xref: /dflybsd-src/sys/vm/vm_map.c (revision 558a398b19696474173810daa238fb5df32df27b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.54 2006/12/28 21:24:02 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 #include <sys/tree.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 #define VMEPERCPU	2
138 
139 static struct vm_zone mapentzone_store, mapzone_store;
140 static vm_zone_t mapentzone, mapzone, vmspace_zone;
141 static struct vm_object mapentobj, mapobj;
142 
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145 static struct vm_map map_init[MAX_KMAP];
146 
147 static void vm_map_entry_shadow(vm_map_entry_t entry);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 		vm_map_entry_t);
156 static void vm_map_split (vm_map_entry_t);
157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
158 
159 void
160 vm_map_startup(void)
161 {
162 	mapzone = &mapzone_store;
163 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
164 		map_init, MAX_KMAP);
165 	mapentzone = &mapentzone_store;
166 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
167 		map_entry_init, MAX_MAPENT);
168 }
169 
170 /*
171  * Red black tree functions
172  */
173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
175 
176 /* a->start is address, and the only field has to be initialized */
177 static int
178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
179 {
180 	if (a->start < b->start)
181 		return(-1);
182 	else if (a->start > b->start)
183 		return(1);
184 	return(0);
185 }
186 
187 /*
188  * Allocate a vmspace structure, including a vm_map and pmap,
189  * and initialize those structures.  The refcnt is set to 1.
190  * The remaining fields must be initialized by the caller.
191  */
192 struct vmspace *
193 vmspace_alloc(vm_offset_t min, vm_offset_t max)
194 {
195 	struct vmspace *vm;
196 
197 	vm = zalloc(vmspace_zone);
198 	bzero(&vm->vm_startcopy,
199 		(char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
200 	vm_map_init(&vm->vm_map, min, max, NULL);
201 	pmap_pinit(vmspace_pmap(vm));
202 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
203 	vm->vm_refcnt = 1;
204 	vm->vm_shm = NULL;
205 	vm->vm_exitingcnt = 0;
206 	return (vm);
207 }
208 
209 void
210 vm_init2(void)
211 {
212 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
213 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
214 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
215 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
216 	pmap_init2();
217 	vm_object_init2();
218 }
219 
220 static __inline void
221 vmspace_dofree(struct vmspace *vm)
222 {
223 	int count;
224 
225 	/*
226 	 * Make sure any SysV shm is freed, it might not have in
227 	 * exit1()
228 	 */
229 	shmexit(vm);
230 
231 	KKASSERT(vm->vm_upcalls == NULL);
232 
233 	/*
234 	 * Lock the map, to wait out all other references to it.
235 	 * Delete all of the mappings and pages they hold, then call
236 	 * the pmap module to reclaim anything left.
237 	 */
238 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
239 	vm_map_lock(&vm->vm_map);
240 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
241 		vm->vm_map.max_offset, &count);
242 	vm_map_unlock(&vm->vm_map);
243 	vm_map_entry_release(count);
244 
245 	pmap_release(vmspace_pmap(vm));
246 	zfree(vmspace_zone, vm);
247 }
248 
249 void
250 vmspace_free(struct vmspace *vm)
251 {
252 	if (vm->vm_refcnt == 0)
253 		panic("vmspace_free: attempt to free already freed vmspace");
254 
255 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
256 		vmspace_dofree(vm);
257 }
258 
259 void
260 vmspace_exitfree(struct proc *p)
261 {
262 	struct vmspace *vm;
263 
264 	vm = p->p_vmspace;
265 	p->p_vmspace = NULL;
266 
267 	/*
268 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
269 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
270 	 * exitingcnt may increment above 0 and drop back down to zero
271 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
272 	 * may also increment above 0 and drop back down to zero several
273 	 * times while vm_exitingcnt is held non-zero.
274 	 *
275 	 * The last wait on the exiting child's vmspace will clean up
276 	 * the remainder of the vmspace.
277 	 */
278 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
279 		vmspace_dofree(vm);
280 }
281 
282 /*
283  * vmspace_swap_count() - count the approximate swap useage in pages for a
284  *			  vmspace.
285  *
286  *	Swap useage is determined by taking the proportional swap used by
287  *	VM objects backing the VM map.  To make up for fractional losses,
288  *	if the VM object has any swap use at all the associated map entries
289  *	count for at least 1 swap page.
290  */
291 int
292 vmspace_swap_count(struct vmspace *vmspace)
293 {
294 	vm_map_t map = &vmspace->vm_map;
295 	vm_map_entry_t cur;
296 	vm_object_t object;
297 	int count = 0;
298 	int n;
299 
300 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
301 		switch(cur->maptype) {
302 		case VM_MAPTYPE_NORMAL:
303 		case VM_MAPTYPE_VPAGETABLE:
304 			if ((object = cur->object.vm_object) == NULL)
305 				break;
306 			if (object->type != OBJT_SWAP)
307 				break;
308 			n = (cur->end - cur->start) / PAGE_SIZE;
309 			if (object->un_pager.swp.swp_bcount) {
310 				count += object->un_pager.swp.swp_bcount *
311 				    SWAP_META_PAGES * n / object->size + 1;
312 			}
313 			break;
314 		default:
315 			break;
316 		}
317 	}
318 	return(count);
319 }
320 
321 
322 /*
323  *	vm_map_create:
324  *
325  *	Creates and returns a new empty VM map with
326  *	the given physical map structure, and having
327  *	the given lower and upper address bounds.
328  */
329 vm_map_t
330 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
331 {
332 	if (result == NULL)
333 		result = zalloc(mapzone);
334 	vm_map_init(result, min, max, pmap);
335 	return (result);
336 }
337 
338 /*
339  * Initialize an existing vm_map structure
340  * such as that in the vmspace structure.
341  * The pmap is set elsewhere.
342  */
343 void
344 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
345 {
346 	map->header.next = map->header.prev = &map->header;
347 	RB_INIT(&map->rb_root);
348 	map->nentries = 0;
349 	map->size = 0;
350 	map->system_map = 0;
351 	map->infork = 0;
352 	map->min_offset = min;
353 	map->max_offset = max;
354 	map->pmap = pmap;
355 	map->first_free = &map->header;
356 	map->hint = &map->header;
357 	map->timestamp = 0;
358 	lockinit(&map->lock, "thrd_sleep", 0, 0);
359 }
360 
361 /*
362  * Shadow the vm_map_entry's object.  This typically needs to be done when
363  * a write fault is taken on an entry which had previously been cloned by
364  * fork().  The shared object (which might be NULL) must become private so
365  * we add a shadow layer above it.
366  *
367  * Object allocation for anonymous mappings is defered as long as possible.
368  * When creating a shadow, however, the underlying object must be instantiated
369  * so it can be shared.
370  *
371  * If the map segment is governed by a virtual page table then it is
372  * possible to address offsets beyond the mapped area.  Just allocate
373  * a maximally sized object for this case.
374  */
375 static
376 void
377 vm_map_entry_shadow(vm_map_entry_t entry)
378 {
379 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
380 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
381 				 0x7FFFFFFF);	/* XXX */
382 	} else {
383 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
384 				 atop(entry->end - entry->start));
385 	}
386 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
387 }
388 
389 /*
390  * Allocate an object for a vm_map_entry.
391  *
392  * Object allocation for anonymous mappings is defered as long as possible.
393  * This function is called when we can defer no longer, generally when a map
394  * entry might be split or forked or takes a page fault.
395  *
396  * If the map segment is governed by a virtual page table then it is
397  * possible to address offsets beyond the mapped area.  Just allocate
398  * a maximally sized object for this case.
399  */
400 void
401 vm_map_entry_allocate_object(vm_map_entry_t entry)
402 {
403 	vm_object_t obj;
404 
405 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
406 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
407 	} else {
408 		obj = vm_object_allocate(OBJT_DEFAULT,
409 					 atop(entry->end - entry->start));
410 	}
411 	entry->object.vm_object = obj;
412 	entry->offset = 0;
413 }
414 
415 /*
416  *      vm_map_entry_reserve_cpu_init:
417  *
418  *	Set an initial negative count so the first attempt to reserve
419  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
420  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
421  *	map a new page for vm_map_entry structures.  SMP systems are
422  *	particularly sensitive.
423  *
424  *	This routine is called in early boot so we cannot just call
425  *	vm_map_entry_reserve().
426  *
427  *	May be called for a gd other then mycpu, but may only be called
428  *	during early boot.
429  */
430 void
431 vm_map_entry_reserve_cpu_init(globaldata_t gd)
432 {
433 	vm_map_entry_t entry;
434 	int i;
435 
436 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
437 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
438 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
439 		entry->next = gd->gd_vme_base;
440 		gd->gd_vme_base = entry;
441 	}
442 }
443 
444 /*
445  *	vm_map_entry_reserve:
446  *
447  *	Reserves vm_map_entry structures so code later on can manipulate
448  *	map_entry structures within a locked map without blocking trying
449  *	to allocate a new vm_map_entry.
450  */
451 int
452 vm_map_entry_reserve(int count)
453 {
454 	struct globaldata *gd = mycpu;
455 	vm_map_entry_t entry;
456 
457 	crit_enter();
458 
459 	/*
460 	 * Make sure we have enough structures in gd_vme_base to handle
461 	 * the reservation request.
462 	 */
463 	while (gd->gd_vme_avail < count) {
464 		entry = zalloc(mapentzone);
465 		entry->next = gd->gd_vme_base;
466 		gd->gd_vme_base = entry;
467 		++gd->gd_vme_avail;
468 	}
469 	gd->gd_vme_avail -= count;
470 	crit_exit();
471 	return(count);
472 }
473 
474 /*
475  *	vm_map_entry_release:
476  *
477  *	Releases previously reserved vm_map_entry structures that were not
478  *	used.  If we have too much junk in our per-cpu cache clean some of
479  *	it out.
480  */
481 void
482 vm_map_entry_release(int count)
483 {
484 	struct globaldata *gd = mycpu;
485 	vm_map_entry_t entry;
486 
487 	crit_enter();
488 	gd->gd_vme_avail += count;
489 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
490 		entry = gd->gd_vme_base;
491 		KKASSERT(entry != NULL);
492 		gd->gd_vme_base = entry->next;
493 		--gd->gd_vme_avail;
494 		crit_exit();
495 		zfree(mapentzone, entry);
496 		crit_enter();
497 	}
498 	crit_exit();
499 }
500 
501 /*
502  *	vm_map_entry_kreserve:
503  *
504  *	Reserve map entry structures for use in kernel_map itself.  These
505  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
506  *	was inited.  This function is used by zalloc() to avoid a recursion
507  *	when zalloc() itself needs to allocate additional kernel memory.
508  *
509  *	This function works like the normal reserve but does not load the
510  *	vm_map_entry cache (because that would result in an infinite
511  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
512  *
513  *	Any caller of this function must be sure to renormalize after
514  *	potentially eating entries to ensure that the reserve supply
515  *	remains intact.
516  */
517 int
518 vm_map_entry_kreserve(int count)
519 {
520 	struct globaldata *gd = mycpu;
521 
522 	crit_enter();
523 	gd->gd_vme_avail -= count;
524 	crit_exit();
525 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
526 	return(count);
527 }
528 
529 /*
530  *	vm_map_entry_krelease:
531  *
532  *	Release previously reserved map entries for kernel_map.  We do not
533  *	attempt to clean up like the normal release function as this would
534  *	cause an unnecessary (but probably not fatal) deep procedure call.
535  */
536 void
537 vm_map_entry_krelease(int count)
538 {
539 	struct globaldata *gd = mycpu;
540 
541 	crit_enter();
542 	gd->gd_vme_avail += count;
543 	crit_exit();
544 }
545 
546 /*
547  *	vm_map_entry_create:	[ internal use only ]
548  *
549  *	Allocates a VM map entry for insertion.  No entry fields are filled
550  *	in.
551  *
552  *	This routine may be called from an interrupt thread but not a FAST
553  *	interrupt.  This routine may recurse the map lock.
554  */
555 static vm_map_entry_t
556 vm_map_entry_create(vm_map_t map, int *countp)
557 {
558 	struct globaldata *gd = mycpu;
559 	vm_map_entry_t entry;
560 
561 	KKASSERT(*countp > 0);
562 	--*countp;
563 	crit_enter();
564 	entry = gd->gd_vme_base;
565 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
566 	gd->gd_vme_base = entry->next;
567 	crit_exit();
568 	return(entry);
569 }
570 
571 /*
572  *	vm_map_entry_dispose:	[ internal use only ]
573  *
574  *	Dispose of a vm_map_entry that is no longer being referenced.  This
575  *	function may be called from an interrupt.
576  */
577 static void
578 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
579 {
580 	struct globaldata *gd = mycpu;
581 
582 	KKASSERT(map->hint != entry);
583 	KKASSERT(map->first_free != entry);
584 
585 	++*countp;
586 	crit_enter();
587 	entry->next = gd->gd_vme_base;
588 	gd->gd_vme_base = entry;
589 	crit_exit();
590 }
591 
592 
593 /*
594  *	vm_map_entry_{un,}link:
595  *
596  *	Insert/remove entries from maps.
597  */
598 static __inline void
599 vm_map_entry_link(vm_map_t map,
600 		  vm_map_entry_t after_where,
601 		  vm_map_entry_t entry)
602 {
603 	map->nentries++;
604 	entry->prev = after_where;
605 	entry->next = after_where->next;
606 	entry->next->prev = entry;
607 	after_where->next = entry;
608 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
609 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
610 }
611 
612 static __inline void
613 vm_map_entry_unlink(vm_map_t map,
614 		    vm_map_entry_t entry)
615 {
616 	vm_map_entry_t prev;
617 	vm_map_entry_t next;
618 
619 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
620 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
621 	prev = entry->prev;
622 	next = entry->next;
623 	next->prev = prev;
624 	prev->next = next;
625 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
626 	map->nentries--;
627 }
628 
629 /*
630  *	vm_map_lookup_entry:	[ internal use only ]
631  *
632  *	Finds the map entry containing (or
633  *	immediately preceding) the specified address
634  *	in the given map; the entry is returned
635  *	in the "entry" parameter.  The boolean
636  *	result indicates whether the address is
637  *	actually contained in the map.
638  */
639 boolean_t
640 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
641     vm_map_entry_t *entry /* OUT */)
642 {
643 	vm_map_entry_t tmp;
644 	vm_map_entry_t last;
645 
646 #if 0
647 	/*
648 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
649 	 * the hint code with the red-black lookup meets with system crashes
650 	 * and lockups.  We do not yet know why.
651 	 *
652 	 * It is possible that the problem is related to the setting
653 	 * of the hint during map_entry deletion, in the code specified
654 	 * at the GGG comment later on in this file.
655 	 */
656 	/*
657 	 * Quickly check the cached hint, there's a good chance of a match.
658 	 */
659 	if (map->hint != &map->header) {
660 		tmp = map->hint;
661 		if (address >= tmp->start && address < tmp->end) {
662 			*entry = tmp;
663 			return(TRUE);
664 		}
665 	}
666 #endif
667 
668 	/*
669 	 * Locate the record from the top of the tree.  'last' tracks the
670 	 * closest prior record and is returned if no match is found, which
671 	 * in binary tree terms means tracking the most recent right-branch
672 	 * taken.  If there is no prior record, &map->header is returned.
673 	 */
674 	last = &map->header;
675 	tmp = RB_ROOT(&map->rb_root);
676 
677 	while (tmp) {
678 		if (address >= tmp->start) {
679 			if (address < tmp->end) {
680 				*entry = tmp;
681 				map->hint = tmp;
682 				return(TRUE);
683 			}
684 			last = tmp;
685 			tmp = RB_RIGHT(tmp, rb_entry);
686 		} else {
687 			tmp = RB_LEFT(tmp, rb_entry);
688 		}
689 	}
690 	*entry = last;
691 	return (FALSE);
692 }
693 
694 /*
695  *	vm_map_insert:
696  *
697  *	Inserts the given whole VM object into the target
698  *	map at the specified address range.  The object's
699  *	size should match that of the address range.
700  *
701  *	Requires that the map be locked, and leaves it so.  Requires that
702  *	sufficient vm_map_entry structures have been reserved and tracks
703  *	the use via countp.
704  *
705  *	If object is non-NULL, ref count must be bumped by caller
706  *	prior to making call to account for the new entry.
707  */
708 int
709 vm_map_insert(vm_map_t map, int *countp,
710 	      vm_object_t object, vm_ooffset_t offset,
711 	      vm_offset_t start, vm_offset_t end,
712 	      vm_maptype_t maptype,
713 	      vm_prot_t prot, vm_prot_t max,
714 	      int cow)
715 {
716 	vm_map_entry_t new_entry;
717 	vm_map_entry_t prev_entry;
718 	vm_map_entry_t temp_entry;
719 	vm_eflags_t protoeflags;
720 
721 	/*
722 	 * Check that the start and end points are not bogus.
723 	 */
724 
725 	if ((start < map->min_offset) || (end > map->max_offset) ||
726 	    (start >= end))
727 		return (KERN_INVALID_ADDRESS);
728 
729 	/*
730 	 * Find the entry prior to the proposed starting address; if it's part
731 	 * of an existing entry, this range is bogus.
732 	 */
733 
734 	if (vm_map_lookup_entry(map, start, &temp_entry))
735 		return (KERN_NO_SPACE);
736 
737 	prev_entry = temp_entry;
738 
739 	/*
740 	 * Assert that the next entry doesn't overlap the end point.
741 	 */
742 
743 	if ((prev_entry->next != &map->header) &&
744 	    (prev_entry->next->start < end))
745 		return (KERN_NO_SPACE);
746 
747 	protoeflags = 0;
748 
749 	if (cow & MAP_COPY_ON_WRITE)
750 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
751 
752 	if (cow & MAP_NOFAULT) {
753 		protoeflags |= MAP_ENTRY_NOFAULT;
754 
755 		KASSERT(object == NULL,
756 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
757 	}
758 	if (cow & MAP_DISABLE_SYNCER)
759 		protoeflags |= MAP_ENTRY_NOSYNC;
760 	if (cow & MAP_DISABLE_COREDUMP)
761 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
762 
763 	if (object) {
764 		/*
765 		 * When object is non-NULL, it could be shared with another
766 		 * process.  We have to set or clear OBJ_ONEMAPPING
767 		 * appropriately.
768 		 */
769 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
770 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
771 		}
772 	}
773 	else if ((prev_entry != &map->header) &&
774 		 (prev_entry->eflags == protoeflags) &&
775 		 (prev_entry->end == start) &&
776 		 (prev_entry->wired_count == 0) &&
777 		 prev_entry->maptype == maptype &&
778 		 ((prev_entry->object.vm_object == NULL) ||
779 		  vm_object_coalesce(prev_entry->object.vm_object,
780 				     OFF_TO_IDX(prev_entry->offset),
781 				     (vm_size_t)(prev_entry->end - prev_entry->start),
782 				     (vm_size_t)(end - prev_entry->end)))) {
783 		/*
784 		 * We were able to extend the object.  Determine if we
785 		 * can extend the previous map entry to include the
786 		 * new range as well.
787 		 */
788 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
789 		    (prev_entry->protection == prot) &&
790 		    (prev_entry->max_protection == max)) {
791 			map->size += (end - prev_entry->end);
792 			prev_entry->end = end;
793 			vm_map_simplify_entry(map, prev_entry, countp);
794 			return (KERN_SUCCESS);
795 		}
796 
797 		/*
798 		 * If we can extend the object but cannot extend the
799 		 * map entry, we have to create a new map entry.  We
800 		 * must bump the ref count on the extended object to
801 		 * account for it.  object may be NULL.
802 		 */
803 		object = prev_entry->object.vm_object;
804 		offset = prev_entry->offset +
805 			(prev_entry->end - prev_entry->start);
806 		vm_object_reference(object);
807 	}
808 
809 	/*
810 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
811 	 * in things like the buffer map where we manage kva but do not manage
812 	 * backing objects.
813 	 */
814 
815 	/*
816 	 * Create a new entry
817 	 */
818 
819 	new_entry = vm_map_entry_create(map, countp);
820 	new_entry->start = start;
821 	new_entry->end = end;
822 
823 	new_entry->maptype = maptype;
824 	new_entry->eflags = protoeflags;
825 	new_entry->object.vm_object = object;
826 	new_entry->offset = offset;
827 	new_entry->aux.master_pde = 0;
828 
829 	new_entry->inheritance = VM_INHERIT_DEFAULT;
830 	new_entry->protection = prot;
831 	new_entry->max_protection = max;
832 	new_entry->wired_count = 0;
833 
834 	/*
835 	 * Insert the new entry into the list
836 	 */
837 
838 	vm_map_entry_link(map, prev_entry, new_entry);
839 	map->size += new_entry->end - new_entry->start;
840 
841 	/*
842 	 * Update the free space hint
843 	 */
844 	if ((map->first_free == prev_entry) &&
845 	    (prev_entry->end >= new_entry->start)) {
846 		map->first_free = new_entry;
847 	}
848 
849 #if 0
850 	/*
851 	 * Temporarily removed to avoid MAP_STACK panic, due to
852 	 * MAP_STACK being a huge hack.  Will be added back in
853 	 * when MAP_STACK (and the user stack mapping) is fixed.
854 	 */
855 	/*
856 	 * It may be possible to simplify the entry
857 	 */
858 	vm_map_simplify_entry(map, new_entry, countp);
859 #endif
860 
861 	/*
862 	 * Try to pre-populate the page table.  Mappings governed by virtual
863 	 * page tables cannot be prepopulated without a lot of work, so
864 	 * don't try.
865 	 */
866 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
867 	    maptype != VM_MAPTYPE_VPAGETABLE) {
868 		pmap_object_init_pt(map->pmap, start, prot,
869 				    object, OFF_TO_IDX(offset), end - start,
870 				    cow & MAP_PREFAULT_PARTIAL);
871 	}
872 
873 	return (KERN_SUCCESS);
874 }
875 
876 /*
877  * Find sufficient space for `length' bytes in the given map, starting at
878  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
879  *
880  * This function will returned an arbitrarily aligned pointer.  If no
881  * particular alignment is required you should pass align as 1.  Note that
882  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
883  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
884  * argument.
885  *
886  * 'align' should be a power of 2 but is not required to be.
887  */
888 int
889 vm_map_findspace(
890 	vm_map_t map,
891 	vm_offset_t start,
892 	vm_size_t length,
893 	vm_offset_t align,
894 	vm_offset_t *addr)
895 {
896 	vm_map_entry_t entry, next;
897 	vm_offset_t end;
898 	vm_offset_t align_mask;
899 
900 	if (start < map->min_offset)
901 		start = map->min_offset;
902 	if (start > map->max_offset)
903 		return (1);
904 
905 	/*
906 	 * If the alignment is not a power of 2 we will have to use
907 	 * a mod/division, set align_mask to a special value.
908 	 */
909 	if ((align | (align - 1)) + 1 != (align << 1))
910 		align_mask = (vm_offset_t)-1;
911 	else
912 		align_mask = align - 1;
913 
914 retry:
915 	/*
916 	 * Look for the first possible address; if there's already something
917 	 * at this address, we have to start after it.
918 	 */
919 	if (start == map->min_offset) {
920 		if ((entry = map->first_free) != &map->header)
921 			start = entry->end;
922 	} else {
923 		vm_map_entry_t tmp;
924 
925 		if (vm_map_lookup_entry(map, start, &tmp))
926 			start = tmp->end;
927 		entry = tmp;
928 	}
929 
930 	/*
931 	 * Look through the rest of the map, trying to fit a new region in the
932 	 * gap between existing regions, or after the very last region.
933 	 */
934 	for (;; start = (entry = next)->end) {
935 		/*
936 		 * Adjust the proposed start by the requested alignment,
937 		 * be sure that we didn't wrap the address.
938 		 */
939 		if (align_mask == (vm_offset_t)-1)
940 			end = ((start + align - 1) / align) * align;
941 		else
942 			end = (start + align_mask) & ~align_mask;
943 		if (end < start)
944 			return (1);
945 		start = end;
946 		/*
947 		 * Find the end of the proposed new region.  Be sure we didn't
948 		 * go beyond the end of the map, or wrap around the address.
949 		 * Then check to see if this is the last entry or if the
950 		 * proposed end fits in the gap between this and the next
951 		 * entry.
952 		 */
953 		end = start + length;
954 		if (end > map->max_offset || end < start)
955 			return (1);
956 		next = entry->next;
957 		if (next == &map->header || next->start >= end)
958 			break;
959 	}
960 	map->hint = entry;
961 	if (map == &kernel_map) {
962 		vm_offset_t ksize;
963 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
964 			pmap_growkernel(ksize);
965 			goto retry;
966 		}
967 	}
968 	*addr = start;
969 	return (0);
970 }
971 
972 /*
973  *	vm_map_find finds an unallocated region in the target address
974  *	map with the given length.  The search is defined to be
975  *	first-fit from the specified address; the region found is
976  *	returned in the same parameter.
977  *
978  *	If object is non-NULL, ref count must be bumped by caller
979  *	prior to making call to account for the new entry.
980  */
981 int
982 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
983 	    vm_offset_t *addr,	vm_size_t length,
984 	    boolean_t find_space,
985 	    vm_maptype_t maptype,
986 	    vm_prot_t prot, vm_prot_t max,
987 	    int cow)
988 {
989 	vm_offset_t start;
990 	int result;
991 	int count;
992 
993 	start = *addr;
994 
995 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
996 	vm_map_lock(map);
997 	if (find_space) {
998 		if (vm_map_findspace(map, start, length, 1, addr)) {
999 			vm_map_unlock(map);
1000 			vm_map_entry_release(count);
1001 			return (KERN_NO_SPACE);
1002 		}
1003 		start = *addr;
1004 	}
1005 	result = vm_map_insert(map, &count, object, offset,
1006 			       start, start + length,
1007 			       maptype,
1008 			       prot, max,
1009 			       cow);
1010 	vm_map_unlock(map);
1011 	vm_map_entry_release(count);
1012 
1013 	return (result);
1014 }
1015 
1016 /*
1017  *	vm_map_simplify_entry:
1018  *
1019  *	Simplify the given map entry by merging with either neighbor.  This
1020  *	routine also has the ability to merge with both neighbors.
1021  *
1022  *	The map must be locked.
1023  *
1024  *	This routine guarentees that the passed entry remains valid (though
1025  *	possibly extended).  When merging, this routine may delete one or
1026  *	both neighbors.  No action is taken on entries which have their
1027  *	in-transition flag set.
1028  */
1029 void
1030 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1031 {
1032 	vm_map_entry_t next, prev;
1033 	vm_size_t prevsize, esize;
1034 
1035 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1036 		++mycpu->gd_cnt.v_intrans_coll;
1037 		return;
1038 	}
1039 
1040 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1041 		return;
1042 
1043 	prev = entry->prev;
1044 	if (prev != &map->header) {
1045 		prevsize = prev->end - prev->start;
1046 		if ( (prev->end == entry->start) &&
1047 		     (prev->maptype == entry->maptype) &&
1048 		     (prev->object.vm_object == entry->object.vm_object) &&
1049 		     (!prev->object.vm_object ||
1050 			(prev->offset + prevsize == entry->offset)) &&
1051 		     (prev->eflags == entry->eflags) &&
1052 		     (prev->protection == entry->protection) &&
1053 		     (prev->max_protection == entry->max_protection) &&
1054 		     (prev->inheritance == entry->inheritance) &&
1055 		     (prev->wired_count == entry->wired_count)) {
1056 			if (map->first_free == prev)
1057 				map->first_free = entry;
1058 			if (map->hint == prev)
1059 				map->hint = entry;
1060 			vm_map_entry_unlink(map, prev);
1061 			entry->start = prev->start;
1062 			entry->offset = prev->offset;
1063 			if (prev->object.vm_object)
1064 				vm_object_deallocate(prev->object.vm_object);
1065 			vm_map_entry_dispose(map, prev, countp);
1066 		}
1067 	}
1068 
1069 	next = entry->next;
1070 	if (next != &map->header) {
1071 		esize = entry->end - entry->start;
1072 		if ((entry->end == next->start) &&
1073 		    (next->maptype == entry->maptype) &&
1074 		    (next->object.vm_object == entry->object.vm_object) &&
1075 		     (!entry->object.vm_object ||
1076 			(entry->offset + esize == next->offset)) &&
1077 		    (next->eflags == entry->eflags) &&
1078 		    (next->protection == entry->protection) &&
1079 		    (next->max_protection == entry->max_protection) &&
1080 		    (next->inheritance == entry->inheritance) &&
1081 		    (next->wired_count == entry->wired_count)) {
1082 			if (map->first_free == next)
1083 				map->first_free = entry;
1084 			if (map->hint == next)
1085 				map->hint = entry;
1086 			vm_map_entry_unlink(map, next);
1087 			entry->end = next->end;
1088 			if (next->object.vm_object)
1089 				vm_object_deallocate(next->object.vm_object);
1090 			vm_map_entry_dispose(map, next, countp);
1091 	        }
1092 	}
1093 }
1094 /*
1095  *	vm_map_clip_start:	[ internal use only ]
1096  *
1097  *	Asserts that the given entry begins at or after
1098  *	the specified address; if necessary,
1099  *	it splits the entry into two.
1100  */
1101 #define vm_map_clip_start(map, entry, startaddr, countp) \
1102 { \
1103 	if (startaddr > entry->start) \
1104 		_vm_map_clip_start(map, entry, startaddr, countp); \
1105 }
1106 
1107 /*
1108  *	This routine is called only when it is known that
1109  *	the entry must be split.
1110  */
1111 static void
1112 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1113 {
1114 	vm_map_entry_t new_entry;
1115 
1116 	/*
1117 	 * Split off the front portion -- note that we must insert the new
1118 	 * entry BEFORE this one, so that this entry has the specified
1119 	 * starting address.
1120 	 */
1121 
1122 	vm_map_simplify_entry(map, entry, countp);
1123 
1124 	/*
1125 	 * If there is no object backing this entry, we might as well create
1126 	 * one now.  If we defer it, an object can get created after the map
1127 	 * is clipped, and individual objects will be created for the split-up
1128 	 * map.  This is a bit of a hack, but is also about the best place to
1129 	 * put this improvement.
1130 	 */
1131 	if (entry->object.vm_object == NULL && !map->system_map) {
1132 		vm_map_entry_allocate_object(entry);
1133 	}
1134 
1135 	new_entry = vm_map_entry_create(map, countp);
1136 	*new_entry = *entry;
1137 
1138 	new_entry->end = start;
1139 	entry->offset += (start - entry->start);
1140 	entry->start = start;
1141 
1142 	vm_map_entry_link(map, entry->prev, new_entry);
1143 
1144 	switch(entry->maptype) {
1145 	case VM_MAPTYPE_NORMAL:
1146 	case VM_MAPTYPE_VPAGETABLE:
1147 		vm_object_reference(new_entry->object.vm_object);
1148 		break;
1149 	default:
1150 		break;
1151 	}
1152 }
1153 
1154 /*
1155  *	vm_map_clip_end:	[ internal use only ]
1156  *
1157  *	Asserts that the given entry ends at or before
1158  *	the specified address; if necessary,
1159  *	it splits the entry into two.
1160  */
1161 
1162 #define vm_map_clip_end(map, entry, endaddr, countp) \
1163 { \
1164 	if (endaddr < entry->end) \
1165 		_vm_map_clip_end(map, entry, endaddr, countp); \
1166 }
1167 
1168 /*
1169  *	This routine is called only when it is known that
1170  *	the entry must be split.
1171  */
1172 static void
1173 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1174 {
1175 	vm_map_entry_t new_entry;
1176 
1177 	/*
1178 	 * If there is no object backing this entry, we might as well create
1179 	 * one now.  If we defer it, an object can get created after the map
1180 	 * is clipped, and individual objects will be created for the split-up
1181 	 * map.  This is a bit of a hack, but is also about the best place to
1182 	 * put this improvement.
1183 	 */
1184 
1185 	if (entry->object.vm_object == NULL && !map->system_map) {
1186 		vm_map_entry_allocate_object(entry);
1187 	}
1188 
1189 	/*
1190 	 * Create a new entry and insert it AFTER the specified entry
1191 	 */
1192 
1193 	new_entry = vm_map_entry_create(map, countp);
1194 	*new_entry = *entry;
1195 
1196 	new_entry->start = entry->end = end;
1197 	new_entry->offset += (end - entry->start);
1198 
1199 	vm_map_entry_link(map, entry, new_entry);
1200 
1201 	switch(entry->maptype) {
1202 	case VM_MAPTYPE_NORMAL:
1203 	case VM_MAPTYPE_VPAGETABLE:
1204 		vm_object_reference(new_entry->object.vm_object);
1205 		break;
1206 	default:
1207 		break;
1208 	}
1209 }
1210 
1211 /*
1212  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1213  *
1214  *	Asserts that the starting and ending region
1215  *	addresses fall within the valid range of the map.
1216  */
1217 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1218 		{					\
1219 		if (start < vm_map_min(map))		\
1220 			start = vm_map_min(map);	\
1221 		if (end > vm_map_max(map))		\
1222 			end = vm_map_max(map);		\
1223 		if (start > end)			\
1224 			start = end;			\
1225 		}
1226 
1227 /*
1228  *	vm_map_transition_wait:	[ kernel use only ]
1229  *
1230  *	Used to block when an in-transition collison occurs.  The map
1231  *	is unlocked for the sleep and relocked before the return.
1232  */
1233 static
1234 void
1235 vm_map_transition_wait(vm_map_t map)
1236 {
1237 	vm_map_unlock(map);
1238 	tsleep(map, 0, "vment", 0);
1239 	vm_map_lock(map);
1240 }
1241 
1242 /*
1243  * CLIP_CHECK_BACK
1244  * CLIP_CHECK_FWD
1245  *
1246  *	When we do blocking operations with the map lock held it is
1247  *	possible that a clip might have occured on our in-transit entry,
1248  *	requiring an adjustment to the entry in our loop.  These macros
1249  *	help the pageable and clip_range code deal with the case.  The
1250  *	conditional costs virtually nothing if no clipping has occured.
1251  */
1252 
1253 #define CLIP_CHECK_BACK(entry, save_start)		\
1254     do {						\
1255 	    while (entry->start != save_start) {	\
1256 		    entry = entry->prev;		\
1257 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1258 	    }						\
1259     } while(0)
1260 
1261 #define CLIP_CHECK_FWD(entry, save_end)			\
1262     do {						\
1263 	    while (entry->end != save_end) {		\
1264 		    entry = entry->next;		\
1265 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1266 	    }						\
1267     } while(0)
1268 
1269 
1270 /*
1271  *	vm_map_clip_range:	[ kernel use only ]
1272  *
1273  *	Clip the specified range and return the base entry.  The
1274  *	range may cover several entries starting at the returned base
1275  *	and the first and last entry in the covering sequence will be
1276  *	properly clipped to the requested start and end address.
1277  *
1278  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1279  *	flag.
1280  *
1281  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1282  *	covered by the requested range.
1283  *
1284  *	The map must be exclusively locked on entry and will remain locked
1285  *	on return. If no range exists or the range contains holes and you
1286  *	specified that no holes were allowed, NULL will be returned.  This
1287  *	routine may temporarily unlock the map in order avoid a deadlock when
1288  *	sleeping.
1289  */
1290 static
1291 vm_map_entry_t
1292 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1293 	int *countp, int flags)
1294 {
1295 	vm_map_entry_t start_entry;
1296 	vm_map_entry_t entry;
1297 
1298 	/*
1299 	 * Locate the entry and effect initial clipping.  The in-transition
1300 	 * case does not occur very often so do not try to optimize it.
1301 	 */
1302 again:
1303 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1304 		return (NULL);
1305 	entry = start_entry;
1306 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1307 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1308 		++mycpu->gd_cnt.v_intrans_coll;
1309 		++mycpu->gd_cnt.v_intrans_wait;
1310 		vm_map_transition_wait(map);
1311 		/*
1312 		 * entry and/or start_entry may have been clipped while
1313 		 * we slept, or may have gone away entirely.  We have
1314 		 * to restart from the lookup.
1315 		 */
1316 		goto again;
1317 	}
1318 	/*
1319 	 * Since we hold an exclusive map lock we do not have to restart
1320 	 * after clipping, even though clipping may block in zalloc.
1321 	 */
1322 	vm_map_clip_start(map, entry, start, countp);
1323 	vm_map_clip_end(map, entry, end, countp);
1324 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1325 
1326 	/*
1327 	 * Scan entries covered by the range.  When working on the next
1328 	 * entry a restart need only re-loop on the current entry which
1329 	 * we have already locked, since 'next' may have changed.  Also,
1330 	 * even though entry is safe, it may have been clipped so we
1331 	 * have to iterate forwards through the clip after sleeping.
1332 	 */
1333 	while (entry->next != &map->header && entry->next->start < end) {
1334 		vm_map_entry_t next = entry->next;
1335 
1336 		if (flags & MAP_CLIP_NO_HOLES) {
1337 			if (next->start > entry->end) {
1338 				vm_map_unclip_range(map, start_entry,
1339 					start, entry->end, countp, flags);
1340 				return(NULL);
1341 			}
1342 		}
1343 
1344 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1345 			vm_offset_t save_end = entry->end;
1346 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1347 			++mycpu->gd_cnt.v_intrans_coll;
1348 			++mycpu->gd_cnt.v_intrans_wait;
1349 			vm_map_transition_wait(map);
1350 
1351 			/*
1352 			 * clips might have occured while we blocked.
1353 			 */
1354 			CLIP_CHECK_FWD(entry, save_end);
1355 			CLIP_CHECK_BACK(start_entry, start);
1356 			continue;
1357 		}
1358 		/*
1359 		 * No restart necessary even though clip_end may block, we
1360 		 * are holding the map lock.
1361 		 */
1362 		vm_map_clip_end(map, next, end, countp);
1363 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1364 		entry = next;
1365 	}
1366 	if (flags & MAP_CLIP_NO_HOLES) {
1367 		if (entry->end != end) {
1368 			vm_map_unclip_range(map, start_entry,
1369 				start, entry->end, countp, flags);
1370 			return(NULL);
1371 		}
1372 	}
1373 	return(start_entry);
1374 }
1375 
1376 /*
1377  *	vm_map_unclip_range:	[ kernel use only ]
1378  *
1379  *	Undo the effect of vm_map_clip_range().  You should pass the same
1380  *	flags and the same range that you passed to vm_map_clip_range().
1381  *	This code will clear the in-transition flag on the entries and
1382  *	wake up anyone waiting.  This code will also simplify the sequence
1383  *	and attempt to merge it with entries before and after the sequence.
1384  *
1385  *	The map must be locked on entry and will remain locked on return.
1386  *
1387  *	Note that you should also pass the start_entry returned by
1388  *	vm_map_clip_range().  However, if you block between the two calls
1389  *	with the map unlocked please be aware that the start_entry may
1390  *	have been clipped and you may need to scan it backwards to find
1391  *	the entry corresponding with the original start address.  You are
1392  *	responsible for this, vm_map_unclip_range() expects the correct
1393  *	start_entry to be passed to it and will KASSERT otherwise.
1394  */
1395 static
1396 void
1397 vm_map_unclip_range(
1398 	vm_map_t map,
1399 	vm_map_entry_t start_entry,
1400 	vm_offset_t start,
1401 	vm_offset_t end,
1402 	int *countp,
1403 	int flags)
1404 {
1405 	vm_map_entry_t entry;
1406 
1407 	entry = start_entry;
1408 
1409 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1410 	while (entry != &map->header && entry->start < end) {
1411 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1412 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1413 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1414 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1415 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1416 			wakeup(map);
1417 		}
1418 		entry = entry->next;
1419 	}
1420 
1421 	/*
1422 	 * Simplification does not block so there is no restart case.
1423 	 */
1424 	entry = start_entry;
1425 	while (entry != &map->header && entry->start < end) {
1426 		vm_map_simplify_entry(map, entry, countp);
1427 		entry = entry->next;
1428 	}
1429 }
1430 
1431 /*
1432  *	vm_map_submap:		[ kernel use only ]
1433  *
1434  *	Mark the given range as handled by a subordinate map.
1435  *
1436  *	This range must have been created with vm_map_find,
1437  *	and no other operations may have been performed on this
1438  *	range prior to calling vm_map_submap.
1439  *
1440  *	Only a limited number of operations can be performed
1441  *	within this rage after calling vm_map_submap:
1442  *		vm_fault
1443  *	[Don't try vm_map_copy!]
1444  *
1445  *	To remove a submapping, one must first remove the
1446  *	range from the superior map, and then destroy the
1447  *	submap (if desired).  [Better yet, don't try it.]
1448  */
1449 int
1450 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1451 {
1452 	vm_map_entry_t entry;
1453 	int result = KERN_INVALID_ARGUMENT;
1454 	int count;
1455 
1456 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1457 	vm_map_lock(map);
1458 
1459 	VM_MAP_RANGE_CHECK(map, start, end);
1460 
1461 	if (vm_map_lookup_entry(map, start, &entry)) {
1462 		vm_map_clip_start(map, entry, start, &count);
1463 	} else {
1464 		entry = entry->next;
1465 	}
1466 
1467 	vm_map_clip_end(map, entry, end, &count);
1468 
1469 	if ((entry->start == start) && (entry->end == end) &&
1470 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1471 	    (entry->object.vm_object == NULL)) {
1472 		entry->object.sub_map = submap;
1473 		entry->maptype = VM_MAPTYPE_SUBMAP;
1474 		result = KERN_SUCCESS;
1475 	}
1476 	vm_map_unlock(map);
1477 	vm_map_entry_release(count);
1478 
1479 	return (result);
1480 }
1481 
1482 /*
1483  * vm_map_protect:
1484  *
1485  * Sets the protection of the specified address region in the target map.
1486  * If "set_max" is specified, the maximum protection is to be set;
1487  * otherwise, only the current protection is affected.
1488  *
1489  * The protection is not applicable to submaps, but is applicable to normal
1490  * maps and maps governed by virtual page tables.  For example, when operating
1491  * on a virtual page table our protection basically controls how COW occurs
1492  * on the backing object, whereas the virtual page table abstraction itself
1493  * is an abstraction for userland.
1494  */
1495 int
1496 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1497 	       vm_prot_t new_prot, boolean_t set_max)
1498 {
1499 	vm_map_entry_t current;
1500 	vm_map_entry_t entry;
1501 	int count;
1502 
1503 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1504 	vm_map_lock(map);
1505 
1506 	VM_MAP_RANGE_CHECK(map, start, end);
1507 
1508 	if (vm_map_lookup_entry(map, start, &entry)) {
1509 		vm_map_clip_start(map, entry, start, &count);
1510 	} else {
1511 		entry = entry->next;
1512 	}
1513 
1514 	/*
1515 	 * Make a first pass to check for protection violations.
1516 	 */
1517 	current = entry;
1518 	while ((current != &map->header) && (current->start < end)) {
1519 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1520 			vm_map_unlock(map);
1521 			vm_map_entry_release(count);
1522 			return (KERN_INVALID_ARGUMENT);
1523 		}
1524 		if ((new_prot & current->max_protection) != new_prot) {
1525 			vm_map_unlock(map);
1526 			vm_map_entry_release(count);
1527 			return (KERN_PROTECTION_FAILURE);
1528 		}
1529 		current = current->next;
1530 	}
1531 
1532 	/*
1533 	 * Go back and fix up protections. [Note that clipping is not
1534 	 * necessary the second time.]
1535 	 */
1536 	current = entry;
1537 
1538 	while ((current != &map->header) && (current->start < end)) {
1539 		vm_prot_t old_prot;
1540 
1541 		vm_map_clip_end(map, current, end, &count);
1542 
1543 		old_prot = current->protection;
1544 		if (set_max) {
1545 			current->protection =
1546 			    (current->max_protection = new_prot) &
1547 			    old_prot;
1548 		} else {
1549 			current->protection = new_prot;
1550 		}
1551 
1552 		/*
1553 		 * Update physical map if necessary. Worry about copy-on-write
1554 		 * here -- CHECK THIS XXX
1555 		 */
1556 
1557 		if (current->protection != old_prot) {
1558 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1559 							VM_PROT_ALL)
1560 
1561 			pmap_protect(map->pmap, current->start,
1562 			    current->end,
1563 			    current->protection & MASK(current));
1564 #undef	MASK
1565 		}
1566 
1567 		vm_map_simplify_entry(map, current, &count);
1568 
1569 		current = current->next;
1570 	}
1571 
1572 	vm_map_unlock(map);
1573 	vm_map_entry_release(count);
1574 	return (KERN_SUCCESS);
1575 }
1576 
1577 /*
1578  *	vm_map_madvise:
1579  *
1580  * 	This routine traverses a processes map handling the madvise
1581  *	system call.  Advisories are classified as either those effecting
1582  *	the vm_map_entry structure, or those effecting the underlying
1583  *	objects.
1584  *
1585  *	The <value> argument is used for extended madvise calls.
1586  */
1587 int
1588 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1589 	       int behav, off_t value)
1590 {
1591 	vm_map_entry_t current, entry;
1592 	int modify_map = 0;
1593 	int error = 0;
1594 	int count;
1595 
1596 	/*
1597 	 * Some madvise calls directly modify the vm_map_entry, in which case
1598 	 * we need to use an exclusive lock on the map and we need to perform
1599 	 * various clipping operations.  Otherwise we only need a read-lock
1600 	 * on the map.
1601 	 */
1602 
1603 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1604 
1605 	switch(behav) {
1606 	case MADV_NORMAL:
1607 	case MADV_SEQUENTIAL:
1608 	case MADV_RANDOM:
1609 	case MADV_NOSYNC:
1610 	case MADV_AUTOSYNC:
1611 	case MADV_NOCORE:
1612 	case MADV_CORE:
1613 	case MADV_SETMAP:
1614 	case MADV_INVAL:
1615 		modify_map = 1;
1616 		vm_map_lock(map);
1617 		break;
1618 	case MADV_WILLNEED:
1619 	case MADV_DONTNEED:
1620 	case MADV_FREE:
1621 		vm_map_lock_read(map);
1622 		break;
1623 	default:
1624 		vm_map_entry_release(count);
1625 		return (EINVAL);
1626 	}
1627 
1628 	/*
1629 	 * Locate starting entry and clip if necessary.
1630 	 */
1631 
1632 	VM_MAP_RANGE_CHECK(map, start, end);
1633 
1634 	if (vm_map_lookup_entry(map, start, &entry)) {
1635 		if (modify_map)
1636 			vm_map_clip_start(map, entry, start, &count);
1637 	} else {
1638 		entry = entry->next;
1639 	}
1640 
1641 	if (modify_map) {
1642 		/*
1643 		 * madvise behaviors that are implemented in the vm_map_entry.
1644 		 *
1645 		 * We clip the vm_map_entry so that behavioral changes are
1646 		 * limited to the specified address range.
1647 		 */
1648 		for (current = entry;
1649 		     (current != &map->header) && (current->start < end);
1650 		     current = current->next
1651 		) {
1652 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1653 				continue;
1654 
1655 			vm_map_clip_end(map, current, end, &count);
1656 
1657 			switch (behav) {
1658 			case MADV_NORMAL:
1659 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1660 				break;
1661 			case MADV_SEQUENTIAL:
1662 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1663 				break;
1664 			case MADV_RANDOM:
1665 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1666 				break;
1667 			case MADV_NOSYNC:
1668 				current->eflags |= MAP_ENTRY_NOSYNC;
1669 				break;
1670 			case MADV_AUTOSYNC:
1671 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1672 				break;
1673 			case MADV_NOCORE:
1674 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1675 				break;
1676 			case MADV_CORE:
1677 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1678 				break;
1679 			case MADV_INVAL:
1680 				/*
1681 				 * Invalidate the related pmap entries, used
1682 				 * to flush portions of the real kernel's
1683 				 * pmap when the caller has removed or
1684 				 * modified existing mappings in a virtual
1685 				 * page table.
1686 				 */
1687 				pmap_remove(map->pmap,
1688 					    current->start, current->end);
1689 				break;
1690 			case MADV_SETMAP:
1691 				/*
1692 				 * Set the page directory page for a map
1693 				 * governed by a virtual page table.  Mark
1694 				 * the entry as being governed by a virtual
1695 				 * page table if it is not.
1696 				 *
1697 				 * XXX the page directory page is stored
1698 				 * in the avail_ssize field if the map_entry.
1699 				 *
1700 				 * XXX the map simplification code does not
1701 				 * compare this field so weird things may
1702 				 * happen if you do not apply this function
1703 				 * to the entire mapping governed by the
1704 				 * virtual page table.
1705 				 */
1706 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1707 					error = EINVAL;
1708 					break;
1709 				}
1710 				current->aux.master_pde = value;
1711 				pmap_remove(map->pmap,
1712 					    current->start, current->end);
1713 				break;
1714 			default:
1715 				error = EINVAL;
1716 				break;
1717 			}
1718 			vm_map_simplify_entry(map, current, &count);
1719 		}
1720 		vm_map_unlock(map);
1721 	} else {
1722 		vm_pindex_t pindex;
1723 		int count;
1724 
1725 		/*
1726 		 * madvise behaviors that are implemented in the underlying
1727 		 * vm_object.
1728 		 *
1729 		 * Since we don't clip the vm_map_entry, we have to clip
1730 		 * the vm_object pindex and count.
1731 		 *
1732 		 * NOTE!  We currently do not support these functions on
1733 		 * virtual page tables.
1734 		 */
1735 		for (current = entry;
1736 		     (current != &map->header) && (current->start < end);
1737 		     current = current->next
1738 		) {
1739 			vm_offset_t useStart;
1740 
1741 			if (current->maptype != VM_MAPTYPE_NORMAL)
1742 				continue;
1743 
1744 			pindex = OFF_TO_IDX(current->offset);
1745 			count = atop(current->end - current->start);
1746 			useStart = current->start;
1747 
1748 			if (current->start < start) {
1749 				pindex += atop(start - current->start);
1750 				count -= atop(start - current->start);
1751 				useStart = start;
1752 			}
1753 			if (current->end > end)
1754 				count -= atop(current->end - end);
1755 
1756 			if (count <= 0)
1757 				continue;
1758 
1759 			vm_object_madvise(current->object.vm_object,
1760 					  pindex, count, behav);
1761 
1762 			/*
1763 			 * Try to populate the page table.  Mappings governed
1764 			 * by virtual page tables cannot be pre-populated
1765 			 * without a lot of work so don't try.
1766 			 */
1767 			if (behav == MADV_WILLNEED &&
1768 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1769 				pmap_object_init_pt(
1770 				    map->pmap,
1771 				    useStart,
1772 				    current->protection,
1773 				    current->object.vm_object,
1774 				    pindex,
1775 				    (count << PAGE_SHIFT),
1776 				    MAP_PREFAULT_MADVISE
1777 				);
1778 			}
1779 		}
1780 		vm_map_unlock_read(map);
1781 	}
1782 	vm_map_entry_release(count);
1783 	return(error);
1784 }
1785 
1786 
1787 /*
1788  *	vm_map_inherit:
1789  *
1790  *	Sets the inheritance of the specified address
1791  *	range in the target map.  Inheritance
1792  *	affects how the map will be shared with
1793  *	child maps at the time of vm_map_fork.
1794  */
1795 int
1796 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1797 	       vm_inherit_t new_inheritance)
1798 {
1799 	vm_map_entry_t entry;
1800 	vm_map_entry_t temp_entry;
1801 	int count;
1802 
1803 	switch (new_inheritance) {
1804 	case VM_INHERIT_NONE:
1805 	case VM_INHERIT_COPY:
1806 	case VM_INHERIT_SHARE:
1807 		break;
1808 	default:
1809 		return (KERN_INVALID_ARGUMENT);
1810 	}
1811 
1812 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1813 	vm_map_lock(map);
1814 
1815 	VM_MAP_RANGE_CHECK(map, start, end);
1816 
1817 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1818 		entry = temp_entry;
1819 		vm_map_clip_start(map, entry, start, &count);
1820 	} else
1821 		entry = temp_entry->next;
1822 
1823 	while ((entry != &map->header) && (entry->start < end)) {
1824 		vm_map_clip_end(map, entry, end, &count);
1825 
1826 		entry->inheritance = new_inheritance;
1827 
1828 		vm_map_simplify_entry(map, entry, &count);
1829 
1830 		entry = entry->next;
1831 	}
1832 	vm_map_unlock(map);
1833 	vm_map_entry_release(count);
1834 	return (KERN_SUCCESS);
1835 }
1836 
1837 /*
1838  * Implement the semantics of mlock
1839  */
1840 int
1841 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1842     boolean_t new_pageable)
1843 {
1844 	vm_map_entry_t entry;
1845 	vm_map_entry_t start_entry;
1846 	vm_offset_t end;
1847 	int rv = KERN_SUCCESS;
1848 	int count;
1849 
1850 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1851 	vm_map_lock(map);
1852 	VM_MAP_RANGE_CHECK(map, start, real_end);
1853 	end = real_end;
1854 
1855 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1856 	if (start_entry == NULL) {
1857 		vm_map_unlock(map);
1858 		vm_map_entry_release(count);
1859 		return (KERN_INVALID_ADDRESS);
1860 	}
1861 
1862 	if (new_pageable == 0) {
1863 		entry = start_entry;
1864 		while ((entry != &map->header) && (entry->start < end)) {
1865 			vm_offset_t save_start;
1866 			vm_offset_t save_end;
1867 
1868 			/*
1869 			 * Already user wired or hard wired (trivial cases)
1870 			 */
1871 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1872 				entry = entry->next;
1873 				continue;
1874 			}
1875 			if (entry->wired_count != 0) {
1876 				entry->wired_count++;
1877 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1878 				entry = entry->next;
1879 				continue;
1880 			}
1881 
1882 			/*
1883 			 * A new wiring requires instantiation of appropriate
1884 			 * management structures and the faulting in of the
1885 			 * page.
1886 			 */
1887 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1888 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1889 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1890 					vm_map_entry_shadow(entry);
1891 				} else if (entry->object.vm_object == NULL &&
1892 					   !map->system_map) {
1893 					vm_map_entry_allocate_object(entry);
1894 				}
1895 			}
1896 			entry->wired_count++;
1897 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1898 
1899 			/*
1900 			 * Now fault in the area.  Note that vm_fault_wire()
1901 			 * may release the map lock temporarily, it will be
1902 			 * relocked on return.  The in-transition
1903 			 * flag protects the entries.
1904 			 */
1905 			save_start = entry->start;
1906 			save_end = entry->end;
1907 			rv = vm_fault_wire(map, entry, TRUE);
1908 			if (rv) {
1909 				CLIP_CHECK_BACK(entry, save_start);
1910 				for (;;) {
1911 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1912 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1913 					entry->wired_count = 0;
1914 					if (entry->end == save_end)
1915 						break;
1916 					entry = entry->next;
1917 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1918 				}
1919 				end = save_start;	/* unwire the rest */
1920 				break;
1921 			}
1922 			/*
1923 			 * note that even though the entry might have been
1924 			 * clipped, the USER_WIRED flag we set prevents
1925 			 * duplication so we do not have to do a
1926 			 * clip check.
1927 			 */
1928 			entry = entry->next;
1929 		}
1930 
1931 		/*
1932 		 * If we failed fall through to the unwiring section to
1933 		 * unwire what we had wired so far.  'end' has already
1934 		 * been adjusted.
1935 		 */
1936 		if (rv)
1937 			new_pageable = 1;
1938 
1939 		/*
1940 		 * start_entry might have been clipped if we unlocked the
1941 		 * map and blocked.  No matter how clipped it has gotten
1942 		 * there should be a fragment that is on our start boundary.
1943 		 */
1944 		CLIP_CHECK_BACK(start_entry, start);
1945 	}
1946 
1947 	/*
1948 	 * Deal with the unwiring case.
1949 	 */
1950 	if (new_pageable) {
1951 		/*
1952 		 * This is the unwiring case.  We must first ensure that the
1953 		 * range to be unwired is really wired down.  We know there
1954 		 * are no holes.
1955 		 */
1956 		entry = start_entry;
1957 		while ((entry != &map->header) && (entry->start < end)) {
1958 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1959 				rv = KERN_INVALID_ARGUMENT;
1960 				goto done;
1961 			}
1962 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1963 			entry = entry->next;
1964 		}
1965 
1966 		/*
1967 		 * Now decrement the wiring count for each region. If a region
1968 		 * becomes completely unwired, unwire its physical pages and
1969 		 * mappings.
1970 		 */
1971 		/*
1972 		 * The map entries are processed in a loop, checking to
1973 		 * make sure the entry is wired and asserting it has a wired
1974 		 * count. However, another loop was inserted more-or-less in
1975 		 * the middle of the unwiring path. This loop picks up the
1976 		 * "entry" loop variable from the first loop without first
1977 		 * setting it to start_entry. Naturally, the secound loop
1978 		 * is never entered and the pages backing the entries are
1979 		 * never unwired. This can lead to a leak of wired pages.
1980 		 */
1981 		entry = start_entry;
1982 		while ((entry != &map->header) && (entry->start < end)) {
1983 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1984 				("expected USER_WIRED on entry %p", entry));
1985 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1986 			entry->wired_count--;
1987 			if (entry->wired_count == 0)
1988 				vm_fault_unwire(map, entry);
1989 			entry = entry->next;
1990 		}
1991 	}
1992 done:
1993 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1994 		MAP_CLIP_NO_HOLES);
1995 	map->timestamp++;
1996 	vm_map_unlock(map);
1997 	vm_map_entry_release(count);
1998 	return (rv);
1999 }
2000 
2001 /*
2002  *	vm_map_wire:
2003  *
2004  *	Sets the pageability of the specified address
2005  *	range in the target map.  Regions specified
2006  *	as not pageable require locked-down physical
2007  *	memory and physical page maps.
2008  *
2009  *	The map must not be locked, but a reference
2010  *	must remain to the map throughout the call.
2011  *
2012  *	This function may be called via the zalloc path and must properly
2013  *	reserve map entries for kernel_map.
2014  */
2015 int
2016 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2017 {
2018 	vm_map_entry_t entry;
2019 	vm_map_entry_t start_entry;
2020 	vm_offset_t end;
2021 	int rv = KERN_SUCCESS;
2022 	int count;
2023 
2024 	if (kmflags & KM_KRESERVE)
2025 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2026 	else
2027 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2028 	vm_map_lock(map);
2029 	VM_MAP_RANGE_CHECK(map, start, real_end);
2030 	end = real_end;
2031 
2032 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2033 	if (start_entry == NULL) {
2034 		vm_map_unlock(map);
2035 		rv = KERN_INVALID_ADDRESS;
2036 		goto failure;
2037 	}
2038 	if ((kmflags & KM_PAGEABLE) == 0) {
2039 		/*
2040 		 * Wiring.
2041 		 *
2042 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2043 		 * objects that need to be created. Then we clip each map
2044 		 * entry to the region to be wired and increment its wiring
2045 		 * count.  We create objects before clipping the map entries
2046 		 * to avoid object proliferation.
2047 		 *
2048 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2049 		 * fault in the pages for any newly wired area (wired_count is
2050 		 * 1).
2051 		 *
2052 		 * Downgrading to a read lock for vm_fault_wire avoids a
2053 		 * possible deadlock with another process that may have faulted
2054 		 * on one of the pages to be wired (it would mark the page busy,
2055 		 * blocking us, then in turn block on the map lock that we
2056 		 * hold).  Because of problems in the recursive lock package,
2057 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2058 		 * any actions that require the write lock must be done
2059 		 * beforehand.  Because we keep the read lock on the map, the
2060 		 * copy-on-write status of the entries we modify here cannot
2061 		 * change.
2062 		 */
2063 
2064 		entry = start_entry;
2065 		while ((entry != &map->header) && (entry->start < end)) {
2066 			/*
2067 			 * Trivial case if the entry is already wired
2068 			 */
2069 			if (entry->wired_count) {
2070 				entry->wired_count++;
2071 				entry = entry->next;
2072 				continue;
2073 			}
2074 
2075 			/*
2076 			 * The entry is being newly wired, we have to setup
2077 			 * appropriate management structures.  A shadow
2078 			 * object is required for a copy-on-write region,
2079 			 * or a normal object for a zero-fill region.  We
2080 			 * do not have to do this for entries that point to sub
2081 			 * maps because we won't hold the lock on the sub map.
2082 			 */
2083 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2084 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2085 				if (copyflag &&
2086 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2087 					vm_map_entry_shadow(entry);
2088 				} else if (entry->object.vm_object == NULL &&
2089 					   !map->system_map) {
2090 					vm_map_entry_allocate_object(entry);
2091 				}
2092 			}
2093 
2094 			entry->wired_count++;
2095 			entry = entry->next;
2096 		}
2097 
2098 		/*
2099 		 * Pass 2.
2100 		 */
2101 
2102 		/*
2103 		 * HACK HACK HACK HACK
2104 		 *
2105 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2106 		 * protects us from most changes but note that
2107 		 * clipping may still occur.  To prevent clipping from
2108 		 * occuring after the unlock, except for when we are
2109 		 * blocking in vm_fault_wire, we must run in a critical
2110 		 * section, otherwise our accesses to entry->start and
2111 		 * entry->end could be corrupted.  We have to enter the
2112 		 * critical section prior to unlocking so start_entry does
2113 		 * not change out from under us at the very beginning of the
2114 		 * loop.
2115 		 *
2116 		 * HACK HACK HACK HACK
2117 		 */
2118 
2119 		crit_enter();
2120 
2121 		entry = start_entry;
2122 		while (entry != &map->header && entry->start < end) {
2123 			/*
2124 			 * If vm_fault_wire fails for any page we need to undo
2125 			 * what has been done.  We decrement the wiring count
2126 			 * for those pages which have not yet been wired (now)
2127 			 * and unwire those that have (later).
2128 			 */
2129 			vm_offset_t save_start = entry->start;
2130 			vm_offset_t save_end = entry->end;
2131 
2132 			if (entry->wired_count == 1)
2133 				rv = vm_fault_wire(map, entry, FALSE);
2134 			if (rv) {
2135 				CLIP_CHECK_BACK(entry, save_start);
2136 				for (;;) {
2137 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2138 					entry->wired_count = 0;
2139 					if (entry->end == save_end)
2140 						break;
2141 					entry = entry->next;
2142 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2143 				}
2144 				end = save_start;
2145 				break;
2146 			}
2147 			CLIP_CHECK_FWD(entry, save_end);
2148 			entry = entry->next;
2149 		}
2150 		crit_exit();
2151 
2152 		/*
2153 		 * If a failure occured undo everything by falling through
2154 		 * to the unwiring code.  'end' has already been adjusted
2155 		 * appropriately.
2156 		 */
2157 		if (rv)
2158 			kmflags |= KM_PAGEABLE;
2159 
2160 		/*
2161 		 * start_entry is still IN_TRANSITION but may have been
2162 		 * clipped since vm_fault_wire() unlocks and relocks the
2163 		 * map.  No matter how clipped it has gotten there should
2164 		 * be a fragment that is on our start boundary.
2165 		 */
2166 		CLIP_CHECK_BACK(start_entry, start);
2167 	}
2168 
2169 	if (kmflags & KM_PAGEABLE) {
2170 		/*
2171 		 * This is the unwiring case.  We must first ensure that the
2172 		 * range to be unwired is really wired down.  We know there
2173 		 * are no holes.
2174 		 */
2175 		entry = start_entry;
2176 		while ((entry != &map->header) && (entry->start < end)) {
2177 			if (entry->wired_count == 0) {
2178 				rv = KERN_INVALID_ARGUMENT;
2179 				goto done;
2180 			}
2181 			entry = entry->next;
2182 		}
2183 
2184 		/*
2185 		 * Now decrement the wiring count for each region. If a region
2186 		 * becomes completely unwired, unwire its physical pages and
2187 		 * mappings.
2188 		 */
2189 		entry = start_entry;
2190 		while ((entry != &map->header) && (entry->start < end)) {
2191 			entry->wired_count--;
2192 			if (entry->wired_count == 0)
2193 				vm_fault_unwire(map, entry);
2194 			entry = entry->next;
2195 		}
2196 	}
2197 done:
2198 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2199 		MAP_CLIP_NO_HOLES);
2200 	map->timestamp++;
2201 	vm_map_unlock(map);
2202 failure:
2203 	if (kmflags & KM_KRESERVE)
2204 		vm_map_entry_krelease(count);
2205 	else
2206 		vm_map_entry_release(count);
2207 	return (rv);
2208 }
2209 
2210 /*
2211  * vm_map_set_wired_quick()
2212  *
2213  *	Mark a newly allocated address range as wired but do not fault in
2214  *	the pages.  The caller is expected to load the pages into the object.
2215  *
2216  *	The map must be locked on entry and will remain locked on return.
2217  */
2218 void
2219 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2220 {
2221 	vm_map_entry_t scan;
2222 	vm_map_entry_t entry;
2223 
2224 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2225 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2226 	    KKASSERT(entry->wired_count == 0);
2227 	    entry->wired_count = 1;
2228 	}
2229 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2230 }
2231 
2232 /*
2233  * vm_map_clean
2234  *
2235  * Push any dirty cached pages in the address range to their pager.
2236  * If syncio is TRUE, dirty pages are written synchronously.
2237  * If invalidate is TRUE, any cached pages are freed as well.
2238  *
2239  * Returns an error if any part of the specified range is not mapped.
2240  */
2241 int
2242 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2243     boolean_t invalidate)
2244 {
2245 	vm_map_entry_t current;
2246 	vm_map_entry_t entry;
2247 	vm_size_t size;
2248 	vm_object_t object;
2249 	vm_ooffset_t offset;
2250 
2251 	vm_map_lock_read(map);
2252 	VM_MAP_RANGE_CHECK(map, start, end);
2253 	if (!vm_map_lookup_entry(map, start, &entry)) {
2254 		vm_map_unlock_read(map);
2255 		return (KERN_INVALID_ADDRESS);
2256 	}
2257 	/*
2258 	 * Make a first pass to check for holes.
2259 	 */
2260 	for (current = entry; current->start < end; current = current->next) {
2261 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2262 			vm_map_unlock_read(map);
2263 			return (KERN_INVALID_ARGUMENT);
2264 		}
2265 		if (end > current->end &&
2266 		    (current->next == &map->header ||
2267 			current->end != current->next->start)) {
2268 			vm_map_unlock_read(map);
2269 			return (KERN_INVALID_ADDRESS);
2270 		}
2271 	}
2272 
2273 	if (invalidate)
2274 		pmap_remove(vm_map_pmap(map), start, end);
2275 	/*
2276 	 * Make a second pass, cleaning/uncaching pages from the indicated
2277 	 * objects as we go.
2278 	 */
2279 	for (current = entry; current->start < end; current = current->next) {
2280 		offset = current->offset + (start - current->start);
2281 		size = (end <= current->end ? end : current->end) - start;
2282 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2283 			vm_map_t smap;
2284 			vm_map_entry_t tentry;
2285 			vm_size_t tsize;
2286 
2287 			smap = current->object.sub_map;
2288 			vm_map_lock_read(smap);
2289 			vm_map_lookup_entry(smap, offset, &tentry);
2290 			tsize = tentry->end - offset;
2291 			if (tsize < size)
2292 				size = tsize;
2293 			object = tentry->object.vm_object;
2294 			offset = tentry->offset + (offset - tentry->start);
2295 			vm_map_unlock_read(smap);
2296 		} else {
2297 			object = current->object.vm_object;
2298 		}
2299 		/*
2300 		 * Note that there is absolutely no sense in writing out
2301 		 * anonymous objects, so we track down the vnode object
2302 		 * to write out.
2303 		 * We invalidate (remove) all pages from the address space
2304 		 * anyway, for semantic correctness.
2305 		 *
2306 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2307 		 * may start out with a NULL object.
2308 		 */
2309 		while (object && object->backing_object) {
2310 			offset += object->backing_object_offset;
2311 			object = object->backing_object;
2312 			if (object->size < OFF_TO_IDX( offset + size))
2313 				size = IDX_TO_OFF(object->size) - offset;
2314 		}
2315 		if (object && (object->type == OBJT_VNODE) &&
2316 		    (current->protection & VM_PROT_WRITE)) {
2317 			/*
2318 			 * Flush pages if writing is allowed, invalidate them
2319 			 * if invalidation requested.  Pages undergoing I/O
2320 			 * will be ignored by vm_object_page_remove().
2321 			 *
2322 			 * We cannot lock the vnode and then wait for paging
2323 			 * to complete without deadlocking against vm_fault.
2324 			 * Instead we simply call vm_object_page_remove() and
2325 			 * allow it to block internally on a page-by-page
2326 			 * basis when it encounters pages undergoing async
2327 			 * I/O.
2328 			 */
2329 			int flags;
2330 
2331 			vm_object_reference(object);
2332 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2333 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2334 			flags |= invalidate ? OBJPC_INVAL : 0;
2335 
2336 			/*
2337 			 * When operating on a virtual page table just
2338 			 * flush the whole object.  XXX we probably ought
2339 			 * to
2340 			 */
2341 			switch(current->maptype) {
2342 			case VM_MAPTYPE_NORMAL:
2343 				vm_object_page_clean(object,
2344 				    OFF_TO_IDX(offset),
2345 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2346 				    flags);
2347 				break;
2348 			case VM_MAPTYPE_VPAGETABLE:
2349 				vm_object_page_clean(object, 0, 0, flags);
2350 				break;
2351 			}
2352 			vn_unlock(((struct vnode *)object->handle));
2353 			vm_object_deallocate(object);
2354 		}
2355 		if (object && invalidate &&
2356 		   ((object->type == OBJT_VNODE) ||
2357 		    (object->type == OBJT_DEVICE))) {
2358 			int clean_only =
2359 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2360 			vm_object_reference(object);
2361 			switch(current->maptype) {
2362 			case VM_MAPTYPE_NORMAL:
2363 				vm_object_page_remove(object,
2364 				    OFF_TO_IDX(offset),
2365 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2366 				    clean_only);
2367 				break;
2368 			case VM_MAPTYPE_VPAGETABLE:
2369 				vm_object_page_remove(object, 0, 0, clean_only);
2370 				break;
2371 			}
2372 			vm_object_deallocate(object);
2373 		}
2374 		start += size;
2375 	}
2376 
2377 	vm_map_unlock_read(map);
2378 	return (KERN_SUCCESS);
2379 }
2380 
2381 /*
2382  *	vm_map_entry_unwire:	[ internal use only ]
2383  *
2384  *	Make the region specified by this entry pageable.
2385  *
2386  *	The map in question should be locked.
2387  *	[This is the reason for this routine's existence.]
2388  */
2389 static void
2390 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2391 {
2392 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2393 	entry->wired_count = 0;
2394 	vm_fault_unwire(map, entry);
2395 }
2396 
2397 /*
2398  *	vm_map_entry_delete:	[ internal use only ]
2399  *
2400  *	Deallocate the given entry from the target map.
2401  */
2402 static void
2403 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2404 {
2405 	vm_map_entry_unlink(map, entry);
2406 	map->size -= entry->end - entry->start;
2407 
2408 	switch(entry->maptype) {
2409 	case VM_MAPTYPE_NORMAL:
2410 	case VM_MAPTYPE_VPAGETABLE:
2411 		vm_object_deallocate(entry->object.vm_object);
2412 		break;
2413 	default:
2414 		break;
2415 	}
2416 
2417 	vm_map_entry_dispose(map, entry, countp);
2418 }
2419 
2420 /*
2421  *	vm_map_delete:	[ internal use only ]
2422  *
2423  *	Deallocates the given address range from the target
2424  *	map.
2425  */
2426 int
2427 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2428 {
2429 	vm_object_t object;
2430 	vm_map_entry_t entry;
2431 	vm_map_entry_t first_entry;
2432 
2433 again:
2434 	/*
2435 	 * Find the start of the region, and clip it.  Set entry to point
2436 	 * at the first record containing the requested address or, if no
2437 	 * such record exists, the next record with a greater address.  The
2438 	 * loop will run from this point until a record beyond the termination
2439 	 * address is encountered.
2440 	 *
2441 	 * map->hint must be adjusted to not point to anything we delete,
2442 	 * so set it to the entry prior to the one being deleted.
2443 	 *
2444 	 * GGG see other GGG comment.
2445 	 */
2446 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2447 		entry = first_entry;
2448 		vm_map_clip_start(map, entry, start, countp);
2449 		map->hint = entry->prev;	/* possible problem XXX */
2450 	} else {
2451 		map->hint = first_entry;	/* possible problem XXX */
2452 		entry = first_entry->next;
2453 	}
2454 
2455 	/*
2456 	 * If a hole opens up prior to the current first_free then
2457 	 * adjust first_free.  As with map->hint, map->first_free
2458 	 * cannot be left set to anything we might delete.
2459 	 */
2460 	if (entry == &map->header) {
2461 		map->first_free = &map->header;
2462 	} else if (map->first_free->start >= start) {
2463 		map->first_free = entry->prev;
2464 	}
2465 
2466 	/*
2467 	 * Step through all entries in this region
2468 	 */
2469 
2470 	while ((entry != &map->header) && (entry->start < end)) {
2471 		vm_map_entry_t next;
2472 		vm_offset_t s, e;
2473 		vm_pindex_t offidxstart, offidxend, count;
2474 
2475 		/*
2476 		 * If we hit an in-transition entry we have to sleep and
2477 		 * retry.  It's easier (and not really slower) to just retry
2478 		 * since this case occurs so rarely and the hint is already
2479 		 * pointing at the right place.  We have to reset the
2480 		 * start offset so as not to accidently delete an entry
2481 		 * another process just created in vacated space.
2482 		 */
2483 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2484 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2485 			start = entry->start;
2486 			++mycpu->gd_cnt.v_intrans_coll;
2487 			++mycpu->gd_cnt.v_intrans_wait;
2488 			vm_map_transition_wait(map);
2489 			goto again;
2490 		}
2491 		vm_map_clip_end(map, entry, end, countp);
2492 
2493 		s = entry->start;
2494 		e = entry->end;
2495 		next = entry->next;
2496 
2497 		offidxstart = OFF_TO_IDX(entry->offset);
2498 		count = OFF_TO_IDX(e - s);
2499 		object = entry->object.vm_object;
2500 
2501 		/*
2502 		 * Unwire before removing addresses from the pmap; otherwise,
2503 		 * unwiring will put the entries back in the pmap.
2504 		 */
2505 		if (entry->wired_count != 0)
2506 			vm_map_entry_unwire(map, entry);
2507 
2508 		offidxend = offidxstart + count;
2509 
2510 		if (object == &kernel_object) {
2511 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2512 		} else {
2513 			pmap_remove(map->pmap, s, e);
2514 			if (object != NULL &&
2515 			    object->ref_count != 1 &&
2516 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2517 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2518 				vm_object_collapse(object);
2519 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2520 				if (object->type == OBJT_SWAP) {
2521 					swap_pager_freespace(object, offidxstart, count);
2522 				}
2523 				if (offidxend >= object->size &&
2524 				    offidxstart < object->size) {
2525 					object->size = offidxstart;
2526 				}
2527 			}
2528 		}
2529 
2530 		/*
2531 		 * Delete the entry (which may delete the object) only after
2532 		 * removing all pmap entries pointing to its pages.
2533 		 * (Otherwise, its page frames may be reallocated, and any
2534 		 * modify bits will be set in the wrong object!)
2535 		 */
2536 		vm_map_entry_delete(map, entry, countp);
2537 		entry = next;
2538 	}
2539 	return (KERN_SUCCESS);
2540 }
2541 
2542 /*
2543  *	vm_map_remove:
2544  *
2545  *	Remove the given address range from the target map.
2546  *	This is the exported form of vm_map_delete.
2547  */
2548 int
2549 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2550 {
2551 	int result;
2552 	int count;
2553 
2554 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2555 	vm_map_lock(map);
2556 	VM_MAP_RANGE_CHECK(map, start, end);
2557 	result = vm_map_delete(map, start, end, &count);
2558 	vm_map_unlock(map);
2559 	vm_map_entry_release(count);
2560 
2561 	return (result);
2562 }
2563 
2564 /*
2565  *	vm_map_check_protection:
2566  *
2567  *	Assert that the target map allows the specified
2568  *	privilege on the entire address region given.
2569  *	The entire region must be allocated.
2570  */
2571 boolean_t
2572 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2573 			vm_prot_t protection)
2574 {
2575 	vm_map_entry_t entry;
2576 	vm_map_entry_t tmp_entry;
2577 
2578 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2579 		return (FALSE);
2580 	}
2581 	entry = tmp_entry;
2582 
2583 	while (start < end) {
2584 		if (entry == &map->header) {
2585 			return (FALSE);
2586 		}
2587 		/*
2588 		 * No holes allowed!
2589 		 */
2590 
2591 		if (start < entry->start) {
2592 			return (FALSE);
2593 		}
2594 		/*
2595 		 * Check protection associated with entry.
2596 		 */
2597 
2598 		if ((entry->protection & protection) != protection) {
2599 			return (FALSE);
2600 		}
2601 		/* go to next entry */
2602 
2603 		start = entry->end;
2604 		entry = entry->next;
2605 	}
2606 	return (TRUE);
2607 }
2608 
2609 /*
2610  * Split the pages in a map entry into a new object.  This affords
2611  * easier removal of unused pages, and keeps object inheritance from
2612  * being a negative impact on memory usage.
2613  */
2614 static void
2615 vm_map_split(vm_map_entry_t entry)
2616 {
2617 	vm_page_t m;
2618 	vm_object_t orig_object, new_object, source;
2619 	vm_offset_t s, e;
2620 	vm_pindex_t offidxstart, offidxend, idx;
2621 	vm_size_t size;
2622 	vm_ooffset_t offset;
2623 
2624 	orig_object = entry->object.vm_object;
2625 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2626 		return;
2627 	if (orig_object->ref_count <= 1)
2628 		return;
2629 
2630 	offset = entry->offset;
2631 	s = entry->start;
2632 	e = entry->end;
2633 
2634 	offidxstart = OFF_TO_IDX(offset);
2635 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2636 	size = offidxend - offidxstart;
2637 
2638 	new_object = vm_pager_allocate(orig_object->type, NULL,
2639 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2640 	if (new_object == NULL)
2641 		return;
2642 
2643 	source = orig_object->backing_object;
2644 	if (source != NULL) {
2645 		vm_object_reference(source);	/* Referenced by new_object */
2646 		LIST_INSERT_HEAD(&source->shadow_head,
2647 				  new_object, shadow_list);
2648 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2649 		new_object->backing_object_offset =
2650 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2651 		new_object->backing_object = source;
2652 		source->shadow_count++;
2653 		source->generation++;
2654 	}
2655 
2656 	for (idx = 0; idx < size; idx++) {
2657 		vm_page_t m;
2658 
2659 		/*
2660 		 * A critical section is required to avoid a race between
2661 		 * the lookup and an interrupt/unbusy/free and our busy
2662 		 * check.
2663 		 */
2664 		crit_enter();
2665 	retry:
2666 		m = vm_page_lookup(orig_object, offidxstart + idx);
2667 		if (m == NULL) {
2668 			crit_exit();
2669 			continue;
2670 		}
2671 
2672 		/*
2673 		 * We must wait for pending I/O to complete before we can
2674 		 * rename the page.
2675 		 *
2676 		 * We do not have to VM_PROT_NONE the page as mappings should
2677 		 * not be changed by this operation.
2678 		 */
2679 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2680 			goto retry;
2681 		vm_page_busy(m);
2682 		vm_page_rename(m, new_object, idx);
2683 		/* page automatically made dirty by rename and cache handled */
2684 		vm_page_busy(m);
2685 		crit_exit();
2686 	}
2687 
2688 	if (orig_object->type == OBJT_SWAP) {
2689 		vm_object_pip_add(orig_object, 1);
2690 		/*
2691 		 * copy orig_object pages into new_object
2692 		 * and destroy unneeded pages in
2693 		 * shadow object.
2694 		 */
2695 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2696 		vm_object_pip_wakeup(orig_object);
2697 	}
2698 
2699 	/*
2700 	 * Wakeup the pages we played with.  No spl protection is needed
2701 	 * for a simple wakeup.
2702 	 */
2703 	for (idx = 0; idx < size; idx++) {
2704 		m = vm_page_lookup(new_object, idx);
2705 		if (m)
2706 			vm_page_wakeup(m);
2707 	}
2708 
2709 	entry->object.vm_object = new_object;
2710 	entry->offset = 0LL;
2711 	vm_object_deallocate(orig_object);
2712 }
2713 
2714 /*
2715  *	vm_map_copy_entry:
2716  *
2717  *	Copies the contents of the source entry to the destination
2718  *	entry.  The entries *must* be aligned properly.
2719  */
2720 static void
2721 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2722 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2723 {
2724 	vm_object_t src_object;
2725 
2726 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2727 		return;
2728 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2729 		return;
2730 
2731 	if (src_entry->wired_count == 0) {
2732 		/*
2733 		 * If the source entry is marked needs_copy, it is already
2734 		 * write-protected.
2735 		 */
2736 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2737 			pmap_protect(src_map->pmap,
2738 			    src_entry->start,
2739 			    src_entry->end,
2740 			    src_entry->protection & ~VM_PROT_WRITE);
2741 		}
2742 
2743 		/*
2744 		 * Make a copy of the object.
2745 		 */
2746 		if ((src_object = src_entry->object.vm_object) != NULL) {
2747 			if ((src_object->handle == NULL) &&
2748 				(src_object->type == OBJT_DEFAULT ||
2749 				 src_object->type == OBJT_SWAP)) {
2750 				vm_object_collapse(src_object);
2751 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2752 					vm_map_split(src_entry);
2753 					src_object = src_entry->object.vm_object;
2754 				}
2755 			}
2756 
2757 			vm_object_reference(src_object);
2758 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2759 			dst_entry->object.vm_object = src_object;
2760 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2761 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2762 			dst_entry->offset = src_entry->offset;
2763 		} else {
2764 			dst_entry->object.vm_object = NULL;
2765 			dst_entry->offset = 0;
2766 		}
2767 
2768 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2769 		    dst_entry->end - dst_entry->start, src_entry->start);
2770 	} else {
2771 		/*
2772 		 * Of course, wired down pages can't be set copy-on-write.
2773 		 * Cause wired pages to be copied into the new map by
2774 		 * simulating faults (the new pages are pageable)
2775 		 */
2776 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2777 	}
2778 }
2779 
2780 /*
2781  * vmspace_fork:
2782  * Create a new process vmspace structure and vm_map
2783  * based on those of an existing process.  The new map
2784  * is based on the old map, according to the inheritance
2785  * values on the regions in that map.
2786  *
2787  * The source map must not be locked.
2788  */
2789 struct vmspace *
2790 vmspace_fork(struct vmspace *vm1)
2791 {
2792 	struct vmspace *vm2;
2793 	vm_map_t old_map = &vm1->vm_map;
2794 	vm_map_t new_map;
2795 	vm_map_entry_t old_entry;
2796 	vm_map_entry_t new_entry;
2797 	vm_object_t object;
2798 	int count;
2799 
2800 	vm_map_lock(old_map);
2801 	old_map->infork = 1;
2802 
2803 	/*
2804 	 * XXX Note: upcalls are not copied.
2805 	 */
2806 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2807 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2808 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2809 	new_map = &vm2->vm_map;	/* XXX */
2810 	new_map->timestamp = 1;
2811 
2812 	count = 0;
2813 	old_entry = old_map->header.next;
2814 	while (old_entry != &old_map->header) {
2815 		++count;
2816 		old_entry = old_entry->next;
2817 	}
2818 
2819 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2820 
2821 	old_entry = old_map->header.next;
2822 	while (old_entry != &old_map->header) {
2823 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2824 			panic("vm_map_fork: encountered a submap");
2825 
2826 		switch (old_entry->inheritance) {
2827 		case VM_INHERIT_NONE:
2828 			break;
2829 
2830 		case VM_INHERIT_SHARE:
2831 			/*
2832 			 * Clone the entry, creating the shared object if
2833 			 * necessary.
2834 			 */
2835 			object = old_entry->object.vm_object;
2836 			if (object == NULL) {
2837 				vm_map_entry_allocate_object(old_entry);
2838 				object = old_entry->object.vm_object;
2839 			}
2840 
2841 			/*
2842 			 * Add the reference before calling vm_map_entry_shadow
2843 			 * to insure that a shadow object is created.
2844 			 */
2845 			vm_object_reference(object);
2846 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2847 				vm_map_entry_shadow(old_entry);
2848 				/* Transfer the second reference too. */
2849 				vm_object_reference(
2850 				    old_entry->object.vm_object);
2851 				vm_object_deallocate(object);
2852 				object = old_entry->object.vm_object;
2853 			}
2854 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2855 
2856 			/*
2857 			 * Clone the entry, referencing the shared object.
2858 			 */
2859 			new_entry = vm_map_entry_create(new_map, &count);
2860 			*new_entry = *old_entry;
2861 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2862 			new_entry->wired_count = 0;
2863 
2864 			/*
2865 			 * Insert the entry into the new map -- we know we're
2866 			 * inserting at the end of the new map.
2867 			 */
2868 
2869 			vm_map_entry_link(new_map, new_map->header.prev,
2870 			    new_entry);
2871 
2872 			/*
2873 			 * Update the physical map
2874 			 */
2875 
2876 			pmap_copy(new_map->pmap, old_map->pmap,
2877 			    new_entry->start,
2878 			    (old_entry->end - old_entry->start),
2879 			    old_entry->start);
2880 			break;
2881 
2882 		case VM_INHERIT_COPY:
2883 			/*
2884 			 * Clone the entry and link into the map.
2885 			 */
2886 			new_entry = vm_map_entry_create(new_map, &count);
2887 			*new_entry = *old_entry;
2888 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2889 			new_entry->wired_count = 0;
2890 			new_entry->object.vm_object = NULL;
2891 			vm_map_entry_link(new_map, new_map->header.prev,
2892 			    new_entry);
2893 			vm_map_copy_entry(old_map, new_map, old_entry,
2894 			    new_entry);
2895 			break;
2896 		}
2897 		old_entry = old_entry->next;
2898 	}
2899 
2900 	new_map->size = old_map->size;
2901 	old_map->infork = 0;
2902 	vm_map_unlock(old_map);
2903 	vm_map_entry_release(count);
2904 
2905 	return (vm2);
2906 }
2907 
2908 int
2909 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2910 	      vm_prot_t prot, vm_prot_t max, int cow)
2911 {
2912 	vm_map_entry_t prev_entry;
2913 	vm_map_entry_t new_stack_entry;
2914 	vm_size_t      init_ssize;
2915 	int            rv;
2916 	int		count;
2917 
2918 	if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS)
2919 		return (KERN_NO_SPACE);
2920 
2921 	if (max_ssize < sgrowsiz)
2922 		init_ssize = max_ssize;
2923 	else
2924 		init_ssize = sgrowsiz;
2925 
2926 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2927 	vm_map_lock(map);
2928 
2929 	/* If addr is already mapped, no go */
2930 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2931 		vm_map_unlock(map);
2932 		vm_map_entry_release(count);
2933 		return (KERN_NO_SPACE);
2934 	}
2935 
2936 	/* If we would blow our VMEM resource limit, no go */
2937 	if (map->size + init_ssize >
2938 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2939 		vm_map_unlock(map);
2940 		vm_map_entry_release(count);
2941 		return (KERN_NO_SPACE);
2942 	}
2943 
2944 	/* If we can't accomodate max_ssize in the current mapping,
2945 	 * no go.  However, we need to be aware that subsequent user
2946 	 * mappings might map into the space we have reserved for
2947 	 * stack, and currently this space is not protected.
2948 	 *
2949 	 * Hopefully we will at least detect this condition
2950 	 * when we try to grow the stack.
2951 	 */
2952 	if ((prev_entry->next != &map->header) &&
2953 	    (prev_entry->next->start < addrbos + max_ssize)) {
2954 		vm_map_unlock(map);
2955 		vm_map_entry_release(count);
2956 		return (KERN_NO_SPACE);
2957 	}
2958 
2959 	/* We initially map a stack of only init_ssize.  We will
2960 	 * grow as needed later.  Since this is to be a grow
2961 	 * down stack, we map at the top of the range.
2962 	 *
2963 	 * Note: we would normally expect prot and max to be
2964 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2965 	 * eliminate these as input parameters, and just
2966 	 * pass these values here in the insert call.
2967 	 */
2968 	rv = vm_map_insert(map, &count,
2969 			   NULL, 0, addrbos + max_ssize - init_ssize,
2970 	                   addrbos + max_ssize,
2971 			   VM_MAPTYPE_NORMAL,
2972 			   prot, max,
2973 			   cow);
2974 
2975 	/* Now set the avail_ssize amount */
2976 	if (rv == KERN_SUCCESS) {
2977 		if (prev_entry != &map->header)
2978 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2979 		new_stack_entry = prev_entry->next;
2980 		if (new_stack_entry->end   != addrbos + max_ssize ||
2981 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2982 			panic ("Bad entry start/end for new stack entry");
2983 		else
2984 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
2985 	}
2986 
2987 	vm_map_unlock(map);
2988 	vm_map_entry_release(count);
2989 	return (rv);
2990 }
2991 
2992 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2993  * desired address is already mapped, or if we successfully grow
2994  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2995  * stack range (this is strange, but preserves compatibility with
2996  * the grow function in vm_machdep.c).
2997  */
2998 int
2999 vm_map_growstack (struct proc *p, vm_offset_t addr)
3000 {
3001 	vm_map_entry_t prev_entry;
3002 	vm_map_entry_t stack_entry;
3003 	vm_map_entry_t new_stack_entry;
3004 	struct vmspace *vm = p->p_vmspace;
3005 	vm_map_t map = &vm->vm_map;
3006 	vm_offset_t    end;
3007 	int grow_amount;
3008 	int rv = KERN_SUCCESS;
3009 	int is_procstack;
3010 	int use_read_lock = 1;
3011 	int count;
3012 
3013 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3014 Retry:
3015 	if (use_read_lock)
3016 		vm_map_lock_read(map);
3017 	else
3018 		vm_map_lock(map);
3019 
3020 	/* If addr is already in the entry range, no need to grow.*/
3021 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3022 		goto done;
3023 
3024 	if ((stack_entry = prev_entry->next) == &map->header)
3025 		goto done;
3026 	if (prev_entry == &map->header)
3027 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3028 	else
3029 		end = prev_entry->end;
3030 
3031 	/* This next test mimics the old grow function in vm_machdep.c.
3032 	 * It really doesn't quite make sense, but we do it anyway
3033 	 * for compatibility.
3034 	 *
3035 	 * If not growable stack, return success.  This signals the
3036 	 * caller to proceed as he would normally with normal vm.
3037 	 */
3038 	if (stack_entry->aux.avail_ssize < 1 ||
3039 	    addr >= stack_entry->start ||
3040 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3041 		goto done;
3042 	}
3043 
3044 	/* Find the minimum grow amount */
3045 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3046 	if (grow_amount > stack_entry->aux.avail_ssize) {
3047 		rv = KERN_NO_SPACE;
3048 		goto done;
3049 	}
3050 
3051 	/* If there is no longer enough space between the entries
3052 	 * nogo, and adjust the available space.  Note: this
3053 	 * should only happen if the user has mapped into the
3054 	 * stack area after the stack was created, and is
3055 	 * probably an error.
3056 	 *
3057 	 * This also effectively destroys any guard page the user
3058 	 * might have intended by limiting the stack size.
3059 	 */
3060 	if (grow_amount > stack_entry->start - end) {
3061 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3062 			use_read_lock = 0;
3063 			goto Retry;
3064 		}
3065 		use_read_lock = 0;
3066 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3067 		rv = KERN_NO_SPACE;
3068 		goto done;
3069 	}
3070 
3071 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3072 
3073 	/* If this is the main process stack, see if we're over the
3074 	 * stack limit.
3075 	 */
3076 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3077 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3078 		rv = KERN_NO_SPACE;
3079 		goto done;
3080 	}
3081 
3082 	/* Round up the grow amount modulo SGROWSIZ */
3083 	grow_amount = roundup (grow_amount, sgrowsiz);
3084 	if (grow_amount > stack_entry->aux.avail_ssize) {
3085 		grow_amount = stack_entry->aux.avail_ssize;
3086 	}
3087 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3088 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3089 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3090 		              ctob(vm->vm_ssize);
3091 	}
3092 
3093 	/* If we would blow our VMEM resource limit, no go */
3094 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3095 		rv = KERN_NO_SPACE;
3096 		goto done;
3097 	}
3098 
3099 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3100 		use_read_lock = 0;
3101 		goto Retry;
3102 	}
3103 	use_read_lock = 0;
3104 
3105 	/* Get the preliminary new entry start value */
3106 	addr = stack_entry->start - grow_amount;
3107 
3108 	/* If this puts us into the previous entry, cut back our growth
3109 	 * to the available space.  Also, see the note above.
3110 	 */
3111 	if (addr < end) {
3112 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3113 		addr = end;
3114 	}
3115 
3116 	rv = vm_map_insert(map, &count,
3117 			   NULL, 0, addr, stack_entry->start,
3118 			   VM_MAPTYPE_NORMAL,
3119 			   VM_PROT_ALL, VM_PROT_ALL,
3120 			   0);
3121 
3122 	/* Adjust the available stack space by the amount we grew. */
3123 	if (rv == KERN_SUCCESS) {
3124 		if (prev_entry != &map->header)
3125 			vm_map_clip_end(map, prev_entry, addr, &count);
3126 		new_stack_entry = prev_entry->next;
3127 		if (new_stack_entry->end   != stack_entry->start  ||
3128 		    new_stack_entry->start != addr)
3129 			panic ("Bad stack grow start/end in new stack entry");
3130 		else {
3131 			new_stack_entry->aux.avail_ssize =
3132 				stack_entry->aux.avail_ssize -
3133 				(new_stack_entry->end - new_stack_entry->start);
3134 			if (is_procstack)
3135 				vm->vm_ssize += btoc(new_stack_entry->end -
3136 						     new_stack_entry->start);
3137 		}
3138 	}
3139 
3140 done:
3141 	if (use_read_lock)
3142 		vm_map_unlock_read(map);
3143 	else
3144 		vm_map_unlock(map);
3145 	vm_map_entry_release(count);
3146 	return (rv);
3147 }
3148 
3149 /*
3150  * Unshare the specified VM space for exec.  If other processes are
3151  * mapped to it, then create a new one.  The new vmspace is null.
3152  */
3153 
3154 void
3155 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3156 {
3157 	struct vmspace *oldvmspace = p->p_vmspace;
3158 	struct vmspace *newvmspace;
3159 	vm_map_t map = &p->p_vmspace->vm_map;
3160 
3161 	/*
3162 	 * If we are execing a resident vmspace we fork it, otherwise
3163 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3164 	 * are not copied to the new vmspace.
3165 	 */
3166 	if (vmcopy)  {
3167 	    newvmspace = vmspace_fork(vmcopy);
3168 	} else {
3169 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3170 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3171 		(caddr_t)&oldvmspace->vm_endcopy -
3172 		    (caddr_t)&oldvmspace->vm_startcopy);
3173 	}
3174 
3175 	/*
3176 	 * This code is written like this for prototype purposes.  The
3177 	 * goal is to avoid running down the vmspace here, but let the
3178 	 * other process's that are still using the vmspace to finally
3179 	 * run it down.  Even though there is little or no chance of blocking
3180 	 * here, it is a good idea to keep this form for future mods.
3181 	 */
3182 	p->p_vmspace = newvmspace;
3183 	pmap_pinit2(vmspace_pmap(newvmspace));
3184 	if (p == curproc)
3185 		pmap_activate(p);
3186 	vmspace_free(oldvmspace);
3187 }
3188 
3189 /*
3190  * Unshare the specified VM space for forcing COW.  This
3191  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3192  *
3193  * The exitingcnt test is not strictly necessary but has been
3194  * included for code sanity (to make the code a bit more deterministic).
3195  */
3196 
3197 void
3198 vmspace_unshare(struct proc *p)
3199 {
3200 	struct vmspace *oldvmspace = p->p_vmspace;
3201 	struct vmspace *newvmspace;
3202 
3203 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3204 		return;
3205 	newvmspace = vmspace_fork(oldvmspace);
3206 	p->p_vmspace = newvmspace;
3207 	pmap_pinit2(vmspace_pmap(newvmspace));
3208 	if (p == curproc)
3209 		pmap_activate(p);
3210 	vmspace_free(oldvmspace);
3211 }
3212 
3213 /*
3214  *	vm_map_lookup:
3215  *
3216  *	Finds the VM object, offset, and
3217  *	protection for a given virtual address in the
3218  *	specified map, assuming a page fault of the
3219  *	type specified.
3220  *
3221  *	Leaves the map in question locked for read; return
3222  *	values are guaranteed until a vm_map_lookup_done
3223  *	call is performed.  Note that the map argument
3224  *	is in/out; the returned map must be used in
3225  *	the call to vm_map_lookup_done.
3226  *
3227  *	A handle (out_entry) is returned for use in
3228  *	vm_map_lookup_done, to make that fast.
3229  *
3230  *	If a lookup is requested with "write protection"
3231  *	specified, the map may be changed to perform virtual
3232  *	copying operations, although the data referenced will
3233  *	remain the same.
3234  */
3235 int
3236 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3237 	      vm_offset_t vaddr,
3238 	      vm_prot_t fault_typea,
3239 	      vm_map_entry_t *out_entry,	/* OUT */
3240 	      vm_object_t *object,		/* OUT */
3241 	      vm_pindex_t *pindex,		/* OUT */
3242 	      vm_prot_t *out_prot,		/* OUT */
3243 	      boolean_t *wired)			/* OUT */
3244 {
3245 	vm_map_entry_t entry;
3246 	vm_map_t map = *var_map;
3247 	vm_prot_t prot;
3248 	vm_prot_t fault_type = fault_typea;
3249 	int use_read_lock = 1;
3250 	int rv = KERN_SUCCESS;
3251 
3252 RetryLookup:
3253 	if (use_read_lock)
3254 		vm_map_lock_read(map);
3255 	else
3256 		vm_map_lock(map);
3257 
3258 	/*
3259 	 * If the map has an interesting hint, try it before calling full
3260 	 * blown lookup routine.
3261 	 */
3262 	entry = map->hint;
3263 	*out_entry = entry;
3264 
3265 	if ((entry == &map->header) ||
3266 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3267 		vm_map_entry_t tmp_entry;
3268 
3269 		/*
3270 		 * Entry was either not a valid hint, or the vaddr was not
3271 		 * contained in the entry, so do a full lookup.
3272 		 */
3273 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3274 			rv = KERN_INVALID_ADDRESS;
3275 			goto done;
3276 		}
3277 
3278 		entry = tmp_entry;
3279 		*out_entry = entry;
3280 	}
3281 
3282 	/*
3283 	 * Handle submaps.
3284 	 */
3285 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3286 		vm_map_t old_map = map;
3287 
3288 		*var_map = map = entry->object.sub_map;
3289 		if (use_read_lock)
3290 			vm_map_unlock_read(old_map);
3291 		else
3292 			vm_map_unlock(old_map);
3293 		use_read_lock = 1;
3294 		goto RetryLookup;
3295 	}
3296 
3297 	/*
3298 	 * Check whether this task is allowed to have this page.
3299 	 * Note the special case for MAP_ENTRY_COW
3300 	 * pages with an override.  This is to implement a forced
3301 	 * COW for debuggers.
3302 	 */
3303 
3304 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3305 		prot = entry->max_protection;
3306 	else
3307 		prot = entry->protection;
3308 
3309 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3310 	if ((fault_type & prot) != fault_type) {
3311 		rv = KERN_PROTECTION_FAILURE;
3312 		goto done;
3313 	}
3314 
3315 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3316 	    (entry->eflags & MAP_ENTRY_COW) &&
3317 	    (fault_type & VM_PROT_WRITE) &&
3318 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3319 		rv = KERN_PROTECTION_FAILURE;
3320 		goto done;
3321 	}
3322 
3323 	/*
3324 	 * If this page is not pageable, we have to get it for all possible
3325 	 * accesses.
3326 	 */
3327 	*wired = (entry->wired_count != 0);
3328 	if (*wired)
3329 		prot = fault_type = entry->protection;
3330 
3331 	/*
3332 	 * Virtual page tables may need to update the accessed (A) bit
3333 	 * in a page table entry.  Upgrade the fault to a write fault for
3334 	 * that case if the map will support it.  If the map does not support
3335 	 * it the page table entry simply will not be updated.
3336 	 */
3337 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3338 		if (prot & VM_PROT_WRITE)
3339 			fault_type |= VM_PROT_WRITE;
3340 	}
3341 
3342 	/*
3343 	 * If the entry was copy-on-write, we either ...
3344 	 */
3345 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3346 		/*
3347 		 * If we want to write the page, we may as well handle that
3348 		 * now since we've got the map locked.
3349 		 *
3350 		 * If we don't need to write the page, we just demote the
3351 		 * permissions allowed.
3352 		 */
3353 
3354 		if (fault_type & VM_PROT_WRITE) {
3355 			/*
3356 			 * Make a new object, and place it in the object
3357 			 * chain.  Note that no new references have appeared
3358 			 * -- one just moved from the map to the new
3359 			 * object.
3360 			 */
3361 
3362 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3363 				use_read_lock = 0;
3364 				goto RetryLookup;
3365 			}
3366 			use_read_lock = 0;
3367 
3368 			vm_map_entry_shadow(entry);
3369 		} else {
3370 			/*
3371 			 * We're attempting to read a copy-on-write page --
3372 			 * don't allow writes.
3373 			 */
3374 
3375 			prot &= ~VM_PROT_WRITE;
3376 		}
3377 	}
3378 
3379 	/*
3380 	 * Create an object if necessary.
3381 	 */
3382 	if (entry->object.vm_object == NULL &&
3383 	    !map->system_map) {
3384 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3385 			use_read_lock = 0;
3386 			goto RetryLookup;
3387 		}
3388 		use_read_lock = 0;
3389 		vm_map_entry_allocate_object(entry);
3390 	}
3391 
3392 	/*
3393 	 * Return the object/offset from this entry.  If the entry was
3394 	 * copy-on-write or empty, it has been fixed up.
3395 	 */
3396 
3397 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3398 	*object = entry->object.vm_object;
3399 
3400 	/*
3401 	 * Return whether this is the only map sharing this data.  On
3402 	 * success we return with a read lock held on the map.  On failure
3403 	 * we return with the map unlocked.
3404 	 */
3405 	*out_prot = prot;
3406 done:
3407 	if (rv == KERN_SUCCESS) {
3408 		if (use_read_lock == 0)
3409 			vm_map_lock_downgrade(map);
3410 	} else if (use_read_lock) {
3411 		vm_map_unlock_read(map);
3412 	} else {
3413 		vm_map_unlock(map);
3414 	}
3415 	return (rv);
3416 }
3417 
3418 /*
3419  *	vm_map_lookup_done:
3420  *
3421  *	Releases locks acquired by a vm_map_lookup
3422  *	(according to the handle returned by that lookup).
3423  */
3424 
3425 void
3426 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3427 {
3428 	/*
3429 	 * Unlock the main-level map
3430 	 */
3431 	vm_map_unlock_read(map);
3432 	if (count)
3433 		vm_map_entry_release(count);
3434 }
3435 
3436 #include "opt_ddb.h"
3437 #ifdef DDB
3438 #include <sys/kernel.h>
3439 
3440 #include <ddb/ddb.h>
3441 
3442 /*
3443  *	vm_map_print:	[ debug ]
3444  */
3445 DB_SHOW_COMMAND(map, vm_map_print)
3446 {
3447 	static int nlines;
3448 	/* XXX convert args. */
3449 	vm_map_t map = (vm_map_t)addr;
3450 	boolean_t full = have_addr;
3451 
3452 	vm_map_entry_t entry;
3453 
3454 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3455 	    (void *)map,
3456 	    (void *)map->pmap, map->nentries, map->timestamp);
3457 	nlines++;
3458 
3459 	if (!full && db_indent)
3460 		return;
3461 
3462 	db_indent += 2;
3463 	for (entry = map->header.next; entry != &map->header;
3464 	    entry = entry->next) {
3465 		db_iprintf("map entry %p: start=%p, end=%p\n",
3466 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3467 		nlines++;
3468 		{
3469 			static char *inheritance_name[4] =
3470 			{"share", "copy", "none", "donate_copy"};
3471 
3472 			db_iprintf(" prot=%x/%x/%s",
3473 			    entry->protection,
3474 			    entry->max_protection,
3475 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3476 			if (entry->wired_count != 0)
3477 				db_printf(", wired");
3478 		}
3479 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3480 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3481 			db_printf(", share=%p, offset=0x%lx\n",
3482 			    (void *)entry->object.sub_map,
3483 			    (long)entry->offset);
3484 			nlines++;
3485 			if ((entry->prev == &map->header) ||
3486 			    (entry->prev->object.sub_map !=
3487 				entry->object.sub_map)) {
3488 				db_indent += 2;
3489 				vm_map_print((db_expr_t)(intptr_t)
3490 					     entry->object.sub_map,
3491 					     full, 0, (char *)0);
3492 				db_indent -= 2;
3493 			}
3494 		} else {
3495 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3496 			db_printf(", object=%p, offset=0x%lx",
3497 			    (void *)entry->object.vm_object,
3498 			    (long)entry->offset);
3499 			if (entry->eflags & MAP_ENTRY_COW)
3500 				db_printf(", copy (%s)",
3501 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3502 			db_printf("\n");
3503 			nlines++;
3504 
3505 			if ((entry->prev == &map->header) ||
3506 			    (entry->prev->object.vm_object !=
3507 				entry->object.vm_object)) {
3508 				db_indent += 2;
3509 				vm_object_print((db_expr_t)(intptr_t)
3510 						entry->object.vm_object,
3511 						full, 0, (char *)0);
3512 				nlines += 4;
3513 				db_indent -= 2;
3514 			}
3515 		}
3516 	}
3517 	db_indent -= 2;
3518 	if (db_indent == 0)
3519 		nlines = 0;
3520 }
3521 
3522 
3523 DB_SHOW_COMMAND(procvm, procvm)
3524 {
3525 	struct proc *p;
3526 
3527 	if (have_addr) {
3528 		p = (struct proc *) addr;
3529 	} else {
3530 		p = curproc;
3531 	}
3532 
3533 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3534 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3535 	    (void *)vmspace_pmap(p->p_vmspace));
3536 
3537 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3538 }
3539 
3540 #endif /* DDB */
3541