
3749 				vm_map_print((db_expr_t)(intptr_t)
3750 					     entry->object.sub_map,
3751 					     full, 0, NULL);
3752 				db_indent -= 2;
3753 			}
3754 		} else {
3755 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3756 			db_printf(", object=%p, offset=0x%lx",
3757 			    (void *)entry->object.vm_object,
3758 			    (long)entry->offset);
3759 			if (entry->eflags & MAP_ENTRY_COW)
3760 				db_printf(", copy (%s)",
3761 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3762 			db_printf("\n");
3763 			nlines++;
3764 
3765 			if ((entry->prev == &map->header) ||
3766 			    (entry->prev->object.vm_object !=
3767 				entry->object.vm_object)) {
3768 				db_indent += 2;
3769 				vm_object_print((db_expr_t)(intptr_t)
3770 						entry->object.vm_object,
3771 						full, 0, NULL);
3772 				nlines += 4;
3773 				db_indent -= 2;
3774 			}
3775 		}
3776 	}
3777 	db_indent -= 2;
3778 	if (db_indent == 0)
3779 		nlines = 0;
3780 }
3781 
3782 /*
3783  * Debugging only
3784  */
3785 DB_SHOW_COMMAND(procvm, procvm)
3786 {
3787 	struct proc *p;
3788 
3789 	if (have_addr) {
3790 		p = (struct proc *) addr;
3791 	} else {
3792 		p = curproc;
3793 	}
3794 
3795 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3796 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3797 	    (void *)vmspace_pmap(p->p_vmspace));
3798 
3799 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3800 }
3801 
3802 #endif /* DDB */
3803