1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 * 66 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 67 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $ 68 */ 69 70 /* 71 * Virtual memory mapping module. 72 */ 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/kernel.h> 77 #include <sys/proc.h> 78 #include <sys/serialize.h> 79 #include <sys/lock.h> 80 #include <sys/vmmeter.h> 81 #include <sys/mman.h> 82 #include <sys/vnode.h> 83 #include <sys/resourcevar.h> 84 #include <sys/shm.h> 85 #include <sys/tree.h> 86 #include <sys/malloc.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/swap_pager.h> 98 #include <vm/vm_zone.h> 99 100 #include <sys/thread2.h> 101 #include <sys/sysref2.h> 102 #include <sys/random.h> 103 #include <sys/sysctl.h> 104 105 /* 106 * Virtual memory maps provide for the mapping, protection, and sharing 107 * of virtual memory objects. In addition, this module provides for an 108 * efficient virtual copy of memory from one map to another. 109 * 110 * Synchronization is required prior to most operations. 111 * 112 * Maps consist of an ordered doubly-linked list of simple entries. 113 * A hint and a RB tree is used to speed-up lookups. 114 * 115 * Callers looking to modify maps specify start/end addresses which cause 116 * the related map entry to be clipped if necessary, and then later 117 * recombined if the pieces remained compatible. 118 * 119 * Virtual copy operations are performed by copying VM object references 120 * from one map to another, and then marking both regions as copy-on-write. 121 */ 122 static void vmspace_terminate(struct vmspace *vm); 123 static void vmspace_lock(struct vmspace *vm); 124 static void vmspace_unlock(struct vmspace *vm); 125 static void vmspace_dtor(void *obj, void *private); 126 127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 128 129 struct sysref_class vmspace_sysref_class = { 130 .name = "vmspace", 131 .mtype = M_VMSPACE, 132 .proto = SYSREF_PROTO_VMSPACE, 133 .offset = offsetof(struct vmspace, vm_sysref), 134 .objsize = sizeof(struct vmspace), 135 .mag_capacity = 32, 136 .flags = SRC_MANAGEDINIT, 137 .dtor = vmspace_dtor, 138 .ops = { 139 .terminate = (sysref_terminate_func_t)vmspace_terminate, 140 .lock = (sysref_lock_func_t)vmspace_lock, 141 .unlock = (sysref_lock_func_t)vmspace_unlock 142 } 143 }; 144 145 /* 146 * per-cpu page table cross mappings are initialized in early boot 147 * and might require a considerable number of vm_map_entry structures. 148 */ 149 #define VMEPERCPU (MAXCPU+1) 150 151 static struct vm_zone mapentzone_store, mapzone_store; 152 static vm_zone_t mapentzone, mapzone; 153 static struct vm_object mapentobj, mapobj; 154 155 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 156 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 157 static struct vm_map map_init[MAX_KMAP]; 158 159 static int randomize_mmap; 160 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0, 161 "Randomize mmap offsets"); 162 163 static void vm_map_entry_shadow(vm_map_entry_t entry); 164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 171 vm_map_entry_t); 172 static void vm_map_split (vm_map_entry_t); 173 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 174 175 /* 176 * Initialize the vm_map module. Must be called before any other vm_map 177 * routines. 178 * 179 * Map and entry structures are allocated from the general purpose 180 * memory pool with some exceptions: 181 * 182 * - The kernel map is allocated statically. 183 * - Initial kernel map entries are allocated out of a static pool. 184 * 185 * These restrictions are necessary since malloc() uses the 186 * maps and requires map entries. 187 * 188 * Called from the low level boot code only. 189 */ 190 void 191 vm_map_startup(void) 192 { 193 mapzone = &mapzone_store; 194 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 195 map_init, MAX_KMAP); 196 mapentzone = &mapentzone_store; 197 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 198 map_entry_init, MAX_MAPENT); 199 } 200 201 /* 202 * Called prior to any vmspace allocations. 203 * 204 * Called from the low level boot code only. 205 */ 206 void 207 vm_init2(void) 208 { 209 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 210 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 211 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 212 pmap_init2(); 213 vm_object_init2(); 214 } 215 216 217 /* 218 * Red black tree functions 219 * 220 * The caller must hold the related map lock. 221 */ 222 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 223 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 224 225 /* a->start is address, and the only field has to be initialized */ 226 static int 227 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 228 { 229 if (a->start < b->start) 230 return(-1); 231 else if (a->start > b->start) 232 return(1); 233 return(0); 234 } 235 236 /* 237 * Allocate a vmspace structure, including a vm_map and pmap. 238 * Initialize numerous fields. While the initial allocation is zerod, 239 * subsequence reuse from the objcache leaves elements of the structure 240 * intact (particularly the pmap), so portions must be zerod. 241 * 242 * The structure is not considered activated until we call sysref_activate(). 243 * 244 * No requirements. 245 */ 246 struct vmspace * 247 vmspace_alloc(vm_offset_t min, vm_offset_t max) 248 { 249 struct vmspace *vm; 250 251 lwkt_gettoken(&vmspace_token); 252 vm = sysref_alloc(&vmspace_sysref_class); 253 bzero(&vm->vm_startcopy, 254 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 255 vm_map_init(&vm->vm_map, min, max, NULL); 256 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 257 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 258 vm->vm_shm = NULL; 259 vm->vm_exitingcnt = 0; 260 cpu_vmspace_alloc(vm); 261 sysref_activate(&vm->vm_sysref); 262 lwkt_reltoken(&vmspace_token); 263 264 return (vm); 265 } 266 267 /* 268 * dtor function - Some elements of the pmap are retained in the 269 * free-cached vmspaces to improve performance. We have to clean them up 270 * here before returning the vmspace to the memory pool. 271 * 272 * No requirements. 273 */ 274 static void 275 vmspace_dtor(void *obj, void *private) 276 { 277 struct vmspace *vm = obj; 278 279 pmap_puninit(vmspace_pmap(vm)); 280 } 281 282 /* 283 * Called in two cases: 284 * 285 * (1) When the last sysref is dropped, but exitingcnt might still be 286 * non-zero. 287 * 288 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the 289 * exitingcnt becomes zero 290 * 291 * sysref will not scrap the object until we call sysref_put() once more 292 * after the last ref has been dropped. 293 * 294 * Interlocked by the sysref API. 295 */ 296 static void 297 vmspace_terminate(struct vmspace *vm) 298 { 299 int count; 300 301 /* 302 * If exitingcnt is non-zero we can't get rid of the entire vmspace 303 * yet, but we can scrap user memory. 304 */ 305 lwkt_gettoken(&vmspace_token); 306 if (vm->vm_exitingcnt) { 307 shmexit(vm); 308 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 309 VM_MAX_USER_ADDRESS); 310 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 311 VM_MAX_USER_ADDRESS); 312 lwkt_reltoken(&vmspace_token); 313 return; 314 } 315 cpu_vmspace_free(vm); 316 317 /* 318 * Make sure any SysV shm is freed, it might not have in 319 * exit1() 320 */ 321 shmexit(vm); 322 323 KKASSERT(vm->vm_upcalls == NULL); 324 325 /* 326 * Lock the map, to wait out all other references to it. 327 * Delete all of the mappings and pages they hold, then call 328 * the pmap module to reclaim anything left. 329 */ 330 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 331 vm_map_lock(&vm->vm_map); 332 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 333 vm->vm_map.max_offset, &count); 334 vm_map_unlock(&vm->vm_map); 335 vm_map_entry_release(count); 336 337 pmap_release(vmspace_pmap(vm)); 338 sysref_put(&vm->vm_sysref); 339 lwkt_reltoken(&vmspace_token); 340 } 341 342 /* 343 * vmspaces are not currently locked. 344 */ 345 static void 346 vmspace_lock(struct vmspace *vm __unused) 347 { 348 } 349 350 static void 351 vmspace_unlock(struct vmspace *vm __unused) 352 { 353 } 354 355 /* 356 * This is called during exit indicating that the vmspace is no 357 * longer in used by an exiting process, but the process has not yet 358 * been cleaned up. 359 * 360 * No requirements. 361 */ 362 void 363 vmspace_exitbump(struct vmspace *vm) 364 { 365 lwkt_gettoken(&vmspace_token); 366 ++vm->vm_exitingcnt; 367 lwkt_reltoken(&vmspace_token); 368 } 369 370 /* 371 * This is called in the wait*() handling code. The vmspace can be terminated 372 * after the last wait is finished using it. 373 * 374 * No requirements. 375 */ 376 void 377 vmspace_exitfree(struct proc *p) 378 { 379 struct vmspace *vm; 380 381 lwkt_gettoken(&vmspace_token); 382 vm = p->p_vmspace; 383 p->p_vmspace = NULL; 384 385 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref)) 386 vmspace_terminate(vm); 387 lwkt_reltoken(&vmspace_token); 388 } 389 390 /* 391 * Swap useage is determined by taking the proportional swap used by 392 * VM objects backing the VM map. To make up for fractional losses, 393 * if the VM object has any swap use at all the associated map entries 394 * count for at least 1 swap page. 395 * 396 * No requirements. 397 */ 398 int 399 vmspace_swap_count(struct vmspace *vmspace) 400 { 401 vm_map_t map = &vmspace->vm_map; 402 vm_map_entry_t cur; 403 vm_object_t object; 404 int count = 0; 405 int n; 406 407 lwkt_gettoken(&vmspace_token); 408 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 409 switch(cur->maptype) { 410 case VM_MAPTYPE_NORMAL: 411 case VM_MAPTYPE_VPAGETABLE: 412 if ((object = cur->object.vm_object) == NULL) 413 break; 414 if (object->swblock_count) { 415 n = (cur->end - cur->start) / PAGE_SIZE; 416 count += object->swblock_count * 417 SWAP_META_PAGES * n / object->size + 1; 418 } 419 break; 420 default: 421 break; 422 } 423 } 424 lwkt_reltoken(&vmspace_token); 425 return(count); 426 } 427 428 /* 429 * Calculate the approximate number of anonymous pages in use by 430 * this vmspace. To make up for fractional losses, we count each 431 * VM object as having at least 1 anonymous page. 432 * 433 * No requirements. 434 */ 435 int 436 vmspace_anonymous_count(struct vmspace *vmspace) 437 { 438 vm_map_t map = &vmspace->vm_map; 439 vm_map_entry_t cur; 440 vm_object_t object; 441 int count = 0; 442 443 lwkt_gettoken(&vmspace_token); 444 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 445 switch(cur->maptype) { 446 case VM_MAPTYPE_NORMAL: 447 case VM_MAPTYPE_VPAGETABLE: 448 if ((object = cur->object.vm_object) == NULL) 449 break; 450 if (object->type != OBJT_DEFAULT && 451 object->type != OBJT_SWAP) { 452 break; 453 } 454 count += object->resident_page_count; 455 break; 456 default: 457 break; 458 } 459 } 460 lwkt_reltoken(&vmspace_token); 461 return(count); 462 } 463 464 /* 465 * Creates and returns a new empty VM map with the given physical map 466 * structure, and having the given lower and upper address bounds. 467 * 468 * No requirements. 469 */ 470 vm_map_t 471 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max) 472 { 473 if (result == NULL) 474 result = zalloc(mapzone); 475 vm_map_init(result, min, max, pmap); 476 return (result); 477 } 478 479 /* 480 * Initialize an existing vm_map structure such as that in the vmspace 481 * structure. The pmap is initialized elsewhere. 482 * 483 * No requirements. 484 */ 485 void 486 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 487 { 488 map->header.next = map->header.prev = &map->header; 489 RB_INIT(&map->rb_root); 490 map->nentries = 0; 491 map->size = 0; 492 map->system_map = 0; 493 map->infork = 0; 494 map->min_offset = min; 495 map->max_offset = max; 496 map->pmap = pmap; 497 map->first_free = &map->header; 498 map->hint = &map->header; 499 map->timestamp = 0; 500 map->flags = 0; 501 lockinit(&map->lock, "thrd_sleep", 0, 0); 502 } 503 504 /* 505 * Shadow the vm_map_entry's object. This typically needs to be done when 506 * a write fault is taken on an entry which had previously been cloned by 507 * fork(). The shared object (which might be NULL) must become private so 508 * we add a shadow layer above it. 509 * 510 * Object allocation for anonymous mappings is defered as long as possible. 511 * When creating a shadow, however, the underlying object must be instantiated 512 * so it can be shared. 513 * 514 * If the map segment is governed by a virtual page table then it is 515 * possible to address offsets beyond the mapped area. Just allocate 516 * a maximally sized object for this case. 517 * 518 * The vm_map must be exclusively locked. 519 * No other requirements. 520 */ 521 static 522 void 523 vm_map_entry_shadow(vm_map_entry_t entry) 524 { 525 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 526 vm_object_shadow(&entry->object.vm_object, &entry->offset, 527 0x7FFFFFFF); /* XXX */ 528 } else { 529 vm_object_shadow(&entry->object.vm_object, &entry->offset, 530 atop(entry->end - entry->start)); 531 } 532 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 533 } 534 535 /* 536 * Allocate an object for a vm_map_entry. 537 * 538 * Object allocation for anonymous mappings is defered as long as possible. 539 * This function is called when we can defer no longer, generally when a map 540 * entry might be split or forked or takes a page fault. 541 * 542 * If the map segment is governed by a virtual page table then it is 543 * possible to address offsets beyond the mapped area. Just allocate 544 * a maximally sized object for this case. 545 * 546 * The vm_map must be exclusively locked. 547 * No other requirements. 548 */ 549 void 550 vm_map_entry_allocate_object(vm_map_entry_t entry) 551 { 552 vm_object_t obj; 553 554 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 555 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 556 } else { 557 obj = vm_object_allocate(OBJT_DEFAULT, 558 atop(entry->end - entry->start)); 559 } 560 entry->object.vm_object = obj; 561 entry->offset = 0; 562 } 563 564 /* 565 * Set an initial negative count so the first attempt to reserve 566 * space preloads a bunch of vm_map_entry's for this cpu. Also 567 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 568 * map a new page for vm_map_entry structures. SMP systems are 569 * particularly sensitive. 570 * 571 * This routine is called in early boot so we cannot just call 572 * vm_map_entry_reserve(). 573 * 574 * Called from the low level boot code only (for each cpu) 575 */ 576 void 577 vm_map_entry_reserve_cpu_init(globaldata_t gd) 578 { 579 vm_map_entry_t entry; 580 int i; 581 582 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 583 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 584 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 585 entry->next = gd->gd_vme_base; 586 gd->gd_vme_base = entry; 587 } 588 } 589 590 /* 591 * Reserves vm_map_entry structures so code later on can manipulate 592 * map_entry structures within a locked map without blocking trying 593 * to allocate a new vm_map_entry. 594 * 595 * No requirements. 596 */ 597 int 598 vm_map_entry_reserve(int count) 599 { 600 struct globaldata *gd = mycpu; 601 vm_map_entry_t entry; 602 603 /* 604 * Make sure we have enough structures in gd_vme_base to handle 605 * the reservation request. 606 */ 607 crit_enter(); 608 while (gd->gd_vme_avail < count) { 609 entry = zalloc(mapentzone); 610 entry->next = gd->gd_vme_base; 611 gd->gd_vme_base = entry; 612 ++gd->gd_vme_avail; 613 } 614 gd->gd_vme_avail -= count; 615 crit_exit(); 616 617 return(count); 618 } 619 620 /* 621 * Releases previously reserved vm_map_entry structures that were not 622 * used. If we have too much junk in our per-cpu cache clean some of 623 * it out. 624 * 625 * No requirements. 626 */ 627 void 628 vm_map_entry_release(int count) 629 { 630 struct globaldata *gd = mycpu; 631 vm_map_entry_t entry; 632 633 crit_enter(); 634 gd->gd_vme_avail += count; 635 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 636 entry = gd->gd_vme_base; 637 KKASSERT(entry != NULL); 638 gd->gd_vme_base = entry->next; 639 --gd->gd_vme_avail; 640 crit_exit(); 641 zfree(mapentzone, entry); 642 crit_enter(); 643 } 644 crit_exit(); 645 } 646 647 /* 648 * Reserve map entry structures for use in kernel_map itself. These 649 * entries have *ALREADY* been reserved on a per-cpu basis when the map 650 * was inited. This function is used by zalloc() to avoid a recursion 651 * when zalloc() itself needs to allocate additional kernel memory. 652 * 653 * This function works like the normal reserve but does not load the 654 * vm_map_entry cache (because that would result in an infinite 655 * recursion). Note that gd_vme_avail may go negative. This is expected. 656 * 657 * Any caller of this function must be sure to renormalize after 658 * potentially eating entries to ensure that the reserve supply 659 * remains intact. 660 * 661 * No requirements. 662 */ 663 int 664 vm_map_entry_kreserve(int count) 665 { 666 struct globaldata *gd = mycpu; 667 668 crit_enter(); 669 gd->gd_vme_avail -= count; 670 crit_exit(); 671 KASSERT(gd->gd_vme_base != NULL, 672 ("no reserved entries left, gd_vme_avail = %d\n", 673 gd->gd_vme_avail)); 674 return(count); 675 } 676 677 /* 678 * Release previously reserved map entries for kernel_map. We do not 679 * attempt to clean up like the normal release function as this would 680 * cause an unnecessary (but probably not fatal) deep procedure call. 681 * 682 * No requirements. 683 */ 684 void 685 vm_map_entry_krelease(int count) 686 { 687 struct globaldata *gd = mycpu; 688 689 crit_enter(); 690 gd->gd_vme_avail += count; 691 crit_exit(); 692 } 693 694 /* 695 * Allocates a VM map entry for insertion. No entry fields are filled in. 696 * 697 * The entries should have previously been reserved. The reservation count 698 * is tracked in (*countp). 699 * 700 * No requirements. 701 */ 702 static vm_map_entry_t 703 vm_map_entry_create(vm_map_t map, int *countp) 704 { 705 struct globaldata *gd = mycpu; 706 vm_map_entry_t entry; 707 708 KKASSERT(*countp > 0); 709 --*countp; 710 crit_enter(); 711 entry = gd->gd_vme_base; 712 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 713 gd->gd_vme_base = entry->next; 714 crit_exit(); 715 716 return(entry); 717 } 718 719 /* 720 * Dispose of a vm_map_entry that is no longer being referenced. 721 * 722 * No requirements. 723 */ 724 static void 725 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 726 { 727 struct globaldata *gd = mycpu; 728 729 KKASSERT(map->hint != entry); 730 KKASSERT(map->first_free != entry); 731 732 ++*countp; 733 crit_enter(); 734 entry->next = gd->gd_vme_base; 735 gd->gd_vme_base = entry; 736 crit_exit(); 737 } 738 739 740 /* 741 * Insert/remove entries from maps. 742 * 743 * The related map must be exclusively locked. 744 * No other requirements. 745 * 746 * NOTE! We currently acquire the vmspace_token only to avoid races 747 * against the pageout daemon's calls to vmspace_*_count(), which 748 * are unable to safely lock the vm_map without potentially 749 * deadlocking. 750 */ 751 static __inline void 752 vm_map_entry_link(vm_map_t map, 753 vm_map_entry_t after_where, 754 vm_map_entry_t entry) 755 { 756 ASSERT_VM_MAP_LOCKED(map); 757 758 lwkt_gettoken(&vmspace_token); 759 map->nentries++; 760 entry->prev = after_where; 761 entry->next = after_where->next; 762 entry->next->prev = entry; 763 after_where->next = entry; 764 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 765 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 766 lwkt_reltoken(&vmspace_token); 767 } 768 769 static __inline void 770 vm_map_entry_unlink(vm_map_t map, 771 vm_map_entry_t entry) 772 { 773 vm_map_entry_t prev; 774 vm_map_entry_t next; 775 776 ASSERT_VM_MAP_LOCKED(map); 777 778 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 779 panic("vm_map_entry_unlink: attempt to mess with " 780 "locked entry! %p", entry); 781 } 782 lwkt_gettoken(&vmspace_token); 783 prev = entry->prev; 784 next = entry->next; 785 next->prev = prev; 786 prev->next = next; 787 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 788 map->nentries--; 789 lwkt_reltoken(&vmspace_token); 790 } 791 792 /* 793 * Finds the map entry containing (or immediately preceding) the specified 794 * address in the given map. The entry is returned in (*entry). 795 * 796 * The boolean result indicates whether the address is actually contained 797 * in the map. 798 * 799 * The related map must be locked. 800 * No other requirements. 801 */ 802 boolean_t 803 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 804 { 805 vm_map_entry_t tmp; 806 vm_map_entry_t last; 807 808 ASSERT_VM_MAP_LOCKED(map); 809 #if 0 810 /* 811 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 812 * the hint code with the red-black lookup meets with system crashes 813 * and lockups. We do not yet know why. 814 * 815 * It is possible that the problem is related to the setting 816 * of the hint during map_entry deletion, in the code specified 817 * at the GGG comment later on in this file. 818 */ 819 /* 820 * Quickly check the cached hint, there's a good chance of a match. 821 */ 822 if (map->hint != &map->header) { 823 tmp = map->hint; 824 if (address >= tmp->start && address < tmp->end) { 825 *entry = tmp; 826 return(TRUE); 827 } 828 } 829 #endif 830 831 /* 832 * Locate the record from the top of the tree. 'last' tracks the 833 * closest prior record and is returned if no match is found, which 834 * in binary tree terms means tracking the most recent right-branch 835 * taken. If there is no prior record, &map->header is returned. 836 */ 837 last = &map->header; 838 tmp = RB_ROOT(&map->rb_root); 839 840 while (tmp) { 841 if (address >= tmp->start) { 842 if (address < tmp->end) { 843 *entry = tmp; 844 map->hint = tmp; 845 return(TRUE); 846 } 847 last = tmp; 848 tmp = RB_RIGHT(tmp, rb_entry); 849 } else { 850 tmp = RB_LEFT(tmp, rb_entry); 851 } 852 } 853 *entry = last; 854 return (FALSE); 855 } 856 857 /* 858 * Inserts the given whole VM object into the target map at the specified 859 * address range. The object's size should match that of the address range. 860 * 861 * The map must be exclusively locked. 862 * The caller must have reserved sufficient vm_map_entry structures. 863 * 864 * If object is non-NULL, ref count must be bumped by caller 865 * prior to making call to account for the new entry. 866 */ 867 int 868 vm_map_insert(vm_map_t map, int *countp, 869 vm_object_t object, vm_ooffset_t offset, 870 vm_offset_t start, vm_offset_t end, 871 vm_maptype_t maptype, 872 vm_prot_t prot, vm_prot_t max, 873 int cow) 874 { 875 vm_map_entry_t new_entry; 876 vm_map_entry_t prev_entry; 877 vm_map_entry_t temp_entry; 878 vm_eflags_t protoeflags; 879 880 ASSERT_VM_MAP_LOCKED(map); 881 882 /* 883 * Check that the start and end points are not bogus. 884 */ 885 if ((start < map->min_offset) || (end > map->max_offset) || 886 (start >= end)) 887 return (KERN_INVALID_ADDRESS); 888 889 /* 890 * Find the entry prior to the proposed starting address; if it's part 891 * of an existing entry, this range is bogus. 892 */ 893 if (vm_map_lookup_entry(map, start, &temp_entry)) 894 return (KERN_NO_SPACE); 895 896 prev_entry = temp_entry; 897 898 /* 899 * Assert that the next entry doesn't overlap the end point. 900 */ 901 902 if ((prev_entry->next != &map->header) && 903 (prev_entry->next->start < end)) 904 return (KERN_NO_SPACE); 905 906 protoeflags = 0; 907 908 if (cow & MAP_COPY_ON_WRITE) 909 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 910 911 if (cow & MAP_NOFAULT) { 912 protoeflags |= MAP_ENTRY_NOFAULT; 913 914 KASSERT(object == NULL, 915 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 916 } 917 if (cow & MAP_DISABLE_SYNCER) 918 protoeflags |= MAP_ENTRY_NOSYNC; 919 if (cow & MAP_DISABLE_COREDUMP) 920 protoeflags |= MAP_ENTRY_NOCOREDUMP; 921 if (cow & MAP_IS_STACK) 922 protoeflags |= MAP_ENTRY_STACK; 923 if (cow & MAP_IS_KSTACK) 924 protoeflags |= MAP_ENTRY_KSTACK; 925 926 lwkt_gettoken(&vm_token); 927 lwkt_gettoken(&vmobj_token); 928 929 if (object) { 930 /* 931 * When object is non-NULL, it could be shared with another 932 * process. We have to set or clear OBJ_ONEMAPPING 933 * appropriately. 934 */ 935 936 vm_object_lock(object); 937 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 938 vm_object_clear_flag(object, OBJ_ONEMAPPING); 939 } 940 vm_object_unlock(object); 941 } 942 else if ((prev_entry != &map->header) && 943 (prev_entry->eflags == protoeflags) && 944 (prev_entry->end == start) && 945 (prev_entry->wired_count == 0) && 946 prev_entry->maptype == maptype && 947 ((prev_entry->object.vm_object == NULL) || 948 vm_object_coalesce(prev_entry->object.vm_object, 949 OFF_TO_IDX(prev_entry->offset), 950 (vm_size_t)(prev_entry->end - prev_entry->start), 951 (vm_size_t)(end - prev_entry->end)))) { 952 /* 953 * We were able to extend the object. Determine if we 954 * can extend the previous map entry to include the 955 * new range as well. 956 */ 957 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 958 (prev_entry->protection == prot) && 959 (prev_entry->max_protection == max)) { 960 lwkt_reltoken(&vmobj_token); 961 lwkt_reltoken(&vm_token); 962 map->size += (end - prev_entry->end); 963 prev_entry->end = end; 964 vm_map_simplify_entry(map, prev_entry, countp); 965 return (KERN_SUCCESS); 966 } 967 968 /* 969 * If we can extend the object but cannot extend the 970 * map entry, we have to create a new map entry. We 971 * must bump the ref count on the extended object to 972 * account for it. object may be NULL. 973 */ 974 object = prev_entry->object.vm_object; 975 offset = prev_entry->offset + 976 (prev_entry->end - prev_entry->start); 977 vm_object_reference_locked(object); 978 } 979 980 lwkt_reltoken(&vmobj_token); 981 lwkt_reltoken(&vm_token); 982 983 /* 984 * NOTE: if conditionals fail, object can be NULL here. This occurs 985 * in things like the buffer map where we manage kva but do not manage 986 * backing objects. 987 */ 988 989 /* 990 * Create a new entry 991 */ 992 993 new_entry = vm_map_entry_create(map, countp); 994 new_entry->start = start; 995 new_entry->end = end; 996 997 new_entry->maptype = maptype; 998 new_entry->eflags = protoeflags; 999 new_entry->object.vm_object = object; 1000 new_entry->offset = offset; 1001 new_entry->aux.master_pde = 0; 1002 1003 new_entry->inheritance = VM_INHERIT_DEFAULT; 1004 new_entry->protection = prot; 1005 new_entry->max_protection = max; 1006 new_entry->wired_count = 0; 1007 1008 /* 1009 * Insert the new entry into the list 1010 */ 1011 1012 vm_map_entry_link(map, prev_entry, new_entry); 1013 map->size += new_entry->end - new_entry->start; 1014 1015 /* 1016 * Update the free space hint. Entries cannot overlap. 1017 * An exact comparison is needed to avoid matching 1018 * against the map->header. 1019 */ 1020 if ((map->first_free == prev_entry) && 1021 (prev_entry->end == new_entry->start)) { 1022 map->first_free = new_entry; 1023 } 1024 1025 #if 0 1026 /* 1027 * Temporarily removed to avoid MAP_STACK panic, due to 1028 * MAP_STACK being a huge hack. Will be added back in 1029 * when MAP_STACK (and the user stack mapping) is fixed. 1030 */ 1031 /* 1032 * It may be possible to simplify the entry 1033 */ 1034 vm_map_simplify_entry(map, new_entry, countp); 1035 #endif 1036 1037 /* 1038 * Try to pre-populate the page table. Mappings governed by virtual 1039 * page tables cannot be prepopulated without a lot of work, so 1040 * don't try. 1041 */ 1042 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1043 maptype != VM_MAPTYPE_VPAGETABLE) { 1044 pmap_object_init_pt(map->pmap, start, prot, 1045 object, OFF_TO_IDX(offset), end - start, 1046 cow & MAP_PREFAULT_PARTIAL); 1047 } 1048 1049 return (KERN_SUCCESS); 1050 } 1051 1052 /* 1053 * Find sufficient space for `length' bytes in the given map, starting at 1054 * `start'. Returns 0 on success, 1 on no space. 1055 * 1056 * This function will returned an arbitrarily aligned pointer. If no 1057 * particular alignment is required you should pass align as 1. Note that 1058 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1059 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1060 * argument. 1061 * 1062 * 'align' should be a power of 2 but is not required to be. 1063 * 1064 * The map must be exclusively locked. 1065 * No other requirements. 1066 */ 1067 int 1068 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1069 vm_size_t align, int flags, vm_offset_t *addr) 1070 { 1071 vm_map_entry_t entry, next; 1072 vm_offset_t end; 1073 vm_offset_t align_mask; 1074 1075 if (start < map->min_offset) 1076 start = map->min_offset; 1077 if (start > map->max_offset) 1078 return (1); 1079 1080 /* 1081 * If the alignment is not a power of 2 we will have to use 1082 * a mod/division, set align_mask to a special value. 1083 */ 1084 if ((align | (align - 1)) + 1 != (align << 1)) 1085 align_mask = (vm_offset_t)-1; 1086 else 1087 align_mask = align - 1; 1088 1089 /* 1090 * Look for the first possible address; if there's already something 1091 * at this address, we have to start after it. 1092 */ 1093 if (start == map->min_offset) { 1094 if ((entry = map->first_free) != &map->header) 1095 start = entry->end; 1096 } else { 1097 vm_map_entry_t tmp; 1098 1099 if (vm_map_lookup_entry(map, start, &tmp)) 1100 start = tmp->end; 1101 entry = tmp; 1102 } 1103 1104 /* 1105 * Look through the rest of the map, trying to fit a new region in the 1106 * gap between existing regions, or after the very last region. 1107 */ 1108 for (;; start = (entry = next)->end) { 1109 /* 1110 * Adjust the proposed start by the requested alignment, 1111 * be sure that we didn't wrap the address. 1112 */ 1113 if (align_mask == (vm_offset_t)-1) 1114 end = ((start + align - 1) / align) * align; 1115 else 1116 end = (start + align_mask) & ~align_mask; 1117 if (end < start) 1118 return (1); 1119 start = end; 1120 /* 1121 * Find the end of the proposed new region. Be sure we didn't 1122 * go beyond the end of the map, or wrap around the address. 1123 * Then check to see if this is the last entry or if the 1124 * proposed end fits in the gap between this and the next 1125 * entry. 1126 */ 1127 end = start + length; 1128 if (end > map->max_offset || end < start) 1129 return (1); 1130 next = entry->next; 1131 1132 /* 1133 * If the next entry's start address is beyond the desired 1134 * end address we may have found a good entry. 1135 * 1136 * If the next entry is a stack mapping we do not map into 1137 * the stack's reserved space. 1138 * 1139 * XXX continue to allow mapping into the stack's reserved 1140 * space if doing a MAP_STACK mapping inside a MAP_STACK 1141 * mapping, for backwards compatibility. But the caller 1142 * really should use MAP_STACK | MAP_TRYFIXED if they 1143 * want to do that. 1144 */ 1145 if (next == &map->header) 1146 break; 1147 if (next->start >= end) { 1148 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1149 break; 1150 if (flags & MAP_STACK) 1151 break; 1152 if (next->start - next->aux.avail_ssize >= end) 1153 break; 1154 } 1155 } 1156 map->hint = entry; 1157 1158 /* 1159 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1160 * if it fails. The kernel_map is locked and nothing can steal 1161 * our address space if pmap_growkernel() blocks. 1162 * 1163 * NOTE: This may be unconditionally called for kldload areas on 1164 * x86_64 because these do not bump kernel_vm_end (which would 1165 * fill 128G worth of page tables!). Therefore we must not 1166 * retry. 1167 */ 1168 if (map == &kernel_map) { 1169 vm_offset_t kstop; 1170 1171 kstop = round_page(start + length); 1172 if (kstop > kernel_vm_end) 1173 pmap_growkernel(start, kstop); 1174 } 1175 *addr = start; 1176 return (0); 1177 } 1178 1179 /* 1180 * vm_map_find finds an unallocated region in the target address map with 1181 * the given length. The search is defined to be first-fit from the 1182 * specified address; the region found is returned in the same parameter. 1183 * 1184 * If object is non-NULL, ref count must be bumped by caller 1185 * prior to making call to account for the new entry. 1186 * 1187 * No requirements. This function will lock the map temporarily. 1188 */ 1189 int 1190 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1191 vm_offset_t *addr, vm_size_t length, vm_size_t align, 1192 boolean_t fitit, 1193 vm_maptype_t maptype, 1194 vm_prot_t prot, vm_prot_t max, 1195 int cow) 1196 { 1197 vm_offset_t start; 1198 int result; 1199 int count; 1200 1201 start = *addr; 1202 1203 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1204 vm_map_lock(map); 1205 if (fitit) { 1206 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1207 vm_map_unlock(map); 1208 vm_map_entry_release(count); 1209 return (KERN_NO_SPACE); 1210 } 1211 start = *addr; 1212 } 1213 result = vm_map_insert(map, &count, object, offset, 1214 start, start + length, 1215 maptype, 1216 prot, max, 1217 cow); 1218 vm_map_unlock(map); 1219 vm_map_entry_release(count); 1220 1221 return (result); 1222 } 1223 1224 /* 1225 * Simplify the given map entry by merging with either neighbor. This 1226 * routine also has the ability to merge with both neighbors. 1227 * 1228 * This routine guarentees that the passed entry remains valid (though 1229 * possibly extended). When merging, this routine may delete one or 1230 * both neighbors. No action is taken on entries which have their 1231 * in-transition flag set. 1232 * 1233 * The map must be exclusively locked. 1234 */ 1235 void 1236 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1237 { 1238 vm_map_entry_t next, prev; 1239 vm_size_t prevsize, esize; 1240 1241 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1242 ++mycpu->gd_cnt.v_intrans_coll; 1243 return; 1244 } 1245 1246 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1247 return; 1248 1249 prev = entry->prev; 1250 if (prev != &map->header) { 1251 prevsize = prev->end - prev->start; 1252 if ( (prev->end == entry->start) && 1253 (prev->maptype == entry->maptype) && 1254 (prev->object.vm_object == entry->object.vm_object) && 1255 (!prev->object.vm_object || 1256 (prev->offset + prevsize == entry->offset)) && 1257 (prev->eflags == entry->eflags) && 1258 (prev->protection == entry->protection) && 1259 (prev->max_protection == entry->max_protection) && 1260 (prev->inheritance == entry->inheritance) && 1261 (prev->wired_count == entry->wired_count)) { 1262 if (map->first_free == prev) 1263 map->first_free = entry; 1264 if (map->hint == prev) 1265 map->hint = entry; 1266 vm_map_entry_unlink(map, prev); 1267 entry->start = prev->start; 1268 entry->offset = prev->offset; 1269 if (prev->object.vm_object) 1270 vm_object_deallocate(prev->object.vm_object); 1271 vm_map_entry_dispose(map, prev, countp); 1272 } 1273 } 1274 1275 next = entry->next; 1276 if (next != &map->header) { 1277 esize = entry->end - entry->start; 1278 if ((entry->end == next->start) && 1279 (next->maptype == entry->maptype) && 1280 (next->object.vm_object == entry->object.vm_object) && 1281 (!entry->object.vm_object || 1282 (entry->offset + esize == next->offset)) && 1283 (next->eflags == entry->eflags) && 1284 (next->protection == entry->protection) && 1285 (next->max_protection == entry->max_protection) && 1286 (next->inheritance == entry->inheritance) && 1287 (next->wired_count == entry->wired_count)) { 1288 if (map->first_free == next) 1289 map->first_free = entry; 1290 if (map->hint == next) 1291 map->hint = entry; 1292 vm_map_entry_unlink(map, next); 1293 entry->end = next->end; 1294 if (next->object.vm_object) 1295 vm_object_deallocate(next->object.vm_object); 1296 vm_map_entry_dispose(map, next, countp); 1297 } 1298 } 1299 } 1300 1301 /* 1302 * Asserts that the given entry begins at or after the specified address. 1303 * If necessary, it splits the entry into two. 1304 */ 1305 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1306 { \ 1307 if (startaddr > entry->start) \ 1308 _vm_map_clip_start(map, entry, startaddr, countp); \ 1309 } 1310 1311 /* 1312 * This routine is called only when it is known that the entry must be split. 1313 * 1314 * The map must be exclusively locked. 1315 */ 1316 static void 1317 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1318 int *countp) 1319 { 1320 vm_map_entry_t new_entry; 1321 1322 /* 1323 * Split off the front portion -- note that we must insert the new 1324 * entry BEFORE this one, so that this entry has the specified 1325 * starting address. 1326 */ 1327 1328 vm_map_simplify_entry(map, entry, countp); 1329 1330 /* 1331 * If there is no object backing this entry, we might as well create 1332 * one now. If we defer it, an object can get created after the map 1333 * is clipped, and individual objects will be created for the split-up 1334 * map. This is a bit of a hack, but is also about the best place to 1335 * put this improvement. 1336 */ 1337 if (entry->object.vm_object == NULL && !map->system_map) { 1338 vm_map_entry_allocate_object(entry); 1339 } 1340 1341 new_entry = vm_map_entry_create(map, countp); 1342 *new_entry = *entry; 1343 1344 new_entry->end = start; 1345 entry->offset += (start - entry->start); 1346 entry->start = start; 1347 1348 vm_map_entry_link(map, entry->prev, new_entry); 1349 1350 switch(entry->maptype) { 1351 case VM_MAPTYPE_NORMAL: 1352 case VM_MAPTYPE_VPAGETABLE: 1353 vm_object_reference(new_entry->object.vm_object); 1354 break; 1355 default: 1356 break; 1357 } 1358 } 1359 1360 /* 1361 * Asserts that the given entry ends at or before the specified address. 1362 * If necessary, it splits the entry into two. 1363 * 1364 * The map must be exclusively locked. 1365 */ 1366 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1367 { \ 1368 if (endaddr < entry->end) \ 1369 _vm_map_clip_end(map, entry, endaddr, countp); \ 1370 } 1371 1372 /* 1373 * This routine is called only when it is known that the entry must be split. 1374 * 1375 * The map must be exclusively locked. 1376 */ 1377 static void 1378 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1379 int *countp) 1380 { 1381 vm_map_entry_t new_entry; 1382 1383 /* 1384 * If there is no object backing this entry, we might as well create 1385 * one now. If we defer it, an object can get created after the map 1386 * is clipped, and individual objects will be created for the split-up 1387 * map. This is a bit of a hack, but is also about the best place to 1388 * put this improvement. 1389 */ 1390 1391 if (entry->object.vm_object == NULL && !map->system_map) { 1392 vm_map_entry_allocate_object(entry); 1393 } 1394 1395 /* 1396 * Create a new entry and insert it AFTER the specified entry 1397 */ 1398 1399 new_entry = vm_map_entry_create(map, countp); 1400 *new_entry = *entry; 1401 1402 new_entry->start = entry->end = end; 1403 new_entry->offset += (end - entry->start); 1404 1405 vm_map_entry_link(map, entry, new_entry); 1406 1407 switch(entry->maptype) { 1408 case VM_MAPTYPE_NORMAL: 1409 case VM_MAPTYPE_VPAGETABLE: 1410 vm_object_reference(new_entry->object.vm_object); 1411 break; 1412 default: 1413 break; 1414 } 1415 } 1416 1417 /* 1418 * Asserts that the starting and ending region addresses fall within the 1419 * valid range for the map. 1420 */ 1421 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1422 { \ 1423 if (start < vm_map_min(map)) \ 1424 start = vm_map_min(map); \ 1425 if (end > vm_map_max(map)) \ 1426 end = vm_map_max(map); \ 1427 if (start > end) \ 1428 start = end; \ 1429 } 1430 1431 /* 1432 * Used to block when an in-transition collison occurs. The map 1433 * is unlocked for the sleep and relocked before the return. 1434 */ 1435 void 1436 vm_map_transition_wait(vm_map_t map) 1437 { 1438 tsleep_interlock(map, 0); 1439 vm_map_unlock(map); 1440 tsleep(map, PINTERLOCKED, "vment", 0); 1441 vm_map_lock(map); 1442 } 1443 1444 /* 1445 * When we do blocking operations with the map lock held it is 1446 * possible that a clip might have occured on our in-transit entry, 1447 * requiring an adjustment to the entry in our loop. These macros 1448 * help the pageable and clip_range code deal with the case. The 1449 * conditional costs virtually nothing if no clipping has occured. 1450 */ 1451 1452 #define CLIP_CHECK_BACK(entry, save_start) \ 1453 do { \ 1454 while (entry->start != save_start) { \ 1455 entry = entry->prev; \ 1456 KASSERT(entry != &map->header, ("bad entry clip")); \ 1457 } \ 1458 } while(0) 1459 1460 #define CLIP_CHECK_FWD(entry, save_end) \ 1461 do { \ 1462 while (entry->end != save_end) { \ 1463 entry = entry->next; \ 1464 KASSERT(entry != &map->header, ("bad entry clip")); \ 1465 } \ 1466 } while(0) 1467 1468 1469 /* 1470 * Clip the specified range and return the base entry. The 1471 * range may cover several entries starting at the returned base 1472 * and the first and last entry in the covering sequence will be 1473 * properly clipped to the requested start and end address. 1474 * 1475 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1476 * flag. 1477 * 1478 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1479 * covered by the requested range. 1480 * 1481 * The map must be exclusively locked on entry and will remain locked 1482 * on return. If no range exists or the range contains holes and you 1483 * specified that no holes were allowed, NULL will be returned. This 1484 * routine may temporarily unlock the map in order avoid a deadlock when 1485 * sleeping. 1486 */ 1487 static 1488 vm_map_entry_t 1489 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1490 int *countp, int flags) 1491 { 1492 vm_map_entry_t start_entry; 1493 vm_map_entry_t entry; 1494 1495 /* 1496 * Locate the entry and effect initial clipping. The in-transition 1497 * case does not occur very often so do not try to optimize it. 1498 */ 1499 again: 1500 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1501 return (NULL); 1502 entry = start_entry; 1503 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1504 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1505 ++mycpu->gd_cnt.v_intrans_coll; 1506 ++mycpu->gd_cnt.v_intrans_wait; 1507 vm_map_transition_wait(map); 1508 /* 1509 * entry and/or start_entry may have been clipped while 1510 * we slept, or may have gone away entirely. We have 1511 * to restart from the lookup. 1512 */ 1513 goto again; 1514 } 1515 1516 /* 1517 * Since we hold an exclusive map lock we do not have to restart 1518 * after clipping, even though clipping may block in zalloc. 1519 */ 1520 vm_map_clip_start(map, entry, start, countp); 1521 vm_map_clip_end(map, entry, end, countp); 1522 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1523 1524 /* 1525 * Scan entries covered by the range. When working on the next 1526 * entry a restart need only re-loop on the current entry which 1527 * we have already locked, since 'next' may have changed. Also, 1528 * even though entry is safe, it may have been clipped so we 1529 * have to iterate forwards through the clip after sleeping. 1530 */ 1531 while (entry->next != &map->header && entry->next->start < end) { 1532 vm_map_entry_t next = entry->next; 1533 1534 if (flags & MAP_CLIP_NO_HOLES) { 1535 if (next->start > entry->end) { 1536 vm_map_unclip_range(map, start_entry, 1537 start, entry->end, countp, flags); 1538 return(NULL); 1539 } 1540 } 1541 1542 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1543 vm_offset_t save_end = entry->end; 1544 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1545 ++mycpu->gd_cnt.v_intrans_coll; 1546 ++mycpu->gd_cnt.v_intrans_wait; 1547 vm_map_transition_wait(map); 1548 1549 /* 1550 * clips might have occured while we blocked. 1551 */ 1552 CLIP_CHECK_FWD(entry, save_end); 1553 CLIP_CHECK_BACK(start_entry, start); 1554 continue; 1555 } 1556 /* 1557 * No restart necessary even though clip_end may block, we 1558 * are holding the map lock. 1559 */ 1560 vm_map_clip_end(map, next, end, countp); 1561 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1562 entry = next; 1563 } 1564 if (flags & MAP_CLIP_NO_HOLES) { 1565 if (entry->end != end) { 1566 vm_map_unclip_range(map, start_entry, 1567 start, entry->end, countp, flags); 1568 return(NULL); 1569 } 1570 } 1571 return(start_entry); 1572 } 1573 1574 /* 1575 * Undo the effect of vm_map_clip_range(). You should pass the same 1576 * flags and the same range that you passed to vm_map_clip_range(). 1577 * This code will clear the in-transition flag on the entries and 1578 * wake up anyone waiting. This code will also simplify the sequence 1579 * and attempt to merge it with entries before and after the sequence. 1580 * 1581 * The map must be locked on entry and will remain locked on return. 1582 * 1583 * Note that you should also pass the start_entry returned by 1584 * vm_map_clip_range(). However, if you block between the two calls 1585 * with the map unlocked please be aware that the start_entry may 1586 * have been clipped and you may need to scan it backwards to find 1587 * the entry corresponding with the original start address. You are 1588 * responsible for this, vm_map_unclip_range() expects the correct 1589 * start_entry to be passed to it and will KASSERT otherwise. 1590 */ 1591 static 1592 void 1593 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1594 vm_offset_t start, vm_offset_t end, 1595 int *countp, int flags) 1596 { 1597 vm_map_entry_t entry; 1598 1599 entry = start_entry; 1600 1601 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1602 while (entry != &map->header && entry->start < end) { 1603 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1604 ("in-transition flag not set during unclip on: %p", 1605 entry)); 1606 KASSERT(entry->end <= end, 1607 ("unclip_range: tail wasn't clipped")); 1608 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1609 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1610 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1611 wakeup(map); 1612 } 1613 entry = entry->next; 1614 } 1615 1616 /* 1617 * Simplification does not block so there is no restart case. 1618 */ 1619 entry = start_entry; 1620 while (entry != &map->header && entry->start < end) { 1621 vm_map_simplify_entry(map, entry, countp); 1622 entry = entry->next; 1623 } 1624 } 1625 1626 /* 1627 * Mark the given range as handled by a subordinate map. 1628 * 1629 * This range must have been created with vm_map_find(), and no other 1630 * operations may have been performed on this range prior to calling 1631 * vm_map_submap(). 1632 * 1633 * Submappings cannot be removed. 1634 * 1635 * No requirements. 1636 */ 1637 int 1638 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1639 { 1640 vm_map_entry_t entry; 1641 int result = KERN_INVALID_ARGUMENT; 1642 int count; 1643 1644 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1645 vm_map_lock(map); 1646 1647 VM_MAP_RANGE_CHECK(map, start, end); 1648 1649 if (vm_map_lookup_entry(map, start, &entry)) { 1650 vm_map_clip_start(map, entry, start, &count); 1651 } else { 1652 entry = entry->next; 1653 } 1654 1655 vm_map_clip_end(map, entry, end, &count); 1656 1657 if ((entry->start == start) && (entry->end == end) && 1658 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1659 (entry->object.vm_object == NULL)) { 1660 entry->object.sub_map = submap; 1661 entry->maptype = VM_MAPTYPE_SUBMAP; 1662 result = KERN_SUCCESS; 1663 } 1664 vm_map_unlock(map); 1665 vm_map_entry_release(count); 1666 1667 return (result); 1668 } 1669 1670 /* 1671 * Sets the protection of the specified address region in the target map. 1672 * If "set_max" is specified, the maximum protection is to be set; 1673 * otherwise, only the current protection is affected. 1674 * 1675 * The protection is not applicable to submaps, but is applicable to normal 1676 * maps and maps governed by virtual page tables. For example, when operating 1677 * on a virtual page table our protection basically controls how COW occurs 1678 * on the backing object, whereas the virtual page table abstraction itself 1679 * is an abstraction for userland. 1680 * 1681 * No requirements. 1682 */ 1683 int 1684 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1685 vm_prot_t new_prot, boolean_t set_max) 1686 { 1687 vm_map_entry_t current; 1688 vm_map_entry_t entry; 1689 int count; 1690 1691 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1692 vm_map_lock(map); 1693 1694 VM_MAP_RANGE_CHECK(map, start, end); 1695 1696 if (vm_map_lookup_entry(map, start, &entry)) { 1697 vm_map_clip_start(map, entry, start, &count); 1698 } else { 1699 entry = entry->next; 1700 } 1701 1702 /* 1703 * Make a first pass to check for protection violations. 1704 */ 1705 current = entry; 1706 while ((current != &map->header) && (current->start < end)) { 1707 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1708 vm_map_unlock(map); 1709 vm_map_entry_release(count); 1710 return (KERN_INVALID_ARGUMENT); 1711 } 1712 if ((new_prot & current->max_protection) != new_prot) { 1713 vm_map_unlock(map); 1714 vm_map_entry_release(count); 1715 return (KERN_PROTECTION_FAILURE); 1716 } 1717 current = current->next; 1718 } 1719 1720 /* 1721 * Go back and fix up protections. [Note that clipping is not 1722 * necessary the second time.] 1723 */ 1724 current = entry; 1725 1726 while ((current != &map->header) && (current->start < end)) { 1727 vm_prot_t old_prot; 1728 1729 vm_map_clip_end(map, current, end, &count); 1730 1731 old_prot = current->protection; 1732 if (set_max) { 1733 current->protection = 1734 (current->max_protection = new_prot) & 1735 old_prot; 1736 } else { 1737 current->protection = new_prot; 1738 } 1739 1740 /* 1741 * Update physical map if necessary. Worry about copy-on-write 1742 * here -- CHECK THIS XXX 1743 */ 1744 1745 if (current->protection != old_prot) { 1746 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1747 VM_PROT_ALL) 1748 1749 pmap_protect(map->pmap, current->start, 1750 current->end, 1751 current->protection & MASK(current)); 1752 #undef MASK 1753 } 1754 1755 vm_map_simplify_entry(map, current, &count); 1756 1757 current = current->next; 1758 } 1759 1760 vm_map_unlock(map); 1761 vm_map_entry_release(count); 1762 return (KERN_SUCCESS); 1763 } 1764 1765 /* 1766 * This routine traverses a processes map handling the madvise 1767 * system call. Advisories are classified as either those effecting 1768 * the vm_map_entry structure, or those effecting the underlying 1769 * objects. 1770 * 1771 * The <value> argument is used for extended madvise calls. 1772 * 1773 * No requirements. 1774 */ 1775 int 1776 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1777 int behav, off_t value) 1778 { 1779 vm_map_entry_t current, entry; 1780 int modify_map = 0; 1781 int error = 0; 1782 int count; 1783 1784 /* 1785 * Some madvise calls directly modify the vm_map_entry, in which case 1786 * we need to use an exclusive lock on the map and we need to perform 1787 * various clipping operations. Otherwise we only need a read-lock 1788 * on the map. 1789 */ 1790 1791 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1792 1793 switch(behav) { 1794 case MADV_NORMAL: 1795 case MADV_SEQUENTIAL: 1796 case MADV_RANDOM: 1797 case MADV_NOSYNC: 1798 case MADV_AUTOSYNC: 1799 case MADV_NOCORE: 1800 case MADV_CORE: 1801 case MADV_SETMAP: 1802 case MADV_INVAL: 1803 modify_map = 1; 1804 vm_map_lock(map); 1805 break; 1806 case MADV_WILLNEED: 1807 case MADV_DONTNEED: 1808 case MADV_FREE: 1809 vm_map_lock_read(map); 1810 break; 1811 default: 1812 vm_map_entry_release(count); 1813 return (EINVAL); 1814 } 1815 1816 /* 1817 * Locate starting entry and clip if necessary. 1818 */ 1819 1820 VM_MAP_RANGE_CHECK(map, start, end); 1821 1822 if (vm_map_lookup_entry(map, start, &entry)) { 1823 if (modify_map) 1824 vm_map_clip_start(map, entry, start, &count); 1825 } else { 1826 entry = entry->next; 1827 } 1828 1829 if (modify_map) { 1830 /* 1831 * madvise behaviors that are implemented in the vm_map_entry. 1832 * 1833 * We clip the vm_map_entry so that behavioral changes are 1834 * limited to the specified address range. 1835 */ 1836 for (current = entry; 1837 (current != &map->header) && (current->start < end); 1838 current = current->next 1839 ) { 1840 if (current->maptype == VM_MAPTYPE_SUBMAP) 1841 continue; 1842 1843 vm_map_clip_end(map, current, end, &count); 1844 1845 switch (behav) { 1846 case MADV_NORMAL: 1847 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1848 break; 1849 case MADV_SEQUENTIAL: 1850 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1851 break; 1852 case MADV_RANDOM: 1853 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1854 break; 1855 case MADV_NOSYNC: 1856 current->eflags |= MAP_ENTRY_NOSYNC; 1857 break; 1858 case MADV_AUTOSYNC: 1859 current->eflags &= ~MAP_ENTRY_NOSYNC; 1860 break; 1861 case MADV_NOCORE: 1862 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1863 break; 1864 case MADV_CORE: 1865 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1866 break; 1867 case MADV_INVAL: 1868 /* 1869 * Invalidate the related pmap entries, used 1870 * to flush portions of the real kernel's 1871 * pmap when the caller has removed or 1872 * modified existing mappings in a virtual 1873 * page table. 1874 */ 1875 pmap_remove(map->pmap, 1876 current->start, current->end); 1877 break; 1878 case MADV_SETMAP: 1879 /* 1880 * Set the page directory page for a map 1881 * governed by a virtual page table. Mark 1882 * the entry as being governed by a virtual 1883 * page table if it is not. 1884 * 1885 * XXX the page directory page is stored 1886 * in the avail_ssize field if the map_entry. 1887 * 1888 * XXX the map simplification code does not 1889 * compare this field so weird things may 1890 * happen if you do not apply this function 1891 * to the entire mapping governed by the 1892 * virtual page table. 1893 */ 1894 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1895 error = EINVAL; 1896 break; 1897 } 1898 current->aux.master_pde = value; 1899 pmap_remove(map->pmap, 1900 current->start, current->end); 1901 break; 1902 default: 1903 error = EINVAL; 1904 break; 1905 } 1906 vm_map_simplify_entry(map, current, &count); 1907 } 1908 vm_map_unlock(map); 1909 } else { 1910 vm_pindex_t pindex; 1911 int count; 1912 1913 /* 1914 * madvise behaviors that are implemented in the underlying 1915 * vm_object. 1916 * 1917 * Since we don't clip the vm_map_entry, we have to clip 1918 * the vm_object pindex and count. 1919 * 1920 * NOTE! We currently do not support these functions on 1921 * virtual page tables. 1922 */ 1923 for (current = entry; 1924 (current != &map->header) && (current->start < end); 1925 current = current->next 1926 ) { 1927 vm_offset_t useStart; 1928 1929 if (current->maptype != VM_MAPTYPE_NORMAL) 1930 continue; 1931 1932 pindex = OFF_TO_IDX(current->offset); 1933 count = atop(current->end - current->start); 1934 useStart = current->start; 1935 1936 if (current->start < start) { 1937 pindex += atop(start - current->start); 1938 count -= atop(start - current->start); 1939 useStart = start; 1940 } 1941 if (current->end > end) 1942 count -= atop(current->end - end); 1943 1944 if (count <= 0) 1945 continue; 1946 1947 vm_object_madvise(current->object.vm_object, 1948 pindex, count, behav); 1949 1950 /* 1951 * Try to populate the page table. Mappings governed 1952 * by virtual page tables cannot be pre-populated 1953 * without a lot of work so don't try. 1954 */ 1955 if (behav == MADV_WILLNEED && 1956 current->maptype != VM_MAPTYPE_VPAGETABLE) { 1957 pmap_object_init_pt( 1958 map->pmap, 1959 useStart, 1960 current->protection, 1961 current->object.vm_object, 1962 pindex, 1963 (count << PAGE_SHIFT), 1964 MAP_PREFAULT_MADVISE 1965 ); 1966 } 1967 } 1968 vm_map_unlock_read(map); 1969 } 1970 vm_map_entry_release(count); 1971 return(error); 1972 } 1973 1974 1975 /* 1976 * Sets the inheritance of the specified address range in the target map. 1977 * Inheritance affects how the map will be shared with child maps at the 1978 * time of vm_map_fork. 1979 */ 1980 int 1981 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1982 vm_inherit_t new_inheritance) 1983 { 1984 vm_map_entry_t entry; 1985 vm_map_entry_t temp_entry; 1986 int count; 1987 1988 switch (new_inheritance) { 1989 case VM_INHERIT_NONE: 1990 case VM_INHERIT_COPY: 1991 case VM_INHERIT_SHARE: 1992 break; 1993 default: 1994 return (KERN_INVALID_ARGUMENT); 1995 } 1996 1997 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1998 vm_map_lock(map); 1999 2000 VM_MAP_RANGE_CHECK(map, start, end); 2001 2002 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2003 entry = temp_entry; 2004 vm_map_clip_start(map, entry, start, &count); 2005 } else 2006 entry = temp_entry->next; 2007 2008 while ((entry != &map->header) && (entry->start < end)) { 2009 vm_map_clip_end(map, entry, end, &count); 2010 2011 entry->inheritance = new_inheritance; 2012 2013 vm_map_simplify_entry(map, entry, &count); 2014 2015 entry = entry->next; 2016 } 2017 vm_map_unlock(map); 2018 vm_map_entry_release(count); 2019 return (KERN_SUCCESS); 2020 } 2021 2022 /* 2023 * Implement the semantics of mlock 2024 */ 2025 int 2026 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2027 boolean_t new_pageable) 2028 { 2029 vm_map_entry_t entry; 2030 vm_map_entry_t start_entry; 2031 vm_offset_t end; 2032 int rv = KERN_SUCCESS; 2033 int count; 2034 2035 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2036 vm_map_lock(map); 2037 VM_MAP_RANGE_CHECK(map, start, real_end); 2038 end = real_end; 2039 2040 start_entry = vm_map_clip_range(map, start, end, &count, 2041 MAP_CLIP_NO_HOLES); 2042 if (start_entry == NULL) { 2043 vm_map_unlock(map); 2044 vm_map_entry_release(count); 2045 return (KERN_INVALID_ADDRESS); 2046 } 2047 2048 if (new_pageable == 0) { 2049 entry = start_entry; 2050 while ((entry != &map->header) && (entry->start < end)) { 2051 vm_offset_t save_start; 2052 vm_offset_t save_end; 2053 2054 /* 2055 * Already user wired or hard wired (trivial cases) 2056 */ 2057 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2058 entry = entry->next; 2059 continue; 2060 } 2061 if (entry->wired_count != 0) { 2062 entry->wired_count++; 2063 entry->eflags |= MAP_ENTRY_USER_WIRED; 2064 entry = entry->next; 2065 continue; 2066 } 2067 2068 /* 2069 * A new wiring requires instantiation of appropriate 2070 * management structures and the faulting in of the 2071 * page. 2072 */ 2073 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2074 int copyflag = entry->eflags & 2075 MAP_ENTRY_NEEDS_COPY; 2076 if (copyflag && ((entry->protection & 2077 VM_PROT_WRITE) != 0)) { 2078 vm_map_entry_shadow(entry); 2079 } else if (entry->object.vm_object == NULL && 2080 !map->system_map) { 2081 vm_map_entry_allocate_object(entry); 2082 } 2083 } 2084 entry->wired_count++; 2085 entry->eflags |= MAP_ENTRY_USER_WIRED; 2086 2087 /* 2088 * Now fault in the area. Note that vm_fault_wire() 2089 * may release the map lock temporarily, it will be 2090 * relocked on return. The in-transition 2091 * flag protects the entries. 2092 */ 2093 save_start = entry->start; 2094 save_end = entry->end; 2095 rv = vm_fault_wire(map, entry, TRUE); 2096 if (rv) { 2097 CLIP_CHECK_BACK(entry, save_start); 2098 for (;;) { 2099 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2100 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2101 entry->wired_count = 0; 2102 if (entry->end == save_end) 2103 break; 2104 entry = entry->next; 2105 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2106 } 2107 end = save_start; /* unwire the rest */ 2108 break; 2109 } 2110 /* 2111 * note that even though the entry might have been 2112 * clipped, the USER_WIRED flag we set prevents 2113 * duplication so we do not have to do a 2114 * clip check. 2115 */ 2116 entry = entry->next; 2117 } 2118 2119 /* 2120 * If we failed fall through to the unwiring section to 2121 * unwire what we had wired so far. 'end' has already 2122 * been adjusted. 2123 */ 2124 if (rv) 2125 new_pageable = 1; 2126 2127 /* 2128 * start_entry might have been clipped if we unlocked the 2129 * map and blocked. No matter how clipped it has gotten 2130 * there should be a fragment that is on our start boundary. 2131 */ 2132 CLIP_CHECK_BACK(start_entry, start); 2133 } 2134 2135 /* 2136 * Deal with the unwiring case. 2137 */ 2138 if (new_pageable) { 2139 /* 2140 * This is the unwiring case. We must first ensure that the 2141 * range to be unwired is really wired down. We know there 2142 * are no holes. 2143 */ 2144 entry = start_entry; 2145 while ((entry != &map->header) && (entry->start < end)) { 2146 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2147 rv = KERN_INVALID_ARGUMENT; 2148 goto done; 2149 } 2150 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2151 entry = entry->next; 2152 } 2153 2154 /* 2155 * Now decrement the wiring count for each region. If a region 2156 * becomes completely unwired, unwire its physical pages and 2157 * mappings. 2158 */ 2159 /* 2160 * The map entries are processed in a loop, checking to 2161 * make sure the entry is wired and asserting it has a wired 2162 * count. However, another loop was inserted more-or-less in 2163 * the middle of the unwiring path. This loop picks up the 2164 * "entry" loop variable from the first loop without first 2165 * setting it to start_entry. Naturally, the secound loop 2166 * is never entered and the pages backing the entries are 2167 * never unwired. This can lead to a leak of wired pages. 2168 */ 2169 entry = start_entry; 2170 while ((entry != &map->header) && (entry->start < end)) { 2171 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2172 ("expected USER_WIRED on entry %p", entry)); 2173 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2174 entry->wired_count--; 2175 if (entry->wired_count == 0) 2176 vm_fault_unwire(map, entry); 2177 entry = entry->next; 2178 } 2179 } 2180 done: 2181 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2182 MAP_CLIP_NO_HOLES); 2183 map->timestamp++; 2184 vm_map_unlock(map); 2185 vm_map_entry_release(count); 2186 return (rv); 2187 } 2188 2189 /* 2190 * Sets the pageability of the specified address range in the target map. 2191 * Regions specified as not pageable require locked-down physical 2192 * memory and physical page maps. 2193 * 2194 * The map must not be locked, but a reference must remain to the map 2195 * throughout the call. 2196 * 2197 * This function may be called via the zalloc path and must properly 2198 * reserve map entries for kernel_map. 2199 * 2200 * No requirements. 2201 */ 2202 int 2203 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2204 { 2205 vm_map_entry_t entry; 2206 vm_map_entry_t start_entry; 2207 vm_offset_t end; 2208 int rv = KERN_SUCCESS; 2209 int count; 2210 2211 if (kmflags & KM_KRESERVE) 2212 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2213 else 2214 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2215 vm_map_lock(map); 2216 VM_MAP_RANGE_CHECK(map, start, real_end); 2217 end = real_end; 2218 2219 start_entry = vm_map_clip_range(map, start, end, &count, 2220 MAP_CLIP_NO_HOLES); 2221 if (start_entry == NULL) { 2222 vm_map_unlock(map); 2223 rv = KERN_INVALID_ADDRESS; 2224 goto failure; 2225 } 2226 if ((kmflags & KM_PAGEABLE) == 0) { 2227 /* 2228 * Wiring. 2229 * 2230 * 1. Holding the write lock, we create any shadow or zero-fill 2231 * objects that need to be created. Then we clip each map 2232 * entry to the region to be wired and increment its wiring 2233 * count. We create objects before clipping the map entries 2234 * to avoid object proliferation. 2235 * 2236 * 2. We downgrade to a read lock, and call vm_fault_wire to 2237 * fault in the pages for any newly wired area (wired_count is 2238 * 1). 2239 * 2240 * Downgrading to a read lock for vm_fault_wire avoids a 2241 * possible deadlock with another process that may have faulted 2242 * on one of the pages to be wired (it would mark the page busy, 2243 * blocking us, then in turn block on the map lock that we 2244 * hold). Because of problems in the recursive lock package, 2245 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2246 * any actions that require the write lock must be done 2247 * beforehand. Because we keep the read lock on the map, the 2248 * copy-on-write status of the entries we modify here cannot 2249 * change. 2250 */ 2251 entry = start_entry; 2252 while ((entry != &map->header) && (entry->start < end)) { 2253 /* 2254 * Trivial case if the entry is already wired 2255 */ 2256 if (entry->wired_count) { 2257 entry->wired_count++; 2258 entry = entry->next; 2259 continue; 2260 } 2261 2262 /* 2263 * The entry is being newly wired, we have to setup 2264 * appropriate management structures. A shadow 2265 * object is required for a copy-on-write region, 2266 * or a normal object for a zero-fill region. We 2267 * do not have to do this for entries that point to sub 2268 * maps because we won't hold the lock on the sub map. 2269 */ 2270 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2271 int copyflag = entry->eflags & 2272 MAP_ENTRY_NEEDS_COPY; 2273 if (copyflag && ((entry->protection & 2274 VM_PROT_WRITE) != 0)) { 2275 vm_map_entry_shadow(entry); 2276 } else if (entry->object.vm_object == NULL && 2277 !map->system_map) { 2278 vm_map_entry_allocate_object(entry); 2279 } 2280 } 2281 2282 entry->wired_count++; 2283 entry = entry->next; 2284 } 2285 2286 /* 2287 * Pass 2. 2288 */ 2289 2290 /* 2291 * HACK HACK HACK HACK 2292 * 2293 * vm_fault_wire() temporarily unlocks the map to avoid 2294 * deadlocks. The in-transition flag from vm_map_clip_range 2295 * call should protect us from changes while the map is 2296 * unlocked. T 2297 * 2298 * NOTE: Previously this comment stated that clipping might 2299 * still occur while the entry is unlocked, but from 2300 * what I can tell it actually cannot. 2301 * 2302 * It is unclear whether the CLIP_CHECK_*() calls 2303 * are still needed but we keep them in anyway. 2304 * 2305 * HACK HACK HACK HACK 2306 */ 2307 2308 entry = start_entry; 2309 while (entry != &map->header && entry->start < end) { 2310 /* 2311 * If vm_fault_wire fails for any page we need to undo 2312 * what has been done. We decrement the wiring count 2313 * for those pages which have not yet been wired (now) 2314 * and unwire those that have (later). 2315 */ 2316 vm_offset_t save_start = entry->start; 2317 vm_offset_t save_end = entry->end; 2318 2319 if (entry->wired_count == 1) 2320 rv = vm_fault_wire(map, entry, FALSE); 2321 if (rv) { 2322 CLIP_CHECK_BACK(entry, save_start); 2323 for (;;) { 2324 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2325 entry->wired_count = 0; 2326 if (entry->end == save_end) 2327 break; 2328 entry = entry->next; 2329 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2330 } 2331 end = save_start; 2332 break; 2333 } 2334 CLIP_CHECK_FWD(entry, save_end); 2335 entry = entry->next; 2336 } 2337 2338 /* 2339 * If a failure occured undo everything by falling through 2340 * to the unwiring code. 'end' has already been adjusted 2341 * appropriately. 2342 */ 2343 if (rv) 2344 kmflags |= KM_PAGEABLE; 2345 2346 /* 2347 * start_entry is still IN_TRANSITION but may have been 2348 * clipped since vm_fault_wire() unlocks and relocks the 2349 * map. No matter how clipped it has gotten there should 2350 * be a fragment that is on our start boundary. 2351 */ 2352 CLIP_CHECK_BACK(start_entry, start); 2353 } 2354 2355 if (kmflags & KM_PAGEABLE) { 2356 /* 2357 * This is the unwiring case. We must first ensure that the 2358 * range to be unwired is really wired down. We know there 2359 * are no holes. 2360 */ 2361 entry = start_entry; 2362 while ((entry != &map->header) && (entry->start < end)) { 2363 if (entry->wired_count == 0) { 2364 rv = KERN_INVALID_ARGUMENT; 2365 goto done; 2366 } 2367 entry = entry->next; 2368 } 2369 2370 /* 2371 * Now decrement the wiring count for each region. If a region 2372 * becomes completely unwired, unwire its physical pages and 2373 * mappings. 2374 */ 2375 entry = start_entry; 2376 while ((entry != &map->header) && (entry->start < end)) { 2377 entry->wired_count--; 2378 if (entry->wired_count == 0) 2379 vm_fault_unwire(map, entry); 2380 entry = entry->next; 2381 } 2382 } 2383 done: 2384 vm_map_unclip_range(map, start_entry, start, real_end, 2385 &count, MAP_CLIP_NO_HOLES); 2386 map->timestamp++; 2387 vm_map_unlock(map); 2388 failure: 2389 if (kmflags & KM_KRESERVE) 2390 vm_map_entry_krelease(count); 2391 else 2392 vm_map_entry_release(count); 2393 return (rv); 2394 } 2395 2396 /* 2397 * Mark a newly allocated address range as wired but do not fault in 2398 * the pages. The caller is expected to load the pages into the object. 2399 * 2400 * The map must be locked on entry and will remain locked on return. 2401 * No other requirements. 2402 */ 2403 void 2404 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2405 int *countp) 2406 { 2407 vm_map_entry_t scan; 2408 vm_map_entry_t entry; 2409 2410 entry = vm_map_clip_range(map, addr, addr + size, 2411 countp, MAP_CLIP_NO_HOLES); 2412 for (scan = entry; 2413 scan != &map->header && scan->start < addr + size; 2414 scan = scan->next) { 2415 KKASSERT(entry->wired_count == 0); 2416 entry->wired_count = 1; 2417 } 2418 vm_map_unclip_range(map, entry, addr, addr + size, 2419 countp, MAP_CLIP_NO_HOLES); 2420 } 2421 2422 /* 2423 * Push any dirty cached pages in the address range to their pager. 2424 * If syncio is TRUE, dirty pages are written synchronously. 2425 * If invalidate is TRUE, any cached pages are freed as well. 2426 * 2427 * This routine is called by sys_msync() 2428 * 2429 * Returns an error if any part of the specified range is not mapped. 2430 * 2431 * No requirements. 2432 */ 2433 int 2434 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2435 boolean_t syncio, boolean_t invalidate) 2436 { 2437 vm_map_entry_t current; 2438 vm_map_entry_t entry; 2439 vm_size_t size; 2440 vm_object_t object; 2441 vm_ooffset_t offset; 2442 2443 vm_map_lock_read(map); 2444 VM_MAP_RANGE_CHECK(map, start, end); 2445 if (!vm_map_lookup_entry(map, start, &entry)) { 2446 vm_map_unlock_read(map); 2447 return (KERN_INVALID_ADDRESS); 2448 } 2449 /* 2450 * Make a first pass to check for holes. 2451 */ 2452 for (current = entry; current->start < end; current = current->next) { 2453 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2454 vm_map_unlock_read(map); 2455 return (KERN_INVALID_ARGUMENT); 2456 } 2457 if (end > current->end && 2458 (current->next == &map->header || 2459 current->end != current->next->start)) { 2460 vm_map_unlock_read(map); 2461 return (KERN_INVALID_ADDRESS); 2462 } 2463 } 2464 2465 if (invalidate) 2466 pmap_remove(vm_map_pmap(map), start, end); 2467 2468 /* 2469 * Make a second pass, cleaning/uncaching pages from the indicated 2470 * objects as we go. 2471 * 2472 * Hold vm_token to avoid blocking in vm_object_reference() 2473 */ 2474 lwkt_gettoken(&vm_token); 2475 lwkt_gettoken(&vmobj_token); 2476 2477 for (current = entry; current->start < end; current = current->next) { 2478 offset = current->offset + (start - current->start); 2479 size = (end <= current->end ? end : current->end) - start; 2480 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2481 vm_map_t smap; 2482 vm_map_entry_t tentry; 2483 vm_size_t tsize; 2484 2485 smap = current->object.sub_map; 2486 vm_map_lock_read(smap); 2487 vm_map_lookup_entry(smap, offset, &tentry); 2488 tsize = tentry->end - offset; 2489 if (tsize < size) 2490 size = tsize; 2491 object = tentry->object.vm_object; 2492 offset = tentry->offset + (offset - tentry->start); 2493 vm_map_unlock_read(smap); 2494 } else { 2495 object = current->object.vm_object; 2496 } 2497 /* 2498 * Note that there is absolutely no sense in writing out 2499 * anonymous objects, so we track down the vnode object 2500 * to write out. 2501 * We invalidate (remove) all pages from the address space 2502 * anyway, for semantic correctness. 2503 * 2504 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2505 * may start out with a NULL object. 2506 */ 2507 while (object && object->backing_object) { 2508 offset += object->backing_object_offset; 2509 object = object->backing_object; 2510 if (object->size < OFF_TO_IDX( offset + size)) 2511 size = IDX_TO_OFF(object->size) - offset; 2512 } 2513 if (object && (object->type == OBJT_VNODE) && 2514 (current->protection & VM_PROT_WRITE) && 2515 (object->flags & OBJ_NOMSYNC) == 0) { 2516 /* 2517 * Flush pages if writing is allowed, invalidate them 2518 * if invalidation requested. Pages undergoing I/O 2519 * will be ignored by vm_object_page_remove(). 2520 * 2521 * We cannot lock the vnode and then wait for paging 2522 * to complete without deadlocking against vm_fault. 2523 * Instead we simply call vm_object_page_remove() and 2524 * allow it to block internally on a page-by-page 2525 * basis when it encounters pages undergoing async 2526 * I/O. 2527 */ 2528 int flags; 2529 2530 vm_object_reference_locked(object); 2531 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2532 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2533 flags |= invalidate ? OBJPC_INVAL : 0; 2534 2535 /* 2536 * When operating on a virtual page table just 2537 * flush the whole object. XXX we probably ought 2538 * to 2539 */ 2540 switch(current->maptype) { 2541 case VM_MAPTYPE_NORMAL: 2542 vm_object_page_clean(object, 2543 OFF_TO_IDX(offset), 2544 OFF_TO_IDX(offset + size + PAGE_MASK), 2545 flags); 2546 break; 2547 case VM_MAPTYPE_VPAGETABLE: 2548 vm_object_page_clean(object, 0, 0, flags); 2549 break; 2550 } 2551 vn_unlock(((struct vnode *)object->handle)); 2552 vm_object_deallocate_locked(object); 2553 } 2554 if (object && invalidate && 2555 ((object->type == OBJT_VNODE) || 2556 (object->type == OBJT_DEVICE))) { 2557 int clean_only = 2558 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2559 vm_object_reference_locked(object); 2560 switch(current->maptype) { 2561 case VM_MAPTYPE_NORMAL: 2562 vm_object_page_remove(object, 2563 OFF_TO_IDX(offset), 2564 OFF_TO_IDX(offset + size + PAGE_MASK), 2565 clean_only); 2566 break; 2567 case VM_MAPTYPE_VPAGETABLE: 2568 vm_object_page_remove(object, 0, 0, clean_only); 2569 break; 2570 } 2571 vm_object_deallocate_locked(object); 2572 } 2573 start += size; 2574 } 2575 2576 lwkt_reltoken(&vmobj_token); 2577 lwkt_reltoken(&vm_token); 2578 vm_map_unlock_read(map); 2579 2580 return (KERN_SUCCESS); 2581 } 2582 2583 /* 2584 * Make the region specified by this entry pageable. 2585 * 2586 * The vm_map must be exclusively locked. 2587 */ 2588 static void 2589 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2590 { 2591 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2592 entry->wired_count = 0; 2593 vm_fault_unwire(map, entry); 2594 } 2595 2596 /* 2597 * Deallocate the given entry from the target map. 2598 * 2599 * The vm_map must be exclusively locked. 2600 */ 2601 static void 2602 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2603 { 2604 vm_map_entry_unlink(map, entry); 2605 map->size -= entry->end - entry->start; 2606 2607 switch(entry->maptype) { 2608 case VM_MAPTYPE_NORMAL: 2609 case VM_MAPTYPE_VPAGETABLE: 2610 vm_object_deallocate(entry->object.vm_object); 2611 break; 2612 default: 2613 break; 2614 } 2615 2616 vm_map_entry_dispose(map, entry, countp); 2617 } 2618 2619 /* 2620 * Deallocates the given address range from the target map. 2621 * 2622 * The vm_map must be exclusively locked. 2623 */ 2624 int 2625 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2626 { 2627 vm_object_t object; 2628 vm_map_entry_t entry; 2629 vm_map_entry_t first_entry; 2630 2631 ASSERT_VM_MAP_LOCKED(map); 2632 again: 2633 /* 2634 * Find the start of the region, and clip it. Set entry to point 2635 * at the first record containing the requested address or, if no 2636 * such record exists, the next record with a greater address. The 2637 * loop will run from this point until a record beyond the termination 2638 * address is encountered. 2639 * 2640 * map->hint must be adjusted to not point to anything we delete, 2641 * so set it to the entry prior to the one being deleted. 2642 * 2643 * GGG see other GGG comment. 2644 */ 2645 if (vm_map_lookup_entry(map, start, &first_entry)) { 2646 entry = first_entry; 2647 vm_map_clip_start(map, entry, start, countp); 2648 map->hint = entry->prev; /* possible problem XXX */ 2649 } else { 2650 map->hint = first_entry; /* possible problem XXX */ 2651 entry = first_entry->next; 2652 } 2653 2654 /* 2655 * If a hole opens up prior to the current first_free then 2656 * adjust first_free. As with map->hint, map->first_free 2657 * cannot be left set to anything we might delete. 2658 */ 2659 if (entry == &map->header) { 2660 map->first_free = &map->header; 2661 } else if (map->first_free->start >= start) { 2662 map->first_free = entry->prev; 2663 } 2664 2665 /* 2666 * Step through all entries in this region 2667 */ 2668 while ((entry != &map->header) && (entry->start < end)) { 2669 vm_map_entry_t next; 2670 vm_offset_t s, e; 2671 vm_pindex_t offidxstart, offidxend, count; 2672 2673 /* 2674 * If we hit an in-transition entry we have to sleep and 2675 * retry. It's easier (and not really slower) to just retry 2676 * since this case occurs so rarely and the hint is already 2677 * pointing at the right place. We have to reset the 2678 * start offset so as not to accidently delete an entry 2679 * another process just created in vacated space. 2680 */ 2681 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2682 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2683 start = entry->start; 2684 ++mycpu->gd_cnt.v_intrans_coll; 2685 ++mycpu->gd_cnt.v_intrans_wait; 2686 vm_map_transition_wait(map); 2687 goto again; 2688 } 2689 vm_map_clip_end(map, entry, end, countp); 2690 2691 s = entry->start; 2692 e = entry->end; 2693 next = entry->next; 2694 2695 offidxstart = OFF_TO_IDX(entry->offset); 2696 count = OFF_TO_IDX(e - s); 2697 object = entry->object.vm_object; 2698 2699 /* 2700 * Unwire before removing addresses from the pmap; otherwise, 2701 * unwiring will put the entries back in the pmap. 2702 */ 2703 if (entry->wired_count != 0) 2704 vm_map_entry_unwire(map, entry); 2705 2706 offidxend = offidxstart + count; 2707 2708 /* 2709 * Hold vm_token when manipulating vm_objects, 2710 * 2711 * Hold vmobj_token when potentially adding or removing 2712 * objects (collapse requires both). 2713 */ 2714 lwkt_gettoken(&vm_token); 2715 lwkt_gettoken(&vmobj_token); 2716 2717 if (object == &kernel_object) { 2718 vm_object_page_remove(object, offidxstart, 2719 offidxend, FALSE); 2720 } else { 2721 pmap_remove(map->pmap, s, e); 2722 2723 if (object != NULL && 2724 object->ref_count != 1 && 2725 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 2726 OBJ_ONEMAPPING && 2727 (object->type == OBJT_DEFAULT || 2728 object->type == OBJT_SWAP)) { 2729 vm_object_collapse(object); 2730 vm_object_page_remove(object, offidxstart, 2731 offidxend, FALSE); 2732 if (object->type == OBJT_SWAP) { 2733 swap_pager_freespace(object, 2734 offidxstart, 2735 count); 2736 } 2737 if (offidxend >= object->size && 2738 offidxstart < object->size) { 2739 object->size = offidxstart; 2740 } 2741 } 2742 } 2743 lwkt_reltoken(&vmobj_token); 2744 lwkt_reltoken(&vm_token); 2745 2746 /* 2747 * Delete the entry (which may delete the object) only after 2748 * removing all pmap entries pointing to its pages. 2749 * (Otherwise, its page frames may be reallocated, and any 2750 * modify bits will be set in the wrong object!) 2751 */ 2752 vm_map_entry_delete(map, entry, countp); 2753 entry = next; 2754 } 2755 return (KERN_SUCCESS); 2756 } 2757 2758 /* 2759 * Remove the given address range from the target map. 2760 * This is the exported form of vm_map_delete. 2761 * 2762 * No requirements. 2763 */ 2764 int 2765 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2766 { 2767 int result; 2768 int count; 2769 2770 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2771 vm_map_lock(map); 2772 VM_MAP_RANGE_CHECK(map, start, end); 2773 result = vm_map_delete(map, start, end, &count); 2774 vm_map_unlock(map); 2775 vm_map_entry_release(count); 2776 2777 return (result); 2778 } 2779 2780 /* 2781 * Assert that the target map allows the specified privilege on the 2782 * entire address region given. The entire region must be allocated. 2783 * 2784 * The caller must specify whether the vm_map is already locked or not. 2785 */ 2786 boolean_t 2787 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2788 vm_prot_t protection, boolean_t have_lock) 2789 { 2790 vm_map_entry_t entry; 2791 vm_map_entry_t tmp_entry; 2792 boolean_t result; 2793 2794 if (have_lock == FALSE) 2795 vm_map_lock_read(map); 2796 2797 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2798 if (have_lock == FALSE) 2799 vm_map_unlock_read(map); 2800 return (FALSE); 2801 } 2802 entry = tmp_entry; 2803 2804 result = TRUE; 2805 while (start < end) { 2806 if (entry == &map->header) { 2807 result = FALSE; 2808 break; 2809 } 2810 /* 2811 * No holes allowed! 2812 */ 2813 2814 if (start < entry->start) { 2815 result = FALSE; 2816 break; 2817 } 2818 /* 2819 * Check protection associated with entry. 2820 */ 2821 2822 if ((entry->protection & protection) != protection) { 2823 result = FALSE; 2824 break; 2825 } 2826 /* go to next entry */ 2827 2828 start = entry->end; 2829 entry = entry->next; 2830 } 2831 if (have_lock == FALSE) 2832 vm_map_unlock_read(map); 2833 return (result); 2834 } 2835 2836 /* 2837 * Split the pages in a map entry into a new object. This affords 2838 * easier removal of unused pages, and keeps object inheritance from 2839 * being a negative impact on memory usage. 2840 * 2841 * The vm_map must be exclusively locked. 2842 */ 2843 static void 2844 vm_map_split(vm_map_entry_t entry) 2845 { 2846 vm_page_t m; 2847 vm_object_t orig_object, new_object, source; 2848 vm_offset_t s, e; 2849 vm_pindex_t offidxstart, offidxend, idx; 2850 vm_size_t size; 2851 vm_ooffset_t offset; 2852 2853 orig_object = entry->object.vm_object; 2854 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2855 return; 2856 if (orig_object->ref_count <= 1) 2857 return; 2858 2859 offset = entry->offset; 2860 s = entry->start; 2861 e = entry->end; 2862 2863 offidxstart = OFF_TO_IDX(offset); 2864 offidxend = offidxstart + OFF_TO_IDX(e - s); 2865 size = offidxend - offidxstart; 2866 2867 switch(orig_object->type) { 2868 case OBJT_DEFAULT: 2869 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size), 2870 VM_PROT_ALL, 0); 2871 break; 2872 case OBJT_SWAP: 2873 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size), 2874 VM_PROT_ALL, 0); 2875 break; 2876 default: 2877 /* not reached */ 2878 new_object = NULL; 2879 KKASSERT(0); 2880 } 2881 if (new_object == NULL) 2882 return; 2883 2884 /* 2885 * vm_token required when manipulating vm_objects. 2886 */ 2887 lwkt_gettoken(&vm_token); 2888 lwkt_gettoken(&vmobj_token); 2889 2890 source = orig_object->backing_object; 2891 if (source != NULL) { 2892 /* Referenced by new_object */ 2893 vm_object_reference_locked(source); 2894 LIST_INSERT_HEAD(&source->shadow_head, 2895 new_object, shadow_list); 2896 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2897 new_object->backing_object_offset = 2898 orig_object->backing_object_offset + 2899 IDX_TO_OFF(offidxstart); 2900 new_object->backing_object = source; 2901 source->shadow_count++; 2902 source->generation++; 2903 } 2904 2905 for (idx = 0; idx < size; idx++) { 2906 vm_page_t m; 2907 2908 retry: 2909 m = vm_page_lookup(orig_object, offidxstart + idx); 2910 if (m == NULL) 2911 continue; 2912 2913 /* 2914 * We must wait for pending I/O to complete before we can 2915 * rename the page. 2916 * 2917 * We do not have to VM_PROT_NONE the page as mappings should 2918 * not be changed by this operation. 2919 */ 2920 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2921 goto retry; 2922 vm_page_busy(m); 2923 vm_page_rename(m, new_object, idx); 2924 /* page automatically made dirty by rename and cache handled */ 2925 vm_page_busy(m); 2926 } 2927 2928 if (orig_object->type == OBJT_SWAP) { 2929 vm_object_pip_add(orig_object, 1); 2930 /* 2931 * copy orig_object pages into new_object 2932 * and destroy unneeded pages in 2933 * shadow object. 2934 */ 2935 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2936 vm_object_pip_wakeup(orig_object); 2937 } 2938 2939 /* 2940 * Wakeup the pages we played with. No spl protection is needed 2941 * for a simple wakeup. 2942 */ 2943 for (idx = 0; idx < size; idx++) { 2944 m = vm_page_lookup(new_object, idx); 2945 if (m) 2946 vm_page_wakeup(m); 2947 } 2948 2949 entry->object.vm_object = new_object; 2950 entry->offset = 0LL; 2951 vm_object_deallocate_locked(orig_object); 2952 lwkt_reltoken(&vmobj_token); 2953 lwkt_reltoken(&vm_token); 2954 } 2955 2956 /* 2957 * Copies the contents of the source entry to the destination 2958 * entry. The entries *must* be aligned properly. 2959 * 2960 * The vm_map must be exclusively locked. 2961 * vm_token must be held 2962 */ 2963 static void 2964 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2965 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2966 { 2967 vm_object_t src_object; 2968 2969 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 2970 return; 2971 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 2972 return; 2973 2974 ASSERT_LWKT_TOKEN_HELD(&vm_token); 2975 lwkt_gettoken(&vmobj_token); /* required for collapse */ 2976 2977 if (src_entry->wired_count == 0) { 2978 /* 2979 * If the source entry is marked needs_copy, it is already 2980 * write-protected. 2981 */ 2982 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2983 pmap_protect(src_map->pmap, 2984 src_entry->start, 2985 src_entry->end, 2986 src_entry->protection & ~VM_PROT_WRITE); 2987 } 2988 2989 /* 2990 * Make a copy of the object. 2991 */ 2992 if ((src_object = src_entry->object.vm_object) != NULL) { 2993 if ((src_object->handle == NULL) && 2994 (src_object->type == OBJT_DEFAULT || 2995 src_object->type == OBJT_SWAP)) { 2996 vm_object_collapse(src_object); 2997 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2998 vm_map_split(src_entry); 2999 src_object = src_entry->object.vm_object; 3000 } 3001 } 3002 3003 vm_object_reference_locked(src_object); 3004 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3005 dst_entry->object.vm_object = src_object; 3006 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3007 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3008 dst_entry->offset = src_entry->offset; 3009 } else { 3010 dst_entry->object.vm_object = NULL; 3011 dst_entry->offset = 0; 3012 } 3013 3014 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3015 dst_entry->end - dst_entry->start, src_entry->start); 3016 } else { 3017 /* 3018 * Of course, wired down pages can't be set copy-on-write. 3019 * Cause wired pages to be copied into the new map by 3020 * simulating faults (the new pages are pageable) 3021 */ 3022 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3023 } 3024 lwkt_reltoken(&vmobj_token); 3025 } 3026 3027 /* 3028 * vmspace_fork: 3029 * Create a new process vmspace structure and vm_map 3030 * based on those of an existing process. The new map 3031 * is based on the old map, according to the inheritance 3032 * values on the regions in that map. 3033 * 3034 * The source map must not be locked. 3035 * No requirements. 3036 */ 3037 struct vmspace * 3038 vmspace_fork(struct vmspace *vm1) 3039 { 3040 struct vmspace *vm2; 3041 vm_map_t old_map = &vm1->vm_map; 3042 vm_map_t new_map; 3043 vm_map_entry_t old_entry; 3044 vm_map_entry_t new_entry; 3045 vm_object_t object; 3046 int count; 3047 3048 lwkt_gettoken(&vm_token); 3049 lwkt_gettoken(&vmspace_token); 3050 lwkt_gettoken(&vmobj_token); 3051 vm_map_lock(old_map); 3052 old_map->infork = 1; 3053 3054 /* 3055 * XXX Note: upcalls are not copied. 3056 */ 3057 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3058 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3059 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3060 new_map = &vm2->vm_map; /* XXX */ 3061 new_map->timestamp = 1; 3062 3063 vm_map_lock(new_map); 3064 3065 count = 0; 3066 old_entry = old_map->header.next; 3067 while (old_entry != &old_map->header) { 3068 ++count; 3069 old_entry = old_entry->next; 3070 } 3071 3072 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3073 3074 old_entry = old_map->header.next; 3075 while (old_entry != &old_map->header) { 3076 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 3077 panic("vm_map_fork: encountered a submap"); 3078 3079 switch (old_entry->inheritance) { 3080 case VM_INHERIT_NONE: 3081 break; 3082 case VM_INHERIT_SHARE: 3083 /* 3084 * Clone the entry, creating the shared object if 3085 * necessary. 3086 */ 3087 object = old_entry->object.vm_object; 3088 if (object == NULL) { 3089 vm_map_entry_allocate_object(old_entry); 3090 object = old_entry->object.vm_object; 3091 } 3092 3093 /* 3094 * Add the reference before calling vm_map_entry_shadow 3095 * to insure that a shadow object is created. 3096 */ 3097 vm_object_reference_locked(object); 3098 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3099 vm_map_entry_shadow(old_entry); 3100 /* Transfer the second reference too. */ 3101 vm_object_reference_locked( 3102 old_entry->object.vm_object); 3103 vm_object_deallocate_locked(object); 3104 object = old_entry->object.vm_object; 3105 } 3106 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3107 3108 /* 3109 * Clone the entry, referencing the shared object. 3110 */ 3111 new_entry = vm_map_entry_create(new_map, &count); 3112 *new_entry = *old_entry; 3113 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3114 new_entry->wired_count = 0; 3115 3116 /* 3117 * Insert the entry into the new map -- we know we're 3118 * inserting at the end of the new map. 3119 */ 3120 3121 vm_map_entry_link(new_map, new_map->header.prev, 3122 new_entry); 3123 3124 /* 3125 * Update the physical map 3126 */ 3127 pmap_copy(new_map->pmap, old_map->pmap, 3128 new_entry->start, 3129 (old_entry->end - old_entry->start), 3130 old_entry->start); 3131 break; 3132 case VM_INHERIT_COPY: 3133 /* 3134 * Clone the entry and link into the map. 3135 */ 3136 new_entry = vm_map_entry_create(new_map, &count); 3137 *new_entry = *old_entry; 3138 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3139 new_entry->wired_count = 0; 3140 new_entry->object.vm_object = NULL; 3141 vm_map_entry_link(new_map, new_map->header.prev, 3142 new_entry); 3143 vm_map_copy_entry(old_map, new_map, old_entry, 3144 new_entry); 3145 break; 3146 } 3147 old_entry = old_entry->next; 3148 } 3149 3150 new_map->size = old_map->size; 3151 old_map->infork = 0; 3152 vm_map_unlock(old_map); 3153 vm_map_unlock(new_map); 3154 vm_map_entry_release(count); 3155 3156 lwkt_reltoken(&vmobj_token); 3157 lwkt_reltoken(&vmspace_token); 3158 lwkt_reltoken(&vm_token); 3159 3160 return (vm2); 3161 } 3162 3163 /* 3164 * Create an auto-grow stack entry 3165 * 3166 * No requirements. 3167 */ 3168 int 3169 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3170 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3171 { 3172 vm_map_entry_t prev_entry; 3173 vm_map_entry_t new_stack_entry; 3174 vm_size_t init_ssize; 3175 int rv; 3176 int count; 3177 vm_offset_t tmpaddr; 3178 3179 cow |= MAP_IS_STACK; 3180 3181 if (max_ssize < sgrowsiz) 3182 init_ssize = max_ssize; 3183 else 3184 init_ssize = sgrowsiz; 3185 3186 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3187 vm_map_lock(map); 3188 3189 /* 3190 * Find space for the mapping 3191 */ 3192 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3193 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3194 flags, &tmpaddr)) { 3195 vm_map_unlock(map); 3196 vm_map_entry_release(count); 3197 return (KERN_NO_SPACE); 3198 } 3199 addrbos = tmpaddr; 3200 } 3201 3202 /* If addr is already mapped, no go */ 3203 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3204 vm_map_unlock(map); 3205 vm_map_entry_release(count); 3206 return (KERN_NO_SPACE); 3207 } 3208 3209 #if 0 3210 /* XXX already handled by kern_mmap() */ 3211 /* If we would blow our VMEM resource limit, no go */ 3212 if (map->size + init_ssize > 3213 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3214 vm_map_unlock(map); 3215 vm_map_entry_release(count); 3216 return (KERN_NO_SPACE); 3217 } 3218 #endif 3219 3220 /* 3221 * If we can't accomodate max_ssize in the current mapping, 3222 * no go. However, we need to be aware that subsequent user 3223 * mappings might map into the space we have reserved for 3224 * stack, and currently this space is not protected. 3225 * 3226 * Hopefully we will at least detect this condition 3227 * when we try to grow the stack. 3228 */ 3229 if ((prev_entry->next != &map->header) && 3230 (prev_entry->next->start < addrbos + max_ssize)) { 3231 vm_map_unlock(map); 3232 vm_map_entry_release(count); 3233 return (KERN_NO_SPACE); 3234 } 3235 3236 /* 3237 * We initially map a stack of only init_ssize. We will 3238 * grow as needed later. Since this is to be a grow 3239 * down stack, we map at the top of the range. 3240 * 3241 * Note: we would normally expect prot and max to be 3242 * VM_PROT_ALL, and cow to be 0. Possibly we should 3243 * eliminate these as input parameters, and just 3244 * pass these values here in the insert call. 3245 */ 3246 rv = vm_map_insert(map, &count, 3247 NULL, 0, addrbos + max_ssize - init_ssize, 3248 addrbos + max_ssize, 3249 VM_MAPTYPE_NORMAL, 3250 prot, max, 3251 cow); 3252 3253 /* Now set the avail_ssize amount */ 3254 if (rv == KERN_SUCCESS) { 3255 if (prev_entry != &map->header) 3256 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3257 new_stack_entry = prev_entry->next; 3258 if (new_stack_entry->end != addrbos + max_ssize || 3259 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3260 panic ("Bad entry start/end for new stack entry"); 3261 else 3262 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3263 } 3264 3265 vm_map_unlock(map); 3266 vm_map_entry_release(count); 3267 return (rv); 3268 } 3269 3270 /* 3271 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3272 * desired address is already mapped, or if we successfully grow 3273 * the stack. Also returns KERN_SUCCESS if addr is outside the 3274 * stack range (this is strange, but preserves compatibility with 3275 * the grow function in vm_machdep.c). 3276 * 3277 * No requirements. 3278 */ 3279 int 3280 vm_map_growstack (struct proc *p, vm_offset_t addr) 3281 { 3282 vm_map_entry_t prev_entry; 3283 vm_map_entry_t stack_entry; 3284 vm_map_entry_t new_stack_entry; 3285 struct vmspace *vm = p->p_vmspace; 3286 vm_map_t map = &vm->vm_map; 3287 vm_offset_t end; 3288 int grow_amount; 3289 int rv = KERN_SUCCESS; 3290 int is_procstack; 3291 int use_read_lock = 1; 3292 int count; 3293 3294 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3295 Retry: 3296 if (use_read_lock) 3297 vm_map_lock_read(map); 3298 else 3299 vm_map_lock(map); 3300 3301 /* If addr is already in the entry range, no need to grow.*/ 3302 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3303 goto done; 3304 3305 if ((stack_entry = prev_entry->next) == &map->header) 3306 goto done; 3307 if (prev_entry == &map->header) 3308 end = stack_entry->start - stack_entry->aux.avail_ssize; 3309 else 3310 end = prev_entry->end; 3311 3312 /* 3313 * This next test mimics the old grow function in vm_machdep.c. 3314 * It really doesn't quite make sense, but we do it anyway 3315 * for compatibility. 3316 * 3317 * If not growable stack, return success. This signals the 3318 * caller to proceed as he would normally with normal vm. 3319 */ 3320 if (stack_entry->aux.avail_ssize < 1 || 3321 addr >= stack_entry->start || 3322 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3323 goto done; 3324 } 3325 3326 /* Find the minimum grow amount */ 3327 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3328 if (grow_amount > stack_entry->aux.avail_ssize) { 3329 rv = KERN_NO_SPACE; 3330 goto done; 3331 } 3332 3333 /* 3334 * If there is no longer enough space between the entries 3335 * nogo, and adjust the available space. Note: this 3336 * should only happen if the user has mapped into the 3337 * stack area after the stack was created, and is 3338 * probably an error. 3339 * 3340 * This also effectively destroys any guard page the user 3341 * might have intended by limiting the stack size. 3342 */ 3343 if (grow_amount > stack_entry->start - end) { 3344 if (use_read_lock && vm_map_lock_upgrade(map)) { 3345 use_read_lock = 0; 3346 goto Retry; 3347 } 3348 use_read_lock = 0; 3349 stack_entry->aux.avail_ssize = stack_entry->start - end; 3350 rv = KERN_NO_SPACE; 3351 goto done; 3352 } 3353 3354 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3355 3356 /* If this is the main process stack, see if we're over the 3357 * stack limit. 3358 */ 3359 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3360 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3361 rv = KERN_NO_SPACE; 3362 goto done; 3363 } 3364 3365 /* Round up the grow amount modulo SGROWSIZ */ 3366 grow_amount = roundup (grow_amount, sgrowsiz); 3367 if (grow_amount > stack_entry->aux.avail_ssize) { 3368 grow_amount = stack_entry->aux.avail_ssize; 3369 } 3370 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3371 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3372 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3373 ctob(vm->vm_ssize); 3374 } 3375 3376 /* If we would blow our VMEM resource limit, no go */ 3377 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3378 rv = KERN_NO_SPACE; 3379 goto done; 3380 } 3381 3382 if (use_read_lock && vm_map_lock_upgrade(map)) { 3383 use_read_lock = 0; 3384 goto Retry; 3385 } 3386 use_read_lock = 0; 3387 3388 /* Get the preliminary new entry start value */ 3389 addr = stack_entry->start - grow_amount; 3390 3391 /* If this puts us into the previous entry, cut back our growth 3392 * to the available space. Also, see the note above. 3393 */ 3394 if (addr < end) { 3395 stack_entry->aux.avail_ssize = stack_entry->start - end; 3396 addr = end; 3397 } 3398 3399 rv = vm_map_insert(map, &count, 3400 NULL, 0, addr, stack_entry->start, 3401 VM_MAPTYPE_NORMAL, 3402 VM_PROT_ALL, VM_PROT_ALL, 3403 0); 3404 3405 /* Adjust the available stack space by the amount we grew. */ 3406 if (rv == KERN_SUCCESS) { 3407 if (prev_entry != &map->header) 3408 vm_map_clip_end(map, prev_entry, addr, &count); 3409 new_stack_entry = prev_entry->next; 3410 if (new_stack_entry->end != stack_entry->start || 3411 new_stack_entry->start != addr) 3412 panic ("Bad stack grow start/end in new stack entry"); 3413 else { 3414 new_stack_entry->aux.avail_ssize = 3415 stack_entry->aux.avail_ssize - 3416 (new_stack_entry->end - new_stack_entry->start); 3417 if (is_procstack) 3418 vm->vm_ssize += btoc(new_stack_entry->end - 3419 new_stack_entry->start); 3420 } 3421 3422 if (map->flags & MAP_WIREFUTURE) 3423 vm_map_unwire(map, new_stack_entry->start, 3424 new_stack_entry->end, FALSE); 3425 } 3426 3427 done: 3428 if (use_read_lock) 3429 vm_map_unlock_read(map); 3430 else 3431 vm_map_unlock(map); 3432 vm_map_entry_release(count); 3433 return (rv); 3434 } 3435 3436 /* 3437 * Unshare the specified VM space for exec. If other processes are 3438 * mapped to it, then create a new one. The new vmspace is null. 3439 * 3440 * No requirements. 3441 */ 3442 void 3443 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3444 { 3445 struct vmspace *oldvmspace = p->p_vmspace; 3446 struct vmspace *newvmspace; 3447 vm_map_t map = &p->p_vmspace->vm_map; 3448 3449 /* 3450 * If we are execing a resident vmspace we fork it, otherwise 3451 * we create a new vmspace. Note that exitingcnt and upcalls 3452 * are not copied to the new vmspace. 3453 */ 3454 lwkt_gettoken(&vmspace_token); 3455 if (vmcopy) { 3456 newvmspace = vmspace_fork(vmcopy); 3457 } else { 3458 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3459 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3460 (caddr_t)&oldvmspace->vm_endcopy - 3461 (caddr_t)&oldvmspace->vm_startcopy); 3462 } 3463 3464 /* 3465 * Finish initializing the vmspace before assigning it 3466 * to the process. The vmspace will become the current vmspace 3467 * if p == curproc. 3468 */ 3469 pmap_pinit2(vmspace_pmap(newvmspace)); 3470 pmap_replacevm(p, newvmspace, 0); 3471 sysref_put(&oldvmspace->vm_sysref); 3472 lwkt_reltoken(&vmspace_token); 3473 } 3474 3475 /* 3476 * Unshare the specified VM space for forcing COW. This 3477 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3478 * 3479 * The exitingcnt test is not strictly necessary but has been 3480 * included for code sanity (to make the code a bit more deterministic). 3481 */ 3482 void 3483 vmspace_unshare(struct proc *p) 3484 { 3485 struct vmspace *oldvmspace = p->p_vmspace; 3486 struct vmspace *newvmspace; 3487 3488 lwkt_gettoken(&vmspace_token); 3489 if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3490 return; 3491 newvmspace = vmspace_fork(oldvmspace); 3492 pmap_pinit2(vmspace_pmap(newvmspace)); 3493 pmap_replacevm(p, newvmspace, 0); 3494 sysref_put(&oldvmspace->vm_sysref); 3495 lwkt_reltoken(&vmspace_token); 3496 } 3497 3498 /* 3499 * vm_map_hint: return the beginning of the best area suitable for 3500 * creating a new mapping with "prot" protection. 3501 * 3502 * No requirements. 3503 */ 3504 vm_offset_t 3505 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot) 3506 { 3507 struct vmspace *vms = p->p_vmspace; 3508 3509 if (!randomize_mmap) { 3510 /* 3511 * Set a reasonable start point for the hint if it was 3512 * not specified or if it falls within the heap space. 3513 * Hinted mmap()s do not allocate out of the heap space. 3514 */ 3515 if (addr == 0 || 3516 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 3517 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) { 3518 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz); 3519 } 3520 3521 return addr; 3522 } 3523 3524 if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr) 3525 return addr; 3526 3527 #ifdef notyet 3528 #ifdef __i386__ 3529 /* 3530 * If executable skip first two pages, otherwise start 3531 * after data + heap region. 3532 */ 3533 if ((prot & VM_PROT_EXECUTE) && 3534 ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) { 3535 addr = (PAGE_SIZE * 2) + 3536 (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1)); 3537 return (round_page(addr)); 3538 } 3539 #endif /* __i386__ */ 3540 #endif /* notyet */ 3541 3542 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ; 3543 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1); 3544 3545 return (round_page(addr)); 3546 } 3547 3548 /* 3549 * Finds the VM object, offset, and protection for a given virtual address 3550 * in the specified map, assuming a page fault of the type specified. 3551 * 3552 * Leaves the map in question locked for read; return values are guaranteed 3553 * until a vm_map_lookup_done call is performed. Note that the map argument 3554 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 3555 * 3556 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 3557 * that fast. 3558 * 3559 * If a lookup is requested with "write protection" specified, the map may 3560 * be changed to perform virtual copying operations, although the data 3561 * referenced will remain the same. 3562 * 3563 * No requirements. 3564 */ 3565 int 3566 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3567 vm_offset_t vaddr, 3568 vm_prot_t fault_typea, 3569 vm_map_entry_t *out_entry, /* OUT */ 3570 vm_object_t *object, /* OUT */ 3571 vm_pindex_t *pindex, /* OUT */ 3572 vm_prot_t *out_prot, /* OUT */ 3573 boolean_t *wired) /* OUT */ 3574 { 3575 vm_map_entry_t entry; 3576 vm_map_t map = *var_map; 3577 vm_prot_t prot; 3578 vm_prot_t fault_type = fault_typea; 3579 int use_read_lock = 1; 3580 int rv = KERN_SUCCESS; 3581 3582 RetryLookup: 3583 if (use_read_lock) 3584 vm_map_lock_read(map); 3585 else 3586 vm_map_lock(map); 3587 3588 /* 3589 * If the map has an interesting hint, try it before calling full 3590 * blown lookup routine. 3591 */ 3592 entry = map->hint; 3593 *out_entry = entry; 3594 3595 if ((entry == &map->header) || 3596 (vaddr < entry->start) || (vaddr >= entry->end)) { 3597 vm_map_entry_t tmp_entry; 3598 3599 /* 3600 * Entry was either not a valid hint, or the vaddr was not 3601 * contained in the entry, so do a full lookup. 3602 */ 3603 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3604 rv = KERN_INVALID_ADDRESS; 3605 goto done; 3606 } 3607 3608 entry = tmp_entry; 3609 *out_entry = entry; 3610 } 3611 3612 /* 3613 * Handle submaps. 3614 */ 3615 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3616 vm_map_t old_map = map; 3617 3618 *var_map = map = entry->object.sub_map; 3619 if (use_read_lock) 3620 vm_map_unlock_read(old_map); 3621 else 3622 vm_map_unlock(old_map); 3623 use_read_lock = 1; 3624 goto RetryLookup; 3625 } 3626 3627 /* 3628 * Check whether this task is allowed to have this page. 3629 * Note the special case for MAP_ENTRY_COW 3630 * pages with an override. This is to implement a forced 3631 * COW for debuggers. 3632 */ 3633 3634 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3635 prot = entry->max_protection; 3636 else 3637 prot = entry->protection; 3638 3639 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3640 if ((fault_type & prot) != fault_type) { 3641 rv = KERN_PROTECTION_FAILURE; 3642 goto done; 3643 } 3644 3645 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3646 (entry->eflags & MAP_ENTRY_COW) && 3647 (fault_type & VM_PROT_WRITE) && 3648 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3649 rv = KERN_PROTECTION_FAILURE; 3650 goto done; 3651 } 3652 3653 /* 3654 * If this page is not pageable, we have to get it for all possible 3655 * accesses. 3656 */ 3657 *wired = (entry->wired_count != 0); 3658 if (*wired) 3659 prot = fault_type = entry->protection; 3660 3661 /* 3662 * Virtual page tables may need to update the accessed (A) bit 3663 * in a page table entry. Upgrade the fault to a write fault for 3664 * that case if the map will support it. If the map does not support 3665 * it the page table entry simply will not be updated. 3666 */ 3667 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3668 if (prot & VM_PROT_WRITE) 3669 fault_type |= VM_PROT_WRITE; 3670 } 3671 3672 /* 3673 * If the entry was copy-on-write, we either ... 3674 */ 3675 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3676 /* 3677 * If we want to write the page, we may as well handle that 3678 * now since we've got the map locked. 3679 * 3680 * If we don't need to write the page, we just demote the 3681 * permissions allowed. 3682 */ 3683 3684 if (fault_type & VM_PROT_WRITE) { 3685 /* 3686 * Make a new object, and place it in the object 3687 * chain. Note that no new references have appeared 3688 * -- one just moved from the map to the new 3689 * object. 3690 */ 3691 3692 if (use_read_lock && vm_map_lock_upgrade(map)) { 3693 use_read_lock = 0; 3694 goto RetryLookup; 3695 } 3696 use_read_lock = 0; 3697 3698 vm_map_entry_shadow(entry); 3699 } else { 3700 /* 3701 * We're attempting to read a copy-on-write page -- 3702 * don't allow writes. 3703 */ 3704 3705 prot &= ~VM_PROT_WRITE; 3706 } 3707 } 3708 3709 /* 3710 * Create an object if necessary. 3711 */ 3712 if (entry->object.vm_object == NULL && 3713 !map->system_map) { 3714 if (use_read_lock && vm_map_lock_upgrade(map)) { 3715 use_read_lock = 0; 3716 goto RetryLookup; 3717 } 3718 use_read_lock = 0; 3719 vm_map_entry_allocate_object(entry); 3720 } 3721 3722 /* 3723 * Return the object/offset from this entry. If the entry was 3724 * copy-on-write or empty, it has been fixed up. 3725 */ 3726 3727 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3728 *object = entry->object.vm_object; 3729 3730 /* 3731 * Return whether this is the only map sharing this data. On 3732 * success we return with a read lock held on the map. On failure 3733 * we return with the map unlocked. 3734 */ 3735 *out_prot = prot; 3736 done: 3737 if (rv == KERN_SUCCESS) { 3738 if (use_read_lock == 0) 3739 vm_map_lock_downgrade(map); 3740 } else if (use_read_lock) { 3741 vm_map_unlock_read(map); 3742 } else { 3743 vm_map_unlock(map); 3744 } 3745 return (rv); 3746 } 3747 3748 /* 3749 * Releases locks acquired by a vm_map_lookup() 3750 * (according to the handle returned by that lookup). 3751 * 3752 * No other requirements. 3753 */ 3754 void 3755 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3756 { 3757 /* 3758 * Unlock the main-level map 3759 */ 3760 vm_map_unlock_read(map); 3761 if (count) 3762 vm_map_entry_release(count); 3763 } 3764 3765 #include "opt_ddb.h" 3766 #ifdef DDB 3767 #include <sys/kernel.h> 3768 3769 #include <ddb/ddb.h> 3770 3771 /* 3772 * Debugging only 3773 */ 3774 DB_SHOW_COMMAND(map, vm_map_print) 3775 { 3776 static int nlines; 3777 /* XXX convert args. */ 3778 vm_map_t map = (vm_map_t)addr; 3779 boolean_t full = have_addr; 3780 3781 vm_map_entry_t entry; 3782 3783 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3784 (void *)map, 3785 (void *)map->pmap, map->nentries, map->timestamp); 3786 nlines++; 3787 3788 if (!full && db_indent) 3789 return; 3790 3791 db_indent += 2; 3792 for (entry = map->header.next; entry != &map->header; 3793 entry = entry->next) { 3794 db_iprintf("map entry %p: start=%p, end=%p\n", 3795 (void *)entry, (void *)entry->start, (void *)entry->end); 3796 nlines++; 3797 { 3798 static char *inheritance_name[4] = 3799 {"share", "copy", "none", "donate_copy"}; 3800 3801 db_iprintf(" prot=%x/%x/%s", 3802 entry->protection, 3803 entry->max_protection, 3804 inheritance_name[(int)(unsigned char)entry->inheritance]); 3805 if (entry->wired_count != 0) 3806 db_printf(", wired"); 3807 } 3808 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3809 /* XXX no %qd in kernel. Truncate entry->offset. */ 3810 db_printf(", share=%p, offset=0x%lx\n", 3811 (void *)entry->object.sub_map, 3812 (long)entry->offset); 3813 nlines++; 3814 if ((entry->prev == &map->header) || 3815 (entry->prev->object.sub_map != 3816 entry->object.sub_map)) { 3817 db_indent += 2; 3818 vm_map_print((db_expr_t)(intptr_t) 3819 entry->object.sub_map, 3820 full, 0, NULL); 3821 db_indent -= 2; 3822 } 3823 } else { 3824 /* XXX no %qd in kernel. Truncate entry->offset. */ 3825 db_printf(", object=%p, offset=0x%lx", 3826 (void *)entry->object.vm_object, 3827 (long)entry->offset); 3828 if (entry->eflags & MAP_ENTRY_COW) 3829 db_printf(", copy (%s)", 3830 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3831 db_printf("\n"); 3832 nlines++; 3833 3834 if ((entry->prev == &map->header) || 3835 (entry->prev->object.vm_object != 3836 entry->object.vm_object)) { 3837 db_indent += 2; 3838 vm_object_print((db_expr_t)(intptr_t) 3839 entry->object.vm_object, 3840 full, 0, NULL); 3841 nlines += 4; 3842 db_indent -= 2; 3843 } 3844 } 3845 } 3846 db_indent -= 2; 3847 if (db_indent == 0) 3848 nlines = 0; 3849 } 3850 3851 /* 3852 * Debugging only 3853 */ 3854 DB_SHOW_COMMAND(procvm, procvm) 3855 { 3856 struct proc *p; 3857 3858 if (have_addr) { 3859 p = (struct proc *) addr; 3860 } else { 3861 p = curproc; 3862 } 3863 3864 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3865 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3866 (void *)vmspace_pmap(p->p_vmspace)); 3867 3868 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3869 } 3870 3871 #endif /* DDB */ 3872