1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 2003-2017 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * This code is derived from software contributed to The DragonFly Project 10 * by Matthew Dillon <dillon@backplane.com> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/serialize.h> 76 #include <sys/lock.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/shm.h> 82 #include <sys/tree.h> 83 #include <sys/malloc.h> 84 #include <sys/objcache.h> 85 #include <sys/kern_syscall.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_zone.h> 98 99 #include <sys/random.h> 100 #include <sys/sysctl.h> 101 #include <sys/spinlock.h> 102 103 #include <sys/thread2.h> 104 #include <sys/spinlock2.h> 105 106 /* 107 * Virtual memory maps provide for the mapping, protection, and sharing 108 * of virtual memory objects. In addition, this module provides for an 109 * efficient virtual copy of memory from one map to another. 110 * 111 * Synchronization is required prior to most operations. 112 * 113 * Maps consist of an ordered doubly-linked list of simple entries. 114 * A hint and a RB tree is used to speed-up lookups. 115 * 116 * Callers looking to modify maps specify start/end addresses which cause 117 * the related map entry to be clipped if necessary, and then later 118 * recombined if the pieces remained compatible. 119 * 120 * Virtual copy operations are performed by copying VM object references 121 * from one map to another, and then marking both regions as copy-on-write. 122 */ 123 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags); 124 static void vmspace_dtor(void *obj, void *privdata); 125 static void vmspace_terminate(struct vmspace *vm, int final); 126 127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 128 static struct objcache *vmspace_cache; 129 130 /* 131 * per-cpu page table cross mappings are initialized in early boot 132 * and might require a considerable number of vm_map_entry structures. 133 */ 134 #define MAPENTRYBSP_CACHE (MAXCPU+1) 135 #define MAPENTRYAP_CACHE 8 136 137 /* 138 * Partioning threaded programs with large anonymous memory areas can 139 * improve concurrent fault performance. 140 */ 141 #define MAP_ENTRY_PARTITION_SIZE ((vm_offset_t)(32 * 1024 * 1024)) 142 #define MAP_ENTRY_PARTITION_MASK (MAP_ENTRY_PARTITION_SIZE - 1) 143 144 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry) \ 145 ((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0) 146 147 static struct vm_zone mapentzone_store; 148 static vm_zone_t mapentzone; 149 150 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 151 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE]; 152 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE]; 153 154 static int randomize_mmap; 155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0, 156 "Randomize mmap offsets"); 157 static int vm_map_relock_enable = 1; 158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW, 159 &vm_map_relock_enable, 0, "insert pop pgtable optimization"); 160 static int vm_map_partition_enable = 1; 161 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW, 162 &vm_map_partition_enable, 0, "Break up larger vm_map_entry's"); 163 164 static void vmspace_drop_notoken(struct vmspace *vm); 165 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref); 166 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 167 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 168 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 169 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 170 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 171 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 172 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 173 vm_map_entry_t); 174 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, 175 vm_offset_t start, vm_offset_t end, int *countp, int flags); 176 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry, 177 vm_offset_t vaddr, int *countp); 178 179 /* 180 * Initialize the vm_map module. Must be called before any other vm_map 181 * routines. 182 * 183 * Map and entry structures are allocated from the general purpose 184 * memory pool with some exceptions: 185 * 186 * - The kernel map is allocated statically. 187 * - Initial kernel map entries are allocated out of a static pool. 188 * - We must set ZONE_SPECIAL here or the early boot code can get 189 * stuck if there are >63 cores. 190 * 191 * These restrictions are necessary since malloc() uses the 192 * maps and requires map entries. 193 * 194 * Called from the low level boot code only. 195 */ 196 void 197 vm_map_startup(void) 198 { 199 mapentzone = &mapentzone_store; 200 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 201 map_entry_init, MAX_MAPENT); 202 mapentzone_store.zflags |= ZONE_SPECIAL; 203 } 204 205 /* 206 * Called prior to any vmspace allocations. 207 * 208 * Called from the low level boot code only. 209 */ 210 void 211 vm_init2(void) 212 { 213 vmspace_cache = objcache_create_mbacked(M_VMSPACE, 214 sizeof(struct vmspace), 215 0, ncpus * 4, 216 vmspace_ctor, vmspace_dtor, 217 NULL); 218 zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL); 219 pmap_init2(); 220 vm_object_init2(); 221 } 222 223 /* 224 * objcache support. We leave the pmap root cached as long as possible 225 * for performance reasons. 226 */ 227 static 228 boolean_t 229 vmspace_ctor(void *obj, void *privdata, int ocflags) 230 { 231 struct vmspace *vm = obj; 232 233 bzero(vm, sizeof(*vm)); 234 vm->vm_refcnt = VM_REF_DELETED; 235 236 return 1; 237 } 238 239 static 240 void 241 vmspace_dtor(void *obj, void *privdata) 242 { 243 struct vmspace *vm = obj; 244 245 KKASSERT(vm->vm_refcnt == VM_REF_DELETED); 246 pmap_puninit(vmspace_pmap(vm)); 247 } 248 249 /* 250 * Red black tree functions 251 * 252 * The caller must hold the related map lock. 253 */ 254 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 255 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 256 257 /* a->start is address, and the only field has to be initialized */ 258 static int 259 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 260 { 261 if (a->start < b->start) 262 return(-1); 263 else if (a->start > b->start) 264 return(1); 265 return(0); 266 } 267 268 /* 269 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for 270 * every refcnt. 271 */ 272 void 273 vmspace_initrefs(struct vmspace *vm) 274 { 275 vm->vm_refcnt = 1; 276 vm->vm_holdcnt = 1; 277 } 278 279 /* 280 * Allocate a vmspace structure, including a vm_map and pmap. 281 * Initialize numerous fields. While the initial allocation is zerod, 282 * subsequence reuse from the objcache leaves elements of the structure 283 * intact (particularly the pmap), so portions must be zerod. 284 * 285 * Returns a referenced vmspace. 286 * 287 * No requirements. 288 */ 289 struct vmspace * 290 vmspace_alloc(vm_offset_t min, vm_offset_t max) 291 { 292 struct vmspace *vm; 293 294 vm = objcache_get(vmspace_cache, M_WAITOK); 295 296 bzero(&vm->vm_startcopy, 297 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 298 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */ 299 300 /* 301 * NOTE: hold to acquires token for safety. 302 * 303 * On return vmspace is referenced (refs=1, hold=1). That is, 304 * each refcnt also has a holdcnt. There can be additional holds 305 * (holdcnt) above and beyond the refcnt. Finalization is handled in 306 * two stages, one on refs 1->0, and the the second on hold 1->0. 307 */ 308 KKASSERT(vm->vm_holdcnt == 0); 309 KKASSERT(vm->vm_refcnt == VM_REF_DELETED); 310 vmspace_initrefs(vm); 311 vmspace_hold(vm); 312 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 313 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 314 vm->vm_shm = NULL; 315 vm->vm_flags = 0; 316 cpu_vmspace_alloc(vm); 317 vmspace_drop(vm); 318 319 return (vm); 320 } 321 322 /* 323 * NOTE: Can return 0 if the vmspace is exiting. 324 */ 325 int 326 vmspace_getrefs(struct vmspace *vm) 327 { 328 int32_t n; 329 330 n = vm->vm_refcnt; 331 cpu_ccfence(); 332 if (n & VM_REF_DELETED) 333 n = -1; 334 return n; 335 } 336 337 void 338 vmspace_hold(struct vmspace *vm) 339 { 340 atomic_add_int(&vm->vm_holdcnt, 1); 341 lwkt_gettoken(&vm->vm_map.token); 342 } 343 344 /* 345 * Drop with final termination interlock. 346 */ 347 void 348 vmspace_drop(struct vmspace *vm) 349 { 350 lwkt_reltoken(&vm->vm_map.token); 351 vmspace_drop_notoken(vm); 352 } 353 354 static void 355 vmspace_drop_notoken(struct vmspace *vm) 356 { 357 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) { 358 if (vm->vm_refcnt & VM_REF_DELETED) 359 vmspace_terminate(vm, 1); 360 } 361 } 362 363 /* 364 * A vmspace object must not be in a terminated state to be able to obtain 365 * additional refs on it. 366 * 367 * These are official references to the vmspace, the count is used to check 368 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'. 369 * 370 * XXX we need to combine hold & ref together into one 64-bit field to allow 371 * holds to prevent stage-1 termination. 372 */ 373 void 374 vmspace_ref(struct vmspace *vm) 375 { 376 uint32_t n; 377 378 atomic_add_int(&vm->vm_holdcnt, 1); 379 n = atomic_fetchadd_int(&vm->vm_refcnt, 1); 380 KKASSERT((n & VM_REF_DELETED) == 0); 381 } 382 383 /* 384 * Release a ref on the vmspace. On the 1->0 transition we do stage-1 385 * termination of the vmspace. Then, on the final drop of the hold we 386 * will do stage-2 final termination. 387 */ 388 void 389 vmspace_rel(struct vmspace *vm) 390 { 391 uint32_t n; 392 393 /* 394 * Drop refs. Each ref also has a hold which is also dropped. 395 * 396 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold 397 * prevent finalization) to start termination processing. 398 * Finalization occurs when the last hold count drops to 0. 399 */ 400 n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1; 401 while (n == 0) { 402 if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) { 403 vmspace_terminate(vm, 0); 404 break; 405 } 406 n = vm->vm_refcnt; 407 cpu_ccfence(); 408 } 409 vmspace_drop_notoken(vm); 410 } 411 412 /* 413 * This is called during exit indicating that the vmspace is no 414 * longer in used by an exiting process, but the process has not yet 415 * been reaped. 416 * 417 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt 418 * to prevent stage-2 until the process is reaped. Note hte order of 419 * operation, we must hold first. 420 * 421 * No requirements. 422 */ 423 void 424 vmspace_relexit(struct vmspace *vm) 425 { 426 atomic_add_int(&vm->vm_holdcnt, 1); 427 vmspace_rel(vm); 428 } 429 430 /* 431 * Called during reap to disconnect the remainder of the vmspace from 432 * the process. On the hold drop the vmspace termination is finalized. 433 * 434 * No requirements. 435 */ 436 void 437 vmspace_exitfree(struct proc *p) 438 { 439 struct vmspace *vm; 440 441 vm = p->p_vmspace; 442 p->p_vmspace = NULL; 443 vmspace_drop_notoken(vm); 444 } 445 446 /* 447 * Called in two cases: 448 * 449 * (1) When the last refcnt is dropped and the vmspace becomes inactive, 450 * called with final == 0. refcnt will be (u_int)-1 at this point, 451 * and holdcnt will still be non-zero. 452 * 453 * (2) When holdcnt becomes 0, called with final == 1. There should no 454 * longer be anyone with access to the vmspace. 455 * 456 * VMSPACE_EXIT1 flags the primary deactivation 457 * VMSPACE_EXIT2 flags the last reap 458 */ 459 static void 460 vmspace_terminate(struct vmspace *vm, int final) 461 { 462 int count; 463 464 lwkt_gettoken(&vm->vm_map.token); 465 if (final == 0) { 466 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0); 467 vm->vm_flags |= VMSPACE_EXIT1; 468 469 /* 470 * Get rid of most of the resources. Leave the kernel pmap 471 * intact. 472 * 473 * If the pmap does not contain wired pages we can bulk-delete 474 * the pmap as a performance optimization before removing the 475 * related mappings. 476 * 477 * If the pmap contains wired pages we cannot do this 478 * pre-optimization because currently vm_fault_unwire() 479 * expects the pmap pages to exist and will not decrement 480 * p->wire_count if they do not. 481 */ 482 shmexit(vm); 483 if (vmspace_pmap(vm)->pm_stats.wired_count) { 484 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 485 VM_MAX_USER_ADDRESS); 486 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 487 VM_MAX_USER_ADDRESS); 488 } else { 489 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 490 VM_MAX_USER_ADDRESS); 491 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 492 VM_MAX_USER_ADDRESS); 493 } 494 lwkt_reltoken(&vm->vm_map.token); 495 } else { 496 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0); 497 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0); 498 499 /* 500 * Get rid of remaining basic resources. 501 */ 502 vm->vm_flags |= VMSPACE_EXIT2; 503 shmexit(vm); 504 505 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 506 vm_map_lock(&vm->vm_map); 507 cpu_vmspace_free(vm); 508 509 /* 510 * Lock the map, to wait out all other references to it. 511 * Delete all of the mappings and pages they hold, then call 512 * the pmap module to reclaim anything left. 513 */ 514 vm_map_delete(&vm->vm_map, 515 vm_map_min(&vm->vm_map), 516 vm_map_max(&vm->vm_map), 517 &count); 518 vm_map_unlock(&vm->vm_map); 519 vm_map_entry_release(count); 520 521 pmap_release(vmspace_pmap(vm)); 522 lwkt_reltoken(&vm->vm_map.token); 523 objcache_put(vmspace_cache, vm); 524 } 525 } 526 527 /* 528 * Swap useage is determined by taking the proportional swap used by 529 * VM objects backing the VM map. To make up for fractional losses, 530 * if the VM object has any swap use at all the associated map entries 531 * count for at least 1 swap page. 532 * 533 * No requirements. 534 */ 535 vm_offset_t 536 vmspace_swap_count(struct vmspace *vm) 537 { 538 vm_map_t map = &vm->vm_map; 539 vm_map_entry_t cur; 540 vm_object_t object; 541 vm_offset_t count = 0; 542 vm_offset_t n; 543 544 vmspace_hold(vm); 545 546 RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) { 547 switch(cur->maptype) { 548 case VM_MAPTYPE_NORMAL: 549 case VM_MAPTYPE_VPAGETABLE: 550 if ((object = cur->object.vm_object) == NULL) 551 break; 552 if (object->swblock_count) { 553 n = (cur->end - cur->start) / PAGE_SIZE; 554 count += object->swblock_count * 555 SWAP_META_PAGES * n / object->size + 1; 556 } 557 break; 558 default: 559 break; 560 } 561 } 562 vmspace_drop(vm); 563 564 return(count); 565 } 566 567 /* 568 * Calculate the approximate number of anonymous pages in use by 569 * this vmspace. To make up for fractional losses, we count each 570 * VM object as having at least 1 anonymous page. 571 * 572 * No requirements. 573 */ 574 vm_offset_t 575 vmspace_anonymous_count(struct vmspace *vm) 576 { 577 vm_map_t map = &vm->vm_map; 578 vm_map_entry_t cur; 579 vm_object_t object; 580 vm_offset_t count = 0; 581 582 vmspace_hold(vm); 583 RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) { 584 switch(cur->maptype) { 585 case VM_MAPTYPE_NORMAL: 586 case VM_MAPTYPE_VPAGETABLE: 587 if ((object = cur->object.vm_object) == NULL) 588 break; 589 if (object->type != OBJT_DEFAULT && 590 object->type != OBJT_SWAP) { 591 break; 592 } 593 count += object->resident_page_count; 594 break; 595 default: 596 break; 597 } 598 } 599 vmspace_drop(vm); 600 601 return(count); 602 } 603 604 /* 605 * Initialize an existing vm_map structure such as that in the vmspace 606 * structure. The pmap is initialized elsewhere. 607 * 608 * No requirements. 609 */ 610 void 611 vm_map_init(struct vm_map *map, vm_offset_t min_addr, vm_offset_t max_addr, 612 pmap_t pmap) 613 { 614 RB_INIT(&map->rb_root); 615 spin_init(&map->ilock_spin, "ilock"); 616 map->ilock_base = NULL; 617 map->nentries = 0; 618 map->size = 0; 619 map->system_map = 0; 620 vm_map_min(map) = min_addr; 621 vm_map_max(map) = max_addr; 622 map->pmap = pmap; 623 map->timestamp = 0; 624 map->flags = 0; 625 bzero(&map->freehint, sizeof(map->freehint)); 626 lwkt_token_init(&map->token, "vm_map"); 627 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0); 628 } 629 630 /* 631 * Find the first possible free address for the specified request length. 632 * Returns 0 if we don't have one cached. 633 */ 634 static 635 vm_offset_t 636 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align) 637 { 638 vm_map_freehint_t *scan; 639 640 scan = &map->freehint[0]; 641 while (scan < &map->freehint[VM_MAP_FFCOUNT]) { 642 if (scan->length == length && scan->align == align) 643 return(scan->start); 644 ++scan; 645 } 646 return 0; 647 } 648 649 /* 650 * Unconditionally set the freehint. Called by vm_map_findspace() after 651 * it finds an address. This will help us iterate optimally on the next 652 * similar findspace. 653 */ 654 static 655 void 656 vm_map_freehint_update(vm_map_t map, vm_offset_t start, 657 vm_size_t length, vm_size_t align) 658 { 659 vm_map_freehint_t *scan; 660 661 scan = &map->freehint[0]; 662 while (scan < &map->freehint[VM_MAP_FFCOUNT]) { 663 if (scan->length == length && scan->align == align) { 664 scan->start = start; 665 return; 666 } 667 ++scan; 668 } 669 scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK]; 670 scan->start = start; 671 scan->align = align; 672 scan->length = length; 673 ++map->freehint_newindex; 674 } 675 676 /* 677 * Update any existing freehints (for any alignment), for the hole we just 678 * added. 679 */ 680 static 681 void 682 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length) 683 { 684 vm_map_freehint_t *scan; 685 686 scan = &map->freehint[0]; 687 while (scan < &map->freehint[VM_MAP_FFCOUNT]) { 688 if (scan->length <= length && scan->start > start) 689 scan->start = start; 690 ++scan; 691 } 692 } 693 694 /* 695 * Shadow the vm_map_entry's object. This typically needs to be done when 696 * a write fault is taken on an entry which had previously been cloned by 697 * fork(). The shared object (which might be NULL) must become private so 698 * we add a shadow layer above it. 699 * 700 * Object allocation for anonymous mappings is defered as long as possible. 701 * When creating a shadow, however, the underlying object must be instantiated 702 * so it can be shared. 703 * 704 * If the map segment is governed by a virtual page table then it is 705 * possible to address offsets beyond the mapped area. Just allocate 706 * a maximally sized object for this case. 707 * 708 * If addref is non-zero an additional reference is added to the returned 709 * entry. This mechanic exists because the additional reference might have 710 * to be added atomically and not after return to prevent a premature 711 * collapse. 712 * 713 * The vm_map must be exclusively locked. 714 * No other requirements. 715 */ 716 static 717 void 718 vm_map_entry_shadow(vm_map_entry_t entry, int addref) 719 { 720 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 721 vm_object_shadow(&entry->object.vm_object, &entry->offset, 722 0x7FFFFFFF, addref); /* XXX */ 723 } else { 724 vm_object_shadow(&entry->object.vm_object, &entry->offset, 725 atop(entry->end - entry->start), addref); 726 } 727 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 728 } 729 730 /* 731 * Allocate an object for a vm_map_entry. 732 * 733 * Object allocation for anonymous mappings is defered as long as possible. 734 * This function is called when we can defer no longer, generally when a map 735 * entry might be split or forked or takes a page fault. 736 * 737 * If the map segment is governed by a virtual page table then it is 738 * possible to address offsets beyond the mapped area. Just allocate 739 * a maximally sized object for this case. 740 * 741 * The vm_map must be exclusively locked. 742 * No other requirements. 743 */ 744 void 745 vm_map_entry_allocate_object(vm_map_entry_t entry) 746 { 747 vm_object_t obj; 748 749 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 750 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 751 } else { 752 obj = vm_object_allocate(OBJT_DEFAULT, 753 atop(entry->end - entry->start)); 754 } 755 entry->object.vm_object = obj; 756 entry->offset = 0; 757 } 758 759 /* 760 * Set an initial negative count so the first attempt to reserve 761 * space preloads a bunch of vm_map_entry's for this cpu. Also 762 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 763 * map a new page for vm_map_entry structures. SMP systems are 764 * particularly sensitive. 765 * 766 * This routine is called in early boot so we cannot just call 767 * vm_map_entry_reserve(). 768 * 769 * Called from the low level boot code only (for each cpu) 770 * 771 * WARNING! Take care not to have too-big a static/BSS structure here 772 * as MAXCPU can be 256+, otherwise the loader's 64MB heap 773 * can get blown out by the kernel plus the initrd image. 774 */ 775 void 776 vm_map_entry_reserve_cpu_init(globaldata_t gd) 777 { 778 vm_map_entry_t entry; 779 int count; 780 int i; 781 782 atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2); 783 if (gd->gd_cpuid == 0) { 784 entry = &cpu_map_entry_init_bsp[0]; 785 count = MAPENTRYBSP_CACHE; 786 } else { 787 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0]; 788 count = MAPENTRYAP_CACHE; 789 } 790 for (i = 0; i < count; ++i, ++entry) { 791 MAPENT_FREELIST(entry) = gd->gd_vme_base; 792 gd->gd_vme_base = entry; 793 } 794 } 795 796 /* 797 * Reserves vm_map_entry structures so code later-on can manipulate 798 * map_entry structures within a locked map without blocking trying 799 * to allocate a new vm_map_entry. 800 * 801 * No requirements. 802 * 803 * WARNING! We must not decrement gd_vme_avail until after we have 804 * ensured that sufficient entries exist, otherwise we can 805 * get into an endless call recursion in the zalloc code 806 * itself. 807 */ 808 int 809 vm_map_entry_reserve(int count) 810 { 811 struct globaldata *gd = mycpu; 812 vm_map_entry_t entry; 813 814 /* 815 * Make sure we have enough structures in gd_vme_base to handle 816 * the reservation request. 817 * 818 * Use a critical section to protect against VM faults. It might 819 * not be needed, but we have to be careful here. 820 */ 821 if (gd->gd_vme_avail < count) { 822 crit_enter(); 823 while (gd->gd_vme_avail < count) { 824 entry = zalloc(mapentzone); 825 MAPENT_FREELIST(entry) = gd->gd_vme_base; 826 gd->gd_vme_base = entry; 827 atomic_add_int(&gd->gd_vme_avail, 1); 828 } 829 crit_exit(); 830 } 831 atomic_add_int(&gd->gd_vme_avail, -count); 832 833 return(count); 834 } 835 836 /* 837 * Releases previously reserved vm_map_entry structures that were not 838 * used. If we have too much junk in our per-cpu cache clean some of 839 * it out. 840 * 841 * No requirements. 842 */ 843 void 844 vm_map_entry_release(int count) 845 { 846 struct globaldata *gd = mycpu; 847 vm_map_entry_t entry; 848 vm_map_entry_t efree; 849 850 count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count; 851 if (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 852 efree = NULL; 853 crit_enter(); 854 while (gd->gd_vme_avail > MAP_RESERVE_HYST) { 855 entry = gd->gd_vme_base; 856 KKASSERT(entry != NULL); 857 gd->gd_vme_base = MAPENT_FREELIST(entry); 858 atomic_add_int(&gd->gd_vme_avail, -1); 859 MAPENT_FREELIST(entry) = efree; 860 efree = entry; 861 } 862 crit_exit(); 863 while ((entry = efree) != NULL) { 864 efree = MAPENT_FREELIST(efree); 865 zfree(mapentzone, entry); 866 } 867 } 868 } 869 870 /* 871 * Reserve map entry structures for use in kernel_map itself. These 872 * entries have *ALREADY* been reserved on a per-cpu basis when the map 873 * was inited. This function is used by zalloc() to avoid a recursion 874 * when zalloc() itself needs to allocate additional kernel memory. 875 * 876 * This function works like the normal reserve but does not load the 877 * vm_map_entry cache (because that would result in an infinite 878 * recursion). Note that gd_vme_avail may go negative. This is expected. 879 * 880 * Any caller of this function must be sure to renormalize after 881 * potentially eating entries to ensure that the reserve supply 882 * remains intact. 883 * 884 * No requirements. 885 */ 886 int 887 vm_map_entry_kreserve(int count) 888 { 889 struct globaldata *gd = mycpu; 890 891 atomic_add_int(&gd->gd_vme_avail, -count); 892 KASSERT(gd->gd_vme_base != NULL, 893 ("no reserved entries left, gd_vme_avail = %d", 894 gd->gd_vme_avail)); 895 return(count); 896 } 897 898 /* 899 * Release previously reserved map entries for kernel_map. We do not 900 * attempt to clean up like the normal release function as this would 901 * cause an unnecessary (but probably not fatal) deep procedure call. 902 * 903 * No requirements. 904 */ 905 void 906 vm_map_entry_krelease(int count) 907 { 908 struct globaldata *gd = mycpu; 909 910 atomic_add_int(&gd->gd_vme_avail, count); 911 } 912 913 /* 914 * Allocates a VM map entry for insertion. No entry fields are filled in. 915 * 916 * The entries should have previously been reserved. The reservation count 917 * is tracked in (*countp). 918 * 919 * No requirements. 920 */ 921 static vm_map_entry_t 922 vm_map_entry_create(vm_map_t map, int *countp) 923 { 924 struct globaldata *gd = mycpu; 925 vm_map_entry_t entry; 926 927 KKASSERT(*countp > 0); 928 --*countp; 929 crit_enter(); 930 entry = gd->gd_vme_base; 931 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 932 gd->gd_vme_base = MAPENT_FREELIST(entry); 933 crit_exit(); 934 935 return(entry); 936 } 937 938 /* 939 * Dispose of a vm_map_entry that is no longer being referenced. 940 * 941 * No requirements. 942 */ 943 static void 944 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 945 { 946 struct globaldata *gd = mycpu; 947 948 ++*countp; 949 crit_enter(); 950 MAPENT_FREELIST(entry) = gd->gd_vme_base; 951 gd->gd_vme_base = entry; 952 crit_exit(); 953 } 954 955 956 /* 957 * Insert/remove entries from maps. 958 * 959 * The related map must be exclusively locked. 960 * The caller must hold map->token 961 * No other requirements. 962 */ 963 static __inline void 964 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 965 { 966 ASSERT_VM_MAP_LOCKED(map); 967 968 map->nentries++; 969 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 970 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 971 } 972 973 static __inline void 974 vm_map_entry_unlink(vm_map_t map, 975 vm_map_entry_t entry) 976 { 977 ASSERT_VM_MAP_LOCKED(map); 978 979 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 980 panic("vm_map_entry_unlink: attempt to mess with " 981 "locked entry! %p", entry); 982 } 983 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 984 map->nentries--; 985 } 986 987 /* 988 * Finds the map entry containing (or immediately preceding) the specified 989 * address in the given map. The entry is returned in (*entry). 990 * 991 * The boolean result indicates whether the address is actually contained 992 * in the map. 993 * 994 * The related map must be locked. 995 * No other requirements. 996 */ 997 boolean_t 998 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 999 { 1000 vm_map_entry_t tmp; 1001 vm_map_entry_t last; 1002 1003 ASSERT_VM_MAP_LOCKED(map); 1004 1005 /* 1006 * Locate the record from the top of the tree. 'last' tracks the 1007 * closest prior record and is returned if no match is found, which 1008 * in binary tree terms means tracking the most recent right-branch 1009 * taken. If there is no prior record, *entry is set to NULL. 1010 */ 1011 last = NULL; 1012 tmp = RB_ROOT(&map->rb_root); 1013 1014 while (tmp) { 1015 if (address >= tmp->start) { 1016 if (address < tmp->end) { 1017 *entry = tmp; 1018 return(TRUE); 1019 } 1020 last = tmp; 1021 tmp = RB_RIGHT(tmp, rb_entry); 1022 } else { 1023 tmp = RB_LEFT(tmp, rb_entry); 1024 } 1025 } 1026 *entry = last; 1027 return (FALSE); 1028 } 1029 1030 /* 1031 * Inserts the given whole VM object into the target map at the specified 1032 * address range. The object's size should match that of the address range. 1033 * 1034 * The map must be exclusively locked. 1035 * The object must be held. 1036 * The caller must have reserved sufficient vm_map_entry structures. 1037 * 1038 * If object is non-NULL, ref count must be bumped by caller prior to 1039 * making call to account for the new entry. 1040 */ 1041 int 1042 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux, 1043 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 1044 vm_maptype_t maptype, vm_subsys_t id, 1045 vm_prot_t prot, vm_prot_t max, int cow) 1046 { 1047 vm_map_entry_t new_entry; 1048 vm_map_entry_t prev_entry; 1049 vm_map_entry_t next; 1050 vm_map_entry_t temp_entry; 1051 vm_eflags_t protoeflags; 1052 int must_drop = 0; 1053 vm_object_t object; 1054 1055 if (maptype == VM_MAPTYPE_UKSMAP) 1056 object = NULL; 1057 else 1058 object = map_object; 1059 1060 ASSERT_VM_MAP_LOCKED(map); 1061 if (object) 1062 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1063 1064 /* 1065 * Check that the start and end points are not bogus. 1066 */ 1067 if ((start < vm_map_min(map)) || (end > vm_map_max(map)) || 1068 (start >= end)) { 1069 return (KERN_INVALID_ADDRESS); 1070 } 1071 1072 /* 1073 * Find the entry prior to the proposed starting address; if it's part 1074 * of an existing entry, this range is bogus. 1075 */ 1076 if (vm_map_lookup_entry(map, start, &temp_entry)) 1077 return (KERN_NO_SPACE); 1078 prev_entry = temp_entry; 1079 1080 /* 1081 * Assert that the next entry doesn't overlap the end point. 1082 */ 1083 if (prev_entry) 1084 next = vm_map_rb_tree_RB_NEXT(prev_entry); 1085 else 1086 next = RB_MIN(vm_map_rb_tree, &map->rb_root); 1087 if (next && next->start < end) 1088 return (KERN_NO_SPACE); 1089 1090 protoeflags = 0; 1091 1092 if (cow & MAP_COPY_ON_WRITE) 1093 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1094 1095 if (cow & MAP_NOFAULT) { 1096 protoeflags |= MAP_ENTRY_NOFAULT; 1097 1098 KASSERT(object == NULL, 1099 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1100 } 1101 if (cow & MAP_DISABLE_SYNCER) 1102 protoeflags |= MAP_ENTRY_NOSYNC; 1103 if (cow & MAP_DISABLE_COREDUMP) 1104 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1105 if (cow & MAP_IS_STACK) 1106 protoeflags |= MAP_ENTRY_STACK; 1107 if (cow & MAP_IS_KSTACK) 1108 protoeflags |= MAP_ENTRY_KSTACK; 1109 1110 lwkt_gettoken(&map->token); 1111 1112 if (object) { 1113 /* 1114 * When object is non-NULL, it could be shared with another 1115 * process. We have to set or clear OBJ_ONEMAPPING 1116 * appropriately. 1117 * 1118 * NOTE: This flag is only applicable to DEFAULT and SWAP 1119 * objects and will already be clear in other types 1120 * of objects, so a shared object lock is ok for 1121 * VNODE objects. 1122 */ 1123 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 1124 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1125 } 1126 } 1127 else if (prev_entry && 1128 (prev_entry->eflags == protoeflags) && 1129 (prev_entry->end == start) && 1130 (prev_entry->wired_count == 0) && 1131 (prev_entry->id == id) && 1132 prev_entry->maptype == maptype && 1133 maptype == VM_MAPTYPE_NORMAL && 1134 ((prev_entry->object.vm_object == NULL) || 1135 vm_object_coalesce(prev_entry->object.vm_object, 1136 OFF_TO_IDX(prev_entry->offset), 1137 (vm_size_t)(prev_entry->end - prev_entry->start), 1138 (vm_size_t)(end - prev_entry->end)))) { 1139 /* 1140 * We were able to extend the object. Determine if we 1141 * can extend the previous map entry to include the 1142 * new range as well. 1143 */ 1144 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1145 (prev_entry->protection == prot) && 1146 (prev_entry->max_protection == max)) { 1147 map->size += (end - prev_entry->end); 1148 prev_entry->end = end; 1149 vm_map_simplify_entry(map, prev_entry, countp); 1150 lwkt_reltoken(&map->token); 1151 return (KERN_SUCCESS); 1152 } 1153 1154 /* 1155 * If we can extend the object but cannot extend the 1156 * map entry, we have to create a new map entry. We 1157 * must bump the ref count on the extended object to 1158 * account for it. object may be NULL. 1159 * 1160 * XXX if object is NULL should we set offset to 0 here ? 1161 */ 1162 object = prev_entry->object.vm_object; 1163 offset = prev_entry->offset + 1164 (prev_entry->end - prev_entry->start); 1165 if (object) { 1166 vm_object_hold(object); 1167 vm_object_chain_wait(object, 0); 1168 vm_object_reference_locked(object); 1169 must_drop = 1; 1170 map_object = object; 1171 } 1172 } 1173 1174 /* 1175 * NOTE: if conditionals fail, object can be NULL here. This occurs 1176 * in things like the buffer map where we manage kva but do not manage 1177 * backing objects. 1178 */ 1179 1180 /* 1181 * Create a new entry 1182 */ 1183 1184 new_entry = vm_map_entry_create(map, countp); 1185 new_entry->start = start; 1186 new_entry->end = end; 1187 new_entry->id = id; 1188 1189 new_entry->maptype = maptype; 1190 new_entry->eflags = protoeflags; 1191 new_entry->object.map_object = map_object; 1192 new_entry->aux.master_pde = 0; /* in case size is different */ 1193 new_entry->aux.map_aux = map_aux; 1194 new_entry->offset = offset; 1195 1196 new_entry->inheritance = VM_INHERIT_DEFAULT; 1197 new_entry->protection = prot; 1198 new_entry->max_protection = max; 1199 new_entry->wired_count = 0; 1200 1201 /* 1202 * Insert the new entry into the list 1203 */ 1204 1205 vm_map_entry_link(map, new_entry); 1206 map->size += new_entry->end - new_entry->start; 1207 1208 /* 1209 * Don't worry about updating freehint[] when inserting, allow 1210 * addresses to be lower than the actual first free spot. 1211 */ 1212 #if 0 1213 /* 1214 * Temporarily removed to avoid MAP_STACK panic, due to 1215 * MAP_STACK being a huge hack. Will be added back in 1216 * when MAP_STACK (and the user stack mapping) is fixed. 1217 */ 1218 /* 1219 * It may be possible to simplify the entry 1220 */ 1221 vm_map_simplify_entry(map, new_entry, countp); 1222 #endif 1223 1224 /* 1225 * Try to pre-populate the page table. Mappings governed by virtual 1226 * page tables cannot be prepopulated without a lot of work, so 1227 * don't try. 1228 */ 1229 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1230 maptype != VM_MAPTYPE_VPAGETABLE && 1231 maptype != VM_MAPTYPE_UKSMAP) { 1232 int dorelock = 0; 1233 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) { 1234 dorelock = 1; 1235 vm_object_lock_swap(); 1236 vm_object_drop(object); 1237 } 1238 pmap_object_init_pt(map->pmap, start, prot, 1239 object, OFF_TO_IDX(offset), end - start, 1240 cow & MAP_PREFAULT_PARTIAL); 1241 if (dorelock) { 1242 vm_object_hold(object); 1243 vm_object_lock_swap(); 1244 } 1245 } 1246 if (must_drop) 1247 vm_object_drop(object); 1248 1249 lwkt_reltoken(&map->token); 1250 return (KERN_SUCCESS); 1251 } 1252 1253 /* 1254 * Find sufficient space for `length' bytes in the given map, starting at 1255 * `start'. Returns 0 on success, 1 on no space. 1256 * 1257 * This function will returned an arbitrarily aligned pointer. If no 1258 * particular alignment is required you should pass align as 1. Note that 1259 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1260 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1261 * argument. 1262 * 1263 * 'align' should be a power of 2 but is not required to be. 1264 * 1265 * The map must be exclusively locked. 1266 * No other requirements. 1267 */ 1268 int 1269 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1270 vm_size_t align, int flags, vm_offset_t *addr) 1271 { 1272 vm_map_entry_t entry; 1273 vm_map_entry_t tmp; 1274 vm_offset_t hole_start; 1275 vm_offset_t end; 1276 vm_offset_t align_mask; 1277 1278 if (start < vm_map_min(map)) 1279 start = vm_map_min(map); 1280 if (start > vm_map_max(map)) 1281 return (1); 1282 1283 /* 1284 * If the alignment is not a power of 2 we will have to use 1285 * a mod/division, set align_mask to a special value. 1286 */ 1287 if ((align | (align - 1)) + 1 != (align << 1)) 1288 align_mask = (vm_offset_t)-1; 1289 else 1290 align_mask = align - 1; 1291 1292 /* 1293 * Use freehint to adjust the start point, hopefully reducing 1294 * the iteration to O(1). 1295 */ 1296 hole_start = vm_map_freehint_find(map, length, align); 1297 if (start < hole_start) 1298 start = hole_start; 1299 if (vm_map_lookup_entry(map, start, &tmp)) 1300 start = tmp->end; 1301 entry = tmp; /* may be NULL */ 1302 1303 /* 1304 * Look through the rest of the map, trying to fit a new region in the 1305 * gap between existing regions, or after the very last region. 1306 */ 1307 for (;;) { 1308 /* 1309 * Adjust the proposed start by the requested alignment, 1310 * be sure that we didn't wrap the address. 1311 */ 1312 if (align_mask == (vm_offset_t)-1) 1313 end = roundup(start, align); 1314 else 1315 end = (start + align_mask) & ~align_mask; 1316 if (end < start) 1317 return (1); 1318 start = end; 1319 1320 /* 1321 * Find the end of the proposed new region. Be sure we didn't 1322 * go beyond the end of the map, or wrap around the address. 1323 * Then check to see if this is the last entry or if the 1324 * proposed end fits in the gap between this and the next 1325 * entry. 1326 */ 1327 end = start + length; 1328 if (end > vm_map_max(map) || end < start) 1329 return (1); 1330 1331 /* 1332 * Locate the next entry, we can stop if this is the 1333 * last entry (we know we are in-bounds so that would 1334 * be a sucess). 1335 */ 1336 if (entry) 1337 entry = vm_map_rb_tree_RB_NEXT(entry); 1338 else 1339 entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 1340 if (entry == NULL) 1341 break; 1342 1343 /* 1344 * Determine if the proposed area would overlap the 1345 * next entry. 1346 * 1347 * When matching against a STACK entry, only allow the 1348 * memory map to intrude on the ungrown portion of the 1349 * STACK entry when MAP_TRYFIXED is set. 1350 */ 1351 if (entry->start >= end) { 1352 if ((entry->eflags & MAP_ENTRY_STACK) == 0) 1353 break; 1354 if (flags & MAP_TRYFIXED) 1355 break; 1356 if (entry->start - entry->aux.avail_ssize >= end) 1357 break; 1358 } 1359 start = entry->end; 1360 } 1361 1362 /* 1363 * Update the freehint 1364 */ 1365 vm_map_freehint_update(map, start, length, align); 1366 1367 /* 1368 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1369 * if it fails. The kernel_map is locked and nothing can steal 1370 * our address space if pmap_growkernel() blocks. 1371 * 1372 * NOTE: This may be unconditionally called for kldload areas on 1373 * x86_64 because these do not bump kernel_vm_end (which would 1374 * fill 128G worth of page tables!). Therefore we must not 1375 * retry. 1376 */ 1377 if (map == &kernel_map) { 1378 vm_offset_t kstop; 1379 1380 kstop = round_page(start + length); 1381 if (kstop > kernel_vm_end) 1382 pmap_growkernel(start, kstop); 1383 } 1384 *addr = start; 1385 return (0); 1386 } 1387 1388 /* 1389 * vm_map_find finds an unallocated region in the target address map with 1390 * the given length and allocates it. The search is defined to be first-fit 1391 * from the specified address; the region found is returned in the same 1392 * parameter. 1393 * 1394 * If object is non-NULL, ref count must be bumped by caller 1395 * prior to making call to account for the new entry. 1396 * 1397 * No requirements. This function will lock the map temporarily. 1398 */ 1399 int 1400 vm_map_find(vm_map_t map, void *map_object, void *map_aux, 1401 vm_ooffset_t offset, vm_offset_t *addr, 1402 vm_size_t length, vm_size_t align, boolean_t fitit, 1403 vm_maptype_t maptype, vm_subsys_t id, 1404 vm_prot_t prot, vm_prot_t max, int cow) 1405 { 1406 vm_offset_t start; 1407 vm_object_t object; 1408 int result; 1409 int count; 1410 1411 if (maptype == VM_MAPTYPE_UKSMAP) 1412 object = NULL; 1413 else 1414 object = map_object; 1415 1416 start = *addr; 1417 1418 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1419 vm_map_lock(map); 1420 if (object) 1421 vm_object_hold_shared(object); 1422 if (fitit) { 1423 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1424 if (object) 1425 vm_object_drop(object); 1426 vm_map_unlock(map); 1427 vm_map_entry_release(count); 1428 return (KERN_NO_SPACE); 1429 } 1430 start = *addr; 1431 } 1432 result = vm_map_insert(map, &count, map_object, map_aux, 1433 offset, start, start + length, 1434 maptype, id, prot, max, cow); 1435 if (object) 1436 vm_object_drop(object); 1437 vm_map_unlock(map); 1438 vm_map_entry_release(count); 1439 1440 return (result); 1441 } 1442 1443 /* 1444 * Simplify the given map entry by merging with either neighbor. This 1445 * routine also has the ability to merge with both neighbors. 1446 * 1447 * This routine guarentees that the passed entry remains valid (though 1448 * possibly extended). When merging, this routine may delete one or 1449 * both neighbors. No action is taken on entries which have their 1450 * in-transition flag set. 1451 * 1452 * The map must be exclusively locked. 1453 */ 1454 void 1455 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1456 { 1457 vm_map_entry_t next, prev; 1458 vm_size_t prevsize, esize; 1459 1460 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1461 ++mycpu->gd_cnt.v_intrans_coll; 1462 return; 1463 } 1464 1465 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1466 return; 1467 if (entry->maptype == VM_MAPTYPE_UKSMAP) 1468 return; 1469 1470 prev = vm_map_rb_tree_RB_PREV(entry); 1471 if (prev) { 1472 prevsize = prev->end - prev->start; 1473 if ( (prev->end == entry->start) && 1474 (prev->maptype == entry->maptype) && 1475 (prev->object.vm_object == entry->object.vm_object) && 1476 (!prev->object.vm_object || 1477 (prev->offset + prevsize == entry->offset)) && 1478 (prev->eflags == entry->eflags) && 1479 (prev->protection == entry->protection) && 1480 (prev->max_protection == entry->max_protection) && 1481 (prev->inheritance == entry->inheritance) && 1482 (prev->id == entry->id) && 1483 (prev->wired_count == entry->wired_count)) { 1484 vm_map_entry_unlink(map, prev); 1485 entry->start = prev->start; 1486 entry->offset = prev->offset; 1487 if (prev->object.vm_object) 1488 vm_object_deallocate(prev->object.vm_object); 1489 vm_map_entry_dispose(map, prev, countp); 1490 } 1491 } 1492 1493 next = vm_map_rb_tree_RB_NEXT(entry); 1494 if (next) { 1495 esize = entry->end - entry->start; 1496 if ((entry->end == next->start) && 1497 (next->maptype == entry->maptype) && 1498 (next->object.vm_object == entry->object.vm_object) && 1499 (!entry->object.vm_object || 1500 (entry->offset + esize == next->offset)) && 1501 (next->eflags == entry->eflags) && 1502 (next->protection == entry->protection) && 1503 (next->max_protection == entry->max_protection) && 1504 (next->inheritance == entry->inheritance) && 1505 (next->id == entry->id) && 1506 (next->wired_count == entry->wired_count)) { 1507 vm_map_entry_unlink(map, next); 1508 entry->end = next->end; 1509 if (next->object.vm_object) 1510 vm_object_deallocate(next->object.vm_object); 1511 vm_map_entry_dispose(map, next, countp); 1512 } 1513 } 1514 } 1515 1516 /* 1517 * Asserts that the given entry begins at or after the specified address. 1518 * If necessary, it splits the entry into two. 1519 */ 1520 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1521 { \ 1522 if (startaddr > entry->start) \ 1523 _vm_map_clip_start(map, entry, startaddr, countp); \ 1524 } 1525 1526 /* 1527 * This routine is called only when it is known that the entry must be split. 1528 * 1529 * The map must be exclusively locked. 1530 */ 1531 static void 1532 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1533 int *countp) 1534 { 1535 vm_map_entry_t new_entry; 1536 1537 /* 1538 * Split off the front portion -- note that we must insert the new 1539 * entry BEFORE this one, so that this entry has the specified 1540 * starting address. 1541 */ 1542 1543 vm_map_simplify_entry(map, entry, countp); 1544 1545 /* 1546 * If there is no object backing this entry, we might as well create 1547 * one now. If we defer it, an object can get created after the map 1548 * is clipped, and individual objects will be created for the split-up 1549 * map. This is a bit of a hack, but is also about the best place to 1550 * put this improvement. 1551 */ 1552 if (entry->object.vm_object == NULL && !map->system_map && 1553 VM_MAP_ENTRY_WITHIN_PARTITION(entry)) { 1554 vm_map_entry_allocate_object(entry); 1555 } 1556 1557 new_entry = vm_map_entry_create(map, countp); 1558 *new_entry = *entry; 1559 1560 new_entry->end = start; 1561 entry->offset += (start - entry->start); 1562 entry->start = start; 1563 1564 vm_map_entry_link(map, new_entry); 1565 1566 switch(entry->maptype) { 1567 case VM_MAPTYPE_NORMAL: 1568 case VM_MAPTYPE_VPAGETABLE: 1569 if (new_entry->object.vm_object) { 1570 vm_object_hold(new_entry->object.vm_object); 1571 vm_object_chain_wait(new_entry->object.vm_object, 0); 1572 vm_object_reference_locked(new_entry->object.vm_object); 1573 vm_object_drop(new_entry->object.vm_object); 1574 } 1575 break; 1576 default: 1577 break; 1578 } 1579 } 1580 1581 /* 1582 * Asserts that the given entry ends at or before the specified address. 1583 * If necessary, it splits the entry into two. 1584 * 1585 * The map must be exclusively locked. 1586 */ 1587 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1588 { \ 1589 if (endaddr < entry->end) \ 1590 _vm_map_clip_end(map, entry, endaddr, countp); \ 1591 } 1592 1593 /* 1594 * This routine is called only when it is known that the entry must be split. 1595 * 1596 * The map must be exclusively locked. 1597 */ 1598 static void 1599 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1600 int *countp) 1601 { 1602 vm_map_entry_t new_entry; 1603 1604 /* 1605 * If there is no object backing this entry, we might as well create 1606 * one now. If we defer it, an object can get created after the map 1607 * is clipped, and individual objects will be created for the split-up 1608 * map. This is a bit of a hack, but is also about the best place to 1609 * put this improvement. 1610 */ 1611 1612 if (entry->object.vm_object == NULL && !map->system_map && 1613 VM_MAP_ENTRY_WITHIN_PARTITION(entry)) { 1614 vm_map_entry_allocate_object(entry); 1615 } 1616 1617 /* 1618 * Create a new entry and insert it AFTER the specified entry 1619 */ 1620 new_entry = vm_map_entry_create(map, countp); 1621 *new_entry = *entry; 1622 1623 new_entry->start = entry->end = end; 1624 new_entry->offset += (end - entry->start); 1625 1626 vm_map_entry_link(map, new_entry); 1627 1628 switch(entry->maptype) { 1629 case VM_MAPTYPE_NORMAL: 1630 case VM_MAPTYPE_VPAGETABLE: 1631 if (new_entry->object.vm_object) { 1632 vm_object_hold(new_entry->object.vm_object); 1633 vm_object_chain_wait(new_entry->object.vm_object, 0); 1634 vm_object_reference_locked(new_entry->object.vm_object); 1635 vm_object_drop(new_entry->object.vm_object); 1636 } 1637 break; 1638 default: 1639 break; 1640 } 1641 } 1642 1643 /* 1644 * Asserts that the starting and ending region addresses fall within the 1645 * valid range for the map. 1646 */ 1647 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1648 { \ 1649 if (start < vm_map_min(map)) \ 1650 start = vm_map_min(map); \ 1651 if (end > vm_map_max(map)) \ 1652 end = vm_map_max(map); \ 1653 if (start > end) \ 1654 start = end; \ 1655 } 1656 1657 /* 1658 * Used to block when an in-transition collison occurs. The map 1659 * is unlocked for the sleep and relocked before the return. 1660 */ 1661 void 1662 vm_map_transition_wait(vm_map_t map, int relock) 1663 { 1664 tsleep_interlock(map, 0); 1665 vm_map_unlock(map); 1666 tsleep(map, PINTERLOCKED, "vment", 0); 1667 if (relock) 1668 vm_map_lock(map); 1669 } 1670 1671 /* 1672 * When we do blocking operations with the map lock held it is 1673 * possible that a clip might have occured on our in-transit entry, 1674 * requiring an adjustment to the entry in our loop. These macros 1675 * help the pageable and clip_range code deal with the case. The 1676 * conditional costs virtually nothing if no clipping has occured. 1677 */ 1678 1679 #define CLIP_CHECK_BACK(entry, save_start) \ 1680 do { \ 1681 while (entry->start != save_start) { \ 1682 entry = vm_map_rb_tree_RB_PREV(entry); \ 1683 KASSERT(entry, ("bad entry clip")); \ 1684 } \ 1685 } while(0) 1686 1687 #define CLIP_CHECK_FWD(entry, save_end) \ 1688 do { \ 1689 while (entry->end != save_end) { \ 1690 entry = vm_map_rb_tree_RB_NEXT(entry); \ 1691 KASSERT(entry, ("bad entry clip")); \ 1692 } \ 1693 } while(0) 1694 1695 1696 /* 1697 * Clip the specified range and return the base entry. The 1698 * range may cover several entries starting at the returned base 1699 * and the first and last entry in the covering sequence will be 1700 * properly clipped to the requested start and end address. 1701 * 1702 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1703 * flag. 1704 * 1705 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1706 * covered by the requested range. 1707 * 1708 * The map must be exclusively locked on entry and will remain locked 1709 * on return. If no range exists or the range contains holes and you 1710 * specified that no holes were allowed, NULL will be returned. This 1711 * routine may temporarily unlock the map in order avoid a deadlock when 1712 * sleeping. 1713 */ 1714 static 1715 vm_map_entry_t 1716 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1717 int *countp, int flags) 1718 { 1719 vm_map_entry_t start_entry; 1720 vm_map_entry_t entry; 1721 vm_map_entry_t next; 1722 1723 /* 1724 * Locate the entry and effect initial clipping. The in-transition 1725 * case does not occur very often so do not try to optimize it. 1726 */ 1727 again: 1728 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1729 return (NULL); 1730 entry = start_entry; 1731 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1732 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1733 ++mycpu->gd_cnt.v_intrans_coll; 1734 ++mycpu->gd_cnt.v_intrans_wait; 1735 vm_map_transition_wait(map, 1); 1736 /* 1737 * entry and/or start_entry may have been clipped while 1738 * we slept, or may have gone away entirely. We have 1739 * to restart from the lookup. 1740 */ 1741 goto again; 1742 } 1743 1744 /* 1745 * Since we hold an exclusive map lock we do not have to restart 1746 * after clipping, even though clipping may block in zalloc. 1747 */ 1748 vm_map_clip_start(map, entry, start, countp); 1749 vm_map_clip_end(map, entry, end, countp); 1750 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1751 1752 /* 1753 * Scan entries covered by the range. When working on the next 1754 * entry a restart need only re-loop on the current entry which 1755 * we have already locked, since 'next' may have changed. Also, 1756 * even though entry is safe, it may have been clipped so we 1757 * have to iterate forwards through the clip after sleeping. 1758 */ 1759 for (;;) { 1760 next = vm_map_rb_tree_RB_NEXT(entry); 1761 if (next == NULL || next->start >= end) 1762 break; 1763 if (flags & MAP_CLIP_NO_HOLES) { 1764 if (next->start > entry->end) { 1765 vm_map_unclip_range(map, start_entry, 1766 start, entry->end, countp, flags); 1767 return(NULL); 1768 } 1769 } 1770 1771 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1772 vm_offset_t save_end = entry->end; 1773 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1774 ++mycpu->gd_cnt.v_intrans_coll; 1775 ++mycpu->gd_cnt.v_intrans_wait; 1776 vm_map_transition_wait(map, 1); 1777 1778 /* 1779 * clips might have occured while we blocked. 1780 */ 1781 CLIP_CHECK_FWD(entry, save_end); 1782 CLIP_CHECK_BACK(start_entry, start); 1783 continue; 1784 } 1785 1786 /* 1787 * No restart necessary even though clip_end may block, we 1788 * are holding the map lock. 1789 */ 1790 vm_map_clip_end(map, next, end, countp); 1791 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1792 entry = next; 1793 } 1794 if (flags & MAP_CLIP_NO_HOLES) { 1795 if (entry->end != end) { 1796 vm_map_unclip_range(map, start_entry, 1797 start, entry->end, countp, flags); 1798 return(NULL); 1799 } 1800 } 1801 return(start_entry); 1802 } 1803 1804 /* 1805 * Undo the effect of vm_map_clip_range(). You should pass the same 1806 * flags and the same range that you passed to vm_map_clip_range(). 1807 * This code will clear the in-transition flag on the entries and 1808 * wake up anyone waiting. This code will also simplify the sequence 1809 * and attempt to merge it with entries before and after the sequence. 1810 * 1811 * The map must be locked on entry and will remain locked on return. 1812 * 1813 * Note that you should also pass the start_entry returned by 1814 * vm_map_clip_range(). However, if you block between the two calls 1815 * with the map unlocked please be aware that the start_entry may 1816 * have been clipped and you may need to scan it backwards to find 1817 * the entry corresponding with the original start address. You are 1818 * responsible for this, vm_map_unclip_range() expects the correct 1819 * start_entry to be passed to it and will KASSERT otherwise. 1820 */ 1821 static 1822 void 1823 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1824 vm_offset_t start, vm_offset_t end, 1825 int *countp, int flags) 1826 { 1827 vm_map_entry_t entry; 1828 1829 entry = start_entry; 1830 1831 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1832 while (entry && entry->start < end) { 1833 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1834 ("in-transition flag not set during unclip on: %p", 1835 entry)); 1836 KASSERT(entry->end <= end, 1837 ("unclip_range: tail wasn't clipped")); 1838 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1839 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1840 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1841 wakeup(map); 1842 } 1843 entry = vm_map_rb_tree_RB_NEXT(entry); 1844 } 1845 1846 /* 1847 * Simplification does not block so there is no restart case. 1848 */ 1849 entry = start_entry; 1850 while (entry && entry->start < end) { 1851 vm_map_simplify_entry(map, entry, countp); 1852 entry = vm_map_rb_tree_RB_NEXT(entry); 1853 } 1854 } 1855 1856 /* 1857 * Mark the given range as handled by a subordinate map. 1858 * 1859 * This range must have been created with vm_map_find(), and no other 1860 * operations may have been performed on this range prior to calling 1861 * vm_map_submap(). 1862 * 1863 * Submappings cannot be removed. 1864 * 1865 * No requirements. 1866 */ 1867 int 1868 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1869 { 1870 vm_map_entry_t entry; 1871 int result = KERN_INVALID_ARGUMENT; 1872 int count; 1873 1874 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1875 vm_map_lock(map); 1876 1877 VM_MAP_RANGE_CHECK(map, start, end); 1878 1879 if (vm_map_lookup_entry(map, start, &entry)) { 1880 vm_map_clip_start(map, entry, start, &count); 1881 } else if (entry) { 1882 entry = vm_map_rb_tree_RB_NEXT(entry); 1883 } else { 1884 entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 1885 } 1886 1887 vm_map_clip_end(map, entry, end, &count); 1888 1889 if ((entry->start == start) && (entry->end == end) && 1890 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1891 (entry->object.vm_object == NULL)) { 1892 entry->object.sub_map = submap; 1893 entry->maptype = VM_MAPTYPE_SUBMAP; 1894 result = KERN_SUCCESS; 1895 } 1896 vm_map_unlock(map); 1897 vm_map_entry_release(count); 1898 1899 return (result); 1900 } 1901 1902 /* 1903 * Sets the protection of the specified address region in the target map. 1904 * If "set_max" is specified, the maximum protection is to be set; 1905 * otherwise, only the current protection is affected. 1906 * 1907 * The protection is not applicable to submaps, but is applicable to normal 1908 * maps and maps governed by virtual page tables. For example, when operating 1909 * on a virtual page table our protection basically controls how COW occurs 1910 * on the backing object, whereas the virtual page table abstraction itself 1911 * is an abstraction for userland. 1912 * 1913 * No requirements. 1914 */ 1915 int 1916 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1917 vm_prot_t new_prot, boolean_t set_max) 1918 { 1919 vm_map_entry_t current; 1920 vm_map_entry_t entry; 1921 int count; 1922 1923 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1924 vm_map_lock(map); 1925 1926 VM_MAP_RANGE_CHECK(map, start, end); 1927 1928 if (vm_map_lookup_entry(map, start, &entry)) { 1929 vm_map_clip_start(map, entry, start, &count); 1930 } else if (entry) { 1931 entry = vm_map_rb_tree_RB_NEXT(entry); 1932 } else { 1933 entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 1934 } 1935 1936 /* 1937 * Make a first pass to check for protection violations. 1938 */ 1939 current = entry; 1940 while (current && current->start < end) { 1941 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1942 vm_map_unlock(map); 1943 vm_map_entry_release(count); 1944 return (KERN_INVALID_ARGUMENT); 1945 } 1946 if ((new_prot & current->max_protection) != new_prot) { 1947 vm_map_unlock(map); 1948 vm_map_entry_release(count); 1949 return (KERN_PROTECTION_FAILURE); 1950 } 1951 1952 /* 1953 * When making a SHARED+RW file mmap writable, update 1954 * v_lastwrite_ts. 1955 */ 1956 if (new_prot & PROT_WRITE && 1957 (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 1958 (current->maptype == VM_MAPTYPE_NORMAL || 1959 current->maptype == VM_MAPTYPE_VPAGETABLE) && 1960 current->object.vm_object && 1961 current->object.vm_object->type == OBJT_VNODE) { 1962 struct vnode *vp; 1963 1964 vp = current->object.vm_object->handle; 1965 if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) { 1966 vfs_timestamp(&vp->v_lastwrite_ts); 1967 vsetflags(vp, VLASTWRITETS); 1968 vn_unlock(vp); 1969 } 1970 } 1971 current = vm_map_rb_tree_RB_NEXT(current); 1972 } 1973 1974 /* 1975 * Go back and fix up protections. [Note that clipping is not 1976 * necessary the second time.] 1977 */ 1978 current = entry; 1979 1980 while (current && current->start < end) { 1981 vm_prot_t old_prot; 1982 1983 vm_map_clip_end(map, current, end, &count); 1984 1985 old_prot = current->protection; 1986 if (set_max) { 1987 current->max_protection = new_prot; 1988 current->protection = new_prot & old_prot; 1989 } else { 1990 current->protection = new_prot; 1991 } 1992 1993 /* 1994 * Update physical map if necessary. Worry about copy-on-write 1995 * here -- CHECK THIS XXX 1996 */ 1997 if (current->protection != old_prot) { 1998 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1999 VM_PROT_ALL) 2000 2001 pmap_protect(map->pmap, current->start, 2002 current->end, 2003 current->protection & MASK(current)); 2004 #undef MASK 2005 } 2006 2007 vm_map_simplify_entry(map, current, &count); 2008 2009 current = vm_map_rb_tree_RB_NEXT(current); 2010 } 2011 vm_map_unlock(map); 2012 vm_map_entry_release(count); 2013 return (KERN_SUCCESS); 2014 } 2015 2016 /* 2017 * This routine traverses a processes map handling the madvise 2018 * system call. Advisories are classified as either those effecting 2019 * the vm_map_entry structure, or those effecting the underlying 2020 * objects. 2021 * 2022 * The <value> argument is used for extended madvise calls. 2023 * 2024 * No requirements. 2025 */ 2026 int 2027 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 2028 int behav, off_t value) 2029 { 2030 vm_map_entry_t current, entry; 2031 int modify_map = 0; 2032 int error = 0; 2033 int count; 2034 2035 /* 2036 * Some madvise calls directly modify the vm_map_entry, in which case 2037 * we need to use an exclusive lock on the map and we need to perform 2038 * various clipping operations. Otherwise we only need a read-lock 2039 * on the map. 2040 */ 2041 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2042 2043 switch(behav) { 2044 case MADV_NORMAL: 2045 case MADV_SEQUENTIAL: 2046 case MADV_RANDOM: 2047 case MADV_NOSYNC: 2048 case MADV_AUTOSYNC: 2049 case MADV_NOCORE: 2050 case MADV_CORE: 2051 case MADV_SETMAP: 2052 modify_map = 1; 2053 vm_map_lock(map); 2054 break; 2055 case MADV_INVAL: 2056 case MADV_WILLNEED: 2057 case MADV_DONTNEED: 2058 case MADV_FREE: 2059 vm_map_lock_read(map); 2060 break; 2061 default: 2062 vm_map_entry_release(count); 2063 return (EINVAL); 2064 } 2065 2066 /* 2067 * Locate starting entry and clip if necessary. 2068 */ 2069 2070 VM_MAP_RANGE_CHECK(map, start, end); 2071 2072 if (vm_map_lookup_entry(map, start, &entry)) { 2073 if (modify_map) 2074 vm_map_clip_start(map, entry, start, &count); 2075 } else if (entry) { 2076 entry = vm_map_rb_tree_RB_NEXT(entry); 2077 } else { 2078 entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 2079 } 2080 2081 if (modify_map) { 2082 /* 2083 * madvise behaviors that are implemented in the vm_map_entry. 2084 * 2085 * We clip the vm_map_entry so that behavioral changes are 2086 * limited to the specified address range. 2087 */ 2088 for (current = entry; 2089 current && current->start < end; 2090 current = vm_map_rb_tree_RB_NEXT(current)) { 2091 /* 2092 * Ignore submaps 2093 */ 2094 if (current->maptype == VM_MAPTYPE_SUBMAP) 2095 continue; 2096 2097 vm_map_clip_end(map, current, end, &count); 2098 2099 switch (behav) { 2100 case MADV_NORMAL: 2101 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2102 break; 2103 case MADV_SEQUENTIAL: 2104 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2105 break; 2106 case MADV_RANDOM: 2107 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2108 break; 2109 case MADV_NOSYNC: 2110 current->eflags |= MAP_ENTRY_NOSYNC; 2111 break; 2112 case MADV_AUTOSYNC: 2113 current->eflags &= ~MAP_ENTRY_NOSYNC; 2114 break; 2115 case MADV_NOCORE: 2116 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2117 break; 2118 case MADV_CORE: 2119 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2120 break; 2121 case MADV_SETMAP: 2122 /* 2123 * Set the page directory page for a map 2124 * governed by a virtual page table. Mark 2125 * the entry as being governed by a virtual 2126 * page table if it is not. 2127 * 2128 * XXX the page directory page is stored 2129 * in the avail_ssize field if the map_entry. 2130 * 2131 * XXX the map simplification code does not 2132 * compare this field so weird things may 2133 * happen if you do not apply this function 2134 * to the entire mapping governed by the 2135 * virtual page table. 2136 */ 2137 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 2138 error = EINVAL; 2139 break; 2140 } 2141 current->aux.master_pde = value; 2142 pmap_remove(map->pmap, 2143 current->start, current->end); 2144 break; 2145 case MADV_INVAL: 2146 /* 2147 * Invalidate the related pmap entries, used 2148 * to flush portions of the real kernel's 2149 * pmap when the caller has removed or 2150 * modified existing mappings in a virtual 2151 * page table. 2152 * 2153 * (exclusive locked map version does not 2154 * need the range interlock). 2155 */ 2156 pmap_remove(map->pmap, 2157 current->start, current->end); 2158 break; 2159 default: 2160 error = EINVAL; 2161 break; 2162 } 2163 vm_map_simplify_entry(map, current, &count); 2164 } 2165 vm_map_unlock(map); 2166 } else { 2167 vm_pindex_t pindex; 2168 vm_pindex_t delta; 2169 2170 /* 2171 * madvise behaviors that are implemented in the underlying 2172 * vm_object. 2173 * 2174 * Since we don't clip the vm_map_entry, we have to clip 2175 * the vm_object pindex and count. 2176 * 2177 * NOTE! These functions are only supported on normal maps, 2178 * except MADV_INVAL which is also supported on 2179 * virtual page tables. 2180 */ 2181 for (current = entry; 2182 current && current->start < end; 2183 current = vm_map_rb_tree_RB_NEXT(current)) { 2184 vm_offset_t useStart; 2185 2186 if (current->maptype != VM_MAPTYPE_NORMAL && 2187 (current->maptype != VM_MAPTYPE_VPAGETABLE || 2188 behav != MADV_INVAL)) { 2189 continue; 2190 } 2191 2192 pindex = OFF_TO_IDX(current->offset); 2193 delta = atop(current->end - current->start); 2194 useStart = current->start; 2195 2196 if (current->start < start) { 2197 pindex += atop(start - current->start); 2198 delta -= atop(start - current->start); 2199 useStart = start; 2200 } 2201 if (current->end > end) 2202 delta -= atop(current->end - end); 2203 2204 if ((vm_spindex_t)delta <= 0) 2205 continue; 2206 2207 if (behav == MADV_INVAL) { 2208 /* 2209 * Invalidate the related pmap entries, used 2210 * to flush portions of the real kernel's 2211 * pmap when the caller has removed or 2212 * modified existing mappings in a virtual 2213 * page table. 2214 * 2215 * (shared locked map version needs the 2216 * interlock, see vm_fault()). 2217 */ 2218 struct vm_map_ilock ilock; 2219 2220 KASSERT(useStart >= VM_MIN_USER_ADDRESS && 2221 useStart + ptoa(delta) <= 2222 VM_MAX_USER_ADDRESS, 2223 ("Bad range %016jx-%016jx (%016jx)", 2224 useStart, useStart + ptoa(delta), 2225 delta)); 2226 vm_map_interlock(map, &ilock, 2227 useStart, 2228 useStart + ptoa(delta)); 2229 pmap_remove(map->pmap, 2230 useStart, 2231 useStart + ptoa(delta)); 2232 vm_map_deinterlock(map, &ilock); 2233 } else { 2234 vm_object_madvise(current->object.vm_object, 2235 pindex, delta, behav); 2236 } 2237 2238 /* 2239 * Try to populate the page table. Mappings governed 2240 * by virtual page tables cannot be pre-populated 2241 * without a lot of work so don't try. 2242 */ 2243 if (behav == MADV_WILLNEED && 2244 current->maptype != VM_MAPTYPE_VPAGETABLE) { 2245 pmap_object_init_pt( 2246 map->pmap, 2247 useStart, 2248 current->protection, 2249 current->object.vm_object, 2250 pindex, 2251 (count << PAGE_SHIFT), 2252 MAP_PREFAULT_MADVISE 2253 ); 2254 } 2255 } 2256 vm_map_unlock_read(map); 2257 } 2258 vm_map_entry_release(count); 2259 return(error); 2260 } 2261 2262 2263 /* 2264 * Sets the inheritance of the specified address range in the target map. 2265 * Inheritance affects how the map will be shared with child maps at the 2266 * time of vm_map_fork. 2267 */ 2268 int 2269 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2270 vm_inherit_t new_inheritance) 2271 { 2272 vm_map_entry_t entry; 2273 vm_map_entry_t temp_entry; 2274 int count; 2275 2276 switch (new_inheritance) { 2277 case VM_INHERIT_NONE: 2278 case VM_INHERIT_COPY: 2279 case VM_INHERIT_SHARE: 2280 break; 2281 default: 2282 return (KERN_INVALID_ARGUMENT); 2283 } 2284 2285 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2286 vm_map_lock(map); 2287 2288 VM_MAP_RANGE_CHECK(map, start, end); 2289 2290 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2291 entry = temp_entry; 2292 vm_map_clip_start(map, entry, start, &count); 2293 } else if (temp_entry) { 2294 entry = vm_map_rb_tree_RB_NEXT(temp_entry); 2295 } else { 2296 entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 2297 } 2298 2299 while (entry && entry->start < end) { 2300 vm_map_clip_end(map, entry, end, &count); 2301 2302 entry->inheritance = new_inheritance; 2303 2304 vm_map_simplify_entry(map, entry, &count); 2305 2306 entry = vm_map_rb_tree_RB_NEXT(entry); 2307 } 2308 vm_map_unlock(map); 2309 vm_map_entry_release(count); 2310 return (KERN_SUCCESS); 2311 } 2312 2313 /* 2314 * Implement the semantics of mlock 2315 */ 2316 int 2317 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2318 boolean_t new_pageable) 2319 { 2320 vm_map_entry_t entry; 2321 vm_map_entry_t start_entry; 2322 vm_offset_t end; 2323 int rv = KERN_SUCCESS; 2324 int count; 2325 2326 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2327 vm_map_lock(map); 2328 VM_MAP_RANGE_CHECK(map, start, real_end); 2329 end = real_end; 2330 2331 start_entry = vm_map_clip_range(map, start, end, &count, 2332 MAP_CLIP_NO_HOLES); 2333 if (start_entry == NULL) { 2334 vm_map_unlock(map); 2335 vm_map_entry_release(count); 2336 return (KERN_INVALID_ADDRESS); 2337 } 2338 2339 if (new_pageable == 0) { 2340 entry = start_entry; 2341 while (entry && entry->start < end) { 2342 vm_offset_t save_start; 2343 vm_offset_t save_end; 2344 2345 /* 2346 * Already user wired or hard wired (trivial cases) 2347 */ 2348 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2349 entry = vm_map_rb_tree_RB_NEXT(entry); 2350 continue; 2351 } 2352 if (entry->wired_count != 0) { 2353 entry->wired_count++; 2354 entry->eflags |= MAP_ENTRY_USER_WIRED; 2355 entry = vm_map_rb_tree_RB_NEXT(entry); 2356 continue; 2357 } 2358 2359 /* 2360 * A new wiring requires instantiation of appropriate 2361 * management structures and the faulting in of the 2362 * page. 2363 */ 2364 if (entry->maptype == VM_MAPTYPE_NORMAL || 2365 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2366 int copyflag = entry->eflags & 2367 MAP_ENTRY_NEEDS_COPY; 2368 if (copyflag && ((entry->protection & 2369 VM_PROT_WRITE) != 0)) { 2370 vm_map_entry_shadow(entry, 0); 2371 } else if (entry->object.vm_object == NULL && 2372 !map->system_map) { 2373 vm_map_entry_allocate_object(entry); 2374 } 2375 } 2376 entry->wired_count++; 2377 entry->eflags |= MAP_ENTRY_USER_WIRED; 2378 2379 /* 2380 * Now fault in the area. Note that vm_fault_wire() 2381 * may release the map lock temporarily, it will be 2382 * relocked on return. The in-transition 2383 * flag protects the entries. 2384 */ 2385 save_start = entry->start; 2386 save_end = entry->end; 2387 rv = vm_fault_wire(map, entry, TRUE, 0); 2388 if (rv) { 2389 CLIP_CHECK_BACK(entry, save_start); 2390 for (;;) { 2391 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2392 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2393 entry->wired_count = 0; 2394 if (entry->end == save_end) 2395 break; 2396 entry = vm_map_rb_tree_RB_NEXT(entry); 2397 KASSERT(entry, 2398 ("bad entry clip during backout")); 2399 } 2400 end = save_start; /* unwire the rest */ 2401 break; 2402 } 2403 /* 2404 * note that even though the entry might have been 2405 * clipped, the USER_WIRED flag we set prevents 2406 * duplication so we do not have to do a 2407 * clip check. 2408 */ 2409 entry = vm_map_rb_tree_RB_NEXT(entry); 2410 } 2411 2412 /* 2413 * If we failed fall through to the unwiring section to 2414 * unwire what we had wired so far. 'end' has already 2415 * been adjusted. 2416 */ 2417 if (rv) 2418 new_pageable = 1; 2419 2420 /* 2421 * start_entry might have been clipped if we unlocked the 2422 * map and blocked. No matter how clipped it has gotten 2423 * there should be a fragment that is on our start boundary. 2424 */ 2425 CLIP_CHECK_BACK(start_entry, start); 2426 } 2427 2428 /* 2429 * Deal with the unwiring case. 2430 */ 2431 if (new_pageable) { 2432 /* 2433 * This is the unwiring case. We must first ensure that the 2434 * range to be unwired is really wired down. We know there 2435 * are no holes. 2436 */ 2437 entry = start_entry; 2438 while (entry && entry->start < end) { 2439 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2440 rv = KERN_INVALID_ARGUMENT; 2441 goto done; 2442 } 2443 KASSERT(entry->wired_count != 0, 2444 ("wired count was 0 with USER_WIRED set! %p", 2445 entry)); 2446 entry = vm_map_rb_tree_RB_NEXT(entry); 2447 } 2448 2449 /* 2450 * Now decrement the wiring count for each region. If a region 2451 * becomes completely unwired, unwire its physical pages and 2452 * mappings. 2453 */ 2454 /* 2455 * The map entries are processed in a loop, checking to 2456 * make sure the entry is wired and asserting it has a wired 2457 * count. However, another loop was inserted more-or-less in 2458 * the middle of the unwiring path. This loop picks up the 2459 * "entry" loop variable from the first loop without first 2460 * setting it to start_entry. Naturally, the secound loop 2461 * is never entered and the pages backing the entries are 2462 * never unwired. This can lead to a leak of wired pages. 2463 */ 2464 entry = start_entry; 2465 while (entry && entry->start < end) { 2466 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2467 ("expected USER_WIRED on entry %p", entry)); 2468 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2469 entry->wired_count--; 2470 if (entry->wired_count == 0) 2471 vm_fault_unwire(map, entry); 2472 entry = vm_map_rb_tree_RB_NEXT(entry); 2473 } 2474 } 2475 done: 2476 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2477 MAP_CLIP_NO_HOLES); 2478 vm_map_unlock(map); 2479 vm_map_entry_release(count); 2480 2481 return (rv); 2482 } 2483 2484 /* 2485 * Sets the pageability of the specified address range in the target map. 2486 * Regions specified as not pageable require locked-down physical 2487 * memory and physical page maps. 2488 * 2489 * The map must not be locked, but a reference must remain to the map 2490 * throughout the call. 2491 * 2492 * This function may be called via the zalloc path and must properly 2493 * reserve map entries for kernel_map. 2494 * 2495 * No requirements. 2496 */ 2497 int 2498 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2499 { 2500 vm_map_entry_t entry; 2501 vm_map_entry_t start_entry; 2502 vm_offset_t end; 2503 int rv = KERN_SUCCESS; 2504 int count; 2505 2506 if (kmflags & KM_KRESERVE) 2507 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2508 else 2509 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2510 vm_map_lock(map); 2511 VM_MAP_RANGE_CHECK(map, start, real_end); 2512 end = real_end; 2513 2514 start_entry = vm_map_clip_range(map, start, end, &count, 2515 MAP_CLIP_NO_HOLES); 2516 if (start_entry == NULL) { 2517 vm_map_unlock(map); 2518 rv = KERN_INVALID_ADDRESS; 2519 goto failure; 2520 } 2521 if ((kmflags & KM_PAGEABLE) == 0) { 2522 /* 2523 * Wiring. 2524 * 2525 * 1. Holding the write lock, we create any shadow or zero-fill 2526 * objects that need to be created. Then we clip each map 2527 * entry to the region to be wired and increment its wiring 2528 * count. We create objects before clipping the map entries 2529 * to avoid object proliferation. 2530 * 2531 * 2. We downgrade to a read lock, and call vm_fault_wire to 2532 * fault in the pages for any newly wired area (wired_count is 2533 * 1). 2534 * 2535 * Downgrading to a read lock for vm_fault_wire avoids a 2536 * possible deadlock with another process that may have faulted 2537 * on one of the pages to be wired (it would mark the page busy, 2538 * blocking us, then in turn block on the map lock that we 2539 * hold). Because of problems in the recursive lock package, 2540 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2541 * any actions that require the write lock must be done 2542 * beforehand. Because we keep the read lock on the map, the 2543 * copy-on-write status of the entries we modify here cannot 2544 * change. 2545 */ 2546 entry = start_entry; 2547 while (entry && entry->start < end) { 2548 /* 2549 * Trivial case if the entry is already wired 2550 */ 2551 if (entry->wired_count) { 2552 entry->wired_count++; 2553 entry = vm_map_rb_tree_RB_NEXT(entry); 2554 continue; 2555 } 2556 2557 /* 2558 * The entry is being newly wired, we have to setup 2559 * appropriate management structures. A shadow 2560 * object is required for a copy-on-write region, 2561 * or a normal object for a zero-fill region. We 2562 * do not have to do this for entries that point to sub 2563 * maps because we won't hold the lock on the sub map. 2564 */ 2565 if (entry->maptype == VM_MAPTYPE_NORMAL || 2566 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2567 int copyflag = entry->eflags & 2568 MAP_ENTRY_NEEDS_COPY; 2569 if (copyflag && ((entry->protection & 2570 VM_PROT_WRITE) != 0)) { 2571 vm_map_entry_shadow(entry, 0); 2572 } else if (entry->object.vm_object == NULL && 2573 !map->system_map) { 2574 vm_map_entry_allocate_object(entry); 2575 } 2576 } 2577 entry->wired_count++; 2578 entry = vm_map_rb_tree_RB_NEXT(entry); 2579 } 2580 2581 /* 2582 * Pass 2. 2583 */ 2584 2585 /* 2586 * HACK HACK HACK HACK 2587 * 2588 * vm_fault_wire() temporarily unlocks the map to avoid 2589 * deadlocks. The in-transition flag from vm_map_clip_range 2590 * call should protect us from changes while the map is 2591 * unlocked. T 2592 * 2593 * NOTE: Previously this comment stated that clipping might 2594 * still occur while the entry is unlocked, but from 2595 * what I can tell it actually cannot. 2596 * 2597 * It is unclear whether the CLIP_CHECK_*() calls 2598 * are still needed but we keep them in anyway. 2599 * 2600 * HACK HACK HACK HACK 2601 */ 2602 2603 entry = start_entry; 2604 while (entry && entry->start < end) { 2605 /* 2606 * If vm_fault_wire fails for any page we need to undo 2607 * what has been done. We decrement the wiring count 2608 * for those pages which have not yet been wired (now) 2609 * and unwire those that have (later). 2610 */ 2611 vm_offset_t save_start = entry->start; 2612 vm_offset_t save_end = entry->end; 2613 2614 if (entry->wired_count == 1) 2615 rv = vm_fault_wire(map, entry, FALSE, kmflags); 2616 if (rv) { 2617 CLIP_CHECK_BACK(entry, save_start); 2618 for (;;) { 2619 KASSERT(entry->wired_count == 1, 2620 ("wired_count changed unexpectedly")); 2621 entry->wired_count = 0; 2622 if (entry->end == save_end) 2623 break; 2624 entry = vm_map_rb_tree_RB_NEXT(entry); 2625 KASSERT(entry, 2626 ("bad entry clip during backout")); 2627 } 2628 end = save_start; 2629 break; 2630 } 2631 CLIP_CHECK_FWD(entry, save_end); 2632 entry = vm_map_rb_tree_RB_NEXT(entry); 2633 } 2634 2635 /* 2636 * If a failure occured undo everything by falling through 2637 * to the unwiring code. 'end' has already been adjusted 2638 * appropriately. 2639 */ 2640 if (rv) 2641 kmflags |= KM_PAGEABLE; 2642 2643 /* 2644 * start_entry is still IN_TRANSITION but may have been 2645 * clipped since vm_fault_wire() unlocks and relocks the 2646 * map. No matter how clipped it has gotten there should 2647 * be a fragment that is on our start boundary. 2648 */ 2649 CLIP_CHECK_BACK(start_entry, start); 2650 } 2651 2652 if (kmflags & KM_PAGEABLE) { 2653 /* 2654 * This is the unwiring case. We must first ensure that the 2655 * range to be unwired is really wired down. We know there 2656 * are no holes. 2657 */ 2658 entry = start_entry; 2659 while (entry && entry->start < end) { 2660 if (entry->wired_count == 0) { 2661 rv = KERN_INVALID_ARGUMENT; 2662 goto done; 2663 } 2664 entry = vm_map_rb_tree_RB_NEXT(entry); 2665 } 2666 2667 /* 2668 * Now decrement the wiring count for each region. If a region 2669 * becomes completely unwired, unwire its physical pages and 2670 * mappings. 2671 */ 2672 entry = start_entry; 2673 while (entry && entry->start < end) { 2674 entry->wired_count--; 2675 if (entry->wired_count == 0) 2676 vm_fault_unwire(map, entry); 2677 entry = vm_map_rb_tree_RB_NEXT(entry); 2678 } 2679 } 2680 done: 2681 vm_map_unclip_range(map, start_entry, start, real_end, 2682 &count, MAP_CLIP_NO_HOLES); 2683 vm_map_unlock(map); 2684 failure: 2685 if (kmflags & KM_KRESERVE) 2686 vm_map_entry_krelease(count); 2687 else 2688 vm_map_entry_release(count); 2689 return (rv); 2690 } 2691 2692 /* 2693 * Mark a newly allocated address range as wired but do not fault in 2694 * the pages. The caller is expected to load the pages into the object. 2695 * 2696 * The map must be locked on entry and will remain locked on return. 2697 * No other requirements. 2698 */ 2699 void 2700 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2701 int *countp) 2702 { 2703 vm_map_entry_t scan; 2704 vm_map_entry_t entry; 2705 2706 entry = vm_map_clip_range(map, addr, addr + size, 2707 countp, MAP_CLIP_NO_HOLES); 2708 scan = entry; 2709 while (scan && scan->start < addr + size) { 2710 KKASSERT(scan->wired_count == 0); 2711 scan->wired_count = 1; 2712 scan = vm_map_rb_tree_RB_NEXT(scan); 2713 } 2714 vm_map_unclip_range(map, entry, addr, addr + size, 2715 countp, MAP_CLIP_NO_HOLES); 2716 } 2717 2718 /* 2719 * Push any dirty cached pages in the address range to their pager. 2720 * If syncio is TRUE, dirty pages are written synchronously. 2721 * If invalidate is TRUE, any cached pages are freed as well. 2722 * 2723 * This routine is called by sys_msync() 2724 * 2725 * Returns an error if any part of the specified range is not mapped. 2726 * 2727 * No requirements. 2728 */ 2729 int 2730 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2731 boolean_t syncio, boolean_t invalidate) 2732 { 2733 vm_map_entry_t current; 2734 vm_map_entry_t next; 2735 vm_map_entry_t entry; 2736 vm_size_t size; 2737 vm_object_t object; 2738 vm_object_t tobj; 2739 vm_ooffset_t offset; 2740 2741 vm_map_lock_read(map); 2742 VM_MAP_RANGE_CHECK(map, start, end); 2743 if (!vm_map_lookup_entry(map, start, &entry)) { 2744 vm_map_unlock_read(map); 2745 return (KERN_INVALID_ADDRESS); 2746 } 2747 lwkt_gettoken(&map->token); 2748 2749 /* 2750 * Make a first pass to check for holes. 2751 */ 2752 current = entry; 2753 while (current && current->start < end) { 2754 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2755 lwkt_reltoken(&map->token); 2756 vm_map_unlock_read(map); 2757 return (KERN_INVALID_ARGUMENT); 2758 } 2759 next = vm_map_rb_tree_RB_NEXT(current); 2760 if (end > current->end && 2761 (next == NULL || 2762 current->end != next->start)) { 2763 lwkt_reltoken(&map->token); 2764 vm_map_unlock_read(map); 2765 return (KERN_INVALID_ADDRESS); 2766 } 2767 current = next; 2768 } 2769 2770 if (invalidate) 2771 pmap_remove(vm_map_pmap(map), start, end); 2772 2773 /* 2774 * Make a second pass, cleaning/uncaching pages from the indicated 2775 * objects as we go. 2776 */ 2777 current = entry; 2778 while (current && current->start < end) { 2779 offset = current->offset + (start - current->start); 2780 size = (end <= current->end ? end : current->end) - start; 2781 2782 switch(current->maptype) { 2783 case VM_MAPTYPE_SUBMAP: 2784 { 2785 vm_map_t smap; 2786 vm_map_entry_t tentry; 2787 vm_size_t tsize; 2788 2789 smap = current->object.sub_map; 2790 vm_map_lock_read(smap); 2791 vm_map_lookup_entry(smap, offset, &tentry); 2792 if (tentry == NULL) { 2793 tsize = vm_map_max(smap) - offset; 2794 object = NULL; 2795 offset = 0 + (offset - vm_map_min(smap)); 2796 } else { 2797 tsize = tentry->end - offset; 2798 object = tentry->object.vm_object; 2799 offset = tentry->offset + 2800 (offset - tentry->start); 2801 } 2802 vm_map_unlock_read(smap); 2803 if (tsize < size) 2804 size = tsize; 2805 break; 2806 } 2807 case VM_MAPTYPE_NORMAL: 2808 case VM_MAPTYPE_VPAGETABLE: 2809 object = current->object.vm_object; 2810 break; 2811 default: 2812 object = NULL; 2813 break; 2814 } 2815 2816 if (object) 2817 vm_object_hold(object); 2818 2819 /* 2820 * Note that there is absolutely no sense in writing out 2821 * anonymous objects, so we track down the vnode object 2822 * to write out. 2823 * We invalidate (remove) all pages from the address space 2824 * anyway, for semantic correctness. 2825 * 2826 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2827 * may start out with a NULL object. 2828 */ 2829 while (object && (tobj = object->backing_object) != NULL) { 2830 vm_object_hold(tobj); 2831 if (tobj == object->backing_object) { 2832 vm_object_lock_swap(); 2833 offset += object->backing_object_offset; 2834 vm_object_drop(object); 2835 object = tobj; 2836 if (object->size < OFF_TO_IDX(offset + size)) 2837 size = IDX_TO_OFF(object->size) - 2838 offset; 2839 break; 2840 } 2841 vm_object_drop(tobj); 2842 } 2843 if (object && (object->type == OBJT_VNODE) && 2844 (current->protection & VM_PROT_WRITE) && 2845 (object->flags & OBJ_NOMSYNC) == 0) { 2846 /* 2847 * Flush pages if writing is allowed, invalidate them 2848 * if invalidation requested. Pages undergoing I/O 2849 * will be ignored by vm_object_page_remove(). 2850 * 2851 * We cannot lock the vnode and then wait for paging 2852 * to complete without deadlocking against vm_fault. 2853 * Instead we simply call vm_object_page_remove() and 2854 * allow it to block internally on a page-by-page 2855 * basis when it encounters pages undergoing async 2856 * I/O. 2857 */ 2858 int flags; 2859 2860 /* no chain wait needed for vnode objects */ 2861 vm_object_reference_locked(object); 2862 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2863 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2864 flags |= invalidate ? OBJPC_INVAL : 0; 2865 2866 /* 2867 * When operating on a virtual page table just 2868 * flush the whole object. XXX we probably ought 2869 * to 2870 */ 2871 switch(current->maptype) { 2872 case VM_MAPTYPE_NORMAL: 2873 vm_object_page_clean(object, 2874 OFF_TO_IDX(offset), 2875 OFF_TO_IDX(offset + size + PAGE_MASK), 2876 flags); 2877 break; 2878 case VM_MAPTYPE_VPAGETABLE: 2879 vm_object_page_clean(object, 0, 0, flags); 2880 break; 2881 } 2882 vn_unlock(((struct vnode *)object->handle)); 2883 vm_object_deallocate_locked(object); 2884 } 2885 if (object && invalidate && 2886 ((object->type == OBJT_VNODE) || 2887 (object->type == OBJT_DEVICE) || 2888 (object->type == OBJT_MGTDEVICE))) { 2889 int clean_only = 2890 ((object->type == OBJT_DEVICE) || 2891 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE; 2892 /* no chain wait needed for vnode/device objects */ 2893 vm_object_reference_locked(object); 2894 switch(current->maptype) { 2895 case VM_MAPTYPE_NORMAL: 2896 vm_object_page_remove(object, 2897 OFF_TO_IDX(offset), 2898 OFF_TO_IDX(offset + size + PAGE_MASK), 2899 clean_only); 2900 break; 2901 case VM_MAPTYPE_VPAGETABLE: 2902 vm_object_page_remove(object, 0, 0, clean_only); 2903 break; 2904 } 2905 vm_object_deallocate_locked(object); 2906 } 2907 start += size; 2908 if (object) 2909 vm_object_drop(object); 2910 current = vm_map_rb_tree_RB_NEXT(current); 2911 } 2912 2913 lwkt_reltoken(&map->token); 2914 vm_map_unlock_read(map); 2915 2916 return (KERN_SUCCESS); 2917 } 2918 2919 /* 2920 * Make the region specified by this entry pageable. 2921 * 2922 * The vm_map must be exclusively locked. 2923 */ 2924 static void 2925 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2926 { 2927 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2928 entry->wired_count = 0; 2929 vm_fault_unwire(map, entry); 2930 } 2931 2932 /* 2933 * Deallocate the given entry from the target map. 2934 * 2935 * The vm_map must be exclusively locked. 2936 */ 2937 static void 2938 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2939 { 2940 vm_map_entry_unlink(map, entry); 2941 map->size -= entry->end - entry->start; 2942 2943 switch(entry->maptype) { 2944 case VM_MAPTYPE_NORMAL: 2945 case VM_MAPTYPE_VPAGETABLE: 2946 case VM_MAPTYPE_SUBMAP: 2947 vm_object_deallocate(entry->object.vm_object); 2948 break; 2949 case VM_MAPTYPE_UKSMAP: 2950 /* XXX TODO */ 2951 break; 2952 default: 2953 break; 2954 } 2955 2956 vm_map_entry_dispose(map, entry, countp); 2957 } 2958 2959 /* 2960 * Deallocates the given address range from the target map. 2961 * 2962 * The vm_map must be exclusively locked. 2963 */ 2964 int 2965 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2966 { 2967 vm_object_t object; 2968 vm_map_entry_t entry; 2969 vm_map_entry_t first_entry; 2970 vm_offset_t hole_start; 2971 2972 ASSERT_VM_MAP_LOCKED(map); 2973 lwkt_gettoken(&map->token); 2974 again: 2975 /* 2976 * Find the start of the region, and clip it. Set entry to point 2977 * at the first record containing the requested address or, if no 2978 * such record exists, the next record with a greater address. The 2979 * loop will run from this point until a record beyond the termination 2980 * address is encountered. 2981 * 2982 * Adjust freehint[] for either the clip case or the extension case. 2983 * 2984 * GGG see other GGG comment. 2985 */ 2986 if (vm_map_lookup_entry(map, start, &first_entry)) { 2987 entry = first_entry; 2988 vm_map_clip_start(map, entry, start, countp); 2989 hole_start = start; 2990 } else { 2991 if (first_entry) { 2992 entry = vm_map_rb_tree_RB_NEXT(first_entry); 2993 if (entry == NULL) 2994 hole_start = first_entry->start; 2995 else 2996 hole_start = first_entry->end; 2997 } else { 2998 entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 2999 if (entry == NULL) 3000 hole_start = vm_map_min(map); 3001 else 3002 hole_start = vm_map_max(map); 3003 } 3004 } 3005 3006 /* 3007 * Step through all entries in this region 3008 */ 3009 while (entry && entry->start < end) { 3010 vm_map_entry_t next; 3011 vm_offset_t s, e; 3012 vm_pindex_t offidxstart, offidxend, count; 3013 3014 /* 3015 * If we hit an in-transition entry we have to sleep and 3016 * retry. It's easier (and not really slower) to just retry 3017 * since this case occurs so rarely and the hint is already 3018 * pointing at the right place. We have to reset the 3019 * start offset so as not to accidently delete an entry 3020 * another process just created in vacated space. 3021 */ 3022 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3023 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3024 start = entry->start; 3025 ++mycpu->gd_cnt.v_intrans_coll; 3026 ++mycpu->gd_cnt.v_intrans_wait; 3027 vm_map_transition_wait(map, 1); 3028 goto again; 3029 } 3030 vm_map_clip_end(map, entry, end, countp); 3031 3032 s = entry->start; 3033 e = entry->end; 3034 next = vm_map_rb_tree_RB_NEXT(entry); 3035 3036 offidxstart = OFF_TO_IDX(entry->offset); 3037 count = OFF_TO_IDX(e - s); 3038 3039 switch(entry->maptype) { 3040 case VM_MAPTYPE_NORMAL: 3041 case VM_MAPTYPE_VPAGETABLE: 3042 case VM_MAPTYPE_SUBMAP: 3043 object = entry->object.vm_object; 3044 break; 3045 default: 3046 object = NULL; 3047 break; 3048 } 3049 3050 /* 3051 * Unwire before removing addresses from the pmap; otherwise, 3052 * unwiring will put the entries back in the pmap. 3053 * 3054 * Generally speaking, doing a bulk pmap_remove() before 3055 * removing the pages from the VM object is better at 3056 * reducing unnecessary IPIs. The pmap code is now optimized 3057 * to not blindly iterate the range when pt and pd pages 3058 * are missing. 3059 */ 3060 if (entry->wired_count != 0) 3061 vm_map_entry_unwire(map, entry); 3062 3063 offidxend = offidxstart + count; 3064 3065 if (object == &kernel_object) { 3066 pmap_remove(map->pmap, s, e); 3067 vm_object_hold(object); 3068 vm_object_page_remove(object, offidxstart, 3069 offidxend, FALSE); 3070 vm_object_drop(object); 3071 } else if (object && object->type != OBJT_DEFAULT && 3072 object->type != OBJT_SWAP) { 3073 /* 3074 * vnode object routines cannot be chain-locked, 3075 * but since we aren't removing pages from the 3076 * object here we can use a shared hold. 3077 */ 3078 vm_object_hold_shared(object); 3079 pmap_remove(map->pmap, s, e); 3080 vm_object_drop(object); 3081 } else if (object) { 3082 vm_object_hold(object); 3083 vm_object_chain_acquire(object, 0); 3084 pmap_remove(map->pmap, s, e); 3085 3086 if (object != NULL && 3087 object->ref_count != 1 && 3088 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 3089 OBJ_ONEMAPPING && 3090 (object->type == OBJT_DEFAULT || 3091 object->type == OBJT_SWAP)) { 3092 /* 3093 * When ONEMAPPING is set we can destroy the 3094 * pages underlying the entry's range. 3095 */ 3096 vm_object_collapse(object, NULL); 3097 vm_object_page_remove(object, offidxstart, 3098 offidxend, FALSE); 3099 if (object->type == OBJT_SWAP) { 3100 swap_pager_freespace(object, 3101 offidxstart, 3102 count); 3103 } 3104 if (offidxend >= object->size && 3105 offidxstart < object->size) { 3106 object->size = offidxstart; 3107 } 3108 } 3109 vm_object_chain_release(object); 3110 vm_object_drop(object); 3111 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) { 3112 pmap_remove(map->pmap, s, e); 3113 } 3114 3115 /* 3116 * Delete the entry (which may delete the object) only after 3117 * removing all pmap entries pointing to its pages. 3118 * (Otherwise, its page frames may be reallocated, and any 3119 * modify bits will be set in the wrong object!) 3120 */ 3121 vm_map_entry_delete(map, entry, countp); 3122 entry = next; 3123 } 3124 3125 /* 3126 * We either reached the end and use vm_map_max as the end 3127 * address, or we didn't and we use the next entry as the 3128 * end address. 3129 */ 3130 if (entry == NULL) { 3131 vm_map_freehint_hole(map, hole_start, 3132 vm_map_max(map) - hole_start); 3133 } else { 3134 vm_map_freehint_hole(map, hole_start, 3135 entry->start - hole_start); 3136 } 3137 3138 lwkt_reltoken(&map->token); 3139 3140 return (KERN_SUCCESS); 3141 } 3142 3143 /* 3144 * Remove the given address range from the target map. 3145 * This is the exported form of vm_map_delete. 3146 * 3147 * No requirements. 3148 */ 3149 int 3150 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3151 { 3152 int result; 3153 int count; 3154 3155 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3156 vm_map_lock(map); 3157 VM_MAP_RANGE_CHECK(map, start, end); 3158 result = vm_map_delete(map, start, end, &count); 3159 vm_map_unlock(map); 3160 vm_map_entry_release(count); 3161 3162 return (result); 3163 } 3164 3165 /* 3166 * Assert that the target map allows the specified privilege on the 3167 * entire address region given. The entire region must be allocated. 3168 * 3169 * The caller must specify whether the vm_map is already locked or not. 3170 */ 3171 boolean_t 3172 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3173 vm_prot_t protection, boolean_t have_lock) 3174 { 3175 vm_map_entry_t entry; 3176 vm_map_entry_t tmp_entry; 3177 boolean_t result; 3178 3179 if (have_lock == FALSE) 3180 vm_map_lock_read(map); 3181 3182 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 3183 if (have_lock == FALSE) 3184 vm_map_unlock_read(map); 3185 return (FALSE); 3186 } 3187 entry = tmp_entry; 3188 3189 result = TRUE; 3190 while (start < end) { 3191 if (entry == NULL) { 3192 result = FALSE; 3193 break; 3194 } 3195 3196 /* 3197 * No holes allowed! 3198 */ 3199 3200 if (start < entry->start) { 3201 result = FALSE; 3202 break; 3203 } 3204 /* 3205 * Check protection associated with entry. 3206 */ 3207 3208 if ((entry->protection & protection) != protection) { 3209 result = FALSE; 3210 break; 3211 } 3212 /* go to next entry */ 3213 start = entry->end; 3214 entry = vm_map_rb_tree_RB_NEXT(entry); 3215 } 3216 if (have_lock == FALSE) 3217 vm_map_unlock_read(map); 3218 return (result); 3219 } 3220 3221 /* 3222 * If appropriate this function shadows the original object with a new object 3223 * and moves the VM pages from the original object to the new object. 3224 * The original object will also be collapsed, if possible. 3225 * 3226 * Caller must supply entry->object.vm_object held and chain_acquired, and 3227 * should chain_release and drop the object upon return. 3228 * 3229 * We can only do this for normal memory objects with a single mapping, and 3230 * it only makes sense to do it if there are 2 or more refs on the original 3231 * object. i.e. typically a memory object that has been extended into 3232 * multiple vm_map_entry's with non-overlapping ranges. 3233 * 3234 * This makes it easier to remove unused pages and keeps object inheritance 3235 * from being a negative impact on memory usage. 3236 * 3237 * On return the (possibly new) entry->object.vm_object will have an 3238 * additional ref on it for the caller to dispose of (usually by cloning 3239 * the vm_map_entry). The additional ref had to be done in this routine 3240 * to avoid racing a collapse. The object's ONEMAPPING flag will also be 3241 * cleared. 3242 * 3243 * The vm_map must be locked and its token held. 3244 */ 3245 static void 3246 vm_map_split(vm_map_entry_t entry, vm_object_t oobject) 3247 { 3248 /* OPTIMIZED */ 3249 vm_object_t nobject, bobject; 3250 vm_offset_t s, e; 3251 vm_page_t m; 3252 vm_pindex_t offidxstart, offidxend, idx; 3253 vm_size_t size; 3254 vm_ooffset_t offset; 3255 int useshadowlist; 3256 3257 /* 3258 * Optimize away object locks for vnode objects. Important exit/exec 3259 * critical path. 3260 * 3261 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag 3262 * anyway. 3263 */ 3264 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) { 3265 vm_object_reference_quick(oobject); 3266 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3267 return; 3268 } 3269 3270 #if 0 3271 /* 3272 * Original object cannot be split? 3273 */ 3274 if (oobject->handle == NULL) { 3275 vm_object_reference_locked_chain_held(oobject); 3276 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3277 return; 3278 } 3279 #endif 3280 3281 /* 3282 * Collapse original object with its backing store as an 3283 * optimization to reduce chain lengths when possible. 3284 * 3285 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's 3286 * for oobject, so there's no point collapsing it. 3287 * 3288 * Then re-check whether the object can be split. 3289 */ 3290 vm_object_collapse(oobject, NULL); 3291 3292 if (oobject->ref_count <= 1 || 3293 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) || 3294 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) { 3295 vm_object_reference_locked_chain_held(oobject); 3296 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3297 return; 3298 } 3299 3300 /* 3301 * Acquire the chain lock on the backing object. 3302 * 3303 * Give bobject an additional ref count for when it will be shadowed 3304 * by nobject. 3305 */ 3306 useshadowlist = 0; 3307 if ((bobject = oobject->backing_object) != NULL) { 3308 if (bobject->type != OBJT_VNODE) { 3309 useshadowlist = 1; 3310 vm_object_hold(bobject); 3311 vm_object_chain_wait(bobject, 0); 3312 /* ref for shadowing below */ 3313 vm_object_reference_locked(bobject); 3314 vm_object_chain_acquire(bobject, 0); 3315 KKASSERT(oobject->backing_object == bobject); 3316 KKASSERT((bobject->flags & OBJ_DEAD) == 0); 3317 } else { 3318 /* 3319 * vnodes are not placed on the shadow list but 3320 * they still get another ref for the backing_object 3321 * reference. 3322 */ 3323 vm_object_reference_quick(bobject); 3324 } 3325 } 3326 3327 /* 3328 * Calculate the object page range and allocate the new object. 3329 */ 3330 offset = entry->offset; 3331 s = entry->start; 3332 e = entry->end; 3333 3334 offidxstart = OFF_TO_IDX(offset); 3335 offidxend = offidxstart + OFF_TO_IDX(e - s); 3336 size = offidxend - offidxstart; 3337 3338 switch(oobject->type) { 3339 case OBJT_DEFAULT: 3340 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size), 3341 VM_PROT_ALL, 0); 3342 break; 3343 case OBJT_SWAP: 3344 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size), 3345 VM_PROT_ALL, 0); 3346 break; 3347 default: 3348 /* not reached */ 3349 nobject = NULL; 3350 KKASSERT(0); 3351 } 3352 3353 /* 3354 * If we could not allocate nobject just clear ONEMAPPING on 3355 * oobject and return. 3356 */ 3357 if (nobject == NULL) { 3358 if (bobject) { 3359 if (useshadowlist) { 3360 vm_object_chain_release(bobject); 3361 vm_object_deallocate(bobject); 3362 vm_object_drop(bobject); 3363 } else { 3364 vm_object_deallocate(bobject); 3365 } 3366 } 3367 vm_object_reference_locked_chain_held(oobject); 3368 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3369 return; 3370 } 3371 3372 /* 3373 * The new object will replace entry->object.vm_object so it needs 3374 * a second reference (the caller expects an additional ref). 3375 */ 3376 vm_object_hold(nobject); 3377 vm_object_reference_locked(nobject); 3378 vm_object_chain_acquire(nobject, 0); 3379 3380 /* 3381 * nobject shadows bobject (oobject already shadows bobject). 3382 * 3383 * Adding an object to bobject's shadow list requires refing bobject 3384 * which we did above in the useshadowlist case. 3385 * 3386 * XXX it is unclear if we need to clear ONEMAPPING on bobject here 3387 * or not. 3388 */ 3389 if (bobject) { 3390 nobject->backing_object_offset = 3391 oobject->backing_object_offset + IDX_TO_OFF(offidxstart); 3392 nobject->backing_object = bobject; 3393 if (useshadowlist) { 3394 bobject->shadow_count++; 3395 atomic_add_int(&bobject->generation, 1); 3396 LIST_INSERT_HEAD(&bobject->shadow_head, 3397 nobject, shadow_list); 3398 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/ 3399 vm_object_set_flag(nobject, OBJ_ONSHADOW); 3400 } 3401 } 3402 3403 /* 3404 * Move the VM pages from oobject to nobject 3405 */ 3406 for (idx = 0; idx < size; idx++) { 3407 vm_page_t m; 3408 3409 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx, 3410 TRUE, "vmpg"); 3411 if (m == NULL) 3412 continue; 3413 3414 /* 3415 * We must wait for pending I/O to complete before we can 3416 * rename the page. 3417 * 3418 * We do not have to VM_PROT_NONE the page as mappings should 3419 * not be changed by this operation. 3420 * 3421 * NOTE: The act of renaming a page updates chaingen for both 3422 * objects. 3423 */ 3424 vm_page_rename(m, nobject, idx); 3425 /* page automatically made dirty by rename and cache handled */ 3426 /* page remains busy */ 3427 } 3428 3429 if (oobject->type == OBJT_SWAP) { 3430 vm_object_pip_add(oobject, 1); 3431 /* 3432 * copy oobject pages into nobject and destroy unneeded 3433 * pages in shadow object. 3434 */ 3435 swap_pager_copy(oobject, nobject, offidxstart, 0); 3436 vm_object_pip_wakeup(oobject); 3437 } 3438 3439 /* 3440 * Wakeup the pages we played with. No spl protection is needed 3441 * for a simple wakeup. 3442 */ 3443 for (idx = 0; idx < size; idx++) { 3444 m = vm_page_lookup(nobject, idx); 3445 if (m) { 3446 KKASSERT(m->busy_count & PBUSY_LOCKED); 3447 vm_page_wakeup(m); 3448 } 3449 } 3450 entry->object.vm_object = nobject; 3451 entry->offset = 0LL; 3452 3453 /* 3454 * The map is being split and nobject is going to wind up on both 3455 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on 3456 * nobject. 3457 */ 3458 vm_object_clear_flag(nobject, OBJ_ONEMAPPING); 3459 3460 /* 3461 * Cleanup 3462 * 3463 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the 3464 * related pages were moved and are no longer applicable to the 3465 * original object. 3466 * 3467 * NOTE: Deallocate oobject (due to its entry->object.vm_object being 3468 * replaced by nobject). 3469 */ 3470 vm_object_chain_release(nobject); 3471 vm_object_drop(nobject); 3472 if (bobject && useshadowlist) { 3473 vm_object_chain_release(bobject); 3474 vm_object_drop(bobject); 3475 } 3476 3477 #if 0 3478 if (oobject->resident_page_count) { 3479 kprintf("oobject %p still contains %jd pages!\n", 3480 oobject, (intmax_t)oobject->resident_page_count); 3481 for (idx = 0; idx < size; idx++) { 3482 vm_page_t m; 3483 3484 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx, 3485 TRUE, "vmpg"); 3486 if (m) { 3487 kprintf("oobject %p idx %jd\n", 3488 oobject, 3489 offidxstart + idx); 3490 vm_page_wakeup(m); 3491 } 3492 } 3493 } 3494 #endif 3495 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/ 3496 vm_object_deallocate_locked(oobject); 3497 } 3498 3499 /* 3500 * Copies the contents of the source entry to the destination 3501 * entry. The entries *must* be aligned properly. 3502 * 3503 * The vm_maps must be exclusively locked. 3504 * The vm_map's token must be held. 3505 * 3506 * Because the maps are locked no faults can be in progress during the 3507 * operation. 3508 */ 3509 static void 3510 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 3511 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 3512 { 3513 vm_object_t src_object; 3514 vm_object_t oobject; 3515 3516 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP || 3517 dst_entry->maptype == VM_MAPTYPE_UKSMAP) 3518 return; 3519 if (src_entry->maptype == VM_MAPTYPE_SUBMAP || 3520 src_entry->maptype == VM_MAPTYPE_UKSMAP) 3521 return; 3522 3523 if (src_entry->wired_count == 0) { 3524 /* 3525 * If the source entry is marked needs_copy, it is already 3526 * write-protected. 3527 * 3528 * To avoid interacting with a vm_fault that might have 3529 * released its vm_map, we must acquire the fronting 3530 * object. 3531 */ 3532 oobject = src_entry->object.vm_object; 3533 if (oobject) { 3534 vm_object_hold(oobject); 3535 vm_object_chain_acquire(oobject, 0); 3536 } 3537 3538 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3539 pmap_protect(src_map->pmap, 3540 src_entry->start, 3541 src_entry->end, 3542 src_entry->protection & ~VM_PROT_WRITE); 3543 } 3544 3545 /* 3546 * Make a copy of the object. 3547 * 3548 * The object must be locked prior to checking the object type 3549 * and for the call to vm_object_collapse() and vm_map_split(). 3550 * We cannot use *_hold() here because the split code will 3551 * probably try to destroy the object. The lock is a pool 3552 * token and doesn't care. 3553 * 3554 * We must bump src_map->timestamp when setting 3555 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault 3556 * to retry, otherwise the concurrent fault might improperly 3557 * install a RW pte when its supposed to be a RO(COW) pte. 3558 * This race can occur because a vnode-backed fault may have 3559 * to temporarily release the map lock. This was handled 3560 * when the caller locked the map exclusively. 3561 */ 3562 if (oobject) { 3563 vm_map_split(src_entry, oobject); 3564 3565 src_object = src_entry->object.vm_object; 3566 dst_entry->object.vm_object = src_object; 3567 src_entry->eflags |= (MAP_ENTRY_COW | 3568 MAP_ENTRY_NEEDS_COPY); 3569 dst_entry->eflags |= (MAP_ENTRY_COW | 3570 MAP_ENTRY_NEEDS_COPY); 3571 dst_entry->offset = src_entry->offset; 3572 } else { 3573 dst_entry->object.vm_object = NULL; 3574 dst_entry->offset = 0; 3575 } 3576 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3577 dst_entry->end - dst_entry->start, 3578 src_entry->start); 3579 if (oobject) { 3580 vm_object_chain_release(oobject); 3581 vm_object_drop(oobject); 3582 } 3583 } else { 3584 /* 3585 * Of course, wired down pages can't be set copy-on-write. 3586 * Cause wired pages to be copied into the new map by 3587 * simulating faults (the new pages are pageable) 3588 */ 3589 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3590 } 3591 } 3592 3593 /* 3594 * vmspace_fork: 3595 * Create a new process vmspace structure and vm_map 3596 * based on those of an existing process. The new map 3597 * is based on the old map, according to the inheritance 3598 * values on the regions in that map. 3599 * 3600 * The source map must not be locked. 3601 * No requirements. 3602 */ 3603 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3604 vm_map_entry_t old_entry, int *countp); 3605 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3606 vm_map_entry_t old_entry, int *countp); 3607 3608 struct vmspace * 3609 vmspace_fork(struct vmspace *vm1) 3610 { 3611 struct vmspace *vm2; 3612 vm_map_t old_map = &vm1->vm_map; 3613 vm_map_t new_map; 3614 vm_map_entry_t old_entry; 3615 int count; 3616 3617 lwkt_gettoken(&vm1->vm_map.token); 3618 vm_map_lock(old_map); 3619 3620 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map)); 3621 lwkt_gettoken(&vm2->vm_map.token); 3622 3623 /* 3624 * We must bump the timestamp to force any concurrent fault 3625 * to retry. 3626 */ 3627 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3628 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3629 new_map = &vm2->vm_map; /* XXX */ 3630 new_map->timestamp = 1; 3631 3632 vm_map_lock(new_map); 3633 3634 count = old_map->nentries; 3635 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3636 3637 RB_FOREACH(old_entry, vm_map_rb_tree, &old_map->rb_root) { 3638 switch(old_entry->maptype) { 3639 case VM_MAPTYPE_SUBMAP: 3640 panic("vm_map_fork: encountered a submap"); 3641 break; 3642 case VM_MAPTYPE_UKSMAP: 3643 vmspace_fork_uksmap_entry(old_map, new_map, 3644 old_entry, &count); 3645 break; 3646 case VM_MAPTYPE_NORMAL: 3647 case VM_MAPTYPE_VPAGETABLE: 3648 vmspace_fork_normal_entry(old_map, new_map, 3649 old_entry, &count); 3650 break; 3651 } 3652 } 3653 3654 new_map->size = old_map->size; 3655 vm_map_unlock(old_map); 3656 vm_map_unlock(new_map); 3657 vm_map_entry_release(count); 3658 3659 lwkt_reltoken(&vm2->vm_map.token); 3660 lwkt_reltoken(&vm1->vm_map.token); 3661 3662 return (vm2); 3663 } 3664 3665 static 3666 void 3667 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3668 vm_map_entry_t old_entry, int *countp) 3669 { 3670 vm_map_entry_t new_entry; 3671 vm_object_t object; 3672 3673 switch (old_entry->inheritance) { 3674 case VM_INHERIT_NONE: 3675 break; 3676 case VM_INHERIT_SHARE: 3677 /* 3678 * Clone the entry, creating the shared object if 3679 * necessary. 3680 */ 3681 if (old_entry->object.vm_object == NULL) 3682 vm_map_entry_allocate_object(old_entry); 3683 3684 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3685 /* 3686 * Shadow a map_entry which needs a copy, 3687 * replacing its object with a new object 3688 * that points to the old one. Ask the 3689 * shadow code to automatically add an 3690 * additional ref. We can't do it afterwords 3691 * because we might race a collapse. The call 3692 * to vm_map_entry_shadow() will also clear 3693 * OBJ_ONEMAPPING. 3694 */ 3695 vm_map_entry_shadow(old_entry, 1); 3696 } else if (old_entry->object.vm_object) { 3697 /* 3698 * We will make a shared copy of the object, 3699 * and must clear OBJ_ONEMAPPING. 3700 * 3701 * Optimize vnode objects. OBJ_ONEMAPPING 3702 * is non-applicable but clear it anyway, 3703 * and its terminal so we don't have to deal 3704 * with chains. Reduces SMP conflicts. 3705 * 3706 * XXX assert that object.vm_object != NULL 3707 * since we allocate it above. 3708 */ 3709 object = old_entry->object.vm_object; 3710 if (object->type == OBJT_VNODE) { 3711 vm_object_reference_quick(object); 3712 vm_object_clear_flag(object, 3713 OBJ_ONEMAPPING); 3714 } else { 3715 vm_object_hold(object); 3716 vm_object_chain_wait(object, 0); 3717 vm_object_reference_locked(object); 3718 vm_object_clear_flag(object, 3719 OBJ_ONEMAPPING); 3720 vm_object_drop(object); 3721 } 3722 } 3723 3724 /* 3725 * Clone the entry. We've already bumped the ref on 3726 * any vm_object. 3727 */ 3728 new_entry = vm_map_entry_create(new_map, countp); 3729 *new_entry = *old_entry; 3730 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3731 new_entry->wired_count = 0; 3732 3733 /* 3734 * Insert the entry into the new map -- we know we're 3735 * inserting at the end of the new map. 3736 */ 3737 vm_map_entry_link(new_map, new_entry); 3738 3739 /* 3740 * Update the physical map 3741 */ 3742 pmap_copy(new_map->pmap, old_map->pmap, 3743 new_entry->start, 3744 (old_entry->end - old_entry->start), 3745 old_entry->start); 3746 break; 3747 case VM_INHERIT_COPY: 3748 /* 3749 * Clone the entry and link into the map. 3750 */ 3751 new_entry = vm_map_entry_create(new_map, countp); 3752 *new_entry = *old_entry; 3753 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3754 new_entry->wired_count = 0; 3755 new_entry->object.vm_object = NULL; 3756 vm_map_entry_link(new_map, new_entry); 3757 vm_map_copy_entry(old_map, new_map, old_entry, 3758 new_entry); 3759 break; 3760 } 3761 } 3762 3763 /* 3764 * When forking user-kernel shared maps, the map might change in the 3765 * child so do not try to copy the underlying pmap entries. 3766 */ 3767 static 3768 void 3769 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3770 vm_map_entry_t old_entry, int *countp) 3771 { 3772 vm_map_entry_t new_entry; 3773 3774 new_entry = vm_map_entry_create(new_map, countp); 3775 *new_entry = *old_entry; 3776 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3777 new_entry->wired_count = 0; 3778 vm_map_entry_link(new_map, new_entry); 3779 } 3780 3781 /* 3782 * Create an auto-grow stack entry 3783 * 3784 * No requirements. 3785 */ 3786 int 3787 vm_map_stack (vm_map_t map, vm_offset_t *addrbos, vm_size_t max_ssize, 3788 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3789 { 3790 vm_map_entry_t prev_entry; 3791 vm_map_entry_t next; 3792 vm_size_t init_ssize; 3793 int rv; 3794 int count; 3795 vm_offset_t tmpaddr; 3796 3797 cow |= MAP_IS_STACK; 3798 3799 if (max_ssize < sgrowsiz) 3800 init_ssize = max_ssize; 3801 else 3802 init_ssize = sgrowsiz; 3803 3804 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3805 vm_map_lock(map); 3806 3807 /* 3808 * Find space for the mapping 3809 */ 3810 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3811 if (vm_map_findspace(map, *addrbos, max_ssize, 1, 3812 flags, &tmpaddr)) { 3813 vm_map_unlock(map); 3814 vm_map_entry_release(count); 3815 return (KERN_NO_SPACE); 3816 } 3817 *addrbos = tmpaddr; 3818 } 3819 3820 /* If addr is already mapped, no go */ 3821 if (vm_map_lookup_entry(map, *addrbos, &prev_entry)) { 3822 vm_map_unlock(map); 3823 vm_map_entry_release(count); 3824 return (KERN_NO_SPACE); 3825 } 3826 3827 #if 0 3828 /* XXX already handled by kern_mmap() */ 3829 /* If we would blow our VMEM resource limit, no go */ 3830 if (map->size + init_ssize > 3831 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3832 vm_map_unlock(map); 3833 vm_map_entry_release(count); 3834 return (KERN_NO_SPACE); 3835 } 3836 #endif 3837 3838 /* 3839 * If we can't accomodate max_ssize in the current mapping, 3840 * no go. However, we need to be aware that subsequent user 3841 * mappings might map into the space we have reserved for 3842 * stack, and currently this space is not protected. 3843 * 3844 * Hopefully we will at least detect this condition 3845 * when we try to grow the stack. 3846 */ 3847 if (prev_entry) 3848 next = vm_map_rb_tree_RB_NEXT(prev_entry); 3849 else 3850 next = RB_MIN(vm_map_rb_tree, &map->rb_root); 3851 3852 if (next && next->start < *addrbos + max_ssize) { 3853 vm_map_unlock(map); 3854 vm_map_entry_release(count); 3855 return (KERN_NO_SPACE); 3856 } 3857 3858 /* 3859 * We initially map a stack of only init_ssize. We will 3860 * grow as needed later. Since this is to be a grow 3861 * down stack, we map at the top of the range. 3862 * 3863 * Note: we would normally expect prot and max to be 3864 * VM_PROT_ALL, and cow to be 0. Possibly we should 3865 * eliminate these as input parameters, and just 3866 * pass these values here in the insert call. 3867 */ 3868 rv = vm_map_insert(map, &count, NULL, NULL, 3869 0, *addrbos + max_ssize - init_ssize, 3870 *addrbos + max_ssize, 3871 VM_MAPTYPE_NORMAL, 3872 VM_SUBSYS_STACK, prot, max, cow); 3873 3874 /* Now set the avail_ssize amount */ 3875 if (rv == KERN_SUCCESS) { 3876 if (prev_entry) 3877 next = vm_map_rb_tree_RB_NEXT(prev_entry); 3878 else 3879 next = RB_MIN(vm_map_rb_tree, &map->rb_root); 3880 if (prev_entry != NULL) { 3881 vm_map_clip_end(map, 3882 prev_entry, 3883 *addrbos + max_ssize - init_ssize, 3884 &count); 3885 } 3886 if (next->end != *addrbos + max_ssize || 3887 next->start != *addrbos + max_ssize - init_ssize){ 3888 panic ("Bad entry start/end for new stack entry"); 3889 } else { 3890 next->aux.avail_ssize = max_ssize - init_ssize; 3891 } 3892 } 3893 3894 vm_map_unlock(map); 3895 vm_map_entry_release(count); 3896 return (rv); 3897 } 3898 3899 /* 3900 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3901 * desired address is already mapped, or if we successfully grow 3902 * the stack. Also returns KERN_SUCCESS if addr is outside the 3903 * stack range (this is strange, but preserves compatibility with 3904 * the grow function in vm_machdep.c). 3905 * 3906 * No requirements. 3907 */ 3908 int 3909 vm_map_growstack (vm_map_t map, vm_offset_t addr) 3910 { 3911 vm_map_entry_t prev_entry; 3912 vm_map_entry_t stack_entry; 3913 vm_map_entry_t next; 3914 struct vmspace *vm; 3915 struct lwp *lp; 3916 struct proc *p; 3917 vm_offset_t end; 3918 int grow_amount; 3919 int rv = KERN_SUCCESS; 3920 int is_procstack; 3921 int use_read_lock = 1; 3922 int count; 3923 3924 /* 3925 * Find the vm 3926 */ 3927 lp = curthread->td_lwp; 3928 p = curthread->td_proc; 3929 KKASSERT(lp != NULL); 3930 vm = lp->lwp_vmspace; 3931 3932 /* 3933 * Growstack is only allowed on the current process. We disallow 3934 * other use cases, e.g. trying to access memory via procfs that 3935 * the stack hasn't grown into. 3936 */ 3937 if (map != &vm->vm_map) { 3938 return KERN_FAILURE; 3939 } 3940 3941 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3942 Retry: 3943 if (use_read_lock) 3944 vm_map_lock_read(map); 3945 else 3946 vm_map_lock(map); 3947 3948 /* 3949 * If addr is already in the entry range, no need to grow. 3950 * prev_entry returns NULL if addr is at the head. 3951 */ 3952 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3953 goto done; 3954 if (prev_entry) 3955 stack_entry = vm_map_rb_tree_RB_NEXT(prev_entry); 3956 else 3957 stack_entry = RB_MIN(vm_map_rb_tree, &map->rb_root); 3958 3959 if (stack_entry == NULL) 3960 goto done; 3961 if (prev_entry == NULL) 3962 end = stack_entry->start - stack_entry->aux.avail_ssize; 3963 else 3964 end = prev_entry->end; 3965 3966 /* 3967 * This next test mimics the old grow function in vm_machdep.c. 3968 * It really doesn't quite make sense, but we do it anyway 3969 * for compatibility. 3970 * 3971 * If not growable stack, return success. This signals the 3972 * caller to proceed as he would normally with normal vm. 3973 */ 3974 if (stack_entry->aux.avail_ssize < 1 || 3975 addr >= stack_entry->start || 3976 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3977 goto done; 3978 } 3979 3980 /* Find the minimum grow amount */ 3981 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3982 if (grow_amount > stack_entry->aux.avail_ssize) { 3983 rv = KERN_NO_SPACE; 3984 goto done; 3985 } 3986 3987 /* 3988 * If there is no longer enough space between the entries 3989 * nogo, and adjust the available space. Note: this 3990 * should only happen if the user has mapped into the 3991 * stack area after the stack was created, and is 3992 * probably an error. 3993 * 3994 * This also effectively destroys any guard page the user 3995 * might have intended by limiting the stack size. 3996 */ 3997 if (grow_amount > stack_entry->start - end) { 3998 if (use_read_lock && vm_map_lock_upgrade(map)) { 3999 /* lost lock */ 4000 use_read_lock = 0; 4001 goto Retry; 4002 } 4003 use_read_lock = 0; 4004 stack_entry->aux.avail_ssize = stack_entry->start - end; 4005 rv = KERN_NO_SPACE; 4006 goto done; 4007 } 4008 4009 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 4010 4011 /* If this is the main process stack, see if we're over the 4012 * stack limit. 4013 */ 4014 if (is_procstack && (vm->vm_ssize + grow_amount > 4015 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 4016 rv = KERN_NO_SPACE; 4017 goto done; 4018 } 4019 4020 /* Round up the grow amount modulo SGROWSIZ */ 4021 grow_amount = roundup (grow_amount, sgrowsiz); 4022 if (grow_amount > stack_entry->aux.avail_ssize) { 4023 grow_amount = stack_entry->aux.avail_ssize; 4024 } 4025 if (is_procstack && (vm->vm_ssize + grow_amount > 4026 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 4027 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - vm->vm_ssize; 4028 } 4029 4030 /* If we would blow our VMEM resource limit, no go */ 4031 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 4032 rv = KERN_NO_SPACE; 4033 goto done; 4034 } 4035 4036 if (use_read_lock && vm_map_lock_upgrade(map)) { 4037 /* lost lock */ 4038 use_read_lock = 0; 4039 goto Retry; 4040 } 4041 use_read_lock = 0; 4042 4043 /* Get the preliminary new entry start value */ 4044 addr = stack_entry->start - grow_amount; 4045 4046 /* If this puts us into the previous entry, cut back our growth 4047 * to the available space. Also, see the note above. 4048 */ 4049 if (addr < end) { 4050 stack_entry->aux.avail_ssize = stack_entry->start - end; 4051 addr = end; 4052 } 4053 4054 rv = vm_map_insert(map, &count, NULL, NULL, 4055 0, addr, stack_entry->start, 4056 VM_MAPTYPE_NORMAL, 4057 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0); 4058 4059 /* Adjust the available stack space by the amount we grew. */ 4060 if (rv == KERN_SUCCESS) { 4061 if (prev_entry) { 4062 vm_map_clip_end(map, prev_entry, addr, &count); 4063 next = vm_map_rb_tree_RB_NEXT(prev_entry); 4064 } else { 4065 next = RB_MIN(vm_map_rb_tree, &map->rb_root); 4066 } 4067 if (next->end != stack_entry->start || 4068 next->start != addr) { 4069 panic ("Bad stack grow start/end in new stack entry"); 4070 } else { 4071 next->aux.avail_ssize = 4072 stack_entry->aux.avail_ssize - 4073 (next->end - next->start); 4074 if (is_procstack) { 4075 vm->vm_ssize += next->end - 4076 next->start; 4077 } 4078 } 4079 4080 if (map->flags & MAP_WIREFUTURE) 4081 vm_map_unwire(map, next->start, next->end, FALSE); 4082 } 4083 4084 done: 4085 if (use_read_lock) 4086 vm_map_unlock_read(map); 4087 else 4088 vm_map_unlock(map); 4089 vm_map_entry_release(count); 4090 return (rv); 4091 } 4092 4093 /* 4094 * Unshare the specified VM space for exec. If other processes are 4095 * mapped to it, then create a new one. The new vmspace is null. 4096 * 4097 * No requirements. 4098 */ 4099 void 4100 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 4101 { 4102 struct vmspace *oldvmspace = p->p_vmspace; 4103 struct vmspace *newvmspace; 4104 vm_map_t map = &p->p_vmspace->vm_map; 4105 4106 /* 4107 * If we are execing a resident vmspace we fork it, otherwise 4108 * we create a new vmspace. Note that exitingcnt is not 4109 * copied to the new vmspace. 4110 */ 4111 lwkt_gettoken(&oldvmspace->vm_map.token); 4112 if (vmcopy) { 4113 newvmspace = vmspace_fork(vmcopy); 4114 lwkt_gettoken(&newvmspace->vm_map.token); 4115 } else { 4116 newvmspace = vmspace_alloc(vm_map_min(map), vm_map_max(map)); 4117 lwkt_gettoken(&newvmspace->vm_map.token); 4118 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 4119 (caddr_t)&oldvmspace->vm_endcopy - 4120 (caddr_t)&oldvmspace->vm_startcopy); 4121 } 4122 4123 /* 4124 * Finish initializing the vmspace before assigning it 4125 * to the process. The vmspace will become the current vmspace 4126 * if p == curproc. 4127 */ 4128 pmap_pinit2(vmspace_pmap(newvmspace)); 4129 pmap_replacevm(p, newvmspace, 0); 4130 lwkt_reltoken(&newvmspace->vm_map.token); 4131 lwkt_reltoken(&oldvmspace->vm_map.token); 4132 vmspace_rel(oldvmspace); 4133 } 4134 4135 /* 4136 * Unshare the specified VM space for forcing COW. This 4137 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4138 */ 4139 void 4140 vmspace_unshare(struct proc *p) 4141 { 4142 struct vmspace *oldvmspace = p->p_vmspace; 4143 struct vmspace *newvmspace; 4144 4145 lwkt_gettoken(&oldvmspace->vm_map.token); 4146 if (vmspace_getrefs(oldvmspace) == 1) { 4147 lwkt_reltoken(&oldvmspace->vm_map.token); 4148 return; 4149 } 4150 newvmspace = vmspace_fork(oldvmspace); 4151 lwkt_gettoken(&newvmspace->vm_map.token); 4152 pmap_pinit2(vmspace_pmap(newvmspace)); 4153 pmap_replacevm(p, newvmspace, 0); 4154 lwkt_reltoken(&newvmspace->vm_map.token); 4155 lwkt_reltoken(&oldvmspace->vm_map.token); 4156 vmspace_rel(oldvmspace); 4157 } 4158 4159 /* 4160 * vm_map_hint: return the beginning of the best area suitable for 4161 * creating a new mapping with "prot" protection. 4162 * 4163 * No requirements. 4164 */ 4165 vm_offset_t 4166 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot) 4167 { 4168 struct vmspace *vms = p->p_vmspace; 4169 struct rlimit limit; 4170 rlim_t dsiz; 4171 4172 /* 4173 * Acquire datasize limit for mmap() operation, 4174 * calculate nearest power of 2. 4175 */ 4176 if (kern_getrlimit(RLIMIT_DATA, &limit)) 4177 limit.rlim_cur = maxdsiz; 4178 dsiz = limit.rlim_cur; 4179 4180 if (!randomize_mmap || addr != 0) { 4181 /* 4182 * Set a reasonable start point for the hint if it was 4183 * not specified or if it falls within the heap space. 4184 * Hinted mmap()s do not allocate out of the heap space. 4185 */ 4186 if (addr == 0 || 4187 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 4188 addr < round_page((vm_offset_t)vms->vm_daddr + dsiz))) { 4189 addr = round_page((vm_offset_t)vms->vm_daddr + dsiz); 4190 } 4191 4192 return addr; 4193 } 4194 4195 /* 4196 * randomize_mmap && addr == 0. For now randomize the 4197 * address within a dsiz range beyond the data limit. 4198 */ 4199 addr = (vm_offset_t)vms->vm_daddr + dsiz; 4200 if (dsiz) 4201 addr += (karc4random64() & 0x7FFFFFFFFFFFFFFFLU) % dsiz; 4202 return (round_page(addr)); 4203 } 4204 4205 /* 4206 * Finds the VM object, offset, and protection for a given virtual address 4207 * in the specified map, assuming a page fault of the type specified. 4208 * 4209 * Leaves the map in question locked for read; return values are guaranteed 4210 * until a vm_map_lookup_done call is performed. Note that the map argument 4211 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 4212 * 4213 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 4214 * that fast. 4215 * 4216 * If a lookup is requested with "write protection" specified, the map may 4217 * be changed to perform virtual copying operations, although the data 4218 * referenced will remain the same. 4219 * 4220 * No requirements. 4221 */ 4222 int 4223 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4224 vm_offset_t vaddr, 4225 vm_prot_t fault_typea, 4226 vm_map_entry_t *out_entry, /* OUT */ 4227 vm_object_t *object, /* OUT */ 4228 vm_pindex_t *pindex, /* OUT */ 4229 vm_prot_t *out_prot, /* OUT */ 4230 int *wflags) /* OUT */ 4231 { 4232 vm_map_entry_t entry; 4233 vm_map_t map = *var_map; 4234 vm_prot_t prot; 4235 vm_prot_t fault_type = fault_typea; 4236 int use_read_lock = 1; 4237 int rv = KERN_SUCCESS; 4238 int count; 4239 thread_t td = curthread; 4240 4241 /* 4242 * vm_map_entry_reserve() implements an important mitigation 4243 * against mmap() span running the kernel out of vm_map_entry 4244 * structures, but it can also cause an infinite call recursion. 4245 * Use td_nest_count to prevent an infinite recursion (allows 4246 * the vm_map code to dig into the pcpu vm_map_entry reserve). 4247 */ 4248 count = 0; 4249 if (td->td_nest_count == 0) { 4250 ++td->td_nest_count; 4251 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 4252 --td->td_nest_count; 4253 } 4254 RetryLookup: 4255 if (use_read_lock) 4256 vm_map_lock_read(map); 4257 else 4258 vm_map_lock(map); 4259 4260 /* 4261 * Always do a full lookup. The hint doesn't get us much anymore 4262 * now that the map is RB'd. 4263 */ 4264 cpu_ccfence(); 4265 *out_entry = NULL; 4266 *object = NULL; 4267 4268 { 4269 vm_map_entry_t tmp_entry; 4270 4271 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 4272 rv = KERN_INVALID_ADDRESS; 4273 goto done; 4274 } 4275 entry = tmp_entry; 4276 *out_entry = entry; 4277 } 4278 4279 /* 4280 * Handle submaps. 4281 */ 4282 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 4283 vm_map_t old_map = map; 4284 4285 *var_map = map = entry->object.sub_map; 4286 if (use_read_lock) 4287 vm_map_unlock_read(old_map); 4288 else 4289 vm_map_unlock(old_map); 4290 use_read_lock = 1; 4291 goto RetryLookup; 4292 } 4293 4294 /* 4295 * Check whether this task is allowed to have this page. 4296 * Note the special case for MAP_ENTRY_COW pages with an override. 4297 * This is to implement a forced COW for debuggers. 4298 */ 4299 if (fault_type & VM_PROT_OVERRIDE_WRITE) 4300 prot = entry->max_protection; 4301 else 4302 prot = entry->protection; 4303 4304 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 4305 if ((fault_type & prot) != fault_type) { 4306 rv = KERN_PROTECTION_FAILURE; 4307 goto done; 4308 } 4309 4310 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4311 (entry->eflags & MAP_ENTRY_COW) && 4312 (fault_type & VM_PROT_WRITE) && 4313 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 4314 rv = KERN_PROTECTION_FAILURE; 4315 goto done; 4316 } 4317 4318 /* 4319 * If this page is not pageable, we have to get it for all possible 4320 * accesses. 4321 */ 4322 *wflags = 0; 4323 if (entry->wired_count) { 4324 *wflags |= FW_WIRED; 4325 prot = fault_type = entry->protection; 4326 } 4327 4328 /* 4329 * Virtual page tables may need to update the accessed (A) bit 4330 * in a page table entry. Upgrade the fault to a write fault for 4331 * that case if the map will support it. If the map does not support 4332 * it the page table entry simply will not be updated. 4333 */ 4334 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 4335 if (prot & VM_PROT_WRITE) 4336 fault_type |= VM_PROT_WRITE; 4337 } 4338 4339 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace && 4340 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) { 4341 if ((prot & VM_PROT_WRITE) == 0) 4342 fault_type |= VM_PROT_WRITE; 4343 } 4344 4345 /* 4346 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not. 4347 */ 4348 if (entry->maptype != VM_MAPTYPE_NORMAL && 4349 entry->maptype != VM_MAPTYPE_VPAGETABLE) { 4350 *object = NULL; 4351 goto skip; 4352 } 4353 4354 /* 4355 * If the entry was copy-on-write, we either ... 4356 */ 4357 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4358 /* 4359 * If we want to write the page, we may as well handle that 4360 * now since we've got the map locked. 4361 * 4362 * If we don't need to write the page, we just demote the 4363 * permissions allowed. 4364 */ 4365 if (fault_type & VM_PROT_WRITE) { 4366 /* 4367 * Not allowed if TDF_NOFAULT is set as the shadowing 4368 * operation can deadlock against the faulting 4369 * function due to the copy-on-write. 4370 */ 4371 if (curthread->td_flags & TDF_NOFAULT) { 4372 rv = KERN_FAILURE_NOFAULT; 4373 goto done; 4374 } 4375 4376 /* 4377 * Make a new object, and place it in the object 4378 * chain. Note that no new references have appeared 4379 * -- one just moved from the map to the new 4380 * object. 4381 */ 4382 if (use_read_lock && vm_map_lock_upgrade(map)) { 4383 /* lost lock */ 4384 use_read_lock = 0; 4385 goto RetryLookup; 4386 } 4387 use_read_lock = 0; 4388 vm_map_entry_shadow(entry, 0); 4389 *wflags |= FW_DIDCOW; 4390 } else { 4391 /* 4392 * We're attempting to read a copy-on-write page -- 4393 * don't allow writes. 4394 */ 4395 prot &= ~VM_PROT_WRITE; 4396 } 4397 } 4398 4399 /* 4400 * Create an object if necessary. This code also handles 4401 * partitioning large entries to improve vm_fault performance. 4402 */ 4403 if (entry->object.vm_object == NULL && !map->system_map) { 4404 if (use_read_lock && vm_map_lock_upgrade(map)) { 4405 /* lost lock */ 4406 use_read_lock = 0; 4407 goto RetryLookup; 4408 } 4409 use_read_lock = 0; 4410 4411 /* 4412 * Partition large entries, giving each its own VM object, 4413 * to improve concurrent fault performance. This is only 4414 * applicable to userspace. 4415 */ 4416 if (map != &kernel_map && 4417 entry->maptype == VM_MAPTYPE_NORMAL && 4418 ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) && 4419 vm_map_partition_enable) { 4420 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 4421 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4422 ++mycpu->gd_cnt.v_intrans_coll; 4423 ++mycpu->gd_cnt.v_intrans_wait; 4424 vm_map_transition_wait(map, 0); 4425 goto RetryLookup; 4426 } 4427 vm_map_entry_partition(map, entry, vaddr, &count); 4428 } 4429 vm_map_entry_allocate_object(entry); 4430 } 4431 4432 /* 4433 * Return the object/offset from this entry. If the entry was 4434 * copy-on-write or empty, it has been fixed up. 4435 */ 4436 *object = entry->object.vm_object; 4437 4438 skip: 4439 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4440 4441 /* 4442 * Return whether this is the only map sharing this data. On 4443 * success we return with a read lock held on the map. On failure 4444 * we return with the map unlocked. 4445 */ 4446 *out_prot = prot; 4447 done: 4448 if (rv == KERN_SUCCESS) { 4449 if (use_read_lock == 0) 4450 vm_map_lock_downgrade(map); 4451 } else if (use_read_lock) { 4452 vm_map_unlock_read(map); 4453 } else { 4454 vm_map_unlock(map); 4455 } 4456 if (count > 0) 4457 vm_map_entry_release(count); 4458 4459 return (rv); 4460 } 4461 4462 /* 4463 * Releases locks acquired by a vm_map_lookup() 4464 * (according to the handle returned by that lookup). 4465 * 4466 * No other requirements. 4467 */ 4468 void 4469 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 4470 { 4471 /* 4472 * Unlock the main-level map 4473 */ 4474 vm_map_unlock_read(map); 4475 if (count) 4476 vm_map_entry_release(count); 4477 } 4478 4479 static void 4480 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry, 4481 vm_offset_t vaddr, int *countp) 4482 { 4483 vaddr &= ~MAP_ENTRY_PARTITION_MASK; 4484 vm_map_clip_start(map, entry, vaddr, countp); 4485 vaddr += MAP_ENTRY_PARTITION_SIZE; 4486 vm_map_clip_end(map, entry, vaddr, countp); 4487 } 4488 4489 /* 4490 * Quick hack, needs some help to make it more SMP friendly. 4491 */ 4492 void 4493 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock, 4494 vm_offset_t ran_beg, vm_offset_t ran_end) 4495 { 4496 struct vm_map_ilock *scan; 4497 4498 ilock->ran_beg = ran_beg; 4499 ilock->ran_end = ran_end; 4500 ilock->flags = 0; 4501 4502 spin_lock(&map->ilock_spin); 4503 restart: 4504 for (scan = map->ilock_base; scan; scan = scan->next) { 4505 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) { 4506 scan->flags |= ILOCK_WAITING; 4507 ssleep(scan, &map->ilock_spin, 0, "ilock", 0); 4508 goto restart; 4509 } 4510 } 4511 ilock->next = map->ilock_base; 4512 map->ilock_base = ilock; 4513 spin_unlock(&map->ilock_spin); 4514 } 4515 4516 void 4517 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock) 4518 { 4519 struct vm_map_ilock *scan; 4520 struct vm_map_ilock **scanp; 4521 4522 spin_lock(&map->ilock_spin); 4523 scanp = &map->ilock_base; 4524 while ((scan = *scanp) != NULL) { 4525 if (scan == ilock) { 4526 *scanp = ilock->next; 4527 spin_unlock(&map->ilock_spin); 4528 if (ilock->flags & ILOCK_WAITING) 4529 wakeup(ilock); 4530 return; 4531 } 4532 scanp = &scan->next; 4533 } 4534 spin_unlock(&map->ilock_spin); 4535 panic("vm_map_deinterlock: missing ilock!"); 4536 } 4537 4538 #include "opt_ddb.h" 4539 #ifdef DDB 4540 #include <ddb/ddb.h> 4541 4542 /* 4543 * Debugging only 4544 */ 4545 DB_SHOW_COMMAND(map, vm_map_print) 4546 { 4547 static int nlines; 4548 /* XXX convert args. */ 4549 vm_map_t map = (vm_map_t)addr; 4550 boolean_t full = have_addr; 4551 4552 vm_map_entry_t entry; 4553 4554 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4555 (void *)map, 4556 (void *)map->pmap, map->nentries, map->timestamp); 4557 nlines++; 4558 4559 if (!full && db_indent) 4560 return; 4561 4562 db_indent += 2; 4563 RB_FOREACH(entry, vm_map_rb_tree, &map->rb_root) { 4564 db_iprintf("map entry %p: start=%p, end=%p\n", 4565 (void *)entry, (void *)entry->start, (void *)entry->end); 4566 nlines++; 4567 { 4568 static char *inheritance_name[4] = 4569 {"share", "copy", "none", "donate_copy"}; 4570 4571 db_iprintf(" prot=%x/%x/%s", 4572 entry->protection, 4573 entry->max_protection, 4574 inheritance_name[(int)(unsigned char) 4575 entry->inheritance]); 4576 if (entry->wired_count != 0) 4577 db_printf(", wired"); 4578 } 4579 switch(entry->maptype) { 4580 case VM_MAPTYPE_SUBMAP: 4581 /* XXX no %qd in kernel. Truncate entry->offset. */ 4582 db_printf(", share=%p, offset=0x%lx\n", 4583 (void *)entry->object.sub_map, 4584 (long)entry->offset); 4585 nlines++; 4586 4587 db_indent += 2; 4588 vm_map_print((db_expr_t)(intptr_t) 4589 entry->object.sub_map, 4590 full, 0, NULL); 4591 db_indent -= 2; 4592 break; 4593 case VM_MAPTYPE_NORMAL: 4594 case VM_MAPTYPE_VPAGETABLE: 4595 /* XXX no %qd in kernel. Truncate entry->offset. */ 4596 db_printf(", object=%p, offset=0x%lx", 4597 (void *)entry->object.vm_object, 4598 (long)entry->offset); 4599 if (entry->eflags & MAP_ENTRY_COW) 4600 db_printf(", copy (%s)", 4601 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4602 db_printf("\n"); 4603 nlines++; 4604 4605 if (entry->object.vm_object) { 4606 db_indent += 2; 4607 vm_object_print((db_expr_t)(intptr_t) 4608 entry->object.vm_object, 4609 full, 0, NULL); 4610 nlines += 4; 4611 db_indent -= 2; 4612 } 4613 break; 4614 case VM_MAPTYPE_UKSMAP: 4615 db_printf(", uksmap=%p, offset=0x%lx", 4616 (void *)entry->object.uksmap, 4617 (long)entry->offset); 4618 if (entry->eflags & MAP_ENTRY_COW) 4619 db_printf(", copy (%s)", 4620 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4621 db_printf("\n"); 4622 nlines++; 4623 break; 4624 default: 4625 break; 4626 } 4627 } 4628 db_indent -= 2; 4629 if (db_indent == 0) 4630 nlines = 0; 4631 } 4632 4633 /* 4634 * Debugging only 4635 */ 4636 DB_SHOW_COMMAND(procvm, procvm) 4637 { 4638 struct proc *p; 4639 4640 if (have_addr) { 4641 p = (struct proc *) addr; 4642 } else { 4643 p = curproc; 4644 } 4645 4646 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4647 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4648 (void *)vmspace_pmap(p->p_vmspace)); 4649 4650 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4651 } 4652 4653 #endif /* DDB */ 4654