1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 * 62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 63 */ 64 65 /* 66 * Virtual memory mapping module. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/proc.h> 73 #include <sys/serialize.h> 74 #include <sys/lock.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 #include <sys/shm.h> 80 #include <sys/tree.h> 81 #include <sys/malloc.h> 82 #include <sys/objcache.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_zone.h> 95 96 #include <sys/random.h> 97 #include <sys/sysctl.h> 98 #include <sys/spinlock.h> 99 100 #include <sys/thread2.h> 101 #include <sys/spinlock2.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, and sharing 105 * of virtual memory objects. In addition, this module provides for an 106 * efficient virtual copy of memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple entries. 111 * A hint and a RB tree is used to speed-up lookups. 112 * 113 * Callers looking to modify maps specify start/end addresses which cause 114 * the related map entry to be clipped if necessary, and then later 115 * recombined if the pieces remained compatible. 116 * 117 * Virtual copy operations are performed by copying VM object references 118 * from one map to another, and then marking both regions as copy-on-write. 119 */ 120 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags); 121 static void vmspace_dtor(void *obj, void *privdata); 122 static void vmspace_terminate(struct vmspace *vm, int final); 123 124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 125 static struct objcache *vmspace_cache; 126 127 /* 128 * per-cpu page table cross mappings are initialized in early boot 129 * and might require a considerable number of vm_map_entry structures. 130 */ 131 #define MAPENTRYBSP_CACHE (MAXCPU+1) 132 #define MAPENTRYAP_CACHE 8 133 134 static struct vm_zone mapentzone_store; 135 static vm_zone_t mapentzone; 136 static struct vm_object mapentobj; 137 138 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 139 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE]; 140 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE]; 141 142 static int randomize_mmap; 143 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0, 144 "Randomize mmap offsets"); 145 static int vm_map_relock_enable = 1; 146 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW, 147 &vm_map_relock_enable, 0, "Randomize mmap offsets"); 148 149 static void vmspace_drop_notoken(struct vmspace *vm); 150 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref); 151 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 152 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 153 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 154 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 155 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 156 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 157 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 158 vm_map_entry_t); 159 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 160 161 /* 162 * Initialize the vm_map module. Must be called before any other vm_map 163 * routines. 164 * 165 * Map and entry structures are allocated from the general purpose 166 * memory pool with some exceptions: 167 * 168 * - The kernel map is allocated statically. 169 * - Initial kernel map entries are allocated out of a static pool. 170 * - We must set ZONE_SPECIAL here or the early boot code can get 171 * stuck if there are >63 cores. 172 * 173 * These restrictions are necessary since malloc() uses the 174 * maps and requires map entries. 175 * 176 * Called from the low level boot code only. 177 */ 178 void 179 vm_map_startup(void) 180 { 181 mapentzone = &mapentzone_store; 182 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 183 map_entry_init, MAX_MAPENT); 184 mapentzone_store.zflags |= ZONE_SPECIAL; 185 } 186 187 /* 188 * Called prior to any vmspace allocations. 189 * 190 * Called from the low level boot code only. 191 */ 192 void 193 vm_init2(void) 194 { 195 vmspace_cache = objcache_create_mbacked(M_VMSPACE, 196 sizeof(struct vmspace), 197 0, ncpus * 4, 198 vmspace_ctor, vmspace_dtor, 199 NULL); 200 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 201 ZONE_USE_RESERVE | ZONE_SPECIAL); 202 pmap_init2(); 203 vm_object_init2(); 204 } 205 206 /* 207 * objcache support. We leave the pmap root cached as long as possible 208 * for performance reasons. 209 */ 210 static 211 boolean_t 212 vmspace_ctor(void *obj, void *privdata, int ocflags) 213 { 214 struct vmspace *vm = obj; 215 216 bzero(vm, sizeof(*vm)); 217 vm->vm_refcnt = VM_REF_DELETED; 218 219 return 1; 220 } 221 222 static 223 void 224 vmspace_dtor(void *obj, void *privdata) 225 { 226 struct vmspace *vm = obj; 227 228 KKASSERT(vm->vm_refcnt == VM_REF_DELETED); 229 pmap_puninit(vmspace_pmap(vm)); 230 } 231 232 /* 233 * Red black tree functions 234 * 235 * The caller must hold the related map lock. 236 */ 237 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 238 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 239 240 /* a->start is address, and the only field has to be initialized */ 241 static int 242 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 243 { 244 if (a->start < b->start) 245 return(-1); 246 else if (a->start > b->start) 247 return(1); 248 return(0); 249 } 250 251 /* 252 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for 253 * every refcnt. 254 */ 255 void 256 vmspace_initrefs(struct vmspace *vm) 257 { 258 vm->vm_refcnt = 1; 259 vm->vm_holdcnt = 0; 260 } 261 262 /* 263 * Allocate a vmspace structure, including a vm_map and pmap. 264 * Initialize numerous fields. While the initial allocation is zerod, 265 * subsequence reuse from the objcache leaves elements of the structure 266 * intact (particularly the pmap), so portions must be zerod. 267 * 268 * Returns a referenced vmspace. 269 * 270 * No requirements. 271 */ 272 struct vmspace * 273 vmspace_alloc(vm_offset_t min, vm_offset_t max) 274 { 275 struct vmspace *vm; 276 277 vm = objcache_get(vmspace_cache, M_WAITOK); 278 279 bzero(&vm->vm_startcopy, 280 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 281 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */ 282 283 /* 284 * NOTE: hold to acquires token for safety. 285 * 286 * On return vmspace is referenced (refs=1, hold=1). That is, 287 * each refcnt also has a holdcnt. There can be additional holds 288 * (holdcnt) above and beyond the refcnt. Finalization is handled in 289 * two stages, one on refs 1->0, and the the second on hold 1->0. 290 */ 291 KKASSERT(vm->vm_holdcnt == 0); 292 KKASSERT(vm->vm_refcnt == VM_REF_DELETED); 293 vmspace_initrefs(vm); 294 vmspace_hold(vm); 295 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 296 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 297 vm->vm_shm = NULL; 298 vm->vm_flags = 0; 299 cpu_vmspace_alloc(vm); 300 vmspace_drop(vm); 301 302 return (vm); 303 } 304 305 /* 306 * NOTE: Can return 0 if the vmspace is exiting. 307 */ 308 int 309 vmspace_getrefs(struct vmspace *vm) 310 { 311 return ((int)(vm->vm_refcnt & ~VM_REF_DELETED)); 312 } 313 314 void 315 vmspace_hold(struct vmspace *vm) 316 { 317 atomic_add_int(&vm->vm_holdcnt, 1); 318 lwkt_gettoken(&vm->vm_map.token); 319 } 320 321 void 322 vmspace_drop(struct vmspace *vm) 323 { 324 lwkt_reltoken(&vm->vm_map.token); 325 vmspace_drop_notoken(vm); 326 } 327 328 static void 329 vmspace_drop_notoken(struct vmspace *vm) 330 { 331 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) { 332 if (vm->vm_refcnt & VM_REF_DELETED) 333 vmspace_terminate(vm, 1); 334 } 335 } 336 337 /* 338 * A vmspace object must not be in a terminated state to be able to obtain 339 * additional refs on it. 340 * 341 * These are official references to the vmspace, the count is used to check 342 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'. 343 * 344 * XXX we need to combine hold & ref together into one 64-bit field to allow 345 * holds to prevent stage-1 termination. 346 */ 347 void 348 vmspace_ref(struct vmspace *vm) 349 { 350 uint32_t n; 351 352 n = atomic_fetchadd_int(&vm->vm_refcnt, 1); 353 KKASSERT((n & VM_REF_DELETED) == 0); 354 } 355 356 /* 357 * Release a ref on the vmspace. On the 1->0 transition we do stage-1 358 * termination of the vmspace. Then, on the final drop of the hold we 359 * will do stage-2 final termination. 360 */ 361 void 362 vmspace_rel(struct vmspace *vm) 363 { 364 uint32_t n; 365 366 for (;;) { 367 n = vm->vm_refcnt; 368 cpu_ccfence(); 369 KKASSERT((int)n > 0); /* at least one ref & not deleted */ 370 371 if (n == 1) { 372 /* 373 * We must have a hold first to interlock the 374 * VM_REF_DELETED check that the drop tests. 375 */ 376 atomic_add_int(&vm->vm_holdcnt, 1); 377 if (atomic_cmpset_int(&vm->vm_refcnt, n, 378 VM_REF_DELETED)) { 379 vmspace_terminate(vm, 0); 380 vmspace_drop_notoken(vm); 381 break; 382 } 383 vmspace_drop_notoken(vm); 384 } else if (atomic_cmpset_int(&vm->vm_refcnt, n, n - 1)) { 385 break; 386 } /* else retry */ 387 } 388 } 389 390 /* 391 * This is called during exit indicating that the vmspace is no 392 * longer in used by an exiting process, but the process has not yet 393 * been reaped. 394 * 395 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt 396 * to prevent stage-2 until the process is reaped. Note hte order of 397 * operation, we must hold first. 398 * 399 * No requirements. 400 */ 401 void 402 vmspace_relexit(struct vmspace *vm) 403 { 404 atomic_add_int(&vm->vm_holdcnt, 1); 405 vmspace_rel(vm); 406 } 407 408 /* 409 * Called during reap to disconnect the remainder of the vmspace from 410 * the process. On the hold drop the vmspace termination is finalized. 411 * 412 * No requirements. 413 */ 414 void 415 vmspace_exitfree(struct proc *p) 416 { 417 struct vmspace *vm; 418 419 vm = p->p_vmspace; 420 p->p_vmspace = NULL; 421 vmspace_drop_notoken(vm); 422 } 423 424 /* 425 * Called in two cases: 426 * 427 * (1) When the last refcnt is dropped and the vmspace becomes inactive, 428 * called with final == 0. refcnt will be (u_int)-1 at this point, 429 * and holdcnt will still be non-zero. 430 * 431 * (2) When holdcnt becomes 0, called with final == 1. There should no 432 * longer be anyone with access to the vmspace. 433 * 434 * VMSPACE_EXIT1 flags the primary deactivation 435 * VMSPACE_EXIT2 flags the last reap 436 */ 437 static void 438 vmspace_terminate(struct vmspace *vm, int final) 439 { 440 int count; 441 442 lwkt_gettoken(&vm->vm_map.token); 443 if (final == 0) { 444 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0); 445 vm->vm_flags |= VMSPACE_EXIT1; 446 447 /* 448 * Get rid of most of the resources. Leave the kernel pmap 449 * intact. 450 * 451 * If the pmap does not contain wired pages we can bulk-delete 452 * the pmap as a performance optimization before removing the 453 * related mappings. 454 * 455 * If the pmap contains wired pages we cannot do this 456 * pre-optimization because currently vm_fault_unwire() 457 * expects the pmap pages to exist and will not decrement 458 * p->wire_count if they do not. 459 */ 460 shmexit(vm); 461 if (vmspace_pmap(vm)->pm_stats.wired_count) { 462 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 463 VM_MAX_USER_ADDRESS); 464 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 465 VM_MAX_USER_ADDRESS); 466 } else { 467 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 468 VM_MAX_USER_ADDRESS); 469 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 470 VM_MAX_USER_ADDRESS); 471 } 472 lwkt_reltoken(&vm->vm_map.token); 473 } else { 474 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0); 475 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0); 476 477 /* 478 * Get rid of remaining basic resources. 479 */ 480 vm->vm_flags |= VMSPACE_EXIT2; 481 shmexit(vm); 482 483 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 484 vm_map_lock(&vm->vm_map); 485 cpu_vmspace_free(vm); 486 487 /* 488 * Lock the map, to wait out all other references to it. 489 * Delete all of the mappings and pages they hold, then call 490 * the pmap module to reclaim anything left. 491 */ 492 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 493 vm->vm_map.max_offset, &count); 494 vm_map_unlock(&vm->vm_map); 495 vm_map_entry_release(count); 496 497 pmap_release(vmspace_pmap(vm)); 498 lwkt_reltoken(&vm->vm_map.token); 499 objcache_put(vmspace_cache, vm); 500 } 501 } 502 503 /* 504 * Swap useage is determined by taking the proportional swap used by 505 * VM objects backing the VM map. To make up for fractional losses, 506 * if the VM object has any swap use at all the associated map entries 507 * count for at least 1 swap page. 508 * 509 * No requirements. 510 */ 511 vm_offset_t 512 vmspace_swap_count(struct vmspace *vm) 513 { 514 vm_map_t map = &vm->vm_map; 515 vm_map_entry_t cur; 516 vm_object_t object; 517 vm_offset_t count = 0; 518 vm_offset_t n; 519 520 vmspace_hold(vm); 521 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 522 switch(cur->maptype) { 523 case VM_MAPTYPE_NORMAL: 524 case VM_MAPTYPE_VPAGETABLE: 525 if ((object = cur->object.vm_object) == NULL) 526 break; 527 if (object->swblock_count) { 528 n = (cur->end - cur->start) / PAGE_SIZE; 529 count += object->swblock_count * 530 SWAP_META_PAGES * n / object->size + 1; 531 } 532 break; 533 default: 534 break; 535 } 536 } 537 vmspace_drop(vm); 538 539 return(count); 540 } 541 542 /* 543 * Calculate the approximate number of anonymous pages in use by 544 * this vmspace. To make up for fractional losses, we count each 545 * VM object as having at least 1 anonymous page. 546 * 547 * No requirements. 548 */ 549 vm_offset_t 550 vmspace_anonymous_count(struct vmspace *vm) 551 { 552 vm_map_t map = &vm->vm_map; 553 vm_map_entry_t cur; 554 vm_object_t object; 555 vm_offset_t count = 0; 556 557 vmspace_hold(vm); 558 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 559 switch(cur->maptype) { 560 case VM_MAPTYPE_NORMAL: 561 case VM_MAPTYPE_VPAGETABLE: 562 if ((object = cur->object.vm_object) == NULL) 563 break; 564 if (object->type != OBJT_DEFAULT && 565 object->type != OBJT_SWAP) { 566 break; 567 } 568 count += object->resident_page_count; 569 break; 570 default: 571 break; 572 } 573 } 574 vmspace_drop(vm); 575 576 return(count); 577 } 578 579 /* 580 * Initialize an existing vm_map structure such as that in the vmspace 581 * structure. The pmap is initialized elsewhere. 582 * 583 * No requirements. 584 */ 585 void 586 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 587 { 588 map->header.next = map->header.prev = &map->header; 589 RB_INIT(&map->rb_root); 590 spin_init(&map->ilock_spin, "ilock"); 591 map->ilock_base = NULL; 592 map->nentries = 0; 593 map->size = 0; 594 map->system_map = 0; 595 map->min_offset = min; 596 map->max_offset = max; 597 map->pmap = pmap; 598 map->first_free = &map->header; 599 map->hint = &map->header; 600 map->timestamp = 0; 601 map->flags = 0; 602 lwkt_token_init(&map->token, "vm_map"); 603 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0); 604 } 605 606 /* 607 * Shadow the vm_map_entry's object. This typically needs to be done when 608 * a write fault is taken on an entry which had previously been cloned by 609 * fork(). The shared object (which might be NULL) must become private so 610 * we add a shadow layer above it. 611 * 612 * Object allocation for anonymous mappings is defered as long as possible. 613 * When creating a shadow, however, the underlying object must be instantiated 614 * so it can be shared. 615 * 616 * If the map segment is governed by a virtual page table then it is 617 * possible to address offsets beyond the mapped area. Just allocate 618 * a maximally sized object for this case. 619 * 620 * If addref is non-zero an additional reference is added to the returned 621 * entry. This mechanic exists because the additional reference might have 622 * to be added atomically and not after return to prevent a premature 623 * collapse. 624 * 625 * The vm_map must be exclusively locked. 626 * No other requirements. 627 */ 628 static 629 void 630 vm_map_entry_shadow(vm_map_entry_t entry, int addref) 631 { 632 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 633 vm_object_shadow(&entry->object.vm_object, &entry->offset, 634 0x7FFFFFFF, addref); /* XXX */ 635 } else { 636 vm_object_shadow(&entry->object.vm_object, &entry->offset, 637 atop(entry->end - entry->start), addref); 638 } 639 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 640 } 641 642 /* 643 * Allocate an object for a vm_map_entry. 644 * 645 * Object allocation for anonymous mappings is defered as long as possible. 646 * This function is called when we can defer no longer, generally when a map 647 * entry might be split or forked or takes a page fault. 648 * 649 * If the map segment is governed by a virtual page table then it is 650 * possible to address offsets beyond the mapped area. Just allocate 651 * a maximally sized object for this case. 652 * 653 * The vm_map must be exclusively locked. 654 * No other requirements. 655 */ 656 void 657 vm_map_entry_allocate_object(vm_map_entry_t entry) 658 { 659 vm_object_t obj; 660 661 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 662 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 663 } else { 664 obj = vm_object_allocate(OBJT_DEFAULT, 665 atop(entry->end - entry->start)); 666 } 667 entry->object.vm_object = obj; 668 entry->offset = 0; 669 } 670 671 /* 672 * Set an initial negative count so the first attempt to reserve 673 * space preloads a bunch of vm_map_entry's for this cpu. Also 674 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 675 * map a new page for vm_map_entry structures. SMP systems are 676 * particularly sensitive. 677 * 678 * This routine is called in early boot so we cannot just call 679 * vm_map_entry_reserve(). 680 * 681 * Called from the low level boot code only (for each cpu) 682 * 683 * WARNING! Take care not to have too-big a static/BSS structure here 684 * as MAXCPU can be 256+, otherwise the loader's 64MB heap 685 * can get blown out by the kernel plus the initrd image. 686 */ 687 void 688 vm_map_entry_reserve_cpu_init(globaldata_t gd) 689 { 690 vm_map_entry_t entry; 691 int count; 692 int i; 693 694 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 695 if (gd->gd_cpuid == 0) { 696 entry = &cpu_map_entry_init_bsp[0]; 697 count = MAPENTRYBSP_CACHE; 698 } else { 699 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0]; 700 count = MAPENTRYAP_CACHE; 701 } 702 for (i = 0; i < count; ++i, ++entry) { 703 entry->next = gd->gd_vme_base; 704 gd->gd_vme_base = entry; 705 } 706 } 707 708 /* 709 * Reserves vm_map_entry structures so code later on can manipulate 710 * map_entry structures within a locked map without blocking trying 711 * to allocate a new vm_map_entry. 712 * 713 * No requirements. 714 */ 715 int 716 vm_map_entry_reserve(int count) 717 { 718 struct globaldata *gd = mycpu; 719 vm_map_entry_t entry; 720 721 /* 722 * Make sure we have enough structures in gd_vme_base to handle 723 * the reservation request. 724 * 725 * The critical section protects access to the per-cpu gd. 726 */ 727 crit_enter(); 728 while (gd->gd_vme_avail < count) { 729 entry = zalloc(mapentzone); 730 entry->next = gd->gd_vme_base; 731 gd->gd_vme_base = entry; 732 ++gd->gd_vme_avail; 733 } 734 gd->gd_vme_avail -= count; 735 crit_exit(); 736 737 return(count); 738 } 739 740 /* 741 * Releases previously reserved vm_map_entry structures that were not 742 * used. If we have too much junk in our per-cpu cache clean some of 743 * it out. 744 * 745 * No requirements. 746 */ 747 void 748 vm_map_entry_release(int count) 749 { 750 struct globaldata *gd = mycpu; 751 vm_map_entry_t entry; 752 753 crit_enter(); 754 gd->gd_vme_avail += count; 755 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 756 entry = gd->gd_vme_base; 757 KKASSERT(entry != NULL); 758 gd->gd_vme_base = entry->next; 759 --gd->gd_vme_avail; 760 crit_exit(); 761 zfree(mapentzone, entry); 762 crit_enter(); 763 } 764 crit_exit(); 765 } 766 767 /* 768 * Reserve map entry structures for use in kernel_map itself. These 769 * entries have *ALREADY* been reserved on a per-cpu basis when the map 770 * was inited. This function is used by zalloc() to avoid a recursion 771 * when zalloc() itself needs to allocate additional kernel memory. 772 * 773 * This function works like the normal reserve but does not load the 774 * vm_map_entry cache (because that would result in an infinite 775 * recursion). Note that gd_vme_avail may go negative. This is expected. 776 * 777 * Any caller of this function must be sure to renormalize after 778 * potentially eating entries to ensure that the reserve supply 779 * remains intact. 780 * 781 * No requirements. 782 */ 783 int 784 vm_map_entry_kreserve(int count) 785 { 786 struct globaldata *gd = mycpu; 787 788 crit_enter(); 789 gd->gd_vme_avail -= count; 790 crit_exit(); 791 KASSERT(gd->gd_vme_base != NULL, 792 ("no reserved entries left, gd_vme_avail = %d", 793 gd->gd_vme_avail)); 794 return(count); 795 } 796 797 /* 798 * Release previously reserved map entries for kernel_map. We do not 799 * attempt to clean up like the normal release function as this would 800 * cause an unnecessary (but probably not fatal) deep procedure call. 801 * 802 * No requirements. 803 */ 804 void 805 vm_map_entry_krelease(int count) 806 { 807 struct globaldata *gd = mycpu; 808 809 crit_enter(); 810 gd->gd_vme_avail += count; 811 crit_exit(); 812 } 813 814 /* 815 * Allocates a VM map entry for insertion. No entry fields are filled in. 816 * 817 * The entries should have previously been reserved. The reservation count 818 * is tracked in (*countp). 819 * 820 * No requirements. 821 */ 822 static vm_map_entry_t 823 vm_map_entry_create(vm_map_t map, int *countp) 824 { 825 struct globaldata *gd = mycpu; 826 vm_map_entry_t entry; 827 828 KKASSERT(*countp > 0); 829 --*countp; 830 crit_enter(); 831 entry = gd->gd_vme_base; 832 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 833 gd->gd_vme_base = entry->next; 834 crit_exit(); 835 836 return(entry); 837 } 838 839 /* 840 * Dispose of a vm_map_entry that is no longer being referenced. 841 * 842 * No requirements. 843 */ 844 static void 845 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 846 { 847 struct globaldata *gd = mycpu; 848 849 KKASSERT(map->hint != entry); 850 KKASSERT(map->first_free != entry); 851 852 ++*countp; 853 crit_enter(); 854 entry->next = gd->gd_vme_base; 855 gd->gd_vme_base = entry; 856 crit_exit(); 857 } 858 859 860 /* 861 * Insert/remove entries from maps. 862 * 863 * The related map must be exclusively locked. 864 * The caller must hold map->token 865 * No other requirements. 866 */ 867 static __inline void 868 vm_map_entry_link(vm_map_t map, 869 vm_map_entry_t after_where, 870 vm_map_entry_t entry) 871 { 872 ASSERT_VM_MAP_LOCKED(map); 873 874 map->nentries++; 875 entry->prev = after_where; 876 entry->next = after_where->next; 877 entry->next->prev = entry; 878 after_where->next = entry; 879 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 880 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 881 } 882 883 static __inline void 884 vm_map_entry_unlink(vm_map_t map, 885 vm_map_entry_t entry) 886 { 887 vm_map_entry_t prev; 888 vm_map_entry_t next; 889 890 ASSERT_VM_MAP_LOCKED(map); 891 892 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 893 panic("vm_map_entry_unlink: attempt to mess with " 894 "locked entry! %p", entry); 895 } 896 prev = entry->prev; 897 next = entry->next; 898 next->prev = prev; 899 prev->next = next; 900 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 901 map->nentries--; 902 } 903 904 /* 905 * Finds the map entry containing (or immediately preceding) the specified 906 * address in the given map. The entry is returned in (*entry). 907 * 908 * The boolean result indicates whether the address is actually contained 909 * in the map. 910 * 911 * The related map must be locked. 912 * No other requirements. 913 */ 914 boolean_t 915 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 916 { 917 vm_map_entry_t tmp; 918 vm_map_entry_t last; 919 920 ASSERT_VM_MAP_LOCKED(map); 921 #if 0 922 /* 923 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 924 * the hint code with the red-black lookup meets with system crashes 925 * and lockups. We do not yet know why. 926 * 927 * It is possible that the problem is related to the setting 928 * of the hint during map_entry deletion, in the code specified 929 * at the GGG comment later on in this file. 930 * 931 * YYY More likely it's because this function can be called with 932 * a shared lock on the map, resulting in map->hint updates possibly 933 * racing. Fixed now but untested. 934 */ 935 /* 936 * Quickly check the cached hint, there's a good chance of a match. 937 */ 938 tmp = map->hint; 939 cpu_ccfence(); 940 if (tmp != &map->header) { 941 if (address >= tmp->start && address < tmp->end) { 942 *entry = tmp; 943 return(TRUE); 944 } 945 } 946 #endif 947 948 /* 949 * Locate the record from the top of the tree. 'last' tracks the 950 * closest prior record and is returned if no match is found, which 951 * in binary tree terms means tracking the most recent right-branch 952 * taken. If there is no prior record, &map->header is returned. 953 */ 954 last = &map->header; 955 tmp = RB_ROOT(&map->rb_root); 956 957 while (tmp) { 958 if (address >= tmp->start) { 959 if (address < tmp->end) { 960 *entry = tmp; 961 map->hint = tmp; 962 return(TRUE); 963 } 964 last = tmp; 965 tmp = RB_RIGHT(tmp, rb_entry); 966 } else { 967 tmp = RB_LEFT(tmp, rb_entry); 968 } 969 } 970 *entry = last; 971 return (FALSE); 972 } 973 974 /* 975 * Inserts the given whole VM object into the target map at the specified 976 * address range. The object's size should match that of the address range. 977 * 978 * The map must be exclusively locked. 979 * The object must be held. 980 * The caller must have reserved sufficient vm_map_entry structures. 981 * 982 * If object is non-NULL, ref count must be bumped by caller prior to 983 * making call to account for the new entry. 984 */ 985 int 986 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux, 987 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 988 vm_maptype_t maptype, vm_subsys_t id, 989 vm_prot_t prot, vm_prot_t max, int cow) 990 { 991 vm_map_entry_t new_entry; 992 vm_map_entry_t prev_entry; 993 vm_map_entry_t temp_entry; 994 vm_eflags_t protoeflags; 995 int must_drop = 0; 996 vm_object_t object; 997 998 if (maptype == VM_MAPTYPE_UKSMAP) 999 object = NULL; 1000 else 1001 object = map_object; 1002 1003 ASSERT_VM_MAP_LOCKED(map); 1004 if (object) 1005 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1006 1007 /* 1008 * Check that the start and end points are not bogus. 1009 */ 1010 if ((start < map->min_offset) || (end > map->max_offset) || 1011 (start >= end)) 1012 return (KERN_INVALID_ADDRESS); 1013 1014 /* 1015 * Find the entry prior to the proposed starting address; if it's part 1016 * of an existing entry, this range is bogus. 1017 */ 1018 if (vm_map_lookup_entry(map, start, &temp_entry)) 1019 return (KERN_NO_SPACE); 1020 1021 prev_entry = temp_entry; 1022 1023 /* 1024 * Assert that the next entry doesn't overlap the end point. 1025 */ 1026 1027 if ((prev_entry->next != &map->header) && 1028 (prev_entry->next->start < end)) 1029 return (KERN_NO_SPACE); 1030 1031 protoeflags = 0; 1032 1033 if (cow & MAP_COPY_ON_WRITE) 1034 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1035 1036 if (cow & MAP_NOFAULT) { 1037 protoeflags |= MAP_ENTRY_NOFAULT; 1038 1039 KASSERT(object == NULL, 1040 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1041 } 1042 if (cow & MAP_DISABLE_SYNCER) 1043 protoeflags |= MAP_ENTRY_NOSYNC; 1044 if (cow & MAP_DISABLE_COREDUMP) 1045 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1046 if (cow & MAP_IS_STACK) 1047 protoeflags |= MAP_ENTRY_STACK; 1048 if (cow & MAP_IS_KSTACK) 1049 protoeflags |= MAP_ENTRY_KSTACK; 1050 1051 lwkt_gettoken(&map->token); 1052 1053 if (object) { 1054 /* 1055 * When object is non-NULL, it could be shared with another 1056 * process. We have to set or clear OBJ_ONEMAPPING 1057 * appropriately. 1058 * 1059 * NOTE: This flag is only applicable to DEFAULT and SWAP 1060 * objects and will already be clear in other types 1061 * of objects, so a shared object lock is ok for 1062 * VNODE objects. 1063 */ 1064 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 1065 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1066 } 1067 } 1068 else if ((prev_entry != &map->header) && 1069 (prev_entry->eflags == protoeflags) && 1070 (prev_entry->end == start) && 1071 (prev_entry->wired_count == 0) && 1072 (prev_entry->id == id) && 1073 prev_entry->maptype == maptype && 1074 maptype == VM_MAPTYPE_NORMAL && 1075 ((prev_entry->object.vm_object == NULL) || 1076 vm_object_coalesce(prev_entry->object.vm_object, 1077 OFF_TO_IDX(prev_entry->offset), 1078 (vm_size_t)(prev_entry->end - prev_entry->start), 1079 (vm_size_t)(end - prev_entry->end)))) { 1080 /* 1081 * We were able to extend the object. Determine if we 1082 * can extend the previous map entry to include the 1083 * new range as well. 1084 */ 1085 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1086 (prev_entry->protection == prot) && 1087 (prev_entry->max_protection == max)) { 1088 map->size += (end - prev_entry->end); 1089 prev_entry->end = end; 1090 vm_map_simplify_entry(map, prev_entry, countp); 1091 lwkt_reltoken(&map->token); 1092 return (KERN_SUCCESS); 1093 } 1094 1095 /* 1096 * If we can extend the object but cannot extend the 1097 * map entry, we have to create a new map entry. We 1098 * must bump the ref count on the extended object to 1099 * account for it. object may be NULL. 1100 * 1101 * XXX if object is NULL should we set offset to 0 here ? 1102 */ 1103 object = prev_entry->object.vm_object; 1104 offset = prev_entry->offset + 1105 (prev_entry->end - prev_entry->start); 1106 if (object) { 1107 vm_object_hold(object); 1108 vm_object_chain_wait(object, 0); 1109 vm_object_reference_locked(object); 1110 must_drop = 1; 1111 map_object = object; 1112 } 1113 } 1114 1115 /* 1116 * NOTE: if conditionals fail, object can be NULL here. This occurs 1117 * in things like the buffer map where we manage kva but do not manage 1118 * backing objects. 1119 */ 1120 1121 /* 1122 * Create a new entry 1123 */ 1124 1125 new_entry = vm_map_entry_create(map, countp); 1126 new_entry->start = start; 1127 new_entry->end = end; 1128 new_entry->id = id; 1129 1130 new_entry->maptype = maptype; 1131 new_entry->eflags = protoeflags; 1132 new_entry->object.map_object = map_object; 1133 new_entry->aux.master_pde = 0; /* in case size is different */ 1134 new_entry->aux.map_aux = map_aux; 1135 new_entry->offset = offset; 1136 1137 new_entry->inheritance = VM_INHERIT_DEFAULT; 1138 new_entry->protection = prot; 1139 new_entry->max_protection = max; 1140 new_entry->wired_count = 0; 1141 1142 /* 1143 * Insert the new entry into the list 1144 */ 1145 1146 vm_map_entry_link(map, prev_entry, new_entry); 1147 map->size += new_entry->end - new_entry->start; 1148 1149 /* 1150 * Update the free space hint. Entries cannot overlap. 1151 * An exact comparison is needed to avoid matching 1152 * against the map->header. 1153 */ 1154 if ((map->first_free == prev_entry) && 1155 (prev_entry->end == new_entry->start)) { 1156 map->first_free = new_entry; 1157 } 1158 1159 #if 0 1160 /* 1161 * Temporarily removed to avoid MAP_STACK panic, due to 1162 * MAP_STACK being a huge hack. Will be added back in 1163 * when MAP_STACK (and the user stack mapping) is fixed. 1164 */ 1165 /* 1166 * It may be possible to simplify the entry 1167 */ 1168 vm_map_simplify_entry(map, new_entry, countp); 1169 #endif 1170 1171 /* 1172 * Try to pre-populate the page table. Mappings governed by virtual 1173 * page tables cannot be prepopulated without a lot of work, so 1174 * don't try. 1175 */ 1176 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1177 maptype != VM_MAPTYPE_VPAGETABLE && 1178 maptype != VM_MAPTYPE_UKSMAP) { 1179 int dorelock = 0; 1180 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) { 1181 dorelock = 1; 1182 vm_object_lock_swap(); 1183 vm_object_drop(object); 1184 } 1185 pmap_object_init_pt(map->pmap, start, prot, 1186 object, OFF_TO_IDX(offset), end - start, 1187 cow & MAP_PREFAULT_PARTIAL); 1188 if (dorelock) { 1189 vm_object_hold(object); 1190 vm_object_lock_swap(); 1191 } 1192 } 1193 if (must_drop) 1194 vm_object_drop(object); 1195 1196 lwkt_reltoken(&map->token); 1197 return (KERN_SUCCESS); 1198 } 1199 1200 /* 1201 * Find sufficient space for `length' bytes in the given map, starting at 1202 * `start'. Returns 0 on success, 1 on no space. 1203 * 1204 * This function will returned an arbitrarily aligned pointer. If no 1205 * particular alignment is required you should pass align as 1. Note that 1206 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1207 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1208 * argument. 1209 * 1210 * 'align' should be a power of 2 but is not required to be. 1211 * 1212 * The map must be exclusively locked. 1213 * No other requirements. 1214 */ 1215 int 1216 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1217 vm_size_t align, int flags, vm_offset_t *addr) 1218 { 1219 vm_map_entry_t entry, next; 1220 vm_offset_t end; 1221 vm_offset_t align_mask; 1222 1223 if (start < map->min_offset) 1224 start = map->min_offset; 1225 if (start > map->max_offset) 1226 return (1); 1227 1228 /* 1229 * If the alignment is not a power of 2 we will have to use 1230 * a mod/division, set align_mask to a special value. 1231 */ 1232 if ((align | (align - 1)) + 1 != (align << 1)) 1233 align_mask = (vm_offset_t)-1; 1234 else 1235 align_mask = align - 1; 1236 1237 /* 1238 * Look for the first possible address; if there's already something 1239 * at this address, we have to start after it. 1240 */ 1241 if (start == map->min_offset) { 1242 if ((entry = map->first_free) != &map->header) 1243 start = entry->end; 1244 } else { 1245 vm_map_entry_t tmp; 1246 1247 if (vm_map_lookup_entry(map, start, &tmp)) 1248 start = tmp->end; 1249 entry = tmp; 1250 } 1251 1252 /* 1253 * Look through the rest of the map, trying to fit a new region in the 1254 * gap between existing regions, or after the very last region. 1255 */ 1256 for (;; start = (entry = next)->end) { 1257 /* 1258 * Adjust the proposed start by the requested alignment, 1259 * be sure that we didn't wrap the address. 1260 */ 1261 if (align_mask == (vm_offset_t)-1) 1262 end = roundup(start, align); 1263 else 1264 end = (start + align_mask) & ~align_mask; 1265 if (end < start) 1266 return (1); 1267 start = end; 1268 /* 1269 * Find the end of the proposed new region. Be sure we didn't 1270 * go beyond the end of the map, or wrap around the address. 1271 * Then check to see if this is the last entry or if the 1272 * proposed end fits in the gap between this and the next 1273 * entry. 1274 */ 1275 end = start + length; 1276 if (end > map->max_offset || end < start) 1277 return (1); 1278 next = entry->next; 1279 1280 /* 1281 * If the next entry's start address is beyond the desired 1282 * end address we may have found a good entry. 1283 * 1284 * If the next entry is a stack mapping we do not map into 1285 * the stack's reserved space. 1286 * 1287 * XXX continue to allow mapping into the stack's reserved 1288 * space if doing a MAP_STACK mapping inside a MAP_STACK 1289 * mapping, for backwards compatibility. But the caller 1290 * really should use MAP_STACK | MAP_TRYFIXED if they 1291 * want to do that. 1292 */ 1293 if (next == &map->header) 1294 break; 1295 if (next->start >= end) { 1296 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1297 break; 1298 if (flags & MAP_STACK) 1299 break; 1300 if (next->start - next->aux.avail_ssize >= end) 1301 break; 1302 } 1303 } 1304 map->hint = entry; 1305 1306 /* 1307 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1308 * if it fails. The kernel_map is locked and nothing can steal 1309 * our address space if pmap_growkernel() blocks. 1310 * 1311 * NOTE: This may be unconditionally called for kldload areas on 1312 * x86_64 because these do not bump kernel_vm_end (which would 1313 * fill 128G worth of page tables!). Therefore we must not 1314 * retry. 1315 */ 1316 if (map == &kernel_map) { 1317 vm_offset_t kstop; 1318 1319 kstop = round_page(start + length); 1320 if (kstop > kernel_vm_end) 1321 pmap_growkernel(start, kstop); 1322 } 1323 *addr = start; 1324 return (0); 1325 } 1326 1327 /* 1328 * vm_map_find finds an unallocated region in the target address map with 1329 * the given length and allocates it. The search is defined to be first-fit 1330 * from the specified address; the region found is returned in the same 1331 * parameter. 1332 * 1333 * If object is non-NULL, ref count must be bumped by caller 1334 * prior to making call to account for the new entry. 1335 * 1336 * No requirements. This function will lock the map temporarily. 1337 */ 1338 int 1339 vm_map_find(vm_map_t map, void *map_object, void *map_aux, 1340 vm_ooffset_t offset, vm_offset_t *addr, 1341 vm_size_t length, vm_size_t align, boolean_t fitit, 1342 vm_maptype_t maptype, vm_subsys_t id, 1343 vm_prot_t prot, vm_prot_t max, int cow) 1344 { 1345 vm_offset_t start; 1346 vm_object_t object; 1347 int result; 1348 int count; 1349 1350 if (maptype == VM_MAPTYPE_UKSMAP) 1351 object = NULL; 1352 else 1353 object = map_object; 1354 1355 start = *addr; 1356 1357 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1358 vm_map_lock(map); 1359 if (object) 1360 vm_object_hold_shared(object); 1361 if (fitit) { 1362 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1363 if (object) 1364 vm_object_drop(object); 1365 vm_map_unlock(map); 1366 vm_map_entry_release(count); 1367 return (KERN_NO_SPACE); 1368 } 1369 start = *addr; 1370 } 1371 result = vm_map_insert(map, &count, map_object, map_aux, 1372 offset, start, start + length, 1373 maptype, id, prot, max, cow); 1374 if (object) 1375 vm_object_drop(object); 1376 vm_map_unlock(map); 1377 vm_map_entry_release(count); 1378 1379 return (result); 1380 } 1381 1382 /* 1383 * Simplify the given map entry by merging with either neighbor. This 1384 * routine also has the ability to merge with both neighbors. 1385 * 1386 * This routine guarentees that the passed entry remains valid (though 1387 * possibly extended). When merging, this routine may delete one or 1388 * both neighbors. No action is taken on entries which have their 1389 * in-transition flag set. 1390 * 1391 * The map must be exclusively locked. 1392 */ 1393 void 1394 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1395 { 1396 vm_map_entry_t next, prev; 1397 vm_size_t prevsize, esize; 1398 1399 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1400 ++mycpu->gd_cnt.v_intrans_coll; 1401 return; 1402 } 1403 1404 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1405 return; 1406 if (entry->maptype == VM_MAPTYPE_UKSMAP) 1407 return; 1408 1409 prev = entry->prev; 1410 if (prev != &map->header) { 1411 prevsize = prev->end - prev->start; 1412 if ( (prev->end == entry->start) && 1413 (prev->maptype == entry->maptype) && 1414 (prev->object.vm_object == entry->object.vm_object) && 1415 (!prev->object.vm_object || 1416 (prev->offset + prevsize == entry->offset)) && 1417 (prev->eflags == entry->eflags) && 1418 (prev->protection == entry->protection) && 1419 (prev->max_protection == entry->max_protection) && 1420 (prev->inheritance == entry->inheritance) && 1421 (prev->id == entry->id) && 1422 (prev->wired_count == entry->wired_count)) { 1423 if (map->first_free == prev) 1424 map->first_free = entry; 1425 if (map->hint == prev) 1426 map->hint = entry; 1427 vm_map_entry_unlink(map, prev); 1428 entry->start = prev->start; 1429 entry->offset = prev->offset; 1430 if (prev->object.vm_object) 1431 vm_object_deallocate(prev->object.vm_object); 1432 vm_map_entry_dispose(map, prev, countp); 1433 } 1434 } 1435 1436 next = entry->next; 1437 if (next != &map->header) { 1438 esize = entry->end - entry->start; 1439 if ((entry->end == next->start) && 1440 (next->maptype == entry->maptype) && 1441 (next->object.vm_object == entry->object.vm_object) && 1442 (!entry->object.vm_object || 1443 (entry->offset + esize == next->offset)) && 1444 (next->eflags == entry->eflags) && 1445 (next->protection == entry->protection) && 1446 (next->max_protection == entry->max_protection) && 1447 (next->inheritance == entry->inheritance) && 1448 (next->id == entry->id) && 1449 (next->wired_count == entry->wired_count)) { 1450 if (map->first_free == next) 1451 map->first_free = entry; 1452 if (map->hint == next) 1453 map->hint = entry; 1454 vm_map_entry_unlink(map, next); 1455 entry->end = next->end; 1456 if (next->object.vm_object) 1457 vm_object_deallocate(next->object.vm_object); 1458 vm_map_entry_dispose(map, next, countp); 1459 } 1460 } 1461 } 1462 1463 /* 1464 * Asserts that the given entry begins at or after the specified address. 1465 * If necessary, it splits the entry into two. 1466 */ 1467 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1468 { \ 1469 if (startaddr > entry->start) \ 1470 _vm_map_clip_start(map, entry, startaddr, countp); \ 1471 } 1472 1473 /* 1474 * This routine is called only when it is known that the entry must be split. 1475 * 1476 * The map must be exclusively locked. 1477 */ 1478 static void 1479 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1480 int *countp) 1481 { 1482 vm_map_entry_t new_entry; 1483 1484 /* 1485 * Split off the front portion -- note that we must insert the new 1486 * entry BEFORE this one, so that this entry has the specified 1487 * starting address. 1488 */ 1489 1490 vm_map_simplify_entry(map, entry, countp); 1491 1492 /* 1493 * If there is no object backing this entry, we might as well create 1494 * one now. If we defer it, an object can get created after the map 1495 * is clipped, and individual objects will be created for the split-up 1496 * map. This is a bit of a hack, but is also about the best place to 1497 * put this improvement. 1498 */ 1499 if (entry->object.vm_object == NULL && !map->system_map) { 1500 vm_map_entry_allocate_object(entry); 1501 } 1502 1503 new_entry = vm_map_entry_create(map, countp); 1504 *new_entry = *entry; 1505 1506 new_entry->end = start; 1507 entry->offset += (start - entry->start); 1508 entry->start = start; 1509 1510 vm_map_entry_link(map, entry->prev, new_entry); 1511 1512 switch(entry->maptype) { 1513 case VM_MAPTYPE_NORMAL: 1514 case VM_MAPTYPE_VPAGETABLE: 1515 if (new_entry->object.vm_object) { 1516 vm_object_hold(new_entry->object.vm_object); 1517 vm_object_chain_wait(new_entry->object.vm_object, 0); 1518 vm_object_reference_locked(new_entry->object.vm_object); 1519 vm_object_drop(new_entry->object.vm_object); 1520 } 1521 break; 1522 default: 1523 break; 1524 } 1525 } 1526 1527 /* 1528 * Asserts that the given entry ends at or before the specified address. 1529 * If necessary, it splits the entry into two. 1530 * 1531 * The map must be exclusively locked. 1532 */ 1533 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1534 { \ 1535 if (endaddr < entry->end) \ 1536 _vm_map_clip_end(map, entry, endaddr, countp); \ 1537 } 1538 1539 /* 1540 * This routine is called only when it is known that the entry must be split. 1541 * 1542 * The map must be exclusively locked. 1543 */ 1544 static void 1545 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1546 int *countp) 1547 { 1548 vm_map_entry_t new_entry; 1549 1550 /* 1551 * If there is no object backing this entry, we might as well create 1552 * one now. If we defer it, an object can get created after the map 1553 * is clipped, and individual objects will be created for the split-up 1554 * map. This is a bit of a hack, but is also about the best place to 1555 * put this improvement. 1556 */ 1557 1558 if (entry->object.vm_object == NULL && !map->system_map) { 1559 vm_map_entry_allocate_object(entry); 1560 } 1561 1562 /* 1563 * Create a new entry and insert it AFTER the specified entry 1564 */ 1565 1566 new_entry = vm_map_entry_create(map, countp); 1567 *new_entry = *entry; 1568 1569 new_entry->start = entry->end = end; 1570 new_entry->offset += (end - entry->start); 1571 1572 vm_map_entry_link(map, entry, new_entry); 1573 1574 switch(entry->maptype) { 1575 case VM_MAPTYPE_NORMAL: 1576 case VM_MAPTYPE_VPAGETABLE: 1577 if (new_entry->object.vm_object) { 1578 vm_object_hold(new_entry->object.vm_object); 1579 vm_object_chain_wait(new_entry->object.vm_object, 0); 1580 vm_object_reference_locked(new_entry->object.vm_object); 1581 vm_object_drop(new_entry->object.vm_object); 1582 } 1583 break; 1584 default: 1585 break; 1586 } 1587 } 1588 1589 /* 1590 * Asserts that the starting and ending region addresses fall within the 1591 * valid range for the map. 1592 */ 1593 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1594 { \ 1595 if (start < vm_map_min(map)) \ 1596 start = vm_map_min(map); \ 1597 if (end > vm_map_max(map)) \ 1598 end = vm_map_max(map); \ 1599 if (start > end) \ 1600 start = end; \ 1601 } 1602 1603 /* 1604 * Used to block when an in-transition collison occurs. The map 1605 * is unlocked for the sleep and relocked before the return. 1606 */ 1607 void 1608 vm_map_transition_wait(vm_map_t map) 1609 { 1610 tsleep_interlock(map, 0); 1611 vm_map_unlock(map); 1612 tsleep(map, PINTERLOCKED, "vment", 0); 1613 vm_map_lock(map); 1614 } 1615 1616 /* 1617 * When we do blocking operations with the map lock held it is 1618 * possible that a clip might have occured on our in-transit entry, 1619 * requiring an adjustment to the entry in our loop. These macros 1620 * help the pageable and clip_range code deal with the case. The 1621 * conditional costs virtually nothing if no clipping has occured. 1622 */ 1623 1624 #define CLIP_CHECK_BACK(entry, save_start) \ 1625 do { \ 1626 while (entry->start != save_start) { \ 1627 entry = entry->prev; \ 1628 KASSERT(entry != &map->header, ("bad entry clip")); \ 1629 } \ 1630 } while(0) 1631 1632 #define CLIP_CHECK_FWD(entry, save_end) \ 1633 do { \ 1634 while (entry->end != save_end) { \ 1635 entry = entry->next; \ 1636 KASSERT(entry != &map->header, ("bad entry clip")); \ 1637 } \ 1638 } while(0) 1639 1640 1641 /* 1642 * Clip the specified range and return the base entry. The 1643 * range may cover several entries starting at the returned base 1644 * and the first and last entry in the covering sequence will be 1645 * properly clipped to the requested start and end address. 1646 * 1647 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1648 * flag. 1649 * 1650 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1651 * covered by the requested range. 1652 * 1653 * The map must be exclusively locked on entry and will remain locked 1654 * on return. If no range exists or the range contains holes and you 1655 * specified that no holes were allowed, NULL will be returned. This 1656 * routine may temporarily unlock the map in order avoid a deadlock when 1657 * sleeping. 1658 */ 1659 static 1660 vm_map_entry_t 1661 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1662 int *countp, int flags) 1663 { 1664 vm_map_entry_t start_entry; 1665 vm_map_entry_t entry; 1666 1667 /* 1668 * Locate the entry and effect initial clipping. The in-transition 1669 * case does not occur very often so do not try to optimize it. 1670 */ 1671 again: 1672 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1673 return (NULL); 1674 entry = start_entry; 1675 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1676 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1677 ++mycpu->gd_cnt.v_intrans_coll; 1678 ++mycpu->gd_cnt.v_intrans_wait; 1679 vm_map_transition_wait(map); 1680 /* 1681 * entry and/or start_entry may have been clipped while 1682 * we slept, or may have gone away entirely. We have 1683 * to restart from the lookup. 1684 */ 1685 goto again; 1686 } 1687 1688 /* 1689 * Since we hold an exclusive map lock we do not have to restart 1690 * after clipping, even though clipping may block in zalloc. 1691 */ 1692 vm_map_clip_start(map, entry, start, countp); 1693 vm_map_clip_end(map, entry, end, countp); 1694 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1695 1696 /* 1697 * Scan entries covered by the range. When working on the next 1698 * entry a restart need only re-loop on the current entry which 1699 * we have already locked, since 'next' may have changed. Also, 1700 * even though entry is safe, it may have been clipped so we 1701 * have to iterate forwards through the clip after sleeping. 1702 */ 1703 while (entry->next != &map->header && entry->next->start < end) { 1704 vm_map_entry_t next = entry->next; 1705 1706 if (flags & MAP_CLIP_NO_HOLES) { 1707 if (next->start > entry->end) { 1708 vm_map_unclip_range(map, start_entry, 1709 start, entry->end, countp, flags); 1710 return(NULL); 1711 } 1712 } 1713 1714 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1715 vm_offset_t save_end = entry->end; 1716 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1717 ++mycpu->gd_cnt.v_intrans_coll; 1718 ++mycpu->gd_cnt.v_intrans_wait; 1719 vm_map_transition_wait(map); 1720 1721 /* 1722 * clips might have occured while we blocked. 1723 */ 1724 CLIP_CHECK_FWD(entry, save_end); 1725 CLIP_CHECK_BACK(start_entry, start); 1726 continue; 1727 } 1728 /* 1729 * No restart necessary even though clip_end may block, we 1730 * are holding the map lock. 1731 */ 1732 vm_map_clip_end(map, next, end, countp); 1733 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1734 entry = next; 1735 } 1736 if (flags & MAP_CLIP_NO_HOLES) { 1737 if (entry->end != end) { 1738 vm_map_unclip_range(map, start_entry, 1739 start, entry->end, countp, flags); 1740 return(NULL); 1741 } 1742 } 1743 return(start_entry); 1744 } 1745 1746 /* 1747 * Undo the effect of vm_map_clip_range(). You should pass the same 1748 * flags and the same range that you passed to vm_map_clip_range(). 1749 * This code will clear the in-transition flag on the entries and 1750 * wake up anyone waiting. This code will also simplify the sequence 1751 * and attempt to merge it with entries before and after the sequence. 1752 * 1753 * The map must be locked on entry and will remain locked on return. 1754 * 1755 * Note that you should also pass the start_entry returned by 1756 * vm_map_clip_range(). However, if you block between the two calls 1757 * with the map unlocked please be aware that the start_entry may 1758 * have been clipped and you may need to scan it backwards to find 1759 * the entry corresponding with the original start address. You are 1760 * responsible for this, vm_map_unclip_range() expects the correct 1761 * start_entry to be passed to it and will KASSERT otherwise. 1762 */ 1763 static 1764 void 1765 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1766 vm_offset_t start, vm_offset_t end, 1767 int *countp, int flags) 1768 { 1769 vm_map_entry_t entry; 1770 1771 entry = start_entry; 1772 1773 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1774 while (entry != &map->header && entry->start < end) { 1775 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1776 ("in-transition flag not set during unclip on: %p", 1777 entry)); 1778 KASSERT(entry->end <= end, 1779 ("unclip_range: tail wasn't clipped")); 1780 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1781 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1782 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1783 wakeup(map); 1784 } 1785 entry = entry->next; 1786 } 1787 1788 /* 1789 * Simplification does not block so there is no restart case. 1790 */ 1791 entry = start_entry; 1792 while (entry != &map->header && entry->start < end) { 1793 vm_map_simplify_entry(map, entry, countp); 1794 entry = entry->next; 1795 } 1796 } 1797 1798 /* 1799 * Mark the given range as handled by a subordinate map. 1800 * 1801 * This range must have been created with vm_map_find(), and no other 1802 * operations may have been performed on this range prior to calling 1803 * vm_map_submap(). 1804 * 1805 * Submappings cannot be removed. 1806 * 1807 * No requirements. 1808 */ 1809 int 1810 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1811 { 1812 vm_map_entry_t entry; 1813 int result = KERN_INVALID_ARGUMENT; 1814 int count; 1815 1816 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1817 vm_map_lock(map); 1818 1819 VM_MAP_RANGE_CHECK(map, start, end); 1820 1821 if (vm_map_lookup_entry(map, start, &entry)) { 1822 vm_map_clip_start(map, entry, start, &count); 1823 } else { 1824 entry = entry->next; 1825 } 1826 1827 vm_map_clip_end(map, entry, end, &count); 1828 1829 if ((entry->start == start) && (entry->end == end) && 1830 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1831 (entry->object.vm_object == NULL)) { 1832 entry->object.sub_map = submap; 1833 entry->maptype = VM_MAPTYPE_SUBMAP; 1834 result = KERN_SUCCESS; 1835 } 1836 vm_map_unlock(map); 1837 vm_map_entry_release(count); 1838 1839 return (result); 1840 } 1841 1842 /* 1843 * Sets the protection of the specified address region in the target map. 1844 * If "set_max" is specified, the maximum protection is to be set; 1845 * otherwise, only the current protection is affected. 1846 * 1847 * The protection is not applicable to submaps, but is applicable to normal 1848 * maps and maps governed by virtual page tables. For example, when operating 1849 * on a virtual page table our protection basically controls how COW occurs 1850 * on the backing object, whereas the virtual page table abstraction itself 1851 * is an abstraction for userland. 1852 * 1853 * No requirements. 1854 */ 1855 int 1856 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1857 vm_prot_t new_prot, boolean_t set_max) 1858 { 1859 vm_map_entry_t current; 1860 vm_map_entry_t entry; 1861 int count; 1862 1863 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1864 vm_map_lock(map); 1865 1866 VM_MAP_RANGE_CHECK(map, start, end); 1867 1868 if (vm_map_lookup_entry(map, start, &entry)) { 1869 vm_map_clip_start(map, entry, start, &count); 1870 } else { 1871 entry = entry->next; 1872 } 1873 1874 /* 1875 * Make a first pass to check for protection violations. 1876 */ 1877 current = entry; 1878 while ((current != &map->header) && (current->start < end)) { 1879 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1880 vm_map_unlock(map); 1881 vm_map_entry_release(count); 1882 return (KERN_INVALID_ARGUMENT); 1883 } 1884 if ((new_prot & current->max_protection) != new_prot) { 1885 vm_map_unlock(map); 1886 vm_map_entry_release(count); 1887 return (KERN_PROTECTION_FAILURE); 1888 } 1889 current = current->next; 1890 } 1891 1892 /* 1893 * Go back and fix up protections. [Note that clipping is not 1894 * necessary the second time.] 1895 */ 1896 current = entry; 1897 1898 while ((current != &map->header) && (current->start < end)) { 1899 vm_prot_t old_prot; 1900 1901 vm_map_clip_end(map, current, end, &count); 1902 1903 old_prot = current->protection; 1904 if (set_max) { 1905 current->max_protection = new_prot; 1906 current->protection = new_prot & old_prot; 1907 } else { 1908 current->protection = new_prot; 1909 } 1910 1911 /* 1912 * Update physical map if necessary. Worry about copy-on-write 1913 * here -- CHECK THIS XXX 1914 */ 1915 1916 if (current->protection != old_prot) { 1917 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1918 VM_PROT_ALL) 1919 1920 pmap_protect(map->pmap, current->start, 1921 current->end, 1922 current->protection & MASK(current)); 1923 #undef MASK 1924 } 1925 1926 vm_map_simplify_entry(map, current, &count); 1927 1928 current = current->next; 1929 } 1930 1931 vm_map_unlock(map); 1932 vm_map_entry_release(count); 1933 return (KERN_SUCCESS); 1934 } 1935 1936 /* 1937 * This routine traverses a processes map handling the madvise 1938 * system call. Advisories are classified as either those effecting 1939 * the vm_map_entry structure, or those effecting the underlying 1940 * objects. 1941 * 1942 * The <value> argument is used for extended madvise calls. 1943 * 1944 * No requirements. 1945 */ 1946 int 1947 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1948 int behav, off_t value) 1949 { 1950 vm_map_entry_t current, entry; 1951 int modify_map = 0; 1952 int error = 0; 1953 int count; 1954 1955 /* 1956 * Some madvise calls directly modify the vm_map_entry, in which case 1957 * we need to use an exclusive lock on the map and we need to perform 1958 * various clipping operations. Otherwise we only need a read-lock 1959 * on the map. 1960 */ 1961 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1962 1963 switch(behav) { 1964 case MADV_NORMAL: 1965 case MADV_SEQUENTIAL: 1966 case MADV_RANDOM: 1967 case MADV_NOSYNC: 1968 case MADV_AUTOSYNC: 1969 case MADV_NOCORE: 1970 case MADV_CORE: 1971 case MADV_SETMAP: 1972 modify_map = 1; 1973 vm_map_lock(map); 1974 break; 1975 case MADV_INVAL: 1976 case MADV_WILLNEED: 1977 case MADV_DONTNEED: 1978 case MADV_FREE: 1979 vm_map_lock_read(map); 1980 break; 1981 default: 1982 vm_map_entry_release(count); 1983 return (EINVAL); 1984 } 1985 1986 /* 1987 * Locate starting entry and clip if necessary. 1988 */ 1989 1990 VM_MAP_RANGE_CHECK(map, start, end); 1991 1992 if (vm_map_lookup_entry(map, start, &entry)) { 1993 if (modify_map) 1994 vm_map_clip_start(map, entry, start, &count); 1995 } else { 1996 entry = entry->next; 1997 } 1998 1999 if (modify_map) { 2000 /* 2001 * madvise behaviors that are implemented in the vm_map_entry. 2002 * 2003 * We clip the vm_map_entry so that behavioral changes are 2004 * limited to the specified address range. 2005 */ 2006 for (current = entry; 2007 (current != &map->header) && (current->start < end); 2008 current = current->next 2009 ) { 2010 if (current->maptype == VM_MAPTYPE_SUBMAP) 2011 continue; 2012 2013 vm_map_clip_end(map, current, end, &count); 2014 2015 switch (behav) { 2016 case MADV_NORMAL: 2017 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2018 break; 2019 case MADV_SEQUENTIAL: 2020 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2021 break; 2022 case MADV_RANDOM: 2023 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2024 break; 2025 case MADV_NOSYNC: 2026 current->eflags |= MAP_ENTRY_NOSYNC; 2027 break; 2028 case MADV_AUTOSYNC: 2029 current->eflags &= ~MAP_ENTRY_NOSYNC; 2030 break; 2031 case MADV_NOCORE: 2032 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2033 break; 2034 case MADV_CORE: 2035 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2036 break; 2037 case MADV_SETMAP: 2038 /* 2039 * Set the page directory page for a map 2040 * governed by a virtual page table. Mark 2041 * the entry as being governed by a virtual 2042 * page table if it is not. 2043 * 2044 * XXX the page directory page is stored 2045 * in the avail_ssize field if the map_entry. 2046 * 2047 * XXX the map simplification code does not 2048 * compare this field so weird things may 2049 * happen if you do not apply this function 2050 * to the entire mapping governed by the 2051 * virtual page table. 2052 */ 2053 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 2054 error = EINVAL; 2055 break; 2056 } 2057 current->aux.master_pde = value; 2058 pmap_remove(map->pmap, 2059 current->start, current->end); 2060 break; 2061 case MADV_INVAL: 2062 /* 2063 * Invalidate the related pmap entries, used 2064 * to flush portions of the real kernel's 2065 * pmap when the caller has removed or 2066 * modified existing mappings in a virtual 2067 * page table. 2068 * 2069 * (exclusive locked map version does not 2070 * need the range interlock). 2071 */ 2072 pmap_remove(map->pmap, 2073 current->start, current->end); 2074 break; 2075 default: 2076 error = EINVAL; 2077 break; 2078 } 2079 vm_map_simplify_entry(map, current, &count); 2080 } 2081 vm_map_unlock(map); 2082 } else { 2083 vm_pindex_t pindex; 2084 vm_pindex_t delta; 2085 2086 /* 2087 * madvise behaviors that are implemented in the underlying 2088 * vm_object. 2089 * 2090 * Since we don't clip the vm_map_entry, we have to clip 2091 * the vm_object pindex and count. 2092 * 2093 * NOTE! These functions are only supported on normal maps, 2094 * except MADV_INVAL which is also supported on 2095 * virtual page tables. 2096 */ 2097 for (current = entry; 2098 (current != &map->header) && (current->start < end); 2099 current = current->next 2100 ) { 2101 vm_offset_t useStart; 2102 2103 if (current->maptype != VM_MAPTYPE_NORMAL && 2104 (current->maptype != VM_MAPTYPE_VPAGETABLE || 2105 behav != MADV_INVAL)) { 2106 continue; 2107 } 2108 2109 pindex = OFF_TO_IDX(current->offset); 2110 delta = atop(current->end - current->start); 2111 useStart = current->start; 2112 2113 if (current->start < start) { 2114 pindex += atop(start - current->start); 2115 delta -= atop(start - current->start); 2116 useStart = start; 2117 } 2118 if (current->end > end) 2119 delta -= atop(current->end - end); 2120 2121 if ((vm_spindex_t)delta <= 0) 2122 continue; 2123 2124 if (behav == MADV_INVAL) { 2125 /* 2126 * Invalidate the related pmap entries, used 2127 * to flush portions of the real kernel's 2128 * pmap when the caller has removed or 2129 * modified existing mappings in a virtual 2130 * page table. 2131 * 2132 * (shared locked map version needs the 2133 * interlock, see vm_fault()). 2134 */ 2135 struct vm_map_ilock ilock; 2136 2137 KASSERT(useStart >= VM_MIN_USER_ADDRESS && 2138 useStart + ptoa(delta) <= 2139 VM_MAX_USER_ADDRESS, 2140 ("Bad range %016jx-%016jx (%016jx)", 2141 useStart, useStart + ptoa(delta), 2142 delta)); 2143 vm_map_interlock(map, &ilock, 2144 useStart, 2145 useStart + ptoa(delta)); 2146 pmap_remove(map->pmap, 2147 useStart, 2148 useStart + ptoa(delta)); 2149 vm_map_deinterlock(map, &ilock); 2150 } else { 2151 vm_object_madvise(current->object.vm_object, 2152 pindex, delta, behav); 2153 } 2154 2155 /* 2156 * Try to populate the page table. Mappings governed 2157 * by virtual page tables cannot be pre-populated 2158 * without a lot of work so don't try. 2159 */ 2160 if (behav == MADV_WILLNEED && 2161 current->maptype != VM_MAPTYPE_VPAGETABLE) { 2162 pmap_object_init_pt( 2163 map->pmap, 2164 useStart, 2165 current->protection, 2166 current->object.vm_object, 2167 pindex, 2168 (count << PAGE_SHIFT), 2169 MAP_PREFAULT_MADVISE 2170 ); 2171 } 2172 } 2173 vm_map_unlock_read(map); 2174 } 2175 vm_map_entry_release(count); 2176 return(error); 2177 } 2178 2179 2180 /* 2181 * Sets the inheritance of the specified address range in the target map. 2182 * Inheritance affects how the map will be shared with child maps at the 2183 * time of vm_map_fork. 2184 */ 2185 int 2186 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2187 vm_inherit_t new_inheritance) 2188 { 2189 vm_map_entry_t entry; 2190 vm_map_entry_t temp_entry; 2191 int count; 2192 2193 switch (new_inheritance) { 2194 case VM_INHERIT_NONE: 2195 case VM_INHERIT_COPY: 2196 case VM_INHERIT_SHARE: 2197 break; 2198 default: 2199 return (KERN_INVALID_ARGUMENT); 2200 } 2201 2202 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2203 vm_map_lock(map); 2204 2205 VM_MAP_RANGE_CHECK(map, start, end); 2206 2207 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2208 entry = temp_entry; 2209 vm_map_clip_start(map, entry, start, &count); 2210 } else 2211 entry = temp_entry->next; 2212 2213 while ((entry != &map->header) && (entry->start < end)) { 2214 vm_map_clip_end(map, entry, end, &count); 2215 2216 entry->inheritance = new_inheritance; 2217 2218 vm_map_simplify_entry(map, entry, &count); 2219 2220 entry = entry->next; 2221 } 2222 vm_map_unlock(map); 2223 vm_map_entry_release(count); 2224 return (KERN_SUCCESS); 2225 } 2226 2227 /* 2228 * Implement the semantics of mlock 2229 */ 2230 int 2231 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2232 boolean_t new_pageable) 2233 { 2234 vm_map_entry_t entry; 2235 vm_map_entry_t start_entry; 2236 vm_offset_t end; 2237 int rv = KERN_SUCCESS; 2238 int count; 2239 2240 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2241 vm_map_lock(map); 2242 VM_MAP_RANGE_CHECK(map, start, real_end); 2243 end = real_end; 2244 2245 start_entry = vm_map_clip_range(map, start, end, &count, 2246 MAP_CLIP_NO_HOLES); 2247 if (start_entry == NULL) { 2248 vm_map_unlock(map); 2249 vm_map_entry_release(count); 2250 return (KERN_INVALID_ADDRESS); 2251 } 2252 2253 if (new_pageable == 0) { 2254 entry = start_entry; 2255 while ((entry != &map->header) && (entry->start < end)) { 2256 vm_offset_t save_start; 2257 vm_offset_t save_end; 2258 2259 /* 2260 * Already user wired or hard wired (trivial cases) 2261 */ 2262 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2263 entry = entry->next; 2264 continue; 2265 } 2266 if (entry->wired_count != 0) { 2267 entry->wired_count++; 2268 entry->eflags |= MAP_ENTRY_USER_WIRED; 2269 entry = entry->next; 2270 continue; 2271 } 2272 2273 /* 2274 * A new wiring requires instantiation of appropriate 2275 * management structures and the faulting in of the 2276 * page. 2277 */ 2278 if (entry->maptype == VM_MAPTYPE_NORMAL || 2279 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2280 int copyflag = entry->eflags & 2281 MAP_ENTRY_NEEDS_COPY; 2282 if (copyflag && ((entry->protection & 2283 VM_PROT_WRITE) != 0)) { 2284 vm_map_entry_shadow(entry, 0); 2285 } else if (entry->object.vm_object == NULL && 2286 !map->system_map) { 2287 vm_map_entry_allocate_object(entry); 2288 } 2289 } 2290 entry->wired_count++; 2291 entry->eflags |= MAP_ENTRY_USER_WIRED; 2292 2293 /* 2294 * Now fault in the area. Note that vm_fault_wire() 2295 * may release the map lock temporarily, it will be 2296 * relocked on return. The in-transition 2297 * flag protects the entries. 2298 */ 2299 save_start = entry->start; 2300 save_end = entry->end; 2301 rv = vm_fault_wire(map, entry, TRUE, 0); 2302 if (rv) { 2303 CLIP_CHECK_BACK(entry, save_start); 2304 for (;;) { 2305 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2306 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2307 entry->wired_count = 0; 2308 if (entry->end == save_end) 2309 break; 2310 entry = entry->next; 2311 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2312 } 2313 end = save_start; /* unwire the rest */ 2314 break; 2315 } 2316 /* 2317 * note that even though the entry might have been 2318 * clipped, the USER_WIRED flag we set prevents 2319 * duplication so we do not have to do a 2320 * clip check. 2321 */ 2322 entry = entry->next; 2323 } 2324 2325 /* 2326 * If we failed fall through to the unwiring section to 2327 * unwire what we had wired so far. 'end' has already 2328 * been adjusted. 2329 */ 2330 if (rv) 2331 new_pageable = 1; 2332 2333 /* 2334 * start_entry might have been clipped if we unlocked the 2335 * map and blocked. No matter how clipped it has gotten 2336 * there should be a fragment that is on our start boundary. 2337 */ 2338 CLIP_CHECK_BACK(start_entry, start); 2339 } 2340 2341 /* 2342 * Deal with the unwiring case. 2343 */ 2344 if (new_pageable) { 2345 /* 2346 * This is the unwiring case. We must first ensure that the 2347 * range to be unwired is really wired down. We know there 2348 * are no holes. 2349 */ 2350 entry = start_entry; 2351 while ((entry != &map->header) && (entry->start < end)) { 2352 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2353 rv = KERN_INVALID_ARGUMENT; 2354 goto done; 2355 } 2356 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2357 entry = entry->next; 2358 } 2359 2360 /* 2361 * Now decrement the wiring count for each region. If a region 2362 * becomes completely unwired, unwire its physical pages and 2363 * mappings. 2364 */ 2365 /* 2366 * The map entries are processed in a loop, checking to 2367 * make sure the entry is wired and asserting it has a wired 2368 * count. However, another loop was inserted more-or-less in 2369 * the middle of the unwiring path. This loop picks up the 2370 * "entry" loop variable from the first loop without first 2371 * setting it to start_entry. Naturally, the secound loop 2372 * is never entered and the pages backing the entries are 2373 * never unwired. This can lead to a leak of wired pages. 2374 */ 2375 entry = start_entry; 2376 while ((entry != &map->header) && (entry->start < end)) { 2377 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2378 ("expected USER_WIRED on entry %p", entry)); 2379 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2380 entry->wired_count--; 2381 if (entry->wired_count == 0) 2382 vm_fault_unwire(map, entry); 2383 entry = entry->next; 2384 } 2385 } 2386 done: 2387 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2388 MAP_CLIP_NO_HOLES); 2389 map->timestamp++; 2390 vm_map_unlock(map); 2391 vm_map_entry_release(count); 2392 return (rv); 2393 } 2394 2395 /* 2396 * Sets the pageability of the specified address range in the target map. 2397 * Regions specified as not pageable require locked-down physical 2398 * memory and physical page maps. 2399 * 2400 * The map must not be locked, but a reference must remain to the map 2401 * throughout the call. 2402 * 2403 * This function may be called via the zalloc path and must properly 2404 * reserve map entries for kernel_map. 2405 * 2406 * No requirements. 2407 */ 2408 int 2409 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2410 { 2411 vm_map_entry_t entry; 2412 vm_map_entry_t start_entry; 2413 vm_offset_t end; 2414 int rv = KERN_SUCCESS; 2415 int count; 2416 2417 if (kmflags & KM_KRESERVE) 2418 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2419 else 2420 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2421 vm_map_lock(map); 2422 VM_MAP_RANGE_CHECK(map, start, real_end); 2423 end = real_end; 2424 2425 start_entry = vm_map_clip_range(map, start, end, &count, 2426 MAP_CLIP_NO_HOLES); 2427 if (start_entry == NULL) { 2428 vm_map_unlock(map); 2429 rv = KERN_INVALID_ADDRESS; 2430 goto failure; 2431 } 2432 if ((kmflags & KM_PAGEABLE) == 0) { 2433 /* 2434 * Wiring. 2435 * 2436 * 1. Holding the write lock, we create any shadow or zero-fill 2437 * objects that need to be created. Then we clip each map 2438 * entry to the region to be wired and increment its wiring 2439 * count. We create objects before clipping the map entries 2440 * to avoid object proliferation. 2441 * 2442 * 2. We downgrade to a read lock, and call vm_fault_wire to 2443 * fault in the pages for any newly wired area (wired_count is 2444 * 1). 2445 * 2446 * Downgrading to a read lock for vm_fault_wire avoids a 2447 * possible deadlock with another process that may have faulted 2448 * on one of the pages to be wired (it would mark the page busy, 2449 * blocking us, then in turn block on the map lock that we 2450 * hold). Because of problems in the recursive lock package, 2451 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2452 * any actions that require the write lock must be done 2453 * beforehand. Because we keep the read lock on the map, the 2454 * copy-on-write status of the entries we modify here cannot 2455 * change. 2456 */ 2457 entry = start_entry; 2458 while ((entry != &map->header) && (entry->start < end)) { 2459 /* 2460 * Trivial case if the entry is already wired 2461 */ 2462 if (entry->wired_count) { 2463 entry->wired_count++; 2464 entry = entry->next; 2465 continue; 2466 } 2467 2468 /* 2469 * The entry is being newly wired, we have to setup 2470 * appropriate management structures. A shadow 2471 * object is required for a copy-on-write region, 2472 * or a normal object for a zero-fill region. We 2473 * do not have to do this for entries that point to sub 2474 * maps because we won't hold the lock on the sub map. 2475 */ 2476 if (entry->maptype == VM_MAPTYPE_NORMAL || 2477 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2478 int copyflag = entry->eflags & 2479 MAP_ENTRY_NEEDS_COPY; 2480 if (copyflag && ((entry->protection & 2481 VM_PROT_WRITE) != 0)) { 2482 vm_map_entry_shadow(entry, 0); 2483 } else if (entry->object.vm_object == NULL && 2484 !map->system_map) { 2485 vm_map_entry_allocate_object(entry); 2486 } 2487 } 2488 2489 entry->wired_count++; 2490 entry = entry->next; 2491 } 2492 2493 /* 2494 * Pass 2. 2495 */ 2496 2497 /* 2498 * HACK HACK HACK HACK 2499 * 2500 * vm_fault_wire() temporarily unlocks the map to avoid 2501 * deadlocks. The in-transition flag from vm_map_clip_range 2502 * call should protect us from changes while the map is 2503 * unlocked. T 2504 * 2505 * NOTE: Previously this comment stated that clipping might 2506 * still occur while the entry is unlocked, but from 2507 * what I can tell it actually cannot. 2508 * 2509 * It is unclear whether the CLIP_CHECK_*() calls 2510 * are still needed but we keep them in anyway. 2511 * 2512 * HACK HACK HACK HACK 2513 */ 2514 2515 entry = start_entry; 2516 while (entry != &map->header && entry->start < end) { 2517 /* 2518 * If vm_fault_wire fails for any page we need to undo 2519 * what has been done. We decrement the wiring count 2520 * for those pages which have not yet been wired (now) 2521 * and unwire those that have (later). 2522 */ 2523 vm_offset_t save_start = entry->start; 2524 vm_offset_t save_end = entry->end; 2525 2526 if (entry->wired_count == 1) 2527 rv = vm_fault_wire(map, entry, FALSE, kmflags); 2528 if (rv) { 2529 CLIP_CHECK_BACK(entry, save_start); 2530 for (;;) { 2531 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2532 entry->wired_count = 0; 2533 if (entry->end == save_end) 2534 break; 2535 entry = entry->next; 2536 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2537 } 2538 end = save_start; 2539 break; 2540 } 2541 CLIP_CHECK_FWD(entry, save_end); 2542 entry = entry->next; 2543 } 2544 2545 /* 2546 * If a failure occured undo everything by falling through 2547 * to the unwiring code. 'end' has already been adjusted 2548 * appropriately. 2549 */ 2550 if (rv) 2551 kmflags |= KM_PAGEABLE; 2552 2553 /* 2554 * start_entry is still IN_TRANSITION but may have been 2555 * clipped since vm_fault_wire() unlocks and relocks the 2556 * map. No matter how clipped it has gotten there should 2557 * be a fragment that is on our start boundary. 2558 */ 2559 CLIP_CHECK_BACK(start_entry, start); 2560 } 2561 2562 if (kmflags & KM_PAGEABLE) { 2563 /* 2564 * This is the unwiring case. We must first ensure that the 2565 * range to be unwired is really wired down. We know there 2566 * are no holes. 2567 */ 2568 entry = start_entry; 2569 while ((entry != &map->header) && (entry->start < end)) { 2570 if (entry->wired_count == 0) { 2571 rv = KERN_INVALID_ARGUMENT; 2572 goto done; 2573 } 2574 entry = entry->next; 2575 } 2576 2577 /* 2578 * Now decrement the wiring count for each region. If a region 2579 * becomes completely unwired, unwire its physical pages and 2580 * mappings. 2581 */ 2582 entry = start_entry; 2583 while ((entry != &map->header) && (entry->start < end)) { 2584 entry->wired_count--; 2585 if (entry->wired_count == 0) 2586 vm_fault_unwire(map, entry); 2587 entry = entry->next; 2588 } 2589 } 2590 done: 2591 vm_map_unclip_range(map, start_entry, start, real_end, 2592 &count, MAP_CLIP_NO_HOLES); 2593 map->timestamp++; 2594 vm_map_unlock(map); 2595 failure: 2596 if (kmflags & KM_KRESERVE) 2597 vm_map_entry_krelease(count); 2598 else 2599 vm_map_entry_release(count); 2600 return (rv); 2601 } 2602 2603 /* 2604 * Mark a newly allocated address range as wired but do not fault in 2605 * the pages. The caller is expected to load the pages into the object. 2606 * 2607 * The map must be locked on entry and will remain locked on return. 2608 * No other requirements. 2609 */ 2610 void 2611 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2612 int *countp) 2613 { 2614 vm_map_entry_t scan; 2615 vm_map_entry_t entry; 2616 2617 entry = vm_map_clip_range(map, addr, addr + size, 2618 countp, MAP_CLIP_NO_HOLES); 2619 for (scan = entry; 2620 scan != &map->header && scan->start < addr + size; 2621 scan = scan->next) { 2622 KKASSERT(scan->wired_count == 0); 2623 scan->wired_count = 1; 2624 } 2625 vm_map_unclip_range(map, entry, addr, addr + size, 2626 countp, MAP_CLIP_NO_HOLES); 2627 } 2628 2629 /* 2630 * Push any dirty cached pages in the address range to their pager. 2631 * If syncio is TRUE, dirty pages are written synchronously. 2632 * If invalidate is TRUE, any cached pages are freed as well. 2633 * 2634 * This routine is called by sys_msync() 2635 * 2636 * Returns an error if any part of the specified range is not mapped. 2637 * 2638 * No requirements. 2639 */ 2640 int 2641 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2642 boolean_t syncio, boolean_t invalidate) 2643 { 2644 vm_map_entry_t current; 2645 vm_map_entry_t entry; 2646 vm_size_t size; 2647 vm_object_t object; 2648 vm_object_t tobj; 2649 vm_ooffset_t offset; 2650 2651 vm_map_lock_read(map); 2652 VM_MAP_RANGE_CHECK(map, start, end); 2653 if (!vm_map_lookup_entry(map, start, &entry)) { 2654 vm_map_unlock_read(map); 2655 return (KERN_INVALID_ADDRESS); 2656 } 2657 lwkt_gettoken(&map->token); 2658 2659 /* 2660 * Make a first pass to check for holes. 2661 */ 2662 for (current = entry; current->start < end; current = current->next) { 2663 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2664 lwkt_reltoken(&map->token); 2665 vm_map_unlock_read(map); 2666 return (KERN_INVALID_ARGUMENT); 2667 } 2668 if (end > current->end && 2669 (current->next == &map->header || 2670 current->end != current->next->start)) { 2671 lwkt_reltoken(&map->token); 2672 vm_map_unlock_read(map); 2673 return (KERN_INVALID_ADDRESS); 2674 } 2675 } 2676 2677 if (invalidate) 2678 pmap_remove(vm_map_pmap(map), start, end); 2679 2680 /* 2681 * Make a second pass, cleaning/uncaching pages from the indicated 2682 * objects as we go. 2683 */ 2684 for (current = entry; current->start < end; current = current->next) { 2685 offset = current->offset + (start - current->start); 2686 size = (end <= current->end ? end : current->end) - start; 2687 2688 switch(current->maptype) { 2689 case VM_MAPTYPE_SUBMAP: 2690 { 2691 vm_map_t smap; 2692 vm_map_entry_t tentry; 2693 vm_size_t tsize; 2694 2695 smap = current->object.sub_map; 2696 vm_map_lock_read(smap); 2697 vm_map_lookup_entry(smap, offset, &tentry); 2698 tsize = tentry->end - offset; 2699 if (tsize < size) 2700 size = tsize; 2701 object = tentry->object.vm_object; 2702 offset = tentry->offset + (offset - tentry->start); 2703 vm_map_unlock_read(smap); 2704 break; 2705 } 2706 case VM_MAPTYPE_NORMAL: 2707 case VM_MAPTYPE_VPAGETABLE: 2708 object = current->object.vm_object; 2709 break; 2710 default: 2711 object = NULL; 2712 break; 2713 } 2714 2715 if (object) 2716 vm_object_hold(object); 2717 2718 /* 2719 * Note that there is absolutely no sense in writing out 2720 * anonymous objects, so we track down the vnode object 2721 * to write out. 2722 * We invalidate (remove) all pages from the address space 2723 * anyway, for semantic correctness. 2724 * 2725 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2726 * may start out with a NULL object. 2727 */ 2728 while (object && (tobj = object->backing_object) != NULL) { 2729 vm_object_hold(tobj); 2730 if (tobj == object->backing_object) { 2731 vm_object_lock_swap(); 2732 offset += object->backing_object_offset; 2733 vm_object_drop(object); 2734 object = tobj; 2735 if (object->size < OFF_TO_IDX(offset + size)) 2736 size = IDX_TO_OFF(object->size) - 2737 offset; 2738 break; 2739 } 2740 vm_object_drop(tobj); 2741 } 2742 if (object && (object->type == OBJT_VNODE) && 2743 (current->protection & VM_PROT_WRITE) && 2744 (object->flags & OBJ_NOMSYNC) == 0) { 2745 /* 2746 * Flush pages if writing is allowed, invalidate them 2747 * if invalidation requested. Pages undergoing I/O 2748 * will be ignored by vm_object_page_remove(). 2749 * 2750 * We cannot lock the vnode and then wait for paging 2751 * to complete without deadlocking against vm_fault. 2752 * Instead we simply call vm_object_page_remove() and 2753 * allow it to block internally on a page-by-page 2754 * basis when it encounters pages undergoing async 2755 * I/O. 2756 */ 2757 int flags; 2758 2759 /* no chain wait needed for vnode objects */ 2760 vm_object_reference_locked(object); 2761 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2762 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2763 flags |= invalidate ? OBJPC_INVAL : 0; 2764 2765 /* 2766 * When operating on a virtual page table just 2767 * flush the whole object. XXX we probably ought 2768 * to 2769 */ 2770 switch(current->maptype) { 2771 case VM_MAPTYPE_NORMAL: 2772 vm_object_page_clean(object, 2773 OFF_TO_IDX(offset), 2774 OFF_TO_IDX(offset + size + PAGE_MASK), 2775 flags); 2776 break; 2777 case VM_MAPTYPE_VPAGETABLE: 2778 vm_object_page_clean(object, 0, 0, flags); 2779 break; 2780 } 2781 vn_unlock(((struct vnode *)object->handle)); 2782 vm_object_deallocate_locked(object); 2783 } 2784 if (object && invalidate && 2785 ((object->type == OBJT_VNODE) || 2786 (object->type == OBJT_DEVICE) || 2787 (object->type == OBJT_MGTDEVICE))) { 2788 int clean_only = 2789 ((object->type == OBJT_DEVICE) || 2790 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE; 2791 /* no chain wait needed for vnode/device objects */ 2792 vm_object_reference_locked(object); 2793 switch(current->maptype) { 2794 case VM_MAPTYPE_NORMAL: 2795 vm_object_page_remove(object, 2796 OFF_TO_IDX(offset), 2797 OFF_TO_IDX(offset + size + PAGE_MASK), 2798 clean_only); 2799 break; 2800 case VM_MAPTYPE_VPAGETABLE: 2801 vm_object_page_remove(object, 0, 0, clean_only); 2802 break; 2803 } 2804 vm_object_deallocate_locked(object); 2805 } 2806 start += size; 2807 if (object) 2808 vm_object_drop(object); 2809 } 2810 2811 lwkt_reltoken(&map->token); 2812 vm_map_unlock_read(map); 2813 2814 return (KERN_SUCCESS); 2815 } 2816 2817 /* 2818 * Make the region specified by this entry pageable. 2819 * 2820 * The vm_map must be exclusively locked. 2821 */ 2822 static void 2823 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2824 { 2825 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2826 entry->wired_count = 0; 2827 vm_fault_unwire(map, entry); 2828 } 2829 2830 /* 2831 * Deallocate the given entry from the target map. 2832 * 2833 * The vm_map must be exclusively locked. 2834 */ 2835 static void 2836 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2837 { 2838 vm_map_entry_unlink(map, entry); 2839 map->size -= entry->end - entry->start; 2840 2841 switch(entry->maptype) { 2842 case VM_MAPTYPE_NORMAL: 2843 case VM_MAPTYPE_VPAGETABLE: 2844 case VM_MAPTYPE_SUBMAP: 2845 vm_object_deallocate(entry->object.vm_object); 2846 break; 2847 case VM_MAPTYPE_UKSMAP: 2848 /* XXX TODO */ 2849 break; 2850 default: 2851 break; 2852 } 2853 2854 vm_map_entry_dispose(map, entry, countp); 2855 } 2856 2857 /* 2858 * Deallocates the given address range from the target map. 2859 * 2860 * The vm_map must be exclusively locked. 2861 */ 2862 int 2863 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2864 { 2865 vm_object_t object; 2866 vm_map_entry_t entry; 2867 vm_map_entry_t first_entry; 2868 2869 ASSERT_VM_MAP_LOCKED(map); 2870 lwkt_gettoken(&map->token); 2871 again: 2872 /* 2873 * Find the start of the region, and clip it. Set entry to point 2874 * at the first record containing the requested address or, if no 2875 * such record exists, the next record with a greater address. The 2876 * loop will run from this point until a record beyond the termination 2877 * address is encountered. 2878 * 2879 * map->hint must be adjusted to not point to anything we delete, 2880 * so set it to the entry prior to the one being deleted. 2881 * 2882 * GGG see other GGG comment. 2883 */ 2884 if (vm_map_lookup_entry(map, start, &first_entry)) { 2885 entry = first_entry; 2886 vm_map_clip_start(map, entry, start, countp); 2887 map->hint = entry->prev; /* possible problem XXX */ 2888 } else { 2889 map->hint = first_entry; /* possible problem XXX */ 2890 entry = first_entry->next; 2891 } 2892 2893 /* 2894 * If a hole opens up prior to the current first_free then 2895 * adjust first_free. As with map->hint, map->first_free 2896 * cannot be left set to anything we might delete. 2897 */ 2898 if (entry == &map->header) { 2899 map->first_free = &map->header; 2900 } else if (map->first_free->start >= start) { 2901 map->first_free = entry->prev; 2902 } 2903 2904 /* 2905 * Step through all entries in this region 2906 */ 2907 while ((entry != &map->header) && (entry->start < end)) { 2908 vm_map_entry_t next; 2909 vm_offset_t s, e; 2910 vm_pindex_t offidxstart, offidxend, count; 2911 2912 /* 2913 * If we hit an in-transition entry we have to sleep and 2914 * retry. It's easier (and not really slower) to just retry 2915 * since this case occurs so rarely and the hint is already 2916 * pointing at the right place. We have to reset the 2917 * start offset so as not to accidently delete an entry 2918 * another process just created in vacated space. 2919 */ 2920 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2921 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2922 start = entry->start; 2923 ++mycpu->gd_cnt.v_intrans_coll; 2924 ++mycpu->gd_cnt.v_intrans_wait; 2925 vm_map_transition_wait(map); 2926 goto again; 2927 } 2928 vm_map_clip_end(map, entry, end, countp); 2929 2930 s = entry->start; 2931 e = entry->end; 2932 next = entry->next; 2933 2934 offidxstart = OFF_TO_IDX(entry->offset); 2935 count = OFF_TO_IDX(e - s); 2936 2937 switch(entry->maptype) { 2938 case VM_MAPTYPE_NORMAL: 2939 case VM_MAPTYPE_VPAGETABLE: 2940 case VM_MAPTYPE_SUBMAP: 2941 object = entry->object.vm_object; 2942 break; 2943 default: 2944 object = NULL; 2945 break; 2946 } 2947 2948 /* 2949 * Unwire before removing addresses from the pmap; otherwise, 2950 * unwiring will put the entries back in the pmap. 2951 */ 2952 if (entry->wired_count != 0) 2953 vm_map_entry_unwire(map, entry); 2954 2955 offidxend = offidxstart + count; 2956 2957 if (object == &kernel_object) { 2958 vm_object_hold(object); 2959 vm_object_page_remove(object, offidxstart, 2960 offidxend, FALSE); 2961 vm_object_drop(object); 2962 } else if (object && object->type != OBJT_DEFAULT && 2963 object->type != OBJT_SWAP) { 2964 /* 2965 * vnode object routines cannot be chain-locked, 2966 * but since we aren't removing pages from the 2967 * object here we can use a shared hold. 2968 */ 2969 vm_object_hold_shared(object); 2970 pmap_remove(map->pmap, s, e); 2971 vm_object_drop(object); 2972 } else if (object) { 2973 vm_object_hold(object); 2974 vm_object_chain_acquire(object, 0); 2975 pmap_remove(map->pmap, s, e); 2976 2977 if (object != NULL && 2978 object->ref_count != 1 && 2979 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 2980 OBJ_ONEMAPPING && 2981 (object->type == OBJT_DEFAULT || 2982 object->type == OBJT_SWAP)) { 2983 vm_object_collapse(object, NULL); 2984 vm_object_page_remove(object, offidxstart, 2985 offidxend, FALSE); 2986 if (object->type == OBJT_SWAP) { 2987 swap_pager_freespace(object, 2988 offidxstart, 2989 count); 2990 } 2991 if (offidxend >= object->size && 2992 offidxstart < object->size) { 2993 object->size = offidxstart; 2994 } 2995 } 2996 vm_object_chain_release(object); 2997 vm_object_drop(object); 2998 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) { 2999 pmap_remove(map->pmap, s, e); 3000 } 3001 3002 /* 3003 * Delete the entry (which may delete the object) only after 3004 * removing all pmap entries pointing to its pages. 3005 * (Otherwise, its page frames may be reallocated, and any 3006 * modify bits will be set in the wrong object!) 3007 */ 3008 vm_map_entry_delete(map, entry, countp); 3009 entry = next; 3010 } 3011 lwkt_reltoken(&map->token); 3012 return (KERN_SUCCESS); 3013 } 3014 3015 /* 3016 * Remove the given address range from the target map. 3017 * This is the exported form of vm_map_delete. 3018 * 3019 * No requirements. 3020 */ 3021 int 3022 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3023 { 3024 int result; 3025 int count; 3026 3027 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3028 vm_map_lock(map); 3029 VM_MAP_RANGE_CHECK(map, start, end); 3030 result = vm_map_delete(map, start, end, &count); 3031 vm_map_unlock(map); 3032 vm_map_entry_release(count); 3033 3034 return (result); 3035 } 3036 3037 /* 3038 * Assert that the target map allows the specified privilege on the 3039 * entire address region given. The entire region must be allocated. 3040 * 3041 * The caller must specify whether the vm_map is already locked or not. 3042 */ 3043 boolean_t 3044 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3045 vm_prot_t protection, boolean_t have_lock) 3046 { 3047 vm_map_entry_t entry; 3048 vm_map_entry_t tmp_entry; 3049 boolean_t result; 3050 3051 if (have_lock == FALSE) 3052 vm_map_lock_read(map); 3053 3054 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 3055 if (have_lock == FALSE) 3056 vm_map_unlock_read(map); 3057 return (FALSE); 3058 } 3059 entry = tmp_entry; 3060 3061 result = TRUE; 3062 while (start < end) { 3063 if (entry == &map->header) { 3064 result = FALSE; 3065 break; 3066 } 3067 /* 3068 * No holes allowed! 3069 */ 3070 3071 if (start < entry->start) { 3072 result = FALSE; 3073 break; 3074 } 3075 /* 3076 * Check protection associated with entry. 3077 */ 3078 3079 if ((entry->protection & protection) != protection) { 3080 result = FALSE; 3081 break; 3082 } 3083 /* go to next entry */ 3084 3085 start = entry->end; 3086 entry = entry->next; 3087 } 3088 if (have_lock == FALSE) 3089 vm_map_unlock_read(map); 3090 return (result); 3091 } 3092 3093 /* 3094 * If appropriate this function shadows the original object with a new object 3095 * and moves the VM pages from the original object to the new object. 3096 * The original object will also be collapsed, if possible. 3097 * 3098 * We can only do this for normal memory objects with a single mapping, and 3099 * it only makes sense to do it if there are 2 or more refs on the original 3100 * object. i.e. typically a memory object that has been extended into 3101 * multiple vm_map_entry's with non-overlapping ranges. 3102 * 3103 * This makes it easier to remove unused pages and keeps object inheritance 3104 * from being a negative impact on memory usage. 3105 * 3106 * On return the (possibly new) entry->object.vm_object will have an 3107 * additional ref on it for the caller to dispose of (usually by cloning 3108 * the vm_map_entry). The additional ref had to be done in this routine 3109 * to avoid racing a collapse. The object's ONEMAPPING flag will also be 3110 * cleared. 3111 * 3112 * The vm_map must be locked and its token held. 3113 */ 3114 static void 3115 vm_map_split(vm_map_entry_t entry) 3116 { 3117 /* OPTIMIZED */ 3118 vm_object_t oobject, nobject, bobject; 3119 vm_offset_t s, e; 3120 vm_page_t m; 3121 vm_pindex_t offidxstart, offidxend, idx; 3122 vm_size_t size; 3123 vm_ooffset_t offset; 3124 int useshadowlist; 3125 3126 /* 3127 * Optimize away object locks for vnode objects. Important exit/exec 3128 * critical path. 3129 * 3130 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag 3131 * anyway. 3132 */ 3133 oobject = entry->object.vm_object; 3134 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) { 3135 vm_object_reference_quick(oobject); 3136 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3137 return; 3138 } 3139 3140 /* 3141 * Setup. Chain lock the original object throughout the entire 3142 * routine to prevent new page faults from occuring. 3143 * 3144 * XXX can madvise WILLNEED interfere with us too? 3145 */ 3146 vm_object_hold(oobject); 3147 vm_object_chain_acquire(oobject, 0); 3148 3149 /* 3150 * Original object cannot be split? Might have also changed state. 3151 */ 3152 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT && 3153 oobject->type != OBJT_SWAP)) { 3154 vm_object_chain_release(oobject); 3155 vm_object_reference_locked(oobject); 3156 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3157 vm_object_drop(oobject); 3158 return; 3159 } 3160 3161 /* 3162 * Collapse original object with its backing store as an 3163 * optimization to reduce chain lengths when possible. 3164 * 3165 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's 3166 * for oobject, so there's no point collapsing it. 3167 * 3168 * Then re-check whether the object can be split. 3169 */ 3170 vm_object_collapse(oobject, NULL); 3171 3172 if (oobject->ref_count <= 1 || 3173 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) || 3174 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) { 3175 vm_object_chain_release(oobject); 3176 vm_object_reference_locked(oobject); 3177 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3178 vm_object_drop(oobject); 3179 return; 3180 } 3181 3182 /* 3183 * Acquire the chain lock on the backing object. 3184 * 3185 * Give bobject an additional ref count for when it will be shadowed 3186 * by nobject. 3187 */ 3188 useshadowlist = 0; 3189 if ((bobject = oobject->backing_object) != NULL) { 3190 if (bobject->type != OBJT_VNODE) { 3191 useshadowlist = 1; 3192 vm_object_hold(bobject); 3193 vm_object_chain_wait(bobject, 0); 3194 /* ref for shadowing below */ 3195 vm_object_reference_locked(bobject); 3196 vm_object_chain_acquire(bobject, 0); 3197 KKASSERT(bobject->backing_object == bobject); 3198 KKASSERT((bobject->flags & OBJ_DEAD) == 0); 3199 } else { 3200 /* 3201 * vnodes are not placed on the shadow list but 3202 * they still get another ref for the backing_object 3203 * reference. 3204 */ 3205 vm_object_reference_quick(bobject); 3206 } 3207 } 3208 3209 /* 3210 * Calculate the object page range and allocate the new object. 3211 */ 3212 offset = entry->offset; 3213 s = entry->start; 3214 e = entry->end; 3215 3216 offidxstart = OFF_TO_IDX(offset); 3217 offidxend = offidxstart + OFF_TO_IDX(e - s); 3218 size = offidxend - offidxstart; 3219 3220 switch(oobject->type) { 3221 case OBJT_DEFAULT: 3222 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size), 3223 VM_PROT_ALL, 0); 3224 break; 3225 case OBJT_SWAP: 3226 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size), 3227 VM_PROT_ALL, 0); 3228 break; 3229 default: 3230 /* not reached */ 3231 nobject = NULL; 3232 KKASSERT(0); 3233 } 3234 3235 if (nobject == NULL) { 3236 if (bobject) { 3237 if (useshadowlist) { 3238 vm_object_chain_release(bobject); 3239 vm_object_deallocate(bobject); 3240 vm_object_drop(bobject); 3241 } else { 3242 vm_object_deallocate(bobject); 3243 } 3244 } 3245 vm_object_chain_release(oobject); 3246 vm_object_reference_locked(oobject); 3247 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3248 vm_object_drop(oobject); 3249 return; 3250 } 3251 3252 /* 3253 * The new object will replace entry->object.vm_object so it needs 3254 * a second reference (the caller expects an additional ref). 3255 */ 3256 vm_object_hold(nobject); 3257 vm_object_reference_locked(nobject); 3258 vm_object_chain_acquire(nobject, 0); 3259 3260 /* 3261 * nobject shadows bobject (oobject already shadows bobject). 3262 * 3263 * Adding an object to bobject's shadow list requires refing bobject 3264 * which we did above in the useshadowlist case. 3265 */ 3266 if (bobject) { 3267 nobject->backing_object_offset = 3268 oobject->backing_object_offset + IDX_TO_OFF(offidxstart); 3269 nobject->backing_object = bobject; 3270 if (useshadowlist) { 3271 bobject->shadow_count++; 3272 atomic_add_int(&bobject->generation, 1); 3273 LIST_INSERT_HEAD(&bobject->shadow_head, 3274 nobject, shadow_list); 3275 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/ 3276 vm_object_chain_release(bobject); 3277 vm_object_drop(bobject); 3278 vm_object_set_flag(nobject, OBJ_ONSHADOW); 3279 } 3280 } 3281 3282 /* 3283 * Move the VM pages from oobject to nobject 3284 */ 3285 for (idx = 0; idx < size; idx++) { 3286 vm_page_t m; 3287 3288 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx, 3289 TRUE, "vmpg"); 3290 if (m == NULL) 3291 continue; 3292 3293 /* 3294 * We must wait for pending I/O to complete before we can 3295 * rename the page. 3296 * 3297 * We do not have to VM_PROT_NONE the page as mappings should 3298 * not be changed by this operation. 3299 * 3300 * NOTE: The act of renaming a page updates chaingen for both 3301 * objects. 3302 */ 3303 vm_page_rename(m, nobject, idx); 3304 /* page automatically made dirty by rename and cache handled */ 3305 /* page remains busy */ 3306 } 3307 3308 if (oobject->type == OBJT_SWAP) { 3309 vm_object_pip_add(oobject, 1); 3310 /* 3311 * copy oobject pages into nobject and destroy unneeded 3312 * pages in shadow object. 3313 */ 3314 swap_pager_copy(oobject, nobject, offidxstart, 0); 3315 vm_object_pip_wakeup(oobject); 3316 } 3317 3318 /* 3319 * Wakeup the pages we played with. No spl protection is needed 3320 * for a simple wakeup. 3321 */ 3322 for (idx = 0; idx < size; idx++) { 3323 m = vm_page_lookup(nobject, idx); 3324 if (m) { 3325 KKASSERT(m->flags & PG_BUSY); 3326 vm_page_wakeup(m); 3327 } 3328 } 3329 entry->object.vm_object = nobject; 3330 entry->offset = 0LL; 3331 3332 /* 3333 * Cleanup 3334 * 3335 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the 3336 * related pages were moved and are no longer applicable to the 3337 * original object. 3338 * 3339 * NOTE: Deallocate oobject (due to its entry->object.vm_object being 3340 * replaced by nobject). 3341 */ 3342 vm_object_chain_release(nobject); 3343 vm_object_drop(nobject); 3344 if (bobject && useshadowlist) { 3345 vm_object_chain_release(bobject); 3346 vm_object_drop(bobject); 3347 } 3348 vm_object_chain_release(oobject); 3349 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/ 3350 vm_object_deallocate_locked(oobject); 3351 vm_object_drop(oobject); 3352 } 3353 3354 /* 3355 * Copies the contents of the source entry to the destination 3356 * entry. The entries *must* be aligned properly. 3357 * 3358 * The vm_maps must be exclusively locked. 3359 * The vm_map's token must be held. 3360 * 3361 * Because the maps are locked no faults can be in progress during the 3362 * operation. 3363 */ 3364 static void 3365 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 3366 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 3367 { 3368 vm_object_t src_object; 3369 3370 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP || 3371 dst_entry->maptype == VM_MAPTYPE_UKSMAP) 3372 return; 3373 if (src_entry->maptype == VM_MAPTYPE_SUBMAP || 3374 src_entry->maptype == VM_MAPTYPE_UKSMAP) 3375 return; 3376 3377 if (src_entry->wired_count == 0) { 3378 /* 3379 * If the source entry is marked needs_copy, it is already 3380 * write-protected. 3381 */ 3382 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3383 pmap_protect(src_map->pmap, 3384 src_entry->start, 3385 src_entry->end, 3386 src_entry->protection & ~VM_PROT_WRITE); 3387 } 3388 3389 /* 3390 * Make a copy of the object. 3391 * 3392 * The object must be locked prior to checking the object type 3393 * and for the call to vm_object_collapse() and vm_map_split(). 3394 * We cannot use *_hold() here because the split code will 3395 * probably try to destroy the object. The lock is a pool 3396 * token and doesn't care. 3397 * 3398 * We must bump src_map->timestamp when setting 3399 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault 3400 * to retry, otherwise the concurrent fault might improperly 3401 * install a RW pte when its supposed to be a RO(COW) pte. 3402 * This race can occur because a vnode-backed fault may have 3403 * to temporarily release the map lock. 3404 */ 3405 if (src_entry->object.vm_object != NULL) { 3406 vm_map_split(src_entry); 3407 src_object = src_entry->object.vm_object; 3408 dst_entry->object.vm_object = src_object; 3409 src_entry->eflags |= (MAP_ENTRY_COW | 3410 MAP_ENTRY_NEEDS_COPY); 3411 dst_entry->eflags |= (MAP_ENTRY_COW | 3412 MAP_ENTRY_NEEDS_COPY); 3413 dst_entry->offset = src_entry->offset; 3414 ++src_map->timestamp; 3415 } else { 3416 dst_entry->object.vm_object = NULL; 3417 dst_entry->offset = 0; 3418 } 3419 3420 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3421 dst_entry->end - dst_entry->start, src_entry->start); 3422 } else { 3423 /* 3424 * Of course, wired down pages can't be set copy-on-write. 3425 * Cause wired pages to be copied into the new map by 3426 * simulating faults (the new pages are pageable) 3427 */ 3428 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3429 } 3430 } 3431 3432 /* 3433 * vmspace_fork: 3434 * Create a new process vmspace structure and vm_map 3435 * based on those of an existing process. The new map 3436 * is based on the old map, according to the inheritance 3437 * values on the regions in that map. 3438 * 3439 * The source map must not be locked. 3440 * No requirements. 3441 */ 3442 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3443 vm_map_entry_t old_entry, int *countp); 3444 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3445 vm_map_entry_t old_entry, int *countp); 3446 3447 struct vmspace * 3448 vmspace_fork(struct vmspace *vm1) 3449 { 3450 struct vmspace *vm2; 3451 vm_map_t old_map = &vm1->vm_map; 3452 vm_map_t new_map; 3453 vm_map_entry_t old_entry; 3454 int count; 3455 3456 lwkt_gettoken(&vm1->vm_map.token); 3457 vm_map_lock(old_map); 3458 3459 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3460 lwkt_gettoken(&vm2->vm_map.token); 3461 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3462 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3463 new_map = &vm2->vm_map; /* XXX */ 3464 new_map->timestamp = 1; 3465 3466 vm_map_lock(new_map); 3467 3468 count = 0; 3469 old_entry = old_map->header.next; 3470 while (old_entry != &old_map->header) { 3471 ++count; 3472 old_entry = old_entry->next; 3473 } 3474 3475 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3476 3477 old_entry = old_map->header.next; 3478 while (old_entry != &old_map->header) { 3479 switch(old_entry->maptype) { 3480 case VM_MAPTYPE_SUBMAP: 3481 panic("vm_map_fork: encountered a submap"); 3482 break; 3483 case VM_MAPTYPE_UKSMAP: 3484 vmspace_fork_uksmap_entry(old_map, new_map, 3485 old_entry, &count); 3486 break; 3487 case VM_MAPTYPE_NORMAL: 3488 case VM_MAPTYPE_VPAGETABLE: 3489 vmspace_fork_normal_entry(old_map, new_map, 3490 old_entry, &count); 3491 break; 3492 } 3493 old_entry = old_entry->next; 3494 } 3495 3496 new_map->size = old_map->size; 3497 vm_map_unlock(old_map); 3498 vm_map_unlock(new_map); 3499 vm_map_entry_release(count); 3500 3501 lwkt_reltoken(&vm2->vm_map.token); 3502 lwkt_reltoken(&vm1->vm_map.token); 3503 3504 return (vm2); 3505 } 3506 3507 static 3508 void 3509 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3510 vm_map_entry_t old_entry, int *countp) 3511 { 3512 vm_map_entry_t new_entry; 3513 vm_object_t object; 3514 3515 switch (old_entry->inheritance) { 3516 case VM_INHERIT_NONE: 3517 break; 3518 case VM_INHERIT_SHARE: 3519 /* 3520 * Clone the entry, creating the shared object if 3521 * necessary. 3522 */ 3523 if (old_entry->object.vm_object == NULL) 3524 vm_map_entry_allocate_object(old_entry); 3525 3526 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3527 /* 3528 * Shadow a map_entry which needs a copy, 3529 * replacing its object with a new object 3530 * that points to the old one. Ask the 3531 * shadow code to automatically add an 3532 * additional ref. We can't do it afterwords 3533 * because we might race a collapse. The call 3534 * to vm_map_entry_shadow() will also clear 3535 * OBJ_ONEMAPPING. 3536 */ 3537 vm_map_entry_shadow(old_entry, 1); 3538 } else if (old_entry->object.vm_object) { 3539 /* 3540 * We will make a shared copy of the object, 3541 * and must clear OBJ_ONEMAPPING. 3542 * 3543 * Optimize vnode objects. OBJ_ONEMAPPING 3544 * is non-applicable but clear it anyway, 3545 * and its terminal so we don'th ave to deal 3546 * with chains. Reduces SMP conflicts. 3547 * 3548 * XXX assert that object.vm_object != NULL 3549 * since we allocate it above. 3550 */ 3551 object = old_entry->object.vm_object; 3552 if (object->type == OBJT_VNODE) { 3553 vm_object_reference_quick(object); 3554 vm_object_clear_flag(object, 3555 OBJ_ONEMAPPING); 3556 } else { 3557 vm_object_hold(object); 3558 vm_object_chain_wait(object, 0); 3559 vm_object_reference_locked(object); 3560 vm_object_clear_flag(object, 3561 OBJ_ONEMAPPING); 3562 vm_object_drop(object); 3563 } 3564 } 3565 3566 /* 3567 * Clone the entry. We've already bumped the ref on 3568 * any vm_object. 3569 */ 3570 new_entry = vm_map_entry_create(new_map, countp); 3571 *new_entry = *old_entry; 3572 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3573 new_entry->wired_count = 0; 3574 3575 /* 3576 * Insert the entry into the new map -- we know we're 3577 * inserting at the end of the new map. 3578 */ 3579 3580 vm_map_entry_link(new_map, new_map->header.prev, 3581 new_entry); 3582 3583 /* 3584 * Update the physical map 3585 */ 3586 pmap_copy(new_map->pmap, old_map->pmap, 3587 new_entry->start, 3588 (old_entry->end - old_entry->start), 3589 old_entry->start); 3590 break; 3591 case VM_INHERIT_COPY: 3592 /* 3593 * Clone the entry and link into the map. 3594 */ 3595 new_entry = vm_map_entry_create(new_map, countp); 3596 *new_entry = *old_entry; 3597 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3598 new_entry->wired_count = 0; 3599 new_entry->object.vm_object = NULL; 3600 vm_map_entry_link(new_map, new_map->header.prev, 3601 new_entry); 3602 vm_map_copy_entry(old_map, new_map, old_entry, 3603 new_entry); 3604 break; 3605 } 3606 } 3607 3608 /* 3609 * When forking user-kernel shared maps, the map might change in the 3610 * child so do not try to copy the underlying pmap entries. 3611 */ 3612 static 3613 void 3614 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3615 vm_map_entry_t old_entry, int *countp) 3616 { 3617 vm_map_entry_t new_entry; 3618 3619 new_entry = vm_map_entry_create(new_map, countp); 3620 *new_entry = *old_entry; 3621 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3622 new_entry->wired_count = 0; 3623 vm_map_entry_link(new_map, new_map->header.prev, 3624 new_entry); 3625 } 3626 3627 /* 3628 * Create an auto-grow stack entry 3629 * 3630 * No requirements. 3631 */ 3632 int 3633 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3634 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3635 { 3636 vm_map_entry_t prev_entry; 3637 vm_map_entry_t new_stack_entry; 3638 vm_size_t init_ssize; 3639 int rv; 3640 int count; 3641 vm_offset_t tmpaddr; 3642 3643 cow |= MAP_IS_STACK; 3644 3645 if (max_ssize < sgrowsiz) 3646 init_ssize = max_ssize; 3647 else 3648 init_ssize = sgrowsiz; 3649 3650 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3651 vm_map_lock(map); 3652 3653 /* 3654 * Find space for the mapping 3655 */ 3656 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3657 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3658 flags, &tmpaddr)) { 3659 vm_map_unlock(map); 3660 vm_map_entry_release(count); 3661 return (KERN_NO_SPACE); 3662 } 3663 addrbos = tmpaddr; 3664 } 3665 3666 /* If addr is already mapped, no go */ 3667 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3668 vm_map_unlock(map); 3669 vm_map_entry_release(count); 3670 return (KERN_NO_SPACE); 3671 } 3672 3673 #if 0 3674 /* XXX already handled by kern_mmap() */ 3675 /* If we would blow our VMEM resource limit, no go */ 3676 if (map->size + init_ssize > 3677 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3678 vm_map_unlock(map); 3679 vm_map_entry_release(count); 3680 return (KERN_NO_SPACE); 3681 } 3682 #endif 3683 3684 /* 3685 * If we can't accomodate max_ssize in the current mapping, 3686 * no go. However, we need to be aware that subsequent user 3687 * mappings might map into the space we have reserved for 3688 * stack, and currently this space is not protected. 3689 * 3690 * Hopefully we will at least detect this condition 3691 * when we try to grow the stack. 3692 */ 3693 if ((prev_entry->next != &map->header) && 3694 (prev_entry->next->start < addrbos + max_ssize)) { 3695 vm_map_unlock(map); 3696 vm_map_entry_release(count); 3697 return (KERN_NO_SPACE); 3698 } 3699 3700 /* 3701 * We initially map a stack of only init_ssize. We will 3702 * grow as needed later. Since this is to be a grow 3703 * down stack, we map at the top of the range. 3704 * 3705 * Note: we would normally expect prot and max to be 3706 * VM_PROT_ALL, and cow to be 0. Possibly we should 3707 * eliminate these as input parameters, and just 3708 * pass these values here in the insert call. 3709 */ 3710 rv = vm_map_insert(map, &count, NULL, NULL, 3711 0, addrbos + max_ssize - init_ssize, 3712 addrbos + max_ssize, 3713 VM_MAPTYPE_NORMAL, 3714 VM_SUBSYS_STACK, prot, max, cow); 3715 3716 /* Now set the avail_ssize amount */ 3717 if (rv == KERN_SUCCESS) { 3718 if (prev_entry != &map->header) 3719 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3720 new_stack_entry = prev_entry->next; 3721 if (new_stack_entry->end != addrbos + max_ssize || 3722 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3723 panic ("Bad entry start/end for new stack entry"); 3724 else 3725 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3726 } 3727 3728 vm_map_unlock(map); 3729 vm_map_entry_release(count); 3730 return (rv); 3731 } 3732 3733 /* 3734 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3735 * desired address is already mapped, or if we successfully grow 3736 * the stack. Also returns KERN_SUCCESS if addr is outside the 3737 * stack range (this is strange, but preserves compatibility with 3738 * the grow function in vm_machdep.c). 3739 * 3740 * No requirements. 3741 */ 3742 int 3743 vm_map_growstack (vm_map_t map, vm_offset_t addr) 3744 { 3745 vm_map_entry_t prev_entry; 3746 vm_map_entry_t stack_entry; 3747 vm_map_entry_t new_stack_entry; 3748 struct vmspace *vm; 3749 struct lwp *lp; 3750 struct proc *p; 3751 vm_offset_t end; 3752 int grow_amount; 3753 int rv = KERN_SUCCESS; 3754 int is_procstack; 3755 int use_read_lock = 1; 3756 int count; 3757 3758 /* 3759 * Find the vm 3760 */ 3761 lp = curthread->td_lwp; 3762 p = curthread->td_proc; 3763 KKASSERT(lp != NULL); 3764 vm = lp->lwp_vmspace; 3765 KKASSERT(map == &vm->vm_map); 3766 3767 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3768 Retry: 3769 if (use_read_lock) 3770 vm_map_lock_read(map); 3771 else 3772 vm_map_lock(map); 3773 3774 /* If addr is already in the entry range, no need to grow.*/ 3775 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3776 goto done; 3777 3778 if ((stack_entry = prev_entry->next) == &map->header) 3779 goto done; 3780 if (prev_entry == &map->header) 3781 end = stack_entry->start - stack_entry->aux.avail_ssize; 3782 else 3783 end = prev_entry->end; 3784 3785 /* 3786 * This next test mimics the old grow function in vm_machdep.c. 3787 * It really doesn't quite make sense, but we do it anyway 3788 * for compatibility. 3789 * 3790 * If not growable stack, return success. This signals the 3791 * caller to proceed as he would normally with normal vm. 3792 */ 3793 if (stack_entry->aux.avail_ssize < 1 || 3794 addr >= stack_entry->start || 3795 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3796 goto done; 3797 } 3798 3799 /* Find the minimum grow amount */ 3800 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3801 if (grow_amount > stack_entry->aux.avail_ssize) { 3802 rv = KERN_NO_SPACE; 3803 goto done; 3804 } 3805 3806 /* 3807 * If there is no longer enough space between the entries 3808 * nogo, and adjust the available space. Note: this 3809 * should only happen if the user has mapped into the 3810 * stack area after the stack was created, and is 3811 * probably an error. 3812 * 3813 * This also effectively destroys any guard page the user 3814 * might have intended by limiting the stack size. 3815 */ 3816 if (grow_amount > stack_entry->start - end) { 3817 if (use_read_lock && vm_map_lock_upgrade(map)) { 3818 /* lost lock */ 3819 use_read_lock = 0; 3820 goto Retry; 3821 } 3822 use_read_lock = 0; 3823 stack_entry->aux.avail_ssize = stack_entry->start - end; 3824 rv = KERN_NO_SPACE; 3825 goto done; 3826 } 3827 3828 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3829 3830 /* If this is the main process stack, see if we're over the 3831 * stack limit. 3832 */ 3833 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3834 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3835 rv = KERN_NO_SPACE; 3836 goto done; 3837 } 3838 3839 /* Round up the grow amount modulo SGROWSIZ */ 3840 grow_amount = roundup (grow_amount, sgrowsiz); 3841 if (grow_amount > stack_entry->aux.avail_ssize) { 3842 grow_amount = stack_entry->aux.avail_ssize; 3843 } 3844 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3845 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3846 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3847 ctob(vm->vm_ssize); 3848 } 3849 3850 /* If we would blow our VMEM resource limit, no go */ 3851 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3852 rv = KERN_NO_SPACE; 3853 goto done; 3854 } 3855 3856 if (use_read_lock && vm_map_lock_upgrade(map)) { 3857 /* lost lock */ 3858 use_read_lock = 0; 3859 goto Retry; 3860 } 3861 use_read_lock = 0; 3862 3863 /* Get the preliminary new entry start value */ 3864 addr = stack_entry->start - grow_amount; 3865 3866 /* If this puts us into the previous entry, cut back our growth 3867 * to the available space. Also, see the note above. 3868 */ 3869 if (addr < end) { 3870 stack_entry->aux.avail_ssize = stack_entry->start - end; 3871 addr = end; 3872 } 3873 3874 rv = vm_map_insert(map, &count, NULL, NULL, 3875 0, addr, stack_entry->start, 3876 VM_MAPTYPE_NORMAL, 3877 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0); 3878 3879 /* Adjust the available stack space by the amount we grew. */ 3880 if (rv == KERN_SUCCESS) { 3881 if (prev_entry != &map->header) 3882 vm_map_clip_end(map, prev_entry, addr, &count); 3883 new_stack_entry = prev_entry->next; 3884 if (new_stack_entry->end != stack_entry->start || 3885 new_stack_entry->start != addr) 3886 panic ("Bad stack grow start/end in new stack entry"); 3887 else { 3888 new_stack_entry->aux.avail_ssize = 3889 stack_entry->aux.avail_ssize - 3890 (new_stack_entry->end - new_stack_entry->start); 3891 if (is_procstack) 3892 vm->vm_ssize += btoc(new_stack_entry->end - 3893 new_stack_entry->start); 3894 } 3895 3896 if (map->flags & MAP_WIREFUTURE) 3897 vm_map_unwire(map, new_stack_entry->start, 3898 new_stack_entry->end, FALSE); 3899 } 3900 3901 done: 3902 if (use_read_lock) 3903 vm_map_unlock_read(map); 3904 else 3905 vm_map_unlock(map); 3906 vm_map_entry_release(count); 3907 return (rv); 3908 } 3909 3910 /* 3911 * Unshare the specified VM space for exec. If other processes are 3912 * mapped to it, then create a new one. The new vmspace is null. 3913 * 3914 * No requirements. 3915 */ 3916 void 3917 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3918 { 3919 struct vmspace *oldvmspace = p->p_vmspace; 3920 struct vmspace *newvmspace; 3921 vm_map_t map = &p->p_vmspace->vm_map; 3922 3923 /* 3924 * If we are execing a resident vmspace we fork it, otherwise 3925 * we create a new vmspace. Note that exitingcnt is not 3926 * copied to the new vmspace. 3927 */ 3928 lwkt_gettoken(&oldvmspace->vm_map.token); 3929 if (vmcopy) { 3930 newvmspace = vmspace_fork(vmcopy); 3931 lwkt_gettoken(&newvmspace->vm_map.token); 3932 } else { 3933 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3934 lwkt_gettoken(&newvmspace->vm_map.token); 3935 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3936 (caddr_t)&oldvmspace->vm_endcopy - 3937 (caddr_t)&oldvmspace->vm_startcopy); 3938 } 3939 3940 /* 3941 * Finish initializing the vmspace before assigning it 3942 * to the process. The vmspace will become the current vmspace 3943 * if p == curproc. 3944 */ 3945 pmap_pinit2(vmspace_pmap(newvmspace)); 3946 pmap_replacevm(p, newvmspace, 0); 3947 lwkt_reltoken(&newvmspace->vm_map.token); 3948 lwkt_reltoken(&oldvmspace->vm_map.token); 3949 vmspace_rel(oldvmspace); 3950 } 3951 3952 /* 3953 * Unshare the specified VM space for forcing COW. This 3954 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3955 */ 3956 void 3957 vmspace_unshare(struct proc *p) 3958 { 3959 struct vmspace *oldvmspace = p->p_vmspace; 3960 struct vmspace *newvmspace; 3961 3962 lwkt_gettoken(&oldvmspace->vm_map.token); 3963 if (vmspace_getrefs(oldvmspace) == 1) { 3964 lwkt_reltoken(&oldvmspace->vm_map.token); 3965 return; 3966 } 3967 newvmspace = vmspace_fork(oldvmspace); 3968 lwkt_gettoken(&newvmspace->vm_map.token); 3969 pmap_pinit2(vmspace_pmap(newvmspace)); 3970 pmap_replacevm(p, newvmspace, 0); 3971 lwkt_reltoken(&newvmspace->vm_map.token); 3972 lwkt_reltoken(&oldvmspace->vm_map.token); 3973 vmspace_rel(oldvmspace); 3974 } 3975 3976 /* 3977 * vm_map_hint: return the beginning of the best area suitable for 3978 * creating a new mapping with "prot" protection. 3979 * 3980 * No requirements. 3981 */ 3982 vm_offset_t 3983 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot) 3984 { 3985 struct vmspace *vms = p->p_vmspace; 3986 3987 if (!randomize_mmap || addr != 0) { 3988 /* 3989 * Set a reasonable start point for the hint if it was 3990 * not specified or if it falls within the heap space. 3991 * Hinted mmap()s do not allocate out of the heap space. 3992 */ 3993 if (addr == 0 || 3994 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 3995 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) { 3996 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz); 3997 } 3998 3999 return addr; 4000 } 4001 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ; 4002 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1); 4003 4004 return (round_page(addr)); 4005 } 4006 4007 /* 4008 * Finds the VM object, offset, and protection for a given virtual address 4009 * in the specified map, assuming a page fault of the type specified. 4010 * 4011 * Leaves the map in question locked for read; return values are guaranteed 4012 * until a vm_map_lookup_done call is performed. Note that the map argument 4013 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 4014 * 4015 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 4016 * that fast. 4017 * 4018 * If a lookup is requested with "write protection" specified, the map may 4019 * be changed to perform virtual copying operations, although the data 4020 * referenced will remain the same. 4021 * 4022 * No requirements. 4023 */ 4024 int 4025 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4026 vm_offset_t vaddr, 4027 vm_prot_t fault_typea, 4028 vm_map_entry_t *out_entry, /* OUT */ 4029 vm_object_t *object, /* OUT */ 4030 vm_pindex_t *pindex, /* OUT */ 4031 vm_prot_t *out_prot, /* OUT */ 4032 boolean_t *wired) /* OUT */ 4033 { 4034 vm_map_entry_t entry; 4035 vm_map_t map = *var_map; 4036 vm_prot_t prot; 4037 vm_prot_t fault_type = fault_typea; 4038 int use_read_lock = 1; 4039 int rv = KERN_SUCCESS; 4040 4041 RetryLookup: 4042 if (use_read_lock) 4043 vm_map_lock_read(map); 4044 else 4045 vm_map_lock(map); 4046 4047 /* 4048 * If the map has an interesting hint, try it before calling full 4049 * blown lookup routine. 4050 */ 4051 entry = map->hint; 4052 cpu_ccfence(); 4053 *out_entry = entry; 4054 *object = NULL; 4055 4056 if ((entry == &map->header) || 4057 (vaddr < entry->start) || (vaddr >= entry->end)) { 4058 vm_map_entry_t tmp_entry; 4059 4060 /* 4061 * Entry was either not a valid hint, or the vaddr was not 4062 * contained in the entry, so do a full lookup. 4063 */ 4064 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 4065 rv = KERN_INVALID_ADDRESS; 4066 goto done; 4067 } 4068 4069 entry = tmp_entry; 4070 *out_entry = entry; 4071 } 4072 4073 /* 4074 * Handle submaps. 4075 */ 4076 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 4077 vm_map_t old_map = map; 4078 4079 *var_map = map = entry->object.sub_map; 4080 if (use_read_lock) 4081 vm_map_unlock_read(old_map); 4082 else 4083 vm_map_unlock(old_map); 4084 use_read_lock = 1; 4085 goto RetryLookup; 4086 } 4087 4088 /* 4089 * Check whether this task is allowed to have this page. 4090 * Note the special case for MAP_ENTRY_COW pages with an override. 4091 * This is to implement a forced COW for debuggers. 4092 */ 4093 if (fault_type & VM_PROT_OVERRIDE_WRITE) 4094 prot = entry->max_protection; 4095 else 4096 prot = entry->protection; 4097 4098 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 4099 if ((fault_type & prot) != fault_type) { 4100 rv = KERN_PROTECTION_FAILURE; 4101 goto done; 4102 } 4103 4104 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4105 (entry->eflags & MAP_ENTRY_COW) && 4106 (fault_type & VM_PROT_WRITE) && 4107 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 4108 rv = KERN_PROTECTION_FAILURE; 4109 goto done; 4110 } 4111 4112 /* 4113 * If this page is not pageable, we have to get it for all possible 4114 * accesses. 4115 */ 4116 *wired = (entry->wired_count != 0); 4117 if (*wired) 4118 prot = fault_type = entry->protection; 4119 4120 /* 4121 * Virtual page tables may need to update the accessed (A) bit 4122 * in a page table entry. Upgrade the fault to a write fault for 4123 * that case if the map will support it. If the map does not support 4124 * it the page table entry simply will not be updated. 4125 */ 4126 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 4127 if (prot & VM_PROT_WRITE) 4128 fault_type |= VM_PROT_WRITE; 4129 } 4130 4131 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace && 4132 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) { 4133 if ((prot & VM_PROT_WRITE) == 0) 4134 fault_type |= VM_PROT_WRITE; 4135 } 4136 4137 /* 4138 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not. 4139 */ 4140 if (entry->maptype != VM_MAPTYPE_NORMAL && 4141 entry->maptype != VM_MAPTYPE_VPAGETABLE) { 4142 *object = NULL; 4143 goto skip; 4144 } 4145 4146 /* 4147 * If the entry was copy-on-write, we either ... 4148 */ 4149 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4150 /* 4151 * If we want to write the page, we may as well handle that 4152 * now since we've got the map locked. 4153 * 4154 * If we don't need to write the page, we just demote the 4155 * permissions allowed. 4156 */ 4157 4158 if (fault_type & VM_PROT_WRITE) { 4159 /* 4160 * Not allowed if TDF_NOFAULT is set as the shadowing 4161 * operation can deadlock against the faulting 4162 * function due to the copy-on-write. 4163 */ 4164 if (curthread->td_flags & TDF_NOFAULT) { 4165 rv = KERN_FAILURE_NOFAULT; 4166 goto done; 4167 } 4168 4169 /* 4170 * Make a new object, and place it in the object 4171 * chain. Note that no new references have appeared 4172 * -- one just moved from the map to the new 4173 * object. 4174 */ 4175 4176 if (use_read_lock && vm_map_lock_upgrade(map)) { 4177 /* lost lock */ 4178 use_read_lock = 0; 4179 goto RetryLookup; 4180 } 4181 use_read_lock = 0; 4182 4183 vm_map_entry_shadow(entry, 0); 4184 } else { 4185 /* 4186 * We're attempting to read a copy-on-write page -- 4187 * don't allow writes. 4188 */ 4189 4190 prot &= ~VM_PROT_WRITE; 4191 } 4192 } 4193 4194 /* 4195 * Create an object if necessary. 4196 */ 4197 if (entry->object.vm_object == NULL && !map->system_map) { 4198 if (use_read_lock && vm_map_lock_upgrade(map)) { 4199 /* lost lock */ 4200 use_read_lock = 0; 4201 goto RetryLookup; 4202 } 4203 use_read_lock = 0; 4204 vm_map_entry_allocate_object(entry); 4205 } 4206 4207 /* 4208 * Return the object/offset from this entry. If the entry was 4209 * copy-on-write or empty, it has been fixed up. 4210 */ 4211 *object = entry->object.vm_object; 4212 4213 skip: 4214 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4215 4216 /* 4217 * Return whether this is the only map sharing this data. On 4218 * success we return with a read lock held on the map. On failure 4219 * we return with the map unlocked. 4220 */ 4221 *out_prot = prot; 4222 done: 4223 if (rv == KERN_SUCCESS) { 4224 if (use_read_lock == 0) 4225 vm_map_lock_downgrade(map); 4226 } else if (use_read_lock) { 4227 vm_map_unlock_read(map); 4228 } else { 4229 vm_map_unlock(map); 4230 } 4231 return (rv); 4232 } 4233 4234 /* 4235 * Releases locks acquired by a vm_map_lookup() 4236 * (according to the handle returned by that lookup). 4237 * 4238 * No other requirements. 4239 */ 4240 void 4241 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 4242 { 4243 /* 4244 * Unlock the main-level map 4245 */ 4246 vm_map_unlock_read(map); 4247 if (count) 4248 vm_map_entry_release(count); 4249 } 4250 4251 /* 4252 * Quick hack, needs some help to make it more SMP friendly. 4253 */ 4254 void 4255 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock, 4256 vm_offset_t ran_beg, vm_offset_t ran_end) 4257 { 4258 struct vm_map_ilock *scan; 4259 4260 ilock->ran_beg = ran_beg; 4261 ilock->ran_end = ran_end; 4262 ilock->flags = 0; 4263 4264 spin_lock(&map->ilock_spin); 4265 restart: 4266 for (scan = map->ilock_base; scan; scan = scan->next) { 4267 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) { 4268 scan->flags |= ILOCK_WAITING; 4269 ssleep(scan, &map->ilock_spin, 0, "ilock", 0); 4270 goto restart; 4271 } 4272 } 4273 ilock->next = map->ilock_base; 4274 map->ilock_base = ilock; 4275 spin_unlock(&map->ilock_spin); 4276 } 4277 4278 void 4279 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock) 4280 { 4281 struct vm_map_ilock *scan; 4282 struct vm_map_ilock **scanp; 4283 4284 spin_lock(&map->ilock_spin); 4285 scanp = &map->ilock_base; 4286 while ((scan = *scanp) != NULL) { 4287 if (scan == ilock) { 4288 *scanp = ilock->next; 4289 spin_unlock(&map->ilock_spin); 4290 if (ilock->flags & ILOCK_WAITING) 4291 wakeup(ilock); 4292 return; 4293 } 4294 scanp = &scan->next; 4295 } 4296 spin_unlock(&map->ilock_spin); 4297 panic("vm_map_deinterlock: missing ilock!"); 4298 } 4299 4300 #include "opt_ddb.h" 4301 #ifdef DDB 4302 #include <sys/kernel.h> 4303 4304 #include <ddb/ddb.h> 4305 4306 /* 4307 * Debugging only 4308 */ 4309 DB_SHOW_COMMAND(map, vm_map_print) 4310 { 4311 static int nlines; 4312 /* XXX convert args. */ 4313 vm_map_t map = (vm_map_t)addr; 4314 boolean_t full = have_addr; 4315 4316 vm_map_entry_t entry; 4317 4318 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4319 (void *)map, 4320 (void *)map->pmap, map->nentries, map->timestamp); 4321 nlines++; 4322 4323 if (!full && db_indent) 4324 return; 4325 4326 db_indent += 2; 4327 for (entry = map->header.next; entry != &map->header; 4328 entry = entry->next) { 4329 db_iprintf("map entry %p: start=%p, end=%p\n", 4330 (void *)entry, (void *)entry->start, (void *)entry->end); 4331 nlines++; 4332 { 4333 static char *inheritance_name[4] = 4334 {"share", "copy", "none", "donate_copy"}; 4335 4336 db_iprintf(" prot=%x/%x/%s", 4337 entry->protection, 4338 entry->max_protection, 4339 inheritance_name[(int)(unsigned char) 4340 entry->inheritance]); 4341 if (entry->wired_count != 0) 4342 db_printf(", wired"); 4343 } 4344 switch(entry->maptype) { 4345 case VM_MAPTYPE_SUBMAP: 4346 /* XXX no %qd in kernel. Truncate entry->offset. */ 4347 db_printf(", share=%p, offset=0x%lx\n", 4348 (void *)entry->object.sub_map, 4349 (long)entry->offset); 4350 nlines++; 4351 if ((entry->prev == &map->header) || 4352 (entry->prev->object.sub_map != 4353 entry->object.sub_map)) { 4354 db_indent += 2; 4355 vm_map_print((db_expr_t)(intptr_t) 4356 entry->object.sub_map, 4357 full, 0, NULL); 4358 db_indent -= 2; 4359 } 4360 break; 4361 case VM_MAPTYPE_NORMAL: 4362 case VM_MAPTYPE_VPAGETABLE: 4363 /* XXX no %qd in kernel. Truncate entry->offset. */ 4364 db_printf(", object=%p, offset=0x%lx", 4365 (void *)entry->object.vm_object, 4366 (long)entry->offset); 4367 if (entry->eflags & MAP_ENTRY_COW) 4368 db_printf(", copy (%s)", 4369 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4370 db_printf("\n"); 4371 nlines++; 4372 4373 if ((entry->prev == &map->header) || 4374 (entry->prev->object.vm_object != 4375 entry->object.vm_object)) { 4376 db_indent += 2; 4377 vm_object_print((db_expr_t)(intptr_t) 4378 entry->object.vm_object, 4379 full, 0, NULL); 4380 nlines += 4; 4381 db_indent -= 2; 4382 } 4383 break; 4384 case VM_MAPTYPE_UKSMAP: 4385 db_printf(", uksmap=%p, offset=0x%lx", 4386 (void *)entry->object.uksmap, 4387 (long)entry->offset); 4388 if (entry->eflags & MAP_ENTRY_COW) 4389 db_printf(", copy (%s)", 4390 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4391 db_printf("\n"); 4392 nlines++; 4393 break; 4394 default: 4395 break; 4396 } 4397 } 4398 db_indent -= 2; 4399 if (db_indent == 0) 4400 nlines = 0; 4401 } 4402 4403 /* 4404 * Debugging only 4405 */ 4406 DB_SHOW_COMMAND(procvm, procvm) 4407 { 4408 struct proc *p; 4409 4410 if (have_addr) { 4411 p = (struct proc *) addr; 4412 } else { 4413 p = curproc; 4414 } 4415 4416 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4417 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4418 (void *)vmspace_pmap(p->p_vmspace)); 4419 4420 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4421 } 4422 4423 #endif /* DDB */ 4424