1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.54 2006/12/28 21:24:02 dillon Exp $ 66 */ 67 68 /* 69 * Virtual memory mapping module. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/lock.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 #include <sys/vnode.h> 79 #include <sys/resourcevar.h> 80 #include <sys/shm.h> 81 #include <sys/tree.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/swap_pager.h> 93 #include <vm/vm_zone.h> 94 95 #include <sys/thread2.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a single hint is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 /* 122 * vm_map_startup: 123 * 124 * Initialize the vm_map module. Must be called before 125 * any other vm_map routines. 126 * 127 * Map and entry structures are allocated from the general 128 * purpose memory pool with some exceptions: 129 * 130 * - The kernel map and kmem submap are allocated statically. 131 * - Kernel map entries are allocated out of a static pool. 132 * 133 * These restrictions are necessary since malloc() uses the 134 * maps and requires map entries. 135 */ 136 137 #define VMEPERCPU 2 138 139 static struct vm_zone mapentzone_store, mapzone_store; 140 static vm_zone_t mapentzone, mapzone, vmspace_zone; 141 static struct vm_object mapentobj, mapobj; 142 143 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 145 static struct vm_map map_init[MAX_KMAP]; 146 147 static void vm_map_entry_shadow(vm_map_entry_t entry); 148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 155 vm_map_entry_t); 156 static void vm_map_split (vm_map_entry_t); 157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 158 159 void 160 vm_map_startup(void) 161 { 162 mapzone = &mapzone_store; 163 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 164 map_init, MAX_KMAP); 165 mapentzone = &mapentzone_store; 166 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 167 map_entry_init, MAX_MAPENT); 168 } 169 170 /* 171 * Red black tree functions 172 */ 173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 175 176 /* a->start is address, and the only field has to be initialized */ 177 static int 178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 179 { 180 if (a->start < b->start) 181 return(-1); 182 else if (a->start > b->start) 183 return(1); 184 return(0); 185 } 186 187 /* 188 * Allocate a vmspace structure, including a vm_map and pmap, 189 * and initialize those structures. The refcnt is set to 1. 190 * The remaining fields must be initialized by the caller. 191 */ 192 struct vmspace * 193 vmspace_alloc(vm_offset_t min, vm_offset_t max) 194 { 195 struct vmspace *vm; 196 197 vm = zalloc(vmspace_zone); 198 bzero(&vm->vm_startcopy, 199 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 200 vm_map_init(&vm->vm_map, min, max, NULL); 201 pmap_pinit(vmspace_pmap(vm)); 202 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 203 vm->vm_refcnt = 1; 204 vm->vm_shm = NULL; 205 vm->vm_exitingcnt = 0; 206 return (vm); 207 } 208 209 void 210 vm_init2(void) 211 { 212 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 213 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 214 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 215 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 216 pmap_init2(); 217 vm_object_init2(); 218 } 219 220 static __inline void 221 vmspace_dofree(struct vmspace *vm) 222 { 223 int count; 224 225 /* 226 * Make sure any SysV shm is freed, it might not have in 227 * exit1() 228 */ 229 shmexit(vm); 230 231 KKASSERT(vm->vm_upcalls == NULL); 232 233 /* 234 * Lock the map, to wait out all other references to it. 235 * Delete all of the mappings and pages they hold, then call 236 * the pmap module to reclaim anything left. 237 */ 238 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 239 vm_map_lock(&vm->vm_map); 240 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 241 vm->vm_map.max_offset, &count); 242 vm_map_unlock(&vm->vm_map); 243 vm_map_entry_release(count); 244 245 pmap_release(vmspace_pmap(vm)); 246 zfree(vmspace_zone, vm); 247 } 248 249 void 250 vmspace_free(struct vmspace *vm) 251 { 252 if (vm->vm_refcnt == 0) 253 panic("vmspace_free: attempt to free already freed vmspace"); 254 255 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 256 vmspace_dofree(vm); 257 } 258 259 void 260 vmspace_exitfree(struct proc *p) 261 { 262 struct vmspace *vm; 263 264 vm = p->p_vmspace; 265 p->p_vmspace = NULL; 266 267 /* 268 * cleanup by parent process wait()ing on exiting child. vm_refcnt 269 * may not be 0 (e.g. fork() and child exits without exec()ing). 270 * exitingcnt may increment above 0 and drop back down to zero 271 * several times while vm_refcnt is held non-zero. vm_refcnt 272 * may also increment above 0 and drop back down to zero several 273 * times while vm_exitingcnt is held non-zero. 274 * 275 * The last wait on the exiting child's vmspace will clean up 276 * the remainder of the vmspace. 277 */ 278 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 279 vmspace_dofree(vm); 280 } 281 282 /* 283 * vmspace_swap_count() - count the approximate swap useage in pages for a 284 * vmspace. 285 * 286 * Swap useage is determined by taking the proportional swap used by 287 * VM objects backing the VM map. To make up for fractional losses, 288 * if the VM object has any swap use at all the associated map entries 289 * count for at least 1 swap page. 290 */ 291 int 292 vmspace_swap_count(struct vmspace *vmspace) 293 { 294 vm_map_t map = &vmspace->vm_map; 295 vm_map_entry_t cur; 296 vm_object_t object; 297 int count = 0; 298 int n; 299 300 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 301 switch(cur->maptype) { 302 case VM_MAPTYPE_NORMAL: 303 case VM_MAPTYPE_VPAGETABLE: 304 if ((object = cur->object.vm_object) == NULL) 305 break; 306 if (object->type != OBJT_SWAP) 307 break; 308 n = (cur->end - cur->start) / PAGE_SIZE; 309 if (object->un_pager.swp.swp_bcount) { 310 count += object->un_pager.swp.swp_bcount * 311 SWAP_META_PAGES * n / object->size + 1; 312 } 313 break; 314 default: 315 break; 316 } 317 } 318 return(count); 319 } 320 321 322 /* 323 * vm_map_create: 324 * 325 * Creates and returns a new empty VM map with 326 * the given physical map structure, and having 327 * the given lower and upper address bounds. 328 */ 329 vm_map_t 330 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max) 331 { 332 if (result == NULL) 333 result = zalloc(mapzone); 334 vm_map_init(result, min, max, pmap); 335 return (result); 336 } 337 338 /* 339 * Initialize an existing vm_map structure 340 * such as that in the vmspace structure. 341 * The pmap is set elsewhere. 342 */ 343 void 344 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 345 { 346 map->header.next = map->header.prev = &map->header; 347 RB_INIT(&map->rb_root); 348 map->nentries = 0; 349 map->size = 0; 350 map->system_map = 0; 351 map->infork = 0; 352 map->min_offset = min; 353 map->max_offset = max; 354 map->pmap = pmap; 355 map->first_free = &map->header; 356 map->hint = &map->header; 357 map->timestamp = 0; 358 lockinit(&map->lock, "thrd_sleep", 0, 0); 359 } 360 361 /* 362 * Shadow the vm_map_entry's object. This typically needs to be done when 363 * a write fault is taken on an entry which had previously been cloned by 364 * fork(). The shared object (which might be NULL) must become private so 365 * we add a shadow layer above it. 366 * 367 * Object allocation for anonymous mappings is defered as long as possible. 368 * When creating a shadow, however, the underlying object must be instantiated 369 * so it can be shared. 370 * 371 * If the map segment is governed by a virtual page table then it is 372 * possible to address offsets beyond the mapped area. Just allocate 373 * a maximally sized object for this case. 374 */ 375 static 376 void 377 vm_map_entry_shadow(vm_map_entry_t entry) 378 { 379 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 380 vm_object_shadow(&entry->object.vm_object, &entry->offset, 381 0x7FFFFFFF); /* XXX */ 382 } else { 383 vm_object_shadow(&entry->object.vm_object, &entry->offset, 384 atop(entry->end - entry->start)); 385 } 386 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 387 } 388 389 /* 390 * Allocate an object for a vm_map_entry. 391 * 392 * Object allocation for anonymous mappings is defered as long as possible. 393 * This function is called when we can defer no longer, generally when a map 394 * entry might be split or forked or takes a page fault. 395 * 396 * If the map segment is governed by a virtual page table then it is 397 * possible to address offsets beyond the mapped area. Just allocate 398 * a maximally sized object for this case. 399 */ 400 void 401 vm_map_entry_allocate_object(vm_map_entry_t entry) 402 { 403 vm_object_t obj; 404 405 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 406 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 407 } else { 408 obj = vm_object_allocate(OBJT_DEFAULT, 409 atop(entry->end - entry->start)); 410 } 411 entry->object.vm_object = obj; 412 entry->offset = 0; 413 } 414 415 /* 416 * vm_map_entry_reserve_cpu_init: 417 * 418 * Set an initial negative count so the first attempt to reserve 419 * space preloads a bunch of vm_map_entry's for this cpu. Also 420 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 421 * map a new page for vm_map_entry structures. SMP systems are 422 * particularly sensitive. 423 * 424 * This routine is called in early boot so we cannot just call 425 * vm_map_entry_reserve(). 426 * 427 * May be called for a gd other then mycpu, but may only be called 428 * during early boot. 429 */ 430 void 431 vm_map_entry_reserve_cpu_init(globaldata_t gd) 432 { 433 vm_map_entry_t entry; 434 int i; 435 436 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 437 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 438 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 439 entry->next = gd->gd_vme_base; 440 gd->gd_vme_base = entry; 441 } 442 } 443 444 /* 445 * vm_map_entry_reserve: 446 * 447 * Reserves vm_map_entry structures so code later on can manipulate 448 * map_entry structures within a locked map without blocking trying 449 * to allocate a new vm_map_entry. 450 */ 451 int 452 vm_map_entry_reserve(int count) 453 { 454 struct globaldata *gd = mycpu; 455 vm_map_entry_t entry; 456 457 crit_enter(); 458 459 /* 460 * Make sure we have enough structures in gd_vme_base to handle 461 * the reservation request. 462 */ 463 while (gd->gd_vme_avail < count) { 464 entry = zalloc(mapentzone); 465 entry->next = gd->gd_vme_base; 466 gd->gd_vme_base = entry; 467 ++gd->gd_vme_avail; 468 } 469 gd->gd_vme_avail -= count; 470 crit_exit(); 471 return(count); 472 } 473 474 /* 475 * vm_map_entry_release: 476 * 477 * Releases previously reserved vm_map_entry structures that were not 478 * used. If we have too much junk in our per-cpu cache clean some of 479 * it out. 480 */ 481 void 482 vm_map_entry_release(int count) 483 { 484 struct globaldata *gd = mycpu; 485 vm_map_entry_t entry; 486 487 crit_enter(); 488 gd->gd_vme_avail += count; 489 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 490 entry = gd->gd_vme_base; 491 KKASSERT(entry != NULL); 492 gd->gd_vme_base = entry->next; 493 --gd->gd_vme_avail; 494 crit_exit(); 495 zfree(mapentzone, entry); 496 crit_enter(); 497 } 498 crit_exit(); 499 } 500 501 /* 502 * vm_map_entry_kreserve: 503 * 504 * Reserve map entry structures for use in kernel_map itself. These 505 * entries have *ALREADY* been reserved on a per-cpu basis when the map 506 * was inited. This function is used by zalloc() to avoid a recursion 507 * when zalloc() itself needs to allocate additional kernel memory. 508 * 509 * This function works like the normal reserve but does not load the 510 * vm_map_entry cache (because that would result in an infinite 511 * recursion). Note that gd_vme_avail may go negative. This is expected. 512 * 513 * Any caller of this function must be sure to renormalize after 514 * potentially eating entries to ensure that the reserve supply 515 * remains intact. 516 */ 517 int 518 vm_map_entry_kreserve(int count) 519 { 520 struct globaldata *gd = mycpu; 521 522 crit_enter(); 523 gd->gd_vme_avail -= count; 524 crit_exit(); 525 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail)); 526 return(count); 527 } 528 529 /* 530 * vm_map_entry_krelease: 531 * 532 * Release previously reserved map entries for kernel_map. We do not 533 * attempt to clean up like the normal release function as this would 534 * cause an unnecessary (but probably not fatal) deep procedure call. 535 */ 536 void 537 vm_map_entry_krelease(int count) 538 { 539 struct globaldata *gd = mycpu; 540 541 crit_enter(); 542 gd->gd_vme_avail += count; 543 crit_exit(); 544 } 545 546 /* 547 * vm_map_entry_create: [ internal use only ] 548 * 549 * Allocates a VM map entry for insertion. No entry fields are filled 550 * in. 551 * 552 * This routine may be called from an interrupt thread but not a FAST 553 * interrupt. This routine may recurse the map lock. 554 */ 555 static vm_map_entry_t 556 vm_map_entry_create(vm_map_t map, int *countp) 557 { 558 struct globaldata *gd = mycpu; 559 vm_map_entry_t entry; 560 561 KKASSERT(*countp > 0); 562 --*countp; 563 crit_enter(); 564 entry = gd->gd_vme_base; 565 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 566 gd->gd_vme_base = entry->next; 567 crit_exit(); 568 return(entry); 569 } 570 571 /* 572 * vm_map_entry_dispose: [ internal use only ] 573 * 574 * Dispose of a vm_map_entry that is no longer being referenced. This 575 * function may be called from an interrupt. 576 */ 577 static void 578 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 579 { 580 struct globaldata *gd = mycpu; 581 582 KKASSERT(map->hint != entry); 583 KKASSERT(map->first_free != entry); 584 585 ++*countp; 586 crit_enter(); 587 entry->next = gd->gd_vme_base; 588 gd->gd_vme_base = entry; 589 crit_exit(); 590 } 591 592 593 /* 594 * vm_map_entry_{un,}link: 595 * 596 * Insert/remove entries from maps. 597 */ 598 static __inline void 599 vm_map_entry_link(vm_map_t map, 600 vm_map_entry_t after_where, 601 vm_map_entry_t entry) 602 { 603 map->nentries++; 604 entry->prev = after_where; 605 entry->next = after_where->next; 606 entry->next->prev = entry; 607 after_where->next = entry; 608 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 609 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 610 } 611 612 static __inline void 613 vm_map_entry_unlink(vm_map_t map, 614 vm_map_entry_t entry) 615 { 616 vm_map_entry_t prev; 617 vm_map_entry_t next; 618 619 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) 620 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry); 621 prev = entry->prev; 622 next = entry->next; 623 next->prev = prev; 624 prev->next = next; 625 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 626 map->nentries--; 627 } 628 629 /* 630 * vm_map_lookup_entry: [ internal use only ] 631 * 632 * Finds the map entry containing (or 633 * immediately preceding) the specified address 634 * in the given map; the entry is returned 635 * in the "entry" parameter. The boolean 636 * result indicates whether the address is 637 * actually contained in the map. 638 */ 639 boolean_t 640 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, 641 vm_map_entry_t *entry /* OUT */) 642 { 643 vm_map_entry_t tmp; 644 vm_map_entry_t last; 645 646 #if 0 647 /* 648 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 649 * the hint code with the red-black lookup meets with system crashes 650 * and lockups. We do not yet know why. 651 * 652 * It is possible that the problem is related to the setting 653 * of the hint during map_entry deletion, in the code specified 654 * at the GGG comment later on in this file. 655 */ 656 /* 657 * Quickly check the cached hint, there's a good chance of a match. 658 */ 659 if (map->hint != &map->header) { 660 tmp = map->hint; 661 if (address >= tmp->start && address < tmp->end) { 662 *entry = tmp; 663 return(TRUE); 664 } 665 } 666 #endif 667 668 /* 669 * Locate the record from the top of the tree. 'last' tracks the 670 * closest prior record and is returned if no match is found, which 671 * in binary tree terms means tracking the most recent right-branch 672 * taken. If there is no prior record, &map->header is returned. 673 */ 674 last = &map->header; 675 tmp = RB_ROOT(&map->rb_root); 676 677 while (tmp) { 678 if (address >= tmp->start) { 679 if (address < tmp->end) { 680 *entry = tmp; 681 map->hint = tmp; 682 return(TRUE); 683 } 684 last = tmp; 685 tmp = RB_RIGHT(tmp, rb_entry); 686 } else { 687 tmp = RB_LEFT(tmp, rb_entry); 688 } 689 } 690 *entry = last; 691 return (FALSE); 692 } 693 694 /* 695 * vm_map_insert: 696 * 697 * Inserts the given whole VM object into the target 698 * map at the specified address range. The object's 699 * size should match that of the address range. 700 * 701 * Requires that the map be locked, and leaves it so. Requires that 702 * sufficient vm_map_entry structures have been reserved and tracks 703 * the use via countp. 704 * 705 * If object is non-NULL, ref count must be bumped by caller 706 * prior to making call to account for the new entry. 707 */ 708 int 709 vm_map_insert(vm_map_t map, int *countp, 710 vm_object_t object, vm_ooffset_t offset, 711 vm_offset_t start, vm_offset_t end, 712 vm_maptype_t maptype, 713 vm_prot_t prot, vm_prot_t max, 714 int cow) 715 { 716 vm_map_entry_t new_entry; 717 vm_map_entry_t prev_entry; 718 vm_map_entry_t temp_entry; 719 vm_eflags_t protoeflags; 720 721 /* 722 * Check that the start and end points are not bogus. 723 */ 724 725 if ((start < map->min_offset) || (end > map->max_offset) || 726 (start >= end)) 727 return (KERN_INVALID_ADDRESS); 728 729 /* 730 * Find the entry prior to the proposed starting address; if it's part 731 * of an existing entry, this range is bogus. 732 */ 733 734 if (vm_map_lookup_entry(map, start, &temp_entry)) 735 return (KERN_NO_SPACE); 736 737 prev_entry = temp_entry; 738 739 /* 740 * Assert that the next entry doesn't overlap the end point. 741 */ 742 743 if ((prev_entry->next != &map->header) && 744 (prev_entry->next->start < end)) 745 return (KERN_NO_SPACE); 746 747 protoeflags = 0; 748 749 if (cow & MAP_COPY_ON_WRITE) 750 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 751 752 if (cow & MAP_NOFAULT) { 753 protoeflags |= MAP_ENTRY_NOFAULT; 754 755 KASSERT(object == NULL, 756 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 757 } 758 if (cow & MAP_DISABLE_SYNCER) 759 protoeflags |= MAP_ENTRY_NOSYNC; 760 if (cow & MAP_DISABLE_COREDUMP) 761 protoeflags |= MAP_ENTRY_NOCOREDUMP; 762 763 if (object) { 764 /* 765 * When object is non-NULL, it could be shared with another 766 * process. We have to set or clear OBJ_ONEMAPPING 767 * appropriately. 768 */ 769 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 770 vm_object_clear_flag(object, OBJ_ONEMAPPING); 771 } 772 } 773 else if ((prev_entry != &map->header) && 774 (prev_entry->eflags == protoeflags) && 775 (prev_entry->end == start) && 776 (prev_entry->wired_count == 0) && 777 prev_entry->maptype == maptype && 778 ((prev_entry->object.vm_object == NULL) || 779 vm_object_coalesce(prev_entry->object.vm_object, 780 OFF_TO_IDX(prev_entry->offset), 781 (vm_size_t)(prev_entry->end - prev_entry->start), 782 (vm_size_t)(end - prev_entry->end)))) { 783 /* 784 * We were able to extend the object. Determine if we 785 * can extend the previous map entry to include the 786 * new range as well. 787 */ 788 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 789 (prev_entry->protection == prot) && 790 (prev_entry->max_protection == max)) { 791 map->size += (end - prev_entry->end); 792 prev_entry->end = end; 793 vm_map_simplify_entry(map, prev_entry, countp); 794 return (KERN_SUCCESS); 795 } 796 797 /* 798 * If we can extend the object but cannot extend the 799 * map entry, we have to create a new map entry. We 800 * must bump the ref count on the extended object to 801 * account for it. object may be NULL. 802 */ 803 object = prev_entry->object.vm_object; 804 offset = prev_entry->offset + 805 (prev_entry->end - prev_entry->start); 806 vm_object_reference(object); 807 } 808 809 /* 810 * NOTE: if conditionals fail, object can be NULL here. This occurs 811 * in things like the buffer map where we manage kva but do not manage 812 * backing objects. 813 */ 814 815 /* 816 * Create a new entry 817 */ 818 819 new_entry = vm_map_entry_create(map, countp); 820 new_entry->start = start; 821 new_entry->end = end; 822 823 new_entry->maptype = maptype; 824 new_entry->eflags = protoeflags; 825 new_entry->object.vm_object = object; 826 new_entry->offset = offset; 827 new_entry->aux.master_pde = 0; 828 829 new_entry->inheritance = VM_INHERIT_DEFAULT; 830 new_entry->protection = prot; 831 new_entry->max_protection = max; 832 new_entry->wired_count = 0; 833 834 /* 835 * Insert the new entry into the list 836 */ 837 838 vm_map_entry_link(map, prev_entry, new_entry); 839 map->size += new_entry->end - new_entry->start; 840 841 /* 842 * Update the free space hint 843 */ 844 if ((map->first_free == prev_entry) && 845 (prev_entry->end >= new_entry->start)) { 846 map->first_free = new_entry; 847 } 848 849 #if 0 850 /* 851 * Temporarily removed to avoid MAP_STACK panic, due to 852 * MAP_STACK being a huge hack. Will be added back in 853 * when MAP_STACK (and the user stack mapping) is fixed. 854 */ 855 /* 856 * It may be possible to simplify the entry 857 */ 858 vm_map_simplify_entry(map, new_entry, countp); 859 #endif 860 861 /* 862 * Try to pre-populate the page table. Mappings governed by virtual 863 * page tables cannot be prepopulated without a lot of work, so 864 * don't try. 865 */ 866 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 867 maptype != VM_MAPTYPE_VPAGETABLE) { 868 pmap_object_init_pt(map->pmap, start, prot, 869 object, OFF_TO_IDX(offset), end - start, 870 cow & MAP_PREFAULT_PARTIAL); 871 } 872 873 return (KERN_SUCCESS); 874 } 875 876 /* 877 * Find sufficient space for `length' bytes in the given map, starting at 878 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 879 * 880 * This function will returned an arbitrarily aligned pointer. If no 881 * particular alignment is required you should pass align as 1. Note that 882 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 883 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 884 * argument. 885 * 886 * 'align' should be a power of 2 but is not required to be. 887 */ 888 int 889 vm_map_findspace( 890 vm_map_t map, 891 vm_offset_t start, 892 vm_size_t length, 893 vm_offset_t align, 894 vm_offset_t *addr) 895 { 896 vm_map_entry_t entry, next; 897 vm_offset_t end; 898 vm_offset_t align_mask; 899 900 if (start < map->min_offset) 901 start = map->min_offset; 902 if (start > map->max_offset) 903 return (1); 904 905 /* 906 * If the alignment is not a power of 2 we will have to use 907 * a mod/division, set align_mask to a special value. 908 */ 909 if ((align | (align - 1)) + 1 != (align << 1)) 910 align_mask = (vm_offset_t)-1; 911 else 912 align_mask = align - 1; 913 914 retry: 915 /* 916 * Look for the first possible address; if there's already something 917 * at this address, we have to start after it. 918 */ 919 if (start == map->min_offset) { 920 if ((entry = map->first_free) != &map->header) 921 start = entry->end; 922 } else { 923 vm_map_entry_t tmp; 924 925 if (vm_map_lookup_entry(map, start, &tmp)) 926 start = tmp->end; 927 entry = tmp; 928 } 929 930 /* 931 * Look through the rest of the map, trying to fit a new region in the 932 * gap between existing regions, or after the very last region. 933 */ 934 for (;; start = (entry = next)->end) { 935 /* 936 * Adjust the proposed start by the requested alignment, 937 * be sure that we didn't wrap the address. 938 */ 939 if (align_mask == (vm_offset_t)-1) 940 end = ((start + align - 1) / align) * align; 941 else 942 end = (start + align_mask) & ~align_mask; 943 if (end < start) 944 return (1); 945 start = end; 946 /* 947 * Find the end of the proposed new region. Be sure we didn't 948 * go beyond the end of the map, or wrap around the address. 949 * Then check to see if this is the last entry or if the 950 * proposed end fits in the gap between this and the next 951 * entry. 952 */ 953 end = start + length; 954 if (end > map->max_offset || end < start) 955 return (1); 956 next = entry->next; 957 if (next == &map->header || next->start >= end) 958 break; 959 } 960 map->hint = entry; 961 if (map == &kernel_map) { 962 vm_offset_t ksize; 963 if ((ksize = round_page(start + length)) > kernel_vm_end) { 964 pmap_growkernel(ksize); 965 goto retry; 966 } 967 } 968 *addr = start; 969 return (0); 970 } 971 972 /* 973 * vm_map_find finds an unallocated region in the target address 974 * map with the given length. The search is defined to be 975 * first-fit from the specified address; the region found is 976 * returned in the same parameter. 977 * 978 * If object is non-NULL, ref count must be bumped by caller 979 * prior to making call to account for the new entry. 980 */ 981 int 982 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 983 vm_offset_t *addr, vm_size_t length, 984 boolean_t find_space, 985 vm_maptype_t maptype, 986 vm_prot_t prot, vm_prot_t max, 987 int cow) 988 { 989 vm_offset_t start; 990 int result; 991 int count; 992 993 start = *addr; 994 995 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 996 vm_map_lock(map); 997 if (find_space) { 998 if (vm_map_findspace(map, start, length, 1, addr)) { 999 vm_map_unlock(map); 1000 vm_map_entry_release(count); 1001 return (KERN_NO_SPACE); 1002 } 1003 start = *addr; 1004 } 1005 result = vm_map_insert(map, &count, object, offset, 1006 start, start + length, 1007 maptype, 1008 prot, max, 1009 cow); 1010 vm_map_unlock(map); 1011 vm_map_entry_release(count); 1012 1013 return (result); 1014 } 1015 1016 /* 1017 * vm_map_simplify_entry: 1018 * 1019 * Simplify the given map entry by merging with either neighbor. This 1020 * routine also has the ability to merge with both neighbors. 1021 * 1022 * The map must be locked. 1023 * 1024 * This routine guarentees that the passed entry remains valid (though 1025 * possibly extended). When merging, this routine may delete one or 1026 * both neighbors. No action is taken on entries which have their 1027 * in-transition flag set. 1028 */ 1029 void 1030 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1031 { 1032 vm_map_entry_t next, prev; 1033 vm_size_t prevsize, esize; 1034 1035 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1036 ++mycpu->gd_cnt.v_intrans_coll; 1037 return; 1038 } 1039 1040 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1041 return; 1042 1043 prev = entry->prev; 1044 if (prev != &map->header) { 1045 prevsize = prev->end - prev->start; 1046 if ( (prev->end == entry->start) && 1047 (prev->maptype == entry->maptype) && 1048 (prev->object.vm_object == entry->object.vm_object) && 1049 (!prev->object.vm_object || 1050 (prev->offset + prevsize == entry->offset)) && 1051 (prev->eflags == entry->eflags) && 1052 (prev->protection == entry->protection) && 1053 (prev->max_protection == entry->max_protection) && 1054 (prev->inheritance == entry->inheritance) && 1055 (prev->wired_count == entry->wired_count)) { 1056 if (map->first_free == prev) 1057 map->first_free = entry; 1058 if (map->hint == prev) 1059 map->hint = entry; 1060 vm_map_entry_unlink(map, prev); 1061 entry->start = prev->start; 1062 entry->offset = prev->offset; 1063 if (prev->object.vm_object) 1064 vm_object_deallocate(prev->object.vm_object); 1065 vm_map_entry_dispose(map, prev, countp); 1066 } 1067 } 1068 1069 next = entry->next; 1070 if (next != &map->header) { 1071 esize = entry->end - entry->start; 1072 if ((entry->end == next->start) && 1073 (next->maptype == entry->maptype) && 1074 (next->object.vm_object == entry->object.vm_object) && 1075 (!entry->object.vm_object || 1076 (entry->offset + esize == next->offset)) && 1077 (next->eflags == entry->eflags) && 1078 (next->protection == entry->protection) && 1079 (next->max_protection == entry->max_protection) && 1080 (next->inheritance == entry->inheritance) && 1081 (next->wired_count == entry->wired_count)) { 1082 if (map->first_free == next) 1083 map->first_free = entry; 1084 if (map->hint == next) 1085 map->hint = entry; 1086 vm_map_entry_unlink(map, next); 1087 entry->end = next->end; 1088 if (next->object.vm_object) 1089 vm_object_deallocate(next->object.vm_object); 1090 vm_map_entry_dispose(map, next, countp); 1091 } 1092 } 1093 } 1094 /* 1095 * vm_map_clip_start: [ internal use only ] 1096 * 1097 * Asserts that the given entry begins at or after 1098 * the specified address; if necessary, 1099 * it splits the entry into two. 1100 */ 1101 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1102 { \ 1103 if (startaddr > entry->start) \ 1104 _vm_map_clip_start(map, entry, startaddr, countp); \ 1105 } 1106 1107 /* 1108 * This routine is called only when it is known that 1109 * the entry must be split. 1110 */ 1111 static void 1112 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp) 1113 { 1114 vm_map_entry_t new_entry; 1115 1116 /* 1117 * Split off the front portion -- note that we must insert the new 1118 * entry BEFORE this one, so that this entry has the specified 1119 * starting address. 1120 */ 1121 1122 vm_map_simplify_entry(map, entry, countp); 1123 1124 /* 1125 * If there is no object backing this entry, we might as well create 1126 * one now. If we defer it, an object can get created after the map 1127 * is clipped, and individual objects will be created for the split-up 1128 * map. This is a bit of a hack, but is also about the best place to 1129 * put this improvement. 1130 */ 1131 if (entry->object.vm_object == NULL && !map->system_map) { 1132 vm_map_entry_allocate_object(entry); 1133 } 1134 1135 new_entry = vm_map_entry_create(map, countp); 1136 *new_entry = *entry; 1137 1138 new_entry->end = start; 1139 entry->offset += (start - entry->start); 1140 entry->start = start; 1141 1142 vm_map_entry_link(map, entry->prev, new_entry); 1143 1144 switch(entry->maptype) { 1145 case VM_MAPTYPE_NORMAL: 1146 case VM_MAPTYPE_VPAGETABLE: 1147 vm_object_reference(new_entry->object.vm_object); 1148 break; 1149 default: 1150 break; 1151 } 1152 } 1153 1154 /* 1155 * vm_map_clip_end: [ internal use only ] 1156 * 1157 * Asserts that the given entry ends at or before 1158 * the specified address; if necessary, 1159 * it splits the entry into two. 1160 */ 1161 1162 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1163 { \ 1164 if (endaddr < entry->end) \ 1165 _vm_map_clip_end(map, entry, endaddr, countp); \ 1166 } 1167 1168 /* 1169 * This routine is called only when it is known that 1170 * the entry must be split. 1171 */ 1172 static void 1173 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp) 1174 { 1175 vm_map_entry_t new_entry; 1176 1177 /* 1178 * If there is no object backing this entry, we might as well create 1179 * one now. If we defer it, an object can get created after the map 1180 * is clipped, and individual objects will be created for the split-up 1181 * map. This is a bit of a hack, but is also about the best place to 1182 * put this improvement. 1183 */ 1184 1185 if (entry->object.vm_object == NULL && !map->system_map) { 1186 vm_map_entry_allocate_object(entry); 1187 } 1188 1189 /* 1190 * Create a new entry and insert it AFTER the specified entry 1191 */ 1192 1193 new_entry = vm_map_entry_create(map, countp); 1194 *new_entry = *entry; 1195 1196 new_entry->start = entry->end = end; 1197 new_entry->offset += (end - entry->start); 1198 1199 vm_map_entry_link(map, entry, new_entry); 1200 1201 switch(entry->maptype) { 1202 case VM_MAPTYPE_NORMAL: 1203 case VM_MAPTYPE_VPAGETABLE: 1204 vm_object_reference(new_entry->object.vm_object); 1205 break; 1206 default: 1207 break; 1208 } 1209 } 1210 1211 /* 1212 * VM_MAP_RANGE_CHECK: [ internal use only ] 1213 * 1214 * Asserts that the starting and ending region 1215 * addresses fall within the valid range of the map. 1216 */ 1217 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1218 { \ 1219 if (start < vm_map_min(map)) \ 1220 start = vm_map_min(map); \ 1221 if (end > vm_map_max(map)) \ 1222 end = vm_map_max(map); \ 1223 if (start > end) \ 1224 start = end; \ 1225 } 1226 1227 /* 1228 * vm_map_transition_wait: [ kernel use only ] 1229 * 1230 * Used to block when an in-transition collison occurs. The map 1231 * is unlocked for the sleep and relocked before the return. 1232 */ 1233 static 1234 void 1235 vm_map_transition_wait(vm_map_t map) 1236 { 1237 vm_map_unlock(map); 1238 tsleep(map, 0, "vment", 0); 1239 vm_map_lock(map); 1240 } 1241 1242 /* 1243 * CLIP_CHECK_BACK 1244 * CLIP_CHECK_FWD 1245 * 1246 * When we do blocking operations with the map lock held it is 1247 * possible that a clip might have occured on our in-transit entry, 1248 * requiring an adjustment to the entry in our loop. These macros 1249 * help the pageable and clip_range code deal with the case. The 1250 * conditional costs virtually nothing if no clipping has occured. 1251 */ 1252 1253 #define CLIP_CHECK_BACK(entry, save_start) \ 1254 do { \ 1255 while (entry->start != save_start) { \ 1256 entry = entry->prev; \ 1257 KASSERT(entry != &map->header, ("bad entry clip")); \ 1258 } \ 1259 } while(0) 1260 1261 #define CLIP_CHECK_FWD(entry, save_end) \ 1262 do { \ 1263 while (entry->end != save_end) { \ 1264 entry = entry->next; \ 1265 KASSERT(entry != &map->header, ("bad entry clip")); \ 1266 } \ 1267 } while(0) 1268 1269 1270 /* 1271 * vm_map_clip_range: [ kernel use only ] 1272 * 1273 * Clip the specified range and return the base entry. The 1274 * range may cover several entries starting at the returned base 1275 * and the first and last entry in the covering sequence will be 1276 * properly clipped to the requested start and end address. 1277 * 1278 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1279 * flag. 1280 * 1281 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1282 * covered by the requested range. 1283 * 1284 * The map must be exclusively locked on entry and will remain locked 1285 * on return. If no range exists or the range contains holes and you 1286 * specified that no holes were allowed, NULL will be returned. This 1287 * routine may temporarily unlock the map in order avoid a deadlock when 1288 * sleeping. 1289 */ 1290 static 1291 vm_map_entry_t 1292 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1293 int *countp, int flags) 1294 { 1295 vm_map_entry_t start_entry; 1296 vm_map_entry_t entry; 1297 1298 /* 1299 * Locate the entry and effect initial clipping. The in-transition 1300 * case does not occur very often so do not try to optimize it. 1301 */ 1302 again: 1303 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1304 return (NULL); 1305 entry = start_entry; 1306 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1307 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1308 ++mycpu->gd_cnt.v_intrans_coll; 1309 ++mycpu->gd_cnt.v_intrans_wait; 1310 vm_map_transition_wait(map); 1311 /* 1312 * entry and/or start_entry may have been clipped while 1313 * we slept, or may have gone away entirely. We have 1314 * to restart from the lookup. 1315 */ 1316 goto again; 1317 } 1318 /* 1319 * Since we hold an exclusive map lock we do not have to restart 1320 * after clipping, even though clipping may block in zalloc. 1321 */ 1322 vm_map_clip_start(map, entry, start, countp); 1323 vm_map_clip_end(map, entry, end, countp); 1324 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1325 1326 /* 1327 * Scan entries covered by the range. When working on the next 1328 * entry a restart need only re-loop on the current entry which 1329 * we have already locked, since 'next' may have changed. Also, 1330 * even though entry is safe, it may have been clipped so we 1331 * have to iterate forwards through the clip after sleeping. 1332 */ 1333 while (entry->next != &map->header && entry->next->start < end) { 1334 vm_map_entry_t next = entry->next; 1335 1336 if (flags & MAP_CLIP_NO_HOLES) { 1337 if (next->start > entry->end) { 1338 vm_map_unclip_range(map, start_entry, 1339 start, entry->end, countp, flags); 1340 return(NULL); 1341 } 1342 } 1343 1344 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1345 vm_offset_t save_end = entry->end; 1346 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1347 ++mycpu->gd_cnt.v_intrans_coll; 1348 ++mycpu->gd_cnt.v_intrans_wait; 1349 vm_map_transition_wait(map); 1350 1351 /* 1352 * clips might have occured while we blocked. 1353 */ 1354 CLIP_CHECK_FWD(entry, save_end); 1355 CLIP_CHECK_BACK(start_entry, start); 1356 continue; 1357 } 1358 /* 1359 * No restart necessary even though clip_end may block, we 1360 * are holding the map lock. 1361 */ 1362 vm_map_clip_end(map, next, end, countp); 1363 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1364 entry = next; 1365 } 1366 if (flags & MAP_CLIP_NO_HOLES) { 1367 if (entry->end != end) { 1368 vm_map_unclip_range(map, start_entry, 1369 start, entry->end, countp, flags); 1370 return(NULL); 1371 } 1372 } 1373 return(start_entry); 1374 } 1375 1376 /* 1377 * vm_map_unclip_range: [ kernel use only ] 1378 * 1379 * Undo the effect of vm_map_clip_range(). You should pass the same 1380 * flags and the same range that you passed to vm_map_clip_range(). 1381 * This code will clear the in-transition flag on the entries and 1382 * wake up anyone waiting. This code will also simplify the sequence 1383 * and attempt to merge it with entries before and after the sequence. 1384 * 1385 * The map must be locked on entry and will remain locked on return. 1386 * 1387 * Note that you should also pass the start_entry returned by 1388 * vm_map_clip_range(). However, if you block between the two calls 1389 * with the map unlocked please be aware that the start_entry may 1390 * have been clipped and you may need to scan it backwards to find 1391 * the entry corresponding with the original start address. You are 1392 * responsible for this, vm_map_unclip_range() expects the correct 1393 * start_entry to be passed to it and will KASSERT otherwise. 1394 */ 1395 static 1396 void 1397 vm_map_unclip_range( 1398 vm_map_t map, 1399 vm_map_entry_t start_entry, 1400 vm_offset_t start, 1401 vm_offset_t end, 1402 int *countp, 1403 int flags) 1404 { 1405 vm_map_entry_t entry; 1406 1407 entry = start_entry; 1408 1409 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1410 while (entry != &map->header && entry->start < end) { 1411 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry)); 1412 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped")); 1413 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1414 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1415 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1416 wakeup(map); 1417 } 1418 entry = entry->next; 1419 } 1420 1421 /* 1422 * Simplification does not block so there is no restart case. 1423 */ 1424 entry = start_entry; 1425 while (entry != &map->header && entry->start < end) { 1426 vm_map_simplify_entry(map, entry, countp); 1427 entry = entry->next; 1428 } 1429 } 1430 1431 /* 1432 * vm_map_submap: [ kernel use only ] 1433 * 1434 * Mark the given range as handled by a subordinate map. 1435 * 1436 * This range must have been created with vm_map_find, 1437 * and no other operations may have been performed on this 1438 * range prior to calling vm_map_submap. 1439 * 1440 * Only a limited number of operations can be performed 1441 * within this rage after calling vm_map_submap: 1442 * vm_fault 1443 * [Don't try vm_map_copy!] 1444 * 1445 * To remove a submapping, one must first remove the 1446 * range from the superior map, and then destroy the 1447 * submap (if desired). [Better yet, don't try it.] 1448 */ 1449 int 1450 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1451 { 1452 vm_map_entry_t entry; 1453 int result = KERN_INVALID_ARGUMENT; 1454 int count; 1455 1456 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1457 vm_map_lock(map); 1458 1459 VM_MAP_RANGE_CHECK(map, start, end); 1460 1461 if (vm_map_lookup_entry(map, start, &entry)) { 1462 vm_map_clip_start(map, entry, start, &count); 1463 } else { 1464 entry = entry->next; 1465 } 1466 1467 vm_map_clip_end(map, entry, end, &count); 1468 1469 if ((entry->start == start) && (entry->end == end) && 1470 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1471 (entry->object.vm_object == NULL)) { 1472 entry->object.sub_map = submap; 1473 entry->maptype = VM_MAPTYPE_SUBMAP; 1474 result = KERN_SUCCESS; 1475 } 1476 vm_map_unlock(map); 1477 vm_map_entry_release(count); 1478 1479 return (result); 1480 } 1481 1482 /* 1483 * vm_map_protect: 1484 * 1485 * Sets the protection of the specified address region in the target map. 1486 * If "set_max" is specified, the maximum protection is to be set; 1487 * otherwise, only the current protection is affected. 1488 * 1489 * The protection is not applicable to submaps, but is applicable to normal 1490 * maps and maps governed by virtual page tables. For example, when operating 1491 * on a virtual page table our protection basically controls how COW occurs 1492 * on the backing object, whereas the virtual page table abstraction itself 1493 * is an abstraction for userland. 1494 */ 1495 int 1496 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1497 vm_prot_t new_prot, boolean_t set_max) 1498 { 1499 vm_map_entry_t current; 1500 vm_map_entry_t entry; 1501 int count; 1502 1503 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1504 vm_map_lock(map); 1505 1506 VM_MAP_RANGE_CHECK(map, start, end); 1507 1508 if (vm_map_lookup_entry(map, start, &entry)) { 1509 vm_map_clip_start(map, entry, start, &count); 1510 } else { 1511 entry = entry->next; 1512 } 1513 1514 /* 1515 * Make a first pass to check for protection violations. 1516 */ 1517 current = entry; 1518 while ((current != &map->header) && (current->start < end)) { 1519 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1520 vm_map_unlock(map); 1521 vm_map_entry_release(count); 1522 return (KERN_INVALID_ARGUMENT); 1523 } 1524 if ((new_prot & current->max_protection) != new_prot) { 1525 vm_map_unlock(map); 1526 vm_map_entry_release(count); 1527 return (KERN_PROTECTION_FAILURE); 1528 } 1529 current = current->next; 1530 } 1531 1532 /* 1533 * Go back and fix up protections. [Note that clipping is not 1534 * necessary the second time.] 1535 */ 1536 current = entry; 1537 1538 while ((current != &map->header) && (current->start < end)) { 1539 vm_prot_t old_prot; 1540 1541 vm_map_clip_end(map, current, end, &count); 1542 1543 old_prot = current->protection; 1544 if (set_max) { 1545 current->protection = 1546 (current->max_protection = new_prot) & 1547 old_prot; 1548 } else { 1549 current->protection = new_prot; 1550 } 1551 1552 /* 1553 * Update physical map if necessary. Worry about copy-on-write 1554 * here -- CHECK THIS XXX 1555 */ 1556 1557 if (current->protection != old_prot) { 1558 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1559 VM_PROT_ALL) 1560 1561 pmap_protect(map->pmap, current->start, 1562 current->end, 1563 current->protection & MASK(current)); 1564 #undef MASK 1565 } 1566 1567 vm_map_simplify_entry(map, current, &count); 1568 1569 current = current->next; 1570 } 1571 1572 vm_map_unlock(map); 1573 vm_map_entry_release(count); 1574 return (KERN_SUCCESS); 1575 } 1576 1577 /* 1578 * vm_map_madvise: 1579 * 1580 * This routine traverses a processes map handling the madvise 1581 * system call. Advisories are classified as either those effecting 1582 * the vm_map_entry structure, or those effecting the underlying 1583 * objects. 1584 * 1585 * The <value> argument is used for extended madvise calls. 1586 */ 1587 int 1588 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1589 int behav, off_t value) 1590 { 1591 vm_map_entry_t current, entry; 1592 int modify_map = 0; 1593 int error = 0; 1594 int count; 1595 1596 /* 1597 * Some madvise calls directly modify the vm_map_entry, in which case 1598 * we need to use an exclusive lock on the map and we need to perform 1599 * various clipping operations. Otherwise we only need a read-lock 1600 * on the map. 1601 */ 1602 1603 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1604 1605 switch(behav) { 1606 case MADV_NORMAL: 1607 case MADV_SEQUENTIAL: 1608 case MADV_RANDOM: 1609 case MADV_NOSYNC: 1610 case MADV_AUTOSYNC: 1611 case MADV_NOCORE: 1612 case MADV_CORE: 1613 case MADV_SETMAP: 1614 case MADV_INVAL: 1615 modify_map = 1; 1616 vm_map_lock(map); 1617 break; 1618 case MADV_WILLNEED: 1619 case MADV_DONTNEED: 1620 case MADV_FREE: 1621 vm_map_lock_read(map); 1622 break; 1623 default: 1624 vm_map_entry_release(count); 1625 return (EINVAL); 1626 } 1627 1628 /* 1629 * Locate starting entry and clip if necessary. 1630 */ 1631 1632 VM_MAP_RANGE_CHECK(map, start, end); 1633 1634 if (vm_map_lookup_entry(map, start, &entry)) { 1635 if (modify_map) 1636 vm_map_clip_start(map, entry, start, &count); 1637 } else { 1638 entry = entry->next; 1639 } 1640 1641 if (modify_map) { 1642 /* 1643 * madvise behaviors that are implemented in the vm_map_entry. 1644 * 1645 * We clip the vm_map_entry so that behavioral changes are 1646 * limited to the specified address range. 1647 */ 1648 for (current = entry; 1649 (current != &map->header) && (current->start < end); 1650 current = current->next 1651 ) { 1652 if (current->maptype == VM_MAPTYPE_SUBMAP) 1653 continue; 1654 1655 vm_map_clip_end(map, current, end, &count); 1656 1657 switch (behav) { 1658 case MADV_NORMAL: 1659 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1660 break; 1661 case MADV_SEQUENTIAL: 1662 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1663 break; 1664 case MADV_RANDOM: 1665 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1666 break; 1667 case MADV_NOSYNC: 1668 current->eflags |= MAP_ENTRY_NOSYNC; 1669 break; 1670 case MADV_AUTOSYNC: 1671 current->eflags &= ~MAP_ENTRY_NOSYNC; 1672 break; 1673 case MADV_NOCORE: 1674 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1675 break; 1676 case MADV_CORE: 1677 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1678 break; 1679 case MADV_INVAL: 1680 /* 1681 * Invalidate the related pmap entries, used 1682 * to flush portions of the real kernel's 1683 * pmap when the caller has removed or 1684 * modified existing mappings in a virtual 1685 * page table. 1686 */ 1687 pmap_remove(map->pmap, 1688 current->start, current->end); 1689 break; 1690 case MADV_SETMAP: 1691 /* 1692 * Set the page directory page for a map 1693 * governed by a virtual page table. Mark 1694 * the entry as being governed by a virtual 1695 * page table if it is not. 1696 * 1697 * XXX the page directory page is stored 1698 * in the avail_ssize field if the map_entry. 1699 * 1700 * XXX the map simplification code does not 1701 * compare this field so weird things may 1702 * happen if you do not apply this function 1703 * to the entire mapping governed by the 1704 * virtual page table. 1705 */ 1706 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1707 error = EINVAL; 1708 break; 1709 } 1710 current->aux.master_pde = value; 1711 pmap_remove(map->pmap, 1712 current->start, current->end); 1713 break; 1714 default: 1715 error = EINVAL; 1716 break; 1717 } 1718 vm_map_simplify_entry(map, current, &count); 1719 } 1720 vm_map_unlock(map); 1721 } else { 1722 vm_pindex_t pindex; 1723 int count; 1724 1725 /* 1726 * madvise behaviors that are implemented in the underlying 1727 * vm_object. 1728 * 1729 * Since we don't clip the vm_map_entry, we have to clip 1730 * the vm_object pindex and count. 1731 * 1732 * NOTE! We currently do not support these functions on 1733 * virtual page tables. 1734 */ 1735 for (current = entry; 1736 (current != &map->header) && (current->start < end); 1737 current = current->next 1738 ) { 1739 vm_offset_t useStart; 1740 1741 if (current->maptype != VM_MAPTYPE_NORMAL) 1742 continue; 1743 1744 pindex = OFF_TO_IDX(current->offset); 1745 count = atop(current->end - current->start); 1746 useStart = current->start; 1747 1748 if (current->start < start) { 1749 pindex += atop(start - current->start); 1750 count -= atop(start - current->start); 1751 useStart = start; 1752 } 1753 if (current->end > end) 1754 count -= atop(current->end - end); 1755 1756 if (count <= 0) 1757 continue; 1758 1759 vm_object_madvise(current->object.vm_object, 1760 pindex, count, behav); 1761 1762 /* 1763 * Try to populate the page table. Mappings governed 1764 * by virtual page tables cannot be pre-populated 1765 * without a lot of work so don't try. 1766 */ 1767 if (behav == MADV_WILLNEED && 1768 current->maptype != VM_MAPTYPE_VPAGETABLE) { 1769 pmap_object_init_pt( 1770 map->pmap, 1771 useStart, 1772 current->protection, 1773 current->object.vm_object, 1774 pindex, 1775 (count << PAGE_SHIFT), 1776 MAP_PREFAULT_MADVISE 1777 ); 1778 } 1779 } 1780 vm_map_unlock_read(map); 1781 } 1782 vm_map_entry_release(count); 1783 return(error); 1784 } 1785 1786 1787 /* 1788 * vm_map_inherit: 1789 * 1790 * Sets the inheritance of the specified address 1791 * range in the target map. Inheritance 1792 * affects how the map will be shared with 1793 * child maps at the time of vm_map_fork. 1794 */ 1795 int 1796 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1797 vm_inherit_t new_inheritance) 1798 { 1799 vm_map_entry_t entry; 1800 vm_map_entry_t temp_entry; 1801 int count; 1802 1803 switch (new_inheritance) { 1804 case VM_INHERIT_NONE: 1805 case VM_INHERIT_COPY: 1806 case VM_INHERIT_SHARE: 1807 break; 1808 default: 1809 return (KERN_INVALID_ARGUMENT); 1810 } 1811 1812 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1813 vm_map_lock(map); 1814 1815 VM_MAP_RANGE_CHECK(map, start, end); 1816 1817 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1818 entry = temp_entry; 1819 vm_map_clip_start(map, entry, start, &count); 1820 } else 1821 entry = temp_entry->next; 1822 1823 while ((entry != &map->header) && (entry->start < end)) { 1824 vm_map_clip_end(map, entry, end, &count); 1825 1826 entry->inheritance = new_inheritance; 1827 1828 vm_map_simplify_entry(map, entry, &count); 1829 1830 entry = entry->next; 1831 } 1832 vm_map_unlock(map); 1833 vm_map_entry_release(count); 1834 return (KERN_SUCCESS); 1835 } 1836 1837 /* 1838 * Implement the semantics of mlock 1839 */ 1840 int 1841 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 1842 boolean_t new_pageable) 1843 { 1844 vm_map_entry_t entry; 1845 vm_map_entry_t start_entry; 1846 vm_offset_t end; 1847 int rv = KERN_SUCCESS; 1848 int count; 1849 1850 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1851 vm_map_lock(map); 1852 VM_MAP_RANGE_CHECK(map, start, real_end); 1853 end = real_end; 1854 1855 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1856 if (start_entry == NULL) { 1857 vm_map_unlock(map); 1858 vm_map_entry_release(count); 1859 return (KERN_INVALID_ADDRESS); 1860 } 1861 1862 if (new_pageable == 0) { 1863 entry = start_entry; 1864 while ((entry != &map->header) && (entry->start < end)) { 1865 vm_offset_t save_start; 1866 vm_offset_t save_end; 1867 1868 /* 1869 * Already user wired or hard wired (trivial cases) 1870 */ 1871 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1872 entry = entry->next; 1873 continue; 1874 } 1875 if (entry->wired_count != 0) { 1876 entry->wired_count++; 1877 entry->eflags |= MAP_ENTRY_USER_WIRED; 1878 entry = entry->next; 1879 continue; 1880 } 1881 1882 /* 1883 * A new wiring requires instantiation of appropriate 1884 * management structures and the faulting in of the 1885 * page. 1886 */ 1887 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 1888 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1889 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1890 vm_map_entry_shadow(entry); 1891 } else if (entry->object.vm_object == NULL && 1892 !map->system_map) { 1893 vm_map_entry_allocate_object(entry); 1894 } 1895 } 1896 entry->wired_count++; 1897 entry->eflags |= MAP_ENTRY_USER_WIRED; 1898 1899 /* 1900 * Now fault in the area. Note that vm_fault_wire() 1901 * may release the map lock temporarily, it will be 1902 * relocked on return. The in-transition 1903 * flag protects the entries. 1904 */ 1905 save_start = entry->start; 1906 save_end = entry->end; 1907 rv = vm_fault_wire(map, entry, TRUE); 1908 if (rv) { 1909 CLIP_CHECK_BACK(entry, save_start); 1910 for (;;) { 1911 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 1912 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1913 entry->wired_count = 0; 1914 if (entry->end == save_end) 1915 break; 1916 entry = entry->next; 1917 KASSERT(entry != &map->header, ("bad entry clip during backout")); 1918 } 1919 end = save_start; /* unwire the rest */ 1920 break; 1921 } 1922 /* 1923 * note that even though the entry might have been 1924 * clipped, the USER_WIRED flag we set prevents 1925 * duplication so we do not have to do a 1926 * clip check. 1927 */ 1928 entry = entry->next; 1929 } 1930 1931 /* 1932 * If we failed fall through to the unwiring section to 1933 * unwire what we had wired so far. 'end' has already 1934 * been adjusted. 1935 */ 1936 if (rv) 1937 new_pageable = 1; 1938 1939 /* 1940 * start_entry might have been clipped if we unlocked the 1941 * map and blocked. No matter how clipped it has gotten 1942 * there should be a fragment that is on our start boundary. 1943 */ 1944 CLIP_CHECK_BACK(start_entry, start); 1945 } 1946 1947 /* 1948 * Deal with the unwiring case. 1949 */ 1950 if (new_pageable) { 1951 /* 1952 * This is the unwiring case. We must first ensure that the 1953 * range to be unwired is really wired down. We know there 1954 * are no holes. 1955 */ 1956 entry = start_entry; 1957 while ((entry != &map->header) && (entry->start < end)) { 1958 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1959 rv = KERN_INVALID_ARGUMENT; 1960 goto done; 1961 } 1962 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 1963 entry = entry->next; 1964 } 1965 1966 /* 1967 * Now decrement the wiring count for each region. If a region 1968 * becomes completely unwired, unwire its physical pages and 1969 * mappings. 1970 */ 1971 /* 1972 * The map entries are processed in a loop, checking to 1973 * make sure the entry is wired and asserting it has a wired 1974 * count. However, another loop was inserted more-or-less in 1975 * the middle of the unwiring path. This loop picks up the 1976 * "entry" loop variable from the first loop without first 1977 * setting it to start_entry. Naturally, the secound loop 1978 * is never entered and the pages backing the entries are 1979 * never unwired. This can lead to a leak of wired pages. 1980 */ 1981 entry = start_entry; 1982 while ((entry != &map->header) && (entry->start < end)) { 1983 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 1984 ("expected USER_WIRED on entry %p", entry)); 1985 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1986 entry->wired_count--; 1987 if (entry->wired_count == 0) 1988 vm_fault_unwire(map, entry); 1989 entry = entry->next; 1990 } 1991 } 1992 done: 1993 vm_map_unclip_range(map, start_entry, start, real_end, &count, 1994 MAP_CLIP_NO_HOLES); 1995 map->timestamp++; 1996 vm_map_unlock(map); 1997 vm_map_entry_release(count); 1998 return (rv); 1999 } 2000 2001 /* 2002 * vm_map_wire: 2003 * 2004 * Sets the pageability of the specified address 2005 * range in the target map. Regions specified 2006 * as not pageable require locked-down physical 2007 * memory and physical page maps. 2008 * 2009 * The map must not be locked, but a reference 2010 * must remain to the map throughout the call. 2011 * 2012 * This function may be called via the zalloc path and must properly 2013 * reserve map entries for kernel_map. 2014 */ 2015 int 2016 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2017 { 2018 vm_map_entry_t entry; 2019 vm_map_entry_t start_entry; 2020 vm_offset_t end; 2021 int rv = KERN_SUCCESS; 2022 int count; 2023 2024 if (kmflags & KM_KRESERVE) 2025 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2026 else 2027 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2028 vm_map_lock(map); 2029 VM_MAP_RANGE_CHECK(map, start, real_end); 2030 end = real_end; 2031 2032 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 2033 if (start_entry == NULL) { 2034 vm_map_unlock(map); 2035 rv = KERN_INVALID_ADDRESS; 2036 goto failure; 2037 } 2038 if ((kmflags & KM_PAGEABLE) == 0) { 2039 /* 2040 * Wiring. 2041 * 2042 * 1. Holding the write lock, we create any shadow or zero-fill 2043 * objects that need to be created. Then we clip each map 2044 * entry to the region to be wired and increment its wiring 2045 * count. We create objects before clipping the map entries 2046 * to avoid object proliferation. 2047 * 2048 * 2. We downgrade to a read lock, and call vm_fault_wire to 2049 * fault in the pages for any newly wired area (wired_count is 2050 * 1). 2051 * 2052 * Downgrading to a read lock for vm_fault_wire avoids a 2053 * possible deadlock with another process that may have faulted 2054 * on one of the pages to be wired (it would mark the page busy, 2055 * blocking us, then in turn block on the map lock that we 2056 * hold). Because of problems in the recursive lock package, 2057 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2058 * any actions that require the write lock must be done 2059 * beforehand. Because we keep the read lock on the map, the 2060 * copy-on-write status of the entries we modify here cannot 2061 * change. 2062 */ 2063 2064 entry = start_entry; 2065 while ((entry != &map->header) && (entry->start < end)) { 2066 /* 2067 * Trivial case if the entry is already wired 2068 */ 2069 if (entry->wired_count) { 2070 entry->wired_count++; 2071 entry = entry->next; 2072 continue; 2073 } 2074 2075 /* 2076 * The entry is being newly wired, we have to setup 2077 * appropriate management structures. A shadow 2078 * object is required for a copy-on-write region, 2079 * or a normal object for a zero-fill region. We 2080 * do not have to do this for entries that point to sub 2081 * maps because we won't hold the lock on the sub map. 2082 */ 2083 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2084 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 2085 if (copyflag && 2086 ((entry->protection & VM_PROT_WRITE) != 0)) { 2087 vm_map_entry_shadow(entry); 2088 } else if (entry->object.vm_object == NULL && 2089 !map->system_map) { 2090 vm_map_entry_allocate_object(entry); 2091 } 2092 } 2093 2094 entry->wired_count++; 2095 entry = entry->next; 2096 } 2097 2098 /* 2099 * Pass 2. 2100 */ 2101 2102 /* 2103 * HACK HACK HACK HACK 2104 * 2105 * Unlock the map to avoid deadlocks. The in-transit flag 2106 * protects us from most changes but note that 2107 * clipping may still occur. To prevent clipping from 2108 * occuring after the unlock, except for when we are 2109 * blocking in vm_fault_wire, we must run in a critical 2110 * section, otherwise our accesses to entry->start and 2111 * entry->end could be corrupted. We have to enter the 2112 * critical section prior to unlocking so start_entry does 2113 * not change out from under us at the very beginning of the 2114 * loop. 2115 * 2116 * HACK HACK HACK HACK 2117 */ 2118 2119 crit_enter(); 2120 2121 entry = start_entry; 2122 while (entry != &map->header && entry->start < end) { 2123 /* 2124 * If vm_fault_wire fails for any page we need to undo 2125 * what has been done. We decrement the wiring count 2126 * for those pages which have not yet been wired (now) 2127 * and unwire those that have (later). 2128 */ 2129 vm_offset_t save_start = entry->start; 2130 vm_offset_t save_end = entry->end; 2131 2132 if (entry->wired_count == 1) 2133 rv = vm_fault_wire(map, entry, FALSE); 2134 if (rv) { 2135 CLIP_CHECK_BACK(entry, save_start); 2136 for (;;) { 2137 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2138 entry->wired_count = 0; 2139 if (entry->end == save_end) 2140 break; 2141 entry = entry->next; 2142 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2143 } 2144 end = save_start; 2145 break; 2146 } 2147 CLIP_CHECK_FWD(entry, save_end); 2148 entry = entry->next; 2149 } 2150 crit_exit(); 2151 2152 /* 2153 * If a failure occured undo everything by falling through 2154 * to the unwiring code. 'end' has already been adjusted 2155 * appropriately. 2156 */ 2157 if (rv) 2158 kmflags |= KM_PAGEABLE; 2159 2160 /* 2161 * start_entry is still IN_TRANSITION but may have been 2162 * clipped since vm_fault_wire() unlocks and relocks the 2163 * map. No matter how clipped it has gotten there should 2164 * be a fragment that is on our start boundary. 2165 */ 2166 CLIP_CHECK_BACK(start_entry, start); 2167 } 2168 2169 if (kmflags & KM_PAGEABLE) { 2170 /* 2171 * This is the unwiring case. We must first ensure that the 2172 * range to be unwired is really wired down. We know there 2173 * are no holes. 2174 */ 2175 entry = start_entry; 2176 while ((entry != &map->header) && (entry->start < end)) { 2177 if (entry->wired_count == 0) { 2178 rv = KERN_INVALID_ARGUMENT; 2179 goto done; 2180 } 2181 entry = entry->next; 2182 } 2183 2184 /* 2185 * Now decrement the wiring count for each region. If a region 2186 * becomes completely unwired, unwire its physical pages and 2187 * mappings. 2188 */ 2189 entry = start_entry; 2190 while ((entry != &map->header) && (entry->start < end)) { 2191 entry->wired_count--; 2192 if (entry->wired_count == 0) 2193 vm_fault_unwire(map, entry); 2194 entry = entry->next; 2195 } 2196 } 2197 done: 2198 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2199 MAP_CLIP_NO_HOLES); 2200 map->timestamp++; 2201 vm_map_unlock(map); 2202 failure: 2203 if (kmflags & KM_KRESERVE) 2204 vm_map_entry_krelease(count); 2205 else 2206 vm_map_entry_release(count); 2207 return (rv); 2208 } 2209 2210 /* 2211 * vm_map_set_wired_quick() 2212 * 2213 * Mark a newly allocated address range as wired but do not fault in 2214 * the pages. The caller is expected to load the pages into the object. 2215 * 2216 * The map must be locked on entry and will remain locked on return. 2217 */ 2218 void 2219 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp) 2220 { 2221 vm_map_entry_t scan; 2222 vm_map_entry_t entry; 2223 2224 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2225 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) { 2226 KKASSERT(entry->wired_count == 0); 2227 entry->wired_count = 1; 2228 } 2229 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2230 } 2231 2232 /* 2233 * vm_map_clean 2234 * 2235 * Push any dirty cached pages in the address range to their pager. 2236 * If syncio is TRUE, dirty pages are written synchronously. 2237 * If invalidate is TRUE, any cached pages are freed as well. 2238 * 2239 * Returns an error if any part of the specified range is not mapped. 2240 */ 2241 int 2242 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, 2243 boolean_t invalidate) 2244 { 2245 vm_map_entry_t current; 2246 vm_map_entry_t entry; 2247 vm_size_t size; 2248 vm_object_t object; 2249 vm_ooffset_t offset; 2250 2251 vm_map_lock_read(map); 2252 VM_MAP_RANGE_CHECK(map, start, end); 2253 if (!vm_map_lookup_entry(map, start, &entry)) { 2254 vm_map_unlock_read(map); 2255 return (KERN_INVALID_ADDRESS); 2256 } 2257 /* 2258 * Make a first pass to check for holes. 2259 */ 2260 for (current = entry; current->start < end; current = current->next) { 2261 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2262 vm_map_unlock_read(map); 2263 return (KERN_INVALID_ARGUMENT); 2264 } 2265 if (end > current->end && 2266 (current->next == &map->header || 2267 current->end != current->next->start)) { 2268 vm_map_unlock_read(map); 2269 return (KERN_INVALID_ADDRESS); 2270 } 2271 } 2272 2273 if (invalidate) 2274 pmap_remove(vm_map_pmap(map), start, end); 2275 /* 2276 * Make a second pass, cleaning/uncaching pages from the indicated 2277 * objects as we go. 2278 */ 2279 for (current = entry; current->start < end; current = current->next) { 2280 offset = current->offset + (start - current->start); 2281 size = (end <= current->end ? end : current->end) - start; 2282 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2283 vm_map_t smap; 2284 vm_map_entry_t tentry; 2285 vm_size_t tsize; 2286 2287 smap = current->object.sub_map; 2288 vm_map_lock_read(smap); 2289 vm_map_lookup_entry(smap, offset, &tentry); 2290 tsize = tentry->end - offset; 2291 if (tsize < size) 2292 size = tsize; 2293 object = tentry->object.vm_object; 2294 offset = tentry->offset + (offset - tentry->start); 2295 vm_map_unlock_read(smap); 2296 } else { 2297 object = current->object.vm_object; 2298 } 2299 /* 2300 * Note that there is absolutely no sense in writing out 2301 * anonymous objects, so we track down the vnode object 2302 * to write out. 2303 * We invalidate (remove) all pages from the address space 2304 * anyway, for semantic correctness. 2305 * 2306 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2307 * may start out with a NULL object. 2308 */ 2309 while (object && object->backing_object) { 2310 offset += object->backing_object_offset; 2311 object = object->backing_object; 2312 if (object->size < OFF_TO_IDX( offset + size)) 2313 size = IDX_TO_OFF(object->size) - offset; 2314 } 2315 if (object && (object->type == OBJT_VNODE) && 2316 (current->protection & VM_PROT_WRITE)) { 2317 /* 2318 * Flush pages if writing is allowed, invalidate them 2319 * if invalidation requested. Pages undergoing I/O 2320 * will be ignored by vm_object_page_remove(). 2321 * 2322 * We cannot lock the vnode and then wait for paging 2323 * to complete without deadlocking against vm_fault. 2324 * Instead we simply call vm_object_page_remove() and 2325 * allow it to block internally on a page-by-page 2326 * basis when it encounters pages undergoing async 2327 * I/O. 2328 */ 2329 int flags; 2330 2331 vm_object_reference(object); 2332 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2333 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2334 flags |= invalidate ? OBJPC_INVAL : 0; 2335 2336 /* 2337 * When operating on a virtual page table just 2338 * flush the whole object. XXX we probably ought 2339 * to 2340 */ 2341 switch(current->maptype) { 2342 case VM_MAPTYPE_NORMAL: 2343 vm_object_page_clean(object, 2344 OFF_TO_IDX(offset), 2345 OFF_TO_IDX(offset + size + PAGE_MASK), 2346 flags); 2347 break; 2348 case VM_MAPTYPE_VPAGETABLE: 2349 vm_object_page_clean(object, 0, 0, flags); 2350 break; 2351 } 2352 vn_unlock(((struct vnode *)object->handle)); 2353 vm_object_deallocate(object); 2354 } 2355 if (object && invalidate && 2356 ((object->type == OBJT_VNODE) || 2357 (object->type == OBJT_DEVICE))) { 2358 int clean_only = 2359 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2360 vm_object_reference(object); 2361 switch(current->maptype) { 2362 case VM_MAPTYPE_NORMAL: 2363 vm_object_page_remove(object, 2364 OFF_TO_IDX(offset), 2365 OFF_TO_IDX(offset + size + PAGE_MASK), 2366 clean_only); 2367 break; 2368 case VM_MAPTYPE_VPAGETABLE: 2369 vm_object_page_remove(object, 0, 0, clean_only); 2370 break; 2371 } 2372 vm_object_deallocate(object); 2373 } 2374 start += size; 2375 } 2376 2377 vm_map_unlock_read(map); 2378 return (KERN_SUCCESS); 2379 } 2380 2381 /* 2382 * vm_map_entry_unwire: [ internal use only ] 2383 * 2384 * Make the region specified by this entry pageable. 2385 * 2386 * The map in question should be locked. 2387 * [This is the reason for this routine's existence.] 2388 */ 2389 static void 2390 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2391 { 2392 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2393 entry->wired_count = 0; 2394 vm_fault_unwire(map, entry); 2395 } 2396 2397 /* 2398 * vm_map_entry_delete: [ internal use only ] 2399 * 2400 * Deallocate the given entry from the target map. 2401 */ 2402 static void 2403 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2404 { 2405 vm_map_entry_unlink(map, entry); 2406 map->size -= entry->end - entry->start; 2407 2408 switch(entry->maptype) { 2409 case VM_MAPTYPE_NORMAL: 2410 case VM_MAPTYPE_VPAGETABLE: 2411 vm_object_deallocate(entry->object.vm_object); 2412 break; 2413 default: 2414 break; 2415 } 2416 2417 vm_map_entry_dispose(map, entry, countp); 2418 } 2419 2420 /* 2421 * vm_map_delete: [ internal use only ] 2422 * 2423 * Deallocates the given address range from the target 2424 * map. 2425 */ 2426 int 2427 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2428 { 2429 vm_object_t object; 2430 vm_map_entry_t entry; 2431 vm_map_entry_t first_entry; 2432 2433 again: 2434 /* 2435 * Find the start of the region, and clip it. Set entry to point 2436 * at the first record containing the requested address or, if no 2437 * such record exists, the next record with a greater address. The 2438 * loop will run from this point until a record beyond the termination 2439 * address is encountered. 2440 * 2441 * map->hint must be adjusted to not point to anything we delete, 2442 * so set it to the entry prior to the one being deleted. 2443 * 2444 * GGG see other GGG comment. 2445 */ 2446 if (vm_map_lookup_entry(map, start, &first_entry)) { 2447 entry = first_entry; 2448 vm_map_clip_start(map, entry, start, countp); 2449 map->hint = entry->prev; /* possible problem XXX */ 2450 } else { 2451 map->hint = first_entry; /* possible problem XXX */ 2452 entry = first_entry->next; 2453 } 2454 2455 /* 2456 * If a hole opens up prior to the current first_free then 2457 * adjust first_free. As with map->hint, map->first_free 2458 * cannot be left set to anything we might delete. 2459 */ 2460 if (entry == &map->header) { 2461 map->first_free = &map->header; 2462 } else if (map->first_free->start >= start) { 2463 map->first_free = entry->prev; 2464 } 2465 2466 /* 2467 * Step through all entries in this region 2468 */ 2469 2470 while ((entry != &map->header) && (entry->start < end)) { 2471 vm_map_entry_t next; 2472 vm_offset_t s, e; 2473 vm_pindex_t offidxstart, offidxend, count; 2474 2475 /* 2476 * If we hit an in-transition entry we have to sleep and 2477 * retry. It's easier (and not really slower) to just retry 2478 * since this case occurs so rarely and the hint is already 2479 * pointing at the right place. We have to reset the 2480 * start offset so as not to accidently delete an entry 2481 * another process just created in vacated space. 2482 */ 2483 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2484 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2485 start = entry->start; 2486 ++mycpu->gd_cnt.v_intrans_coll; 2487 ++mycpu->gd_cnt.v_intrans_wait; 2488 vm_map_transition_wait(map); 2489 goto again; 2490 } 2491 vm_map_clip_end(map, entry, end, countp); 2492 2493 s = entry->start; 2494 e = entry->end; 2495 next = entry->next; 2496 2497 offidxstart = OFF_TO_IDX(entry->offset); 2498 count = OFF_TO_IDX(e - s); 2499 object = entry->object.vm_object; 2500 2501 /* 2502 * Unwire before removing addresses from the pmap; otherwise, 2503 * unwiring will put the entries back in the pmap. 2504 */ 2505 if (entry->wired_count != 0) 2506 vm_map_entry_unwire(map, entry); 2507 2508 offidxend = offidxstart + count; 2509 2510 if (object == &kernel_object) { 2511 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2512 } else { 2513 pmap_remove(map->pmap, s, e); 2514 if (object != NULL && 2515 object->ref_count != 1 && 2516 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2517 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2518 vm_object_collapse(object); 2519 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2520 if (object->type == OBJT_SWAP) { 2521 swap_pager_freespace(object, offidxstart, count); 2522 } 2523 if (offidxend >= object->size && 2524 offidxstart < object->size) { 2525 object->size = offidxstart; 2526 } 2527 } 2528 } 2529 2530 /* 2531 * Delete the entry (which may delete the object) only after 2532 * removing all pmap entries pointing to its pages. 2533 * (Otherwise, its page frames may be reallocated, and any 2534 * modify bits will be set in the wrong object!) 2535 */ 2536 vm_map_entry_delete(map, entry, countp); 2537 entry = next; 2538 } 2539 return (KERN_SUCCESS); 2540 } 2541 2542 /* 2543 * vm_map_remove: 2544 * 2545 * Remove the given address range from the target map. 2546 * This is the exported form of vm_map_delete. 2547 */ 2548 int 2549 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2550 { 2551 int result; 2552 int count; 2553 2554 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2555 vm_map_lock(map); 2556 VM_MAP_RANGE_CHECK(map, start, end); 2557 result = vm_map_delete(map, start, end, &count); 2558 vm_map_unlock(map); 2559 vm_map_entry_release(count); 2560 2561 return (result); 2562 } 2563 2564 /* 2565 * vm_map_check_protection: 2566 * 2567 * Assert that the target map allows the specified 2568 * privilege on the entire address region given. 2569 * The entire region must be allocated. 2570 */ 2571 boolean_t 2572 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2573 vm_prot_t protection) 2574 { 2575 vm_map_entry_t entry; 2576 vm_map_entry_t tmp_entry; 2577 2578 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2579 return (FALSE); 2580 } 2581 entry = tmp_entry; 2582 2583 while (start < end) { 2584 if (entry == &map->header) { 2585 return (FALSE); 2586 } 2587 /* 2588 * No holes allowed! 2589 */ 2590 2591 if (start < entry->start) { 2592 return (FALSE); 2593 } 2594 /* 2595 * Check protection associated with entry. 2596 */ 2597 2598 if ((entry->protection & protection) != protection) { 2599 return (FALSE); 2600 } 2601 /* go to next entry */ 2602 2603 start = entry->end; 2604 entry = entry->next; 2605 } 2606 return (TRUE); 2607 } 2608 2609 /* 2610 * Split the pages in a map entry into a new object. This affords 2611 * easier removal of unused pages, and keeps object inheritance from 2612 * being a negative impact on memory usage. 2613 */ 2614 static void 2615 vm_map_split(vm_map_entry_t entry) 2616 { 2617 vm_page_t m; 2618 vm_object_t orig_object, new_object, source; 2619 vm_offset_t s, e; 2620 vm_pindex_t offidxstart, offidxend, idx; 2621 vm_size_t size; 2622 vm_ooffset_t offset; 2623 2624 orig_object = entry->object.vm_object; 2625 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2626 return; 2627 if (orig_object->ref_count <= 1) 2628 return; 2629 2630 offset = entry->offset; 2631 s = entry->start; 2632 e = entry->end; 2633 2634 offidxstart = OFF_TO_IDX(offset); 2635 offidxend = offidxstart + OFF_TO_IDX(e - s); 2636 size = offidxend - offidxstart; 2637 2638 new_object = vm_pager_allocate(orig_object->type, NULL, 2639 IDX_TO_OFF(size), VM_PROT_ALL, 0); 2640 if (new_object == NULL) 2641 return; 2642 2643 source = orig_object->backing_object; 2644 if (source != NULL) { 2645 vm_object_reference(source); /* Referenced by new_object */ 2646 LIST_INSERT_HEAD(&source->shadow_head, 2647 new_object, shadow_list); 2648 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2649 new_object->backing_object_offset = 2650 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2651 new_object->backing_object = source; 2652 source->shadow_count++; 2653 source->generation++; 2654 } 2655 2656 for (idx = 0; idx < size; idx++) { 2657 vm_page_t m; 2658 2659 /* 2660 * A critical section is required to avoid a race between 2661 * the lookup and an interrupt/unbusy/free and our busy 2662 * check. 2663 */ 2664 crit_enter(); 2665 retry: 2666 m = vm_page_lookup(orig_object, offidxstart + idx); 2667 if (m == NULL) { 2668 crit_exit(); 2669 continue; 2670 } 2671 2672 /* 2673 * We must wait for pending I/O to complete before we can 2674 * rename the page. 2675 * 2676 * We do not have to VM_PROT_NONE the page as mappings should 2677 * not be changed by this operation. 2678 */ 2679 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2680 goto retry; 2681 vm_page_busy(m); 2682 vm_page_rename(m, new_object, idx); 2683 /* page automatically made dirty by rename and cache handled */ 2684 vm_page_busy(m); 2685 crit_exit(); 2686 } 2687 2688 if (orig_object->type == OBJT_SWAP) { 2689 vm_object_pip_add(orig_object, 1); 2690 /* 2691 * copy orig_object pages into new_object 2692 * and destroy unneeded pages in 2693 * shadow object. 2694 */ 2695 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2696 vm_object_pip_wakeup(orig_object); 2697 } 2698 2699 /* 2700 * Wakeup the pages we played with. No spl protection is needed 2701 * for a simple wakeup. 2702 */ 2703 for (idx = 0; idx < size; idx++) { 2704 m = vm_page_lookup(new_object, idx); 2705 if (m) 2706 vm_page_wakeup(m); 2707 } 2708 2709 entry->object.vm_object = new_object; 2710 entry->offset = 0LL; 2711 vm_object_deallocate(orig_object); 2712 } 2713 2714 /* 2715 * vm_map_copy_entry: 2716 * 2717 * Copies the contents of the source entry to the destination 2718 * entry. The entries *must* be aligned properly. 2719 */ 2720 static void 2721 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2722 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2723 { 2724 vm_object_t src_object; 2725 2726 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 2727 return; 2728 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 2729 return; 2730 2731 if (src_entry->wired_count == 0) { 2732 /* 2733 * If the source entry is marked needs_copy, it is already 2734 * write-protected. 2735 */ 2736 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2737 pmap_protect(src_map->pmap, 2738 src_entry->start, 2739 src_entry->end, 2740 src_entry->protection & ~VM_PROT_WRITE); 2741 } 2742 2743 /* 2744 * Make a copy of the object. 2745 */ 2746 if ((src_object = src_entry->object.vm_object) != NULL) { 2747 if ((src_object->handle == NULL) && 2748 (src_object->type == OBJT_DEFAULT || 2749 src_object->type == OBJT_SWAP)) { 2750 vm_object_collapse(src_object); 2751 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2752 vm_map_split(src_entry); 2753 src_object = src_entry->object.vm_object; 2754 } 2755 } 2756 2757 vm_object_reference(src_object); 2758 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2759 dst_entry->object.vm_object = src_object; 2760 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2761 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2762 dst_entry->offset = src_entry->offset; 2763 } else { 2764 dst_entry->object.vm_object = NULL; 2765 dst_entry->offset = 0; 2766 } 2767 2768 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2769 dst_entry->end - dst_entry->start, src_entry->start); 2770 } else { 2771 /* 2772 * Of course, wired down pages can't be set copy-on-write. 2773 * Cause wired pages to be copied into the new map by 2774 * simulating faults (the new pages are pageable) 2775 */ 2776 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2777 } 2778 } 2779 2780 /* 2781 * vmspace_fork: 2782 * Create a new process vmspace structure and vm_map 2783 * based on those of an existing process. The new map 2784 * is based on the old map, according to the inheritance 2785 * values on the regions in that map. 2786 * 2787 * The source map must not be locked. 2788 */ 2789 struct vmspace * 2790 vmspace_fork(struct vmspace *vm1) 2791 { 2792 struct vmspace *vm2; 2793 vm_map_t old_map = &vm1->vm_map; 2794 vm_map_t new_map; 2795 vm_map_entry_t old_entry; 2796 vm_map_entry_t new_entry; 2797 vm_object_t object; 2798 int count; 2799 2800 vm_map_lock(old_map); 2801 old_map->infork = 1; 2802 2803 /* 2804 * XXX Note: upcalls are not copied. 2805 */ 2806 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2807 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2808 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 2809 new_map = &vm2->vm_map; /* XXX */ 2810 new_map->timestamp = 1; 2811 2812 count = 0; 2813 old_entry = old_map->header.next; 2814 while (old_entry != &old_map->header) { 2815 ++count; 2816 old_entry = old_entry->next; 2817 } 2818 2819 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 2820 2821 old_entry = old_map->header.next; 2822 while (old_entry != &old_map->header) { 2823 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 2824 panic("vm_map_fork: encountered a submap"); 2825 2826 switch (old_entry->inheritance) { 2827 case VM_INHERIT_NONE: 2828 break; 2829 2830 case VM_INHERIT_SHARE: 2831 /* 2832 * Clone the entry, creating the shared object if 2833 * necessary. 2834 */ 2835 object = old_entry->object.vm_object; 2836 if (object == NULL) { 2837 vm_map_entry_allocate_object(old_entry); 2838 object = old_entry->object.vm_object; 2839 } 2840 2841 /* 2842 * Add the reference before calling vm_map_entry_shadow 2843 * to insure that a shadow object is created. 2844 */ 2845 vm_object_reference(object); 2846 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2847 vm_map_entry_shadow(old_entry); 2848 /* Transfer the second reference too. */ 2849 vm_object_reference( 2850 old_entry->object.vm_object); 2851 vm_object_deallocate(object); 2852 object = old_entry->object.vm_object; 2853 } 2854 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2855 2856 /* 2857 * Clone the entry, referencing the shared object. 2858 */ 2859 new_entry = vm_map_entry_create(new_map, &count); 2860 *new_entry = *old_entry; 2861 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2862 new_entry->wired_count = 0; 2863 2864 /* 2865 * Insert the entry into the new map -- we know we're 2866 * inserting at the end of the new map. 2867 */ 2868 2869 vm_map_entry_link(new_map, new_map->header.prev, 2870 new_entry); 2871 2872 /* 2873 * Update the physical map 2874 */ 2875 2876 pmap_copy(new_map->pmap, old_map->pmap, 2877 new_entry->start, 2878 (old_entry->end - old_entry->start), 2879 old_entry->start); 2880 break; 2881 2882 case VM_INHERIT_COPY: 2883 /* 2884 * Clone the entry and link into the map. 2885 */ 2886 new_entry = vm_map_entry_create(new_map, &count); 2887 *new_entry = *old_entry; 2888 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2889 new_entry->wired_count = 0; 2890 new_entry->object.vm_object = NULL; 2891 vm_map_entry_link(new_map, new_map->header.prev, 2892 new_entry); 2893 vm_map_copy_entry(old_map, new_map, old_entry, 2894 new_entry); 2895 break; 2896 } 2897 old_entry = old_entry->next; 2898 } 2899 2900 new_map->size = old_map->size; 2901 old_map->infork = 0; 2902 vm_map_unlock(old_map); 2903 vm_map_entry_release(count); 2904 2905 return (vm2); 2906 } 2907 2908 int 2909 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2910 vm_prot_t prot, vm_prot_t max, int cow) 2911 { 2912 vm_map_entry_t prev_entry; 2913 vm_map_entry_t new_stack_entry; 2914 vm_size_t init_ssize; 2915 int rv; 2916 int count; 2917 2918 if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS) 2919 return (KERN_NO_SPACE); 2920 2921 if (max_ssize < sgrowsiz) 2922 init_ssize = max_ssize; 2923 else 2924 init_ssize = sgrowsiz; 2925 2926 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2927 vm_map_lock(map); 2928 2929 /* If addr is already mapped, no go */ 2930 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2931 vm_map_unlock(map); 2932 vm_map_entry_release(count); 2933 return (KERN_NO_SPACE); 2934 } 2935 2936 /* If we would blow our VMEM resource limit, no go */ 2937 if (map->size + init_ssize > 2938 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2939 vm_map_unlock(map); 2940 vm_map_entry_release(count); 2941 return (KERN_NO_SPACE); 2942 } 2943 2944 /* If we can't accomodate max_ssize in the current mapping, 2945 * no go. However, we need to be aware that subsequent user 2946 * mappings might map into the space we have reserved for 2947 * stack, and currently this space is not protected. 2948 * 2949 * Hopefully we will at least detect this condition 2950 * when we try to grow the stack. 2951 */ 2952 if ((prev_entry->next != &map->header) && 2953 (prev_entry->next->start < addrbos + max_ssize)) { 2954 vm_map_unlock(map); 2955 vm_map_entry_release(count); 2956 return (KERN_NO_SPACE); 2957 } 2958 2959 /* We initially map a stack of only init_ssize. We will 2960 * grow as needed later. Since this is to be a grow 2961 * down stack, we map at the top of the range. 2962 * 2963 * Note: we would normally expect prot and max to be 2964 * VM_PROT_ALL, and cow to be 0. Possibly we should 2965 * eliminate these as input parameters, and just 2966 * pass these values here in the insert call. 2967 */ 2968 rv = vm_map_insert(map, &count, 2969 NULL, 0, addrbos + max_ssize - init_ssize, 2970 addrbos + max_ssize, 2971 VM_MAPTYPE_NORMAL, 2972 prot, max, 2973 cow); 2974 2975 /* Now set the avail_ssize amount */ 2976 if (rv == KERN_SUCCESS) { 2977 if (prev_entry != &map->header) 2978 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 2979 new_stack_entry = prev_entry->next; 2980 if (new_stack_entry->end != addrbos + max_ssize || 2981 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2982 panic ("Bad entry start/end for new stack entry"); 2983 else 2984 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 2985 } 2986 2987 vm_map_unlock(map); 2988 vm_map_entry_release(count); 2989 return (rv); 2990 } 2991 2992 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2993 * desired address is already mapped, or if we successfully grow 2994 * the stack. Also returns KERN_SUCCESS if addr is outside the 2995 * stack range (this is strange, but preserves compatibility with 2996 * the grow function in vm_machdep.c). 2997 */ 2998 int 2999 vm_map_growstack (struct proc *p, vm_offset_t addr) 3000 { 3001 vm_map_entry_t prev_entry; 3002 vm_map_entry_t stack_entry; 3003 vm_map_entry_t new_stack_entry; 3004 struct vmspace *vm = p->p_vmspace; 3005 vm_map_t map = &vm->vm_map; 3006 vm_offset_t end; 3007 int grow_amount; 3008 int rv = KERN_SUCCESS; 3009 int is_procstack; 3010 int use_read_lock = 1; 3011 int count; 3012 3013 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3014 Retry: 3015 if (use_read_lock) 3016 vm_map_lock_read(map); 3017 else 3018 vm_map_lock(map); 3019 3020 /* If addr is already in the entry range, no need to grow.*/ 3021 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3022 goto done; 3023 3024 if ((stack_entry = prev_entry->next) == &map->header) 3025 goto done; 3026 if (prev_entry == &map->header) 3027 end = stack_entry->start - stack_entry->aux.avail_ssize; 3028 else 3029 end = prev_entry->end; 3030 3031 /* This next test mimics the old grow function in vm_machdep.c. 3032 * It really doesn't quite make sense, but we do it anyway 3033 * for compatibility. 3034 * 3035 * If not growable stack, return success. This signals the 3036 * caller to proceed as he would normally with normal vm. 3037 */ 3038 if (stack_entry->aux.avail_ssize < 1 || 3039 addr >= stack_entry->start || 3040 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3041 goto done; 3042 } 3043 3044 /* Find the minimum grow amount */ 3045 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3046 if (grow_amount > stack_entry->aux.avail_ssize) { 3047 rv = KERN_NO_SPACE; 3048 goto done; 3049 } 3050 3051 /* If there is no longer enough space between the entries 3052 * nogo, and adjust the available space. Note: this 3053 * should only happen if the user has mapped into the 3054 * stack area after the stack was created, and is 3055 * probably an error. 3056 * 3057 * This also effectively destroys any guard page the user 3058 * might have intended by limiting the stack size. 3059 */ 3060 if (grow_amount > stack_entry->start - end) { 3061 if (use_read_lock && vm_map_lock_upgrade(map)) { 3062 use_read_lock = 0; 3063 goto Retry; 3064 } 3065 use_read_lock = 0; 3066 stack_entry->aux.avail_ssize = stack_entry->start - end; 3067 rv = KERN_NO_SPACE; 3068 goto done; 3069 } 3070 3071 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3072 3073 /* If this is the main process stack, see if we're over the 3074 * stack limit. 3075 */ 3076 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3077 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3078 rv = KERN_NO_SPACE; 3079 goto done; 3080 } 3081 3082 /* Round up the grow amount modulo SGROWSIZ */ 3083 grow_amount = roundup (grow_amount, sgrowsiz); 3084 if (grow_amount > stack_entry->aux.avail_ssize) { 3085 grow_amount = stack_entry->aux.avail_ssize; 3086 } 3087 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3088 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3089 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3090 ctob(vm->vm_ssize); 3091 } 3092 3093 /* If we would blow our VMEM resource limit, no go */ 3094 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3095 rv = KERN_NO_SPACE; 3096 goto done; 3097 } 3098 3099 if (use_read_lock && vm_map_lock_upgrade(map)) { 3100 use_read_lock = 0; 3101 goto Retry; 3102 } 3103 use_read_lock = 0; 3104 3105 /* Get the preliminary new entry start value */ 3106 addr = stack_entry->start - grow_amount; 3107 3108 /* If this puts us into the previous entry, cut back our growth 3109 * to the available space. Also, see the note above. 3110 */ 3111 if (addr < end) { 3112 stack_entry->aux.avail_ssize = stack_entry->start - end; 3113 addr = end; 3114 } 3115 3116 rv = vm_map_insert(map, &count, 3117 NULL, 0, addr, stack_entry->start, 3118 VM_MAPTYPE_NORMAL, 3119 VM_PROT_ALL, VM_PROT_ALL, 3120 0); 3121 3122 /* Adjust the available stack space by the amount we grew. */ 3123 if (rv == KERN_SUCCESS) { 3124 if (prev_entry != &map->header) 3125 vm_map_clip_end(map, prev_entry, addr, &count); 3126 new_stack_entry = prev_entry->next; 3127 if (new_stack_entry->end != stack_entry->start || 3128 new_stack_entry->start != addr) 3129 panic ("Bad stack grow start/end in new stack entry"); 3130 else { 3131 new_stack_entry->aux.avail_ssize = 3132 stack_entry->aux.avail_ssize - 3133 (new_stack_entry->end - new_stack_entry->start); 3134 if (is_procstack) 3135 vm->vm_ssize += btoc(new_stack_entry->end - 3136 new_stack_entry->start); 3137 } 3138 } 3139 3140 done: 3141 if (use_read_lock) 3142 vm_map_unlock_read(map); 3143 else 3144 vm_map_unlock(map); 3145 vm_map_entry_release(count); 3146 return (rv); 3147 } 3148 3149 /* 3150 * Unshare the specified VM space for exec. If other processes are 3151 * mapped to it, then create a new one. The new vmspace is null. 3152 */ 3153 3154 void 3155 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3156 { 3157 struct vmspace *oldvmspace = p->p_vmspace; 3158 struct vmspace *newvmspace; 3159 vm_map_t map = &p->p_vmspace->vm_map; 3160 3161 /* 3162 * If we are execing a resident vmspace we fork it, otherwise 3163 * we create a new vmspace. Note that exitingcnt and upcalls 3164 * are not copied to the new vmspace. 3165 */ 3166 if (vmcopy) { 3167 newvmspace = vmspace_fork(vmcopy); 3168 } else { 3169 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3170 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3171 (caddr_t)&oldvmspace->vm_endcopy - 3172 (caddr_t)&oldvmspace->vm_startcopy); 3173 } 3174 3175 /* 3176 * This code is written like this for prototype purposes. The 3177 * goal is to avoid running down the vmspace here, but let the 3178 * other process's that are still using the vmspace to finally 3179 * run it down. Even though there is little or no chance of blocking 3180 * here, it is a good idea to keep this form for future mods. 3181 */ 3182 p->p_vmspace = newvmspace; 3183 pmap_pinit2(vmspace_pmap(newvmspace)); 3184 if (p == curproc) 3185 pmap_activate(p); 3186 vmspace_free(oldvmspace); 3187 } 3188 3189 /* 3190 * Unshare the specified VM space for forcing COW. This 3191 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3192 * 3193 * The exitingcnt test is not strictly necessary but has been 3194 * included for code sanity (to make the code a bit more deterministic). 3195 */ 3196 3197 void 3198 vmspace_unshare(struct proc *p) 3199 { 3200 struct vmspace *oldvmspace = p->p_vmspace; 3201 struct vmspace *newvmspace; 3202 3203 if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3204 return; 3205 newvmspace = vmspace_fork(oldvmspace); 3206 p->p_vmspace = newvmspace; 3207 pmap_pinit2(vmspace_pmap(newvmspace)); 3208 if (p == curproc) 3209 pmap_activate(p); 3210 vmspace_free(oldvmspace); 3211 } 3212 3213 /* 3214 * vm_map_lookup: 3215 * 3216 * Finds the VM object, offset, and 3217 * protection for a given virtual address in the 3218 * specified map, assuming a page fault of the 3219 * type specified. 3220 * 3221 * Leaves the map in question locked for read; return 3222 * values are guaranteed until a vm_map_lookup_done 3223 * call is performed. Note that the map argument 3224 * is in/out; the returned map must be used in 3225 * the call to vm_map_lookup_done. 3226 * 3227 * A handle (out_entry) is returned for use in 3228 * vm_map_lookup_done, to make that fast. 3229 * 3230 * If a lookup is requested with "write protection" 3231 * specified, the map may be changed to perform virtual 3232 * copying operations, although the data referenced will 3233 * remain the same. 3234 */ 3235 int 3236 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3237 vm_offset_t vaddr, 3238 vm_prot_t fault_typea, 3239 vm_map_entry_t *out_entry, /* OUT */ 3240 vm_object_t *object, /* OUT */ 3241 vm_pindex_t *pindex, /* OUT */ 3242 vm_prot_t *out_prot, /* OUT */ 3243 boolean_t *wired) /* OUT */ 3244 { 3245 vm_map_entry_t entry; 3246 vm_map_t map = *var_map; 3247 vm_prot_t prot; 3248 vm_prot_t fault_type = fault_typea; 3249 int use_read_lock = 1; 3250 int rv = KERN_SUCCESS; 3251 3252 RetryLookup: 3253 if (use_read_lock) 3254 vm_map_lock_read(map); 3255 else 3256 vm_map_lock(map); 3257 3258 /* 3259 * If the map has an interesting hint, try it before calling full 3260 * blown lookup routine. 3261 */ 3262 entry = map->hint; 3263 *out_entry = entry; 3264 3265 if ((entry == &map->header) || 3266 (vaddr < entry->start) || (vaddr >= entry->end)) { 3267 vm_map_entry_t tmp_entry; 3268 3269 /* 3270 * Entry was either not a valid hint, or the vaddr was not 3271 * contained in the entry, so do a full lookup. 3272 */ 3273 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3274 rv = KERN_INVALID_ADDRESS; 3275 goto done; 3276 } 3277 3278 entry = tmp_entry; 3279 *out_entry = entry; 3280 } 3281 3282 /* 3283 * Handle submaps. 3284 */ 3285 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3286 vm_map_t old_map = map; 3287 3288 *var_map = map = entry->object.sub_map; 3289 if (use_read_lock) 3290 vm_map_unlock_read(old_map); 3291 else 3292 vm_map_unlock(old_map); 3293 use_read_lock = 1; 3294 goto RetryLookup; 3295 } 3296 3297 /* 3298 * Check whether this task is allowed to have this page. 3299 * Note the special case for MAP_ENTRY_COW 3300 * pages with an override. This is to implement a forced 3301 * COW for debuggers. 3302 */ 3303 3304 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3305 prot = entry->max_protection; 3306 else 3307 prot = entry->protection; 3308 3309 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3310 if ((fault_type & prot) != fault_type) { 3311 rv = KERN_PROTECTION_FAILURE; 3312 goto done; 3313 } 3314 3315 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3316 (entry->eflags & MAP_ENTRY_COW) && 3317 (fault_type & VM_PROT_WRITE) && 3318 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3319 rv = KERN_PROTECTION_FAILURE; 3320 goto done; 3321 } 3322 3323 /* 3324 * If this page is not pageable, we have to get it for all possible 3325 * accesses. 3326 */ 3327 *wired = (entry->wired_count != 0); 3328 if (*wired) 3329 prot = fault_type = entry->protection; 3330 3331 /* 3332 * Virtual page tables may need to update the accessed (A) bit 3333 * in a page table entry. Upgrade the fault to a write fault for 3334 * that case if the map will support it. If the map does not support 3335 * it the page table entry simply will not be updated. 3336 */ 3337 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3338 if (prot & VM_PROT_WRITE) 3339 fault_type |= VM_PROT_WRITE; 3340 } 3341 3342 /* 3343 * If the entry was copy-on-write, we either ... 3344 */ 3345 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3346 /* 3347 * If we want to write the page, we may as well handle that 3348 * now since we've got the map locked. 3349 * 3350 * If we don't need to write the page, we just demote the 3351 * permissions allowed. 3352 */ 3353 3354 if (fault_type & VM_PROT_WRITE) { 3355 /* 3356 * Make a new object, and place it in the object 3357 * chain. Note that no new references have appeared 3358 * -- one just moved from the map to the new 3359 * object. 3360 */ 3361 3362 if (use_read_lock && vm_map_lock_upgrade(map)) { 3363 use_read_lock = 0; 3364 goto RetryLookup; 3365 } 3366 use_read_lock = 0; 3367 3368 vm_map_entry_shadow(entry); 3369 } else { 3370 /* 3371 * We're attempting to read a copy-on-write page -- 3372 * don't allow writes. 3373 */ 3374 3375 prot &= ~VM_PROT_WRITE; 3376 } 3377 } 3378 3379 /* 3380 * Create an object if necessary. 3381 */ 3382 if (entry->object.vm_object == NULL && 3383 !map->system_map) { 3384 if (use_read_lock && vm_map_lock_upgrade(map)) { 3385 use_read_lock = 0; 3386 goto RetryLookup; 3387 } 3388 use_read_lock = 0; 3389 vm_map_entry_allocate_object(entry); 3390 } 3391 3392 /* 3393 * Return the object/offset from this entry. If the entry was 3394 * copy-on-write or empty, it has been fixed up. 3395 */ 3396 3397 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3398 *object = entry->object.vm_object; 3399 3400 /* 3401 * Return whether this is the only map sharing this data. On 3402 * success we return with a read lock held on the map. On failure 3403 * we return with the map unlocked. 3404 */ 3405 *out_prot = prot; 3406 done: 3407 if (rv == KERN_SUCCESS) { 3408 if (use_read_lock == 0) 3409 vm_map_lock_downgrade(map); 3410 } else if (use_read_lock) { 3411 vm_map_unlock_read(map); 3412 } else { 3413 vm_map_unlock(map); 3414 } 3415 return (rv); 3416 } 3417 3418 /* 3419 * vm_map_lookup_done: 3420 * 3421 * Releases locks acquired by a vm_map_lookup 3422 * (according to the handle returned by that lookup). 3423 */ 3424 3425 void 3426 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3427 { 3428 /* 3429 * Unlock the main-level map 3430 */ 3431 vm_map_unlock_read(map); 3432 if (count) 3433 vm_map_entry_release(count); 3434 } 3435 3436 #include "opt_ddb.h" 3437 #ifdef DDB 3438 #include <sys/kernel.h> 3439 3440 #include <ddb/ddb.h> 3441 3442 /* 3443 * vm_map_print: [ debug ] 3444 */ 3445 DB_SHOW_COMMAND(map, vm_map_print) 3446 { 3447 static int nlines; 3448 /* XXX convert args. */ 3449 vm_map_t map = (vm_map_t)addr; 3450 boolean_t full = have_addr; 3451 3452 vm_map_entry_t entry; 3453 3454 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3455 (void *)map, 3456 (void *)map->pmap, map->nentries, map->timestamp); 3457 nlines++; 3458 3459 if (!full && db_indent) 3460 return; 3461 3462 db_indent += 2; 3463 for (entry = map->header.next; entry != &map->header; 3464 entry = entry->next) { 3465 db_iprintf("map entry %p: start=%p, end=%p\n", 3466 (void *)entry, (void *)entry->start, (void *)entry->end); 3467 nlines++; 3468 { 3469 static char *inheritance_name[4] = 3470 {"share", "copy", "none", "donate_copy"}; 3471 3472 db_iprintf(" prot=%x/%x/%s", 3473 entry->protection, 3474 entry->max_protection, 3475 inheritance_name[(int)(unsigned char)entry->inheritance]); 3476 if (entry->wired_count != 0) 3477 db_printf(", wired"); 3478 } 3479 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3480 /* XXX no %qd in kernel. Truncate entry->offset. */ 3481 db_printf(", share=%p, offset=0x%lx\n", 3482 (void *)entry->object.sub_map, 3483 (long)entry->offset); 3484 nlines++; 3485 if ((entry->prev == &map->header) || 3486 (entry->prev->object.sub_map != 3487 entry->object.sub_map)) { 3488 db_indent += 2; 3489 vm_map_print((db_expr_t)(intptr_t) 3490 entry->object.sub_map, 3491 full, 0, (char *)0); 3492 db_indent -= 2; 3493 } 3494 } else { 3495 /* XXX no %qd in kernel. Truncate entry->offset. */ 3496 db_printf(", object=%p, offset=0x%lx", 3497 (void *)entry->object.vm_object, 3498 (long)entry->offset); 3499 if (entry->eflags & MAP_ENTRY_COW) 3500 db_printf(", copy (%s)", 3501 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3502 db_printf("\n"); 3503 nlines++; 3504 3505 if ((entry->prev == &map->header) || 3506 (entry->prev->object.vm_object != 3507 entry->object.vm_object)) { 3508 db_indent += 2; 3509 vm_object_print((db_expr_t)(intptr_t) 3510 entry->object.vm_object, 3511 full, 0, (char *)0); 3512 nlines += 4; 3513 db_indent -= 2; 3514 } 3515 } 3516 } 3517 db_indent -= 2; 3518 if (db_indent == 0) 3519 nlines = 0; 3520 } 3521 3522 3523 DB_SHOW_COMMAND(procvm, procvm) 3524 { 3525 struct proc *p; 3526 3527 if (have_addr) { 3528 p = (struct proc *) addr; 3529 } else { 3530 p = curproc; 3531 } 3532 3533 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3534 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3535 (void *)vmspace_pmap(p->p_vmspace)); 3536 3537 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3538 } 3539 3540 #endif /* DDB */ 3541