1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 * 62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 63 */ 64 65 /* 66 * Virtual memory mapping module. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/proc.h> 73 #include <sys/serialize.h> 74 #include <sys/lock.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 #include <sys/shm.h> 80 #include <sys/tree.h> 81 #include <sys/malloc.h> 82 #include <sys/objcache.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_zone.h> 95 96 #include <sys/random.h> 97 #include <sys/sysctl.h> 98 #include <sys/spinlock.h> 99 100 #include <sys/thread2.h> 101 #include <sys/spinlock2.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, and sharing 105 * of virtual memory objects. In addition, this module provides for an 106 * efficient virtual copy of memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple entries. 111 * A hint and a RB tree is used to speed-up lookups. 112 * 113 * Callers looking to modify maps specify start/end addresses which cause 114 * the related map entry to be clipped if necessary, and then later 115 * recombined if the pieces remained compatible. 116 * 117 * Virtual copy operations are performed by copying VM object references 118 * from one map to another, and then marking both regions as copy-on-write. 119 */ 120 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags); 121 static void vmspace_dtor(void *obj, void *privdata); 122 static void vmspace_terminate(struct vmspace *vm, int final); 123 124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 125 static struct objcache *vmspace_cache; 126 127 /* 128 * per-cpu page table cross mappings are initialized in early boot 129 * and might require a considerable number of vm_map_entry structures. 130 */ 131 #define MAPENTRYBSP_CACHE (MAXCPU+1) 132 #define MAPENTRYAP_CACHE 8 133 134 static struct vm_zone mapentzone_store; 135 static vm_zone_t mapentzone; 136 137 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 138 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE]; 139 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE]; 140 141 static int randomize_mmap; 142 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0, 143 "Randomize mmap offsets"); 144 static int vm_map_relock_enable = 1; 145 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW, 146 &vm_map_relock_enable, 0, "Randomize mmap offsets"); 147 148 static void vmspace_drop_notoken(struct vmspace *vm); 149 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref); 150 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 151 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 152 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 153 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 154 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 155 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 156 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 157 vm_map_entry_t); 158 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 159 160 /* 161 * Initialize the vm_map module. Must be called before any other vm_map 162 * routines. 163 * 164 * Map and entry structures are allocated from the general purpose 165 * memory pool with some exceptions: 166 * 167 * - The kernel map is allocated statically. 168 * - Initial kernel map entries are allocated out of a static pool. 169 * - We must set ZONE_SPECIAL here or the early boot code can get 170 * stuck if there are >63 cores. 171 * 172 * These restrictions are necessary since malloc() uses the 173 * maps and requires map entries. 174 * 175 * Called from the low level boot code only. 176 */ 177 void 178 vm_map_startup(void) 179 { 180 mapentzone = &mapentzone_store; 181 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 182 map_entry_init, MAX_MAPENT); 183 mapentzone_store.zflags |= ZONE_SPECIAL; 184 } 185 186 /* 187 * Called prior to any vmspace allocations. 188 * 189 * Called from the low level boot code only. 190 */ 191 void 192 vm_init2(void) 193 { 194 vmspace_cache = objcache_create_mbacked(M_VMSPACE, 195 sizeof(struct vmspace), 196 0, ncpus * 4, 197 vmspace_ctor, vmspace_dtor, 198 NULL); 199 zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL); 200 pmap_init2(); 201 vm_object_init2(); 202 } 203 204 /* 205 * objcache support. We leave the pmap root cached as long as possible 206 * for performance reasons. 207 */ 208 static 209 boolean_t 210 vmspace_ctor(void *obj, void *privdata, int ocflags) 211 { 212 struct vmspace *vm = obj; 213 214 bzero(vm, sizeof(*vm)); 215 vm->vm_refcnt = VM_REF_DELETED; 216 217 return 1; 218 } 219 220 static 221 void 222 vmspace_dtor(void *obj, void *privdata) 223 { 224 struct vmspace *vm = obj; 225 226 KKASSERT(vm->vm_refcnt == VM_REF_DELETED); 227 pmap_puninit(vmspace_pmap(vm)); 228 } 229 230 /* 231 * Red black tree functions 232 * 233 * The caller must hold the related map lock. 234 */ 235 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 236 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 237 238 /* a->start is address, and the only field has to be initialized */ 239 static int 240 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 241 { 242 if (a->start < b->start) 243 return(-1); 244 else if (a->start > b->start) 245 return(1); 246 return(0); 247 } 248 249 /* 250 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for 251 * every refcnt. 252 */ 253 void 254 vmspace_initrefs(struct vmspace *vm) 255 { 256 vm->vm_refcnt = 1; 257 vm->vm_holdcnt = 1; 258 } 259 260 /* 261 * Allocate a vmspace structure, including a vm_map and pmap. 262 * Initialize numerous fields. While the initial allocation is zerod, 263 * subsequence reuse from the objcache leaves elements of the structure 264 * intact (particularly the pmap), so portions must be zerod. 265 * 266 * Returns a referenced vmspace. 267 * 268 * No requirements. 269 */ 270 struct vmspace * 271 vmspace_alloc(vm_offset_t min, vm_offset_t max) 272 { 273 struct vmspace *vm; 274 275 vm = objcache_get(vmspace_cache, M_WAITOK); 276 277 bzero(&vm->vm_startcopy, 278 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 279 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */ 280 281 /* 282 * NOTE: hold to acquires token for safety. 283 * 284 * On return vmspace is referenced (refs=1, hold=1). That is, 285 * each refcnt also has a holdcnt. There can be additional holds 286 * (holdcnt) above and beyond the refcnt. Finalization is handled in 287 * two stages, one on refs 1->0, and the the second on hold 1->0. 288 */ 289 KKASSERT(vm->vm_holdcnt == 0); 290 KKASSERT(vm->vm_refcnt == VM_REF_DELETED); 291 vmspace_initrefs(vm); 292 vmspace_hold(vm); 293 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 294 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 295 vm->vm_shm = NULL; 296 vm->vm_flags = 0; 297 cpu_vmspace_alloc(vm); 298 vmspace_drop(vm); 299 300 return (vm); 301 } 302 303 /* 304 * NOTE: Can return 0 if the vmspace is exiting. 305 */ 306 int 307 vmspace_getrefs(struct vmspace *vm) 308 { 309 int32_t n; 310 311 n = vm->vm_refcnt; 312 cpu_ccfence(); 313 if (n & VM_REF_DELETED) 314 n = -1; 315 return n; 316 } 317 318 void 319 vmspace_hold(struct vmspace *vm) 320 { 321 atomic_add_int(&vm->vm_holdcnt, 1); 322 lwkt_gettoken(&vm->vm_map.token); 323 } 324 325 /* 326 * Drop with final termination interlock. 327 */ 328 void 329 vmspace_drop(struct vmspace *vm) 330 { 331 lwkt_reltoken(&vm->vm_map.token); 332 vmspace_drop_notoken(vm); 333 } 334 335 static void 336 vmspace_drop_notoken(struct vmspace *vm) 337 { 338 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) { 339 if (vm->vm_refcnt & VM_REF_DELETED) 340 vmspace_terminate(vm, 1); 341 } 342 } 343 344 /* 345 * A vmspace object must not be in a terminated state to be able to obtain 346 * additional refs on it. 347 * 348 * These are official references to the vmspace, the count is used to check 349 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'. 350 * 351 * XXX we need to combine hold & ref together into one 64-bit field to allow 352 * holds to prevent stage-1 termination. 353 */ 354 void 355 vmspace_ref(struct vmspace *vm) 356 { 357 uint32_t n; 358 359 atomic_add_int(&vm->vm_holdcnt, 1); 360 n = atomic_fetchadd_int(&vm->vm_refcnt, 1); 361 KKASSERT((n & VM_REF_DELETED) == 0); 362 } 363 364 /* 365 * Release a ref on the vmspace. On the 1->0 transition we do stage-1 366 * termination of the vmspace. Then, on the final drop of the hold we 367 * will do stage-2 final termination. 368 */ 369 void 370 vmspace_rel(struct vmspace *vm) 371 { 372 uint32_t n; 373 374 /* 375 * Drop refs. Each ref also has a hold which is also dropped. 376 * 377 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold 378 * prevent finalization) to start termination processing. 379 * Finalization occurs when the last hold count drops to 0. 380 */ 381 n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1; 382 while (n == 0) { 383 if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) { 384 vmspace_terminate(vm, 0); 385 break; 386 } 387 n = vm->vm_refcnt; 388 cpu_ccfence(); 389 } 390 vmspace_drop_notoken(vm); 391 } 392 393 /* 394 * This is called during exit indicating that the vmspace is no 395 * longer in used by an exiting process, but the process has not yet 396 * been reaped. 397 * 398 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt 399 * to prevent stage-2 until the process is reaped. Note hte order of 400 * operation, we must hold first. 401 * 402 * No requirements. 403 */ 404 void 405 vmspace_relexit(struct vmspace *vm) 406 { 407 atomic_add_int(&vm->vm_holdcnt, 1); 408 vmspace_rel(vm); 409 } 410 411 /* 412 * Called during reap to disconnect the remainder of the vmspace from 413 * the process. On the hold drop the vmspace termination is finalized. 414 * 415 * No requirements. 416 */ 417 void 418 vmspace_exitfree(struct proc *p) 419 { 420 struct vmspace *vm; 421 422 vm = p->p_vmspace; 423 p->p_vmspace = NULL; 424 vmspace_drop_notoken(vm); 425 } 426 427 /* 428 * Called in two cases: 429 * 430 * (1) When the last refcnt is dropped and the vmspace becomes inactive, 431 * called with final == 0. refcnt will be (u_int)-1 at this point, 432 * and holdcnt will still be non-zero. 433 * 434 * (2) When holdcnt becomes 0, called with final == 1. There should no 435 * longer be anyone with access to the vmspace. 436 * 437 * VMSPACE_EXIT1 flags the primary deactivation 438 * VMSPACE_EXIT2 flags the last reap 439 */ 440 static void 441 vmspace_terminate(struct vmspace *vm, int final) 442 { 443 int count; 444 445 lwkt_gettoken(&vm->vm_map.token); 446 if (final == 0) { 447 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0); 448 vm->vm_flags |= VMSPACE_EXIT1; 449 450 /* 451 * Get rid of most of the resources. Leave the kernel pmap 452 * intact. 453 * 454 * If the pmap does not contain wired pages we can bulk-delete 455 * the pmap as a performance optimization before removing the 456 * related mappings. 457 * 458 * If the pmap contains wired pages we cannot do this 459 * pre-optimization because currently vm_fault_unwire() 460 * expects the pmap pages to exist and will not decrement 461 * p->wire_count if they do not. 462 */ 463 shmexit(vm); 464 if (vmspace_pmap(vm)->pm_stats.wired_count) { 465 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 466 VM_MAX_USER_ADDRESS); 467 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 468 VM_MAX_USER_ADDRESS); 469 } else { 470 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 471 VM_MAX_USER_ADDRESS); 472 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 473 VM_MAX_USER_ADDRESS); 474 } 475 lwkt_reltoken(&vm->vm_map.token); 476 } else { 477 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0); 478 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0); 479 480 /* 481 * Get rid of remaining basic resources. 482 */ 483 vm->vm_flags |= VMSPACE_EXIT2; 484 shmexit(vm); 485 486 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 487 vm_map_lock(&vm->vm_map); 488 cpu_vmspace_free(vm); 489 490 /* 491 * Lock the map, to wait out all other references to it. 492 * Delete all of the mappings and pages they hold, then call 493 * the pmap module to reclaim anything left. 494 */ 495 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 496 vm->vm_map.max_offset, &count); 497 vm_map_unlock(&vm->vm_map); 498 vm_map_entry_release(count); 499 500 pmap_release(vmspace_pmap(vm)); 501 lwkt_reltoken(&vm->vm_map.token); 502 objcache_put(vmspace_cache, vm); 503 } 504 } 505 506 /* 507 * Swap useage is determined by taking the proportional swap used by 508 * VM objects backing the VM map. To make up for fractional losses, 509 * if the VM object has any swap use at all the associated map entries 510 * count for at least 1 swap page. 511 * 512 * No requirements. 513 */ 514 vm_offset_t 515 vmspace_swap_count(struct vmspace *vm) 516 { 517 vm_map_t map = &vm->vm_map; 518 vm_map_entry_t cur; 519 vm_object_t object; 520 vm_offset_t count = 0; 521 vm_offset_t n; 522 523 vmspace_hold(vm); 524 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 525 switch(cur->maptype) { 526 case VM_MAPTYPE_NORMAL: 527 case VM_MAPTYPE_VPAGETABLE: 528 if ((object = cur->object.vm_object) == NULL) 529 break; 530 if (object->swblock_count) { 531 n = (cur->end - cur->start) / PAGE_SIZE; 532 count += object->swblock_count * 533 SWAP_META_PAGES * n / object->size + 1; 534 } 535 break; 536 default: 537 break; 538 } 539 } 540 vmspace_drop(vm); 541 542 return(count); 543 } 544 545 /* 546 * Calculate the approximate number of anonymous pages in use by 547 * this vmspace. To make up for fractional losses, we count each 548 * VM object as having at least 1 anonymous page. 549 * 550 * No requirements. 551 */ 552 vm_offset_t 553 vmspace_anonymous_count(struct vmspace *vm) 554 { 555 vm_map_t map = &vm->vm_map; 556 vm_map_entry_t cur; 557 vm_object_t object; 558 vm_offset_t count = 0; 559 560 vmspace_hold(vm); 561 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 562 switch(cur->maptype) { 563 case VM_MAPTYPE_NORMAL: 564 case VM_MAPTYPE_VPAGETABLE: 565 if ((object = cur->object.vm_object) == NULL) 566 break; 567 if (object->type != OBJT_DEFAULT && 568 object->type != OBJT_SWAP) { 569 break; 570 } 571 count += object->resident_page_count; 572 break; 573 default: 574 break; 575 } 576 } 577 vmspace_drop(vm); 578 579 return(count); 580 } 581 582 /* 583 * Initialize an existing vm_map structure such as that in the vmspace 584 * structure. The pmap is initialized elsewhere. 585 * 586 * No requirements. 587 */ 588 void 589 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 590 { 591 map->header.next = map->header.prev = &map->header; 592 RB_INIT(&map->rb_root); 593 spin_init(&map->ilock_spin, "ilock"); 594 map->ilock_base = NULL; 595 map->nentries = 0; 596 map->size = 0; 597 map->system_map = 0; 598 map->min_offset = min; 599 map->max_offset = max; 600 map->pmap = pmap; 601 map->timestamp = 0; 602 map->flags = 0; 603 bzero(&map->freehint, sizeof(map->freehint)); 604 lwkt_token_init(&map->token, "vm_map"); 605 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0); 606 } 607 608 /* 609 * Find the first possible free address for the specified request length. 610 * Returns 0 if we don't have one cached. 611 */ 612 static 613 vm_offset_t 614 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align) 615 { 616 vm_map_freehint_t *scan; 617 618 scan = &map->freehint[0]; 619 while (scan < &map->freehint[VM_MAP_FFCOUNT]) { 620 if (scan->length == length && scan->align == align) 621 return(scan->start); 622 ++scan; 623 } 624 return 0; 625 } 626 627 /* 628 * Unconditionally set the freehint. Called by vm_map_findspace() after 629 * it finds an address. This will help us iterate optimally on the next 630 * similar findspace. 631 */ 632 static 633 void 634 vm_map_freehint_update(vm_map_t map, vm_offset_t start, 635 vm_size_t length, vm_size_t align) 636 { 637 vm_map_freehint_t *scan; 638 639 scan = &map->freehint[0]; 640 while (scan < &map->freehint[VM_MAP_FFCOUNT]) { 641 if (scan->length == length && scan->align == align) { 642 scan->start = start; 643 return; 644 } 645 ++scan; 646 } 647 scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK]; 648 scan->start = start; 649 scan->align = align; 650 scan->length = length; 651 ++map->freehint_newindex; 652 } 653 654 /* 655 * Update any existing freehints (for any alignment), for the hole we just 656 * added. 657 */ 658 static 659 void 660 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length) 661 { 662 vm_map_freehint_t *scan; 663 664 scan = &map->freehint[0]; 665 while (scan < &map->freehint[VM_MAP_FFCOUNT]) { 666 if (scan->length <= length && scan->start > start) 667 scan->start = start; 668 ++scan; 669 } 670 } 671 672 /* 673 * Shadow the vm_map_entry's object. This typically needs to be done when 674 * a write fault is taken on an entry which had previously been cloned by 675 * fork(). The shared object (which might be NULL) must become private so 676 * we add a shadow layer above it. 677 * 678 * Object allocation for anonymous mappings is defered as long as possible. 679 * When creating a shadow, however, the underlying object must be instantiated 680 * so it can be shared. 681 * 682 * If the map segment is governed by a virtual page table then it is 683 * possible to address offsets beyond the mapped area. Just allocate 684 * a maximally sized object for this case. 685 * 686 * If addref is non-zero an additional reference is added to the returned 687 * entry. This mechanic exists because the additional reference might have 688 * to be added atomically and not after return to prevent a premature 689 * collapse. 690 * 691 * The vm_map must be exclusively locked. 692 * No other requirements. 693 */ 694 static 695 void 696 vm_map_entry_shadow(vm_map_entry_t entry, int addref) 697 { 698 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 699 vm_object_shadow(&entry->object.vm_object, &entry->offset, 700 0x7FFFFFFF, addref); /* XXX */ 701 } else { 702 vm_object_shadow(&entry->object.vm_object, &entry->offset, 703 atop(entry->end - entry->start), addref); 704 } 705 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 706 } 707 708 /* 709 * Allocate an object for a vm_map_entry. 710 * 711 * Object allocation for anonymous mappings is defered as long as possible. 712 * This function is called when we can defer no longer, generally when a map 713 * entry might be split or forked or takes a page fault. 714 * 715 * If the map segment is governed by a virtual page table then it is 716 * possible to address offsets beyond the mapped area. Just allocate 717 * a maximally sized object for this case. 718 * 719 * The vm_map must be exclusively locked. 720 * No other requirements. 721 */ 722 void 723 vm_map_entry_allocate_object(vm_map_entry_t entry) 724 { 725 vm_object_t obj; 726 727 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 728 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 729 } else { 730 obj = vm_object_allocate(OBJT_DEFAULT, 731 atop(entry->end - entry->start)); 732 } 733 entry->object.vm_object = obj; 734 entry->offset = 0; 735 } 736 737 /* 738 * Set an initial negative count so the first attempt to reserve 739 * space preloads a bunch of vm_map_entry's for this cpu. Also 740 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 741 * map a new page for vm_map_entry structures. SMP systems are 742 * particularly sensitive. 743 * 744 * This routine is called in early boot so we cannot just call 745 * vm_map_entry_reserve(). 746 * 747 * Called from the low level boot code only (for each cpu) 748 * 749 * WARNING! Take care not to have too-big a static/BSS structure here 750 * as MAXCPU can be 256+, otherwise the loader's 64MB heap 751 * can get blown out by the kernel plus the initrd image. 752 */ 753 void 754 vm_map_entry_reserve_cpu_init(globaldata_t gd) 755 { 756 vm_map_entry_t entry; 757 int count; 758 int i; 759 760 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 761 if (gd->gd_cpuid == 0) { 762 entry = &cpu_map_entry_init_bsp[0]; 763 count = MAPENTRYBSP_CACHE; 764 } else { 765 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0]; 766 count = MAPENTRYAP_CACHE; 767 } 768 for (i = 0; i < count; ++i, ++entry) { 769 entry->next = gd->gd_vme_base; 770 gd->gd_vme_base = entry; 771 } 772 } 773 774 /* 775 * Reserves vm_map_entry structures so code later on can manipulate 776 * map_entry structures within a locked map without blocking trying 777 * to allocate a new vm_map_entry. 778 * 779 * No requirements. 780 */ 781 int 782 vm_map_entry_reserve(int count) 783 { 784 struct globaldata *gd = mycpu; 785 vm_map_entry_t entry; 786 787 /* 788 * Make sure we have enough structures in gd_vme_base to handle 789 * the reservation request. 790 * 791 * The critical section protects access to the per-cpu gd. 792 */ 793 crit_enter(); 794 while (gd->gd_vme_avail < count) { 795 entry = zalloc(mapentzone); 796 entry->next = gd->gd_vme_base; 797 gd->gd_vme_base = entry; 798 ++gd->gd_vme_avail; 799 } 800 gd->gd_vme_avail -= count; 801 crit_exit(); 802 803 return(count); 804 } 805 806 /* 807 * Releases previously reserved vm_map_entry structures that were not 808 * used. If we have too much junk in our per-cpu cache clean some of 809 * it out. 810 * 811 * No requirements. 812 */ 813 void 814 vm_map_entry_release(int count) 815 { 816 struct globaldata *gd = mycpu; 817 vm_map_entry_t entry; 818 819 crit_enter(); 820 gd->gd_vme_avail += count; 821 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 822 entry = gd->gd_vme_base; 823 KKASSERT(entry != NULL); 824 gd->gd_vme_base = entry->next; 825 --gd->gd_vme_avail; 826 crit_exit(); 827 zfree(mapentzone, entry); 828 crit_enter(); 829 } 830 crit_exit(); 831 } 832 833 /* 834 * Reserve map entry structures for use in kernel_map itself. These 835 * entries have *ALREADY* been reserved on a per-cpu basis when the map 836 * was inited. This function is used by zalloc() to avoid a recursion 837 * when zalloc() itself needs to allocate additional kernel memory. 838 * 839 * This function works like the normal reserve but does not load the 840 * vm_map_entry cache (because that would result in an infinite 841 * recursion). Note that gd_vme_avail may go negative. This is expected. 842 * 843 * Any caller of this function must be sure to renormalize after 844 * potentially eating entries to ensure that the reserve supply 845 * remains intact. 846 * 847 * No requirements. 848 */ 849 int 850 vm_map_entry_kreserve(int count) 851 { 852 struct globaldata *gd = mycpu; 853 854 crit_enter(); 855 gd->gd_vme_avail -= count; 856 crit_exit(); 857 KASSERT(gd->gd_vme_base != NULL, 858 ("no reserved entries left, gd_vme_avail = %d", 859 gd->gd_vme_avail)); 860 return(count); 861 } 862 863 /* 864 * Release previously reserved map entries for kernel_map. We do not 865 * attempt to clean up like the normal release function as this would 866 * cause an unnecessary (but probably not fatal) deep procedure call. 867 * 868 * No requirements. 869 */ 870 void 871 vm_map_entry_krelease(int count) 872 { 873 struct globaldata *gd = mycpu; 874 875 crit_enter(); 876 gd->gd_vme_avail += count; 877 crit_exit(); 878 } 879 880 /* 881 * Allocates a VM map entry for insertion. No entry fields are filled in. 882 * 883 * The entries should have previously been reserved. The reservation count 884 * is tracked in (*countp). 885 * 886 * No requirements. 887 */ 888 static vm_map_entry_t 889 vm_map_entry_create(vm_map_t map, int *countp) 890 { 891 struct globaldata *gd = mycpu; 892 vm_map_entry_t entry; 893 894 KKASSERT(*countp > 0); 895 --*countp; 896 crit_enter(); 897 entry = gd->gd_vme_base; 898 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 899 gd->gd_vme_base = entry->next; 900 crit_exit(); 901 902 return(entry); 903 } 904 905 /* 906 * Dispose of a vm_map_entry that is no longer being referenced. 907 * 908 * No requirements. 909 */ 910 static void 911 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 912 { 913 struct globaldata *gd = mycpu; 914 915 ++*countp; 916 crit_enter(); 917 entry->next = gd->gd_vme_base; 918 gd->gd_vme_base = entry; 919 crit_exit(); 920 } 921 922 923 /* 924 * Insert/remove entries from maps. 925 * 926 * The related map must be exclusively locked. 927 * The caller must hold map->token 928 * No other requirements. 929 */ 930 static __inline void 931 vm_map_entry_link(vm_map_t map, 932 vm_map_entry_t after_where, 933 vm_map_entry_t entry) 934 { 935 ASSERT_VM_MAP_LOCKED(map); 936 937 map->nentries++; 938 entry->prev = after_where; 939 entry->next = after_where->next; 940 entry->next->prev = entry; 941 after_where->next = entry; 942 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 943 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 944 } 945 946 static __inline void 947 vm_map_entry_unlink(vm_map_t map, 948 vm_map_entry_t entry) 949 { 950 vm_map_entry_t prev; 951 vm_map_entry_t next; 952 953 ASSERT_VM_MAP_LOCKED(map); 954 955 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 956 panic("vm_map_entry_unlink: attempt to mess with " 957 "locked entry! %p", entry); 958 } 959 prev = entry->prev; 960 next = entry->next; 961 next->prev = prev; 962 prev->next = next; 963 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 964 map->nentries--; 965 } 966 967 /* 968 * Finds the map entry containing (or immediately preceding) the specified 969 * address in the given map. The entry is returned in (*entry). 970 * 971 * The boolean result indicates whether the address is actually contained 972 * in the map. 973 * 974 * The related map must be locked. 975 * No other requirements. 976 */ 977 boolean_t 978 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 979 { 980 vm_map_entry_t tmp; 981 vm_map_entry_t last; 982 983 ASSERT_VM_MAP_LOCKED(map); 984 985 /* 986 * Locate the record from the top of the tree. 'last' tracks the 987 * closest prior record and is returned if no match is found, which 988 * in binary tree terms means tracking the most recent right-branch 989 * taken. If there is no prior record, &map->header is returned. 990 */ 991 last = &map->header; 992 tmp = RB_ROOT(&map->rb_root); 993 994 while (tmp) { 995 if (address >= tmp->start) { 996 if (address < tmp->end) { 997 *entry = tmp; 998 return(TRUE); 999 } 1000 last = tmp; 1001 tmp = RB_RIGHT(tmp, rb_entry); 1002 } else { 1003 tmp = RB_LEFT(tmp, rb_entry); 1004 } 1005 } 1006 *entry = last; 1007 return (FALSE); 1008 } 1009 1010 /* 1011 * Inserts the given whole VM object into the target map at the specified 1012 * address range. The object's size should match that of the address range. 1013 * 1014 * The map must be exclusively locked. 1015 * The object must be held. 1016 * The caller must have reserved sufficient vm_map_entry structures. 1017 * 1018 * If object is non-NULL, ref count must be bumped by caller prior to 1019 * making call to account for the new entry. 1020 */ 1021 int 1022 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux, 1023 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 1024 vm_maptype_t maptype, vm_subsys_t id, 1025 vm_prot_t prot, vm_prot_t max, int cow) 1026 { 1027 vm_map_entry_t new_entry; 1028 vm_map_entry_t prev_entry; 1029 vm_map_entry_t temp_entry; 1030 vm_eflags_t protoeflags; 1031 int must_drop = 0; 1032 vm_object_t object; 1033 1034 if (maptype == VM_MAPTYPE_UKSMAP) 1035 object = NULL; 1036 else 1037 object = map_object; 1038 1039 ASSERT_VM_MAP_LOCKED(map); 1040 if (object) 1041 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1042 1043 /* 1044 * Check that the start and end points are not bogus. 1045 */ 1046 if ((start < map->min_offset) || (end > map->max_offset) || 1047 (start >= end)) 1048 return (KERN_INVALID_ADDRESS); 1049 1050 /* 1051 * Find the entry prior to the proposed starting address; if it's part 1052 * of an existing entry, this range is bogus. 1053 */ 1054 if (vm_map_lookup_entry(map, start, &temp_entry)) 1055 return (KERN_NO_SPACE); 1056 1057 prev_entry = temp_entry; 1058 1059 /* 1060 * Assert that the next entry doesn't overlap the end point. 1061 */ 1062 1063 if ((prev_entry->next != &map->header) && 1064 (prev_entry->next->start < end)) 1065 return (KERN_NO_SPACE); 1066 1067 protoeflags = 0; 1068 1069 if (cow & MAP_COPY_ON_WRITE) 1070 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1071 1072 if (cow & MAP_NOFAULT) { 1073 protoeflags |= MAP_ENTRY_NOFAULT; 1074 1075 KASSERT(object == NULL, 1076 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1077 } 1078 if (cow & MAP_DISABLE_SYNCER) 1079 protoeflags |= MAP_ENTRY_NOSYNC; 1080 if (cow & MAP_DISABLE_COREDUMP) 1081 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1082 if (cow & MAP_IS_STACK) 1083 protoeflags |= MAP_ENTRY_STACK; 1084 if (cow & MAP_IS_KSTACK) 1085 protoeflags |= MAP_ENTRY_KSTACK; 1086 1087 lwkt_gettoken(&map->token); 1088 1089 if (object) { 1090 /* 1091 * When object is non-NULL, it could be shared with another 1092 * process. We have to set or clear OBJ_ONEMAPPING 1093 * appropriately. 1094 * 1095 * NOTE: This flag is only applicable to DEFAULT and SWAP 1096 * objects and will already be clear in other types 1097 * of objects, so a shared object lock is ok for 1098 * VNODE objects. 1099 */ 1100 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 1101 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1102 } 1103 } 1104 else if ((prev_entry != &map->header) && 1105 (prev_entry->eflags == protoeflags) && 1106 (prev_entry->end == start) && 1107 (prev_entry->wired_count == 0) && 1108 (prev_entry->id == id) && 1109 prev_entry->maptype == maptype && 1110 maptype == VM_MAPTYPE_NORMAL && 1111 ((prev_entry->object.vm_object == NULL) || 1112 vm_object_coalesce(prev_entry->object.vm_object, 1113 OFF_TO_IDX(prev_entry->offset), 1114 (vm_size_t)(prev_entry->end - prev_entry->start), 1115 (vm_size_t)(end - prev_entry->end)))) { 1116 /* 1117 * We were able to extend the object. Determine if we 1118 * can extend the previous map entry to include the 1119 * new range as well. 1120 */ 1121 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1122 (prev_entry->protection == prot) && 1123 (prev_entry->max_protection == max)) { 1124 map->size += (end - prev_entry->end); 1125 prev_entry->end = end; 1126 vm_map_simplify_entry(map, prev_entry, countp); 1127 lwkt_reltoken(&map->token); 1128 return (KERN_SUCCESS); 1129 } 1130 1131 /* 1132 * If we can extend the object but cannot extend the 1133 * map entry, we have to create a new map entry. We 1134 * must bump the ref count on the extended object to 1135 * account for it. object may be NULL. 1136 * 1137 * XXX if object is NULL should we set offset to 0 here ? 1138 */ 1139 object = prev_entry->object.vm_object; 1140 offset = prev_entry->offset + 1141 (prev_entry->end - prev_entry->start); 1142 if (object) { 1143 vm_object_hold(object); 1144 vm_object_chain_wait(object, 0); 1145 vm_object_reference_locked(object); 1146 must_drop = 1; 1147 map_object = object; 1148 } 1149 } 1150 1151 /* 1152 * NOTE: if conditionals fail, object can be NULL here. This occurs 1153 * in things like the buffer map where we manage kva but do not manage 1154 * backing objects. 1155 */ 1156 1157 /* 1158 * Create a new entry 1159 */ 1160 1161 new_entry = vm_map_entry_create(map, countp); 1162 new_entry->start = start; 1163 new_entry->end = end; 1164 new_entry->id = id; 1165 1166 new_entry->maptype = maptype; 1167 new_entry->eflags = protoeflags; 1168 new_entry->object.map_object = map_object; 1169 new_entry->aux.master_pde = 0; /* in case size is different */ 1170 new_entry->aux.map_aux = map_aux; 1171 new_entry->offset = offset; 1172 1173 new_entry->inheritance = VM_INHERIT_DEFAULT; 1174 new_entry->protection = prot; 1175 new_entry->max_protection = max; 1176 new_entry->wired_count = 0; 1177 1178 /* 1179 * Insert the new entry into the list 1180 */ 1181 1182 vm_map_entry_link(map, prev_entry, new_entry); 1183 map->size += new_entry->end - new_entry->start; 1184 1185 /* 1186 * Don't worry about updating freehint[] when inserting, allow 1187 * addresses to be lower than the actual first free spot. 1188 */ 1189 #if 0 1190 /* 1191 * Temporarily removed to avoid MAP_STACK panic, due to 1192 * MAP_STACK being a huge hack. Will be added back in 1193 * when MAP_STACK (and the user stack mapping) is fixed. 1194 */ 1195 /* 1196 * It may be possible to simplify the entry 1197 */ 1198 vm_map_simplify_entry(map, new_entry, countp); 1199 #endif 1200 1201 /* 1202 * Try to pre-populate the page table. Mappings governed by virtual 1203 * page tables cannot be prepopulated without a lot of work, so 1204 * don't try. 1205 */ 1206 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1207 maptype != VM_MAPTYPE_VPAGETABLE && 1208 maptype != VM_MAPTYPE_UKSMAP) { 1209 int dorelock = 0; 1210 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) { 1211 dorelock = 1; 1212 vm_object_lock_swap(); 1213 vm_object_drop(object); 1214 } 1215 pmap_object_init_pt(map->pmap, start, prot, 1216 object, OFF_TO_IDX(offset), end - start, 1217 cow & MAP_PREFAULT_PARTIAL); 1218 if (dorelock) { 1219 vm_object_hold(object); 1220 vm_object_lock_swap(); 1221 } 1222 } 1223 if (must_drop) 1224 vm_object_drop(object); 1225 1226 lwkt_reltoken(&map->token); 1227 return (KERN_SUCCESS); 1228 } 1229 1230 /* 1231 * Find sufficient space for `length' bytes in the given map, starting at 1232 * `start'. Returns 0 on success, 1 on no space. 1233 * 1234 * This function will returned an arbitrarily aligned pointer. If no 1235 * particular alignment is required you should pass align as 1. Note that 1236 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1237 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1238 * argument. 1239 * 1240 * 'align' should be a power of 2 but is not required to be. 1241 * 1242 * The map must be exclusively locked. 1243 * No other requirements. 1244 */ 1245 int 1246 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1247 vm_size_t align, int flags, vm_offset_t *addr) 1248 { 1249 vm_map_entry_t entry, next; 1250 vm_map_entry_t tmp; 1251 vm_offset_t hole_start; 1252 vm_offset_t end; 1253 vm_offset_t align_mask; 1254 1255 if (start < map->min_offset) 1256 start = map->min_offset; 1257 if (start > map->max_offset) 1258 return (1); 1259 1260 /* 1261 * If the alignment is not a power of 2 we will have to use 1262 * a mod/division, set align_mask to a special value. 1263 */ 1264 if ((align | (align - 1)) + 1 != (align << 1)) 1265 align_mask = (vm_offset_t)-1; 1266 else 1267 align_mask = align - 1; 1268 1269 /* 1270 * Use freehint to adjust the start point, hopefully reducing 1271 * the iteration to O(1). 1272 */ 1273 hole_start = vm_map_freehint_find(map, length, align); 1274 if (start < hole_start) 1275 start = hole_start; 1276 if (vm_map_lookup_entry(map, start, &tmp)) 1277 start = tmp->end; 1278 entry = tmp; 1279 1280 /* 1281 * Look through the rest of the map, trying to fit a new region in the 1282 * gap between existing regions, or after the very last region. 1283 */ 1284 for (;; start = (entry = next)->end) { 1285 /* 1286 * Adjust the proposed start by the requested alignment, 1287 * be sure that we didn't wrap the address. 1288 */ 1289 if (align_mask == (vm_offset_t)-1) 1290 end = roundup(start, align); 1291 else 1292 end = (start + align_mask) & ~align_mask; 1293 if (end < start) 1294 return (1); 1295 start = end; 1296 1297 /* 1298 * Find the end of the proposed new region. Be sure we didn't 1299 * go beyond the end of the map, or wrap around the address. 1300 * Then check to see if this is the last entry or if the 1301 * proposed end fits in the gap between this and the next 1302 * entry. 1303 */ 1304 end = start + length; 1305 if (end > map->max_offset || end < start) 1306 return (1); 1307 next = entry->next; 1308 1309 /* 1310 * If the next entry's start address is beyond the desired 1311 * end address we may have found a good entry. 1312 * 1313 * If the next entry is a stack mapping we do not map into 1314 * the stack's reserved space. 1315 * 1316 * XXX continue to allow mapping into the stack's reserved 1317 * space if doing a MAP_STACK mapping inside a MAP_STACK 1318 * mapping, for backwards compatibility. But the caller 1319 * really should use MAP_STACK | MAP_TRYFIXED if they 1320 * want to do that. 1321 */ 1322 if (next == &map->header) 1323 break; 1324 if (next->start >= end) { 1325 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1326 break; 1327 if (flags & MAP_STACK) 1328 break; 1329 if (next->start - next->aux.avail_ssize >= end) 1330 break; 1331 } 1332 } 1333 1334 /* 1335 * Update the freehint 1336 */ 1337 vm_map_freehint_update(map, start, length, align); 1338 1339 /* 1340 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1341 * if it fails. The kernel_map is locked and nothing can steal 1342 * our address space if pmap_growkernel() blocks. 1343 * 1344 * NOTE: This may be unconditionally called for kldload areas on 1345 * x86_64 because these do not bump kernel_vm_end (which would 1346 * fill 128G worth of page tables!). Therefore we must not 1347 * retry. 1348 */ 1349 if (map == &kernel_map) { 1350 vm_offset_t kstop; 1351 1352 kstop = round_page(start + length); 1353 if (kstop > kernel_vm_end) 1354 pmap_growkernel(start, kstop); 1355 } 1356 *addr = start; 1357 return (0); 1358 } 1359 1360 /* 1361 * vm_map_find finds an unallocated region in the target address map with 1362 * the given length and allocates it. The search is defined to be first-fit 1363 * from the specified address; the region found is returned in the same 1364 * parameter. 1365 * 1366 * If object is non-NULL, ref count must be bumped by caller 1367 * prior to making call to account for the new entry. 1368 * 1369 * No requirements. This function will lock the map temporarily. 1370 */ 1371 int 1372 vm_map_find(vm_map_t map, void *map_object, void *map_aux, 1373 vm_ooffset_t offset, vm_offset_t *addr, 1374 vm_size_t length, vm_size_t align, boolean_t fitit, 1375 vm_maptype_t maptype, vm_subsys_t id, 1376 vm_prot_t prot, vm_prot_t max, int cow) 1377 { 1378 vm_offset_t start; 1379 vm_object_t object; 1380 int result; 1381 int count; 1382 1383 if (maptype == VM_MAPTYPE_UKSMAP) 1384 object = NULL; 1385 else 1386 object = map_object; 1387 1388 start = *addr; 1389 1390 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1391 vm_map_lock(map); 1392 if (object) 1393 vm_object_hold_shared(object); 1394 if (fitit) { 1395 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1396 if (object) 1397 vm_object_drop(object); 1398 vm_map_unlock(map); 1399 vm_map_entry_release(count); 1400 return (KERN_NO_SPACE); 1401 } 1402 start = *addr; 1403 } 1404 result = vm_map_insert(map, &count, map_object, map_aux, 1405 offset, start, start + length, 1406 maptype, id, prot, max, cow); 1407 if (object) 1408 vm_object_drop(object); 1409 vm_map_unlock(map); 1410 vm_map_entry_release(count); 1411 1412 return (result); 1413 } 1414 1415 /* 1416 * Simplify the given map entry by merging with either neighbor. This 1417 * routine also has the ability to merge with both neighbors. 1418 * 1419 * This routine guarentees that the passed entry remains valid (though 1420 * possibly extended). When merging, this routine may delete one or 1421 * both neighbors. No action is taken on entries which have their 1422 * in-transition flag set. 1423 * 1424 * The map must be exclusively locked. 1425 */ 1426 void 1427 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1428 { 1429 vm_map_entry_t next, prev; 1430 vm_size_t prevsize, esize; 1431 1432 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1433 ++mycpu->gd_cnt.v_intrans_coll; 1434 return; 1435 } 1436 1437 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1438 return; 1439 if (entry->maptype == VM_MAPTYPE_UKSMAP) 1440 return; 1441 1442 prev = entry->prev; 1443 if (prev != &map->header) { 1444 prevsize = prev->end - prev->start; 1445 if ( (prev->end == entry->start) && 1446 (prev->maptype == entry->maptype) && 1447 (prev->object.vm_object == entry->object.vm_object) && 1448 (!prev->object.vm_object || 1449 (prev->offset + prevsize == entry->offset)) && 1450 (prev->eflags == entry->eflags) && 1451 (prev->protection == entry->protection) && 1452 (prev->max_protection == entry->max_protection) && 1453 (prev->inheritance == entry->inheritance) && 1454 (prev->id == entry->id) && 1455 (prev->wired_count == entry->wired_count)) { 1456 vm_map_entry_unlink(map, prev); 1457 entry->start = prev->start; 1458 entry->offset = prev->offset; 1459 if (prev->object.vm_object) 1460 vm_object_deallocate(prev->object.vm_object); 1461 vm_map_entry_dispose(map, prev, countp); 1462 } 1463 } 1464 1465 next = entry->next; 1466 if (next != &map->header) { 1467 esize = entry->end - entry->start; 1468 if ((entry->end == next->start) && 1469 (next->maptype == entry->maptype) && 1470 (next->object.vm_object == entry->object.vm_object) && 1471 (!entry->object.vm_object || 1472 (entry->offset + esize == next->offset)) && 1473 (next->eflags == entry->eflags) && 1474 (next->protection == entry->protection) && 1475 (next->max_protection == entry->max_protection) && 1476 (next->inheritance == entry->inheritance) && 1477 (next->id == entry->id) && 1478 (next->wired_count == entry->wired_count)) { 1479 vm_map_entry_unlink(map, next); 1480 entry->end = next->end; 1481 if (next->object.vm_object) 1482 vm_object_deallocate(next->object.vm_object); 1483 vm_map_entry_dispose(map, next, countp); 1484 } 1485 } 1486 } 1487 1488 /* 1489 * Asserts that the given entry begins at or after the specified address. 1490 * If necessary, it splits the entry into two. 1491 */ 1492 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1493 { \ 1494 if (startaddr > entry->start) \ 1495 _vm_map_clip_start(map, entry, startaddr, countp); \ 1496 } 1497 1498 /* 1499 * This routine is called only when it is known that the entry must be split. 1500 * 1501 * The map must be exclusively locked. 1502 */ 1503 static void 1504 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1505 int *countp) 1506 { 1507 vm_map_entry_t new_entry; 1508 1509 /* 1510 * Split off the front portion -- note that we must insert the new 1511 * entry BEFORE this one, so that this entry has the specified 1512 * starting address. 1513 */ 1514 1515 vm_map_simplify_entry(map, entry, countp); 1516 1517 /* 1518 * If there is no object backing this entry, we might as well create 1519 * one now. If we defer it, an object can get created after the map 1520 * is clipped, and individual objects will be created for the split-up 1521 * map. This is a bit of a hack, but is also about the best place to 1522 * put this improvement. 1523 */ 1524 if (entry->object.vm_object == NULL && !map->system_map) { 1525 vm_map_entry_allocate_object(entry); 1526 } 1527 1528 new_entry = vm_map_entry_create(map, countp); 1529 *new_entry = *entry; 1530 1531 new_entry->end = start; 1532 entry->offset += (start - entry->start); 1533 entry->start = start; 1534 1535 vm_map_entry_link(map, entry->prev, new_entry); 1536 1537 switch(entry->maptype) { 1538 case VM_MAPTYPE_NORMAL: 1539 case VM_MAPTYPE_VPAGETABLE: 1540 if (new_entry->object.vm_object) { 1541 vm_object_hold(new_entry->object.vm_object); 1542 vm_object_chain_wait(new_entry->object.vm_object, 0); 1543 vm_object_reference_locked(new_entry->object.vm_object); 1544 vm_object_drop(new_entry->object.vm_object); 1545 } 1546 break; 1547 default: 1548 break; 1549 } 1550 } 1551 1552 /* 1553 * Asserts that the given entry ends at or before the specified address. 1554 * If necessary, it splits the entry into two. 1555 * 1556 * The map must be exclusively locked. 1557 */ 1558 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1559 { \ 1560 if (endaddr < entry->end) \ 1561 _vm_map_clip_end(map, entry, endaddr, countp); \ 1562 } 1563 1564 /* 1565 * This routine is called only when it is known that the entry must be split. 1566 * 1567 * The map must be exclusively locked. 1568 */ 1569 static void 1570 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1571 int *countp) 1572 { 1573 vm_map_entry_t new_entry; 1574 1575 /* 1576 * If there is no object backing this entry, we might as well create 1577 * one now. If we defer it, an object can get created after the map 1578 * is clipped, and individual objects will be created for the split-up 1579 * map. This is a bit of a hack, but is also about the best place to 1580 * put this improvement. 1581 */ 1582 1583 if (entry->object.vm_object == NULL && !map->system_map) { 1584 vm_map_entry_allocate_object(entry); 1585 } 1586 1587 /* 1588 * Create a new entry and insert it AFTER the specified entry 1589 */ 1590 1591 new_entry = vm_map_entry_create(map, countp); 1592 *new_entry = *entry; 1593 1594 new_entry->start = entry->end = end; 1595 new_entry->offset += (end - entry->start); 1596 1597 vm_map_entry_link(map, entry, new_entry); 1598 1599 switch(entry->maptype) { 1600 case VM_MAPTYPE_NORMAL: 1601 case VM_MAPTYPE_VPAGETABLE: 1602 if (new_entry->object.vm_object) { 1603 vm_object_hold(new_entry->object.vm_object); 1604 vm_object_chain_wait(new_entry->object.vm_object, 0); 1605 vm_object_reference_locked(new_entry->object.vm_object); 1606 vm_object_drop(new_entry->object.vm_object); 1607 } 1608 break; 1609 default: 1610 break; 1611 } 1612 } 1613 1614 /* 1615 * Asserts that the starting and ending region addresses fall within the 1616 * valid range for the map. 1617 */ 1618 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1619 { \ 1620 if (start < vm_map_min(map)) \ 1621 start = vm_map_min(map); \ 1622 if (end > vm_map_max(map)) \ 1623 end = vm_map_max(map); \ 1624 if (start > end) \ 1625 start = end; \ 1626 } 1627 1628 /* 1629 * Used to block when an in-transition collison occurs. The map 1630 * is unlocked for the sleep and relocked before the return. 1631 */ 1632 void 1633 vm_map_transition_wait(vm_map_t map) 1634 { 1635 tsleep_interlock(map, 0); 1636 vm_map_unlock(map); 1637 tsleep(map, PINTERLOCKED, "vment", 0); 1638 vm_map_lock(map); 1639 } 1640 1641 /* 1642 * When we do blocking operations with the map lock held it is 1643 * possible that a clip might have occured on our in-transit entry, 1644 * requiring an adjustment to the entry in our loop. These macros 1645 * help the pageable and clip_range code deal with the case. The 1646 * conditional costs virtually nothing if no clipping has occured. 1647 */ 1648 1649 #define CLIP_CHECK_BACK(entry, save_start) \ 1650 do { \ 1651 while (entry->start != save_start) { \ 1652 entry = entry->prev; \ 1653 KASSERT(entry != &map->header, ("bad entry clip")); \ 1654 } \ 1655 } while(0) 1656 1657 #define CLIP_CHECK_FWD(entry, save_end) \ 1658 do { \ 1659 while (entry->end != save_end) { \ 1660 entry = entry->next; \ 1661 KASSERT(entry != &map->header, ("bad entry clip")); \ 1662 } \ 1663 } while(0) 1664 1665 1666 /* 1667 * Clip the specified range and return the base entry. The 1668 * range may cover several entries starting at the returned base 1669 * and the first and last entry in the covering sequence will be 1670 * properly clipped to the requested start and end address. 1671 * 1672 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1673 * flag. 1674 * 1675 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1676 * covered by the requested range. 1677 * 1678 * The map must be exclusively locked on entry and will remain locked 1679 * on return. If no range exists or the range contains holes and you 1680 * specified that no holes were allowed, NULL will be returned. This 1681 * routine may temporarily unlock the map in order avoid a deadlock when 1682 * sleeping. 1683 */ 1684 static 1685 vm_map_entry_t 1686 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1687 int *countp, int flags) 1688 { 1689 vm_map_entry_t start_entry; 1690 vm_map_entry_t entry; 1691 1692 /* 1693 * Locate the entry and effect initial clipping. The in-transition 1694 * case does not occur very often so do not try to optimize it. 1695 */ 1696 again: 1697 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1698 return (NULL); 1699 entry = start_entry; 1700 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1701 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1702 ++mycpu->gd_cnt.v_intrans_coll; 1703 ++mycpu->gd_cnt.v_intrans_wait; 1704 vm_map_transition_wait(map); 1705 /* 1706 * entry and/or start_entry may have been clipped while 1707 * we slept, or may have gone away entirely. We have 1708 * to restart from the lookup. 1709 */ 1710 goto again; 1711 } 1712 1713 /* 1714 * Since we hold an exclusive map lock we do not have to restart 1715 * after clipping, even though clipping may block in zalloc. 1716 */ 1717 vm_map_clip_start(map, entry, start, countp); 1718 vm_map_clip_end(map, entry, end, countp); 1719 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1720 1721 /* 1722 * Scan entries covered by the range. When working on the next 1723 * entry a restart need only re-loop on the current entry which 1724 * we have already locked, since 'next' may have changed. Also, 1725 * even though entry is safe, it may have been clipped so we 1726 * have to iterate forwards through the clip after sleeping. 1727 */ 1728 while (entry->next != &map->header && entry->next->start < end) { 1729 vm_map_entry_t next = entry->next; 1730 1731 if (flags & MAP_CLIP_NO_HOLES) { 1732 if (next->start > entry->end) { 1733 vm_map_unclip_range(map, start_entry, 1734 start, entry->end, countp, flags); 1735 return(NULL); 1736 } 1737 } 1738 1739 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1740 vm_offset_t save_end = entry->end; 1741 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1742 ++mycpu->gd_cnt.v_intrans_coll; 1743 ++mycpu->gd_cnt.v_intrans_wait; 1744 vm_map_transition_wait(map); 1745 1746 /* 1747 * clips might have occured while we blocked. 1748 */ 1749 CLIP_CHECK_FWD(entry, save_end); 1750 CLIP_CHECK_BACK(start_entry, start); 1751 continue; 1752 } 1753 /* 1754 * No restart necessary even though clip_end may block, we 1755 * are holding the map lock. 1756 */ 1757 vm_map_clip_end(map, next, end, countp); 1758 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1759 entry = next; 1760 } 1761 if (flags & MAP_CLIP_NO_HOLES) { 1762 if (entry->end != end) { 1763 vm_map_unclip_range(map, start_entry, 1764 start, entry->end, countp, flags); 1765 return(NULL); 1766 } 1767 } 1768 return(start_entry); 1769 } 1770 1771 /* 1772 * Undo the effect of vm_map_clip_range(). You should pass the same 1773 * flags and the same range that you passed to vm_map_clip_range(). 1774 * This code will clear the in-transition flag on the entries and 1775 * wake up anyone waiting. This code will also simplify the sequence 1776 * and attempt to merge it with entries before and after the sequence. 1777 * 1778 * The map must be locked on entry and will remain locked on return. 1779 * 1780 * Note that you should also pass the start_entry returned by 1781 * vm_map_clip_range(). However, if you block between the two calls 1782 * with the map unlocked please be aware that the start_entry may 1783 * have been clipped and you may need to scan it backwards to find 1784 * the entry corresponding with the original start address. You are 1785 * responsible for this, vm_map_unclip_range() expects the correct 1786 * start_entry to be passed to it and will KASSERT otherwise. 1787 */ 1788 static 1789 void 1790 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1791 vm_offset_t start, vm_offset_t end, 1792 int *countp, int flags) 1793 { 1794 vm_map_entry_t entry; 1795 1796 entry = start_entry; 1797 1798 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1799 while (entry != &map->header && entry->start < end) { 1800 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1801 ("in-transition flag not set during unclip on: %p", 1802 entry)); 1803 KASSERT(entry->end <= end, 1804 ("unclip_range: tail wasn't clipped")); 1805 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1806 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1807 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1808 wakeup(map); 1809 } 1810 entry = entry->next; 1811 } 1812 1813 /* 1814 * Simplification does not block so there is no restart case. 1815 */ 1816 entry = start_entry; 1817 while (entry != &map->header && entry->start < end) { 1818 vm_map_simplify_entry(map, entry, countp); 1819 entry = entry->next; 1820 } 1821 } 1822 1823 /* 1824 * Mark the given range as handled by a subordinate map. 1825 * 1826 * This range must have been created with vm_map_find(), and no other 1827 * operations may have been performed on this range prior to calling 1828 * vm_map_submap(). 1829 * 1830 * Submappings cannot be removed. 1831 * 1832 * No requirements. 1833 */ 1834 int 1835 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1836 { 1837 vm_map_entry_t entry; 1838 int result = KERN_INVALID_ARGUMENT; 1839 int count; 1840 1841 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1842 vm_map_lock(map); 1843 1844 VM_MAP_RANGE_CHECK(map, start, end); 1845 1846 if (vm_map_lookup_entry(map, start, &entry)) { 1847 vm_map_clip_start(map, entry, start, &count); 1848 } else { 1849 entry = entry->next; 1850 } 1851 1852 vm_map_clip_end(map, entry, end, &count); 1853 1854 if ((entry->start == start) && (entry->end == end) && 1855 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1856 (entry->object.vm_object == NULL)) { 1857 entry->object.sub_map = submap; 1858 entry->maptype = VM_MAPTYPE_SUBMAP; 1859 result = KERN_SUCCESS; 1860 } 1861 vm_map_unlock(map); 1862 vm_map_entry_release(count); 1863 1864 return (result); 1865 } 1866 1867 /* 1868 * Sets the protection of the specified address region in the target map. 1869 * If "set_max" is specified, the maximum protection is to be set; 1870 * otherwise, only the current protection is affected. 1871 * 1872 * The protection is not applicable to submaps, but is applicable to normal 1873 * maps and maps governed by virtual page tables. For example, when operating 1874 * on a virtual page table our protection basically controls how COW occurs 1875 * on the backing object, whereas the virtual page table abstraction itself 1876 * is an abstraction for userland. 1877 * 1878 * No requirements. 1879 */ 1880 int 1881 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1882 vm_prot_t new_prot, boolean_t set_max) 1883 { 1884 vm_map_entry_t current; 1885 vm_map_entry_t entry; 1886 int count; 1887 1888 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1889 vm_map_lock(map); 1890 1891 VM_MAP_RANGE_CHECK(map, start, end); 1892 1893 if (vm_map_lookup_entry(map, start, &entry)) { 1894 vm_map_clip_start(map, entry, start, &count); 1895 } else { 1896 entry = entry->next; 1897 } 1898 1899 /* 1900 * Make a first pass to check for protection violations. 1901 */ 1902 current = entry; 1903 while ((current != &map->header) && (current->start < end)) { 1904 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1905 vm_map_unlock(map); 1906 vm_map_entry_release(count); 1907 return (KERN_INVALID_ARGUMENT); 1908 } 1909 if ((new_prot & current->max_protection) != new_prot) { 1910 vm_map_unlock(map); 1911 vm_map_entry_release(count); 1912 return (KERN_PROTECTION_FAILURE); 1913 } 1914 current = current->next; 1915 } 1916 1917 /* 1918 * Go back and fix up protections. [Note that clipping is not 1919 * necessary the second time.] 1920 */ 1921 current = entry; 1922 1923 while ((current != &map->header) && (current->start < end)) { 1924 vm_prot_t old_prot; 1925 1926 vm_map_clip_end(map, current, end, &count); 1927 1928 old_prot = current->protection; 1929 if (set_max) { 1930 current->max_protection = new_prot; 1931 current->protection = new_prot & old_prot; 1932 } else { 1933 current->protection = new_prot; 1934 } 1935 1936 /* 1937 * Update physical map if necessary. Worry about copy-on-write 1938 * here -- CHECK THIS XXX 1939 */ 1940 1941 if (current->protection != old_prot) { 1942 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1943 VM_PROT_ALL) 1944 1945 pmap_protect(map->pmap, current->start, 1946 current->end, 1947 current->protection & MASK(current)); 1948 #undef MASK 1949 } 1950 1951 vm_map_simplify_entry(map, current, &count); 1952 1953 current = current->next; 1954 } 1955 1956 vm_map_unlock(map); 1957 vm_map_entry_release(count); 1958 return (KERN_SUCCESS); 1959 } 1960 1961 /* 1962 * This routine traverses a processes map handling the madvise 1963 * system call. Advisories are classified as either those effecting 1964 * the vm_map_entry structure, or those effecting the underlying 1965 * objects. 1966 * 1967 * The <value> argument is used for extended madvise calls. 1968 * 1969 * No requirements. 1970 */ 1971 int 1972 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1973 int behav, off_t value) 1974 { 1975 vm_map_entry_t current, entry; 1976 int modify_map = 0; 1977 int error = 0; 1978 int count; 1979 1980 /* 1981 * Some madvise calls directly modify the vm_map_entry, in which case 1982 * we need to use an exclusive lock on the map and we need to perform 1983 * various clipping operations. Otherwise we only need a read-lock 1984 * on the map. 1985 */ 1986 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1987 1988 switch(behav) { 1989 case MADV_NORMAL: 1990 case MADV_SEQUENTIAL: 1991 case MADV_RANDOM: 1992 case MADV_NOSYNC: 1993 case MADV_AUTOSYNC: 1994 case MADV_NOCORE: 1995 case MADV_CORE: 1996 case MADV_SETMAP: 1997 modify_map = 1; 1998 vm_map_lock(map); 1999 break; 2000 case MADV_INVAL: 2001 case MADV_WILLNEED: 2002 case MADV_DONTNEED: 2003 case MADV_FREE: 2004 vm_map_lock_read(map); 2005 break; 2006 default: 2007 vm_map_entry_release(count); 2008 return (EINVAL); 2009 } 2010 2011 /* 2012 * Locate starting entry and clip if necessary. 2013 */ 2014 2015 VM_MAP_RANGE_CHECK(map, start, end); 2016 2017 if (vm_map_lookup_entry(map, start, &entry)) { 2018 if (modify_map) 2019 vm_map_clip_start(map, entry, start, &count); 2020 } else { 2021 entry = entry->next; 2022 } 2023 2024 if (modify_map) { 2025 /* 2026 * madvise behaviors that are implemented in the vm_map_entry. 2027 * 2028 * We clip the vm_map_entry so that behavioral changes are 2029 * limited to the specified address range. 2030 */ 2031 for (current = entry; 2032 (current != &map->header) && (current->start < end); 2033 current = current->next 2034 ) { 2035 if (current->maptype == VM_MAPTYPE_SUBMAP) 2036 continue; 2037 2038 vm_map_clip_end(map, current, end, &count); 2039 2040 switch (behav) { 2041 case MADV_NORMAL: 2042 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2043 break; 2044 case MADV_SEQUENTIAL: 2045 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2046 break; 2047 case MADV_RANDOM: 2048 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2049 break; 2050 case MADV_NOSYNC: 2051 current->eflags |= MAP_ENTRY_NOSYNC; 2052 break; 2053 case MADV_AUTOSYNC: 2054 current->eflags &= ~MAP_ENTRY_NOSYNC; 2055 break; 2056 case MADV_NOCORE: 2057 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2058 break; 2059 case MADV_CORE: 2060 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2061 break; 2062 case MADV_SETMAP: 2063 /* 2064 * Set the page directory page for a map 2065 * governed by a virtual page table. Mark 2066 * the entry as being governed by a virtual 2067 * page table if it is not. 2068 * 2069 * XXX the page directory page is stored 2070 * in the avail_ssize field if the map_entry. 2071 * 2072 * XXX the map simplification code does not 2073 * compare this field so weird things may 2074 * happen if you do not apply this function 2075 * to the entire mapping governed by the 2076 * virtual page table. 2077 */ 2078 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 2079 error = EINVAL; 2080 break; 2081 } 2082 current->aux.master_pde = value; 2083 pmap_remove(map->pmap, 2084 current->start, current->end); 2085 break; 2086 case MADV_INVAL: 2087 /* 2088 * Invalidate the related pmap entries, used 2089 * to flush portions of the real kernel's 2090 * pmap when the caller has removed or 2091 * modified existing mappings in a virtual 2092 * page table. 2093 * 2094 * (exclusive locked map version does not 2095 * need the range interlock). 2096 */ 2097 pmap_remove(map->pmap, 2098 current->start, current->end); 2099 break; 2100 default: 2101 error = EINVAL; 2102 break; 2103 } 2104 vm_map_simplify_entry(map, current, &count); 2105 } 2106 vm_map_unlock(map); 2107 } else { 2108 vm_pindex_t pindex; 2109 vm_pindex_t delta; 2110 2111 /* 2112 * madvise behaviors that are implemented in the underlying 2113 * vm_object. 2114 * 2115 * Since we don't clip the vm_map_entry, we have to clip 2116 * the vm_object pindex and count. 2117 * 2118 * NOTE! These functions are only supported on normal maps, 2119 * except MADV_INVAL which is also supported on 2120 * virtual page tables. 2121 */ 2122 for (current = entry; 2123 (current != &map->header) && (current->start < end); 2124 current = current->next 2125 ) { 2126 vm_offset_t useStart; 2127 2128 if (current->maptype != VM_MAPTYPE_NORMAL && 2129 (current->maptype != VM_MAPTYPE_VPAGETABLE || 2130 behav != MADV_INVAL)) { 2131 continue; 2132 } 2133 2134 pindex = OFF_TO_IDX(current->offset); 2135 delta = atop(current->end - current->start); 2136 useStart = current->start; 2137 2138 if (current->start < start) { 2139 pindex += atop(start - current->start); 2140 delta -= atop(start - current->start); 2141 useStart = start; 2142 } 2143 if (current->end > end) 2144 delta -= atop(current->end - end); 2145 2146 if ((vm_spindex_t)delta <= 0) 2147 continue; 2148 2149 if (behav == MADV_INVAL) { 2150 /* 2151 * Invalidate the related pmap entries, used 2152 * to flush portions of the real kernel's 2153 * pmap when the caller has removed or 2154 * modified existing mappings in a virtual 2155 * page table. 2156 * 2157 * (shared locked map version needs the 2158 * interlock, see vm_fault()). 2159 */ 2160 struct vm_map_ilock ilock; 2161 2162 KASSERT(useStart >= VM_MIN_USER_ADDRESS && 2163 useStart + ptoa(delta) <= 2164 VM_MAX_USER_ADDRESS, 2165 ("Bad range %016jx-%016jx (%016jx)", 2166 useStart, useStart + ptoa(delta), 2167 delta)); 2168 vm_map_interlock(map, &ilock, 2169 useStart, 2170 useStart + ptoa(delta)); 2171 pmap_remove(map->pmap, 2172 useStart, 2173 useStart + ptoa(delta)); 2174 vm_map_deinterlock(map, &ilock); 2175 } else { 2176 vm_object_madvise(current->object.vm_object, 2177 pindex, delta, behav); 2178 } 2179 2180 /* 2181 * Try to populate the page table. Mappings governed 2182 * by virtual page tables cannot be pre-populated 2183 * without a lot of work so don't try. 2184 */ 2185 if (behav == MADV_WILLNEED && 2186 current->maptype != VM_MAPTYPE_VPAGETABLE) { 2187 pmap_object_init_pt( 2188 map->pmap, 2189 useStart, 2190 current->protection, 2191 current->object.vm_object, 2192 pindex, 2193 (count << PAGE_SHIFT), 2194 MAP_PREFAULT_MADVISE 2195 ); 2196 } 2197 } 2198 vm_map_unlock_read(map); 2199 } 2200 vm_map_entry_release(count); 2201 return(error); 2202 } 2203 2204 2205 /* 2206 * Sets the inheritance of the specified address range in the target map. 2207 * Inheritance affects how the map will be shared with child maps at the 2208 * time of vm_map_fork. 2209 */ 2210 int 2211 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2212 vm_inherit_t new_inheritance) 2213 { 2214 vm_map_entry_t entry; 2215 vm_map_entry_t temp_entry; 2216 int count; 2217 2218 switch (new_inheritance) { 2219 case VM_INHERIT_NONE: 2220 case VM_INHERIT_COPY: 2221 case VM_INHERIT_SHARE: 2222 break; 2223 default: 2224 return (KERN_INVALID_ARGUMENT); 2225 } 2226 2227 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2228 vm_map_lock(map); 2229 2230 VM_MAP_RANGE_CHECK(map, start, end); 2231 2232 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2233 entry = temp_entry; 2234 vm_map_clip_start(map, entry, start, &count); 2235 } else 2236 entry = temp_entry->next; 2237 2238 while ((entry != &map->header) && (entry->start < end)) { 2239 vm_map_clip_end(map, entry, end, &count); 2240 2241 entry->inheritance = new_inheritance; 2242 2243 vm_map_simplify_entry(map, entry, &count); 2244 2245 entry = entry->next; 2246 } 2247 vm_map_unlock(map); 2248 vm_map_entry_release(count); 2249 return (KERN_SUCCESS); 2250 } 2251 2252 /* 2253 * Implement the semantics of mlock 2254 */ 2255 int 2256 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2257 boolean_t new_pageable) 2258 { 2259 vm_map_entry_t entry; 2260 vm_map_entry_t start_entry; 2261 vm_offset_t end; 2262 int rv = KERN_SUCCESS; 2263 int count; 2264 2265 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2266 vm_map_lock(map); 2267 VM_MAP_RANGE_CHECK(map, start, real_end); 2268 end = real_end; 2269 2270 start_entry = vm_map_clip_range(map, start, end, &count, 2271 MAP_CLIP_NO_HOLES); 2272 if (start_entry == NULL) { 2273 vm_map_unlock(map); 2274 vm_map_entry_release(count); 2275 return (KERN_INVALID_ADDRESS); 2276 } 2277 2278 if (new_pageable == 0) { 2279 entry = start_entry; 2280 while ((entry != &map->header) && (entry->start < end)) { 2281 vm_offset_t save_start; 2282 vm_offset_t save_end; 2283 2284 /* 2285 * Already user wired or hard wired (trivial cases) 2286 */ 2287 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2288 entry = entry->next; 2289 continue; 2290 } 2291 if (entry->wired_count != 0) { 2292 entry->wired_count++; 2293 entry->eflags |= MAP_ENTRY_USER_WIRED; 2294 entry = entry->next; 2295 continue; 2296 } 2297 2298 /* 2299 * A new wiring requires instantiation of appropriate 2300 * management structures and the faulting in of the 2301 * page. 2302 */ 2303 if (entry->maptype == VM_MAPTYPE_NORMAL || 2304 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2305 int copyflag = entry->eflags & 2306 MAP_ENTRY_NEEDS_COPY; 2307 if (copyflag && ((entry->protection & 2308 VM_PROT_WRITE) != 0)) { 2309 vm_map_entry_shadow(entry, 0); 2310 } else if (entry->object.vm_object == NULL && 2311 !map->system_map) { 2312 vm_map_entry_allocate_object(entry); 2313 } 2314 } 2315 entry->wired_count++; 2316 entry->eflags |= MAP_ENTRY_USER_WIRED; 2317 2318 /* 2319 * Now fault in the area. Note that vm_fault_wire() 2320 * may release the map lock temporarily, it will be 2321 * relocked on return. The in-transition 2322 * flag protects the entries. 2323 */ 2324 save_start = entry->start; 2325 save_end = entry->end; 2326 rv = vm_fault_wire(map, entry, TRUE, 0); 2327 if (rv) { 2328 CLIP_CHECK_BACK(entry, save_start); 2329 for (;;) { 2330 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2331 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2332 entry->wired_count = 0; 2333 if (entry->end == save_end) 2334 break; 2335 entry = entry->next; 2336 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2337 } 2338 end = save_start; /* unwire the rest */ 2339 break; 2340 } 2341 /* 2342 * note that even though the entry might have been 2343 * clipped, the USER_WIRED flag we set prevents 2344 * duplication so we do not have to do a 2345 * clip check. 2346 */ 2347 entry = entry->next; 2348 } 2349 2350 /* 2351 * If we failed fall through to the unwiring section to 2352 * unwire what we had wired so far. 'end' has already 2353 * been adjusted. 2354 */ 2355 if (rv) 2356 new_pageable = 1; 2357 2358 /* 2359 * start_entry might have been clipped if we unlocked the 2360 * map and blocked. No matter how clipped it has gotten 2361 * there should be a fragment that is on our start boundary. 2362 */ 2363 CLIP_CHECK_BACK(start_entry, start); 2364 } 2365 2366 /* 2367 * Deal with the unwiring case. 2368 */ 2369 if (new_pageable) { 2370 /* 2371 * This is the unwiring case. We must first ensure that the 2372 * range to be unwired is really wired down. We know there 2373 * are no holes. 2374 */ 2375 entry = start_entry; 2376 while ((entry != &map->header) && (entry->start < end)) { 2377 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2378 rv = KERN_INVALID_ARGUMENT; 2379 goto done; 2380 } 2381 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2382 entry = entry->next; 2383 } 2384 2385 /* 2386 * Now decrement the wiring count for each region. If a region 2387 * becomes completely unwired, unwire its physical pages and 2388 * mappings. 2389 */ 2390 /* 2391 * The map entries are processed in a loop, checking to 2392 * make sure the entry is wired and asserting it has a wired 2393 * count. However, another loop was inserted more-or-less in 2394 * the middle of the unwiring path. This loop picks up the 2395 * "entry" loop variable from the first loop without first 2396 * setting it to start_entry. Naturally, the secound loop 2397 * is never entered and the pages backing the entries are 2398 * never unwired. This can lead to a leak of wired pages. 2399 */ 2400 entry = start_entry; 2401 while ((entry != &map->header) && (entry->start < end)) { 2402 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2403 ("expected USER_WIRED on entry %p", entry)); 2404 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2405 entry->wired_count--; 2406 if (entry->wired_count == 0) 2407 vm_fault_unwire(map, entry); 2408 entry = entry->next; 2409 } 2410 } 2411 done: 2412 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2413 MAP_CLIP_NO_HOLES); 2414 map->timestamp++; 2415 vm_map_unlock(map); 2416 vm_map_entry_release(count); 2417 return (rv); 2418 } 2419 2420 /* 2421 * Sets the pageability of the specified address range in the target map. 2422 * Regions specified as not pageable require locked-down physical 2423 * memory and physical page maps. 2424 * 2425 * The map must not be locked, but a reference must remain to the map 2426 * throughout the call. 2427 * 2428 * This function may be called via the zalloc path and must properly 2429 * reserve map entries for kernel_map. 2430 * 2431 * No requirements. 2432 */ 2433 int 2434 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2435 { 2436 vm_map_entry_t entry; 2437 vm_map_entry_t start_entry; 2438 vm_offset_t end; 2439 int rv = KERN_SUCCESS; 2440 int count; 2441 2442 if (kmflags & KM_KRESERVE) 2443 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2444 else 2445 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2446 vm_map_lock(map); 2447 VM_MAP_RANGE_CHECK(map, start, real_end); 2448 end = real_end; 2449 2450 start_entry = vm_map_clip_range(map, start, end, &count, 2451 MAP_CLIP_NO_HOLES); 2452 if (start_entry == NULL) { 2453 vm_map_unlock(map); 2454 rv = KERN_INVALID_ADDRESS; 2455 goto failure; 2456 } 2457 if ((kmflags & KM_PAGEABLE) == 0) { 2458 /* 2459 * Wiring. 2460 * 2461 * 1. Holding the write lock, we create any shadow or zero-fill 2462 * objects that need to be created. Then we clip each map 2463 * entry to the region to be wired and increment its wiring 2464 * count. We create objects before clipping the map entries 2465 * to avoid object proliferation. 2466 * 2467 * 2. We downgrade to a read lock, and call vm_fault_wire to 2468 * fault in the pages for any newly wired area (wired_count is 2469 * 1). 2470 * 2471 * Downgrading to a read lock for vm_fault_wire avoids a 2472 * possible deadlock with another process that may have faulted 2473 * on one of the pages to be wired (it would mark the page busy, 2474 * blocking us, then in turn block on the map lock that we 2475 * hold). Because of problems in the recursive lock package, 2476 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2477 * any actions that require the write lock must be done 2478 * beforehand. Because we keep the read lock on the map, the 2479 * copy-on-write status of the entries we modify here cannot 2480 * change. 2481 */ 2482 entry = start_entry; 2483 while ((entry != &map->header) && (entry->start < end)) { 2484 /* 2485 * Trivial case if the entry is already wired 2486 */ 2487 if (entry->wired_count) { 2488 entry->wired_count++; 2489 entry = entry->next; 2490 continue; 2491 } 2492 2493 /* 2494 * The entry is being newly wired, we have to setup 2495 * appropriate management structures. A shadow 2496 * object is required for a copy-on-write region, 2497 * or a normal object for a zero-fill region. We 2498 * do not have to do this for entries that point to sub 2499 * maps because we won't hold the lock on the sub map. 2500 */ 2501 if (entry->maptype == VM_MAPTYPE_NORMAL || 2502 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2503 int copyflag = entry->eflags & 2504 MAP_ENTRY_NEEDS_COPY; 2505 if (copyflag && ((entry->protection & 2506 VM_PROT_WRITE) != 0)) { 2507 vm_map_entry_shadow(entry, 0); 2508 } else if (entry->object.vm_object == NULL && 2509 !map->system_map) { 2510 vm_map_entry_allocate_object(entry); 2511 } 2512 } 2513 2514 entry->wired_count++; 2515 entry = entry->next; 2516 } 2517 2518 /* 2519 * Pass 2. 2520 */ 2521 2522 /* 2523 * HACK HACK HACK HACK 2524 * 2525 * vm_fault_wire() temporarily unlocks the map to avoid 2526 * deadlocks. The in-transition flag from vm_map_clip_range 2527 * call should protect us from changes while the map is 2528 * unlocked. T 2529 * 2530 * NOTE: Previously this comment stated that clipping might 2531 * still occur while the entry is unlocked, but from 2532 * what I can tell it actually cannot. 2533 * 2534 * It is unclear whether the CLIP_CHECK_*() calls 2535 * are still needed but we keep them in anyway. 2536 * 2537 * HACK HACK HACK HACK 2538 */ 2539 2540 entry = start_entry; 2541 while (entry != &map->header && entry->start < end) { 2542 /* 2543 * If vm_fault_wire fails for any page we need to undo 2544 * what has been done. We decrement the wiring count 2545 * for those pages which have not yet been wired (now) 2546 * and unwire those that have (later). 2547 */ 2548 vm_offset_t save_start = entry->start; 2549 vm_offset_t save_end = entry->end; 2550 2551 if (entry->wired_count == 1) 2552 rv = vm_fault_wire(map, entry, FALSE, kmflags); 2553 if (rv) { 2554 CLIP_CHECK_BACK(entry, save_start); 2555 for (;;) { 2556 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2557 entry->wired_count = 0; 2558 if (entry->end == save_end) 2559 break; 2560 entry = entry->next; 2561 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2562 } 2563 end = save_start; 2564 break; 2565 } 2566 CLIP_CHECK_FWD(entry, save_end); 2567 entry = entry->next; 2568 } 2569 2570 /* 2571 * If a failure occured undo everything by falling through 2572 * to the unwiring code. 'end' has already been adjusted 2573 * appropriately. 2574 */ 2575 if (rv) 2576 kmflags |= KM_PAGEABLE; 2577 2578 /* 2579 * start_entry is still IN_TRANSITION but may have been 2580 * clipped since vm_fault_wire() unlocks and relocks the 2581 * map. No matter how clipped it has gotten there should 2582 * be a fragment that is on our start boundary. 2583 */ 2584 CLIP_CHECK_BACK(start_entry, start); 2585 } 2586 2587 if (kmflags & KM_PAGEABLE) { 2588 /* 2589 * This is the unwiring case. We must first ensure that the 2590 * range to be unwired is really wired down. We know there 2591 * are no holes. 2592 */ 2593 entry = start_entry; 2594 while ((entry != &map->header) && (entry->start < end)) { 2595 if (entry->wired_count == 0) { 2596 rv = KERN_INVALID_ARGUMENT; 2597 goto done; 2598 } 2599 entry = entry->next; 2600 } 2601 2602 /* 2603 * Now decrement the wiring count for each region. If a region 2604 * becomes completely unwired, unwire its physical pages and 2605 * mappings. 2606 */ 2607 entry = start_entry; 2608 while ((entry != &map->header) && (entry->start < end)) { 2609 entry->wired_count--; 2610 if (entry->wired_count == 0) 2611 vm_fault_unwire(map, entry); 2612 entry = entry->next; 2613 } 2614 } 2615 done: 2616 vm_map_unclip_range(map, start_entry, start, real_end, 2617 &count, MAP_CLIP_NO_HOLES); 2618 map->timestamp++; 2619 vm_map_unlock(map); 2620 failure: 2621 if (kmflags & KM_KRESERVE) 2622 vm_map_entry_krelease(count); 2623 else 2624 vm_map_entry_release(count); 2625 return (rv); 2626 } 2627 2628 /* 2629 * Mark a newly allocated address range as wired but do not fault in 2630 * the pages. The caller is expected to load the pages into the object. 2631 * 2632 * The map must be locked on entry and will remain locked on return. 2633 * No other requirements. 2634 */ 2635 void 2636 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2637 int *countp) 2638 { 2639 vm_map_entry_t scan; 2640 vm_map_entry_t entry; 2641 2642 entry = vm_map_clip_range(map, addr, addr + size, 2643 countp, MAP_CLIP_NO_HOLES); 2644 for (scan = entry; 2645 scan != &map->header && scan->start < addr + size; 2646 scan = scan->next) { 2647 KKASSERT(scan->wired_count == 0); 2648 scan->wired_count = 1; 2649 } 2650 vm_map_unclip_range(map, entry, addr, addr + size, 2651 countp, MAP_CLIP_NO_HOLES); 2652 } 2653 2654 /* 2655 * Push any dirty cached pages in the address range to their pager. 2656 * If syncio is TRUE, dirty pages are written synchronously. 2657 * If invalidate is TRUE, any cached pages are freed as well. 2658 * 2659 * This routine is called by sys_msync() 2660 * 2661 * Returns an error if any part of the specified range is not mapped. 2662 * 2663 * No requirements. 2664 */ 2665 int 2666 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2667 boolean_t syncio, boolean_t invalidate) 2668 { 2669 vm_map_entry_t current; 2670 vm_map_entry_t entry; 2671 vm_size_t size; 2672 vm_object_t object; 2673 vm_object_t tobj; 2674 vm_ooffset_t offset; 2675 2676 vm_map_lock_read(map); 2677 VM_MAP_RANGE_CHECK(map, start, end); 2678 if (!vm_map_lookup_entry(map, start, &entry)) { 2679 vm_map_unlock_read(map); 2680 return (KERN_INVALID_ADDRESS); 2681 } 2682 lwkt_gettoken(&map->token); 2683 2684 /* 2685 * Make a first pass to check for holes. 2686 */ 2687 for (current = entry; current->start < end; current = current->next) { 2688 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2689 lwkt_reltoken(&map->token); 2690 vm_map_unlock_read(map); 2691 return (KERN_INVALID_ARGUMENT); 2692 } 2693 if (end > current->end && 2694 (current->next == &map->header || 2695 current->end != current->next->start)) { 2696 lwkt_reltoken(&map->token); 2697 vm_map_unlock_read(map); 2698 return (KERN_INVALID_ADDRESS); 2699 } 2700 } 2701 2702 if (invalidate) 2703 pmap_remove(vm_map_pmap(map), start, end); 2704 2705 /* 2706 * Make a second pass, cleaning/uncaching pages from the indicated 2707 * objects as we go. 2708 */ 2709 for (current = entry; current->start < end; current = current->next) { 2710 offset = current->offset + (start - current->start); 2711 size = (end <= current->end ? end : current->end) - start; 2712 2713 switch(current->maptype) { 2714 case VM_MAPTYPE_SUBMAP: 2715 { 2716 vm_map_t smap; 2717 vm_map_entry_t tentry; 2718 vm_size_t tsize; 2719 2720 smap = current->object.sub_map; 2721 vm_map_lock_read(smap); 2722 vm_map_lookup_entry(smap, offset, &tentry); 2723 tsize = tentry->end - offset; 2724 if (tsize < size) 2725 size = tsize; 2726 object = tentry->object.vm_object; 2727 offset = tentry->offset + (offset - tentry->start); 2728 vm_map_unlock_read(smap); 2729 break; 2730 } 2731 case VM_MAPTYPE_NORMAL: 2732 case VM_MAPTYPE_VPAGETABLE: 2733 object = current->object.vm_object; 2734 break; 2735 default: 2736 object = NULL; 2737 break; 2738 } 2739 2740 if (object) 2741 vm_object_hold(object); 2742 2743 /* 2744 * Note that there is absolutely no sense in writing out 2745 * anonymous objects, so we track down the vnode object 2746 * to write out. 2747 * We invalidate (remove) all pages from the address space 2748 * anyway, for semantic correctness. 2749 * 2750 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2751 * may start out with a NULL object. 2752 */ 2753 while (object && (tobj = object->backing_object) != NULL) { 2754 vm_object_hold(tobj); 2755 if (tobj == object->backing_object) { 2756 vm_object_lock_swap(); 2757 offset += object->backing_object_offset; 2758 vm_object_drop(object); 2759 object = tobj; 2760 if (object->size < OFF_TO_IDX(offset + size)) 2761 size = IDX_TO_OFF(object->size) - 2762 offset; 2763 break; 2764 } 2765 vm_object_drop(tobj); 2766 } 2767 if (object && (object->type == OBJT_VNODE) && 2768 (current->protection & VM_PROT_WRITE) && 2769 (object->flags & OBJ_NOMSYNC) == 0) { 2770 /* 2771 * Flush pages if writing is allowed, invalidate them 2772 * if invalidation requested. Pages undergoing I/O 2773 * will be ignored by vm_object_page_remove(). 2774 * 2775 * We cannot lock the vnode and then wait for paging 2776 * to complete without deadlocking against vm_fault. 2777 * Instead we simply call vm_object_page_remove() and 2778 * allow it to block internally on a page-by-page 2779 * basis when it encounters pages undergoing async 2780 * I/O. 2781 */ 2782 int flags; 2783 2784 /* no chain wait needed for vnode objects */ 2785 vm_object_reference_locked(object); 2786 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2787 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2788 flags |= invalidate ? OBJPC_INVAL : 0; 2789 2790 /* 2791 * When operating on a virtual page table just 2792 * flush the whole object. XXX we probably ought 2793 * to 2794 */ 2795 switch(current->maptype) { 2796 case VM_MAPTYPE_NORMAL: 2797 vm_object_page_clean(object, 2798 OFF_TO_IDX(offset), 2799 OFF_TO_IDX(offset + size + PAGE_MASK), 2800 flags); 2801 break; 2802 case VM_MAPTYPE_VPAGETABLE: 2803 vm_object_page_clean(object, 0, 0, flags); 2804 break; 2805 } 2806 vn_unlock(((struct vnode *)object->handle)); 2807 vm_object_deallocate_locked(object); 2808 } 2809 if (object && invalidate && 2810 ((object->type == OBJT_VNODE) || 2811 (object->type == OBJT_DEVICE) || 2812 (object->type == OBJT_MGTDEVICE))) { 2813 int clean_only = 2814 ((object->type == OBJT_DEVICE) || 2815 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE; 2816 /* no chain wait needed for vnode/device objects */ 2817 vm_object_reference_locked(object); 2818 switch(current->maptype) { 2819 case VM_MAPTYPE_NORMAL: 2820 vm_object_page_remove(object, 2821 OFF_TO_IDX(offset), 2822 OFF_TO_IDX(offset + size + PAGE_MASK), 2823 clean_only); 2824 break; 2825 case VM_MAPTYPE_VPAGETABLE: 2826 vm_object_page_remove(object, 0, 0, clean_only); 2827 break; 2828 } 2829 vm_object_deallocate_locked(object); 2830 } 2831 start += size; 2832 if (object) 2833 vm_object_drop(object); 2834 } 2835 2836 lwkt_reltoken(&map->token); 2837 vm_map_unlock_read(map); 2838 2839 return (KERN_SUCCESS); 2840 } 2841 2842 /* 2843 * Make the region specified by this entry pageable. 2844 * 2845 * The vm_map must be exclusively locked. 2846 */ 2847 static void 2848 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2849 { 2850 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2851 entry->wired_count = 0; 2852 vm_fault_unwire(map, entry); 2853 } 2854 2855 /* 2856 * Deallocate the given entry from the target map. 2857 * 2858 * The vm_map must be exclusively locked. 2859 */ 2860 static void 2861 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2862 { 2863 vm_map_entry_unlink(map, entry); 2864 map->size -= entry->end - entry->start; 2865 2866 switch(entry->maptype) { 2867 case VM_MAPTYPE_NORMAL: 2868 case VM_MAPTYPE_VPAGETABLE: 2869 case VM_MAPTYPE_SUBMAP: 2870 vm_object_deallocate(entry->object.vm_object); 2871 break; 2872 case VM_MAPTYPE_UKSMAP: 2873 /* XXX TODO */ 2874 break; 2875 default: 2876 break; 2877 } 2878 2879 vm_map_entry_dispose(map, entry, countp); 2880 } 2881 2882 /* 2883 * Deallocates the given address range from the target map. 2884 * 2885 * The vm_map must be exclusively locked. 2886 */ 2887 int 2888 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2889 { 2890 vm_object_t object; 2891 vm_map_entry_t entry; 2892 vm_map_entry_t first_entry; 2893 vm_offset_t hole_start; 2894 2895 ASSERT_VM_MAP_LOCKED(map); 2896 lwkt_gettoken(&map->token); 2897 again: 2898 /* 2899 * Find the start of the region, and clip it. Set entry to point 2900 * at the first record containing the requested address or, if no 2901 * such record exists, the next record with a greater address. The 2902 * loop will run from this point until a record beyond the termination 2903 * address is encountered. 2904 * 2905 * Adjust freehint[] for either the clip case or the extension case. 2906 * 2907 * GGG see other GGG comment. 2908 */ 2909 if (vm_map_lookup_entry(map, start, &first_entry)) { 2910 entry = first_entry; 2911 vm_map_clip_start(map, entry, start, countp); 2912 hole_start = start; 2913 } else { 2914 entry = first_entry->next; 2915 if (entry == &map->header) 2916 hole_start = first_entry->start; 2917 else 2918 hole_start = first_entry->end; 2919 } 2920 2921 /* 2922 * Step through all entries in this region 2923 */ 2924 while ((entry != &map->header) && (entry->start < end)) { 2925 vm_map_entry_t next; 2926 vm_offset_t s, e; 2927 vm_pindex_t offidxstart, offidxend, count; 2928 2929 /* 2930 * If we hit an in-transition entry we have to sleep and 2931 * retry. It's easier (and not really slower) to just retry 2932 * since this case occurs so rarely and the hint is already 2933 * pointing at the right place. We have to reset the 2934 * start offset so as not to accidently delete an entry 2935 * another process just created in vacated space. 2936 */ 2937 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2938 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2939 start = entry->start; 2940 ++mycpu->gd_cnt.v_intrans_coll; 2941 ++mycpu->gd_cnt.v_intrans_wait; 2942 vm_map_transition_wait(map); 2943 goto again; 2944 } 2945 vm_map_clip_end(map, entry, end, countp); 2946 2947 s = entry->start; 2948 e = entry->end; 2949 next = entry->next; 2950 2951 offidxstart = OFF_TO_IDX(entry->offset); 2952 count = OFF_TO_IDX(e - s); 2953 2954 switch(entry->maptype) { 2955 case VM_MAPTYPE_NORMAL: 2956 case VM_MAPTYPE_VPAGETABLE: 2957 case VM_MAPTYPE_SUBMAP: 2958 object = entry->object.vm_object; 2959 break; 2960 default: 2961 object = NULL; 2962 break; 2963 } 2964 2965 /* 2966 * Unwire before removing addresses from the pmap; otherwise, 2967 * unwiring will put the entries back in the pmap. 2968 * 2969 * Generally speaking, doing a bulk pmap_remove() before 2970 * removing the pages from the VM object is better at 2971 * reducing unnecessary IPIs. The pmap code is now optimized 2972 * to not blindly iterate the range when pt and pd pages 2973 * are missing. 2974 */ 2975 if (entry->wired_count != 0) 2976 vm_map_entry_unwire(map, entry); 2977 2978 offidxend = offidxstart + count; 2979 2980 if (object == &kernel_object) { 2981 pmap_remove(map->pmap, s, e); 2982 vm_object_hold(object); 2983 vm_object_page_remove(object, offidxstart, 2984 offidxend, FALSE); 2985 vm_object_drop(object); 2986 } else if (object && object->type != OBJT_DEFAULT && 2987 object->type != OBJT_SWAP) { 2988 /* 2989 * vnode object routines cannot be chain-locked, 2990 * but since we aren't removing pages from the 2991 * object here we can use a shared hold. 2992 */ 2993 vm_object_hold_shared(object); 2994 pmap_remove(map->pmap, s, e); 2995 vm_object_drop(object); 2996 } else if (object) { 2997 vm_object_hold(object); 2998 vm_object_chain_acquire(object, 0); 2999 pmap_remove(map->pmap, s, e); 3000 3001 if (object != NULL && 3002 object->ref_count != 1 && 3003 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 3004 OBJ_ONEMAPPING && 3005 (object->type == OBJT_DEFAULT || 3006 object->type == OBJT_SWAP)) { 3007 vm_object_collapse(object, NULL); 3008 vm_object_page_remove(object, offidxstart, 3009 offidxend, FALSE); 3010 if (object->type == OBJT_SWAP) { 3011 swap_pager_freespace(object, 3012 offidxstart, 3013 count); 3014 } 3015 if (offidxend >= object->size && 3016 offidxstart < object->size) { 3017 object->size = offidxstart; 3018 } 3019 } 3020 vm_object_chain_release(object); 3021 vm_object_drop(object); 3022 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) { 3023 pmap_remove(map->pmap, s, e); 3024 } 3025 3026 /* 3027 * Delete the entry (which may delete the object) only after 3028 * removing all pmap entries pointing to its pages. 3029 * (Otherwise, its page frames may be reallocated, and any 3030 * modify bits will be set in the wrong object!) 3031 */ 3032 vm_map_entry_delete(map, entry, countp); 3033 entry = next; 3034 } 3035 if (entry == &map->header) 3036 vm_map_freehint_hole(map, hole_start, entry->end - hole_start); 3037 else 3038 vm_map_freehint_hole(map, hole_start, 3039 entry->start - hole_start); 3040 3041 lwkt_reltoken(&map->token); 3042 3043 return (KERN_SUCCESS); 3044 } 3045 3046 /* 3047 * Remove the given address range from the target map. 3048 * This is the exported form of vm_map_delete. 3049 * 3050 * No requirements. 3051 */ 3052 int 3053 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3054 { 3055 int result; 3056 int count; 3057 3058 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3059 vm_map_lock(map); 3060 VM_MAP_RANGE_CHECK(map, start, end); 3061 result = vm_map_delete(map, start, end, &count); 3062 vm_map_unlock(map); 3063 vm_map_entry_release(count); 3064 3065 return (result); 3066 } 3067 3068 /* 3069 * Assert that the target map allows the specified privilege on the 3070 * entire address region given. The entire region must be allocated. 3071 * 3072 * The caller must specify whether the vm_map is already locked or not. 3073 */ 3074 boolean_t 3075 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3076 vm_prot_t protection, boolean_t have_lock) 3077 { 3078 vm_map_entry_t entry; 3079 vm_map_entry_t tmp_entry; 3080 boolean_t result; 3081 3082 if (have_lock == FALSE) 3083 vm_map_lock_read(map); 3084 3085 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 3086 if (have_lock == FALSE) 3087 vm_map_unlock_read(map); 3088 return (FALSE); 3089 } 3090 entry = tmp_entry; 3091 3092 result = TRUE; 3093 while (start < end) { 3094 if (entry == &map->header) { 3095 result = FALSE; 3096 break; 3097 } 3098 /* 3099 * No holes allowed! 3100 */ 3101 3102 if (start < entry->start) { 3103 result = FALSE; 3104 break; 3105 } 3106 /* 3107 * Check protection associated with entry. 3108 */ 3109 3110 if ((entry->protection & protection) != protection) { 3111 result = FALSE; 3112 break; 3113 } 3114 /* go to next entry */ 3115 3116 start = entry->end; 3117 entry = entry->next; 3118 } 3119 if (have_lock == FALSE) 3120 vm_map_unlock_read(map); 3121 return (result); 3122 } 3123 3124 /* 3125 * If appropriate this function shadows the original object with a new object 3126 * and moves the VM pages from the original object to the new object. 3127 * The original object will also be collapsed, if possible. 3128 * 3129 * We can only do this for normal memory objects with a single mapping, and 3130 * it only makes sense to do it if there are 2 or more refs on the original 3131 * object. i.e. typically a memory object that has been extended into 3132 * multiple vm_map_entry's with non-overlapping ranges. 3133 * 3134 * This makes it easier to remove unused pages and keeps object inheritance 3135 * from being a negative impact on memory usage. 3136 * 3137 * On return the (possibly new) entry->object.vm_object will have an 3138 * additional ref on it for the caller to dispose of (usually by cloning 3139 * the vm_map_entry). The additional ref had to be done in this routine 3140 * to avoid racing a collapse. The object's ONEMAPPING flag will also be 3141 * cleared. 3142 * 3143 * The vm_map must be locked and its token held. 3144 */ 3145 static void 3146 vm_map_split(vm_map_entry_t entry) 3147 { 3148 /* OPTIMIZED */ 3149 vm_object_t oobject, nobject, bobject; 3150 vm_offset_t s, e; 3151 vm_page_t m; 3152 vm_pindex_t offidxstart, offidxend, idx; 3153 vm_size_t size; 3154 vm_ooffset_t offset; 3155 int useshadowlist; 3156 3157 /* 3158 * Optimize away object locks for vnode objects. Important exit/exec 3159 * critical path. 3160 * 3161 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag 3162 * anyway. 3163 */ 3164 oobject = entry->object.vm_object; 3165 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) { 3166 vm_object_reference_quick(oobject); 3167 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3168 return; 3169 } 3170 3171 /* 3172 * Setup. Chain lock the original object throughout the entire 3173 * routine to prevent new page faults from occuring. 3174 * 3175 * XXX can madvise WILLNEED interfere with us too? 3176 */ 3177 vm_object_hold(oobject); 3178 vm_object_chain_acquire(oobject, 0); 3179 3180 /* 3181 * Original object cannot be split? Might have also changed state. 3182 */ 3183 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT && 3184 oobject->type != OBJT_SWAP)) { 3185 vm_object_chain_release(oobject); 3186 vm_object_reference_locked(oobject); 3187 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3188 vm_object_drop(oobject); 3189 return; 3190 } 3191 3192 /* 3193 * Collapse original object with its backing store as an 3194 * optimization to reduce chain lengths when possible. 3195 * 3196 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's 3197 * for oobject, so there's no point collapsing it. 3198 * 3199 * Then re-check whether the object can be split. 3200 */ 3201 vm_object_collapse(oobject, NULL); 3202 3203 if (oobject->ref_count <= 1 || 3204 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) || 3205 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) { 3206 vm_object_chain_release(oobject); 3207 vm_object_reference_locked(oobject); 3208 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3209 vm_object_drop(oobject); 3210 return; 3211 } 3212 3213 /* 3214 * Acquire the chain lock on the backing object. 3215 * 3216 * Give bobject an additional ref count for when it will be shadowed 3217 * by nobject. 3218 */ 3219 useshadowlist = 0; 3220 if ((bobject = oobject->backing_object) != NULL) { 3221 if (bobject->type != OBJT_VNODE) { 3222 useshadowlist = 1; 3223 vm_object_hold(bobject); 3224 vm_object_chain_wait(bobject, 0); 3225 /* ref for shadowing below */ 3226 vm_object_reference_locked(bobject); 3227 vm_object_chain_acquire(bobject, 0); 3228 KKASSERT(bobject->backing_object == bobject); 3229 KKASSERT((bobject->flags & OBJ_DEAD) == 0); 3230 } else { 3231 /* 3232 * vnodes are not placed on the shadow list but 3233 * they still get another ref for the backing_object 3234 * reference. 3235 */ 3236 vm_object_reference_quick(bobject); 3237 } 3238 } 3239 3240 /* 3241 * Calculate the object page range and allocate the new object. 3242 */ 3243 offset = entry->offset; 3244 s = entry->start; 3245 e = entry->end; 3246 3247 offidxstart = OFF_TO_IDX(offset); 3248 offidxend = offidxstart + OFF_TO_IDX(e - s); 3249 size = offidxend - offidxstart; 3250 3251 switch(oobject->type) { 3252 case OBJT_DEFAULT: 3253 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size), 3254 VM_PROT_ALL, 0); 3255 break; 3256 case OBJT_SWAP: 3257 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size), 3258 VM_PROT_ALL, 0); 3259 break; 3260 default: 3261 /* not reached */ 3262 nobject = NULL; 3263 KKASSERT(0); 3264 } 3265 3266 if (nobject == NULL) { 3267 if (bobject) { 3268 if (useshadowlist) { 3269 vm_object_chain_release(bobject); 3270 vm_object_deallocate(bobject); 3271 vm_object_drop(bobject); 3272 } else { 3273 vm_object_deallocate(bobject); 3274 } 3275 } 3276 vm_object_chain_release(oobject); 3277 vm_object_reference_locked(oobject); 3278 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3279 vm_object_drop(oobject); 3280 return; 3281 } 3282 3283 /* 3284 * The new object will replace entry->object.vm_object so it needs 3285 * a second reference (the caller expects an additional ref). 3286 */ 3287 vm_object_hold(nobject); 3288 vm_object_reference_locked(nobject); 3289 vm_object_chain_acquire(nobject, 0); 3290 3291 /* 3292 * nobject shadows bobject (oobject already shadows bobject). 3293 * 3294 * Adding an object to bobject's shadow list requires refing bobject 3295 * which we did above in the useshadowlist case. 3296 */ 3297 if (bobject) { 3298 nobject->backing_object_offset = 3299 oobject->backing_object_offset + IDX_TO_OFF(offidxstart); 3300 nobject->backing_object = bobject; 3301 if (useshadowlist) { 3302 bobject->shadow_count++; 3303 atomic_add_int(&bobject->generation, 1); 3304 LIST_INSERT_HEAD(&bobject->shadow_head, 3305 nobject, shadow_list); 3306 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/ 3307 vm_object_chain_release(bobject); 3308 vm_object_drop(bobject); 3309 vm_object_set_flag(nobject, OBJ_ONSHADOW); 3310 } 3311 } 3312 3313 /* 3314 * Move the VM pages from oobject to nobject 3315 */ 3316 for (idx = 0; idx < size; idx++) { 3317 vm_page_t m; 3318 3319 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx, 3320 TRUE, "vmpg"); 3321 if (m == NULL) 3322 continue; 3323 3324 /* 3325 * We must wait for pending I/O to complete before we can 3326 * rename the page. 3327 * 3328 * We do not have to VM_PROT_NONE the page as mappings should 3329 * not be changed by this operation. 3330 * 3331 * NOTE: The act of renaming a page updates chaingen for both 3332 * objects. 3333 */ 3334 vm_page_rename(m, nobject, idx); 3335 /* page automatically made dirty by rename and cache handled */ 3336 /* page remains busy */ 3337 } 3338 3339 if (oobject->type == OBJT_SWAP) { 3340 vm_object_pip_add(oobject, 1); 3341 /* 3342 * copy oobject pages into nobject and destroy unneeded 3343 * pages in shadow object. 3344 */ 3345 swap_pager_copy(oobject, nobject, offidxstart, 0); 3346 vm_object_pip_wakeup(oobject); 3347 } 3348 3349 /* 3350 * Wakeup the pages we played with. No spl protection is needed 3351 * for a simple wakeup. 3352 */ 3353 for (idx = 0; idx < size; idx++) { 3354 m = vm_page_lookup(nobject, idx); 3355 if (m) { 3356 KKASSERT(m->flags & PG_BUSY); 3357 vm_page_wakeup(m); 3358 } 3359 } 3360 entry->object.vm_object = nobject; 3361 entry->offset = 0LL; 3362 3363 /* 3364 * Cleanup 3365 * 3366 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the 3367 * related pages were moved and are no longer applicable to the 3368 * original object. 3369 * 3370 * NOTE: Deallocate oobject (due to its entry->object.vm_object being 3371 * replaced by nobject). 3372 */ 3373 vm_object_chain_release(nobject); 3374 vm_object_drop(nobject); 3375 if (bobject && useshadowlist) { 3376 vm_object_chain_release(bobject); 3377 vm_object_drop(bobject); 3378 } 3379 vm_object_chain_release(oobject); 3380 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/ 3381 vm_object_deallocate_locked(oobject); 3382 vm_object_drop(oobject); 3383 } 3384 3385 /* 3386 * Copies the contents of the source entry to the destination 3387 * entry. The entries *must* be aligned properly. 3388 * 3389 * The vm_maps must be exclusively locked. 3390 * The vm_map's token must be held. 3391 * 3392 * Because the maps are locked no faults can be in progress during the 3393 * operation. 3394 */ 3395 static void 3396 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 3397 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 3398 { 3399 vm_object_t src_object; 3400 3401 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP || 3402 dst_entry->maptype == VM_MAPTYPE_UKSMAP) 3403 return; 3404 if (src_entry->maptype == VM_MAPTYPE_SUBMAP || 3405 src_entry->maptype == VM_MAPTYPE_UKSMAP) 3406 return; 3407 3408 if (src_entry->wired_count == 0) { 3409 /* 3410 * If the source entry is marked needs_copy, it is already 3411 * write-protected. 3412 */ 3413 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3414 pmap_protect(src_map->pmap, 3415 src_entry->start, 3416 src_entry->end, 3417 src_entry->protection & ~VM_PROT_WRITE); 3418 } 3419 3420 /* 3421 * Make a copy of the object. 3422 * 3423 * The object must be locked prior to checking the object type 3424 * and for the call to vm_object_collapse() and vm_map_split(). 3425 * We cannot use *_hold() here because the split code will 3426 * probably try to destroy the object. The lock is a pool 3427 * token and doesn't care. 3428 * 3429 * We must bump src_map->timestamp when setting 3430 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault 3431 * to retry, otherwise the concurrent fault might improperly 3432 * install a RW pte when its supposed to be a RO(COW) pte. 3433 * This race can occur because a vnode-backed fault may have 3434 * to temporarily release the map lock. 3435 */ 3436 if (src_entry->object.vm_object != NULL) { 3437 vm_map_split(src_entry); 3438 src_object = src_entry->object.vm_object; 3439 dst_entry->object.vm_object = src_object; 3440 src_entry->eflags |= (MAP_ENTRY_COW | 3441 MAP_ENTRY_NEEDS_COPY); 3442 dst_entry->eflags |= (MAP_ENTRY_COW | 3443 MAP_ENTRY_NEEDS_COPY); 3444 dst_entry->offset = src_entry->offset; 3445 ++src_map->timestamp; 3446 } else { 3447 dst_entry->object.vm_object = NULL; 3448 dst_entry->offset = 0; 3449 } 3450 3451 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3452 dst_entry->end - dst_entry->start, src_entry->start); 3453 } else { 3454 /* 3455 * Of course, wired down pages can't be set copy-on-write. 3456 * Cause wired pages to be copied into the new map by 3457 * simulating faults (the new pages are pageable) 3458 */ 3459 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3460 } 3461 } 3462 3463 /* 3464 * vmspace_fork: 3465 * Create a new process vmspace structure and vm_map 3466 * based on those of an existing process. The new map 3467 * is based on the old map, according to the inheritance 3468 * values on the regions in that map. 3469 * 3470 * The source map must not be locked. 3471 * No requirements. 3472 */ 3473 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3474 vm_map_entry_t old_entry, int *countp); 3475 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3476 vm_map_entry_t old_entry, int *countp); 3477 3478 struct vmspace * 3479 vmspace_fork(struct vmspace *vm1) 3480 { 3481 struct vmspace *vm2; 3482 vm_map_t old_map = &vm1->vm_map; 3483 vm_map_t new_map; 3484 vm_map_entry_t old_entry; 3485 int count; 3486 3487 lwkt_gettoken(&vm1->vm_map.token); 3488 vm_map_lock(old_map); 3489 3490 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3491 lwkt_gettoken(&vm2->vm_map.token); 3492 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3493 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3494 new_map = &vm2->vm_map; /* XXX */ 3495 new_map->timestamp = 1; 3496 3497 vm_map_lock(new_map); 3498 3499 count = 0; 3500 old_entry = old_map->header.next; 3501 while (old_entry != &old_map->header) { 3502 ++count; 3503 old_entry = old_entry->next; 3504 } 3505 3506 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3507 3508 old_entry = old_map->header.next; 3509 while (old_entry != &old_map->header) { 3510 switch(old_entry->maptype) { 3511 case VM_MAPTYPE_SUBMAP: 3512 panic("vm_map_fork: encountered a submap"); 3513 break; 3514 case VM_MAPTYPE_UKSMAP: 3515 vmspace_fork_uksmap_entry(old_map, new_map, 3516 old_entry, &count); 3517 break; 3518 case VM_MAPTYPE_NORMAL: 3519 case VM_MAPTYPE_VPAGETABLE: 3520 vmspace_fork_normal_entry(old_map, new_map, 3521 old_entry, &count); 3522 break; 3523 } 3524 old_entry = old_entry->next; 3525 } 3526 3527 new_map->size = old_map->size; 3528 vm_map_unlock(old_map); 3529 vm_map_unlock(new_map); 3530 vm_map_entry_release(count); 3531 3532 lwkt_reltoken(&vm2->vm_map.token); 3533 lwkt_reltoken(&vm1->vm_map.token); 3534 3535 return (vm2); 3536 } 3537 3538 static 3539 void 3540 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3541 vm_map_entry_t old_entry, int *countp) 3542 { 3543 vm_map_entry_t new_entry; 3544 vm_object_t object; 3545 3546 switch (old_entry->inheritance) { 3547 case VM_INHERIT_NONE: 3548 break; 3549 case VM_INHERIT_SHARE: 3550 /* 3551 * Clone the entry, creating the shared object if 3552 * necessary. 3553 */ 3554 if (old_entry->object.vm_object == NULL) 3555 vm_map_entry_allocate_object(old_entry); 3556 3557 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3558 /* 3559 * Shadow a map_entry which needs a copy, 3560 * replacing its object with a new object 3561 * that points to the old one. Ask the 3562 * shadow code to automatically add an 3563 * additional ref. We can't do it afterwords 3564 * because we might race a collapse. The call 3565 * to vm_map_entry_shadow() will also clear 3566 * OBJ_ONEMAPPING. 3567 */ 3568 vm_map_entry_shadow(old_entry, 1); 3569 } else if (old_entry->object.vm_object) { 3570 /* 3571 * We will make a shared copy of the object, 3572 * and must clear OBJ_ONEMAPPING. 3573 * 3574 * Optimize vnode objects. OBJ_ONEMAPPING 3575 * is non-applicable but clear it anyway, 3576 * and its terminal so we don'th ave to deal 3577 * with chains. Reduces SMP conflicts. 3578 * 3579 * XXX assert that object.vm_object != NULL 3580 * since we allocate it above. 3581 */ 3582 object = old_entry->object.vm_object; 3583 if (object->type == OBJT_VNODE) { 3584 vm_object_reference_quick(object); 3585 vm_object_clear_flag(object, 3586 OBJ_ONEMAPPING); 3587 } else { 3588 vm_object_hold(object); 3589 vm_object_chain_wait(object, 0); 3590 vm_object_reference_locked(object); 3591 vm_object_clear_flag(object, 3592 OBJ_ONEMAPPING); 3593 vm_object_drop(object); 3594 } 3595 } 3596 3597 /* 3598 * Clone the entry. We've already bumped the ref on 3599 * any vm_object. 3600 */ 3601 new_entry = vm_map_entry_create(new_map, countp); 3602 *new_entry = *old_entry; 3603 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3604 new_entry->wired_count = 0; 3605 3606 /* 3607 * Insert the entry into the new map -- we know we're 3608 * inserting at the end of the new map. 3609 */ 3610 3611 vm_map_entry_link(new_map, new_map->header.prev, 3612 new_entry); 3613 3614 /* 3615 * Update the physical map 3616 */ 3617 pmap_copy(new_map->pmap, old_map->pmap, 3618 new_entry->start, 3619 (old_entry->end - old_entry->start), 3620 old_entry->start); 3621 break; 3622 case VM_INHERIT_COPY: 3623 /* 3624 * Clone the entry and link into the map. 3625 */ 3626 new_entry = vm_map_entry_create(new_map, countp); 3627 *new_entry = *old_entry; 3628 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3629 new_entry->wired_count = 0; 3630 new_entry->object.vm_object = NULL; 3631 vm_map_entry_link(new_map, new_map->header.prev, 3632 new_entry); 3633 vm_map_copy_entry(old_map, new_map, old_entry, 3634 new_entry); 3635 break; 3636 } 3637 } 3638 3639 /* 3640 * When forking user-kernel shared maps, the map might change in the 3641 * child so do not try to copy the underlying pmap entries. 3642 */ 3643 static 3644 void 3645 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3646 vm_map_entry_t old_entry, int *countp) 3647 { 3648 vm_map_entry_t new_entry; 3649 3650 new_entry = vm_map_entry_create(new_map, countp); 3651 *new_entry = *old_entry; 3652 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3653 new_entry->wired_count = 0; 3654 vm_map_entry_link(new_map, new_map->header.prev, 3655 new_entry); 3656 } 3657 3658 /* 3659 * Create an auto-grow stack entry 3660 * 3661 * No requirements. 3662 */ 3663 int 3664 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3665 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3666 { 3667 vm_map_entry_t prev_entry; 3668 vm_map_entry_t new_stack_entry; 3669 vm_size_t init_ssize; 3670 int rv; 3671 int count; 3672 vm_offset_t tmpaddr; 3673 3674 cow |= MAP_IS_STACK; 3675 3676 if (max_ssize < sgrowsiz) 3677 init_ssize = max_ssize; 3678 else 3679 init_ssize = sgrowsiz; 3680 3681 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3682 vm_map_lock(map); 3683 3684 /* 3685 * Find space for the mapping 3686 */ 3687 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3688 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3689 flags, &tmpaddr)) { 3690 vm_map_unlock(map); 3691 vm_map_entry_release(count); 3692 return (KERN_NO_SPACE); 3693 } 3694 addrbos = tmpaddr; 3695 } 3696 3697 /* If addr is already mapped, no go */ 3698 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3699 vm_map_unlock(map); 3700 vm_map_entry_release(count); 3701 return (KERN_NO_SPACE); 3702 } 3703 3704 #if 0 3705 /* XXX already handled by kern_mmap() */ 3706 /* If we would blow our VMEM resource limit, no go */ 3707 if (map->size + init_ssize > 3708 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3709 vm_map_unlock(map); 3710 vm_map_entry_release(count); 3711 return (KERN_NO_SPACE); 3712 } 3713 #endif 3714 3715 /* 3716 * If we can't accomodate max_ssize in the current mapping, 3717 * no go. However, we need to be aware that subsequent user 3718 * mappings might map into the space we have reserved for 3719 * stack, and currently this space is not protected. 3720 * 3721 * Hopefully we will at least detect this condition 3722 * when we try to grow the stack. 3723 */ 3724 if ((prev_entry->next != &map->header) && 3725 (prev_entry->next->start < addrbos + max_ssize)) { 3726 vm_map_unlock(map); 3727 vm_map_entry_release(count); 3728 return (KERN_NO_SPACE); 3729 } 3730 3731 /* 3732 * We initially map a stack of only init_ssize. We will 3733 * grow as needed later. Since this is to be a grow 3734 * down stack, we map at the top of the range. 3735 * 3736 * Note: we would normally expect prot and max to be 3737 * VM_PROT_ALL, and cow to be 0. Possibly we should 3738 * eliminate these as input parameters, and just 3739 * pass these values here in the insert call. 3740 */ 3741 rv = vm_map_insert(map, &count, NULL, NULL, 3742 0, addrbos + max_ssize - init_ssize, 3743 addrbos + max_ssize, 3744 VM_MAPTYPE_NORMAL, 3745 VM_SUBSYS_STACK, prot, max, cow); 3746 3747 /* Now set the avail_ssize amount */ 3748 if (rv == KERN_SUCCESS) { 3749 if (prev_entry != &map->header) 3750 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3751 new_stack_entry = prev_entry->next; 3752 if (new_stack_entry->end != addrbos + max_ssize || 3753 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3754 panic ("Bad entry start/end for new stack entry"); 3755 else 3756 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3757 } 3758 3759 vm_map_unlock(map); 3760 vm_map_entry_release(count); 3761 return (rv); 3762 } 3763 3764 /* 3765 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3766 * desired address is already mapped, or if we successfully grow 3767 * the stack. Also returns KERN_SUCCESS if addr is outside the 3768 * stack range (this is strange, but preserves compatibility with 3769 * the grow function in vm_machdep.c). 3770 * 3771 * No requirements. 3772 */ 3773 int 3774 vm_map_growstack (vm_map_t map, vm_offset_t addr) 3775 { 3776 vm_map_entry_t prev_entry; 3777 vm_map_entry_t stack_entry; 3778 vm_map_entry_t new_stack_entry; 3779 struct vmspace *vm; 3780 struct lwp *lp; 3781 struct proc *p; 3782 vm_offset_t end; 3783 int grow_amount; 3784 int rv = KERN_SUCCESS; 3785 int is_procstack; 3786 int use_read_lock = 1; 3787 int count; 3788 3789 /* 3790 * Find the vm 3791 */ 3792 lp = curthread->td_lwp; 3793 p = curthread->td_proc; 3794 KKASSERT(lp != NULL); 3795 vm = lp->lwp_vmspace; 3796 3797 /* 3798 * Growstack is only allowed on the current process. We disallow 3799 * other use cases, e.g. trying to access memory via procfs that 3800 * the stack hasn't grown into. 3801 */ 3802 if (map != &vm->vm_map) { 3803 return KERN_FAILURE; 3804 } 3805 3806 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3807 Retry: 3808 if (use_read_lock) 3809 vm_map_lock_read(map); 3810 else 3811 vm_map_lock(map); 3812 3813 /* If addr is already in the entry range, no need to grow.*/ 3814 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3815 goto done; 3816 3817 if ((stack_entry = prev_entry->next) == &map->header) 3818 goto done; 3819 if (prev_entry == &map->header) 3820 end = stack_entry->start - stack_entry->aux.avail_ssize; 3821 else 3822 end = prev_entry->end; 3823 3824 /* 3825 * This next test mimics the old grow function in vm_machdep.c. 3826 * It really doesn't quite make sense, but we do it anyway 3827 * for compatibility. 3828 * 3829 * If not growable stack, return success. This signals the 3830 * caller to proceed as he would normally with normal vm. 3831 */ 3832 if (stack_entry->aux.avail_ssize < 1 || 3833 addr >= stack_entry->start || 3834 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3835 goto done; 3836 } 3837 3838 /* Find the minimum grow amount */ 3839 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3840 if (grow_amount > stack_entry->aux.avail_ssize) { 3841 rv = KERN_NO_SPACE; 3842 goto done; 3843 } 3844 3845 /* 3846 * If there is no longer enough space between the entries 3847 * nogo, and adjust the available space. Note: this 3848 * should only happen if the user has mapped into the 3849 * stack area after the stack was created, and is 3850 * probably an error. 3851 * 3852 * This also effectively destroys any guard page the user 3853 * might have intended by limiting the stack size. 3854 */ 3855 if (grow_amount > stack_entry->start - end) { 3856 if (use_read_lock && vm_map_lock_upgrade(map)) { 3857 /* lost lock */ 3858 use_read_lock = 0; 3859 goto Retry; 3860 } 3861 use_read_lock = 0; 3862 stack_entry->aux.avail_ssize = stack_entry->start - end; 3863 rv = KERN_NO_SPACE; 3864 goto done; 3865 } 3866 3867 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3868 3869 /* If this is the main process stack, see if we're over the 3870 * stack limit. 3871 */ 3872 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3873 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3874 rv = KERN_NO_SPACE; 3875 goto done; 3876 } 3877 3878 /* Round up the grow amount modulo SGROWSIZ */ 3879 grow_amount = roundup (grow_amount, sgrowsiz); 3880 if (grow_amount > stack_entry->aux.avail_ssize) { 3881 grow_amount = stack_entry->aux.avail_ssize; 3882 } 3883 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3884 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3885 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3886 ctob(vm->vm_ssize); 3887 } 3888 3889 /* If we would blow our VMEM resource limit, no go */ 3890 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3891 rv = KERN_NO_SPACE; 3892 goto done; 3893 } 3894 3895 if (use_read_lock && vm_map_lock_upgrade(map)) { 3896 /* lost lock */ 3897 use_read_lock = 0; 3898 goto Retry; 3899 } 3900 use_read_lock = 0; 3901 3902 /* Get the preliminary new entry start value */ 3903 addr = stack_entry->start - grow_amount; 3904 3905 /* If this puts us into the previous entry, cut back our growth 3906 * to the available space. Also, see the note above. 3907 */ 3908 if (addr < end) { 3909 stack_entry->aux.avail_ssize = stack_entry->start - end; 3910 addr = end; 3911 } 3912 3913 rv = vm_map_insert(map, &count, NULL, NULL, 3914 0, addr, stack_entry->start, 3915 VM_MAPTYPE_NORMAL, 3916 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0); 3917 3918 /* Adjust the available stack space by the amount we grew. */ 3919 if (rv == KERN_SUCCESS) { 3920 if (prev_entry != &map->header) 3921 vm_map_clip_end(map, prev_entry, addr, &count); 3922 new_stack_entry = prev_entry->next; 3923 if (new_stack_entry->end != stack_entry->start || 3924 new_stack_entry->start != addr) 3925 panic ("Bad stack grow start/end in new stack entry"); 3926 else { 3927 new_stack_entry->aux.avail_ssize = 3928 stack_entry->aux.avail_ssize - 3929 (new_stack_entry->end - new_stack_entry->start); 3930 if (is_procstack) 3931 vm->vm_ssize += btoc(new_stack_entry->end - 3932 new_stack_entry->start); 3933 } 3934 3935 if (map->flags & MAP_WIREFUTURE) 3936 vm_map_unwire(map, new_stack_entry->start, 3937 new_stack_entry->end, FALSE); 3938 } 3939 3940 done: 3941 if (use_read_lock) 3942 vm_map_unlock_read(map); 3943 else 3944 vm_map_unlock(map); 3945 vm_map_entry_release(count); 3946 return (rv); 3947 } 3948 3949 /* 3950 * Unshare the specified VM space for exec. If other processes are 3951 * mapped to it, then create a new one. The new vmspace is null. 3952 * 3953 * No requirements. 3954 */ 3955 void 3956 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3957 { 3958 struct vmspace *oldvmspace = p->p_vmspace; 3959 struct vmspace *newvmspace; 3960 vm_map_t map = &p->p_vmspace->vm_map; 3961 3962 /* 3963 * If we are execing a resident vmspace we fork it, otherwise 3964 * we create a new vmspace. Note that exitingcnt is not 3965 * copied to the new vmspace. 3966 */ 3967 lwkt_gettoken(&oldvmspace->vm_map.token); 3968 if (vmcopy) { 3969 newvmspace = vmspace_fork(vmcopy); 3970 lwkt_gettoken(&newvmspace->vm_map.token); 3971 } else { 3972 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3973 lwkt_gettoken(&newvmspace->vm_map.token); 3974 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3975 (caddr_t)&oldvmspace->vm_endcopy - 3976 (caddr_t)&oldvmspace->vm_startcopy); 3977 } 3978 3979 /* 3980 * Finish initializing the vmspace before assigning it 3981 * to the process. The vmspace will become the current vmspace 3982 * if p == curproc. 3983 */ 3984 pmap_pinit2(vmspace_pmap(newvmspace)); 3985 pmap_replacevm(p, newvmspace, 0); 3986 lwkt_reltoken(&newvmspace->vm_map.token); 3987 lwkt_reltoken(&oldvmspace->vm_map.token); 3988 vmspace_rel(oldvmspace); 3989 } 3990 3991 /* 3992 * Unshare the specified VM space for forcing COW. This 3993 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3994 */ 3995 void 3996 vmspace_unshare(struct proc *p) 3997 { 3998 struct vmspace *oldvmspace = p->p_vmspace; 3999 struct vmspace *newvmspace; 4000 4001 lwkt_gettoken(&oldvmspace->vm_map.token); 4002 if (vmspace_getrefs(oldvmspace) == 1) { 4003 lwkt_reltoken(&oldvmspace->vm_map.token); 4004 return; 4005 } 4006 newvmspace = vmspace_fork(oldvmspace); 4007 lwkt_gettoken(&newvmspace->vm_map.token); 4008 pmap_pinit2(vmspace_pmap(newvmspace)); 4009 pmap_replacevm(p, newvmspace, 0); 4010 lwkt_reltoken(&newvmspace->vm_map.token); 4011 lwkt_reltoken(&oldvmspace->vm_map.token); 4012 vmspace_rel(oldvmspace); 4013 } 4014 4015 /* 4016 * vm_map_hint: return the beginning of the best area suitable for 4017 * creating a new mapping with "prot" protection. 4018 * 4019 * No requirements. 4020 */ 4021 vm_offset_t 4022 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot) 4023 { 4024 struct vmspace *vms = p->p_vmspace; 4025 4026 if (!randomize_mmap || addr != 0) { 4027 /* 4028 * Set a reasonable start point for the hint if it was 4029 * not specified or if it falls within the heap space. 4030 * Hinted mmap()s do not allocate out of the heap space. 4031 */ 4032 if (addr == 0 || 4033 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 4034 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) { 4035 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz); 4036 } 4037 4038 return addr; 4039 } 4040 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ; 4041 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1); 4042 4043 return (round_page(addr)); 4044 } 4045 4046 /* 4047 * Finds the VM object, offset, and protection for a given virtual address 4048 * in the specified map, assuming a page fault of the type specified. 4049 * 4050 * Leaves the map in question locked for read; return values are guaranteed 4051 * until a vm_map_lookup_done call is performed. Note that the map argument 4052 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 4053 * 4054 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 4055 * that fast. 4056 * 4057 * If a lookup is requested with "write protection" specified, the map may 4058 * be changed to perform virtual copying operations, although the data 4059 * referenced will remain the same. 4060 * 4061 * No requirements. 4062 */ 4063 int 4064 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4065 vm_offset_t vaddr, 4066 vm_prot_t fault_typea, 4067 vm_map_entry_t *out_entry, /* OUT */ 4068 vm_object_t *object, /* OUT */ 4069 vm_pindex_t *pindex, /* OUT */ 4070 vm_prot_t *out_prot, /* OUT */ 4071 boolean_t *wired) /* OUT */ 4072 { 4073 vm_map_entry_t entry; 4074 vm_map_t map = *var_map; 4075 vm_prot_t prot; 4076 vm_prot_t fault_type = fault_typea; 4077 int use_read_lock = 1; 4078 int rv = KERN_SUCCESS; 4079 4080 RetryLookup: 4081 if (use_read_lock) 4082 vm_map_lock_read(map); 4083 else 4084 vm_map_lock(map); 4085 4086 /* 4087 * Always do a full lookup. The hint doesn't get us much anymore 4088 * now that the map is RB'd. 4089 */ 4090 cpu_ccfence(); 4091 *out_entry = &map->header; 4092 *object = NULL; 4093 4094 { 4095 vm_map_entry_t tmp_entry; 4096 4097 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 4098 rv = KERN_INVALID_ADDRESS; 4099 goto done; 4100 } 4101 entry = tmp_entry; 4102 *out_entry = entry; 4103 } 4104 4105 /* 4106 * Handle submaps. 4107 */ 4108 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 4109 vm_map_t old_map = map; 4110 4111 *var_map = map = entry->object.sub_map; 4112 if (use_read_lock) 4113 vm_map_unlock_read(old_map); 4114 else 4115 vm_map_unlock(old_map); 4116 use_read_lock = 1; 4117 goto RetryLookup; 4118 } 4119 4120 /* 4121 * Check whether this task is allowed to have this page. 4122 * Note the special case for MAP_ENTRY_COW pages with an override. 4123 * This is to implement a forced COW for debuggers. 4124 */ 4125 if (fault_type & VM_PROT_OVERRIDE_WRITE) 4126 prot = entry->max_protection; 4127 else 4128 prot = entry->protection; 4129 4130 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 4131 if ((fault_type & prot) != fault_type) { 4132 rv = KERN_PROTECTION_FAILURE; 4133 goto done; 4134 } 4135 4136 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4137 (entry->eflags & MAP_ENTRY_COW) && 4138 (fault_type & VM_PROT_WRITE) && 4139 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 4140 rv = KERN_PROTECTION_FAILURE; 4141 goto done; 4142 } 4143 4144 /* 4145 * If this page is not pageable, we have to get it for all possible 4146 * accesses. 4147 */ 4148 *wired = (entry->wired_count != 0); 4149 if (*wired) 4150 prot = fault_type = entry->protection; 4151 4152 /* 4153 * Virtual page tables may need to update the accessed (A) bit 4154 * in a page table entry. Upgrade the fault to a write fault for 4155 * that case if the map will support it. If the map does not support 4156 * it the page table entry simply will not be updated. 4157 */ 4158 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 4159 if (prot & VM_PROT_WRITE) 4160 fault_type |= VM_PROT_WRITE; 4161 } 4162 4163 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace && 4164 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) { 4165 if ((prot & VM_PROT_WRITE) == 0) 4166 fault_type |= VM_PROT_WRITE; 4167 } 4168 4169 /* 4170 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not. 4171 */ 4172 if (entry->maptype != VM_MAPTYPE_NORMAL && 4173 entry->maptype != VM_MAPTYPE_VPAGETABLE) { 4174 *object = NULL; 4175 goto skip; 4176 } 4177 4178 /* 4179 * If the entry was copy-on-write, we either ... 4180 */ 4181 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4182 /* 4183 * If we want to write the page, we may as well handle that 4184 * now since we've got the map locked. 4185 * 4186 * If we don't need to write the page, we just demote the 4187 * permissions allowed. 4188 */ 4189 4190 if (fault_type & VM_PROT_WRITE) { 4191 /* 4192 * Not allowed if TDF_NOFAULT is set as the shadowing 4193 * operation can deadlock against the faulting 4194 * function due to the copy-on-write. 4195 */ 4196 if (curthread->td_flags & TDF_NOFAULT) { 4197 rv = KERN_FAILURE_NOFAULT; 4198 goto done; 4199 } 4200 4201 /* 4202 * Make a new object, and place it in the object 4203 * chain. Note that no new references have appeared 4204 * -- one just moved from the map to the new 4205 * object. 4206 */ 4207 4208 if (use_read_lock && vm_map_lock_upgrade(map)) { 4209 /* lost lock */ 4210 use_read_lock = 0; 4211 goto RetryLookup; 4212 } 4213 use_read_lock = 0; 4214 4215 vm_map_entry_shadow(entry, 0); 4216 } else { 4217 /* 4218 * We're attempting to read a copy-on-write page -- 4219 * don't allow writes. 4220 */ 4221 4222 prot &= ~VM_PROT_WRITE; 4223 } 4224 } 4225 4226 /* 4227 * Create an object if necessary. 4228 */ 4229 if (entry->object.vm_object == NULL && !map->system_map) { 4230 if (use_read_lock && vm_map_lock_upgrade(map)) { 4231 /* lost lock */ 4232 use_read_lock = 0; 4233 goto RetryLookup; 4234 } 4235 use_read_lock = 0; 4236 vm_map_entry_allocate_object(entry); 4237 } 4238 4239 /* 4240 * Return the object/offset from this entry. If the entry was 4241 * copy-on-write or empty, it has been fixed up. 4242 */ 4243 *object = entry->object.vm_object; 4244 4245 skip: 4246 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4247 4248 /* 4249 * Return whether this is the only map sharing this data. On 4250 * success we return with a read lock held on the map. On failure 4251 * we return with the map unlocked. 4252 */ 4253 *out_prot = prot; 4254 done: 4255 if (rv == KERN_SUCCESS) { 4256 if (use_read_lock == 0) 4257 vm_map_lock_downgrade(map); 4258 } else if (use_read_lock) { 4259 vm_map_unlock_read(map); 4260 } else { 4261 vm_map_unlock(map); 4262 } 4263 return (rv); 4264 } 4265 4266 /* 4267 * Releases locks acquired by a vm_map_lookup() 4268 * (according to the handle returned by that lookup). 4269 * 4270 * No other requirements. 4271 */ 4272 void 4273 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 4274 { 4275 /* 4276 * Unlock the main-level map 4277 */ 4278 vm_map_unlock_read(map); 4279 if (count) 4280 vm_map_entry_release(count); 4281 } 4282 4283 /* 4284 * Quick hack, needs some help to make it more SMP friendly. 4285 */ 4286 void 4287 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock, 4288 vm_offset_t ran_beg, vm_offset_t ran_end) 4289 { 4290 struct vm_map_ilock *scan; 4291 4292 ilock->ran_beg = ran_beg; 4293 ilock->ran_end = ran_end; 4294 ilock->flags = 0; 4295 4296 spin_lock(&map->ilock_spin); 4297 restart: 4298 for (scan = map->ilock_base; scan; scan = scan->next) { 4299 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) { 4300 scan->flags |= ILOCK_WAITING; 4301 ssleep(scan, &map->ilock_spin, 0, "ilock", 0); 4302 goto restart; 4303 } 4304 } 4305 ilock->next = map->ilock_base; 4306 map->ilock_base = ilock; 4307 spin_unlock(&map->ilock_spin); 4308 } 4309 4310 void 4311 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock) 4312 { 4313 struct vm_map_ilock *scan; 4314 struct vm_map_ilock **scanp; 4315 4316 spin_lock(&map->ilock_spin); 4317 scanp = &map->ilock_base; 4318 while ((scan = *scanp) != NULL) { 4319 if (scan == ilock) { 4320 *scanp = ilock->next; 4321 spin_unlock(&map->ilock_spin); 4322 if (ilock->flags & ILOCK_WAITING) 4323 wakeup(ilock); 4324 return; 4325 } 4326 scanp = &scan->next; 4327 } 4328 spin_unlock(&map->ilock_spin); 4329 panic("vm_map_deinterlock: missing ilock!"); 4330 } 4331 4332 #include "opt_ddb.h" 4333 #ifdef DDB 4334 #include <ddb/ddb.h> 4335 4336 /* 4337 * Debugging only 4338 */ 4339 DB_SHOW_COMMAND(map, vm_map_print) 4340 { 4341 static int nlines; 4342 /* XXX convert args. */ 4343 vm_map_t map = (vm_map_t)addr; 4344 boolean_t full = have_addr; 4345 4346 vm_map_entry_t entry; 4347 4348 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4349 (void *)map, 4350 (void *)map->pmap, map->nentries, map->timestamp); 4351 nlines++; 4352 4353 if (!full && db_indent) 4354 return; 4355 4356 db_indent += 2; 4357 for (entry = map->header.next; entry != &map->header; 4358 entry = entry->next) { 4359 db_iprintf("map entry %p: start=%p, end=%p\n", 4360 (void *)entry, (void *)entry->start, (void *)entry->end); 4361 nlines++; 4362 { 4363 static char *inheritance_name[4] = 4364 {"share", "copy", "none", "donate_copy"}; 4365 4366 db_iprintf(" prot=%x/%x/%s", 4367 entry->protection, 4368 entry->max_protection, 4369 inheritance_name[(int)(unsigned char) 4370 entry->inheritance]); 4371 if (entry->wired_count != 0) 4372 db_printf(", wired"); 4373 } 4374 switch(entry->maptype) { 4375 case VM_MAPTYPE_SUBMAP: 4376 /* XXX no %qd in kernel. Truncate entry->offset. */ 4377 db_printf(", share=%p, offset=0x%lx\n", 4378 (void *)entry->object.sub_map, 4379 (long)entry->offset); 4380 nlines++; 4381 if ((entry->prev == &map->header) || 4382 (entry->prev->object.sub_map != 4383 entry->object.sub_map)) { 4384 db_indent += 2; 4385 vm_map_print((db_expr_t)(intptr_t) 4386 entry->object.sub_map, 4387 full, 0, NULL); 4388 db_indent -= 2; 4389 } 4390 break; 4391 case VM_MAPTYPE_NORMAL: 4392 case VM_MAPTYPE_VPAGETABLE: 4393 /* XXX no %qd in kernel. Truncate entry->offset. */ 4394 db_printf(", object=%p, offset=0x%lx", 4395 (void *)entry->object.vm_object, 4396 (long)entry->offset); 4397 if (entry->eflags & MAP_ENTRY_COW) 4398 db_printf(", copy (%s)", 4399 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4400 db_printf("\n"); 4401 nlines++; 4402 4403 if ((entry->prev == &map->header) || 4404 (entry->prev->object.vm_object != 4405 entry->object.vm_object)) { 4406 db_indent += 2; 4407 vm_object_print((db_expr_t)(intptr_t) 4408 entry->object.vm_object, 4409 full, 0, NULL); 4410 nlines += 4; 4411 db_indent -= 2; 4412 } 4413 break; 4414 case VM_MAPTYPE_UKSMAP: 4415 db_printf(", uksmap=%p, offset=0x%lx", 4416 (void *)entry->object.uksmap, 4417 (long)entry->offset); 4418 if (entry->eflags & MAP_ENTRY_COW) 4419 db_printf(", copy (%s)", 4420 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4421 db_printf("\n"); 4422 nlines++; 4423 break; 4424 default: 4425 break; 4426 } 4427 } 4428 db_indent -= 2; 4429 if (db_indent == 0) 4430 nlines = 0; 4431 } 4432 4433 /* 4434 * Debugging only 4435 */ 4436 DB_SHOW_COMMAND(procvm, procvm) 4437 { 4438 struct proc *p; 4439 4440 if (have_addr) { 4441 p = (struct proc *) addr; 4442 } else { 4443 p = curproc; 4444 } 4445 4446 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4447 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4448 (void *)vmspace_pmap(p->p_vmspace)); 4449 4450 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4451 } 4452 4453 #endif /* DDB */ 4454