xref: /dflybsd-src/sys/vm/vm_map.c (revision 4bfff613235390e418af6fe340d465e53afba83a)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory mapping module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99 
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 #include <sys/random.h>
103 #include <sys/sysctl.h>
104 
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static void vmspace_terminate(struct vmspace *vm);
123 static void vmspace_lock(struct vmspace *vm);
124 static void vmspace_unlock(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.mag_capacity =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
140 		.lock = (sysref_lock_func_t)vmspace_lock,
141 		.unlock = (sysref_lock_func_t)vmspace_unlock
142 	}
143 };
144 
145 /*
146  * per-cpu page table cross mappings are initialized in early boot
147  * and might require a considerable number of vm_map_entry structures.
148  */
149 #define VMEPERCPU	(MAXCPU+1)
150 
151 static struct vm_zone mapentzone_store, mapzone_store;
152 static vm_zone_t mapentzone, mapzone;
153 static struct vm_object mapentobj, mapobj;
154 
155 static struct vm_map_entry map_entry_init[MAX_MAPENT];
156 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
157 static struct vm_map map_init[MAX_KMAP];
158 
159 static int randomize_mmap;
160 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
161     "Randomize mmap offsets");
162 
163 static void vm_map_entry_shadow(vm_map_entry_t entry);
164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171 		vm_map_entry_t);
172 static void vm_map_split (vm_map_entry_t);
173 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
174 
175 /*
176  * Initialize the vm_map module.  Must be called before any other vm_map
177  * routines.
178  *
179  * Map and entry structures are allocated from the general purpose
180  * memory pool with some exceptions:
181  *
182  *	- The kernel map is allocated statically.
183  *	- Initial kernel map entries are allocated out of a static pool.
184  *
185  *	These restrictions are necessary since malloc() uses the
186  *	maps and requires map entries.
187  *
188  * Called from the low level boot code only.
189  */
190 void
191 vm_map_startup(void)
192 {
193 	mapzone = &mapzone_store;
194 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
195 		map_init, MAX_KMAP);
196 	mapentzone = &mapentzone_store;
197 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
198 		map_entry_init, MAX_MAPENT);
199 }
200 
201 /*
202  * Called prior to any vmspace allocations.
203  *
204  * Called from the low level boot code only.
205  */
206 void
207 vm_init2(void)
208 {
209 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 	pmap_init2();
213 	vm_object_init2();
214 }
215 
216 
217 /*
218  * Red black tree functions
219  *
220  * The caller must hold the related map lock.
221  */
222 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
223 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
224 
225 /* a->start is address, and the only field has to be initialized */
226 static int
227 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
228 {
229 	if (a->start < b->start)
230 		return(-1);
231 	else if (a->start > b->start)
232 		return(1);
233 	return(0);
234 }
235 
236 /*
237  * Allocate a vmspace structure, including a vm_map and pmap.
238  * Initialize numerous fields.  While the initial allocation is zerod,
239  * subsequence reuse from the objcache leaves elements of the structure
240  * intact (particularly the pmap), so portions must be zerod.
241  *
242  * The structure is not considered activated until we call sysref_activate().
243  *
244  * No requirements.
245  */
246 struct vmspace *
247 vmspace_alloc(vm_offset_t min, vm_offset_t max)
248 {
249 	struct vmspace *vm;
250 
251 	lwkt_gettoken(&vmspace_token);
252 	vm = sysref_alloc(&vmspace_sysref_class);
253 	bzero(&vm->vm_startcopy,
254 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
255 	vm_map_init(&vm->vm_map, min, max, NULL);
256 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
257 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
258 	vm->vm_shm = NULL;
259 	vm->vm_exitingcnt = 0;
260 	cpu_vmspace_alloc(vm);
261 	sysref_activate(&vm->vm_sysref);
262 	lwkt_reltoken(&vmspace_token);
263 
264 	return (vm);
265 }
266 
267 /*
268  * dtor function - Some elements of the pmap are retained in the
269  * free-cached vmspaces to improve performance.  We have to clean them up
270  * here before returning the vmspace to the memory pool.
271  *
272  * No requirements.
273  */
274 static void
275 vmspace_dtor(void *obj, void *private)
276 {
277 	struct vmspace *vm = obj;
278 
279 	pmap_puninit(vmspace_pmap(vm));
280 }
281 
282 /*
283  * Called in two cases:
284  *
285  * (1) When the last sysref is dropped, but exitingcnt might still be
286  *     non-zero.
287  *
288  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
289  *     exitingcnt becomes zero
290  *
291  * sysref will not scrap the object until we call sysref_put() once more
292  * after the last ref has been dropped.
293  *
294  * Interlocked by the sysref API.
295  */
296 static void
297 vmspace_terminate(struct vmspace *vm)
298 {
299 	int count;
300 
301 	/*
302 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
303 	 * yet, but we can scrap user memory.
304 	 */
305 	lwkt_gettoken(&vmspace_token);
306 	if (vm->vm_exitingcnt) {
307 		shmexit(vm);
308 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
309 				  VM_MAX_USER_ADDRESS);
310 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
311 			      VM_MAX_USER_ADDRESS);
312 		lwkt_reltoken(&vmspace_token);
313 		return;
314 	}
315 	cpu_vmspace_free(vm);
316 
317 	/*
318 	 * Make sure any SysV shm is freed, it might not have in
319 	 * exit1()
320 	 */
321 	shmexit(vm);
322 
323 	KKASSERT(vm->vm_upcalls == NULL);
324 
325 	/*
326 	 * Lock the map, to wait out all other references to it.
327 	 * Delete all of the mappings and pages they hold, then call
328 	 * the pmap module to reclaim anything left.
329 	 */
330 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
331 	vm_map_lock(&vm->vm_map);
332 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
333 		vm->vm_map.max_offset, &count);
334 	vm_map_unlock(&vm->vm_map);
335 	vm_map_entry_release(count);
336 
337 	pmap_release(vmspace_pmap(vm));
338 	sysref_put(&vm->vm_sysref);
339 	lwkt_reltoken(&vmspace_token);
340 }
341 
342 /*
343  * vmspaces are not currently locked.
344  */
345 static void
346 vmspace_lock(struct vmspace *vm __unused)
347 {
348 }
349 
350 static void
351 vmspace_unlock(struct vmspace *vm __unused)
352 {
353 }
354 
355 /*
356  * This is called during exit indicating that the vmspace is no
357  * longer in used by an exiting process, but the process has not yet
358  * been cleaned up.
359  *
360  * No requirements.
361  */
362 void
363 vmspace_exitbump(struct vmspace *vm)
364 {
365 	lwkt_gettoken(&vmspace_token);
366 	++vm->vm_exitingcnt;
367 	lwkt_reltoken(&vmspace_token);
368 }
369 
370 /*
371  * This is called in the wait*() handling code.  The vmspace can be terminated
372  * after the last wait is finished using it.
373  *
374  * No requirements.
375  */
376 void
377 vmspace_exitfree(struct proc *p)
378 {
379 	struct vmspace *vm;
380 
381 	lwkt_gettoken(&vmspace_token);
382 	vm = p->p_vmspace;
383 	p->p_vmspace = NULL;
384 
385 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
386 		vmspace_terminate(vm);
387 	lwkt_reltoken(&vmspace_token);
388 }
389 
390 /*
391  * Swap useage is determined by taking the proportional swap used by
392  * VM objects backing the VM map.  To make up for fractional losses,
393  * if the VM object has any swap use at all the associated map entries
394  * count for at least 1 swap page.
395  *
396  * No requirements.
397  */
398 int
399 vmspace_swap_count(struct vmspace *vmspace)
400 {
401 	vm_map_t map = &vmspace->vm_map;
402 	vm_map_entry_t cur;
403 	vm_object_t object;
404 	int count = 0;
405 	int n;
406 
407 	lwkt_gettoken(&vmspace_token);
408 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
409 		switch(cur->maptype) {
410 		case VM_MAPTYPE_NORMAL:
411 		case VM_MAPTYPE_VPAGETABLE:
412 			if ((object = cur->object.vm_object) == NULL)
413 				break;
414 			if (object->swblock_count) {
415 				n = (cur->end - cur->start) / PAGE_SIZE;
416 				count += object->swblock_count *
417 				    SWAP_META_PAGES * n / object->size + 1;
418 			}
419 			break;
420 		default:
421 			break;
422 		}
423 	}
424 	lwkt_reltoken(&vmspace_token);
425 	return(count);
426 }
427 
428 /*
429  * Calculate the approximate number of anonymous pages in use by
430  * this vmspace.  To make up for fractional losses, we count each
431  * VM object as having at least 1 anonymous page.
432  *
433  * No requirements.
434  */
435 int
436 vmspace_anonymous_count(struct vmspace *vmspace)
437 {
438 	vm_map_t map = &vmspace->vm_map;
439 	vm_map_entry_t cur;
440 	vm_object_t object;
441 	int count = 0;
442 
443 	lwkt_gettoken(&vmspace_token);
444 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
445 		switch(cur->maptype) {
446 		case VM_MAPTYPE_NORMAL:
447 		case VM_MAPTYPE_VPAGETABLE:
448 			if ((object = cur->object.vm_object) == NULL)
449 				break;
450 			if (object->type != OBJT_DEFAULT &&
451 			    object->type != OBJT_SWAP) {
452 				break;
453 			}
454 			count += object->resident_page_count;
455 			break;
456 		default:
457 			break;
458 		}
459 	}
460 	lwkt_reltoken(&vmspace_token);
461 	return(count);
462 }
463 
464 /*
465  * Creates and returns a new empty VM map with the given physical map
466  * structure, and having the given lower and upper address bounds.
467  *
468  * No requirements.
469  */
470 vm_map_t
471 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
472 {
473 	if (result == NULL)
474 		result = zalloc(mapzone);
475 	vm_map_init(result, min, max, pmap);
476 	return (result);
477 }
478 
479 /*
480  * Initialize an existing vm_map structure such as that in the vmspace
481  * structure.  The pmap is initialized elsewhere.
482  *
483  * No requirements.
484  */
485 void
486 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
487 {
488 	map->header.next = map->header.prev = &map->header;
489 	RB_INIT(&map->rb_root);
490 	map->nentries = 0;
491 	map->size = 0;
492 	map->system_map = 0;
493 	map->infork = 0;
494 	map->min_offset = min;
495 	map->max_offset = max;
496 	map->pmap = pmap;
497 	map->first_free = &map->header;
498 	map->hint = &map->header;
499 	map->timestamp = 0;
500 	map->flags = 0;
501 	lockinit(&map->lock, "thrd_sleep", 0, 0);
502 }
503 
504 /*
505  * Shadow the vm_map_entry's object.  This typically needs to be done when
506  * a write fault is taken on an entry which had previously been cloned by
507  * fork().  The shared object (which might be NULL) must become private so
508  * we add a shadow layer above it.
509  *
510  * Object allocation for anonymous mappings is defered as long as possible.
511  * When creating a shadow, however, the underlying object must be instantiated
512  * so it can be shared.
513  *
514  * If the map segment is governed by a virtual page table then it is
515  * possible to address offsets beyond the mapped area.  Just allocate
516  * a maximally sized object for this case.
517  *
518  * The vm_map must be exclusively locked.
519  * No other requirements.
520  */
521 static
522 void
523 vm_map_entry_shadow(vm_map_entry_t entry)
524 {
525 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
526 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
527 				 0x7FFFFFFF);	/* XXX */
528 	} else {
529 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
530 				 atop(entry->end - entry->start));
531 	}
532 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
533 }
534 
535 /*
536  * Allocate an object for a vm_map_entry.
537  *
538  * Object allocation for anonymous mappings is defered as long as possible.
539  * This function is called when we can defer no longer, generally when a map
540  * entry might be split or forked or takes a page fault.
541  *
542  * If the map segment is governed by a virtual page table then it is
543  * possible to address offsets beyond the mapped area.  Just allocate
544  * a maximally sized object for this case.
545  *
546  * The vm_map must be exclusively locked.
547  * No other requirements.
548  */
549 void
550 vm_map_entry_allocate_object(vm_map_entry_t entry)
551 {
552 	vm_object_t obj;
553 
554 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
555 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
556 	} else {
557 		obj = vm_object_allocate(OBJT_DEFAULT,
558 					 atop(entry->end - entry->start));
559 	}
560 	entry->object.vm_object = obj;
561 	entry->offset = 0;
562 }
563 
564 /*
565  * Set an initial negative count so the first attempt to reserve
566  * space preloads a bunch of vm_map_entry's for this cpu.  Also
567  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
568  * map a new page for vm_map_entry structures.  SMP systems are
569  * particularly sensitive.
570  *
571  * This routine is called in early boot so we cannot just call
572  * vm_map_entry_reserve().
573  *
574  * Called from the low level boot code only (for each cpu)
575  */
576 void
577 vm_map_entry_reserve_cpu_init(globaldata_t gd)
578 {
579 	vm_map_entry_t entry;
580 	int i;
581 
582 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
583 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
584 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
585 		entry->next = gd->gd_vme_base;
586 		gd->gd_vme_base = entry;
587 	}
588 }
589 
590 /*
591  * Reserves vm_map_entry structures so code later on can manipulate
592  * map_entry structures within a locked map without blocking trying
593  * to allocate a new vm_map_entry.
594  *
595  * No requirements.
596  */
597 int
598 vm_map_entry_reserve(int count)
599 {
600 	struct globaldata *gd = mycpu;
601 	vm_map_entry_t entry;
602 
603 	/*
604 	 * Make sure we have enough structures in gd_vme_base to handle
605 	 * the reservation request.
606 	 */
607 	crit_enter();
608 	while (gd->gd_vme_avail < count) {
609 		entry = zalloc(mapentzone);
610 		entry->next = gd->gd_vme_base;
611 		gd->gd_vme_base = entry;
612 		++gd->gd_vme_avail;
613 	}
614 	gd->gd_vme_avail -= count;
615 	crit_exit();
616 
617 	return(count);
618 }
619 
620 /*
621  * Releases previously reserved vm_map_entry structures that were not
622  * used.  If we have too much junk in our per-cpu cache clean some of
623  * it out.
624  *
625  * No requirements.
626  */
627 void
628 vm_map_entry_release(int count)
629 {
630 	struct globaldata *gd = mycpu;
631 	vm_map_entry_t entry;
632 
633 	crit_enter();
634 	gd->gd_vme_avail += count;
635 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
636 		entry = gd->gd_vme_base;
637 		KKASSERT(entry != NULL);
638 		gd->gd_vme_base = entry->next;
639 		--gd->gd_vme_avail;
640 		crit_exit();
641 		zfree(mapentzone, entry);
642 		crit_enter();
643 	}
644 	crit_exit();
645 }
646 
647 /*
648  * Reserve map entry structures for use in kernel_map itself.  These
649  * entries have *ALREADY* been reserved on a per-cpu basis when the map
650  * was inited.  This function is used by zalloc() to avoid a recursion
651  * when zalloc() itself needs to allocate additional kernel memory.
652  *
653  * This function works like the normal reserve but does not load the
654  * vm_map_entry cache (because that would result in an infinite
655  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
656  *
657  * Any caller of this function must be sure to renormalize after
658  * potentially eating entries to ensure that the reserve supply
659  * remains intact.
660  *
661  * No requirements.
662  */
663 int
664 vm_map_entry_kreserve(int count)
665 {
666 	struct globaldata *gd = mycpu;
667 
668 	crit_enter();
669 	gd->gd_vme_avail -= count;
670 	crit_exit();
671 	KASSERT(gd->gd_vme_base != NULL,
672 		("no reserved entries left, gd_vme_avail = %d\n",
673 		gd->gd_vme_avail));
674 	return(count);
675 }
676 
677 /*
678  * Release previously reserved map entries for kernel_map.  We do not
679  * attempt to clean up like the normal release function as this would
680  * cause an unnecessary (but probably not fatal) deep procedure call.
681  *
682  * No requirements.
683  */
684 void
685 vm_map_entry_krelease(int count)
686 {
687 	struct globaldata *gd = mycpu;
688 
689 	crit_enter();
690 	gd->gd_vme_avail += count;
691 	crit_exit();
692 }
693 
694 /*
695  * Allocates a VM map entry for insertion.  No entry fields are filled in.
696  *
697  * The entries should have previously been reserved.  The reservation count
698  * is tracked in (*countp).
699  *
700  * No requirements.
701  */
702 static vm_map_entry_t
703 vm_map_entry_create(vm_map_t map, int *countp)
704 {
705 	struct globaldata *gd = mycpu;
706 	vm_map_entry_t entry;
707 
708 	KKASSERT(*countp > 0);
709 	--*countp;
710 	crit_enter();
711 	entry = gd->gd_vme_base;
712 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
713 	gd->gd_vme_base = entry->next;
714 	crit_exit();
715 
716 	return(entry);
717 }
718 
719 /*
720  * Dispose of a vm_map_entry that is no longer being referenced.
721  *
722  * No requirements.
723  */
724 static void
725 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
726 {
727 	struct globaldata *gd = mycpu;
728 
729 	KKASSERT(map->hint != entry);
730 	KKASSERT(map->first_free != entry);
731 
732 	++*countp;
733 	crit_enter();
734 	entry->next = gd->gd_vme_base;
735 	gd->gd_vme_base = entry;
736 	crit_exit();
737 }
738 
739 
740 /*
741  * Insert/remove entries from maps.
742  *
743  * The related map must be exclusively locked.
744  * No other requirements.
745  *
746  * NOTE! We currently acquire the vmspace_token only to avoid races
747  *	 against the pageout daemon's calls to vmspace_*_count(), which
748  *	 are unable to safely lock the vm_map without potentially
749  *	 deadlocking.
750  */
751 static __inline void
752 vm_map_entry_link(vm_map_t map,
753 		  vm_map_entry_t after_where,
754 		  vm_map_entry_t entry)
755 {
756 	ASSERT_VM_MAP_LOCKED(map);
757 
758 	lwkt_gettoken(&vmspace_token);
759 	map->nentries++;
760 	entry->prev = after_where;
761 	entry->next = after_where->next;
762 	entry->next->prev = entry;
763 	after_where->next = entry;
764 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
765 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
766 	lwkt_reltoken(&vmspace_token);
767 }
768 
769 static __inline void
770 vm_map_entry_unlink(vm_map_t map,
771 		    vm_map_entry_t entry)
772 {
773 	vm_map_entry_t prev;
774 	vm_map_entry_t next;
775 
776 	ASSERT_VM_MAP_LOCKED(map);
777 
778 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
779 		panic("vm_map_entry_unlink: attempt to mess with "
780 		      "locked entry! %p", entry);
781 	}
782 	lwkt_gettoken(&vmspace_token);
783 	prev = entry->prev;
784 	next = entry->next;
785 	next->prev = prev;
786 	prev->next = next;
787 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
788 	map->nentries--;
789 	lwkt_reltoken(&vmspace_token);
790 }
791 
792 /*
793  * Finds the map entry containing (or immediately preceding) the specified
794  * address in the given map.  The entry is returned in (*entry).
795  *
796  * The boolean result indicates whether the address is actually contained
797  * in the map.
798  *
799  * The related map must be locked.
800  * No other requirements.
801  */
802 boolean_t
803 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
804 {
805 	vm_map_entry_t tmp;
806 	vm_map_entry_t last;
807 
808 	ASSERT_VM_MAP_LOCKED(map);
809 #if 0
810 	/*
811 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
812 	 * the hint code with the red-black lookup meets with system crashes
813 	 * and lockups.  We do not yet know why.
814 	 *
815 	 * It is possible that the problem is related to the setting
816 	 * of the hint during map_entry deletion, in the code specified
817 	 * at the GGG comment later on in this file.
818 	 */
819 	/*
820 	 * Quickly check the cached hint, there's a good chance of a match.
821 	 */
822 	if (map->hint != &map->header) {
823 		tmp = map->hint;
824 		if (address >= tmp->start && address < tmp->end) {
825 			*entry = tmp;
826 			return(TRUE);
827 		}
828 	}
829 #endif
830 
831 	/*
832 	 * Locate the record from the top of the tree.  'last' tracks the
833 	 * closest prior record and is returned if no match is found, which
834 	 * in binary tree terms means tracking the most recent right-branch
835 	 * taken.  If there is no prior record, &map->header is returned.
836 	 */
837 	last = &map->header;
838 	tmp = RB_ROOT(&map->rb_root);
839 
840 	while (tmp) {
841 		if (address >= tmp->start) {
842 			if (address < tmp->end) {
843 				*entry = tmp;
844 				map->hint = tmp;
845 				return(TRUE);
846 			}
847 			last = tmp;
848 			tmp = RB_RIGHT(tmp, rb_entry);
849 		} else {
850 			tmp = RB_LEFT(tmp, rb_entry);
851 		}
852 	}
853 	*entry = last;
854 	return (FALSE);
855 }
856 
857 /*
858  * Inserts the given whole VM object into the target map at the specified
859  * address range.  The object's size should match that of the address range.
860  *
861  * The map must be exclusively locked.
862  * The caller must have reserved sufficient vm_map_entry structures.
863  *
864  * If object is non-NULL, ref count must be bumped by caller
865  * prior to making call to account for the new entry.
866  */
867 int
868 vm_map_insert(vm_map_t map, int *countp,
869 	      vm_object_t object, vm_ooffset_t offset,
870 	      vm_offset_t start, vm_offset_t end,
871 	      vm_maptype_t maptype,
872 	      vm_prot_t prot, vm_prot_t max,
873 	      int cow)
874 {
875 	vm_map_entry_t new_entry;
876 	vm_map_entry_t prev_entry;
877 	vm_map_entry_t temp_entry;
878 	vm_eflags_t protoeflags;
879 
880 	ASSERT_VM_MAP_LOCKED(map);
881 
882 	/*
883 	 * Check that the start and end points are not bogus.
884 	 */
885 	if ((start < map->min_offset) || (end > map->max_offset) ||
886 	    (start >= end))
887 		return (KERN_INVALID_ADDRESS);
888 
889 	/*
890 	 * Find the entry prior to the proposed starting address; if it's part
891 	 * of an existing entry, this range is bogus.
892 	 */
893 	if (vm_map_lookup_entry(map, start, &temp_entry))
894 		return (KERN_NO_SPACE);
895 
896 	prev_entry = temp_entry;
897 
898 	/*
899 	 * Assert that the next entry doesn't overlap the end point.
900 	 */
901 
902 	if ((prev_entry->next != &map->header) &&
903 	    (prev_entry->next->start < end))
904 		return (KERN_NO_SPACE);
905 
906 	protoeflags = 0;
907 
908 	if (cow & MAP_COPY_ON_WRITE)
909 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
910 
911 	if (cow & MAP_NOFAULT) {
912 		protoeflags |= MAP_ENTRY_NOFAULT;
913 
914 		KASSERT(object == NULL,
915 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
916 	}
917 	if (cow & MAP_DISABLE_SYNCER)
918 		protoeflags |= MAP_ENTRY_NOSYNC;
919 	if (cow & MAP_DISABLE_COREDUMP)
920 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
921 	if (cow & MAP_IS_STACK)
922 		protoeflags |= MAP_ENTRY_STACK;
923 	if (cow & MAP_IS_KSTACK)
924 		protoeflags |= MAP_ENTRY_KSTACK;
925 
926 	lwkt_gettoken(&vm_token);
927 	lwkt_gettoken(&vmobj_token);
928 
929 	if (object) {
930 		/*
931 		 * When object is non-NULL, it could be shared with another
932 		 * process.  We have to set or clear OBJ_ONEMAPPING
933 		 * appropriately.
934 		 */
935 
936 		vm_object_lock(object);
937 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
938 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
939 		}
940 		vm_object_unlock(object);
941 	}
942 	else if ((prev_entry != &map->header) &&
943 		 (prev_entry->eflags == protoeflags) &&
944 		 (prev_entry->end == start) &&
945 		 (prev_entry->wired_count == 0) &&
946 		 prev_entry->maptype == maptype &&
947 		 ((prev_entry->object.vm_object == NULL) ||
948 		  vm_object_coalesce(prev_entry->object.vm_object,
949 				     OFF_TO_IDX(prev_entry->offset),
950 				     (vm_size_t)(prev_entry->end - prev_entry->start),
951 				     (vm_size_t)(end - prev_entry->end)))) {
952 		/*
953 		 * We were able to extend the object.  Determine if we
954 		 * can extend the previous map entry to include the
955 		 * new range as well.
956 		 */
957 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
958 		    (prev_entry->protection == prot) &&
959 		    (prev_entry->max_protection == max)) {
960 			lwkt_reltoken(&vmobj_token);
961 			lwkt_reltoken(&vm_token);
962 			map->size += (end - prev_entry->end);
963 			prev_entry->end = end;
964 			vm_map_simplify_entry(map, prev_entry, countp);
965 			return (KERN_SUCCESS);
966 		}
967 
968 		/*
969 		 * If we can extend the object but cannot extend the
970 		 * map entry, we have to create a new map entry.  We
971 		 * must bump the ref count on the extended object to
972 		 * account for it.  object may be NULL.
973 		 */
974 		object = prev_entry->object.vm_object;
975 		offset = prev_entry->offset +
976 			(prev_entry->end - prev_entry->start);
977 		vm_object_reference_locked(object);
978 	}
979 
980 	lwkt_reltoken(&vmobj_token);
981 	lwkt_reltoken(&vm_token);
982 
983 	/*
984 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
985 	 * in things like the buffer map where we manage kva but do not manage
986 	 * backing objects.
987 	 */
988 
989 	/*
990 	 * Create a new entry
991 	 */
992 
993 	new_entry = vm_map_entry_create(map, countp);
994 	new_entry->start = start;
995 	new_entry->end = end;
996 
997 	new_entry->maptype = maptype;
998 	new_entry->eflags = protoeflags;
999 	new_entry->object.vm_object = object;
1000 	new_entry->offset = offset;
1001 	new_entry->aux.master_pde = 0;
1002 
1003 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1004 	new_entry->protection = prot;
1005 	new_entry->max_protection = max;
1006 	new_entry->wired_count = 0;
1007 
1008 	/*
1009 	 * Insert the new entry into the list
1010 	 */
1011 
1012 	vm_map_entry_link(map, prev_entry, new_entry);
1013 	map->size += new_entry->end - new_entry->start;
1014 
1015 	/*
1016 	 * Update the free space hint.  Entries cannot overlap.
1017 	 * An exact comparison is needed to avoid matching
1018 	 * against the map->header.
1019 	 */
1020 	if ((map->first_free == prev_entry) &&
1021 	    (prev_entry->end == new_entry->start)) {
1022 		map->first_free = new_entry;
1023 	}
1024 
1025 #if 0
1026 	/*
1027 	 * Temporarily removed to avoid MAP_STACK panic, due to
1028 	 * MAP_STACK being a huge hack.  Will be added back in
1029 	 * when MAP_STACK (and the user stack mapping) is fixed.
1030 	 */
1031 	/*
1032 	 * It may be possible to simplify the entry
1033 	 */
1034 	vm_map_simplify_entry(map, new_entry, countp);
1035 #endif
1036 
1037 	/*
1038 	 * Try to pre-populate the page table.  Mappings governed by virtual
1039 	 * page tables cannot be prepopulated without a lot of work, so
1040 	 * don't try.
1041 	 */
1042 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1043 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1044 		pmap_object_init_pt(map->pmap, start, prot,
1045 				    object, OFF_TO_IDX(offset), end - start,
1046 				    cow & MAP_PREFAULT_PARTIAL);
1047 	}
1048 
1049 	return (KERN_SUCCESS);
1050 }
1051 
1052 /*
1053  * Find sufficient space for `length' bytes in the given map, starting at
1054  * `start'.  Returns 0 on success, 1 on no space.
1055  *
1056  * This function will returned an arbitrarily aligned pointer.  If no
1057  * particular alignment is required you should pass align as 1.  Note that
1058  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1059  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1060  * argument.
1061  *
1062  * 'align' should be a power of 2 but is not required to be.
1063  *
1064  * The map must be exclusively locked.
1065  * No other requirements.
1066  */
1067 int
1068 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1069 		 vm_size_t align, int flags, vm_offset_t *addr)
1070 {
1071 	vm_map_entry_t entry, next;
1072 	vm_offset_t end;
1073 	vm_offset_t align_mask;
1074 
1075 	if (start < map->min_offset)
1076 		start = map->min_offset;
1077 	if (start > map->max_offset)
1078 		return (1);
1079 
1080 	/*
1081 	 * If the alignment is not a power of 2 we will have to use
1082 	 * a mod/division, set align_mask to a special value.
1083 	 */
1084 	if ((align | (align - 1)) + 1 != (align << 1))
1085 		align_mask = (vm_offset_t)-1;
1086 	else
1087 		align_mask = align - 1;
1088 
1089 	/*
1090 	 * Look for the first possible address; if there's already something
1091 	 * at this address, we have to start after it.
1092 	 */
1093 	if (start == map->min_offset) {
1094 		if ((entry = map->first_free) != &map->header)
1095 			start = entry->end;
1096 	} else {
1097 		vm_map_entry_t tmp;
1098 
1099 		if (vm_map_lookup_entry(map, start, &tmp))
1100 			start = tmp->end;
1101 		entry = tmp;
1102 	}
1103 
1104 	/*
1105 	 * Look through the rest of the map, trying to fit a new region in the
1106 	 * gap between existing regions, or after the very last region.
1107 	 */
1108 	for (;; start = (entry = next)->end) {
1109 		/*
1110 		 * Adjust the proposed start by the requested alignment,
1111 		 * be sure that we didn't wrap the address.
1112 		 */
1113 		if (align_mask == (vm_offset_t)-1)
1114 			end = ((start + align - 1) / align) * align;
1115 		else
1116 			end = (start + align_mask) & ~align_mask;
1117 		if (end < start)
1118 			return (1);
1119 		start = end;
1120 		/*
1121 		 * Find the end of the proposed new region.  Be sure we didn't
1122 		 * go beyond the end of the map, or wrap around the address.
1123 		 * Then check to see if this is the last entry or if the
1124 		 * proposed end fits in the gap between this and the next
1125 		 * entry.
1126 		 */
1127 		end = start + length;
1128 		if (end > map->max_offset || end < start)
1129 			return (1);
1130 		next = entry->next;
1131 
1132 		/*
1133 		 * If the next entry's start address is beyond the desired
1134 		 * end address we may have found a good entry.
1135 		 *
1136 		 * If the next entry is a stack mapping we do not map into
1137 		 * the stack's reserved space.
1138 		 *
1139 		 * XXX continue to allow mapping into the stack's reserved
1140 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1141 		 * mapping, for backwards compatibility.  But the caller
1142 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1143 		 * want to do that.
1144 		 */
1145 		if (next == &map->header)
1146 			break;
1147 		if (next->start >= end) {
1148 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1149 				break;
1150 			if (flags & MAP_STACK)
1151 				break;
1152 			if (next->start - next->aux.avail_ssize >= end)
1153 				break;
1154 		}
1155 	}
1156 	map->hint = entry;
1157 
1158 	/*
1159 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1160 	 * if it fails.  The kernel_map is locked and nothing can steal
1161 	 * our address space if pmap_growkernel() blocks.
1162 	 *
1163 	 * NOTE: This may be unconditionally called for kldload areas on
1164 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1165 	 *	 fill 128G worth of page tables!).  Therefore we must not
1166 	 *	 retry.
1167 	 */
1168 	if (map == &kernel_map) {
1169 		vm_offset_t kstop;
1170 
1171 		kstop = round_page(start + length);
1172 		if (kstop > kernel_vm_end)
1173 			pmap_growkernel(start, kstop);
1174 	}
1175 	*addr = start;
1176 	return (0);
1177 }
1178 
1179 /*
1180  * vm_map_find finds an unallocated region in the target address map with
1181  * the given length.  The search is defined to be first-fit from the
1182  * specified address; the region found is returned in the same parameter.
1183  *
1184  * If object is non-NULL, ref count must be bumped by caller
1185  * prior to making call to account for the new entry.
1186  *
1187  * No requirements.  This function will lock the map temporarily.
1188  */
1189 int
1190 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1191 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1192 	    boolean_t fitit,
1193 	    vm_maptype_t maptype,
1194 	    vm_prot_t prot, vm_prot_t max,
1195 	    int cow)
1196 {
1197 	vm_offset_t start;
1198 	int result;
1199 	int count;
1200 
1201 	start = *addr;
1202 
1203 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1204 	vm_map_lock(map);
1205 	if (fitit) {
1206 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1207 			vm_map_unlock(map);
1208 			vm_map_entry_release(count);
1209 			return (KERN_NO_SPACE);
1210 		}
1211 		start = *addr;
1212 	}
1213 	result = vm_map_insert(map, &count, object, offset,
1214 			       start, start + length,
1215 			       maptype,
1216 			       prot, max,
1217 			       cow);
1218 	vm_map_unlock(map);
1219 	vm_map_entry_release(count);
1220 
1221 	return (result);
1222 }
1223 
1224 /*
1225  * Simplify the given map entry by merging with either neighbor.  This
1226  * routine also has the ability to merge with both neighbors.
1227  *
1228  * This routine guarentees that the passed entry remains valid (though
1229  * possibly extended).  When merging, this routine may delete one or
1230  * both neighbors.  No action is taken on entries which have their
1231  * in-transition flag set.
1232  *
1233  * The map must be exclusively locked.
1234  */
1235 void
1236 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1237 {
1238 	vm_map_entry_t next, prev;
1239 	vm_size_t prevsize, esize;
1240 
1241 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1242 		++mycpu->gd_cnt.v_intrans_coll;
1243 		return;
1244 	}
1245 
1246 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1247 		return;
1248 
1249 	prev = entry->prev;
1250 	if (prev != &map->header) {
1251 		prevsize = prev->end - prev->start;
1252 		if ( (prev->end == entry->start) &&
1253 		     (prev->maptype == entry->maptype) &&
1254 		     (prev->object.vm_object == entry->object.vm_object) &&
1255 		     (!prev->object.vm_object ||
1256 			(prev->offset + prevsize == entry->offset)) &&
1257 		     (prev->eflags == entry->eflags) &&
1258 		     (prev->protection == entry->protection) &&
1259 		     (prev->max_protection == entry->max_protection) &&
1260 		     (prev->inheritance == entry->inheritance) &&
1261 		     (prev->wired_count == entry->wired_count)) {
1262 			if (map->first_free == prev)
1263 				map->first_free = entry;
1264 			if (map->hint == prev)
1265 				map->hint = entry;
1266 			vm_map_entry_unlink(map, prev);
1267 			entry->start = prev->start;
1268 			entry->offset = prev->offset;
1269 			if (prev->object.vm_object)
1270 				vm_object_deallocate(prev->object.vm_object);
1271 			vm_map_entry_dispose(map, prev, countp);
1272 		}
1273 	}
1274 
1275 	next = entry->next;
1276 	if (next != &map->header) {
1277 		esize = entry->end - entry->start;
1278 		if ((entry->end == next->start) &&
1279 		    (next->maptype == entry->maptype) &&
1280 		    (next->object.vm_object == entry->object.vm_object) &&
1281 		     (!entry->object.vm_object ||
1282 			(entry->offset + esize == next->offset)) &&
1283 		    (next->eflags == entry->eflags) &&
1284 		    (next->protection == entry->protection) &&
1285 		    (next->max_protection == entry->max_protection) &&
1286 		    (next->inheritance == entry->inheritance) &&
1287 		    (next->wired_count == entry->wired_count)) {
1288 			if (map->first_free == next)
1289 				map->first_free = entry;
1290 			if (map->hint == next)
1291 				map->hint = entry;
1292 			vm_map_entry_unlink(map, next);
1293 			entry->end = next->end;
1294 			if (next->object.vm_object)
1295 				vm_object_deallocate(next->object.vm_object);
1296 			vm_map_entry_dispose(map, next, countp);
1297 	        }
1298 	}
1299 }
1300 
1301 /*
1302  * Asserts that the given entry begins at or after the specified address.
1303  * If necessary, it splits the entry into two.
1304  */
1305 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1306 {									\
1307 	if (startaddr > entry->start)					\
1308 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1309 }
1310 
1311 /*
1312  * This routine is called only when it is known that the entry must be split.
1313  *
1314  * The map must be exclusively locked.
1315  */
1316 static void
1317 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1318 		   int *countp)
1319 {
1320 	vm_map_entry_t new_entry;
1321 
1322 	/*
1323 	 * Split off the front portion -- note that we must insert the new
1324 	 * entry BEFORE this one, so that this entry has the specified
1325 	 * starting address.
1326 	 */
1327 
1328 	vm_map_simplify_entry(map, entry, countp);
1329 
1330 	/*
1331 	 * If there is no object backing this entry, we might as well create
1332 	 * one now.  If we defer it, an object can get created after the map
1333 	 * is clipped, and individual objects will be created for the split-up
1334 	 * map.  This is a bit of a hack, but is also about the best place to
1335 	 * put this improvement.
1336 	 */
1337 	if (entry->object.vm_object == NULL && !map->system_map) {
1338 		vm_map_entry_allocate_object(entry);
1339 	}
1340 
1341 	new_entry = vm_map_entry_create(map, countp);
1342 	*new_entry = *entry;
1343 
1344 	new_entry->end = start;
1345 	entry->offset += (start - entry->start);
1346 	entry->start = start;
1347 
1348 	vm_map_entry_link(map, entry->prev, new_entry);
1349 
1350 	switch(entry->maptype) {
1351 	case VM_MAPTYPE_NORMAL:
1352 	case VM_MAPTYPE_VPAGETABLE:
1353 		vm_object_reference(new_entry->object.vm_object);
1354 		break;
1355 	default:
1356 		break;
1357 	}
1358 }
1359 
1360 /*
1361  * Asserts that the given entry ends at or before the specified address.
1362  * If necessary, it splits the entry into two.
1363  *
1364  * The map must be exclusively locked.
1365  */
1366 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1367 {								\
1368 	if (endaddr < entry->end)				\
1369 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1370 }
1371 
1372 /*
1373  * This routine is called only when it is known that the entry must be split.
1374  *
1375  * The map must be exclusively locked.
1376  */
1377 static void
1378 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1379 		 int *countp)
1380 {
1381 	vm_map_entry_t new_entry;
1382 
1383 	/*
1384 	 * If there is no object backing this entry, we might as well create
1385 	 * one now.  If we defer it, an object can get created after the map
1386 	 * is clipped, and individual objects will be created for the split-up
1387 	 * map.  This is a bit of a hack, but is also about the best place to
1388 	 * put this improvement.
1389 	 */
1390 
1391 	if (entry->object.vm_object == NULL && !map->system_map) {
1392 		vm_map_entry_allocate_object(entry);
1393 	}
1394 
1395 	/*
1396 	 * Create a new entry and insert it AFTER the specified entry
1397 	 */
1398 
1399 	new_entry = vm_map_entry_create(map, countp);
1400 	*new_entry = *entry;
1401 
1402 	new_entry->start = entry->end = end;
1403 	new_entry->offset += (end - entry->start);
1404 
1405 	vm_map_entry_link(map, entry, new_entry);
1406 
1407 	switch(entry->maptype) {
1408 	case VM_MAPTYPE_NORMAL:
1409 	case VM_MAPTYPE_VPAGETABLE:
1410 		vm_object_reference(new_entry->object.vm_object);
1411 		break;
1412 	default:
1413 		break;
1414 	}
1415 }
1416 
1417 /*
1418  * Asserts that the starting and ending region addresses fall within the
1419  * valid range for the map.
1420  */
1421 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1422 {						\
1423 	if (start < vm_map_min(map))		\
1424 		start = vm_map_min(map);	\
1425 	if (end > vm_map_max(map))		\
1426 		end = vm_map_max(map);		\
1427 	if (start > end)			\
1428 		start = end;			\
1429 }
1430 
1431 /*
1432  * Used to block when an in-transition collison occurs.  The map
1433  * is unlocked for the sleep and relocked before the return.
1434  */
1435 void
1436 vm_map_transition_wait(vm_map_t map)
1437 {
1438 	tsleep_interlock(map, 0);
1439 	vm_map_unlock(map);
1440 	tsleep(map, PINTERLOCKED, "vment", 0);
1441 	vm_map_lock(map);
1442 }
1443 
1444 /*
1445  * When we do blocking operations with the map lock held it is
1446  * possible that a clip might have occured on our in-transit entry,
1447  * requiring an adjustment to the entry in our loop.  These macros
1448  * help the pageable and clip_range code deal with the case.  The
1449  * conditional costs virtually nothing if no clipping has occured.
1450  */
1451 
1452 #define CLIP_CHECK_BACK(entry, save_start)		\
1453     do {						\
1454 	    while (entry->start != save_start) {	\
1455 		    entry = entry->prev;		\
1456 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1457 	    }						\
1458     } while(0)
1459 
1460 #define CLIP_CHECK_FWD(entry, save_end)			\
1461     do {						\
1462 	    while (entry->end != save_end) {		\
1463 		    entry = entry->next;		\
1464 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1465 	    }						\
1466     } while(0)
1467 
1468 
1469 /*
1470  * Clip the specified range and return the base entry.  The
1471  * range may cover several entries starting at the returned base
1472  * and the first and last entry in the covering sequence will be
1473  * properly clipped to the requested start and end address.
1474  *
1475  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1476  * flag.
1477  *
1478  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1479  * covered by the requested range.
1480  *
1481  * The map must be exclusively locked on entry and will remain locked
1482  * on return. If no range exists or the range contains holes and you
1483  * specified that no holes were allowed, NULL will be returned.  This
1484  * routine may temporarily unlock the map in order avoid a deadlock when
1485  * sleeping.
1486  */
1487 static
1488 vm_map_entry_t
1489 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1490 		  int *countp, int flags)
1491 {
1492 	vm_map_entry_t start_entry;
1493 	vm_map_entry_t entry;
1494 
1495 	/*
1496 	 * Locate the entry and effect initial clipping.  The in-transition
1497 	 * case does not occur very often so do not try to optimize it.
1498 	 */
1499 again:
1500 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1501 		return (NULL);
1502 	entry = start_entry;
1503 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1504 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1505 		++mycpu->gd_cnt.v_intrans_coll;
1506 		++mycpu->gd_cnt.v_intrans_wait;
1507 		vm_map_transition_wait(map);
1508 		/*
1509 		 * entry and/or start_entry may have been clipped while
1510 		 * we slept, or may have gone away entirely.  We have
1511 		 * to restart from the lookup.
1512 		 */
1513 		goto again;
1514 	}
1515 
1516 	/*
1517 	 * Since we hold an exclusive map lock we do not have to restart
1518 	 * after clipping, even though clipping may block in zalloc.
1519 	 */
1520 	vm_map_clip_start(map, entry, start, countp);
1521 	vm_map_clip_end(map, entry, end, countp);
1522 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1523 
1524 	/*
1525 	 * Scan entries covered by the range.  When working on the next
1526 	 * entry a restart need only re-loop on the current entry which
1527 	 * we have already locked, since 'next' may have changed.  Also,
1528 	 * even though entry is safe, it may have been clipped so we
1529 	 * have to iterate forwards through the clip after sleeping.
1530 	 */
1531 	while (entry->next != &map->header && entry->next->start < end) {
1532 		vm_map_entry_t next = entry->next;
1533 
1534 		if (flags & MAP_CLIP_NO_HOLES) {
1535 			if (next->start > entry->end) {
1536 				vm_map_unclip_range(map, start_entry,
1537 					start, entry->end, countp, flags);
1538 				return(NULL);
1539 			}
1540 		}
1541 
1542 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1543 			vm_offset_t save_end = entry->end;
1544 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1545 			++mycpu->gd_cnt.v_intrans_coll;
1546 			++mycpu->gd_cnt.v_intrans_wait;
1547 			vm_map_transition_wait(map);
1548 
1549 			/*
1550 			 * clips might have occured while we blocked.
1551 			 */
1552 			CLIP_CHECK_FWD(entry, save_end);
1553 			CLIP_CHECK_BACK(start_entry, start);
1554 			continue;
1555 		}
1556 		/*
1557 		 * No restart necessary even though clip_end may block, we
1558 		 * are holding the map lock.
1559 		 */
1560 		vm_map_clip_end(map, next, end, countp);
1561 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1562 		entry = next;
1563 	}
1564 	if (flags & MAP_CLIP_NO_HOLES) {
1565 		if (entry->end != end) {
1566 			vm_map_unclip_range(map, start_entry,
1567 				start, entry->end, countp, flags);
1568 			return(NULL);
1569 		}
1570 	}
1571 	return(start_entry);
1572 }
1573 
1574 /*
1575  * Undo the effect of vm_map_clip_range().  You should pass the same
1576  * flags and the same range that you passed to vm_map_clip_range().
1577  * This code will clear the in-transition flag on the entries and
1578  * wake up anyone waiting.  This code will also simplify the sequence
1579  * and attempt to merge it with entries before and after the sequence.
1580  *
1581  * The map must be locked on entry and will remain locked on return.
1582  *
1583  * Note that you should also pass the start_entry returned by
1584  * vm_map_clip_range().  However, if you block between the two calls
1585  * with the map unlocked please be aware that the start_entry may
1586  * have been clipped and you may need to scan it backwards to find
1587  * the entry corresponding with the original start address.  You are
1588  * responsible for this, vm_map_unclip_range() expects the correct
1589  * start_entry to be passed to it and will KASSERT otherwise.
1590  */
1591 static
1592 void
1593 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1594 		    vm_offset_t start, vm_offset_t end,
1595 		    int *countp, int flags)
1596 {
1597 	vm_map_entry_t entry;
1598 
1599 	entry = start_entry;
1600 
1601 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1602 	while (entry != &map->header && entry->start < end) {
1603 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1604 			("in-transition flag not set during unclip on: %p",
1605 			entry));
1606 		KASSERT(entry->end <= end,
1607 			("unclip_range: tail wasn't clipped"));
1608 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1609 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1610 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1611 			wakeup(map);
1612 		}
1613 		entry = entry->next;
1614 	}
1615 
1616 	/*
1617 	 * Simplification does not block so there is no restart case.
1618 	 */
1619 	entry = start_entry;
1620 	while (entry != &map->header && entry->start < end) {
1621 		vm_map_simplify_entry(map, entry, countp);
1622 		entry = entry->next;
1623 	}
1624 }
1625 
1626 /*
1627  * Mark the given range as handled by a subordinate map.
1628  *
1629  * This range must have been created with vm_map_find(), and no other
1630  * operations may have been performed on this range prior to calling
1631  * vm_map_submap().
1632  *
1633  * Submappings cannot be removed.
1634  *
1635  * No requirements.
1636  */
1637 int
1638 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1639 {
1640 	vm_map_entry_t entry;
1641 	int result = KERN_INVALID_ARGUMENT;
1642 	int count;
1643 
1644 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1645 	vm_map_lock(map);
1646 
1647 	VM_MAP_RANGE_CHECK(map, start, end);
1648 
1649 	if (vm_map_lookup_entry(map, start, &entry)) {
1650 		vm_map_clip_start(map, entry, start, &count);
1651 	} else {
1652 		entry = entry->next;
1653 	}
1654 
1655 	vm_map_clip_end(map, entry, end, &count);
1656 
1657 	if ((entry->start == start) && (entry->end == end) &&
1658 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1659 	    (entry->object.vm_object == NULL)) {
1660 		entry->object.sub_map = submap;
1661 		entry->maptype = VM_MAPTYPE_SUBMAP;
1662 		result = KERN_SUCCESS;
1663 	}
1664 	vm_map_unlock(map);
1665 	vm_map_entry_release(count);
1666 
1667 	return (result);
1668 }
1669 
1670 /*
1671  * Sets the protection of the specified address region in the target map.
1672  * If "set_max" is specified, the maximum protection is to be set;
1673  * otherwise, only the current protection is affected.
1674  *
1675  * The protection is not applicable to submaps, but is applicable to normal
1676  * maps and maps governed by virtual page tables.  For example, when operating
1677  * on a virtual page table our protection basically controls how COW occurs
1678  * on the backing object, whereas the virtual page table abstraction itself
1679  * is an abstraction for userland.
1680  *
1681  * No requirements.
1682  */
1683 int
1684 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1685 	       vm_prot_t new_prot, boolean_t set_max)
1686 {
1687 	vm_map_entry_t current;
1688 	vm_map_entry_t entry;
1689 	int count;
1690 
1691 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1692 	vm_map_lock(map);
1693 
1694 	VM_MAP_RANGE_CHECK(map, start, end);
1695 
1696 	if (vm_map_lookup_entry(map, start, &entry)) {
1697 		vm_map_clip_start(map, entry, start, &count);
1698 	} else {
1699 		entry = entry->next;
1700 	}
1701 
1702 	/*
1703 	 * Make a first pass to check for protection violations.
1704 	 */
1705 	current = entry;
1706 	while ((current != &map->header) && (current->start < end)) {
1707 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1708 			vm_map_unlock(map);
1709 			vm_map_entry_release(count);
1710 			return (KERN_INVALID_ARGUMENT);
1711 		}
1712 		if ((new_prot & current->max_protection) != new_prot) {
1713 			vm_map_unlock(map);
1714 			vm_map_entry_release(count);
1715 			return (KERN_PROTECTION_FAILURE);
1716 		}
1717 		current = current->next;
1718 	}
1719 
1720 	/*
1721 	 * Go back and fix up protections. [Note that clipping is not
1722 	 * necessary the second time.]
1723 	 */
1724 	current = entry;
1725 
1726 	while ((current != &map->header) && (current->start < end)) {
1727 		vm_prot_t old_prot;
1728 
1729 		vm_map_clip_end(map, current, end, &count);
1730 
1731 		old_prot = current->protection;
1732 		if (set_max) {
1733 			current->protection =
1734 			    (current->max_protection = new_prot) &
1735 			    old_prot;
1736 		} else {
1737 			current->protection = new_prot;
1738 		}
1739 
1740 		/*
1741 		 * Update physical map if necessary. Worry about copy-on-write
1742 		 * here -- CHECK THIS XXX
1743 		 */
1744 
1745 		if (current->protection != old_prot) {
1746 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1747 							VM_PROT_ALL)
1748 
1749 			pmap_protect(map->pmap, current->start,
1750 			    current->end,
1751 			    current->protection & MASK(current));
1752 #undef	MASK
1753 		}
1754 
1755 		vm_map_simplify_entry(map, current, &count);
1756 
1757 		current = current->next;
1758 	}
1759 
1760 	vm_map_unlock(map);
1761 	vm_map_entry_release(count);
1762 	return (KERN_SUCCESS);
1763 }
1764 
1765 /*
1766  * This routine traverses a processes map handling the madvise
1767  * system call.  Advisories are classified as either those effecting
1768  * the vm_map_entry structure, or those effecting the underlying
1769  * objects.
1770  *
1771  * The <value> argument is used for extended madvise calls.
1772  *
1773  * No requirements.
1774  */
1775 int
1776 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1777 	       int behav, off_t value)
1778 {
1779 	vm_map_entry_t current, entry;
1780 	int modify_map = 0;
1781 	int error = 0;
1782 	int count;
1783 
1784 	/*
1785 	 * Some madvise calls directly modify the vm_map_entry, in which case
1786 	 * we need to use an exclusive lock on the map and we need to perform
1787 	 * various clipping operations.  Otherwise we only need a read-lock
1788 	 * on the map.
1789 	 */
1790 
1791 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1792 
1793 	switch(behav) {
1794 	case MADV_NORMAL:
1795 	case MADV_SEQUENTIAL:
1796 	case MADV_RANDOM:
1797 	case MADV_NOSYNC:
1798 	case MADV_AUTOSYNC:
1799 	case MADV_NOCORE:
1800 	case MADV_CORE:
1801 	case MADV_SETMAP:
1802 	case MADV_INVAL:
1803 		modify_map = 1;
1804 		vm_map_lock(map);
1805 		break;
1806 	case MADV_WILLNEED:
1807 	case MADV_DONTNEED:
1808 	case MADV_FREE:
1809 		vm_map_lock_read(map);
1810 		break;
1811 	default:
1812 		vm_map_entry_release(count);
1813 		return (EINVAL);
1814 	}
1815 
1816 	/*
1817 	 * Locate starting entry and clip if necessary.
1818 	 */
1819 
1820 	VM_MAP_RANGE_CHECK(map, start, end);
1821 
1822 	if (vm_map_lookup_entry(map, start, &entry)) {
1823 		if (modify_map)
1824 			vm_map_clip_start(map, entry, start, &count);
1825 	} else {
1826 		entry = entry->next;
1827 	}
1828 
1829 	if (modify_map) {
1830 		/*
1831 		 * madvise behaviors that are implemented in the vm_map_entry.
1832 		 *
1833 		 * We clip the vm_map_entry so that behavioral changes are
1834 		 * limited to the specified address range.
1835 		 */
1836 		for (current = entry;
1837 		     (current != &map->header) && (current->start < end);
1838 		     current = current->next
1839 		) {
1840 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1841 				continue;
1842 
1843 			vm_map_clip_end(map, current, end, &count);
1844 
1845 			switch (behav) {
1846 			case MADV_NORMAL:
1847 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1848 				break;
1849 			case MADV_SEQUENTIAL:
1850 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1851 				break;
1852 			case MADV_RANDOM:
1853 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1854 				break;
1855 			case MADV_NOSYNC:
1856 				current->eflags |= MAP_ENTRY_NOSYNC;
1857 				break;
1858 			case MADV_AUTOSYNC:
1859 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1860 				break;
1861 			case MADV_NOCORE:
1862 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1863 				break;
1864 			case MADV_CORE:
1865 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1866 				break;
1867 			case MADV_INVAL:
1868 				/*
1869 				 * Invalidate the related pmap entries, used
1870 				 * to flush portions of the real kernel's
1871 				 * pmap when the caller has removed or
1872 				 * modified existing mappings in a virtual
1873 				 * page table.
1874 				 */
1875 				pmap_remove(map->pmap,
1876 					    current->start, current->end);
1877 				break;
1878 			case MADV_SETMAP:
1879 				/*
1880 				 * Set the page directory page for a map
1881 				 * governed by a virtual page table.  Mark
1882 				 * the entry as being governed by a virtual
1883 				 * page table if it is not.
1884 				 *
1885 				 * XXX the page directory page is stored
1886 				 * in the avail_ssize field if the map_entry.
1887 				 *
1888 				 * XXX the map simplification code does not
1889 				 * compare this field so weird things may
1890 				 * happen if you do not apply this function
1891 				 * to the entire mapping governed by the
1892 				 * virtual page table.
1893 				 */
1894 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1895 					error = EINVAL;
1896 					break;
1897 				}
1898 				current->aux.master_pde = value;
1899 				pmap_remove(map->pmap,
1900 					    current->start, current->end);
1901 				break;
1902 			default:
1903 				error = EINVAL;
1904 				break;
1905 			}
1906 			vm_map_simplify_entry(map, current, &count);
1907 		}
1908 		vm_map_unlock(map);
1909 	} else {
1910 		vm_pindex_t pindex;
1911 		int count;
1912 
1913 		/*
1914 		 * madvise behaviors that are implemented in the underlying
1915 		 * vm_object.
1916 		 *
1917 		 * Since we don't clip the vm_map_entry, we have to clip
1918 		 * the vm_object pindex and count.
1919 		 *
1920 		 * NOTE!  We currently do not support these functions on
1921 		 * virtual page tables.
1922 		 */
1923 		for (current = entry;
1924 		     (current != &map->header) && (current->start < end);
1925 		     current = current->next
1926 		) {
1927 			vm_offset_t useStart;
1928 
1929 			if (current->maptype != VM_MAPTYPE_NORMAL)
1930 				continue;
1931 
1932 			pindex = OFF_TO_IDX(current->offset);
1933 			count = atop(current->end - current->start);
1934 			useStart = current->start;
1935 
1936 			if (current->start < start) {
1937 				pindex += atop(start - current->start);
1938 				count -= atop(start - current->start);
1939 				useStart = start;
1940 			}
1941 			if (current->end > end)
1942 				count -= atop(current->end - end);
1943 
1944 			if (count <= 0)
1945 				continue;
1946 
1947 			vm_object_madvise(current->object.vm_object,
1948 					  pindex, count, behav);
1949 
1950 			/*
1951 			 * Try to populate the page table.  Mappings governed
1952 			 * by virtual page tables cannot be pre-populated
1953 			 * without a lot of work so don't try.
1954 			 */
1955 			if (behav == MADV_WILLNEED &&
1956 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1957 				pmap_object_init_pt(
1958 				    map->pmap,
1959 				    useStart,
1960 				    current->protection,
1961 				    current->object.vm_object,
1962 				    pindex,
1963 				    (count << PAGE_SHIFT),
1964 				    MAP_PREFAULT_MADVISE
1965 				);
1966 			}
1967 		}
1968 		vm_map_unlock_read(map);
1969 	}
1970 	vm_map_entry_release(count);
1971 	return(error);
1972 }
1973 
1974 
1975 /*
1976  * Sets the inheritance of the specified address range in the target map.
1977  * Inheritance affects how the map will be shared with child maps at the
1978  * time of vm_map_fork.
1979  */
1980 int
1981 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1982 	       vm_inherit_t new_inheritance)
1983 {
1984 	vm_map_entry_t entry;
1985 	vm_map_entry_t temp_entry;
1986 	int count;
1987 
1988 	switch (new_inheritance) {
1989 	case VM_INHERIT_NONE:
1990 	case VM_INHERIT_COPY:
1991 	case VM_INHERIT_SHARE:
1992 		break;
1993 	default:
1994 		return (KERN_INVALID_ARGUMENT);
1995 	}
1996 
1997 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1998 	vm_map_lock(map);
1999 
2000 	VM_MAP_RANGE_CHECK(map, start, end);
2001 
2002 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2003 		entry = temp_entry;
2004 		vm_map_clip_start(map, entry, start, &count);
2005 	} else
2006 		entry = temp_entry->next;
2007 
2008 	while ((entry != &map->header) && (entry->start < end)) {
2009 		vm_map_clip_end(map, entry, end, &count);
2010 
2011 		entry->inheritance = new_inheritance;
2012 
2013 		vm_map_simplify_entry(map, entry, &count);
2014 
2015 		entry = entry->next;
2016 	}
2017 	vm_map_unlock(map);
2018 	vm_map_entry_release(count);
2019 	return (KERN_SUCCESS);
2020 }
2021 
2022 /*
2023  * Implement the semantics of mlock
2024  */
2025 int
2026 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2027 	      boolean_t new_pageable)
2028 {
2029 	vm_map_entry_t entry;
2030 	vm_map_entry_t start_entry;
2031 	vm_offset_t end;
2032 	int rv = KERN_SUCCESS;
2033 	int count;
2034 
2035 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2036 	vm_map_lock(map);
2037 	VM_MAP_RANGE_CHECK(map, start, real_end);
2038 	end = real_end;
2039 
2040 	start_entry = vm_map_clip_range(map, start, end, &count,
2041 					MAP_CLIP_NO_HOLES);
2042 	if (start_entry == NULL) {
2043 		vm_map_unlock(map);
2044 		vm_map_entry_release(count);
2045 		return (KERN_INVALID_ADDRESS);
2046 	}
2047 
2048 	if (new_pageable == 0) {
2049 		entry = start_entry;
2050 		while ((entry != &map->header) && (entry->start < end)) {
2051 			vm_offset_t save_start;
2052 			vm_offset_t save_end;
2053 
2054 			/*
2055 			 * Already user wired or hard wired (trivial cases)
2056 			 */
2057 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2058 				entry = entry->next;
2059 				continue;
2060 			}
2061 			if (entry->wired_count != 0) {
2062 				entry->wired_count++;
2063 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2064 				entry = entry->next;
2065 				continue;
2066 			}
2067 
2068 			/*
2069 			 * A new wiring requires instantiation of appropriate
2070 			 * management structures and the faulting in of the
2071 			 * page.
2072 			 */
2073 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2074 				int copyflag = entry->eflags &
2075 					       MAP_ENTRY_NEEDS_COPY;
2076 				if (copyflag && ((entry->protection &
2077 						  VM_PROT_WRITE) != 0)) {
2078 					vm_map_entry_shadow(entry);
2079 				} else if (entry->object.vm_object == NULL &&
2080 					   !map->system_map) {
2081 					vm_map_entry_allocate_object(entry);
2082 				}
2083 			}
2084 			entry->wired_count++;
2085 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2086 
2087 			/*
2088 			 * Now fault in the area.  Note that vm_fault_wire()
2089 			 * may release the map lock temporarily, it will be
2090 			 * relocked on return.  The in-transition
2091 			 * flag protects the entries.
2092 			 */
2093 			save_start = entry->start;
2094 			save_end = entry->end;
2095 			rv = vm_fault_wire(map, entry, TRUE);
2096 			if (rv) {
2097 				CLIP_CHECK_BACK(entry, save_start);
2098 				for (;;) {
2099 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2100 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2101 					entry->wired_count = 0;
2102 					if (entry->end == save_end)
2103 						break;
2104 					entry = entry->next;
2105 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2106 				}
2107 				end = save_start;	/* unwire the rest */
2108 				break;
2109 			}
2110 			/*
2111 			 * note that even though the entry might have been
2112 			 * clipped, the USER_WIRED flag we set prevents
2113 			 * duplication so we do not have to do a
2114 			 * clip check.
2115 			 */
2116 			entry = entry->next;
2117 		}
2118 
2119 		/*
2120 		 * If we failed fall through to the unwiring section to
2121 		 * unwire what we had wired so far.  'end' has already
2122 		 * been adjusted.
2123 		 */
2124 		if (rv)
2125 			new_pageable = 1;
2126 
2127 		/*
2128 		 * start_entry might have been clipped if we unlocked the
2129 		 * map and blocked.  No matter how clipped it has gotten
2130 		 * there should be a fragment that is on our start boundary.
2131 		 */
2132 		CLIP_CHECK_BACK(start_entry, start);
2133 	}
2134 
2135 	/*
2136 	 * Deal with the unwiring case.
2137 	 */
2138 	if (new_pageable) {
2139 		/*
2140 		 * This is the unwiring case.  We must first ensure that the
2141 		 * range to be unwired is really wired down.  We know there
2142 		 * are no holes.
2143 		 */
2144 		entry = start_entry;
2145 		while ((entry != &map->header) && (entry->start < end)) {
2146 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2147 				rv = KERN_INVALID_ARGUMENT;
2148 				goto done;
2149 			}
2150 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2151 			entry = entry->next;
2152 		}
2153 
2154 		/*
2155 		 * Now decrement the wiring count for each region. If a region
2156 		 * becomes completely unwired, unwire its physical pages and
2157 		 * mappings.
2158 		 */
2159 		/*
2160 		 * The map entries are processed in a loop, checking to
2161 		 * make sure the entry is wired and asserting it has a wired
2162 		 * count. However, another loop was inserted more-or-less in
2163 		 * the middle of the unwiring path. This loop picks up the
2164 		 * "entry" loop variable from the first loop without first
2165 		 * setting it to start_entry. Naturally, the secound loop
2166 		 * is never entered and the pages backing the entries are
2167 		 * never unwired. This can lead to a leak of wired pages.
2168 		 */
2169 		entry = start_entry;
2170 		while ((entry != &map->header) && (entry->start < end)) {
2171 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2172 				("expected USER_WIRED on entry %p", entry));
2173 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2174 			entry->wired_count--;
2175 			if (entry->wired_count == 0)
2176 				vm_fault_unwire(map, entry);
2177 			entry = entry->next;
2178 		}
2179 	}
2180 done:
2181 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2182 		MAP_CLIP_NO_HOLES);
2183 	map->timestamp++;
2184 	vm_map_unlock(map);
2185 	vm_map_entry_release(count);
2186 	return (rv);
2187 }
2188 
2189 /*
2190  * Sets the pageability of the specified address range in the target map.
2191  * Regions specified as not pageable require locked-down physical
2192  * memory and physical page maps.
2193  *
2194  * The map must not be locked, but a reference must remain to the map
2195  * throughout the call.
2196  *
2197  * This function may be called via the zalloc path and must properly
2198  * reserve map entries for kernel_map.
2199  *
2200  * No requirements.
2201  */
2202 int
2203 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2204 {
2205 	vm_map_entry_t entry;
2206 	vm_map_entry_t start_entry;
2207 	vm_offset_t end;
2208 	int rv = KERN_SUCCESS;
2209 	int count;
2210 
2211 	if (kmflags & KM_KRESERVE)
2212 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2213 	else
2214 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2215 	vm_map_lock(map);
2216 	VM_MAP_RANGE_CHECK(map, start, real_end);
2217 	end = real_end;
2218 
2219 	start_entry = vm_map_clip_range(map, start, end, &count,
2220 					MAP_CLIP_NO_HOLES);
2221 	if (start_entry == NULL) {
2222 		vm_map_unlock(map);
2223 		rv = KERN_INVALID_ADDRESS;
2224 		goto failure;
2225 	}
2226 	if ((kmflags & KM_PAGEABLE) == 0) {
2227 		/*
2228 		 * Wiring.
2229 		 *
2230 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2231 		 * objects that need to be created. Then we clip each map
2232 		 * entry to the region to be wired and increment its wiring
2233 		 * count.  We create objects before clipping the map entries
2234 		 * to avoid object proliferation.
2235 		 *
2236 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2237 		 * fault in the pages for any newly wired area (wired_count is
2238 		 * 1).
2239 		 *
2240 		 * Downgrading to a read lock for vm_fault_wire avoids a
2241 		 * possible deadlock with another process that may have faulted
2242 		 * on one of the pages to be wired (it would mark the page busy,
2243 		 * blocking us, then in turn block on the map lock that we
2244 		 * hold).  Because of problems in the recursive lock package,
2245 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2246 		 * any actions that require the write lock must be done
2247 		 * beforehand.  Because we keep the read lock on the map, the
2248 		 * copy-on-write status of the entries we modify here cannot
2249 		 * change.
2250 		 */
2251 		entry = start_entry;
2252 		while ((entry != &map->header) && (entry->start < end)) {
2253 			/*
2254 			 * Trivial case if the entry is already wired
2255 			 */
2256 			if (entry->wired_count) {
2257 				entry->wired_count++;
2258 				entry = entry->next;
2259 				continue;
2260 			}
2261 
2262 			/*
2263 			 * The entry is being newly wired, we have to setup
2264 			 * appropriate management structures.  A shadow
2265 			 * object is required for a copy-on-write region,
2266 			 * or a normal object for a zero-fill region.  We
2267 			 * do not have to do this for entries that point to sub
2268 			 * maps because we won't hold the lock on the sub map.
2269 			 */
2270 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2271 				int copyflag = entry->eflags &
2272 					       MAP_ENTRY_NEEDS_COPY;
2273 				if (copyflag && ((entry->protection &
2274 						  VM_PROT_WRITE) != 0)) {
2275 					vm_map_entry_shadow(entry);
2276 				} else if (entry->object.vm_object == NULL &&
2277 					   !map->system_map) {
2278 					vm_map_entry_allocate_object(entry);
2279 				}
2280 			}
2281 
2282 			entry->wired_count++;
2283 			entry = entry->next;
2284 		}
2285 
2286 		/*
2287 		 * Pass 2.
2288 		 */
2289 
2290 		/*
2291 		 * HACK HACK HACK HACK
2292 		 *
2293 		 * vm_fault_wire() temporarily unlocks the map to avoid
2294 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2295 		 * call should protect us from changes while the map is
2296 		 * unlocked.  T
2297 		 *
2298 		 * NOTE: Previously this comment stated that clipping might
2299 		 *	 still occur while the entry is unlocked, but from
2300 		 *	 what I can tell it actually cannot.
2301 		 *
2302 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2303 		 *	 are still needed but we keep them in anyway.
2304 		 *
2305 		 * HACK HACK HACK HACK
2306 		 */
2307 
2308 		entry = start_entry;
2309 		while (entry != &map->header && entry->start < end) {
2310 			/*
2311 			 * If vm_fault_wire fails for any page we need to undo
2312 			 * what has been done.  We decrement the wiring count
2313 			 * for those pages which have not yet been wired (now)
2314 			 * and unwire those that have (later).
2315 			 */
2316 			vm_offset_t save_start = entry->start;
2317 			vm_offset_t save_end = entry->end;
2318 
2319 			if (entry->wired_count == 1)
2320 				rv = vm_fault_wire(map, entry, FALSE);
2321 			if (rv) {
2322 				CLIP_CHECK_BACK(entry, save_start);
2323 				for (;;) {
2324 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2325 					entry->wired_count = 0;
2326 					if (entry->end == save_end)
2327 						break;
2328 					entry = entry->next;
2329 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2330 				}
2331 				end = save_start;
2332 				break;
2333 			}
2334 			CLIP_CHECK_FWD(entry, save_end);
2335 			entry = entry->next;
2336 		}
2337 
2338 		/*
2339 		 * If a failure occured undo everything by falling through
2340 		 * to the unwiring code.  'end' has already been adjusted
2341 		 * appropriately.
2342 		 */
2343 		if (rv)
2344 			kmflags |= KM_PAGEABLE;
2345 
2346 		/*
2347 		 * start_entry is still IN_TRANSITION but may have been
2348 		 * clipped since vm_fault_wire() unlocks and relocks the
2349 		 * map.  No matter how clipped it has gotten there should
2350 		 * be a fragment that is on our start boundary.
2351 		 */
2352 		CLIP_CHECK_BACK(start_entry, start);
2353 	}
2354 
2355 	if (kmflags & KM_PAGEABLE) {
2356 		/*
2357 		 * This is the unwiring case.  We must first ensure that the
2358 		 * range to be unwired is really wired down.  We know there
2359 		 * are no holes.
2360 		 */
2361 		entry = start_entry;
2362 		while ((entry != &map->header) && (entry->start < end)) {
2363 			if (entry->wired_count == 0) {
2364 				rv = KERN_INVALID_ARGUMENT;
2365 				goto done;
2366 			}
2367 			entry = entry->next;
2368 		}
2369 
2370 		/*
2371 		 * Now decrement the wiring count for each region. If a region
2372 		 * becomes completely unwired, unwire its physical pages and
2373 		 * mappings.
2374 		 */
2375 		entry = start_entry;
2376 		while ((entry != &map->header) && (entry->start < end)) {
2377 			entry->wired_count--;
2378 			if (entry->wired_count == 0)
2379 				vm_fault_unwire(map, entry);
2380 			entry = entry->next;
2381 		}
2382 	}
2383 done:
2384 	vm_map_unclip_range(map, start_entry, start, real_end,
2385 			    &count, MAP_CLIP_NO_HOLES);
2386 	map->timestamp++;
2387 	vm_map_unlock(map);
2388 failure:
2389 	if (kmflags & KM_KRESERVE)
2390 		vm_map_entry_krelease(count);
2391 	else
2392 		vm_map_entry_release(count);
2393 	return (rv);
2394 }
2395 
2396 /*
2397  * Mark a newly allocated address range as wired but do not fault in
2398  * the pages.  The caller is expected to load the pages into the object.
2399  *
2400  * The map must be locked on entry and will remain locked on return.
2401  * No other requirements.
2402  */
2403 void
2404 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2405 		       int *countp)
2406 {
2407 	vm_map_entry_t scan;
2408 	vm_map_entry_t entry;
2409 
2410 	entry = vm_map_clip_range(map, addr, addr + size,
2411 				  countp, MAP_CLIP_NO_HOLES);
2412 	for (scan = entry;
2413 	     scan != &map->header && scan->start < addr + size;
2414 	     scan = scan->next) {
2415 	    KKASSERT(entry->wired_count == 0);
2416 	    entry->wired_count = 1;
2417 	}
2418 	vm_map_unclip_range(map, entry, addr, addr + size,
2419 			    countp, MAP_CLIP_NO_HOLES);
2420 }
2421 
2422 /*
2423  * Push any dirty cached pages in the address range to their pager.
2424  * If syncio is TRUE, dirty pages are written synchronously.
2425  * If invalidate is TRUE, any cached pages are freed as well.
2426  *
2427  * This routine is called by sys_msync()
2428  *
2429  * Returns an error if any part of the specified range is not mapped.
2430  *
2431  * No requirements.
2432  */
2433 int
2434 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2435 	     boolean_t syncio, boolean_t invalidate)
2436 {
2437 	vm_map_entry_t current;
2438 	vm_map_entry_t entry;
2439 	vm_size_t size;
2440 	vm_object_t object;
2441 	vm_ooffset_t offset;
2442 
2443 	vm_map_lock_read(map);
2444 	VM_MAP_RANGE_CHECK(map, start, end);
2445 	if (!vm_map_lookup_entry(map, start, &entry)) {
2446 		vm_map_unlock_read(map);
2447 		return (KERN_INVALID_ADDRESS);
2448 	}
2449 	/*
2450 	 * Make a first pass to check for holes.
2451 	 */
2452 	for (current = entry; current->start < end; current = current->next) {
2453 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2454 			vm_map_unlock_read(map);
2455 			return (KERN_INVALID_ARGUMENT);
2456 		}
2457 		if (end > current->end &&
2458 		    (current->next == &map->header ||
2459 			current->end != current->next->start)) {
2460 			vm_map_unlock_read(map);
2461 			return (KERN_INVALID_ADDRESS);
2462 		}
2463 	}
2464 
2465 	if (invalidate)
2466 		pmap_remove(vm_map_pmap(map), start, end);
2467 
2468 	/*
2469 	 * Make a second pass, cleaning/uncaching pages from the indicated
2470 	 * objects as we go.
2471 	 *
2472 	 * Hold vm_token to avoid blocking in vm_object_reference()
2473 	 */
2474 	lwkt_gettoken(&vm_token);
2475 	lwkt_gettoken(&vmobj_token);
2476 
2477 	for (current = entry; current->start < end; current = current->next) {
2478 		offset = current->offset + (start - current->start);
2479 		size = (end <= current->end ? end : current->end) - start;
2480 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2481 			vm_map_t smap;
2482 			vm_map_entry_t tentry;
2483 			vm_size_t tsize;
2484 
2485 			smap = current->object.sub_map;
2486 			vm_map_lock_read(smap);
2487 			vm_map_lookup_entry(smap, offset, &tentry);
2488 			tsize = tentry->end - offset;
2489 			if (tsize < size)
2490 				size = tsize;
2491 			object = tentry->object.vm_object;
2492 			offset = tentry->offset + (offset - tentry->start);
2493 			vm_map_unlock_read(smap);
2494 		} else {
2495 			object = current->object.vm_object;
2496 		}
2497 		/*
2498 		 * Note that there is absolutely no sense in writing out
2499 		 * anonymous objects, so we track down the vnode object
2500 		 * to write out.
2501 		 * We invalidate (remove) all pages from the address space
2502 		 * anyway, for semantic correctness.
2503 		 *
2504 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2505 		 * may start out with a NULL object.
2506 		 */
2507 		while (object && object->backing_object) {
2508 			offset += object->backing_object_offset;
2509 			object = object->backing_object;
2510 			if (object->size < OFF_TO_IDX( offset + size))
2511 				size = IDX_TO_OFF(object->size) - offset;
2512 		}
2513 		if (object && (object->type == OBJT_VNODE) &&
2514 		    (current->protection & VM_PROT_WRITE) &&
2515 		    (object->flags & OBJ_NOMSYNC) == 0) {
2516 			/*
2517 			 * Flush pages if writing is allowed, invalidate them
2518 			 * if invalidation requested.  Pages undergoing I/O
2519 			 * will be ignored by vm_object_page_remove().
2520 			 *
2521 			 * We cannot lock the vnode and then wait for paging
2522 			 * to complete without deadlocking against vm_fault.
2523 			 * Instead we simply call vm_object_page_remove() and
2524 			 * allow it to block internally on a page-by-page
2525 			 * basis when it encounters pages undergoing async
2526 			 * I/O.
2527 			 */
2528 			int flags;
2529 
2530 			vm_object_reference_locked(object);
2531 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2532 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2533 			flags |= invalidate ? OBJPC_INVAL : 0;
2534 
2535 			/*
2536 			 * When operating on a virtual page table just
2537 			 * flush the whole object.  XXX we probably ought
2538 			 * to
2539 			 */
2540 			switch(current->maptype) {
2541 			case VM_MAPTYPE_NORMAL:
2542 				vm_object_page_clean(object,
2543 				    OFF_TO_IDX(offset),
2544 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2545 				    flags);
2546 				break;
2547 			case VM_MAPTYPE_VPAGETABLE:
2548 				vm_object_page_clean(object, 0, 0, flags);
2549 				break;
2550 			}
2551 			vn_unlock(((struct vnode *)object->handle));
2552 			vm_object_deallocate_locked(object);
2553 		}
2554 		if (object && invalidate &&
2555 		   ((object->type == OBJT_VNODE) ||
2556 		    (object->type == OBJT_DEVICE))) {
2557 			int clean_only =
2558 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2559 			vm_object_reference_locked(object);
2560 			switch(current->maptype) {
2561 			case VM_MAPTYPE_NORMAL:
2562 				vm_object_page_remove(object,
2563 				    OFF_TO_IDX(offset),
2564 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2565 				    clean_only);
2566 				break;
2567 			case VM_MAPTYPE_VPAGETABLE:
2568 				vm_object_page_remove(object, 0, 0, clean_only);
2569 				break;
2570 			}
2571 			vm_object_deallocate_locked(object);
2572 		}
2573 		start += size;
2574 	}
2575 
2576 	lwkt_reltoken(&vmobj_token);
2577 	lwkt_reltoken(&vm_token);
2578 	vm_map_unlock_read(map);
2579 
2580 	return (KERN_SUCCESS);
2581 }
2582 
2583 /*
2584  * Make the region specified by this entry pageable.
2585  *
2586  * The vm_map must be exclusively locked.
2587  */
2588 static void
2589 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2590 {
2591 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2592 	entry->wired_count = 0;
2593 	vm_fault_unwire(map, entry);
2594 }
2595 
2596 /*
2597  * Deallocate the given entry from the target map.
2598  *
2599  * The vm_map must be exclusively locked.
2600  */
2601 static void
2602 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2603 {
2604 	vm_map_entry_unlink(map, entry);
2605 	map->size -= entry->end - entry->start;
2606 
2607 	switch(entry->maptype) {
2608 	case VM_MAPTYPE_NORMAL:
2609 	case VM_MAPTYPE_VPAGETABLE:
2610 		vm_object_deallocate(entry->object.vm_object);
2611 		break;
2612 	default:
2613 		break;
2614 	}
2615 
2616 	vm_map_entry_dispose(map, entry, countp);
2617 }
2618 
2619 /*
2620  * Deallocates the given address range from the target map.
2621  *
2622  * The vm_map must be exclusively locked.
2623  */
2624 int
2625 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2626 {
2627 	vm_object_t object;
2628 	vm_map_entry_t entry;
2629 	vm_map_entry_t first_entry;
2630 
2631 	ASSERT_VM_MAP_LOCKED(map);
2632 again:
2633 	/*
2634 	 * Find the start of the region, and clip it.  Set entry to point
2635 	 * at the first record containing the requested address or, if no
2636 	 * such record exists, the next record with a greater address.  The
2637 	 * loop will run from this point until a record beyond the termination
2638 	 * address is encountered.
2639 	 *
2640 	 * map->hint must be adjusted to not point to anything we delete,
2641 	 * so set it to the entry prior to the one being deleted.
2642 	 *
2643 	 * GGG see other GGG comment.
2644 	 */
2645 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2646 		entry = first_entry;
2647 		vm_map_clip_start(map, entry, start, countp);
2648 		map->hint = entry->prev;	/* possible problem XXX */
2649 	} else {
2650 		map->hint = first_entry;	/* possible problem XXX */
2651 		entry = first_entry->next;
2652 	}
2653 
2654 	/*
2655 	 * If a hole opens up prior to the current first_free then
2656 	 * adjust first_free.  As with map->hint, map->first_free
2657 	 * cannot be left set to anything we might delete.
2658 	 */
2659 	if (entry == &map->header) {
2660 		map->first_free = &map->header;
2661 	} else if (map->first_free->start >= start) {
2662 		map->first_free = entry->prev;
2663 	}
2664 
2665 	/*
2666 	 * Step through all entries in this region
2667 	 */
2668 	while ((entry != &map->header) && (entry->start < end)) {
2669 		vm_map_entry_t next;
2670 		vm_offset_t s, e;
2671 		vm_pindex_t offidxstart, offidxend, count;
2672 
2673 		/*
2674 		 * If we hit an in-transition entry we have to sleep and
2675 		 * retry.  It's easier (and not really slower) to just retry
2676 		 * since this case occurs so rarely and the hint is already
2677 		 * pointing at the right place.  We have to reset the
2678 		 * start offset so as not to accidently delete an entry
2679 		 * another process just created in vacated space.
2680 		 */
2681 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2682 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2683 			start = entry->start;
2684 			++mycpu->gd_cnt.v_intrans_coll;
2685 			++mycpu->gd_cnt.v_intrans_wait;
2686 			vm_map_transition_wait(map);
2687 			goto again;
2688 		}
2689 		vm_map_clip_end(map, entry, end, countp);
2690 
2691 		s = entry->start;
2692 		e = entry->end;
2693 		next = entry->next;
2694 
2695 		offidxstart = OFF_TO_IDX(entry->offset);
2696 		count = OFF_TO_IDX(e - s);
2697 		object = entry->object.vm_object;
2698 
2699 		/*
2700 		 * Unwire before removing addresses from the pmap; otherwise,
2701 		 * unwiring will put the entries back in the pmap.
2702 		 */
2703 		if (entry->wired_count != 0)
2704 			vm_map_entry_unwire(map, entry);
2705 
2706 		offidxend = offidxstart + count;
2707 
2708 		/*
2709 		 * Hold vm_token when manipulating vm_objects,
2710 		 *
2711 		 * Hold vmobj_token when potentially adding or removing
2712 		 * objects (collapse requires both).
2713 		 */
2714 		lwkt_gettoken(&vm_token);
2715 		lwkt_gettoken(&vmobj_token);
2716 
2717 		if (object == &kernel_object) {
2718 			vm_object_page_remove(object, offidxstart,
2719 					      offidxend, FALSE);
2720 		} else {
2721 			pmap_remove(map->pmap, s, e);
2722 
2723 			if (object != NULL &&
2724 			    object->ref_count != 1 &&
2725 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2726 			     OBJ_ONEMAPPING &&
2727 			    (object->type == OBJT_DEFAULT ||
2728 			     object->type == OBJT_SWAP)) {
2729 				vm_object_collapse(object);
2730 				vm_object_page_remove(object, offidxstart,
2731 						      offidxend, FALSE);
2732 				if (object->type == OBJT_SWAP) {
2733 					swap_pager_freespace(object,
2734 							     offidxstart,
2735 							     count);
2736 				}
2737 				if (offidxend >= object->size &&
2738 				    offidxstart < object->size) {
2739 					object->size = offidxstart;
2740 				}
2741 			}
2742 		}
2743 		lwkt_reltoken(&vmobj_token);
2744 		lwkt_reltoken(&vm_token);
2745 
2746 		/*
2747 		 * Delete the entry (which may delete the object) only after
2748 		 * removing all pmap entries pointing to its pages.
2749 		 * (Otherwise, its page frames may be reallocated, and any
2750 		 * modify bits will be set in the wrong object!)
2751 		 */
2752 		vm_map_entry_delete(map, entry, countp);
2753 		entry = next;
2754 	}
2755 	return (KERN_SUCCESS);
2756 }
2757 
2758 /*
2759  * Remove the given address range from the target map.
2760  * This is the exported form of vm_map_delete.
2761  *
2762  * No requirements.
2763  */
2764 int
2765 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2766 {
2767 	int result;
2768 	int count;
2769 
2770 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2771 	vm_map_lock(map);
2772 	VM_MAP_RANGE_CHECK(map, start, end);
2773 	result = vm_map_delete(map, start, end, &count);
2774 	vm_map_unlock(map);
2775 	vm_map_entry_release(count);
2776 
2777 	return (result);
2778 }
2779 
2780 /*
2781  * Assert that the target map allows the specified privilege on the
2782  * entire address region given.  The entire region must be allocated.
2783  *
2784  * The caller must specify whether the vm_map is already locked or not.
2785  */
2786 boolean_t
2787 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2788 			vm_prot_t protection, boolean_t have_lock)
2789 {
2790 	vm_map_entry_t entry;
2791 	vm_map_entry_t tmp_entry;
2792 	boolean_t result;
2793 
2794 	if (have_lock == FALSE)
2795 		vm_map_lock_read(map);
2796 
2797 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2798 		if (have_lock == FALSE)
2799 			vm_map_unlock_read(map);
2800 		return (FALSE);
2801 	}
2802 	entry = tmp_entry;
2803 
2804 	result = TRUE;
2805 	while (start < end) {
2806 		if (entry == &map->header) {
2807 			result = FALSE;
2808 			break;
2809 		}
2810 		/*
2811 		 * No holes allowed!
2812 		 */
2813 
2814 		if (start < entry->start) {
2815 			result = FALSE;
2816 			break;
2817 		}
2818 		/*
2819 		 * Check protection associated with entry.
2820 		 */
2821 
2822 		if ((entry->protection & protection) != protection) {
2823 			result = FALSE;
2824 			break;
2825 		}
2826 		/* go to next entry */
2827 
2828 		start = entry->end;
2829 		entry = entry->next;
2830 	}
2831 	if (have_lock == FALSE)
2832 		vm_map_unlock_read(map);
2833 	return (result);
2834 }
2835 
2836 /*
2837  * Split the pages in a map entry into a new object.  This affords
2838  * easier removal of unused pages, and keeps object inheritance from
2839  * being a negative impact on memory usage.
2840  *
2841  * The vm_map must be exclusively locked.
2842  */
2843 static void
2844 vm_map_split(vm_map_entry_t entry)
2845 {
2846 	vm_page_t m;
2847 	vm_object_t orig_object, new_object, source;
2848 	vm_offset_t s, e;
2849 	vm_pindex_t offidxstart, offidxend, idx;
2850 	vm_size_t size;
2851 	vm_ooffset_t offset;
2852 
2853 	orig_object = entry->object.vm_object;
2854 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2855 		return;
2856 	if (orig_object->ref_count <= 1)
2857 		return;
2858 
2859 	offset = entry->offset;
2860 	s = entry->start;
2861 	e = entry->end;
2862 
2863 	offidxstart = OFF_TO_IDX(offset);
2864 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2865 	size = offidxend - offidxstart;
2866 
2867 	switch(orig_object->type) {
2868 	case OBJT_DEFAULT:
2869 		new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2870 						 VM_PROT_ALL, 0);
2871 		break;
2872 	case OBJT_SWAP:
2873 		new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2874 					      VM_PROT_ALL, 0);
2875 		break;
2876 	default:
2877 		/* not reached */
2878 		new_object = NULL;
2879 		KKASSERT(0);
2880 	}
2881 	if (new_object == NULL)
2882 		return;
2883 
2884 	/*
2885 	 * vm_token required when manipulating vm_objects.
2886 	 */
2887 	lwkt_gettoken(&vm_token);
2888 	lwkt_gettoken(&vmobj_token);
2889 
2890 	source = orig_object->backing_object;
2891 	if (source != NULL) {
2892 		/* Referenced by new_object */
2893 		vm_object_reference_locked(source);
2894 		LIST_INSERT_HEAD(&source->shadow_head,
2895 				 new_object, shadow_list);
2896 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2897 		new_object->backing_object_offset =
2898 			orig_object->backing_object_offset +
2899 			IDX_TO_OFF(offidxstart);
2900 		new_object->backing_object = source;
2901 		source->shadow_count++;
2902 		source->generation++;
2903 	}
2904 
2905 	for (idx = 0; idx < size; idx++) {
2906 		vm_page_t m;
2907 
2908 	retry:
2909 		m = vm_page_lookup(orig_object, offidxstart + idx);
2910 		if (m == NULL)
2911 			continue;
2912 
2913 		/*
2914 		 * We must wait for pending I/O to complete before we can
2915 		 * rename the page.
2916 		 *
2917 		 * We do not have to VM_PROT_NONE the page as mappings should
2918 		 * not be changed by this operation.
2919 		 */
2920 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2921 			goto retry;
2922 		vm_page_busy(m);
2923 		vm_page_rename(m, new_object, idx);
2924 		/* page automatically made dirty by rename and cache handled */
2925 		vm_page_busy(m);
2926 	}
2927 
2928 	if (orig_object->type == OBJT_SWAP) {
2929 		vm_object_pip_add(orig_object, 1);
2930 		/*
2931 		 * copy orig_object pages into new_object
2932 		 * and destroy unneeded pages in
2933 		 * shadow object.
2934 		 */
2935 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2936 		vm_object_pip_wakeup(orig_object);
2937 	}
2938 
2939 	/*
2940 	 * Wakeup the pages we played with.  No spl protection is needed
2941 	 * for a simple wakeup.
2942 	 */
2943 	for (idx = 0; idx < size; idx++) {
2944 		m = vm_page_lookup(new_object, idx);
2945 		if (m)
2946 			vm_page_wakeup(m);
2947 	}
2948 
2949 	entry->object.vm_object = new_object;
2950 	entry->offset = 0LL;
2951 	vm_object_deallocate_locked(orig_object);
2952 	lwkt_reltoken(&vmobj_token);
2953 	lwkt_reltoken(&vm_token);
2954 }
2955 
2956 /*
2957  * Copies the contents of the source entry to the destination
2958  * entry.  The entries *must* be aligned properly.
2959  *
2960  * The vm_map must be exclusively locked.
2961  * vm_token must be held
2962  */
2963 static void
2964 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2965 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2966 {
2967 	vm_object_t src_object;
2968 
2969 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2970 		return;
2971 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2972 		return;
2973 
2974 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
2975 	lwkt_gettoken(&vmobj_token);		/* required for collapse */
2976 
2977 	if (src_entry->wired_count == 0) {
2978 		/*
2979 		 * If the source entry is marked needs_copy, it is already
2980 		 * write-protected.
2981 		 */
2982 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2983 			pmap_protect(src_map->pmap,
2984 			    src_entry->start,
2985 			    src_entry->end,
2986 			    src_entry->protection & ~VM_PROT_WRITE);
2987 		}
2988 
2989 		/*
2990 		 * Make a copy of the object.
2991 		 */
2992 		if ((src_object = src_entry->object.vm_object) != NULL) {
2993 			if ((src_object->handle == NULL) &&
2994 				(src_object->type == OBJT_DEFAULT ||
2995 				 src_object->type == OBJT_SWAP)) {
2996 				vm_object_collapse(src_object);
2997 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2998 					vm_map_split(src_entry);
2999 					src_object = src_entry->object.vm_object;
3000 				}
3001 			}
3002 
3003 			vm_object_reference_locked(src_object);
3004 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3005 			dst_entry->object.vm_object = src_object;
3006 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3007 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3008 			dst_entry->offset = src_entry->offset;
3009 		} else {
3010 			dst_entry->object.vm_object = NULL;
3011 			dst_entry->offset = 0;
3012 		}
3013 
3014 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3015 		    dst_entry->end - dst_entry->start, src_entry->start);
3016 	} else {
3017 		/*
3018 		 * Of course, wired down pages can't be set copy-on-write.
3019 		 * Cause wired pages to be copied into the new map by
3020 		 * simulating faults (the new pages are pageable)
3021 		 */
3022 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3023 	}
3024 	lwkt_reltoken(&vmobj_token);
3025 }
3026 
3027 /*
3028  * vmspace_fork:
3029  * Create a new process vmspace structure and vm_map
3030  * based on those of an existing process.  The new map
3031  * is based on the old map, according to the inheritance
3032  * values on the regions in that map.
3033  *
3034  * The source map must not be locked.
3035  * No requirements.
3036  */
3037 struct vmspace *
3038 vmspace_fork(struct vmspace *vm1)
3039 {
3040 	struct vmspace *vm2;
3041 	vm_map_t old_map = &vm1->vm_map;
3042 	vm_map_t new_map;
3043 	vm_map_entry_t old_entry;
3044 	vm_map_entry_t new_entry;
3045 	vm_object_t object;
3046 	int count;
3047 
3048 	lwkt_gettoken(&vm_token);
3049 	lwkt_gettoken(&vmspace_token);
3050 	lwkt_gettoken(&vmobj_token);
3051 	vm_map_lock(old_map);
3052 	old_map->infork = 1;
3053 
3054 	/*
3055 	 * XXX Note: upcalls are not copied.
3056 	 */
3057 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3058 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3059 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3060 	new_map = &vm2->vm_map;	/* XXX */
3061 	new_map->timestamp = 1;
3062 
3063 	vm_map_lock(new_map);
3064 
3065 	count = 0;
3066 	old_entry = old_map->header.next;
3067 	while (old_entry != &old_map->header) {
3068 		++count;
3069 		old_entry = old_entry->next;
3070 	}
3071 
3072 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3073 
3074 	old_entry = old_map->header.next;
3075 	while (old_entry != &old_map->header) {
3076 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3077 			panic("vm_map_fork: encountered a submap");
3078 
3079 		switch (old_entry->inheritance) {
3080 		case VM_INHERIT_NONE:
3081 			break;
3082 		case VM_INHERIT_SHARE:
3083 			/*
3084 			 * Clone the entry, creating the shared object if
3085 			 * necessary.
3086 			 */
3087 			object = old_entry->object.vm_object;
3088 			if (object == NULL) {
3089 				vm_map_entry_allocate_object(old_entry);
3090 				object = old_entry->object.vm_object;
3091 			}
3092 
3093 			/*
3094 			 * Add the reference before calling vm_map_entry_shadow
3095 			 * to insure that a shadow object is created.
3096 			 */
3097 			vm_object_reference_locked(object);
3098 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3099 				vm_map_entry_shadow(old_entry);
3100 				/* Transfer the second reference too. */
3101 				vm_object_reference_locked(
3102 				    old_entry->object.vm_object);
3103 				vm_object_deallocate_locked(object);
3104 				object = old_entry->object.vm_object;
3105 			}
3106 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3107 
3108 			/*
3109 			 * Clone the entry, referencing the shared object.
3110 			 */
3111 			new_entry = vm_map_entry_create(new_map, &count);
3112 			*new_entry = *old_entry;
3113 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3114 			new_entry->wired_count = 0;
3115 
3116 			/*
3117 			 * Insert the entry into the new map -- we know we're
3118 			 * inserting at the end of the new map.
3119 			 */
3120 
3121 			vm_map_entry_link(new_map, new_map->header.prev,
3122 					  new_entry);
3123 
3124 			/*
3125 			 * Update the physical map
3126 			 */
3127 			pmap_copy(new_map->pmap, old_map->pmap,
3128 			    new_entry->start,
3129 			    (old_entry->end - old_entry->start),
3130 			    old_entry->start);
3131 			break;
3132 		case VM_INHERIT_COPY:
3133 			/*
3134 			 * Clone the entry and link into the map.
3135 			 */
3136 			new_entry = vm_map_entry_create(new_map, &count);
3137 			*new_entry = *old_entry;
3138 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3139 			new_entry->wired_count = 0;
3140 			new_entry->object.vm_object = NULL;
3141 			vm_map_entry_link(new_map, new_map->header.prev,
3142 					  new_entry);
3143 			vm_map_copy_entry(old_map, new_map, old_entry,
3144 					  new_entry);
3145 			break;
3146 		}
3147 		old_entry = old_entry->next;
3148 	}
3149 
3150 	new_map->size = old_map->size;
3151 	old_map->infork = 0;
3152 	vm_map_unlock(old_map);
3153 	vm_map_unlock(new_map);
3154 	vm_map_entry_release(count);
3155 
3156 	lwkt_reltoken(&vmobj_token);
3157 	lwkt_reltoken(&vmspace_token);
3158 	lwkt_reltoken(&vm_token);
3159 
3160 	return (vm2);
3161 }
3162 
3163 /*
3164  * Create an auto-grow stack entry
3165  *
3166  * No requirements.
3167  */
3168 int
3169 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3170 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3171 {
3172 	vm_map_entry_t	prev_entry;
3173 	vm_map_entry_t	new_stack_entry;
3174 	vm_size_t	init_ssize;
3175 	int		rv;
3176 	int		count;
3177 	vm_offset_t	tmpaddr;
3178 
3179 	cow |= MAP_IS_STACK;
3180 
3181 	if (max_ssize < sgrowsiz)
3182 		init_ssize = max_ssize;
3183 	else
3184 		init_ssize = sgrowsiz;
3185 
3186 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3187 	vm_map_lock(map);
3188 
3189 	/*
3190 	 * Find space for the mapping
3191 	 */
3192 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3193 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3194 				     flags, &tmpaddr)) {
3195 			vm_map_unlock(map);
3196 			vm_map_entry_release(count);
3197 			return (KERN_NO_SPACE);
3198 		}
3199 		addrbos = tmpaddr;
3200 	}
3201 
3202 	/* If addr is already mapped, no go */
3203 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3204 		vm_map_unlock(map);
3205 		vm_map_entry_release(count);
3206 		return (KERN_NO_SPACE);
3207 	}
3208 
3209 #if 0
3210 	/* XXX already handled by kern_mmap() */
3211 	/* If we would blow our VMEM resource limit, no go */
3212 	if (map->size + init_ssize >
3213 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3214 		vm_map_unlock(map);
3215 		vm_map_entry_release(count);
3216 		return (KERN_NO_SPACE);
3217 	}
3218 #endif
3219 
3220 	/*
3221 	 * If we can't accomodate max_ssize in the current mapping,
3222 	 * no go.  However, we need to be aware that subsequent user
3223 	 * mappings might map into the space we have reserved for
3224 	 * stack, and currently this space is not protected.
3225 	 *
3226 	 * Hopefully we will at least detect this condition
3227 	 * when we try to grow the stack.
3228 	 */
3229 	if ((prev_entry->next != &map->header) &&
3230 	    (prev_entry->next->start < addrbos + max_ssize)) {
3231 		vm_map_unlock(map);
3232 		vm_map_entry_release(count);
3233 		return (KERN_NO_SPACE);
3234 	}
3235 
3236 	/*
3237 	 * We initially map a stack of only init_ssize.  We will
3238 	 * grow as needed later.  Since this is to be a grow
3239 	 * down stack, we map at the top of the range.
3240 	 *
3241 	 * Note: we would normally expect prot and max to be
3242 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3243 	 * eliminate these as input parameters, and just
3244 	 * pass these values here in the insert call.
3245 	 */
3246 	rv = vm_map_insert(map, &count,
3247 			   NULL, 0, addrbos + max_ssize - init_ssize,
3248 	                   addrbos + max_ssize,
3249 			   VM_MAPTYPE_NORMAL,
3250 			   prot, max,
3251 			   cow);
3252 
3253 	/* Now set the avail_ssize amount */
3254 	if (rv == KERN_SUCCESS) {
3255 		if (prev_entry != &map->header)
3256 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3257 		new_stack_entry = prev_entry->next;
3258 		if (new_stack_entry->end   != addrbos + max_ssize ||
3259 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3260 			panic ("Bad entry start/end for new stack entry");
3261 		else
3262 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3263 	}
3264 
3265 	vm_map_unlock(map);
3266 	vm_map_entry_release(count);
3267 	return (rv);
3268 }
3269 
3270 /*
3271  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3272  * desired address is already mapped, or if we successfully grow
3273  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3274  * stack range (this is strange, but preserves compatibility with
3275  * the grow function in vm_machdep.c).
3276  *
3277  * No requirements.
3278  */
3279 int
3280 vm_map_growstack (struct proc *p, vm_offset_t addr)
3281 {
3282 	vm_map_entry_t prev_entry;
3283 	vm_map_entry_t stack_entry;
3284 	vm_map_entry_t new_stack_entry;
3285 	struct vmspace *vm = p->p_vmspace;
3286 	vm_map_t map = &vm->vm_map;
3287 	vm_offset_t    end;
3288 	int grow_amount;
3289 	int rv = KERN_SUCCESS;
3290 	int is_procstack;
3291 	int use_read_lock = 1;
3292 	int count;
3293 
3294 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3295 Retry:
3296 	if (use_read_lock)
3297 		vm_map_lock_read(map);
3298 	else
3299 		vm_map_lock(map);
3300 
3301 	/* If addr is already in the entry range, no need to grow.*/
3302 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3303 		goto done;
3304 
3305 	if ((stack_entry = prev_entry->next) == &map->header)
3306 		goto done;
3307 	if (prev_entry == &map->header)
3308 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3309 	else
3310 		end = prev_entry->end;
3311 
3312 	/*
3313 	 * This next test mimics the old grow function in vm_machdep.c.
3314 	 * It really doesn't quite make sense, but we do it anyway
3315 	 * for compatibility.
3316 	 *
3317 	 * If not growable stack, return success.  This signals the
3318 	 * caller to proceed as he would normally with normal vm.
3319 	 */
3320 	if (stack_entry->aux.avail_ssize < 1 ||
3321 	    addr >= stack_entry->start ||
3322 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3323 		goto done;
3324 	}
3325 
3326 	/* Find the minimum grow amount */
3327 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3328 	if (grow_amount > stack_entry->aux.avail_ssize) {
3329 		rv = KERN_NO_SPACE;
3330 		goto done;
3331 	}
3332 
3333 	/*
3334 	 * If there is no longer enough space between the entries
3335 	 * nogo, and adjust the available space.  Note: this
3336 	 * should only happen if the user has mapped into the
3337 	 * stack area after the stack was created, and is
3338 	 * probably an error.
3339 	 *
3340 	 * This also effectively destroys any guard page the user
3341 	 * might have intended by limiting the stack size.
3342 	 */
3343 	if (grow_amount > stack_entry->start - end) {
3344 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3345 			use_read_lock = 0;
3346 			goto Retry;
3347 		}
3348 		use_read_lock = 0;
3349 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3350 		rv = KERN_NO_SPACE;
3351 		goto done;
3352 	}
3353 
3354 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3355 
3356 	/* If this is the main process stack, see if we're over the
3357 	 * stack limit.
3358 	 */
3359 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3360 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3361 		rv = KERN_NO_SPACE;
3362 		goto done;
3363 	}
3364 
3365 	/* Round up the grow amount modulo SGROWSIZ */
3366 	grow_amount = roundup (grow_amount, sgrowsiz);
3367 	if (grow_amount > stack_entry->aux.avail_ssize) {
3368 		grow_amount = stack_entry->aux.avail_ssize;
3369 	}
3370 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3371 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3372 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3373 		              ctob(vm->vm_ssize);
3374 	}
3375 
3376 	/* If we would blow our VMEM resource limit, no go */
3377 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3378 		rv = KERN_NO_SPACE;
3379 		goto done;
3380 	}
3381 
3382 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3383 		use_read_lock = 0;
3384 		goto Retry;
3385 	}
3386 	use_read_lock = 0;
3387 
3388 	/* Get the preliminary new entry start value */
3389 	addr = stack_entry->start - grow_amount;
3390 
3391 	/* If this puts us into the previous entry, cut back our growth
3392 	 * to the available space.  Also, see the note above.
3393 	 */
3394 	if (addr < end) {
3395 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3396 		addr = end;
3397 	}
3398 
3399 	rv = vm_map_insert(map, &count,
3400 			   NULL, 0, addr, stack_entry->start,
3401 			   VM_MAPTYPE_NORMAL,
3402 			   VM_PROT_ALL, VM_PROT_ALL,
3403 			   0);
3404 
3405 	/* Adjust the available stack space by the amount we grew. */
3406 	if (rv == KERN_SUCCESS) {
3407 		if (prev_entry != &map->header)
3408 			vm_map_clip_end(map, prev_entry, addr, &count);
3409 		new_stack_entry = prev_entry->next;
3410 		if (new_stack_entry->end   != stack_entry->start  ||
3411 		    new_stack_entry->start != addr)
3412 			panic ("Bad stack grow start/end in new stack entry");
3413 		else {
3414 			new_stack_entry->aux.avail_ssize =
3415 				stack_entry->aux.avail_ssize -
3416 				(new_stack_entry->end - new_stack_entry->start);
3417 			if (is_procstack)
3418 				vm->vm_ssize += btoc(new_stack_entry->end -
3419 						     new_stack_entry->start);
3420 		}
3421 
3422 		if (map->flags & MAP_WIREFUTURE)
3423 			vm_map_unwire(map, new_stack_entry->start,
3424 				      new_stack_entry->end, FALSE);
3425 	}
3426 
3427 done:
3428 	if (use_read_lock)
3429 		vm_map_unlock_read(map);
3430 	else
3431 		vm_map_unlock(map);
3432 	vm_map_entry_release(count);
3433 	return (rv);
3434 }
3435 
3436 /*
3437  * Unshare the specified VM space for exec.  If other processes are
3438  * mapped to it, then create a new one.  The new vmspace is null.
3439  *
3440  * No requirements.
3441  */
3442 void
3443 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3444 {
3445 	struct vmspace *oldvmspace = p->p_vmspace;
3446 	struct vmspace *newvmspace;
3447 	vm_map_t map = &p->p_vmspace->vm_map;
3448 
3449 	/*
3450 	 * If we are execing a resident vmspace we fork it, otherwise
3451 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3452 	 * are not copied to the new vmspace.
3453 	 */
3454 	lwkt_gettoken(&vmspace_token);
3455 	if (vmcopy)  {
3456 		newvmspace = vmspace_fork(vmcopy);
3457 	} else {
3458 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3459 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3460 		      (caddr_t)&oldvmspace->vm_endcopy -
3461 		       (caddr_t)&oldvmspace->vm_startcopy);
3462 	}
3463 
3464 	/*
3465 	 * Finish initializing the vmspace before assigning it
3466 	 * to the process.  The vmspace will become the current vmspace
3467 	 * if p == curproc.
3468 	 */
3469 	pmap_pinit2(vmspace_pmap(newvmspace));
3470 	pmap_replacevm(p, newvmspace, 0);
3471 	sysref_put(&oldvmspace->vm_sysref);
3472 	lwkt_reltoken(&vmspace_token);
3473 }
3474 
3475 /*
3476  * Unshare the specified VM space for forcing COW.  This
3477  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3478  *
3479  * The exitingcnt test is not strictly necessary but has been
3480  * included for code sanity (to make the code a bit more deterministic).
3481  */
3482 void
3483 vmspace_unshare(struct proc *p)
3484 {
3485 	struct vmspace *oldvmspace = p->p_vmspace;
3486 	struct vmspace *newvmspace;
3487 
3488 	lwkt_gettoken(&vmspace_token);
3489 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3490 		return;
3491 	newvmspace = vmspace_fork(oldvmspace);
3492 	pmap_pinit2(vmspace_pmap(newvmspace));
3493 	pmap_replacevm(p, newvmspace, 0);
3494 	sysref_put(&oldvmspace->vm_sysref);
3495 	lwkt_reltoken(&vmspace_token);
3496 }
3497 
3498 /*
3499  * vm_map_hint: return the beginning of the best area suitable for
3500  * creating a new mapping with "prot" protection.
3501  *
3502  * No requirements.
3503  */
3504 vm_offset_t
3505 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3506 {
3507 	struct vmspace *vms = p->p_vmspace;
3508 
3509 	if (!randomize_mmap) {
3510 		/*
3511 		 * Set a reasonable start point for the hint if it was
3512 		 * not specified or if it falls within the heap space.
3513 		 * Hinted mmap()s do not allocate out of the heap space.
3514 		 */
3515 		if (addr == 0 ||
3516 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3517 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3518 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3519 		}
3520 
3521 		return addr;
3522 	}
3523 
3524 	if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3525 		return addr;
3526 
3527 #ifdef notyet
3528 #ifdef __i386__
3529 	/*
3530 	 * If executable skip first two pages, otherwise start
3531 	 * after data + heap region.
3532 	 */
3533 	if ((prot & VM_PROT_EXECUTE) &&
3534 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3535 		addr = (PAGE_SIZE * 2) +
3536 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3537 		return (round_page(addr));
3538 	}
3539 #endif /* __i386__ */
3540 #endif /* notyet */
3541 
3542 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3543 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3544 
3545 	return (round_page(addr));
3546 }
3547 
3548 /*
3549  * Finds the VM object, offset, and protection for a given virtual address
3550  * in the specified map, assuming a page fault of the type specified.
3551  *
3552  * Leaves the map in question locked for read; return values are guaranteed
3553  * until a vm_map_lookup_done call is performed.  Note that the map argument
3554  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3555  *
3556  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3557  * that fast.
3558  *
3559  * If a lookup is requested with "write protection" specified, the map may
3560  * be changed to perform virtual copying operations, although the data
3561  * referenced will remain the same.
3562  *
3563  * No requirements.
3564  */
3565 int
3566 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3567 	      vm_offset_t vaddr,
3568 	      vm_prot_t fault_typea,
3569 	      vm_map_entry_t *out_entry,	/* OUT */
3570 	      vm_object_t *object,		/* OUT */
3571 	      vm_pindex_t *pindex,		/* OUT */
3572 	      vm_prot_t *out_prot,		/* OUT */
3573 	      boolean_t *wired)			/* OUT */
3574 {
3575 	vm_map_entry_t entry;
3576 	vm_map_t map = *var_map;
3577 	vm_prot_t prot;
3578 	vm_prot_t fault_type = fault_typea;
3579 	int use_read_lock = 1;
3580 	int rv = KERN_SUCCESS;
3581 
3582 RetryLookup:
3583 	if (use_read_lock)
3584 		vm_map_lock_read(map);
3585 	else
3586 		vm_map_lock(map);
3587 
3588 	/*
3589 	 * If the map has an interesting hint, try it before calling full
3590 	 * blown lookup routine.
3591 	 */
3592 	entry = map->hint;
3593 	*out_entry = entry;
3594 
3595 	if ((entry == &map->header) ||
3596 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3597 		vm_map_entry_t tmp_entry;
3598 
3599 		/*
3600 		 * Entry was either not a valid hint, or the vaddr was not
3601 		 * contained in the entry, so do a full lookup.
3602 		 */
3603 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3604 			rv = KERN_INVALID_ADDRESS;
3605 			goto done;
3606 		}
3607 
3608 		entry = tmp_entry;
3609 		*out_entry = entry;
3610 	}
3611 
3612 	/*
3613 	 * Handle submaps.
3614 	 */
3615 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3616 		vm_map_t old_map = map;
3617 
3618 		*var_map = map = entry->object.sub_map;
3619 		if (use_read_lock)
3620 			vm_map_unlock_read(old_map);
3621 		else
3622 			vm_map_unlock(old_map);
3623 		use_read_lock = 1;
3624 		goto RetryLookup;
3625 	}
3626 
3627 	/*
3628 	 * Check whether this task is allowed to have this page.
3629 	 * Note the special case for MAP_ENTRY_COW
3630 	 * pages with an override.  This is to implement a forced
3631 	 * COW for debuggers.
3632 	 */
3633 
3634 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3635 		prot = entry->max_protection;
3636 	else
3637 		prot = entry->protection;
3638 
3639 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3640 	if ((fault_type & prot) != fault_type) {
3641 		rv = KERN_PROTECTION_FAILURE;
3642 		goto done;
3643 	}
3644 
3645 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3646 	    (entry->eflags & MAP_ENTRY_COW) &&
3647 	    (fault_type & VM_PROT_WRITE) &&
3648 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3649 		rv = KERN_PROTECTION_FAILURE;
3650 		goto done;
3651 	}
3652 
3653 	/*
3654 	 * If this page is not pageable, we have to get it for all possible
3655 	 * accesses.
3656 	 */
3657 	*wired = (entry->wired_count != 0);
3658 	if (*wired)
3659 		prot = fault_type = entry->protection;
3660 
3661 	/*
3662 	 * Virtual page tables may need to update the accessed (A) bit
3663 	 * in a page table entry.  Upgrade the fault to a write fault for
3664 	 * that case if the map will support it.  If the map does not support
3665 	 * it the page table entry simply will not be updated.
3666 	 */
3667 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3668 		if (prot & VM_PROT_WRITE)
3669 			fault_type |= VM_PROT_WRITE;
3670 	}
3671 
3672 	/*
3673 	 * If the entry was copy-on-write, we either ...
3674 	 */
3675 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3676 		/*
3677 		 * If we want to write the page, we may as well handle that
3678 		 * now since we've got the map locked.
3679 		 *
3680 		 * If we don't need to write the page, we just demote the
3681 		 * permissions allowed.
3682 		 */
3683 
3684 		if (fault_type & VM_PROT_WRITE) {
3685 			/*
3686 			 * Make a new object, and place it in the object
3687 			 * chain.  Note that no new references have appeared
3688 			 * -- one just moved from the map to the new
3689 			 * object.
3690 			 */
3691 
3692 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3693 				use_read_lock = 0;
3694 				goto RetryLookup;
3695 			}
3696 			use_read_lock = 0;
3697 
3698 			vm_map_entry_shadow(entry);
3699 		} else {
3700 			/*
3701 			 * We're attempting to read a copy-on-write page --
3702 			 * don't allow writes.
3703 			 */
3704 
3705 			prot &= ~VM_PROT_WRITE;
3706 		}
3707 	}
3708 
3709 	/*
3710 	 * Create an object if necessary.
3711 	 */
3712 	if (entry->object.vm_object == NULL &&
3713 	    !map->system_map) {
3714 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3715 			use_read_lock = 0;
3716 			goto RetryLookup;
3717 		}
3718 		use_read_lock = 0;
3719 		vm_map_entry_allocate_object(entry);
3720 	}
3721 
3722 	/*
3723 	 * Return the object/offset from this entry.  If the entry was
3724 	 * copy-on-write or empty, it has been fixed up.
3725 	 */
3726 
3727 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3728 	*object = entry->object.vm_object;
3729 
3730 	/*
3731 	 * Return whether this is the only map sharing this data.  On
3732 	 * success we return with a read lock held on the map.  On failure
3733 	 * we return with the map unlocked.
3734 	 */
3735 	*out_prot = prot;
3736 done:
3737 	if (rv == KERN_SUCCESS) {
3738 		if (use_read_lock == 0)
3739 			vm_map_lock_downgrade(map);
3740 	} else if (use_read_lock) {
3741 		vm_map_unlock_read(map);
3742 	} else {
3743 		vm_map_unlock(map);
3744 	}
3745 	return (rv);
3746 }
3747 
3748 /*
3749  * Releases locks acquired by a vm_map_lookup()
3750  * (according to the handle returned by that lookup).
3751  *
3752  * No other requirements.
3753  */
3754 void
3755 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3756 {
3757 	/*
3758 	 * Unlock the main-level map
3759 	 */
3760 	vm_map_unlock_read(map);
3761 	if (count)
3762 		vm_map_entry_release(count);
3763 }
3764 
3765 #include "opt_ddb.h"
3766 #ifdef DDB
3767 #include <sys/kernel.h>
3768 
3769 #include <ddb/ddb.h>
3770 
3771 /*
3772  * Debugging only
3773  */
3774 DB_SHOW_COMMAND(map, vm_map_print)
3775 {
3776 	static int nlines;
3777 	/* XXX convert args. */
3778 	vm_map_t map = (vm_map_t)addr;
3779 	boolean_t full = have_addr;
3780 
3781 	vm_map_entry_t entry;
3782 
3783 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3784 	    (void *)map,
3785 	    (void *)map->pmap, map->nentries, map->timestamp);
3786 	nlines++;
3787 
3788 	if (!full && db_indent)
3789 		return;
3790 
3791 	db_indent += 2;
3792 	for (entry = map->header.next; entry != &map->header;
3793 	    entry = entry->next) {
3794 		db_iprintf("map entry %p: start=%p, end=%p\n",
3795 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3796 		nlines++;
3797 		{
3798 			static char *inheritance_name[4] =
3799 			{"share", "copy", "none", "donate_copy"};
3800 
3801 			db_iprintf(" prot=%x/%x/%s",
3802 			    entry->protection,
3803 			    entry->max_protection,
3804 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3805 			if (entry->wired_count != 0)
3806 				db_printf(", wired");
3807 		}
3808 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3809 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3810 			db_printf(", share=%p, offset=0x%lx\n",
3811 			    (void *)entry->object.sub_map,
3812 			    (long)entry->offset);
3813 			nlines++;
3814 			if ((entry->prev == &map->header) ||
3815 			    (entry->prev->object.sub_map !=
3816 				entry->object.sub_map)) {
3817 				db_indent += 2;
3818 				vm_map_print((db_expr_t)(intptr_t)
3819 					     entry->object.sub_map,
3820 					     full, 0, NULL);
3821 				db_indent -= 2;
3822 			}
3823 		} else {
3824 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3825 			db_printf(", object=%p, offset=0x%lx",
3826 			    (void *)entry->object.vm_object,
3827 			    (long)entry->offset);
3828 			if (entry->eflags & MAP_ENTRY_COW)
3829 				db_printf(", copy (%s)",
3830 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3831 			db_printf("\n");
3832 			nlines++;
3833 
3834 			if ((entry->prev == &map->header) ||
3835 			    (entry->prev->object.vm_object !=
3836 				entry->object.vm_object)) {
3837 				db_indent += 2;
3838 				vm_object_print((db_expr_t)(intptr_t)
3839 						entry->object.vm_object,
3840 						full, 0, NULL);
3841 				nlines += 4;
3842 				db_indent -= 2;
3843 			}
3844 		}
3845 	}
3846 	db_indent -= 2;
3847 	if (db_indent == 0)
3848 		nlines = 0;
3849 }
3850 
3851 /*
3852  * Debugging only
3853  */
3854 DB_SHOW_COMMAND(procvm, procvm)
3855 {
3856 	struct proc *p;
3857 
3858 	if (have_addr) {
3859 		p = (struct proc *) addr;
3860 	} else {
3861 		p = curproc;
3862 	}
3863 
3864 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3865 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3866 	    (void *)vmspace_pmap(p->p_vmspace));
3867 
3868 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3869 }
3870 
3871 #endif /* DDB */
3872