xref: /dflybsd-src/sys/vm/vm_map.c (revision 835079a27bde2f83453591a48b6d868ba20f60cc)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2003-2017 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/serialize.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
85 #include <sys/kern_syscall.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98 
99 #include <sys/random.h>
100 #include <sys/sysctl.h>
101 #include <sys/spinlock.h>
102 
103 #include <sys/thread2.h>
104 #include <sys/spinlock2.h>
105 
106 /*
107  * Virtual memory maps provide for the mapping, protection, and sharing
108  * of virtual memory objects.  In addition, this module provides for an
109  * efficient virtual copy of memory from one map to another.
110  *
111  * Synchronization is required prior to most operations.
112  *
113  * Maps consist of an ordered doubly-linked list of simple entries.
114  * A hint and a RB tree is used to speed-up lookups.
115  *
116  * Callers looking to modify maps specify start/end addresses which cause
117  * the related map entry to be clipped if necessary, and then later
118  * recombined if the pieces remained compatible.
119  *
120  * Virtual copy operations are performed by copying VM object references
121  * from one map to another, and then marking both regions as copy-on-write.
122  */
123 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
124 static void vmspace_dtor(void *obj, void *privdata);
125 static void vmspace_terminate(struct vmspace *vm, int final);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 static struct objcache *vmspace_cache;
129 
130 /*
131  * per-cpu page table cross mappings are initialized in early boot
132  * and might require a considerable number of vm_map_entry structures.
133  */
134 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
135 #define MAPENTRYAP_CACHE	8
136 
137 /*
138  * Partioning threaded programs with large anonymous memory areas can
139  * improve concurrent fault performance.
140  */
141 #define MAP_ENTRY_PARTITION_SIZE	((vm_offset_t)(32 * 1024 * 1024))
142 #define MAP_ENTRY_PARTITION_MASK	(MAP_ENTRY_PARTITION_SIZE - 1)
143 
144 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry)	\
145 	((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
146 
147 static struct vm_zone mapentzone_store;
148 static vm_zone_t mapentzone;
149 
150 static struct vm_map_entry map_entry_init[MAX_MAPENT];
151 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
152 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
153 
154 static int randomize_mmap;
155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
156     "Randomize mmap offsets");
157 static int vm_map_relock_enable = 1;
158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
159 	   &vm_map_relock_enable, 0, "insert pop pgtable optimization");
160 static int vm_map_partition_enable = 1;
161 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
162 	   &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
163 
164 static void vmspace_drop_notoken(struct vmspace *vm);
165 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
166 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
167 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
168 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
170 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
171 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
172 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
173 		vm_map_entry_t);
174 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
175 		vm_offset_t start, vm_offset_t end, int *countp, int flags);
176 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
177 		vm_offset_t vaddr, int *countp);
178 
179 /*
180  * Initialize the vm_map module.  Must be called before any other vm_map
181  * routines.
182  *
183  * Map and entry structures are allocated from the general purpose
184  * memory pool with some exceptions:
185  *
186  *	- The kernel map is allocated statically.
187  *	- Initial kernel map entries are allocated out of a static pool.
188  *	- We must set ZONE_SPECIAL here or the early boot code can get
189  *	  stuck if there are >63 cores.
190  *
191  *	These restrictions are necessary since malloc() uses the
192  *	maps and requires map entries.
193  *
194  * Called from the low level boot code only.
195  */
196 void
197 vm_map_startup(void)
198 {
199 	mapentzone = &mapentzone_store;
200 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
201 		  map_entry_init, MAX_MAPENT);
202 	mapentzone_store.zflags |= ZONE_SPECIAL;
203 }
204 
205 /*
206  * Called prior to any vmspace allocations.
207  *
208  * Called from the low level boot code only.
209  */
210 void
211 vm_init2(void)
212 {
213 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
214 						sizeof(struct vmspace),
215 						0, ncpus * 4,
216 						vmspace_ctor, vmspace_dtor,
217 						NULL);
218 	zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
219 	pmap_init2();
220 	vm_object_init2();
221 }
222 
223 /*
224  * objcache support.  We leave the pmap root cached as long as possible
225  * for performance reasons.
226  */
227 static
228 boolean_t
229 vmspace_ctor(void *obj, void *privdata, int ocflags)
230 {
231 	struct vmspace *vm = obj;
232 
233 	bzero(vm, sizeof(*vm));
234 	vm->vm_refcnt = VM_REF_DELETED;
235 
236 	return 1;
237 }
238 
239 static
240 void
241 vmspace_dtor(void *obj, void *privdata)
242 {
243 	struct vmspace *vm = obj;
244 
245 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
246 	pmap_puninit(vmspace_pmap(vm));
247 }
248 
249 /*
250  * Red black tree functions
251  *
252  * The caller must hold the related map lock.
253  */
254 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
255 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
256 
257 /* a->start is address, and the only field has to be initialized */
258 static int
259 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
260 {
261 	if (a->start < b->start)
262 		return(-1);
263 	else if (a->start > b->start)
264 		return(1);
265 	return(0);
266 }
267 
268 /*
269  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
270  * every refcnt.
271  */
272 void
273 vmspace_initrefs(struct vmspace *vm)
274 {
275 	vm->vm_refcnt = 1;
276 	vm->vm_holdcnt = 1;
277 }
278 
279 /*
280  * Allocate a vmspace structure, including a vm_map and pmap.
281  * Initialize numerous fields.  While the initial allocation is zerod,
282  * subsequence reuse from the objcache leaves elements of the structure
283  * intact (particularly the pmap), so portions must be zerod.
284  *
285  * Returns a referenced vmspace.
286  *
287  * No requirements.
288  */
289 struct vmspace *
290 vmspace_alloc(vm_offset_t min, vm_offset_t max)
291 {
292 	struct vmspace *vm;
293 
294 	vm = objcache_get(vmspace_cache, M_WAITOK);
295 
296 	bzero(&vm->vm_startcopy,
297 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
298 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
299 
300 	/*
301 	 * NOTE: hold to acquires token for safety.
302 	 *
303 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
304 	 * each refcnt also has a holdcnt.  There can be additional holds
305 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
306 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
307 	 */
308 	KKASSERT(vm->vm_holdcnt == 0);
309 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
310 	vmspace_initrefs(vm);
311 	vmspace_hold(vm);
312 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
313 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
314 	vm->vm_shm = NULL;
315 	vm->vm_flags = 0;
316 	cpu_vmspace_alloc(vm);
317 	vmspace_drop(vm);
318 
319 	return (vm);
320 }
321 
322 /*
323  * NOTE: Can return 0 if the vmspace is exiting.
324  */
325 int
326 vmspace_getrefs(struct vmspace *vm)
327 {
328 	int32_t n;
329 
330 	n = vm->vm_refcnt;
331 	cpu_ccfence();
332 	if (n & VM_REF_DELETED)
333 		n = -1;
334 	return n;
335 }
336 
337 void
338 vmspace_hold(struct vmspace *vm)
339 {
340 	atomic_add_int(&vm->vm_holdcnt, 1);
341 	lwkt_gettoken(&vm->vm_map.token);
342 }
343 
344 /*
345  * Drop with final termination interlock.
346  */
347 void
348 vmspace_drop(struct vmspace *vm)
349 {
350 	lwkt_reltoken(&vm->vm_map.token);
351 	vmspace_drop_notoken(vm);
352 }
353 
354 static void
355 vmspace_drop_notoken(struct vmspace *vm)
356 {
357 	if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
358 		if (vm->vm_refcnt & VM_REF_DELETED)
359 			vmspace_terminate(vm, 1);
360 	}
361 }
362 
363 /*
364  * A vmspace object must not be in a terminated state to be able to obtain
365  * additional refs on it.
366  *
367  * These are official references to the vmspace, the count is used to check
368  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
369  *
370  * XXX we need to combine hold & ref together into one 64-bit field to allow
371  * holds to prevent stage-1 termination.
372  */
373 void
374 vmspace_ref(struct vmspace *vm)
375 {
376 	uint32_t n;
377 
378 	atomic_add_int(&vm->vm_holdcnt, 1);
379 	n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
380 	KKASSERT((n & VM_REF_DELETED) == 0);
381 }
382 
383 /*
384  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
385  * termination of the vmspace.  Then, on the final drop of the hold we
386  * will do stage-2 final termination.
387  */
388 void
389 vmspace_rel(struct vmspace *vm)
390 {
391 	uint32_t n;
392 
393 	/*
394 	 * Drop refs.  Each ref also has a hold which is also dropped.
395 	 *
396 	 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
397 	 * prevent finalization) to start termination processing.
398 	 * Finalization occurs when the last hold count drops to 0.
399 	 */
400 	n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
401 	while (n == 0) {
402 		if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
403 			vmspace_terminate(vm, 0);
404 			break;
405 		}
406 		n = vm->vm_refcnt;
407 		cpu_ccfence();
408 	}
409 	vmspace_drop_notoken(vm);
410 }
411 
412 /*
413  * This is called during exit indicating that the vmspace is no
414  * longer in used by an exiting process, but the process has not yet
415  * been reaped.
416  *
417  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
418  * to prevent stage-2 until the process is reaped.  Note hte order of
419  * operation, we must hold first.
420  *
421  * No requirements.
422  */
423 void
424 vmspace_relexit(struct vmspace *vm)
425 {
426 	atomic_add_int(&vm->vm_holdcnt, 1);
427 	vmspace_rel(vm);
428 }
429 
430 /*
431  * Called during reap to disconnect the remainder of the vmspace from
432  * the process.  On the hold drop the vmspace termination is finalized.
433  *
434  * No requirements.
435  */
436 void
437 vmspace_exitfree(struct proc *p)
438 {
439 	struct vmspace *vm;
440 
441 	vm = p->p_vmspace;
442 	p->p_vmspace = NULL;
443 	vmspace_drop_notoken(vm);
444 }
445 
446 /*
447  * Called in two cases:
448  *
449  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
450  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
451  *     and holdcnt will still be non-zero.
452  *
453  * (2) When holdcnt becomes 0, called with final == 1.  There should no
454  *     longer be anyone with access to the vmspace.
455  *
456  * VMSPACE_EXIT1 flags the primary deactivation
457  * VMSPACE_EXIT2 flags the last reap
458  */
459 static void
460 vmspace_terminate(struct vmspace *vm, int final)
461 {
462 	int count;
463 
464 	lwkt_gettoken(&vm->vm_map.token);
465 	if (final == 0) {
466 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
467 		vm->vm_flags |= VMSPACE_EXIT1;
468 
469 		/*
470 		 * Get rid of most of the resources.  Leave the kernel pmap
471 		 * intact.
472 		 *
473 		 * If the pmap does not contain wired pages we can bulk-delete
474 		 * the pmap as a performance optimization before removing the
475 		 * related mappings.
476 		 *
477 		 * If the pmap contains wired pages we cannot do this
478 		 * pre-optimization because currently vm_fault_unwire()
479 		 * expects the pmap pages to exist and will not decrement
480 		 * p->wire_count if they do not.
481 		 */
482 		shmexit(vm);
483 		if (vmspace_pmap(vm)->pm_stats.wired_count) {
484 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
485 				      VM_MAX_USER_ADDRESS);
486 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
487 					  VM_MAX_USER_ADDRESS);
488 		} else {
489 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
490 					  VM_MAX_USER_ADDRESS);
491 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
492 				      VM_MAX_USER_ADDRESS);
493 		}
494 		lwkt_reltoken(&vm->vm_map.token);
495 	} else {
496 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
497 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
498 
499 		/*
500 		 * Get rid of remaining basic resources.
501 		 */
502 		vm->vm_flags |= VMSPACE_EXIT2;
503 		shmexit(vm);
504 
505 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
506 		vm_map_lock(&vm->vm_map);
507 		cpu_vmspace_free(vm);
508 
509 		/*
510 		 * Lock the map, to wait out all other references to it.
511 		 * Delete all of the mappings and pages they hold, then call
512 		 * the pmap module to reclaim anything left.
513 		 */
514 		vm_map_delete(&vm->vm_map,
515 			      vm_map_min(&vm->vm_map),
516 			      vm_map_max(&vm->vm_map),
517 			      &count);
518 		vm_map_unlock(&vm->vm_map);
519 		vm_map_entry_release(count);
520 
521 		pmap_release(vmspace_pmap(vm));
522 		lwkt_reltoken(&vm->vm_map.token);
523 		objcache_put(vmspace_cache, vm);
524 	}
525 }
526 
527 /*
528  * Swap useage is determined by taking the proportional swap used by
529  * VM objects backing the VM map.  To make up for fractional losses,
530  * if the VM object has any swap use at all the associated map entries
531  * count for at least 1 swap page.
532  *
533  * No requirements.
534  */
535 vm_offset_t
536 vmspace_swap_count(struct vmspace *vm)
537 {
538 	vm_map_t map = &vm->vm_map;
539 	vm_map_entry_t cur;
540 	vm_object_t object;
541 	vm_offset_t count = 0;
542 	vm_offset_t n;
543 
544 	vmspace_hold(vm);
545 
546 	RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
547 		switch(cur->maptype) {
548 		case VM_MAPTYPE_NORMAL:
549 		case VM_MAPTYPE_VPAGETABLE:
550 			if ((object = cur->object.vm_object) == NULL)
551 				break;
552 			if (object->swblock_count) {
553 				n = (cur->end - cur->start) / PAGE_SIZE;
554 				count += object->swblock_count *
555 				    SWAP_META_PAGES * n / object->size + 1;
556 			}
557 			break;
558 		default:
559 			break;
560 		}
561 	}
562 	vmspace_drop(vm);
563 
564 	return(count);
565 }
566 
567 /*
568  * Calculate the approximate number of anonymous pages in use by
569  * this vmspace.  To make up for fractional losses, we count each
570  * VM object as having at least 1 anonymous page.
571  *
572  * No requirements.
573  */
574 vm_offset_t
575 vmspace_anonymous_count(struct vmspace *vm)
576 {
577 	vm_map_t map = &vm->vm_map;
578 	vm_map_entry_t cur;
579 	vm_object_t object;
580 	vm_offset_t count = 0;
581 
582 	vmspace_hold(vm);
583 	RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
584 		switch(cur->maptype) {
585 		case VM_MAPTYPE_NORMAL:
586 		case VM_MAPTYPE_VPAGETABLE:
587 			if ((object = cur->object.vm_object) == NULL)
588 				break;
589 			if (object->type != OBJT_DEFAULT &&
590 			    object->type != OBJT_SWAP) {
591 				break;
592 			}
593 			count += object->resident_page_count;
594 			break;
595 		default:
596 			break;
597 		}
598 	}
599 	vmspace_drop(vm);
600 
601 	return(count);
602 }
603 
604 /*
605  * Initialize an existing vm_map structure such as that in the vmspace
606  * structure.  The pmap is initialized elsewhere.
607  *
608  * No requirements.
609  */
610 void
611 vm_map_init(struct vm_map *map, vm_offset_t min_addr, vm_offset_t max_addr,
612 	    pmap_t pmap)
613 {
614 	RB_INIT(&map->rb_root);
615 	spin_init(&map->ilock_spin, "ilock");
616 	map->ilock_base = NULL;
617 	map->nentries = 0;
618 	map->size = 0;
619 	map->system_map = 0;
620 	vm_map_min(map) = min_addr;
621 	vm_map_max(map) = max_addr;
622 	map->pmap = pmap;
623 	map->timestamp = 0;
624 	map->flags = 0;
625 	bzero(&map->freehint, sizeof(map->freehint));
626 	lwkt_token_init(&map->token, "vm_map");
627 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
628 }
629 
630 /*
631  * Find the first possible free address for the specified request length.
632  * Returns 0 if we don't have one cached.
633  */
634 static
635 vm_offset_t
636 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
637 {
638 	vm_map_freehint_t *scan;
639 
640 	scan = &map->freehint[0];
641 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
642 		if (scan->length == length && scan->align == align)
643 			return(scan->start);
644 		++scan;
645 	}
646 	return 0;
647 }
648 
649 /*
650  * Unconditionally set the freehint.  Called by vm_map_findspace() after
651  * it finds an address.  This will help us iterate optimally on the next
652  * similar findspace.
653  */
654 static
655 void
656 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
657 		       vm_size_t length, vm_size_t align)
658 {
659 	vm_map_freehint_t *scan;
660 
661 	scan = &map->freehint[0];
662 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
663 		if (scan->length == length && scan->align == align) {
664 			scan->start = start;
665 			return;
666 		}
667 		++scan;
668 	}
669 	scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
670 	scan->start = start;
671 	scan->align = align;
672 	scan->length = length;
673 	++map->freehint_newindex;
674 }
675 
676 /*
677  * Update any existing freehints (for any alignment), for the hole we just
678  * added.
679  */
680 static
681 void
682 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
683 {
684 	vm_map_freehint_t *scan;
685 
686 	scan = &map->freehint[0];
687 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
688 		if (scan->length <= length && scan->start > start)
689 			scan->start = start;
690 		++scan;
691 	}
692 }
693 
694 /*
695  * Shadow the vm_map_entry's object.  This typically needs to be done when
696  * a write fault is taken on an entry which had previously been cloned by
697  * fork().  The shared object (which might be NULL) must become private so
698  * we add a shadow layer above it.
699  *
700  * Object allocation for anonymous mappings is defered as long as possible.
701  * When creating a shadow, however, the underlying object must be instantiated
702  * so it can be shared.
703  *
704  * If the map segment is governed by a virtual page table then it is
705  * possible to address offsets beyond the mapped area.  Just allocate
706  * a maximally sized object for this case.
707  *
708  * If addref is non-zero an additional reference is added to the returned
709  * entry.  This mechanic exists because the additional reference might have
710  * to be added atomically and not after return to prevent a premature
711  * collapse.
712  *
713  * The vm_map must be exclusively locked.
714  * No other requirements.
715  */
716 static
717 void
718 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
719 {
720 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
721 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
722 				 0x7FFFFFFF, addref);	/* XXX */
723 	} else {
724 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
725 				 atop(entry->end - entry->start), addref);
726 	}
727 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
728 }
729 
730 /*
731  * Allocate an object for a vm_map_entry.
732  *
733  * Object allocation for anonymous mappings is defered as long as possible.
734  * This function is called when we can defer no longer, generally when a map
735  * entry might be split or forked or takes a page fault.
736  *
737  * If the map segment is governed by a virtual page table then it is
738  * possible to address offsets beyond the mapped area.  Just allocate
739  * a maximally sized object for this case.
740  *
741  * The vm_map must be exclusively locked.
742  * No other requirements.
743  */
744 void
745 vm_map_entry_allocate_object(vm_map_entry_t entry)
746 {
747 	vm_object_t obj;
748 
749 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
750 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
751 	} else {
752 		obj = vm_object_allocate(OBJT_DEFAULT,
753 					 atop(entry->end - entry->start));
754 	}
755 	entry->object.vm_object = obj;
756 	entry->offset = 0;
757 }
758 
759 /*
760  * Set an initial negative count so the first attempt to reserve
761  * space preloads a bunch of vm_map_entry's for this cpu.  Also
762  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
763  * map a new page for vm_map_entry structures.  SMP systems are
764  * particularly sensitive.
765  *
766  * This routine is called in early boot so we cannot just call
767  * vm_map_entry_reserve().
768  *
769  * Called from the low level boot code only (for each cpu)
770  *
771  * WARNING! Take care not to have too-big a static/BSS structure here
772  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
773  *	    can get blown out by the kernel plus the initrd image.
774  */
775 void
776 vm_map_entry_reserve_cpu_init(globaldata_t gd)
777 {
778 	vm_map_entry_t entry;
779 	int count;
780 	int i;
781 
782 	atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
783 	if (gd->gd_cpuid == 0) {
784 		entry = &cpu_map_entry_init_bsp[0];
785 		count = MAPENTRYBSP_CACHE;
786 	} else {
787 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
788 		count = MAPENTRYAP_CACHE;
789 	}
790 	for (i = 0; i < count; ++i, ++entry) {
791 		MAPENT_FREELIST(entry) = gd->gd_vme_base;
792 		gd->gd_vme_base = entry;
793 	}
794 }
795 
796 /*
797  * Reserves vm_map_entry structures so code later-on can manipulate
798  * map_entry structures within a locked map without blocking trying
799  * to allocate a new vm_map_entry.
800  *
801  * No requirements.
802  *
803  * WARNING!  We must not decrement gd_vme_avail until after we have
804  *	     ensured that sufficient entries exist, otherwise we can
805  *	     get into an endless call recursion in the zalloc code
806  *	     itself.
807  */
808 int
809 vm_map_entry_reserve(int count)
810 {
811 	struct globaldata *gd = mycpu;
812 	vm_map_entry_t entry;
813 
814 	/*
815 	 * Make sure we have enough structures in gd_vme_base to handle
816 	 * the reservation request.
817 	 *
818 	 * Use a critical section to protect against VM faults.  It might
819 	 * not be needed, but we have to be careful here.
820 	 */
821 	if (gd->gd_vme_avail < count) {
822 		crit_enter();
823 		while (gd->gd_vme_avail < count) {
824 			entry = zalloc(mapentzone);
825 			MAPENT_FREELIST(entry) = gd->gd_vme_base;
826 			gd->gd_vme_base = entry;
827 			atomic_add_int(&gd->gd_vme_avail, 1);
828 		}
829 		crit_exit();
830 	}
831 	atomic_add_int(&gd->gd_vme_avail, -count);
832 
833 	return(count);
834 }
835 
836 /*
837  * Releases previously reserved vm_map_entry structures that were not
838  * used.  If we have too much junk in our per-cpu cache clean some of
839  * it out.
840  *
841  * No requirements.
842  */
843 void
844 vm_map_entry_release(int count)
845 {
846 	struct globaldata *gd = mycpu;
847 	vm_map_entry_t entry;
848 	vm_map_entry_t efree;
849 
850 	count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
851 	if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
852 		efree = NULL;
853 		crit_enter();
854 		while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
855 			entry = gd->gd_vme_base;
856 			KKASSERT(entry != NULL);
857 			gd->gd_vme_base = MAPENT_FREELIST(entry);
858 			atomic_add_int(&gd->gd_vme_avail, -1);
859 			MAPENT_FREELIST(entry) = efree;
860 			efree = entry;
861 		}
862 		crit_exit();
863 		while ((entry = efree) != NULL) {
864 			efree = MAPENT_FREELIST(efree);
865 			zfree(mapentzone, entry);
866 		}
867 	}
868 }
869 
870 /*
871  * Reserve map entry structures for use in kernel_map itself.  These
872  * entries have *ALREADY* been reserved on a per-cpu basis when the map
873  * was inited.  This function is used by zalloc() to avoid a recursion
874  * when zalloc() itself needs to allocate additional kernel memory.
875  *
876  * This function works like the normal reserve but does not load the
877  * vm_map_entry cache (because that would result in an infinite
878  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
879  *
880  * Any caller of this function must be sure to renormalize after
881  * potentially eating entries to ensure that the reserve supply
882  * remains intact.
883  *
884  * No requirements.
885  */
886 int
887 vm_map_entry_kreserve(int count)
888 {
889 	struct globaldata *gd = mycpu;
890 
891 	atomic_add_int(&gd->gd_vme_avail, -count);
892 	KASSERT(gd->gd_vme_base != NULL,
893 		("no reserved entries left, gd_vme_avail = %d",
894 		gd->gd_vme_avail));
895 	return(count);
896 }
897 
898 /*
899  * Release previously reserved map entries for kernel_map.  We do not
900  * attempt to clean up like the normal release function as this would
901  * cause an unnecessary (but probably not fatal) deep procedure call.
902  *
903  * No requirements.
904  */
905 void
906 vm_map_entry_krelease(int count)
907 {
908 	struct globaldata *gd = mycpu;
909 
910 	atomic_add_int(&gd->gd_vme_avail, count);
911 }
912 
913 /*
914  * Allocates a VM map entry for insertion.  No entry fields are filled in.
915  *
916  * The entries should have previously been reserved.  The reservation count
917  * is tracked in (*countp).
918  *
919  * No requirements.
920  */
921 static vm_map_entry_t
922 vm_map_entry_create(vm_map_t map, int *countp)
923 {
924 	struct globaldata *gd = mycpu;
925 	vm_map_entry_t entry;
926 
927 	KKASSERT(*countp > 0);
928 	--*countp;
929 	crit_enter();
930 	entry = gd->gd_vme_base;
931 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
932 	gd->gd_vme_base = MAPENT_FREELIST(entry);
933 	crit_exit();
934 
935 	return(entry);
936 }
937 
938 /*
939  * Dispose of a vm_map_entry that is no longer being referenced.
940  *
941  * No requirements.
942  */
943 static void
944 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
945 {
946 	struct globaldata *gd = mycpu;
947 
948 	++*countp;
949 	crit_enter();
950 	MAPENT_FREELIST(entry) = gd->gd_vme_base;
951 	gd->gd_vme_base = entry;
952 	crit_exit();
953 }
954 
955 
956 /*
957  * Insert/remove entries from maps.
958  *
959  * The related map must be exclusively locked.
960  * The caller must hold map->token
961  * No other requirements.
962  */
963 static __inline void
964 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
965 {
966 	ASSERT_VM_MAP_LOCKED(map);
967 
968 	map->nentries++;
969 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
970 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
971 }
972 
973 static __inline void
974 vm_map_entry_unlink(vm_map_t map,
975 		    vm_map_entry_t entry)
976 {
977 	ASSERT_VM_MAP_LOCKED(map);
978 
979 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
980 		panic("vm_map_entry_unlink: attempt to mess with "
981 		      "locked entry! %p", entry);
982 	}
983 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
984 	map->nentries--;
985 }
986 
987 /*
988  * Finds the map entry containing (or immediately preceding) the specified
989  * address in the given map.  The entry is returned in (*entry).
990  *
991  * The boolean result indicates whether the address is actually contained
992  * in the map.
993  *
994  * The related map must be locked.
995  * No other requirements.
996  */
997 boolean_t
998 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
999 {
1000 	vm_map_entry_t tmp;
1001 	vm_map_entry_t last;
1002 
1003 	ASSERT_VM_MAP_LOCKED(map);
1004 
1005 	/*
1006 	 * Locate the record from the top of the tree.  'last' tracks the
1007 	 * closest prior record and is returned if no match is found, which
1008 	 * in binary tree terms means tracking the most recent right-branch
1009 	 * taken.  If there is no prior record, *entry is set to NULL.
1010 	 */
1011 	last = NULL;
1012 	tmp = RB_ROOT(&map->rb_root);
1013 
1014 	while (tmp) {
1015 		if (address >= tmp->start) {
1016 			if (address < tmp->end) {
1017 				*entry = tmp;
1018 				return(TRUE);
1019 			}
1020 			last = tmp;
1021 			tmp = RB_RIGHT(tmp, rb_entry);
1022 		} else {
1023 			tmp = RB_LEFT(tmp, rb_entry);
1024 		}
1025 	}
1026 	*entry = last;
1027 	return (FALSE);
1028 }
1029 
1030 /*
1031  * Inserts the given whole VM object into the target map at the specified
1032  * address range.  The object's size should match that of the address range.
1033  *
1034  * The map must be exclusively locked.
1035  * The object must be held.
1036  * The caller must have reserved sufficient vm_map_entry structures.
1037  *
1038  * If object is non-NULL, ref count must be bumped by caller prior to
1039  * making call to account for the new entry.
1040  */
1041 int
1042 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1043 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1044 	      vm_maptype_t maptype, vm_subsys_t id,
1045 	      vm_prot_t prot, vm_prot_t max, int cow)
1046 {
1047 	vm_map_entry_t new_entry;
1048 	vm_map_entry_t prev_entry;
1049 	vm_map_entry_t next;
1050 	vm_map_entry_t temp_entry;
1051 	vm_eflags_t protoeflags;
1052 	int must_drop = 0;
1053 	vm_object_t object;
1054 
1055 	if (maptype == VM_MAPTYPE_UKSMAP)
1056 		object = NULL;
1057 	else
1058 		object = map_object;
1059 
1060 	ASSERT_VM_MAP_LOCKED(map);
1061 	if (object)
1062 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1063 
1064 	/*
1065 	 * Check that the start and end points are not bogus.
1066 	 */
1067 	if ((start < vm_map_min(map)) || (end > vm_map_max(map)) ||
1068 	    (start >= end)) {
1069 		return (KERN_INVALID_ADDRESS);
1070 	}
1071 
1072 	/*
1073 	 * Find the entry prior to the proposed starting address; if it's part
1074 	 * of an existing entry, this range is bogus.
1075 	 */
1076 	if (vm_map_lookup_entry(map, start, &temp_entry))
1077 		return (KERN_NO_SPACE);
1078 	prev_entry = temp_entry;
1079 
1080 	/*
1081 	 * Assert that the next entry doesn't overlap the end point.
1082 	 */
1083 	if (prev_entry)
1084 		next = vm_map_rb_tree_RB_NEXT(prev_entry);
1085 	else
1086 		next = RB_MIN(vm_map_rb_tree, &map->rb_root);
1087 	if (next && next->start < end)
1088 		return (KERN_NO_SPACE);
1089 
1090 	protoeflags = 0;
1091 
1092 	if (cow & MAP_COPY_ON_WRITE)
1093 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1094 
1095 	if (cow & MAP_NOFAULT) {
1096 		protoeflags |= MAP_ENTRY_NOFAULT;
1097 
1098 		KASSERT(object == NULL,
1099 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1100 	}
1101 	if (cow & MAP_DISABLE_SYNCER)
1102 		protoeflags |= MAP_ENTRY_NOSYNC;
1103 	if (cow & MAP_DISABLE_COREDUMP)
1104 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1105 	if (cow & MAP_IS_STACK)
1106 		protoeflags |= MAP_ENTRY_STACK;
1107 	if (cow & MAP_IS_KSTACK)
1108 		protoeflags |= MAP_ENTRY_KSTACK;
1109 
1110 	lwkt_gettoken(&map->token);
1111 
1112 	if (object) {
1113 		/*
1114 		 * When object is non-NULL, it could be shared with another
1115 		 * process.  We have to set or clear OBJ_ONEMAPPING
1116 		 * appropriately.
1117 		 *
1118 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1119 		 *	 objects and will already be clear in other types
1120 		 *	 of objects, so a shared object lock is ok for
1121 		 *	 VNODE objects.
1122 		 */
1123 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1124 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1125 		}
1126 	}
1127 	else if (prev_entry &&
1128 		 (prev_entry->eflags == protoeflags) &&
1129 		 (prev_entry->end == start) &&
1130 		 (prev_entry->wired_count == 0) &&
1131 		 (prev_entry->id == id) &&
1132 		 prev_entry->maptype == maptype &&
1133 		 maptype == VM_MAPTYPE_NORMAL &&
1134 		 ((prev_entry->object.vm_object == NULL) ||
1135 		  vm_object_coalesce(prev_entry->object.vm_object,
1136 				     OFF_TO_IDX(prev_entry->offset),
1137 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1138 				     (vm_size_t)(end - prev_entry->end)))) {
1139 		/*
1140 		 * We were able to extend the object.  Determine if we
1141 		 * can extend the previous map entry to include the
1142 		 * new range as well.
1143 		 */
1144 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1145 		    (prev_entry->protection == prot) &&
1146 		    (prev_entry->max_protection == max)) {
1147 			map->size += (end - prev_entry->end);
1148 			prev_entry->end = end;
1149 			vm_map_simplify_entry(map, prev_entry, countp);
1150 			lwkt_reltoken(&map->token);
1151 			return (KERN_SUCCESS);
1152 		}
1153 
1154 		/*
1155 		 * If we can extend the object but cannot extend the
1156 		 * map entry, we have to create a new map entry.  We
1157 		 * must bump the ref count on the extended object to
1158 		 * account for it.  object may be NULL.
1159 		 *
1160 		 * XXX if object is NULL should we set offset to 0 here ?
1161 		 */
1162 		object = prev_entry->object.vm_object;
1163 		offset = prev_entry->offset +
1164 			(prev_entry->end - prev_entry->start);
1165 		if (object) {
1166 			vm_object_hold(object);
1167 			vm_object_chain_wait(object, 0);
1168 			vm_object_reference_locked(object);
1169 			must_drop = 1;
1170 			map_object = object;
1171 		}
1172 	}
1173 
1174 	/*
1175 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1176 	 * in things like the buffer map where we manage kva but do not manage
1177 	 * backing objects.
1178 	 */
1179 
1180 	/*
1181 	 * Create a new entry
1182 	 */
1183 
1184 	new_entry = vm_map_entry_create(map, countp);
1185 	new_entry->start = start;
1186 	new_entry->end = end;
1187 	new_entry->id = id;
1188 
1189 	new_entry->maptype = maptype;
1190 	new_entry->eflags = protoeflags;
1191 	new_entry->object.map_object = map_object;
1192 	new_entry->aux.master_pde = 0;		/* in case size is different */
1193 	new_entry->aux.map_aux = map_aux;
1194 	new_entry->offset = offset;
1195 
1196 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1197 	new_entry->protection = prot;
1198 	new_entry->max_protection = max;
1199 	new_entry->wired_count = 0;
1200 
1201 	/*
1202 	 * Insert the new entry into the list
1203 	 */
1204 
1205 	vm_map_entry_link(map, new_entry);
1206 	map->size += new_entry->end - new_entry->start;
1207 
1208 	/*
1209 	 * Don't worry about updating freehint[] when inserting, allow
1210 	 * addresses to be lower than the actual first free spot.
1211 	 */
1212 #if 0
1213 	/*
1214 	 * Temporarily removed to avoid MAP_STACK panic, due to
1215 	 * MAP_STACK being a huge hack.  Will be added back in
1216 	 * when MAP_STACK (and the user stack mapping) is fixed.
1217 	 */
1218 	/*
1219 	 * It may be possible to simplify the entry
1220 	 */
1221 	vm_map_simplify_entry(map, new_entry, countp);
1222 #endif
1223 
1224 	/*
1225 	 * Try to pre-populate the page table.  Mappings governed by virtual
1226 	 * page tables cannot be prepopulated without a lot of work, so
1227 	 * don't try.
1228 	 */
1229 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1230 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1231 	    maptype != VM_MAPTYPE_UKSMAP) {
1232 		int dorelock = 0;
1233 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1234 			dorelock = 1;
1235 			vm_object_lock_swap();
1236 			vm_object_drop(object);
1237 		}
1238 		pmap_object_init_pt(map->pmap, start, prot,
1239 				    object, OFF_TO_IDX(offset), end - start,
1240 				    cow & MAP_PREFAULT_PARTIAL);
1241 		if (dorelock) {
1242 			vm_object_hold(object);
1243 			vm_object_lock_swap();
1244 		}
1245 	}
1246 	if (must_drop)
1247 		vm_object_drop(object);
1248 
1249 	lwkt_reltoken(&map->token);
1250 	return (KERN_SUCCESS);
1251 }
1252 
1253 /*
1254  * Find sufficient space for `length' bytes in the given map, starting at
1255  * `start'.  Returns 0 on success, 1 on no space.
1256  *
1257  * This function will returned an arbitrarily aligned pointer.  If no
1258  * particular alignment is required you should pass align as 1.  Note that
1259  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1260  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1261  * argument.
1262  *
1263  * 'align' should be a power of 2 but is not required to be.
1264  *
1265  * The map must be exclusively locked.
1266  * No other requirements.
1267  */
1268 int
1269 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1270 		 vm_size_t align, int flags, vm_offset_t *addr)
1271 {
1272 	vm_map_entry_t entry;
1273 	vm_map_entry_t tmp;
1274 	vm_offset_t hole_start;
1275 	vm_offset_t end;
1276 	vm_offset_t align_mask;
1277 
1278 	if (start < vm_map_min(map))
1279 		start = vm_map_min(map);
1280 	if (start > vm_map_max(map))
1281 		return (1);
1282 
1283 	/*
1284 	 * If the alignment is not a power of 2 we will have to use
1285 	 * a mod/division, set align_mask to a special value.
1286 	 */
1287 	if ((align | (align - 1)) + 1 != (align << 1))
1288 		align_mask = (vm_offset_t)-1;
1289 	else
1290 		align_mask = align - 1;
1291 
1292 	/*
1293 	 * Use freehint to adjust the start point, hopefully reducing
1294 	 * the iteration to O(1).
1295 	 */
1296 	hole_start = vm_map_freehint_find(map, length, align);
1297 	if (start < hole_start)
1298 		start = hole_start;
1299 	if (vm_map_lookup_entry(map, start, &tmp))
1300 		start = tmp->end;
1301 	entry = tmp;	/* may be NULL */
1302 
1303 	/*
1304 	 * Look through the rest of the map, trying to fit a new region in the
1305 	 * gap between existing regions, or after the very last region.
1306 	 */
1307 	for (;;) {
1308 		/*
1309 		 * Adjust the proposed start by the requested alignment,
1310 		 * be sure that we didn't wrap the address.
1311 		 */
1312 		if (align_mask == (vm_offset_t)-1)
1313 			end = roundup(start, align);
1314 		else
1315 			end = (start + align_mask) & ~align_mask;
1316 		if (end < start)
1317 			return (1);
1318 		start = end;
1319 
1320 		/*
1321 		 * Find the end of the proposed new region.  Be sure we didn't
1322 		 * go beyond the end of the map, or wrap around the address.
1323 		 * Then check to see if this is the last entry or if the
1324 		 * proposed end fits in the gap between this and the next
1325 		 * entry.
1326 		 */
1327 		end = start + length;
1328 		if (end > vm_map_max(map) || end < start)
1329 			return (1);
1330 
1331 		/*
1332 		 * Locate the next entry, we can stop if this is the
1333 		 * last entry (we know we are in-bounds so that would
1334 		 * be a sucess).
1335 		 */
1336 		if (entry)
1337 			entry = vm_map_rb_tree_RB_NEXT(entry);
1338 		else
1339 			entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1340 		if (entry == NULL)
1341 			break;
1342 
1343 		/*
1344 		 * Determine if the proposed area would overlap the
1345 		 * next entry.
1346 		 *
1347 		 * When matching against a STACK entry, only allow the
1348 		 * memory map to intrude on the ungrown portion of the
1349 		 * STACK entry when MAP_TRYFIXED is set.
1350 		 */
1351 		if (entry->start >= end) {
1352 			if ((entry->eflags & MAP_ENTRY_STACK) == 0)
1353 				break;
1354 			if (flags & MAP_TRYFIXED)
1355 				break;
1356 			if (entry->start - entry->aux.avail_ssize >= end)
1357 				break;
1358 		}
1359 		start = entry->end;
1360 	}
1361 
1362 	/*
1363 	 * Update the freehint
1364 	 */
1365 	vm_map_freehint_update(map, start, length, align);
1366 
1367 	/*
1368 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1369 	 * if it fails.  The kernel_map is locked and nothing can steal
1370 	 * our address space if pmap_growkernel() blocks.
1371 	 *
1372 	 * NOTE: This may be unconditionally called for kldload areas on
1373 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1374 	 *	 fill 128G worth of page tables!).  Therefore we must not
1375 	 *	 retry.
1376 	 */
1377 	if (map == &kernel_map) {
1378 		vm_offset_t kstop;
1379 
1380 		kstop = round_page(start + length);
1381 		if (kstop > kernel_vm_end)
1382 			pmap_growkernel(start, kstop);
1383 	}
1384 	*addr = start;
1385 	return (0);
1386 }
1387 
1388 /*
1389  * vm_map_find finds an unallocated region in the target address map with
1390  * the given length and allocates it.  The search is defined to be first-fit
1391  * from the specified address; the region found is returned in the same
1392  * parameter.
1393  *
1394  * If object is non-NULL, ref count must be bumped by caller
1395  * prior to making call to account for the new entry.
1396  *
1397  * No requirements.  This function will lock the map temporarily.
1398  */
1399 int
1400 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1401 	    vm_ooffset_t offset, vm_offset_t *addr,
1402 	    vm_size_t length, vm_size_t align, boolean_t fitit,
1403 	    vm_maptype_t maptype, vm_subsys_t id,
1404 	    vm_prot_t prot, vm_prot_t max, int cow)
1405 {
1406 	vm_offset_t start;
1407 	vm_object_t object;
1408 	int result;
1409 	int count;
1410 
1411 	if (maptype == VM_MAPTYPE_UKSMAP)
1412 		object = NULL;
1413 	else
1414 		object = map_object;
1415 
1416 	start = *addr;
1417 
1418 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1419 	vm_map_lock(map);
1420 	if (object)
1421 		vm_object_hold_shared(object);
1422 	if (fitit) {
1423 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1424 			if (object)
1425 				vm_object_drop(object);
1426 			vm_map_unlock(map);
1427 			vm_map_entry_release(count);
1428 			return (KERN_NO_SPACE);
1429 		}
1430 		start = *addr;
1431 	}
1432 	result = vm_map_insert(map, &count, map_object, map_aux,
1433 			       offset, start, start + length,
1434 			       maptype, id, prot, max, cow);
1435 	if (object)
1436 		vm_object_drop(object);
1437 	vm_map_unlock(map);
1438 	vm_map_entry_release(count);
1439 
1440 	return (result);
1441 }
1442 
1443 /*
1444  * Simplify the given map entry by merging with either neighbor.  This
1445  * routine also has the ability to merge with both neighbors.
1446  *
1447  * This routine guarentees that the passed entry remains valid (though
1448  * possibly extended).  When merging, this routine may delete one or
1449  * both neighbors.  No action is taken on entries which have their
1450  * in-transition flag set.
1451  *
1452  * The map must be exclusively locked.
1453  */
1454 void
1455 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1456 {
1457 	vm_map_entry_t next, prev;
1458 	vm_size_t prevsize, esize;
1459 
1460 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1461 		++mycpu->gd_cnt.v_intrans_coll;
1462 		return;
1463 	}
1464 
1465 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1466 		return;
1467 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1468 		return;
1469 
1470 	prev = vm_map_rb_tree_RB_PREV(entry);
1471 	if (prev) {
1472 		prevsize = prev->end - prev->start;
1473 		if ( (prev->end == entry->start) &&
1474 		     (prev->maptype == entry->maptype) &&
1475 		     (prev->object.vm_object == entry->object.vm_object) &&
1476 		     (!prev->object.vm_object ||
1477 			(prev->offset + prevsize == entry->offset)) &&
1478 		     (prev->eflags == entry->eflags) &&
1479 		     (prev->protection == entry->protection) &&
1480 		     (prev->max_protection == entry->max_protection) &&
1481 		     (prev->inheritance == entry->inheritance) &&
1482 		     (prev->id == entry->id) &&
1483 		     (prev->wired_count == entry->wired_count)) {
1484 			vm_map_entry_unlink(map, prev);
1485 			entry->start = prev->start;
1486 			entry->offset = prev->offset;
1487 			if (prev->object.vm_object)
1488 				vm_object_deallocate(prev->object.vm_object);
1489 			vm_map_entry_dispose(map, prev, countp);
1490 		}
1491 	}
1492 
1493 	next = vm_map_rb_tree_RB_NEXT(entry);
1494 	if (next) {
1495 		esize = entry->end - entry->start;
1496 		if ((entry->end == next->start) &&
1497 		    (next->maptype == entry->maptype) &&
1498 		    (next->object.vm_object == entry->object.vm_object) &&
1499 		     (!entry->object.vm_object ||
1500 			(entry->offset + esize == next->offset)) &&
1501 		    (next->eflags == entry->eflags) &&
1502 		    (next->protection == entry->protection) &&
1503 		    (next->max_protection == entry->max_protection) &&
1504 		    (next->inheritance == entry->inheritance) &&
1505 		    (next->id == entry->id) &&
1506 		    (next->wired_count == entry->wired_count)) {
1507 			vm_map_entry_unlink(map, next);
1508 			entry->end = next->end;
1509 			if (next->object.vm_object)
1510 				vm_object_deallocate(next->object.vm_object);
1511 			vm_map_entry_dispose(map, next, countp);
1512 	        }
1513 	}
1514 }
1515 
1516 /*
1517  * Asserts that the given entry begins at or after the specified address.
1518  * If necessary, it splits the entry into two.
1519  */
1520 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1521 {									\
1522 	if (startaddr > entry->start)					\
1523 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1524 }
1525 
1526 /*
1527  * This routine is called only when it is known that the entry must be split.
1528  *
1529  * The map must be exclusively locked.
1530  */
1531 static void
1532 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1533 		   int *countp)
1534 {
1535 	vm_map_entry_t new_entry;
1536 
1537 	/*
1538 	 * Split off the front portion -- note that we must insert the new
1539 	 * entry BEFORE this one, so that this entry has the specified
1540 	 * starting address.
1541 	 */
1542 
1543 	vm_map_simplify_entry(map, entry, countp);
1544 
1545 	/*
1546 	 * If there is no object backing this entry, we might as well create
1547 	 * one now.  If we defer it, an object can get created after the map
1548 	 * is clipped, and individual objects will be created for the split-up
1549 	 * map.  This is a bit of a hack, but is also about the best place to
1550 	 * put this improvement.
1551 	 */
1552 	if (entry->object.vm_object == NULL && !map->system_map &&
1553 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1554 		vm_map_entry_allocate_object(entry);
1555 	}
1556 
1557 	new_entry = vm_map_entry_create(map, countp);
1558 	*new_entry = *entry;
1559 
1560 	new_entry->end = start;
1561 	entry->offset += (start - entry->start);
1562 	entry->start = start;
1563 
1564 	vm_map_entry_link(map, new_entry);
1565 
1566 	switch(entry->maptype) {
1567 	case VM_MAPTYPE_NORMAL:
1568 	case VM_MAPTYPE_VPAGETABLE:
1569 		if (new_entry->object.vm_object) {
1570 			vm_object_hold(new_entry->object.vm_object);
1571 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1572 			vm_object_reference_locked(new_entry->object.vm_object);
1573 			vm_object_drop(new_entry->object.vm_object);
1574 		}
1575 		break;
1576 	default:
1577 		break;
1578 	}
1579 }
1580 
1581 /*
1582  * Asserts that the given entry ends at or before the specified address.
1583  * If necessary, it splits the entry into two.
1584  *
1585  * The map must be exclusively locked.
1586  */
1587 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1588 {								\
1589 	if (endaddr < entry->end)				\
1590 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1591 }
1592 
1593 /*
1594  * This routine is called only when it is known that the entry must be split.
1595  *
1596  * The map must be exclusively locked.
1597  */
1598 static void
1599 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1600 		 int *countp)
1601 {
1602 	vm_map_entry_t new_entry;
1603 
1604 	/*
1605 	 * If there is no object backing this entry, we might as well create
1606 	 * one now.  If we defer it, an object can get created after the map
1607 	 * is clipped, and individual objects will be created for the split-up
1608 	 * map.  This is a bit of a hack, but is also about the best place to
1609 	 * put this improvement.
1610 	 */
1611 
1612 	if (entry->object.vm_object == NULL && !map->system_map &&
1613 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1614 		vm_map_entry_allocate_object(entry);
1615 	}
1616 
1617 	/*
1618 	 * Create a new entry and insert it AFTER the specified entry
1619 	 */
1620 	new_entry = vm_map_entry_create(map, countp);
1621 	*new_entry = *entry;
1622 
1623 	new_entry->start = entry->end = end;
1624 	new_entry->offset += (end - entry->start);
1625 
1626 	vm_map_entry_link(map, new_entry);
1627 
1628 	switch(entry->maptype) {
1629 	case VM_MAPTYPE_NORMAL:
1630 	case VM_MAPTYPE_VPAGETABLE:
1631 		if (new_entry->object.vm_object) {
1632 			vm_object_hold(new_entry->object.vm_object);
1633 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1634 			vm_object_reference_locked(new_entry->object.vm_object);
1635 			vm_object_drop(new_entry->object.vm_object);
1636 		}
1637 		break;
1638 	default:
1639 		break;
1640 	}
1641 }
1642 
1643 /*
1644  * Asserts that the starting and ending region addresses fall within the
1645  * valid range for the map.
1646  */
1647 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1648 {						\
1649 	if (start < vm_map_min(map))		\
1650 		start = vm_map_min(map);	\
1651 	if (end > vm_map_max(map))		\
1652 		end = vm_map_max(map);		\
1653 	if (start > end)			\
1654 		start = end;			\
1655 }
1656 
1657 /*
1658  * Used to block when an in-transition collison occurs.  The map
1659  * is unlocked for the sleep and relocked before the return.
1660  */
1661 void
1662 vm_map_transition_wait(vm_map_t map, int relock)
1663 {
1664 	tsleep_interlock(map, 0);
1665 	vm_map_unlock(map);
1666 	tsleep(map, PINTERLOCKED, "vment", 0);
1667 	if (relock)
1668 		vm_map_lock(map);
1669 }
1670 
1671 /*
1672  * When we do blocking operations with the map lock held it is
1673  * possible that a clip might have occured on our in-transit entry,
1674  * requiring an adjustment to the entry in our loop.  These macros
1675  * help the pageable and clip_range code deal with the case.  The
1676  * conditional costs virtually nothing if no clipping has occured.
1677  */
1678 
1679 #define CLIP_CHECK_BACK(entry, save_start)			\
1680     do {							\
1681 	    while (entry->start != save_start) {		\
1682 		    entry = vm_map_rb_tree_RB_PREV(entry);	\
1683 		    KASSERT(entry, ("bad entry clip")); 	\
1684 	    }							\
1685     } while(0)
1686 
1687 #define CLIP_CHECK_FWD(entry, save_end)				\
1688     do {							\
1689 	    while (entry->end != save_end) {			\
1690 		    entry = vm_map_rb_tree_RB_NEXT(entry);	\
1691 		    KASSERT(entry, ("bad entry clip")); 	\
1692 	    }							\
1693     } while(0)
1694 
1695 
1696 /*
1697  * Clip the specified range and return the base entry.  The
1698  * range may cover several entries starting at the returned base
1699  * and the first and last entry in the covering sequence will be
1700  * properly clipped to the requested start and end address.
1701  *
1702  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1703  * flag.
1704  *
1705  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1706  * covered by the requested range.
1707  *
1708  * The map must be exclusively locked on entry and will remain locked
1709  * on return. If no range exists or the range contains holes and you
1710  * specified that no holes were allowed, NULL will be returned.  This
1711  * routine may temporarily unlock the map in order avoid a deadlock when
1712  * sleeping.
1713  */
1714 static
1715 vm_map_entry_t
1716 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1717 		  int *countp, int flags)
1718 {
1719 	vm_map_entry_t start_entry;
1720 	vm_map_entry_t entry;
1721 	vm_map_entry_t next;
1722 
1723 	/*
1724 	 * Locate the entry and effect initial clipping.  The in-transition
1725 	 * case does not occur very often so do not try to optimize it.
1726 	 */
1727 again:
1728 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1729 		return (NULL);
1730 	entry = start_entry;
1731 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1732 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1733 		++mycpu->gd_cnt.v_intrans_coll;
1734 		++mycpu->gd_cnt.v_intrans_wait;
1735 		vm_map_transition_wait(map, 1);
1736 		/*
1737 		 * entry and/or start_entry may have been clipped while
1738 		 * we slept, or may have gone away entirely.  We have
1739 		 * to restart from the lookup.
1740 		 */
1741 		goto again;
1742 	}
1743 
1744 	/*
1745 	 * Since we hold an exclusive map lock we do not have to restart
1746 	 * after clipping, even though clipping may block in zalloc.
1747 	 */
1748 	vm_map_clip_start(map, entry, start, countp);
1749 	vm_map_clip_end(map, entry, end, countp);
1750 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1751 
1752 	/*
1753 	 * Scan entries covered by the range.  When working on the next
1754 	 * entry a restart need only re-loop on the current entry which
1755 	 * we have already locked, since 'next' may have changed.  Also,
1756 	 * even though entry is safe, it may have been clipped so we
1757 	 * have to iterate forwards through the clip after sleeping.
1758 	 */
1759 	for (;;) {
1760 		next = vm_map_rb_tree_RB_NEXT(entry);
1761 		if (next == NULL || next->start >= end)
1762 			break;
1763 		if (flags & MAP_CLIP_NO_HOLES) {
1764 			if (next->start > entry->end) {
1765 				vm_map_unclip_range(map, start_entry,
1766 					start, entry->end, countp, flags);
1767 				return(NULL);
1768 			}
1769 		}
1770 
1771 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1772 			vm_offset_t save_end = entry->end;
1773 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1774 			++mycpu->gd_cnt.v_intrans_coll;
1775 			++mycpu->gd_cnt.v_intrans_wait;
1776 			vm_map_transition_wait(map, 1);
1777 
1778 			/*
1779 			 * clips might have occured while we blocked.
1780 			 */
1781 			CLIP_CHECK_FWD(entry, save_end);
1782 			CLIP_CHECK_BACK(start_entry, start);
1783 			continue;
1784 		}
1785 
1786 		/*
1787 		 * No restart necessary even though clip_end may block, we
1788 		 * are holding the map lock.
1789 		 */
1790 		vm_map_clip_end(map, next, end, countp);
1791 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1792 		entry = next;
1793 	}
1794 	if (flags & MAP_CLIP_NO_HOLES) {
1795 		if (entry->end != end) {
1796 			vm_map_unclip_range(map, start_entry,
1797 				start, entry->end, countp, flags);
1798 			return(NULL);
1799 		}
1800 	}
1801 	return(start_entry);
1802 }
1803 
1804 /*
1805  * Undo the effect of vm_map_clip_range().  You should pass the same
1806  * flags and the same range that you passed to vm_map_clip_range().
1807  * This code will clear the in-transition flag on the entries and
1808  * wake up anyone waiting.  This code will also simplify the sequence
1809  * and attempt to merge it with entries before and after the sequence.
1810  *
1811  * The map must be locked on entry and will remain locked on return.
1812  *
1813  * Note that you should also pass the start_entry returned by
1814  * vm_map_clip_range().  However, if you block between the two calls
1815  * with the map unlocked please be aware that the start_entry may
1816  * have been clipped and you may need to scan it backwards to find
1817  * the entry corresponding with the original start address.  You are
1818  * responsible for this, vm_map_unclip_range() expects the correct
1819  * start_entry to be passed to it and will KASSERT otherwise.
1820  */
1821 static
1822 void
1823 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1824 		    vm_offset_t start, vm_offset_t end,
1825 		    int *countp, int flags)
1826 {
1827 	vm_map_entry_t entry;
1828 
1829 	entry = start_entry;
1830 
1831 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1832 	while (entry && entry->start < end) {
1833 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1834 			("in-transition flag not set during unclip on: %p",
1835 			entry));
1836 		KASSERT(entry->end <= end,
1837 			("unclip_range: tail wasn't clipped"));
1838 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1839 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1840 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1841 			wakeup(map);
1842 		}
1843 		entry = vm_map_rb_tree_RB_NEXT(entry);
1844 	}
1845 
1846 	/*
1847 	 * Simplification does not block so there is no restart case.
1848 	 */
1849 	entry = start_entry;
1850 	while (entry && entry->start < end) {
1851 		vm_map_simplify_entry(map, entry, countp);
1852 		entry = vm_map_rb_tree_RB_NEXT(entry);
1853 	}
1854 }
1855 
1856 /*
1857  * Mark the given range as handled by a subordinate map.
1858  *
1859  * This range must have been created with vm_map_find(), and no other
1860  * operations may have been performed on this range prior to calling
1861  * vm_map_submap().
1862  *
1863  * Submappings cannot be removed.
1864  *
1865  * No requirements.
1866  */
1867 int
1868 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1869 {
1870 	vm_map_entry_t entry;
1871 	int result = KERN_INVALID_ARGUMENT;
1872 	int count;
1873 
1874 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1875 	vm_map_lock(map);
1876 
1877 	VM_MAP_RANGE_CHECK(map, start, end);
1878 
1879 	if (vm_map_lookup_entry(map, start, &entry)) {
1880 		vm_map_clip_start(map, entry, start, &count);
1881 	} else if (entry) {
1882 		entry = vm_map_rb_tree_RB_NEXT(entry);
1883 	} else {
1884 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1885 	}
1886 
1887 	vm_map_clip_end(map, entry, end, &count);
1888 
1889 	if ((entry->start == start) && (entry->end == end) &&
1890 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1891 	    (entry->object.vm_object == NULL)) {
1892 		entry->object.sub_map = submap;
1893 		entry->maptype = VM_MAPTYPE_SUBMAP;
1894 		result = KERN_SUCCESS;
1895 	}
1896 	vm_map_unlock(map);
1897 	vm_map_entry_release(count);
1898 
1899 	return (result);
1900 }
1901 
1902 /*
1903  * Sets the protection of the specified address region in the target map.
1904  * If "set_max" is specified, the maximum protection is to be set;
1905  * otherwise, only the current protection is affected.
1906  *
1907  * The protection is not applicable to submaps, but is applicable to normal
1908  * maps and maps governed by virtual page tables.  For example, when operating
1909  * on a virtual page table our protection basically controls how COW occurs
1910  * on the backing object, whereas the virtual page table abstraction itself
1911  * is an abstraction for userland.
1912  *
1913  * No requirements.
1914  */
1915 int
1916 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1917 	       vm_prot_t new_prot, boolean_t set_max)
1918 {
1919 	vm_map_entry_t current;
1920 	vm_map_entry_t entry;
1921 	int count;
1922 
1923 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1924 	vm_map_lock(map);
1925 
1926 	VM_MAP_RANGE_CHECK(map, start, end);
1927 
1928 	if (vm_map_lookup_entry(map, start, &entry)) {
1929 		vm_map_clip_start(map, entry, start, &count);
1930 	} else if (entry) {
1931 		entry = vm_map_rb_tree_RB_NEXT(entry);
1932 	} else {
1933 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1934 	}
1935 
1936 	/*
1937 	 * Make a first pass to check for protection violations.
1938 	 */
1939 	current = entry;
1940 	while (current && current->start < end) {
1941 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1942 			vm_map_unlock(map);
1943 			vm_map_entry_release(count);
1944 			return (KERN_INVALID_ARGUMENT);
1945 		}
1946 		if ((new_prot & current->max_protection) != new_prot) {
1947 			vm_map_unlock(map);
1948 			vm_map_entry_release(count);
1949 			return (KERN_PROTECTION_FAILURE);
1950 		}
1951 
1952 		/*
1953 		 * When making a SHARED+RW file mmap writable, update
1954 		 * v_lastwrite_ts.
1955 		 */
1956 		if (new_prot & PROT_WRITE &&
1957 		    (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
1958 		    (current->maptype == VM_MAPTYPE_NORMAL ||
1959 		     current->maptype == VM_MAPTYPE_VPAGETABLE) &&
1960 		    current->object.vm_object &&
1961 		    current->object.vm_object->type == OBJT_VNODE) {
1962 			struct vnode *vp;
1963 
1964 			vp = current->object.vm_object->handle;
1965 			if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) {
1966 				vfs_timestamp(&vp->v_lastwrite_ts);
1967 				vsetflags(vp, VLASTWRITETS);
1968 				vn_unlock(vp);
1969 			}
1970 		}
1971 		current = vm_map_rb_tree_RB_NEXT(current);
1972 	}
1973 
1974 	/*
1975 	 * Go back and fix up protections. [Note that clipping is not
1976 	 * necessary the second time.]
1977 	 */
1978 	current = entry;
1979 
1980 	while (current && current->start < end) {
1981 		vm_prot_t old_prot;
1982 
1983 		vm_map_clip_end(map, current, end, &count);
1984 
1985 		old_prot = current->protection;
1986 		if (set_max) {
1987 			current->max_protection = new_prot;
1988 			current->protection = new_prot & old_prot;
1989 		} else {
1990 			current->protection = new_prot;
1991 		}
1992 
1993 		/*
1994 		 * Update physical map if necessary. Worry about copy-on-write
1995 		 * here -- CHECK THIS XXX
1996 		 */
1997 		if (current->protection != old_prot) {
1998 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1999 							VM_PROT_ALL)
2000 
2001 			pmap_protect(map->pmap, current->start,
2002 			    current->end,
2003 			    current->protection & MASK(current));
2004 #undef	MASK
2005 		}
2006 
2007 		vm_map_simplify_entry(map, current, &count);
2008 
2009 		current = vm_map_rb_tree_RB_NEXT(current);
2010 	}
2011 	vm_map_unlock(map);
2012 	vm_map_entry_release(count);
2013 	return (KERN_SUCCESS);
2014 }
2015 
2016 /*
2017  * This routine traverses a processes map handling the madvise
2018  * system call.  Advisories are classified as either those effecting
2019  * the vm_map_entry structure, or those effecting the underlying
2020  * objects.
2021  *
2022  * The <value> argument is used for extended madvise calls.
2023  *
2024  * No requirements.
2025  */
2026 int
2027 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2028 	       int behav, off_t value)
2029 {
2030 	vm_map_entry_t current, entry;
2031 	int modify_map = 0;
2032 	int error = 0;
2033 	int count;
2034 
2035 	/*
2036 	 * Some madvise calls directly modify the vm_map_entry, in which case
2037 	 * we need to use an exclusive lock on the map and we need to perform
2038 	 * various clipping operations.  Otherwise we only need a read-lock
2039 	 * on the map.
2040 	 */
2041 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2042 
2043 	switch(behav) {
2044 	case MADV_NORMAL:
2045 	case MADV_SEQUENTIAL:
2046 	case MADV_RANDOM:
2047 	case MADV_NOSYNC:
2048 	case MADV_AUTOSYNC:
2049 	case MADV_NOCORE:
2050 	case MADV_CORE:
2051 	case MADV_SETMAP:
2052 		modify_map = 1;
2053 		vm_map_lock(map);
2054 		break;
2055 	case MADV_INVAL:
2056 	case MADV_WILLNEED:
2057 	case MADV_DONTNEED:
2058 	case MADV_FREE:
2059 		vm_map_lock_read(map);
2060 		break;
2061 	default:
2062 		vm_map_entry_release(count);
2063 		return (EINVAL);
2064 	}
2065 
2066 	/*
2067 	 * Locate starting entry and clip if necessary.
2068 	 */
2069 
2070 	VM_MAP_RANGE_CHECK(map, start, end);
2071 
2072 	if (vm_map_lookup_entry(map, start, &entry)) {
2073 		if (modify_map)
2074 			vm_map_clip_start(map, entry, start, &count);
2075 	} else if (entry) {
2076 		entry = vm_map_rb_tree_RB_NEXT(entry);
2077 	} else {
2078 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2079 	}
2080 
2081 	if (modify_map) {
2082 		/*
2083 		 * madvise behaviors that are implemented in the vm_map_entry.
2084 		 *
2085 		 * We clip the vm_map_entry so that behavioral changes are
2086 		 * limited to the specified address range.
2087 		 */
2088 		for (current = entry;
2089 		     current && current->start < end;
2090 		     current = vm_map_rb_tree_RB_NEXT(current)) {
2091 			/*
2092 			 * Ignore submaps
2093 			 */
2094 			if (current->maptype == VM_MAPTYPE_SUBMAP)
2095 				continue;
2096 
2097 			vm_map_clip_end(map, current, end, &count);
2098 
2099 			switch (behav) {
2100 			case MADV_NORMAL:
2101 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2102 				break;
2103 			case MADV_SEQUENTIAL:
2104 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2105 				break;
2106 			case MADV_RANDOM:
2107 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2108 				break;
2109 			case MADV_NOSYNC:
2110 				current->eflags |= MAP_ENTRY_NOSYNC;
2111 				break;
2112 			case MADV_AUTOSYNC:
2113 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2114 				break;
2115 			case MADV_NOCORE:
2116 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2117 				break;
2118 			case MADV_CORE:
2119 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2120 				break;
2121 			case MADV_SETMAP:
2122 				/*
2123 				 * Set the page directory page for a map
2124 				 * governed by a virtual page table.  Mark
2125 				 * the entry as being governed by a virtual
2126 				 * page table if it is not.
2127 				 *
2128 				 * XXX the page directory page is stored
2129 				 * in the avail_ssize field if the map_entry.
2130 				 *
2131 				 * XXX the map simplification code does not
2132 				 * compare this field so weird things may
2133 				 * happen if you do not apply this function
2134 				 * to the entire mapping governed by the
2135 				 * virtual page table.
2136 				 */
2137 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2138 					error = EINVAL;
2139 					break;
2140 				}
2141 				current->aux.master_pde = value;
2142 				pmap_remove(map->pmap,
2143 					    current->start, current->end);
2144 				break;
2145 			case MADV_INVAL:
2146 				/*
2147 				 * Invalidate the related pmap entries, used
2148 				 * to flush portions of the real kernel's
2149 				 * pmap when the caller has removed or
2150 				 * modified existing mappings in a virtual
2151 				 * page table.
2152 				 *
2153 				 * (exclusive locked map version does not
2154 				 * need the range interlock).
2155 				 */
2156 				pmap_remove(map->pmap,
2157 					    current->start, current->end);
2158 				break;
2159 			default:
2160 				error = EINVAL;
2161 				break;
2162 			}
2163 			vm_map_simplify_entry(map, current, &count);
2164 		}
2165 		vm_map_unlock(map);
2166 	} else {
2167 		vm_pindex_t pindex;
2168 		vm_pindex_t delta;
2169 
2170 		/*
2171 		 * madvise behaviors that are implemented in the underlying
2172 		 * vm_object.
2173 		 *
2174 		 * Since we don't clip the vm_map_entry, we have to clip
2175 		 * the vm_object pindex and count.
2176 		 *
2177 		 * NOTE!  These functions are only supported on normal maps,
2178 		 *	  except MADV_INVAL which is also supported on
2179 		 *	  virtual page tables.
2180 		 */
2181 		for (current = entry;
2182 		     current && current->start < end;
2183 		     current = vm_map_rb_tree_RB_NEXT(current)) {
2184 			vm_offset_t useStart;
2185 
2186 			if (current->maptype != VM_MAPTYPE_NORMAL &&
2187 			    (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2188 			     behav != MADV_INVAL)) {
2189 				continue;
2190 			}
2191 
2192 			pindex = OFF_TO_IDX(current->offset);
2193 			delta = atop(current->end - current->start);
2194 			useStart = current->start;
2195 
2196 			if (current->start < start) {
2197 				pindex += atop(start - current->start);
2198 				delta -= atop(start - current->start);
2199 				useStart = start;
2200 			}
2201 			if (current->end > end)
2202 				delta -= atop(current->end - end);
2203 
2204 			if ((vm_spindex_t)delta <= 0)
2205 				continue;
2206 
2207 			if (behav == MADV_INVAL) {
2208 				/*
2209 				 * Invalidate the related pmap entries, used
2210 				 * to flush portions of the real kernel's
2211 				 * pmap when the caller has removed or
2212 				 * modified existing mappings in a virtual
2213 				 * page table.
2214 				 *
2215 				 * (shared locked map version needs the
2216 				 * interlock, see vm_fault()).
2217 				 */
2218 				struct vm_map_ilock ilock;
2219 
2220 				KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2221 					    useStart + ptoa(delta) <=
2222 					    VM_MAX_USER_ADDRESS,
2223 					 ("Bad range %016jx-%016jx (%016jx)",
2224 					 useStart, useStart + ptoa(delta),
2225 					 delta));
2226 				vm_map_interlock(map, &ilock,
2227 						 useStart,
2228 						 useStart + ptoa(delta));
2229 				pmap_remove(map->pmap,
2230 					    useStart,
2231 					    useStart + ptoa(delta));
2232 				vm_map_deinterlock(map, &ilock);
2233 			} else {
2234 				vm_object_madvise(current->object.vm_object,
2235 						  pindex, delta, behav);
2236 			}
2237 
2238 			/*
2239 			 * Try to populate the page table.  Mappings governed
2240 			 * by virtual page tables cannot be pre-populated
2241 			 * without a lot of work so don't try.
2242 			 */
2243 			if (behav == MADV_WILLNEED &&
2244 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2245 				pmap_object_init_pt(
2246 				    map->pmap,
2247 				    useStart,
2248 				    current->protection,
2249 				    current->object.vm_object,
2250 				    pindex,
2251 				    (count << PAGE_SHIFT),
2252 				    MAP_PREFAULT_MADVISE
2253 				);
2254 			}
2255 		}
2256 		vm_map_unlock_read(map);
2257 	}
2258 	vm_map_entry_release(count);
2259 	return(error);
2260 }
2261 
2262 
2263 /*
2264  * Sets the inheritance of the specified address range in the target map.
2265  * Inheritance affects how the map will be shared with child maps at the
2266  * time of vm_map_fork.
2267  */
2268 int
2269 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2270 	       vm_inherit_t new_inheritance)
2271 {
2272 	vm_map_entry_t entry;
2273 	vm_map_entry_t temp_entry;
2274 	int count;
2275 
2276 	switch (new_inheritance) {
2277 	case VM_INHERIT_NONE:
2278 	case VM_INHERIT_COPY:
2279 	case VM_INHERIT_SHARE:
2280 		break;
2281 	default:
2282 		return (KERN_INVALID_ARGUMENT);
2283 	}
2284 
2285 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2286 	vm_map_lock(map);
2287 
2288 	VM_MAP_RANGE_CHECK(map, start, end);
2289 
2290 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2291 		entry = temp_entry;
2292 		vm_map_clip_start(map, entry, start, &count);
2293 	} else if (temp_entry) {
2294 		entry = vm_map_rb_tree_RB_NEXT(temp_entry);
2295 	} else {
2296 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2297 	}
2298 
2299 	while (entry && entry->start < end) {
2300 		vm_map_clip_end(map, entry, end, &count);
2301 
2302 		entry->inheritance = new_inheritance;
2303 
2304 		vm_map_simplify_entry(map, entry, &count);
2305 
2306 		entry = vm_map_rb_tree_RB_NEXT(entry);
2307 	}
2308 	vm_map_unlock(map);
2309 	vm_map_entry_release(count);
2310 	return (KERN_SUCCESS);
2311 }
2312 
2313 /*
2314  * Implement the semantics of mlock
2315  */
2316 int
2317 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2318 	      boolean_t new_pageable)
2319 {
2320 	vm_map_entry_t entry;
2321 	vm_map_entry_t start_entry;
2322 	vm_offset_t end;
2323 	int rv = KERN_SUCCESS;
2324 	int count;
2325 
2326 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2327 	vm_map_lock(map);
2328 	VM_MAP_RANGE_CHECK(map, start, real_end);
2329 	end = real_end;
2330 
2331 	start_entry = vm_map_clip_range(map, start, end, &count,
2332 					MAP_CLIP_NO_HOLES);
2333 	if (start_entry == NULL) {
2334 		vm_map_unlock(map);
2335 		vm_map_entry_release(count);
2336 		return (KERN_INVALID_ADDRESS);
2337 	}
2338 
2339 	if (new_pageable == 0) {
2340 		entry = start_entry;
2341 		while (entry && entry->start < end) {
2342 			vm_offset_t save_start;
2343 			vm_offset_t save_end;
2344 
2345 			/*
2346 			 * Already user wired or hard wired (trivial cases)
2347 			 */
2348 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2349 				entry = vm_map_rb_tree_RB_NEXT(entry);
2350 				continue;
2351 			}
2352 			if (entry->wired_count != 0) {
2353 				entry->wired_count++;
2354 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2355 				entry = vm_map_rb_tree_RB_NEXT(entry);
2356 				continue;
2357 			}
2358 
2359 			/*
2360 			 * A new wiring requires instantiation of appropriate
2361 			 * management structures and the faulting in of the
2362 			 * page.
2363 			 */
2364 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2365 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2366 				int copyflag = entry->eflags &
2367 					       MAP_ENTRY_NEEDS_COPY;
2368 				if (copyflag && ((entry->protection &
2369 						  VM_PROT_WRITE) != 0)) {
2370 					vm_map_entry_shadow(entry, 0);
2371 				} else if (entry->object.vm_object == NULL &&
2372 					   !map->system_map) {
2373 					vm_map_entry_allocate_object(entry);
2374 				}
2375 			}
2376 			entry->wired_count++;
2377 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2378 
2379 			/*
2380 			 * Now fault in the area.  Note that vm_fault_wire()
2381 			 * may release the map lock temporarily, it will be
2382 			 * relocked on return.  The in-transition
2383 			 * flag protects the entries.
2384 			 */
2385 			save_start = entry->start;
2386 			save_end = entry->end;
2387 			rv = vm_fault_wire(map, entry, TRUE, 0);
2388 			if (rv) {
2389 				CLIP_CHECK_BACK(entry, save_start);
2390 				for (;;) {
2391 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2392 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2393 					entry->wired_count = 0;
2394 					if (entry->end == save_end)
2395 						break;
2396 					entry = vm_map_rb_tree_RB_NEXT(entry);
2397 					KASSERT(entry,
2398 					     ("bad entry clip during backout"));
2399 				}
2400 				end = save_start;	/* unwire the rest */
2401 				break;
2402 			}
2403 			/*
2404 			 * note that even though the entry might have been
2405 			 * clipped, the USER_WIRED flag we set prevents
2406 			 * duplication so we do not have to do a
2407 			 * clip check.
2408 			 */
2409 			entry = vm_map_rb_tree_RB_NEXT(entry);
2410 		}
2411 
2412 		/*
2413 		 * If we failed fall through to the unwiring section to
2414 		 * unwire what we had wired so far.  'end' has already
2415 		 * been adjusted.
2416 		 */
2417 		if (rv)
2418 			new_pageable = 1;
2419 
2420 		/*
2421 		 * start_entry might have been clipped if we unlocked the
2422 		 * map and blocked.  No matter how clipped it has gotten
2423 		 * there should be a fragment that is on our start boundary.
2424 		 */
2425 		CLIP_CHECK_BACK(start_entry, start);
2426 	}
2427 
2428 	/*
2429 	 * Deal with the unwiring case.
2430 	 */
2431 	if (new_pageable) {
2432 		/*
2433 		 * This is the unwiring case.  We must first ensure that the
2434 		 * range to be unwired is really wired down.  We know there
2435 		 * are no holes.
2436 		 */
2437 		entry = start_entry;
2438 		while (entry && entry->start < end) {
2439 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2440 				rv = KERN_INVALID_ARGUMENT;
2441 				goto done;
2442 			}
2443 			KASSERT(entry->wired_count != 0,
2444 				("wired count was 0 with USER_WIRED set! %p",
2445 				 entry));
2446 			entry = vm_map_rb_tree_RB_NEXT(entry);
2447 		}
2448 
2449 		/*
2450 		 * Now decrement the wiring count for each region. If a region
2451 		 * becomes completely unwired, unwire its physical pages and
2452 		 * mappings.
2453 		 */
2454 		/*
2455 		 * The map entries are processed in a loop, checking to
2456 		 * make sure the entry is wired and asserting it has a wired
2457 		 * count. However, another loop was inserted more-or-less in
2458 		 * the middle of the unwiring path. This loop picks up the
2459 		 * "entry" loop variable from the first loop without first
2460 		 * setting it to start_entry. Naturally, the secound loop
2461 		 * is never entered and the pages backing the entries are
2462 		 * never unwired. This can lead to a leak of wired pages.
2463 		 */
2464 		entry = start_entry;
2465 		while (entry && entry->start < end) {
2466 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2467 				("expected USER_WIRED on entry %p", entry));
2468 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2469 			entry->wired_count--;
2470 			if (entry->wired_count == 0)
2471 				vm_fault_unwire(map, entry);
2472 			entry = vm_map_rb_tree_RB_NEXT(entry);
2473 		}
2474 	}
2475 done:
2476 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2477 		MAP_CLIP_NO_HOLES);
2478 	vm_map_unlock(map);
2479 	vm_map_entry_release(count);
2480 
2481 	return (rv);
2482 }
2483 
2484 /*
2485  * Sets the pageability of the specified address range in the target map.
2486  * Regions specified as not pageable require locked-down physical
2487  * memory and physical page maps.
2488  *
2489  * The map must not be locked, but a reference must remain to the map
2490  * throughout the call.
2491  *
2492  * This function may be called via the zalloc path and must properly
2493  * reserve map entries for kernel_map.
2494  *
2495  * No requirements.
2496  */
2497 int
2498 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2499 {
2500 	vm_map_entry_t entry;
2501 	vm_map_entry_t start_entry;
2502 	vm_offset_t end;
2503 	int rv = KERN_SUCCESS;
2504 	int count;
2505 
2506 	if (kmflags & KM_KRESERVE)
2507 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2508 	else
2509 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2510 	vm_map_lock(map);
2511 	VM_MAP_RANGE_CHECK(map, start, real_end);
2512 	end = real_end;
2513 
2514 	start_entry = vm_map_clip_range(map, start, end, &count,
2515 					MAP_CLIP_NO_HOLES);
2516 	if (start_entry == NULL) {
2517 		vm_map_unlock(map);
2518 		rv = KERN_INVALID_ADDRESS;
2519 		goto failure;
2520 	}
2521 	if ((kmflags & KM_PAGEABLE) == 0) {
2522 		/*
2523 		 * Wiring.
2524 		 *
2525 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2526 		 * objects that need to be created. Then we clip each map
2527 		 * entry to the region to be wired and increment its wiring
2528 		 * count.  We create objects before clipping the map entries
2529 		 * to avoid object proliferation.
2530 		 *
2531 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2532 		 * fault in the pages for any newly wired area (wired_count is
2533 		 * 1).
2534 		 *
2535 		 * Downgrading to a read lock for vm_fault_wire avoids a
2536 		 * possible deadlock with another process that may have faulted
2537 		 * on one of the pages to be wired (it would mark the page busy,
2538 		 * blocking us, then in turn block on the map lock that we
2539 		 * hold).  Because of problems in the recursive lock package,
2540 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2541 		 * any actions that require the write lock must be done
2542 		 * beforehand.  Because we keep the read lock on the map, the
2543 		 * copy-on-write status of the entries we modify here cannot
2544 		 * change.
2545 		 */
2546 		entry = start_entry;
2547 		while (entry && entry->start < end) {
2548 			/*
2549 			 * Trivial case if the entry is already wired
2550 			 */
2551 			if (entry->wired_count) {
2552 				entry->wired_count++;
2553 				entry = vm_map_rb_tree_RB_NEXT(entry);
2554 				continue;
2555 			}
2556 
2557 			/*
2558 			 * The entry is being newly wired, we have to setup
2559 			 * appropriate management structures.  A shadow
2560 			 * object is required for a copy-on-write region,
2561 			 * or a normal object for a zero-fill region.  We
2562 			 * do not have to do this for entries that point to sub
2563 			 * maps because we won't hold the lock on the sub map.
2564 			 */
2565 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2566 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2567 				int copyflag = entry->eflags &
2568 					       MAP_ENTRY_NEEDS_COPY;
2569 				if (copyflag && ((entry->protection &
2570 						  VM_PROT_WRITE) != 0)) {
2571 					vm_map_entry_shadow(entry, 0);
2572 				} else if (entry->object.vm_object == NULL &&
2573 					   !map->system_map) {
2574 					vm_map_entry_allocate_object(entry);
2575 				}
2576 			}
2577 			entry->wired_count++;
2578 			entry = vm_map_rb_tree_RB_NEXT(entry);
2579 		}
2580 
2581 		/*
2582 		 * Pass 2.
2583 		 */
2584 
2585 		/*
2586 		 * HACK HACK HACK HACK
2587 		 *
2588 		 * vm_fault_wire() temporarily unlocks the map to avoid
2589 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2590 		 * call should protect us from changes while the map is
2591 		 * unlocked.  T
2592 		 *
2593 		 * NOTE: Previously this comment stated that clipping might
2594 		 *	 still occur while the entry is unlocked, but from
2595 		 *	 what I can tell it actually cannot.
2596 		 *
2597 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2598 		 *	 are still needed but we keep them in anyway.
2599 		 *
2600 		 * HACK HACK HACK HACK
2601 		 */
2602 
2603 		entry = start_entry;
2604 		while (entry && entry->start < end) {
2605 			/*
2606 			 * If vm_fault_wire fails for any page we need to undo
2607 			 * what has been done.  We decrement the wiring count
2608 			 * for those pages which have not yet been wired (now)
2609 			 * and unwire those that have (later).
2610 			 */
2611 			vm_offset_t save_start = entry->start;
2612 			vm_offset_t save_end = entry->end;
2613 
2614 			if (entry->wired_count == 1)
2615 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2616 			if (rv) {
2617 				CLIP_CHECK_BACK(entry, save_start);
2618 				for (;;) {
2619 					KASSERT(entry->wired_count == 1,
2620 					  ("wired_count changed unexpectedly"));
2621 					entry->wired_count = 0;
2622 					if (entry->end == save_end)
2623 						break;
2624 					entry = vm_map_rb_tree_RB_NEXT(entry);
2625 					KASSERT(entry,
2626 					  ("bad entry clip during backout"));
2627 				}
2628 				end = save_start;
2629 				break;
2630 			}
2631 			CLIP_CHECK_FWD(entry, save_end);
2632 			entry = vm_map_rb_tree_RB_NEXT(entry);
2633 		}
2634 
2635 		/*
2636 		 * If a failure occured undo everything by falling through
2637 		 * to the unwiring code.  'end' has already been adjusted
2638 		 * appropriately.
2639 		 */
2640 		if (rv)
2641 			kmflags |= KM_PAGEABLE;
2642 
2643 		/*
2644 		 * start_entry is still IN_TRANSITION but may have been
2645 		 * clipped since vm_fault_wire() unlocks and relocks the
2646 		 * map.  No matter how clipped it has gotten there should
2647 		 * be a fragment that is on our start boundary.
2648 		 */
2649 		CLIP_CHECK_BACK(start_entry, start);
2650 	}
2651 
2652 	if (kmflags & KM_PAGEABLE) {
2653 		/*
2654 		 * This is the unwiring case.  We must first ensure that the
2655 		 * range to be unwired is really wired down.  We know there
2656 		 * are no holes.
2657 		 */
2658 		entry = start_entry;
2659 		while (entry && entry->start < end) {
2660 			if (entry->wired_count == 0) {
2661 				rv = KERN_INVALID_ARGUMENT;
2662 				goto done;
2663 			}
2664 			entry = vm_map_rb_tree_RB_NEXT(entry);
2665 		}
2666 
2667 		/*
2668 		 * Now decrement the wiring count for each region. If a region
2669 		 * becomes completely unwired, unwire its physical pages and
2670 		 * mappings.
2671 		 */
2672 		entry = start_entry;
2673 		while (entry && entry->start < end) {
2674 			entry->wired_count--;
2675 			if (entry->wired_count == 0)
2676 				vm_fault_unwire(map, entry);
2677 			entry = vm_map_rb_tree_RB_NEXT(entry);
2678 		}
2679 	}
2680 done:
2681 	vm_map_unclip_range(map, start_entry, start, real_end,
2682 			    &count, MAP_CLIP_NO_HOLES);
2683 	vm_map_unlock(map);
2684 failure:
2685 	if (kmflags & KM_KRESERVE)
2686 		vm_map_entry_krelease(count);
2687 	else
2688 		vm_map_entry_release(count);
2689 	return (rv);
2690 }
2691 
2692 /*
2693  * Mark a newly allocated address range as wired but do not fault in
2694  * the pages.  The caller is expected to load the pages into the object.
2695  *
2696  * The map must be locked on entry and will remain locked on return.
2697  * No other requirements.
2698  */
2699 void
2700 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2701 		       int *countp)
2702 {
2703 	vm_map_entry_t scan;
2704 	vm_map_entry_t entry;
2705 
2706 	entry = vm_map_clip_range(map, addr, addr + size,
2707 				  countp, MAP_CLIP_NO_HOLES);
2708 	scan = entry;
2709 	while (scan && scan->start < addr + size) {
2710 		KKASSERT(scan->wired_count == 0);
2711 		scan->wired_count = 1;
2712 		scan = vm_map_rb_tree_RB_NEXT(scan);
2713 	}
2714 	vm_map_unclip_range(map, entry, addr, addr + size,
2715 			    countp, MAP_CLIP_NO_HOLES);
2716 }
2717 
2718 /*
2719  * Push any dirty cached pages in the address range to their pager.
2720  * If syncio is TRUE, dirty pages are written synchronously.
2721  * If invalidate is TRUE, any cached pages are freed as well.
2722  *
2723  * This routine is called by sys_msync()
2724  *
2725  * Returns an error if any part of the specified range is not mapped.
2726  *
2727  * No requirements.
2728  */
2729 int
2730 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2731 	     boolean_t syncio, boolean_t invalidate)
2732 {
2733 	vm_map_entry_t current;
2734 	vm_map_entry_t next;
2735 	vm_map_entry_t entry;
2736 	vm_size_t size;
2737 	vm_object_t object;
2738 	vm_object_t tobj;
2739 	vm_ooffset_t offset;
2740 
2741 	vm_map_lock_read(map);
2742 	VM_MAP_RANGE_CHECK(map, start, end);
2743 	if (!vm_map_lookup_entry(map, start, &entry)) {
2744 		vm_map_unlock_read(map);
2745 		return (KERN_INVALID_ADDRESS);
2746 	}
2747 	lwkt_gettoken(&map->token);
2748 
2749 	/*
2750 	 * Make a first pass to check for holes.
2751 	 */
2752 	current = entry;
2753 	while (current && current->start < end) {
2754 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2755 			lwkt_reltoken(&map->token);
2756 			vm_map_unlock_read(map);
2757 			return (KERN_INVALID_ARGUMENT);
2758 		}
2759 		next = vm_map_rb_tree_RB_NEXT(current);
2760 		if (end > current->end &&
2761 		    (next == NULL ||
2762 		     current->end != next->start)) {
2763 			lwkt_reltoken(&map->token);
2764 			vm_map_unlock_read(map);
2765 			return (KERN_INVALID_ADDRESS);
2766 		}
2767 		current = next;
2768 	}
2769 
2770 	if (invalidate)
2771 		pmap_remove(vm_map_pmap(map), start, end);
2772 
2773 	/*
2774 	 * Make a second pass, cleaning/uncaching pages from the indicated
2775 	 * objects as we go.
2776 	 */
2777 	current = entry;
2778 	while (current && current->start < end) {
2779 		offset = current->offset + (start - current->start);
2780 		size = (end <= current->end ? end : current->end) - start;
2781 
2782 		switch(current->maptype) {
2783 		case VM_MAPTYPE_SUBMAP:
2784 		{
2785 			vm_map_t smap;
2786 			vm_map_entry_t tentry;
2787 			vm_size_t tsize;
2788 
2789 			smap = current->object.sub_map;
2790 			vm_map_lock_read(smap);
2791 			vm_map_lookup_entry(smap, offset, &tentry);
2792 			if (tentry == NULL) {
2793 				tsize = vm_map_max(smap) - offset;
2794 				object = NULL;
2795 				offset = 0 + (offset - vm_map_min(smap));
2796 			} else {
2797 				tsize = tentry->end - offset;
2798 				object = tentry->object.vm_object;
2799 				offset = tentry->offset +
2800 					 (offset - tentry->start);
2801 			}
2802 			vm_map_unlock_read(smap);
2803 			if (tsize < size)
2804 				size = tsize;
2805 			break;
2806 		}
2807 		case VM_MAPTYPE_NORMAL:
2808 		case VM_MAPTYPE_VPAGETABLE:
2809 			object = current->object.vm_object;
2810 			break;
2811 		default:
2812 			object = NULL;
2813 			break;
2814 		}
2815 
2816 		if (object)
2817 			vm_object_hold(object);
2818 
2819 		/*
2820 		 * Note that there is absolutely no sense in writing out
2821 		 * anonymous objects, so we track down the vnode object
2822 		 * to write out.
2823 		 * We invalidate (remove) all pages from the address space
2824 		 * anyway, for semantic correctness.
2825 		 *
2826 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2827 		 * may start out with a NULL object.
2828 		 */
2829 		while (object && (tobj = object->backing_object) != NULL) {
2830 			vm_object_hold(tobj);
2831 			if (tobj == object->backing_object) {
2832 				vm_object_lock_swap();
2833 				offset += object->backing_object_offset;
2834 				vm_object_drop(object);
2835 				object = tobj;
2836 				if (object->size < OFF_TO_IDX(offset + size))
2837 					size = IDX_TO_OFF(object->size) -
2838 					       offset;
2839 				break;
2840 			}
2841 			vm_object_drop(tobj);
2842 		}
2843 		if (object && (object->type == OBJT_VNODE) &&
2844 		    (current->protection & VM_PROT_WRITE) &&
2845 		    (object->flags & OBJ_NOMSYNC) == 0) {
2846 			/*
2847 			 * Flush pages if writing is allowed, invalidate them
2848 			 * if invalidation requested.  Pages undergoing I/O
2849 			 * will be ignored by vm_object_page_remove().
2850 			 *
2851 			 * We cannot lock the vnode and then wait for paging
2852 			 * to complete without deadlocking against vm_fault.
2853 			 * Instead we simply call vm_object_page_remove() and
2854 			 * allow it to block internally on a page-by-page
2855 			 * basis when it encounters pages undergoing async
2856 			 * I/O.
2857 			 */
2858 			int flags;
2859 
2860 			/* no chain wait needed for vnode objects */
2861 			vm_object_reference_locked(object);
2862 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2863 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2864 			flags |= invalidate ? OBJPC_INVAL : 0;
2865 
2866 			/*
2867 			 * When operating on a virtual page table just
2868 			 * flush the whole object.  XXX we probably ought
2869 			 * to
2870 			 */
2871 			switch(current->maptype) {
2872 			case VM_MAPTYPE_NORMAL:
2873 				vm_object_page_clean(object,
2874 				    OFF_TO_IDX(offset),
2875 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2876 				    flags);
2877 				break;
2878 			case VM_MAPTYPE_VPAGETABLE:
2879 				vm_object_page_clean(object, 0, 0, flags);
2880 				break;
2881 			}
2882 			vn_unlock(((struct vnode *)object->handle));
2883 			vm_object_deallocate_locked(object);
2884 		}
2885 		if (object && invalidate &&
2886 		   ((object->type == OBJT_VNODE) ||
2887 		    (object->type == OBJT_DEVICE) ||
2888 		    (object->type == OBJT_MGTDEVICE))) {
2889 			int clean_only =
2890 				((object->type == OBJT_DEVICE) ||
2891 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2892 			/* no chain wait needed for vnode/device objects */
2893 			vm_object_reference_locked(object);
2894 			switch(current->maptype) {
2895 			case VM_MAPTYPE_NORMAL:
2896 				vm_object_page_remove(object,
2897 				    OFF_TO_IDX(offset),
2898 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2899 				    clean_only);
2900 				break;
2901 			case VM_MAPTYPE_VPAGETABLE:
2902 				vm_object_page_remove(object, 0, 0, clean_only);
2903 				break;
2904 			}
2905 			vm_object_deallocate_locked(object);
2906 		}
2907 		start += size;
2908 		if (object)
2909 			vm_object_drop(object);
2910 		current = vm_map_rb_tree_RB_NEXT(current);
2911 	}
2912 
2913 	lwkt_reltoken(&map->token);
2914 	vm_map_unlock_read(map);
2915 
2916 	return (KERN_SUCCESS);
2917 }
2918 
2919 /*
2920  * Make the region specified by this entry pageable.
2921  *
2922  * The vm_map must be exclusively locked.
2923  */
2924 static void
2925 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2926 {
2927 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2928 	entry->wired_count = 0;
2929 	vm_fault_unwire(map, entry);
2930 }
2931 
2932 /*
2933  * Deallocate the given entry from the target map.
2934  *
2935  * The vm_map must be exclusively locked.
2936  */
2937 static void
2938 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2939 {
2940 	vm_map_entry_unlink(map, entry);
2941 	map->size -= entry->end - entry->start;
2942 
2943 	switch(entry->maptype) {
2944 	case VM_MAPTYPE_NORMAL:
2945 	case VM_MAPTYPE_VPAGETABLE:
2946 	case VM_MAPTYPE_SUBMAP:
2947 		vm_object_deallocate(entry->object.vm_object);
2948 		break;
2949 	case VM_MAPTYPE_UKSMAP:
2950 		/* XXX TODO */
2951 		break;
2952 	default:
2953 		break;
2954 	}
2955 
2956 	vm_map_entry_dispose(map, entry, countp);
2957 }
2958 
2959 /*
2960  * Deallocates the given address range from the target map.
2961  *
2962  * The vm_map must be exclusively locked.
2963  */
2964 int
2965 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2966 {
2967 	vm_object_t object;
2968 	vm_map_entry_t entry;
2969 	vm_map_entry_t first_entry;
2970 	vm_offset_t hole_start;
2971 
2972 	ASSERT_VM_MAP_LOCKED(map);
2973 	lwkt_gettoken(&map->token);
2974 again:
2975 	/*
2976 	 * Find the start of the region, and clip it.  Set entry to point
2977 	 * at the first record containing the requested address or, if no
2978 	 * such record exists, the next record with a greater address.  The
2979 	 * loop will run from this point until a record beyond the termination
2980 	 * address is encountered.
2981 	 *
2982 	 * Adjust freehint[] for either the clip case or the extension case.
2983 	 *
2984 	 * GGG see other GGG comment.
2985 	 */
2986 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2987 		entry = first_entry;
2988 		vm_map_clip_start(map, entry, start, countp);
2989 		hole_start = start;
2990 	} else {
2991 		if (first_entry) {
2992 			entry = vm_map_rb_tree_RB_NEXT(first_entry);
2993 			if (entry == NULL)
2994 				hole_start = first_entry->start;
2995 			else
2996 				hole_start = first_entry->end;
2997 		} else {
2998 			entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2999 			if (entry == NULL)
3000 				hole_start = vm_map_min(map);
3001 			else
3002 				hole_start = vm_map_max(map);
3003 		}
3004 	}
3005 
3006 	/*
3007 	 * Step through all entries in this region
3008 	 */
3009 	while (entry && entry->start < end) {
3010 		vm_map_entry_t next;
3011 		vm_offset_t s, e;
3012 		vm_pindex_t offidxstart, offidxend, count;
3013 
3014 		/*
3015 		 * If we hit an in-transition entry we have to sleep and
3016 		 * retry.  It's easier (and not really slower) to just retry
3017 		 * since this case occurs so rarely and the hint is already
3018 		 * pointing at the right place.  We have to reset the
3019 		 * start offset so as not to accidently delete an entry
3020 		 * another process just created in vacated space.
3021 		 */
3022 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3023 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3024 			start = entry->start;
3025 			++mycpu->gd_cnt.v_intrans_coll;
3026 			++mycpu->gd_cnt.v_intrans_wait;
3027 			vm_map_transition_wait(map, 1);
3028 			goto again;
3029 		}
3030 		vm_map_clip_end(map, entry, end, countp);
3031 
3032 		s = entry->start;
3033 		e = entry->end;
3034 		next = vm_map_rb_tree_RB_NEXT(entry);
3035 
3036 		offidxstart = OFF_TO_IDX(entry->offset);
3037 		count = OFF_TO_IDX(e - s);
3038 
3039 		switch(entry->maptype) {
3040 		case VM_MAPTYPE_NORMAL:
3041 		case VM_MAPTYPE_VPAGETABLE:
3042 		case VM_MAPTYPE_SUBMAP:
3043 			object = entry->object.vm_object;
3044 			break;
3045 		default:
3046 			object = NULL;
3047 			break;
3048 		}
3049 
3050 		/*
3051 		 * Unwire before removing addresses from the pmap; otherwise,
3052 		 * unwiring will put the entries back in the pmap.
3053 		 *
3054 		 * Generally speaking, doing a bulk pmap_remove() before
3055 		 * removing the pages from the VM object is better at
3056 		 * reducing unnecessary IPIs.  The pmap code is now optimized
3057 		 * to not blindly iterate the range when pt and pd pages
3058 		 * are missing.
3059 		 */
3060 		if (entry->wired_count != 0)
3061 			vm_map_entry_unwire(map, entry);
3062 
3063 		offidxend = offidxstart + count;
3064 
3065 		if (object == &kernel_object) {
3066 			pmap_remove(map->pmap, s, e);
3067 			vm_object_hold(object);
3068 			vm_object_page_remove(object, offidxstart,
3069 					      offidxend, FALSE);
3070 			vm_object_drop(object);
3071 		} else if (object && object->type != OBJT_DEFAULT &&
3072 			   object->type != OBJT_SWAP) {
3073 			/*
3074 			 * vnode object routines cannot be chain-locked,
3075 			 * but since we aren't removing pages from the
3076 			 * object here we can use a shared hold.
3077 			 */
3078 			vm_object_hold_shared(object);
3079 			pmap_remove(map->pmap, s, e);
3080 			vm_object_drop(object);
3081 		} else if (object) {
3082 			vm_object_hold(object);
3083 			vm_object_chain_acquire(object, 0);
3084 			pmap_remove(map->pmap, s, e);
3085 
3086 			if (object != NULL &&
3087 			    object->ref_count != 1 &&
3088 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3089 			     OBJ_ONEMAPPING &&
3090 			    (object->type == OBJT_DEFAULT ||
3091 			     object->type == OBJT_SWAP)) {
3092 				/*
3093 				 * When ONEMAPPING is set we can destroy the
3094 				 * pages underlying the entry's range.
3095 				 */
3096 				vm_object_collapse(object, NULL);
3097 				vm_object_page_remove(object, offidxstart,
3098 						      offidxend, FALSE);
3099 				if (object->type == OBJT_SWAP) {
3100 					swap_pager_freespace(object,
3101 							     offidxstart,
3102 							     count);
3103 				}
3104 				if (offidxend >= object->size &&
3105 				    offidxstart < object->size) {
3106 					object->size = offidxstart;
3107 				}
3108 			}
3109 			vm_object_chain_release(object);
3110 			vm_object_drop(object);
3111 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3112 			pmap_remove(map->pmap, s, e);
3113 		}
3114 
3115 		/*
3116 		 * Delete the entry (which may delete the object) only after
3117 		 * removing all pmap entries pointing to its pages.
3118 		 * (Otherwise, its page frames may be reallocated, and any
3119 		 * modify bits will be set in the wrong object!)
3120 		 */
3121 		vm_map_entry_delete(map, entry, countp);
3122 		entry = next;
3123 	}
3124 
3125 	/*
3126 	 * We either reached the end and use vm_map_max as the end
3127 	 * address, or we didn't and we use the next entry as the
3128 	 * end address.
3129 	 */
3130 	if (entry == NULL) {
3131 		vm_map_freehint_hole(map, hole_start,
3132 				     vm_map_max(map) - hole_start);
3133 	} else {
3134 		vm_map_freehint_hole(map, hole_start,
3135 				     entry->start - hole_start);
3136 	}
3137 
3138 	lwkt_reltoken(&map->token);
3139 
3140 	return (KERN_SUCCESS);
3141 }
3142 
3143 /*
3144  * Remove the given address range from the target map.
3145  * This is the exported form of vm_map_delete.
3146  *
3147  * No requirements.
3148  */
3149 int
3150 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3151 {
3152 	int result;
3153 	int count;
3154 
3155 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3156 	vm_map_lock(map);
3157 	VM_MAP_RANGE_CHECK(map, start, end);
3158 	result = vm_map_delete(map, start, end, &count);
3159 	vm_map_unlock(map);
3160 	vm_map_entry_release(count);
3161 
3162 	return (result);
3163 }
3164 
3165 /*
3166  * Assert that the target map allows the specified privilege on the
3167  * entire address region given.  The entire region must be allocated.
3168  *
3169  * The caller must specify whether the vm_map is already locked or not.
3170  */
3171 boolean_t
3172 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3173 			vm_prot_t protection, boolean_t have_lock)
3174 {
3175 	vm_map_entry_t entry;
3176 	vm_map_entry_t tmp_entry;
3177 	boolean_t result;
3178 
3179 	if (have_lock == FALSE)
3180 		vm_map_lock_read(map);
3181 
3182 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3183 		if (have_lock == FALSE)
3184 			vm_map_unlock_read(map);
3185 		return (FALSE);
3186 	}
3187 	entry = tmp_entry;
3188 
3189 	result = TRUE;
3190 	while (start < end) {
3191 		if (entry == NULL) {
3192 			result = FALSE;
3193 			break;
3194 		}
3195 
3196 		/*
3197 		 * No holes allowed!
3198 		 */
3199 
3200 		if (start < entry->start) {
3201 			result = FALSE;
3202 			break;
3203 		}
3204 		/*
3205 		 * Check protection associated with entry.
3206 		 */
3207 
3208 		if ((entry->protection & protection) != protection) {
3209 			result = FALSE;
3210 			break;
3211 		}
3212 		/* go to next entry */
3213 		start = entry->end;
3214 		entry = vm_map_rb_tree_RB_NEXT(entry);
3215 	}
3216 	if (have_lock == FALSE)
3217 		vm_map_unlock_read(map);
3218 	return (result);
3219 }
3220 
3221 /*
3222  * If appropriate this function shadows the original object with a new object
3223  * and moves the VM pages from the original object to the new object.
3224  * The original object will also be collapsed, if possible.
3225  *
3226  * Caller must supply entry->object.vm_object held and chain_acquired, and
3227  * should chain_release and drop the object upon return.
3228  *
3229  * We can only do this for normal memory objects with a single mapping, and
3230  * it only makes sense to do it if there are 2 or more refs on the original
3231  * object.  i.e. typically a memory object that has been extended into
3232  * multiple vm_map_entry's with non-overlapping ranges.
3233  *
3234  * This makes it easier to remove unused pages and keeps object inheritance
3235  * from being a negative impact on memory usage.
3236  *
3237  * On return the (possibly new) entry->object.vm_object will have an
3238  * additional ref on it for the caller to dispose of (usually by cloning
3239  * the vm_map_entry).  The additional ref had to be done in this routine
3240  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3241  * cleared.
3242  *
3243  * The vm_map must be locked and its token held.
3244  */
3245 static void
3246 vm_map_split(vm_map_entry_t entry, vm_object_t oobject)
3247 {
3248 	/* OPTIMIZED */
3249 	vm_object_t nobject, bobject;
3250 	vm_offset_t s, e;
3251 	vm_page_t m;
3252 	vm_pindex_t offidxstart, offidxend, idx;
3253 	vm_size_t size;
3254 	vm_ooffset_t offset;
3255 	int useshadowlist;
3256 
3257 	/*
3258 	 * Optimize away object locks for vnode objects.  Important exit/exec
3259 	 * critical path.
3260 	 *
3261 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3262 	 * anyway.
3263 	 */
3264 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3265 		vm_object_reference_quick(oobject);
3266 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3267 		return;
3268 	}
3269 
3270 #if 0
3271 	/*
3272 	 * Original object cannot be split?
3273 	 */
3274 	if (oobject->handle == NULL) {
3275 		vm_object_reference_locked_chain_held(oobject);
3276 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3277 		return;
3278 	}
3279 #endif
3280 
3281 	/*
3282 	 * Collapse original object with its backing store as an
3283 	 * optimization to reduce chain lengths when possible.
3284 	 *
3285 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3286 	 * for oobject, so there's no point collapsing it.
3287 	 *
3288 	 * Then re-check whether the object can be split.
3289 	 */
3290 	vm_object_collapse(oobject, NULL);
3291 
3292 	if (oobject->ref_count <= 1 ||
3293 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3294 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3295 		vm_object_reference_locked_chain_held(oobject);
3296 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3297 		return;
3298 	}
3299 
3300 	/*
3301 	 * Acquire the chain lock on the backing object.
3302 	 *
3303 	 * Give bobject an additional ref count for when it will be shadowed
3304 	 * by nobject.
3305 	 */
3306 	useshadowlist = 0;
3307 	if ((bobject = oobject->backing_object) != NULL) {
3308 		if (bobject->type != OBJT_VNODE) {
3309 			useshadowlist = 1;
3310 			vm_object_hold(bobject);
3311 			vm_object_chain_wait(bobject, 0);
3312 			/* ref for shadowing below */
3313 			vm_object_reference_locked(bobject);
3314 			vm_object_chain_acquire(bobject, 0);
3315 			KKASSERT(oobject->backing_object == bobject);
3316 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3317 		} else {
3318 			/*
3319 			 * vnodes are not placed on the shadow list but
3320 			 * they still get another ref for the backing_object
3321 			 * reference.
3322 			 */
3323 			vm_object_reference_quick(bobject);
3324 		}
3325 	}
3326 
3327 	/*
3328 	 * Calculate the object page range and allocate the new object.
3329 	 */
3330 	offset = entry->offset;
3331 	s = entry->start;
3332 	e = entry->end;
3333 
3334 	offidxstart = OFF_TO_IDX(offset);
3335 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3336 	size = offidxend - offidxstart;
3337 
3338 	switch(oobject->type) {
3339 	case OBJT_DEFAULT:
3340 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3341 					      VM_PROT_ALL, 0);
3342 		break;
3343 	case OBJT_SWAP:
3344 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3345 					   VM_PROT_ALL, 0);
3346 		break;
3347 	default:
3348 		/* not reached */
3349 		nobject = NULL;
3350 		KKASSERT(0);
3351 	}
3352 
3353 	/*
3354 	 * If we could not allocate nobject just clear ONEMAPPING on
3355 	 * oobject and return.
3356 	 */
3357 	if (nobject == NULL) {
3358 		if (bobject) {
3359 			if (useshadowlist) {
3360 				vm_object_chain_release(bobject);
3361 				vm_object_deallocate(bobject);
3362 				vm_object_drop(bobject);
3363 			} else {
3364 				vm_object_deallocate(bobject);
3365 			}
3366 		}
3367 		vm_object_reference_locked_chain_held(oobject);
3368 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3369 		return;
3370 	}
3371 
3372 	/*
3373 	 * The new object will replace entry->object.vm_object so it needs
3374 	 * a second reference (the caller expects an additional ref).
3375 	 */
3376 	vm_object_hold(nobject);
3377 	vm_object_reference_locked(nobject);
3378 	vm_object_chain_acquire(nobject, 0);
3379 
3380 	/*
3381 	 * nobject shadows bobject (oobject already shadows bobject).
3382 	 *
3383 	 * Adding an object to bobject's shadow list requires refing bobject
3384 	 * which we did above in the useshadowlist case.
3385 	 *
3386 	 * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3387 	 *     or not.
3388 	 */
3389 	if (bobject) {
3390 		nobject->backing_object_offset =
3391 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3392 		nobject->backing_object = bobject;
3393 		if (useshadowlist) {
3394 			bobject->shadow_count++;
3395 			atomic_add_int(&bobject->generation, 1);
3396 			LIST_INSERT_HEAD(&bobject->shadow_head,
3397 					 nobject, shadow_list);
3398 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3399 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3400 		}
3401 	}
3402 
3403 	/*
3404 	 * Move the VM pages from oobject to nobject
3405 	 */
3406 	for (idx = 0; idx < size; idx++) {
3407 		vm_page_t m;
3408 
3409 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3410 					     TRUE, "vmpg");
3411 		if (m == NULL)
3412 			continue;
3413 
3414 		/*
3415 		 * We must wait for pending I/O to complete before we can
3416 		 * rename the page.
3417 		 *
3418 		 * We do not have to VM_PROT_NONE the page as mappings should
3419 		 * not be changed by this operation.
3420 		 *
3421 		 * NOTE: The act of renaming a page updates chaingen for both
3422 		 *	 objects.
3423 		 */
3424 		vm_page_rename(m, nobject, idx);
3425 		/* page automatically made dirty by rename and cache handled */
3426 		/* page remains busy */
3427 	}
3428 
3429 	if (oobject->type == OBJT_SWAP) {
3430 		vm_object_pip_add(oobject, 1);
3431 		/*
3432 		 * copy oobject pages into nobject and destroy unneeded
3433 		 * pages in shadow object.
3434 		 */
3435 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3436 		vm_object_pip_wakeup(oobject);
3437 	}
3438 
3439 	/*
3440 	 * Wakeup the pages we played with.  No spl protection is needed
3441 	 * for a simple wakeup.
3442 	 */
3443 	for (idx = 0; idx < size; idx++) {
3444 		m = vm_page_lookup(nobject, idx);
3445 		if (m) {
3446 			KKASSERT(m->busy_count & PBUSY_LOCKED);
3447 			vm_page_wakeup(m);
3448 		}
3449 	}
3450 	entry->object.vm_object = nobject;
3451 	entry->offset = 0LL;
3452 
3453 	/*
3454 	 * The map is being split and nobject is going to wind up on both
3455 	 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3456 	 * nobject.
3457 	 */
3458 	vm_object_clear_flag(nobject, OBJ_ONEMAPPING);
3459 
3460 	/*
3461 	 * Cleanup
3462 	 *
3463 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3464 	 *	 related pages were moved and are no longer applicable to the
3465 	 *	 original object.
3466 	 *
3467 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3468 	 *	 replaced by nobject).
3469 	 */
3470 	vm_object_chain_release(nobject);
3471 	vm_object_drop(nobject);
3472 	if (bobject && useshadowlist) {
3473 		vm_object_chain_release(bobject);
3474 		vm_object_drop(bobject);
3475 	}
3476 
3477 #if 0
3478 	if (oobject->resident_page_count) {
3479 		kprintf("oobject %p still contains %jd pages!\n",
3480 			oobject, (intmax_t)oobject->resident_page_count);
3481 		for (idx = 0; idx < size; idx++) {
3482 			vm_page_t m;
3483 
3484 			m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3485 						     TRUE, "vmpg");
3486 			if (m) {
3487 				kprintf("oobject %p idx %jd\n",
3488 					oobject,
3489 					offidxstart + idx);
3490 				vm_page_wakeup(m);
3491 			}
3492 		}
3493 	}
3494 #endif
3495 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3496 	vm_object_deallocate_locked(oobject);
3497 }
3498 
3499 /*
3500  * Copies the contents of the source entry to the destination
3501  * entry.  The entries *must* be aligned properly.
3502  *
3503  * The vm_maps must be exclusively locked.
3504  * The vm_map's token must be held.
3505  *
3506  * Because the maps are locked no faults can be in progress during the
3507  * operation.
3508  */
3509 static void
3510 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3511 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3512 {
3513 	vm_object_t src_object;
3514 	vm_object_t oobject;
3515 
3516 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3517 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3518 		return;
3519 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3520 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3521 		return;
3522 
3523 	if (src_entry->wired_count == 0) {
3524 		/*
3525 		 * If the source entry is marked needs_copy, it is already
3526 		 * write-protected.
3527 		 *
3528 		 * To avoid interacting with a vm_fault that might have
3529 		 * released its vm_map, we must acquire the fronting
3530 		 * object.
3531 		 */
3532 		oobject = src_entry->object.vm_object;
3533 		if (oobject) {
3534 			vm_object_hold(oobject);
3535 			vm_object_chain_acquire(oobject, 0);
3536 		}
3537 
3538 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3539 			pmap_protect(src_map->pmap,
3540 			    src_entry->start,
3541 			    src_entry->end,
3542 			    src_entry->protection & ~VM_PROT_WRITE);
3543 		}
3544 
3545 		/*
3546 		 * Make a copy of the object.
3547 		 *
3548 		 * The object must be locked prior to checking the object type
3549 		 * and for the call to vm_object_collapse() and vm_map_split().
3550 		 * We cannot use *_hold() here because the split code will
3551 		 * probably try to destroy the object.  The lock is a pool
3552 		 * token and doesn't care.
3553 		 *
3554 		 * We must bump src_map->timestamp when setting
3555 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3556 		 * to retry, otherwise the concurrent fault might improperly
3557 		 * install a RW pte when its supposed to be a RO(COW) pte.
3558 		 * This race can occur because a vnode-backed fault may have
3559 		 * to temporarily release the map lock.  This was handled
3560 		 * when the caller locked the map exclusively.
3561 		 */
3562 		if (oobject) {
3563 			vm_map_split(src_entry, oobject);
3564 
3565 			src_object = src_entry->object.vm_object;
3566 			dst_entry->object.vm_object = src_object;
3567 			src_entry->eflags |= (MAP_ENTRY_COW |
3568 					      MAP_ENTRY_NEEDS_COPY);
3569 			dst_entry->eflags |= (MAP_ENTRY_COW |
3570 					      MAP_ENTRY_NEEDS_COPY);
3571 			dst_entry->offset = src_entry->offset;
3572 		} else {
3573 			dst_entry->object.vm_object = NULL;
3574 			dst_entry->offset = 0;
3575 		}
3576 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3577 			  dst_entry->end - dst_entry->start,
3578 			  src_entry->start);
3579 		if (oobject) {
3580 			vm_object_chain_release(oobject);
3581 			vm_object_drop(oobject);
3582 		}
3583 	} else {
3584 		/*
3585 		 * Of course, wired down pages can't be set copy-on-write.
3586 		 * Cause wired pages to be copied into the new map by
3587 		 * simulating faults (the new pages are pageable)
3588 		 */
3589 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3590 	}
3591 }
3592 
3593 /*
3594  * vmspace_fork:
3595  * Create a new process vmspace structure and vm_map
3596  * based on those of an existing process.  The new map
3597  * is based on the old map, according to the inheritance
3598  * values on the regions in that map.
3599  *
3600  * The source map must not be locked.
3601  * No requirements.
3602  */
3603 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3604 			  vm_map_entry_t old_entry, int *countp);
3605 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3606 			  vm_map_entry_t old_entry, int *countp);
3607 
3608 struct vmspace *
3609 vmspace_fork(struct vmspace *vm1)
3610 {
3611 	struct vmspace *vm2;
3612 	vm_map_t old_map = &vm1->vm_map;
3613 	vm_map_t new_map;
3614 	vm_map_entry_t old_entry;
3615 	int count;
3616 
3617 	lwkt_gettoken(&vm1->vm_map.token);
3618 	vm_map_lock(old_map);
3619 
3620 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map));
3621 	lwkt_gettoken(&vm2->vm_map.token);
3622 
3623 	/*
3624 	 * We must bump the timestamp to force any concurrent fault
3625 	 * to retry.
3626 	 */
3627 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3628 	      (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3629 	new_map = &vm2->vm_map;	/* XXX */
3630 	new_map->timestamp = 1;
3631 
3632 	vm_map_lock(new_map);
3633 
3634 	count = old_map->nentries;
3635 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3636 
3637 	RB_FOREACH(old_entry, vm_map_rb_tree, &old_map->rb_root) {
3638 		switch(old_entry->maptype) {
3639 		case VM_MAPTYPE_SUBMAP:
3640 			panic("vm_map_fork: encountered a submap");
3641 			break;
3642 		case VM_MAPTYPE_UKSMAP:
3643 			vmspace_fork_uksmap_entry(old_map, new_map,
3644 						  old_entry, &count);
3645 			break;
3646 		case VM_MAPTYPE_NORMAL:
3647 		case VM_MAPTYPE_VPAGETABLE:
3648 			vmspace_fork_normal_entry(old_map, new_map,
3649 						  old_entry, &count);
3650 			break;
3651 		}
3652 	}
3653 
3654 	new_map->size = old_map->size;
3655 	vm_map_unlock(old_map);
3656 	vm_map_unlock(new_map);
3657 	vm_map_entry_release(count);
3658 
3659 	lwkt_reltoken(&vm2->vm_map.token);
3660 	lwkt_reltoken(&vm1->vm_map.token);
3661 
3662 	return (vm2);
3663 }
3664 
3665 static
3666 void
3667 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3668 			  vm_map_entry_t old_entry, int *countp)
3669 {
3670 	vm_map_entry_t new_entry;
3671 	vm_object_t object;
3672 
3673 	switch (old_entry->inheritance) {
3674 	case VM_INHERIT_NONE:
3675 		break;
3676 	case VM_INHERIT_SHARE:
3677 		/*
3678 		 * Clone the entry, creating the shared object if
3679 		 * necessary.
3680 		 */
3681 		if (old_entry->object.vm_object == NULL)
3682 			vm_map_entry_allocate_object(old_entry);
3683 
3684 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3685 			/*
3686 			 * Shadow a map_entry which needs a copy,
3687 			 * replacing its object with a new object
3688 			 * that points to the old one.  Ask the
3689 			 * shadow code to automatically add an
3690 			 * additional ref.  We can't do it afterwords
3691 			 * because we might race a collapse.  The call
3692 			 * to vm_map_entry_shadow() will also clear
3693 			 * OBJ_ONEMAPPING.
3694 			 */
3695 			vm_map_entry_shadow(old_entry, 1);
3696 		} else if (old_entry->object.vm_object) {
3697 			/*
3698 			 * We will make a shared copy of the object,
3699 			 * and must clear OBJ_ONEMAPPING.
3700 			 *
3701 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3702 			 * is non-applicable but clear it anyway,
3703 			 * and its terminal so we don't have to deal
3704 			 * with chains.  Reduces SMP conflicts.
3705 			 *
3706 			 * XXX assert that object.vm_object != NULL
3707 			 *     since we allocate it above.
3708 			 */
3709 			object = old_entry->object.vm_object;
3710 			if (object->type == OBJT_VNODE) {
3711 				vm_object_reference_quick(object);
3712 				vm_object_clear_flag(object,
3713 						     OBJ_ONEMAPPING);
3714 			} else {
3715 				vm_object_hold(object);
3716 				vm_object_chain_wait(object, 0);
3717 				vm_object_reference_locked(object);
3718 				vm_object_clear_flag(object,
3719 						     OBJ_ONEMAPPING);
3720 				vm_object_drop(object);
3721 			}
3722 		}
3723 
3724 		/*
3725 		 * Clone the entry.  We've already bumped the ref on
3726 		 * any vm_object.
3727 		 */
3728 		new_entry = vm_map_entry_create(new_map, countp);
3729 		*new_entry = *old_entry;
3730 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3731 		new_entry->wired_count = 0;
3732 
3733 		/*
3734 		 * Insert the entry into the new map -- we know we're
3735 		 * inserting at the end of the new map.
3736 		 */
3737 		vm_map_entry_link(new_map, new_entry);
3738 
3739 		/*
3740 		 * Update the physical map
3741 		 */
3742 		pmap_copy(new_map->pmap, old_map->pmap,
3743 			  new_entry->start,
3744 			  (old_entry->end - old_entry->start),
3745 			  old_entry->start);
3746 		break;
3747 	case VM_INHERIT_COPY:
3748 		/*
3749 		 * Clone the entry and link into the map.
3750 		 */
3751 		new_entry = vm_map_entry_create(new_map, countp);
3752 		*new_entry = *old_entry;
3753 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3754 		new_entry->wired_count = 0;
3755 		new_entry->object.vm_object = NULL;
3756 		vm_map_entry_link(new_map, new_entry);
3757 		vm_map_copy_entry(old_map, new_map, old_entry,
3758 				  new_entry);
3759 		break;
3760 	}
3761 }
3762 
3763 /*
3764  * When forking user-kernel shared maps, the map might change in the
3765  * child so do not try to copy the underlying pmap entries.
3766  */
3767 static
3768 void
3769 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3770 			  vm_map_entry_t old_entry, int *countp)
3771 {
3772 	vm_map_entry_t new_entry;
3773 
3774 	new_entry = vm_map_entry_create(new_map, countp);
3775 	*new_entry = *old_entry;
3776 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3777 	new_entry->wired_count = 0;
3778 	vm_map_entry_link(new_map, new_entry);
3779 }
3780 
3781 /*
3782  * Create an auto-grow stack entry
3783  *
3784  * No requirements.
3785  */
3786 int
3787 vm_map_stack (vm_map_t map, vm_offset_t *addrbos, vm_size_t max_ssize,
3788 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3789 {
3790 	vm_map_entry_t	prev_entry;
3791 	vm_map_entry_t	next;
3792 	vm_size_t	init_ssize;
3793 	int		rv;
3794 	int		count;
3795 	vm_offset_t	tmpaddr;
3796 
3797 	cow |= MAP_IS_STACK;
3798 
3799 	if (max_ssize < sgrowsiz)
3800 		init_ssize = max_ssize;
3801 	else
3802 		init_ssize = sgrowsiz;
3803 
3804 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3805 	vm_map_lock(map);
3806 
3807 	/*
3808 	 * Find space for the mapping
3809 	 */
3810 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3811 		if (vm_map_findspace(map, *addrbos, max_ssize, 1,
3812 				     flags, &tmpaddr)) {
3813 			vm_map_unlock(map);
3814 			vm_map_entry_release(count);
3815 			return (KERN_NO_SPACE);
3816 		}
3817 		*addrbos = tmpaddr;
3818 	}
3819 
3820 	/* If addr is already mapped, no go */
3821 	if (vm_map_lookup_entry(map, *addrbos, &prev_entry)) {
3822 		vm_map_unlock(map);
3823 		vm_map_entry_release(count);
3824 		return (KERN_NO_SPACE);
3825 	}
3826 
3827 #if 0
3828 	/* XXX already handled by kern_mmap() */
3829 	/* If we would blow our VMEM resource limit, no go */
3830 	if (map->size + init_ssize >
3831 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3832 		vm_map_unlock(map);
3833 		vm_map_entry_release(count);
3834 		return (KERN_NO_SPACE);
3835 	}
3836 #endif
3837 
3838 	/*
3839 	 * If we can't accomodate max_ssize in the current mapping,
3840 	 * no go.  However, we need to be aware that subsequent user
3841 	 * mappings might map into the space we have reserved for
3842 	 * stack, and currently this space is not protected.
3843 	 *
3844 	 * Hopefully we will at least detect this condition
3845 	 * when we try to grow the stack.
3846 	 */
3847 	if (prev_entry)
3848 		next = vm_map_rb_tree_RB_NEXT(prev_entry);
3849 	else
3850 		next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3851 
3852 	if (next && next->start < *addrbos + max_ssize) {
3853 		vm_map_unlock(map);
3854 		vm_map_entry_release(count);
3855 		return (KERN_NO_SPACE);
3856 	}
3857 
3858 	/*
3859 	 * We initially map a stack of only init_ssize.  We will
3860 	 * grow as needed later.  Since this is to be a grow
3861 	 * down stack, we map at the top of the range.
3862 	 *
3863 	 * Note: we would normally expect prot and max to be
3864 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3865 	 * eliminate these as input parameters, and just
3866 	 * pass these values here in the insert call.
3867 	 */
3868 	rv = vm_map_insert(map, &count, NULL, NULL,
3869 			   0, *addrbos + max_ssize - init_ssize,
3870 	                   *addrbos + max_ssize,
3871 			   VM_MAPTYPE_NORMAL,
3872 			   VM_SUBSYS_STACK, prot, max, cow);
3873 
3874 	/* Now set the avail_ssize amount */
3875 	if (rv == KERN_SUCCESS) {
3876 		if (prev_entry)
3877 			next = vm_map_rb_tree_RB_NEXT(prev_entry);
3878 		else
3879 			next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3880 		if (prev_entry != NULL) {
3881 			vm_map_clip_end(map,
3882 					prev_entry,
3883 					*addrbos + max_ssize - init_ssize,
3884 					&count);
3885 		}
3886 		if (next->end   != *addrbos + max_ssize ||
3887 		    next->start != *addrbos + max_ssize - init_ssize){
3888 			panic ("Bad entry start/end for new stack entry");
3889 		} else {
3890 			next->aux.avail_ssize = max_ssize - init_ssize;
3891 		}
3892 	}
3893 
3894 	vm_map_unlock(map);
3895 	vm_map_entry_release(count);
3896 	return (rv);
3897 }
3898 
3899 /*
3900  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3901  * desired address is already mapped, or if we successfully grow
3902  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3903  * stack range (this is strange, but preserves compatibility with
3904  * the grow function in vm_machdep.c).
3905  *
3906  * No requirements.
3907  */
3908 int
3909 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3910 {
3911 	vm_map_entry_t prev_entry;
3912 	vm_map_entry_t stack_entry;
3913 	vm_map_entry_t next;
3914 	struct vmspace *vm;
3915 	struct lwp *lp;
3916 	struct proc *p;
3917 	vm_offset_t    end;
3918 	int grow_amount;
3919 	int rv = KERN_SUCCESS;
3920 	int is_procstack;
3921 	int use_read_lock = 1;
3922 	int count;
3923 
3924 	/*
3925 	 * Find the vm
3926 	 */
3927 	lp = curthread->td_lwp;
3928 	p = curthread->td_proc;
3929 	KKASSERT(lp != NULL);
3930 	vm = lp->lwp_vmspace;
3931 
3932 	/*
3933 	 * Growstack is only allowed on the current process.  We disallow
3934 	 * other use cases, e.g. trying to access memory via procfs that
3935 	 * the stack hasn't grown into.
3936 	 */
3937 	if (map != &vm->vm_map) {
3938 		return KERN_FAILURE;
3939 	}
3940 
3941 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3942 Retry:
3943 	if (use_read_lock)
3944 		vm_map_lock_read(map);
3945 	else
3946 		vm_map_lock(map);
3947 
3948 	/*
3949 	 * If addr is already in the entry range, no need to grow.
3950 	 * prev_entry returns NULL if addr is at the head.
3951 	 */
3952 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3953 		goto done;
3954 	if (prev_entry)
3955 		stack_entry = vm_map_rb_tree_RB_NEXT(prev_entry);
3956 	else
3957 		stack_entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
3958 
3959 	if (stack_entry == NULL)
3960 		goto done;
3961 	if (prev_entry == NULL)
3962 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3963 	else
3964 		end = prev_entry->end;
3965 
3966 	/*
3967 	 * This next test mimics the old grow function in vm_machdep.c.
3968 	 * It really doesn't quite make sense, but we do it anyway
3969 	 * for compatibility.
3970 	 *
3971 	 * If not growable stack, return success.  This signals the
3972 	 * caller to proceed as he would normally with normal vm.
3973 	 */
3974 	if (stack_entry->aux.avail_ssize < 1 ||
3975 	    addr >= stack_entry->start ||
3976 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3977 		goto done;
3978 	}
3979 
3980 	/* Find the minimum grow amount */
3981 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3982 	if (grow_amount > stack_entry->aux.avail_ssize) {
3983 		rv = KERN_NO_SPACE;
3984 		goto done;
3985 	}
3986 
3987 	/*
3988 	 * If there is no longer enough space between the entries
3989 	 * nogo, and adjust the available space.  Note: this
3990 	 * should only happen if the user has mapped into the
3991 	 * stack area after the stack was created, and is
3992 	 * probably an error.
3993 	 *
3994 	 * This also effectively destroys any guard page the user
3995 	 * might have intended by limiting the stack size.
3996 	 */
3997 	if (grow_amount > stack_entry->start - end) {
3998 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3999 			/* lost lock */
4000 			use_read_lock = 0;
4001 			goto Retry;
4002 		}
4003 		use_read_lock = 0;
4004 		stack_entry->aux.avail_ssize = stack_entry->start - end;
4005 		rv = KERN_NO_SPACE;
4006 		goto done;
4007 	}
4008 
4009 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
4010 
4011 	/* If this is the main process stack, see if we're over the
4012 	 * stack limit.
4013 	 */
4014 	if (is_procstack && (vm->vm_ssize + grow_amount >
4015 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4016 		rv = KERN_NO_SPACE;
4017 		goto done;
4018 	}
4019 
4020 	/* Round up the grow amount modulo SGROWSIZ */
4021 	grow_amount = roundup (grow_amount, sgrowsiz);
4022 	if (grow_amount > stack_entry->aux.avail_ssize) {
4023 		grow_amount = stack_entry->aux.avail_ssize;
4024 	}
4025 	if (is_procstack && (vm->vm_ssize + grow_amount >
4026 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4027 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - vm->vm_ssize;
4028 	}
4029 
4030 	/* If we would blow our VMEM resource limit, no go */
4031 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
4032 		rv = KERN_NO_SPACE;
4033 		goto done;
4034 	}
4035 
4036 	if (use_read_lock && vm_map_lock_upgrade(map)) {
4037 		/* lost lock */
4038 		use_read_lock = 0;
4039 		goto Retry;
4040 	}
4041 	use_read_lock = 0;
4042 
4043 	/* Get the preliminary new entry start value */
4044 	addr = stack_entry->start - grow_amount;
4045 
4046 	/* If this puts us into the previous entry, cut back our growth
4047 	 * to the available space.  Also, see the note above.
4048 	 */
4049 	if (addr < end) {
4050 		stack_entry->aux.avail_ssize = stack_entry->start - end;
4051 		addr = end;
4052 	}
4053 
4054 	rv = vm_map_insert(map, &count, NULL, NULL,
4055 			   0, addr, stack_entry->start,
4056 			   VM_MAPTYPE_NORMAL,
4057 			   VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
4058 
4059 	/* Adjust the available stack space by the amount we grew. */
4060 	if (rv == KERN_SUCCESS) {
4061 		if (prev_entry) {
4062 			vm_map_clip_end(map, prev_entry, addr, &count);
4063 			next = vm_map_rb_tree_RB_NEXT(prev_entry);
4064 		} else {
4065 			next = RB_MIN(vm_map_rb_tree, &map->rb_root);
4066 		}
4067 		if (next->end != stack_entry->start  ||
4068 		    next->start != addr) {
4069 			panic ("Bad stack grow start/end in new stack entry");
4070 		} else {
4071 			next->aux.avail_ssize =
4072 				stack_entry->aux.avail_ssize -
4073 				(next->end - next->start);
4074 			if (is_procstack) {
4075 				vm->vm_ssize += next->end -
4076 						next->start;
4077 			}
4078 		}
4079 
4080 		if (map->flags & MAP_WIREFUTURE)
4081 			vm_map_unwire(map, next->start, next->end, FALSE);
4082 	}
4083 
4084 done:
4085 	if (use_read_lock)
4086 		vm_map_unlock_read(map);
4087 	else
4088 		vm_map_unlock(map);
4089 	vm_map_entry_release(count);
4090 	return (rv);
4091 }
4092 
4093 /*
4094  * Unshare the specified VM space for exec.  If other processes are
4095  * mapped to it, then create a new one.  The new vmspace is null.
4096  *
4097  * No requirements.
4098  */
4099 void
4100 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
4101 {
4102 	struct vmspace *oldvmspace = p->p_vmspace;
4103 	struct vmspace *newvmspace;
4104 	vm_map_t map = &p->p_vmspace->vm_map;
4105 
4106 	/*
4107 	 * If we are execing a resident vmspace we fork it, otherwise
4108 	 * we create a new vmspace.  Note that exitingcnt is not
4109 	 * copied to the new vmspace.
4110 	 */
4111 	lwkt_gettoken(&oldvmspace->vm_map.token);
4112 	if (vmcopy)  {
4113 		newvmspace = vmspace_fork(vmcopy);
4114 		lwkt_gettoken(&newvmspace->vm_map.token);
4115 	} else {
4116 		newvmspace = vmspace_alloc(vm_map_min(map), vm_map_max(map));
4117 		lwkt_gettoken(&newvmspace->vm_map.token);
4118 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4119 		      (caddr_t)&oldvmspace->vm_endcopy -
4120 		       (caddr_t)&oldvmspace->vm_startcopy);
4121 	}
4122 
4123 	/*
4124 	 * Finish initializing the vmspace before assigning it
4125 	 * to the process.  The vmspace will become the current vmspace
4126 	 * if p == curproc.
4127 	 */
4128 	pmap_pinit2(vmspace_pmap(newvmspace));
4129 	pmap_replacevm(p, newvmspace, 0);
4130 	lwkt_reltoken(&newvmspace->vm_map.token);
4131 	lwkt_reltoken(&oldvmspace->vm_map.token);
4132 	vmspace_rel(oldvmspace);
4133 }
4134 
4135 /*
4136  * Unshare the specified VM space for forcing COW.  This
4137  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4138  */
4139 void
4140 vmspace_unshare(struct proc *p)
4141 {
4142 	struct vmspace *oldvmspace = p->p_vmspace;
4143 	struct vmspace *newvmspace;
4144 
4145 	lwkt_gettoken(&oldvmspace->vm_map.token);
4146 	if (vmspace_getrefs(oldvmspace) == 1) {
4147 		lwkt_reltoken(&oldvmspace->vm_map.token);
4148 		return;
4149 	}
4150 	newvmspace = vmspace_fork(oldvmspace);
4151 	lwkt_gettoken(&newvmspace->vm_map.token);
4152 	pmap_pinit2(vmspace_pmap(newvmspace));
4153 	pmap_replacevm(p, newvmspace, 0);
4154 	lwkt_reltoken(&newvmspace->vm_map.token);
4155 	lwkt_reltoken(&oldvmspace->vm_map.token);
4156 	vmspace_rel(oldvmspace);
4157 }
4158 
4159 /*
4160  * vm_map_hint: return the beginning of the best area suitable for
4161  * creating a new mapping with "prot" protection.
4162  *
4163  * No requirements.
4164  */
4165 vm_offset_t
4166 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4167 {
4168 	struct vmspace *vms = p->p_vmspace;
4169 	struct rlimit limit;
4170 	rlim_t dsiz;
4171 
4172 	/*
4173 	 * Acquire datasize limit for mmap() operation,
4174 	 * calculate nearest power of 2.
4175 	 */
4176 	if (kern_getrlimit(RLIMIT_DATA, &limit))
4177 		limit.rlim_cur = maxdsiz;
4178 	dsiz = limit.rlim_cur;
4179 
4180 	if (!randomize_mmap || addr != 0) {
4181 		/*
4182 		 * Set a reasonable start point for the hint if it was
4183 		 * not specified or if it falls within the heap space.
4184 		 * Hinted mmap()s do not allocate out of the heap space.
4185 		 */
4186 		if (addr == 0 ||
4187 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4188 		     addr < round_page((vm_offset_t)vms->vm_daddr + dsiz))) {
4189 			addr = round_page((vm_offset_t)vms->vm_daddr + dsiz);
4190 		}
4191 
4192 		return addr;
4193 	}
4194 
4195 	/*
4196 	 * randomize_mmap && addr == 0.  For now randomize the
4197 	 * address within a dsiz range beyond the data limit.
4198 	 */
4199 	addr = (vm_offset_t)vms->vm_daddr + dsiz;
4200 	if (dsiz)
4201 		addr += (karc4random64() & 0x7FFFFFFFFFFFFFFFLU) % dsiz;
4202 	return (round_page(addr));
4203 }
4204 
4205 /*
4206  * Finds the VM object, offset, and protection for a given virtual address
4207  * in the specified map, assuming a page fault of the type specified.
4208  *
4209  * Leaves the map in question locked for read; return values are guaranteed
4210  * until a vm_map_lookup_done call is performed.  Note that the map argument
4211  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4212  *
4213  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4214  * that fast.
4215  *
4216  * If a lookup is requested with "write protection" specified, the map may
4217  * be changed to perform virtual copying operations, although the data
4218  * referenced will remain the same.
4219  *
4220  * No requirements.
4221  */
4222 int
4223 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4224 	      vm_offset_t vaddr,
4225 	      vm_prot_t fault_typea,
4226 	      vm_map_entry_t *out_entry,	/* OUT */
4227 	      vm_object_t *object,		/* OUT */
4228 	      vm_pindex_t *pindex,		/* OUT */
4229 	      vm_prot_t *out_prot,		/* OUT */
4230 	      int *wflags)			/* OUT */
4231 {
4232 	vm_map_entry_t entry;
4233 	vm_map_t map = *var_map;
4234 	vm_prot_t prot;
4235 	vm_prot_t fault_type = fault_typea;
4236 	int use_read_lock = 1;
4237 	int rv = KERN_SUCCESS;
4238 	int count;
4239 	thread_t td = curthread;
4240 
4241 	/*
4242 	 * vm_map_entry_reserve() implements an important mitigation
4243 	 * against mmap() span running the kernel out of vm_map_entry
4244 	 * structures, but it can also cause an infinite call recursion.
4245 	 * Use td_nest_count to prevent an infinite recursion (allows
4246 	 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4247 	 */
4248 	count = 0;
4249 	if (td->td_nest_count == 0) {
4250 		++td->td_nest_count;
4251 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4252 		--td->td_nest_count;
4253 	}
4254 RetryLookup:
4255 	if (use_read_lock)
4256 		vm_map_lock_read(map);
4257 	else
4258 		vm_map_lock(map);
4259 
4260 	/*
4261 	 * Always do a full lookup.  The hint doesn't get us much anymore
4262 	 * now that the map is RB'd.
4263 	 */
4264 	cpu_ccfence();
4265 	*out_entry = NULL;
4266 	*object = NULL;
4267 
4268 	{
4269 		vm_map_entry_t tmp_entry;
4270 
4271 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4272 			rv = KERN_INVALID_ADDRESS;
4273 			goto done;
4274 		}
4275 		entry = tmp_entry;
4276 		*out_entry = entry;
4277 	}
4278 
4279 	/*
4280 	 * Handle submaps.
4281 	 */
4282 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4283 		vm_map_t old_map = map;
4284 
4285 		*var_map = map = entry->object.sub_map;
4286 		if (use_read_lock)
4287 			vm_map_unlock_read(old_map);
4288 		else
4289 			vm_map_unlock(old_map);
4290 		use_read_lock = 1;
4291 		goto RetryLookup;
4292 	}
4293 
4294 	/*
4295 	 * Check whether this task is allowed to have this page.
4296 	 * Note the special case for MAP_ENTRY_COW pages with an override.
4297 	 * This is to implement a forced COW for debuggers.
4298 	 */
4299 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4300 		prot = entry->max_protection;
4301 	else
4302 		prot = entry->protection;
4303 
4304 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4305 	if ((fault_type & prot) != fault_type) {
4306 		rv = KERN_PROTECTION_FAILURE;
4307 		goto done;
4308 	}
4309 
4310 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4311 	    (entry->eflags & MAP_ENTRY_COW) &&
4312 	    (fault_type & VM_PROT_WRITE) &&
4313 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4314 		rv = KERN_PROTECTION_FAILURE;
4315 		goto done;
4316 	}
4317 
4318 	/*
4319 	 * If this page is not pageable, we have to get it for all possible
4320 	 * accesses.
4321 	 */
4322 	*wflags = 0;
4323 	if (entry->wired_count) {
4324 		*wflags |= FW_WIRED;
4325 		prot = fault_type = entry->protection;
4326 	}
4327 
4328 	/*
4329 	 * Virtual page tables may need to update the accessed (A) bit
4330 	 * in a page table entry.  Upgrade the fault to a write fault for
4331 	 * that case if the map will support it.  If the map does not support
4332 	 * it the page table entry simply will not be updated.
4333 	 */
4334 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4335 		if (prot & VM_PROT_WRITE)
4336 			fault_type |= VM_PROT_WRITE;
4337 	}
4338 
4339 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4340 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4341 		if ((prot & VM_PROT_WRITE) == 0)
4342 			fault_type |= VM_PROT_WRITE;
4343 	}
4344 
4345 	/*
4346 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4347 	 */
4348 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4349 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4350 		*object = NULL;
4351 		goto skip;
4352 	}
4353 
4354 	/*
4355 	 * If the entry was copy-on-write, we either ...
4356 	 */
4357 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4358 		/*
4359 		 * If we want to write the page, we may as well handle that
4360 		 * now since we've got the map locked.
4361 		 *
4362 		 * If we don't need to write the page, we just demote the
4363 		 * permissions allowed.
4364 		 */
4365 		if (fault_type & VM_PROT_WRITE) {
4366 			/*
4367 			 * Not allowed if TDF_NOFAULT is set as the shadowing
4368 			 * operation can deadlock against the faulting
4369 			 * function due to the copy-on-write.
4370 			 */
4371 			if (curthread->td_flags & TDF_NOFAULT) {
4372 				rv = KERN_FAILURE_NOFAULT;
4373 				goto done;
4374 			}
4375 
4376 			/*
4377 			 * Make a new object, and place it in the object
4378 			 * chain.  Note that no new references have appeared
4379 			 * -- one just moved from the map to the new
4380 			 * object.
4381 			 */
4382 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4383 				/* lost lock */
4384 				use_read_lock = 0;
4385 				goto RetryLookup;
4386 			}
4387 			use_read_lock = 0;
4388 			vm_map_entry_shadow(entry, 0);
4389 			*wflags |= FW_DIDCOW;
4390 		} else {
4391 			/*
4392 			 * We're attempting to read a copy-on-write page --
4393 			 * don't allow writes.
4394 			 */
4395 			prot &= ~VM_PROT_WRITE;
4396 		}
4397 	}
4398 
4399 	/*
4400 	 * Create an object if necessary.  This code also handles
4401 	 * partitioning large entries to improve vm_fault performance.
4402 	 */
4403 	if (entry->object.vm_object == NULL && !map->system_map) {
4404 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4405 			/* lost lock */
4406 			use_read_lock = 0;
4407 			goto RetryLookup;
4408 		}
4409 		use_read_lock = 0;
4410 
4411 		/*
4412 		 * Partition large entries, giving each its own VM object,
4413 		 * to improve concurrent fault performance.  This is only
4414 		 * applicable to userspace.
4415 		 */
4416 		if (map != &kernel_map &&
4417 		    entry->maptype == VM_MAPTYPE_NORMAL &&
4418 		    ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) &&
4419 		    vm_map_partition_enable) {
4420 			if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4421 				entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4422 				++mycpu->gd_cnt.v_intrans_coll;
4423 				++mycpu->gd_cnt.v_intrans_wait;
4424 				vm_map_transition_wait(map, 0);
4425 				goto RetryLookup;
4426 			}
4427 			vm_map_entry_partition(map, entry, vaddr, &count);
4428 		}
4429 		vm_map_entry_allocate_object(entry);
4430 	}
4431 
4432 	/*
4433 	 * Return the object/offset from this entry.  If the entry was
4434 	 * copy-on-write or empty, it has been fixed up.
4435 	 */
4436 	*object = entry->object.vm_object;
4437 
4438 skip:
4439 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4440 
4441 	/*
4442 	 * Return whether this is the only map sharing this data.  On
4443 	 * success we return with a read lock held on the map.  On failure
4444 	 * we return with the map unlocked.
4445 	 */
4446 	*out_prot = prot;
4447 done:
4448 	if (rv == KERN_SUCCESS) {
4449 		if (use_read_lock == 0)
4450 			vm_map_lock_downgrade(map);
4451 	} else if (use_read_lock) {
4452 		vm_map_unlock_read(map);
4453 	} else {
4454 		vm_map_unlock(map);
4455 	}
4456 	if (count > 0)
4457 		vm_map_entry_release(count);
4458 
4459 	return (rv);
4460 }
4461 
4462 /*
4463  * Releases locks acquired by a vm_map_lookup()
4464  * (according to the handle returned by that lookup).
4465  *
4466  * No other requirements.
4467  */
4468 void
4469 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4470 {
4471 	/*
4472 	 * Unlock the main-level map
4473 	 */
4474 	vm_map_unlock_read(map);
4475 	if (count)
4476 		vm_map_entry_release(count);
4477 }
4478 
4479 static void
4480 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4481 		       vm_offset_t vaddr, int *countp)
4482 {
4483 	vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4484 	vm_map_clip_start(map, entry, vaddr, countp);
4485 	vaddr += MAP_ENTRY_PARTITION_SIZE;
4486 	vm_map_clip_end(map, entry, vaddr, countp);
4487 }
4488 
4489 /*
4490  * Quick hack, needs some help to make it more SMP friendly.
4491  */
4492 void
4493 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4494 		 vm_offset_t ran_beg, vm_offset_t ran_end)
4495 {
4496 	struct vm_map_ilock *scan;
4497 
4498 	ilock->ran_beg = ran_beg;
4499 	ilock->ran_end = ran_end;
4500 	ilock->flags = 0;
4501 
4502 	spin_lock(&map->ilock_spin);
4503 restart:
4504 	for (scan = map->ilock_base; scan; scan = scan->next) {
4505 		if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4506 			scan->flags |= ILOCK_WAITING;
4507 			ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4508 			goto restart;
4509 		}
4510 	}
4511 	ilock->next = map->ilock_base;
4512 	map->ilock_base = ilock;
4513 	spin_unlock(&map->ilock_spin);
4514 }
4515 
4516 void
4517 vm_map_deinterlock(vm_map_t map, struct  vm_map_ilock *ilock)
4518 {
4519 	struct vm_map_ilock *scan;
4520 	struct vm_map_ilock **scanp;
4521 
4522 	spin_lock(&map->ilock_spin);
4523 	scanp = &map->ilock_base;
4524 	while ((scan = *scanp) != NULL) {
4525 		if (scan == ilock) {
4526 			*scanp = ilock->next;
4527 			spin_unlock(&map->ilock_spin);
4528 			if (ilock->flags & ILOCK_WAITING)
4529 				wakeup(ilock);
4530 			return;
4531 		}
4532 		scanp = &scan->next;
4533 	}
4534 	spin_unlock(&map->ilock_spin);
4535 	panic("vm_map_deinterlock: missing ilock!");
4536 }
4537 
4538 #include "opt_ddb.h"
4539 #ifdef DDB
4540 #include <ddb/ddb.h>
4541 
4542 /*
4543  * Debugging only
4544  */
4545 DB_SHOW_COMMAND(map, vm_map_print)
4546 {
4547 	static int nlines;
4548 	/* XXX convert args. */
4549 	vm_map_t map = (vm_map_t)addr;
4550 	boolean_t full = have_addr;
4551 
4552 	vm_map_entry_t entry;
4553 
4554 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4555 	    (void *)map,
4556 	    (void *)map->pmap, map->nentries, map->timestamp);
4557 	nlines++;
4558 
4559 	if (!full && db_indent)
4560 		return;
4561 
4562 	db_indent += 2;
4563 	RB_FOREACH(entry, vm_map_rb_tree, &map->rb_root) {
4564 		db_iprintf("map entry %p: start=%p, end=%p\n",
4565 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4566 		nlines++;
4567 		{
4568 			static char *inheritance_name[4] =
4569 			{"share", "copy", "none", "donate_copy"};
4570 
4571 			db_iprintf(" prot=%x/%x/%s",
4572 			    entry->protection,
4573 			    entry->max_protection,
4574 			    inheritance_name[(int)(unsigned char)
4575 						entry->inheritance]);
4576 			if (entry->wired_count != 0)
4577 				db_printf(", wired");
4578 		}
4579 		switch(entry->maptype) {
4580 		case VM_MAPTYPE_SUBMAP:
4581 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4582 			db_printf(", share=%p, offset=0x%lx\n",
4583 			    (void *)entry->object.sub_map,
4584 			    (long)entry->offset);
4585 			nlines++;
4586 
4587 			db_indent += 2;
4588 			vm_map_print((db_expr_t)(intptr_t)
4589 				     entry->object.sub_map,
4590 				     full, 0, NULL);
4591 			db_indent -= 2;
4592 			break;
4593 		case VM_MAPTYPE_NORMAL:
4594 		case VM_MAPTYPE_VPAGETABLE:
4595 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4596 			db_printf(", object=%p, offset=0x%lx",
4597 			    (void *)entry->object.vm_object,
4598 			    (long)entry->offset);
4599 			if (entry->eflags & MAP_ENTRY_COW)
4600 				db_printf(", copy (%s)",
4601 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4602 			db_printf("\n");
4603 			nlines++;
4604 
4605 			if (entry->object.vm_object) {
4606 				db_indent += 2;
4607 				vm_object_print((db_expr_t)(intptr_t)
4608 						entry->object.vm_object,
4609 						full, 0, NULL);
4610 				nlines += 4;
4611 				db_indent -= 2;
4612 			}
4613 			break;
4614 		case VM_MAPTYPE_UKSMAP:
4615 			db_printf(", uksmap=%p, offset=0x%lx",
4616 			    (void *)entry->object.uksmap,
4617 			    (long)entry->offset);
4618 			if (entry->eflags & MAP_ENTRY_COW)
4619 				db_printf(", copy (%s)",
4620 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4621 			db_printf("\n");
4622 			nlines++;
4623 			break;
4624 		default:
4625 			break;
4626 		}
4627 	}
4628 	db_indent -= 2;
4629 	if (db_indent == 0)
4630 		nlines = 0;
4631 }
4632 
4633 /*
4634  * Debugging only
4635  */
4636 DB_SHOW_COMMAND(procvm, procvm)
4637 {
4638 	struct proc *p;
4639 
4640 	if (have_addr) {
4641 		p = (struct proc *) addr;
4642 	} else {
4643 		p = curproc;
4644 	}
4645 
4646 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4647 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4648 	    (void *)vmspace_pmap(p->p_vmspace));
4649 
4650 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4651 }
4652 
4653 #endif /* DDB */
4654