1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.32 2004/08/17 18:57:36 dillon Exp $ 66 */ 67 68 /* 69 * Virtual memory mapping module. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/lock.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 #include <sys/vnode.h> 79 #include <sys/resourcevar.h> 80 #include <sys/shm.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/vm_zone.h> 93 94 #include <sys/thread2.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a single hint is used to speed up lookups. 106 * 107 * Since portions of maps are specified by start/end addresses, 108 * which may not align with existing map entries, all 109 * routines merely "clip" entries to these start/end values. 110 * [That is, an entry is split into two, bordering at a 111 * start or end value.] Note that these clippings may not 112 * always be necessary (as the two resulting entries are then 113 * not changed); however, the clipping is done for convenience. 114 * 115 * As mentioned above, virtual copy operations are performed 116 * by copying VM object references from one map to 117 * another, and then marking both regions as copy-on-write. 118 */ 119 120 /* 121 * vm_map_startup: 122 * 123 * Initialize the vm_map module. Must be called before 124 * any other vm_map routines. 125 * 126 * Map and entry structures are allocated from the general 127 * purpose memory pool with some exceptions: 128 * 129 * - The kernel map and kmem submap are allocated statically. 130 * - Kernel map entries are allocated out of a static pool. 131 * 132 * These restrictions are necessary since malloc() uses the 133 * maps and requires map entries. 134 */ 135 136 static struct vm_zone mapentzone_store, mapzone_store; 137 static vm_zone_t mapentzone, mapzone, vmspace_zone; 138 static struct vm_object mapentobj, mapobj; 139 140 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 141 static struct vm_map map_init[MAX_KMAP]; 142 143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 150 vm_map_entry_t); 151 static void vm_map_split (vm_map_entry_t); 152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 153 154 void 155 vm_map_startup(void) 156 { 157 mapzone = &mapzone_store; 158 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 159 map_init, MAX_KMAP); 160 mapentzone = &mapentzone_store; 161 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 162 map_entry_init, MAX_MAPENT); 163 } 164 165 /* 166 * Allocate a vmspace structure, including a vm_map and pmap, 167 * and initialize those structures. The refcnt is set to 1. 168 * The remaining fields must be initialized by the caller. 169 */ 170 struct vmspace * 171 vmspace_alloc(vm_offset_t min, vm_offset_t max) 172 { 173 struct vmspace *vm; 174 175 vm = zalloc(vmspace_zone); 176 vm_map_init(&vm->vm_map, min, max); 177 pmap_pinit(vmspace_pmap(vm)); 178 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 179 vm->vm_refcnt = 1; 180 vm->vm_shm = NULL; 181 vm->vm_exitingcnt = 0; 182 return (vm); 183 } 184 185 void 186 vm_init2(void) 187 { 188 zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1); 189 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 190 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 191 pmap_init2(); 192 vm_object_init2(); 193 } 194 195 static __inline void 196 vmspace_dofree(struct vmspace *vm) 197 { 198 int count; 199 200 /* 201 * Make sure any SysV shm is freed, it might not have in 202 * exit1() 203 */ 204 shmexit(vm); 205 206 KKASSERT(vm->vm_upcalls == NULL); 207 208 /* 209 * Lock the map, to wait out all other references to it. 210 * Delete all of the mappings and pages they hold, then call 211 * the pmap module to reclaim anything left. 212 */ 213 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 214 vm_map_lock(&vm->vm_map); 215 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 216 vm->vm_map.max_offset, &count); 217 vm_map_unlock(&vm->vm_map); 218 vm_map_entry_release(count); 219 220 pmap_release(vmspace_pmap(vm)); 221 zfree(vmspace_zone, vm); 222 } 223 224 void 225 vmspace_free(struct vmspace *vm) 226 { 227 if (vm->vm_refcnt == 0) 228 panic("vmspace_free: attempt to free already freed vmspace"); 229 230 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 231 vmspace_dofree(vm); 232 } 233 234 void 235 vmspace_exitfree(struct proc *p) 236 { 237 struct vmspace *vm; 238 239 vm = p->p_vmspace; 240 p->p_vmspace = NULL; 241 242 /* 243 * cleanup by parent process wait()ing on exiting child. vm_refcnt 244 * may not be 0 (e.g. fork() and child exits without exec()ing). 245 * exitingcnt may increment above 0 and drop back down to zero 246 * several times while vm_refcnt is held non-zero. vm_refcnt 247 * may also increment above 0 and drop back down to zero several 248 * times while vm_exitingcnt is held non-zero. 249 * 250 * The last wait on the exiting child's vmspace will clean up 251 * the remainder of the vmspace. 252 */ 253 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 254 vmspace_dofree(vm); 255 } 256 257 /* 258 * vmspace_swap_count() - count the approximate swap useage in pages for a 259 * vmspace. 260 * 261 * Swap useage is determined by taking the proportional swap used by 262 * VM objects backing the VM map. To make up for fractional losses, 263 * if the VM object has any swap use at all the associated map entries 264 * count for at least 1 swap page. 265 */ 266 int 267 vmspace_swap_count(struct vmspace *vmspace) 268 { 269 vm_map_t map = &vmspace->vm_map; 270 vm_map_entry_t cur; 271 int count = 0; 272 273 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 274 vm_object_t object; 275 276 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 277 (object = cur->object.vm_object) != NULL && 278 object->type == OBJT_SWAP 279 ) { 280 int n = (cur->end - cur->start) / PAGE_SIZE; 281 282 if (object->un_pager.swp.swp_bcount) { 283 count += object->un_pager.swp.swp_bcount * 284 SWAP_META_PAGES * n / object->size + 1; 285 } 286 } 287 } 288 return(count); 289 } 290 291 292 /* 293 * vm_map_create: 294 * 295 * Creates and returns a new empty VM map with 296 * the given physical map structure, and having 297 * the given lower and upper address bounds. 298 */ 299 vm_map_t 300 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 301 { 302 vm_map_t result; 303 304 result = zalloc(mapzone); 305 vm_map_init(result, min, max); 306 result->pmap = pmap; 307 return (result); 308 } 309 310 /* 311 * Initialize an existing vm_map structure 312 * such as that in the vmspace structure. 313 * The pmap is set elsewhere. 314 */ 315 void 316 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max) 317 { 318 map->header.next = map->header.prev = &map->header; 319 map->nentries = 0; 320 map->size = 0; 321 map->system_map = 0; 322 map->infork = 0; 323 map->min_offset = min; 324 map->max_offset = max; 325 map->first_free = &map->header; 326 map->hint = &map->header; 327 map->timestamp = 0; 328 lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE); 329 } 330 331 /* 332 * vm_map_entry_cpu_init: 333 * 334 * Set an initial negative count so the first attempt to reserve 335 * space preloads a bunch of vm_map_entry's for this cpu. This 336 * routine is called in early boot so we cannot just call 337 * vm_map_entry_reserve(). 338 * 339 * May be called for a gd other then mycpu. 340 */ 341 void 342 vm_map_entry_reserve_cpu_init(globaldata_t gd) 343 { 344 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 345 } 346 347 /* 348 * vm_map_entry_reserve: 349 * 350 * Reserves vm_map_entry structures so code later on can manipulate 351 * map_entry structures within a locked map without blocking trying 352 * to allocate a new vm_map_entry. 353 */ 354 int 355 vm_map_entry_reserve(int count) 356 { 357 struct globaldata *gd = mycpu; 358 vm_map_entry_t entry; 359 360 crit_enter(); 361 362 /* 363 * Make sure we have enough structures in gd_vme_base to handle 364 * the reservation request. 365 */ 366 while (gd->gd_vme_avail < count) { 367 entry = zalloc(mapentzone); 368 entry->next = gd->gd_vme_base; 369 gd->gd_vme_base = entry; 370 ++gd->gd_vme_avail; 371 } 372 gd->gd_vme_avail -= count; 373 crit_exit(); 374 return(count); 375 } 376 377 /* 378 * vm_map_entry_release: 379 * 380 * Releases previously reserved vm_map_entry structures that were not 381 * used. If we have too much junk in our per-cpu cache clean some of 382 * it out. 383 */ 384 void 385 vm_map_entry_release(int count) 386 { 387 struct globaldata *gd = mycpu; 388 vm_map_entry_t entry; 389 390 crit_enter(); 391 gd->gd_vme_avail += count; 392 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 393 entry = gd->gd_vme_base; 394 KKASSERT(entry != NULL); 395 gd->gd_vme_base = entry->next; 396 --gd->gd_vme_avail; 397 crit_exit(); 398 zfree(mapentzone, entry); 399 crit_enter(); 400 } 401 crit_exit(); 402 } 403 404 /* 405 * vm_map_entry_kreserve: 406 * 407 * Reserve map entry structures for use in kernel_map or (if it exists) 408 * kmem_map. These entries have *ALREADY* been reserved on a per-cpu 409 * basis when the map was inited. This function is used by zalloc() 410 * to avoid a recursion when zalloc() itself needs to allocate additional 411 * kernel memory. 412 * 413 * This function should only be used when the caller intends to later 414 * call vm_map_entry_reserve() to 'normalize' the reserve cache. 415 */ 416 int 417 vm_map_entry_kreserve(int count) 418 { 419 struct globaldata *gd = mycpu; 420 421 crit_enter(); 422 gd->gd_vme_kdeficit += count; 423 crit_exit(); 424 KKASSERT(gd->gd_vme_base != NULL); 425 return(count); 426 } 427 428 /* 429 * vm_map_entry_krelease: 430 * 431 * Release previously reserved map entries for kernel_map or kmem_map 432 * use. This routine determines how many entries were actually used and 433 * replentishes the kernel reserve supply from vme_avail. 434 * 435 * If there is insufficient supply vme_avail will go negative, which is 436 * ok. We cannot safely call zalloc in this function without getting 437 * into a recursion deadlock. zalloc() will call vm_map_entry_reserve() 438 * to regenerate the lost entries. 439 */ 440 void 441 vm_map_entry_krelease(int count) 442 { 443 struct globaldata *gd = mycpu; 444 445 crit_enter(); 446 gd->gd_vme_kdeficit -= count; 447 gd->gd_vme_avail -= gd->gd_vme_kdeficit; /* can go negative */ 448 gd->gd_vme_kdeficit = 0; 449 crit_exit(); 450 } 451 452 /* 453 * vm_map_entry_create: [ internal use only ] 454 * 455 * Allocates a VM map entry for insertion. No entry fields are filled 456 * in. 457 * 458 * This routine may be called from an interrupt thread but not a FAST 459 * interrupt. This routine may recurse the map lock. 460 */ 461 static vm_map_entry_t 462 vm_map_entry_create(vm_map_t map, int *countp) 463 { 464 struct globaldata *gd = mycpu; 465 vm_map_entry_t entry; 466 467 KKASSERT(*countp > 0); 468 --*countp; 469 crit_enter(); 470 entry = gd->gd_vme_base; 471 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 472 gd->gd_vme_base = entry->next; 473 crit_exit(); 474 return(entry); 475 } 476 477 /* 478 * vm_map_entry_dispose: [ internal use only ] 479 * 480 * Dispose of a vm_map_entry that is no longer being referenced. This 481 * function may be called from an interrupt. 482 */ 483 static void 484 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 485 { 486 struct globaldata *gd = mycpu; 487 488 ++*countp; 489 crit_enter(); 490 entry->next = gd->gd_vme_base; 491 gd->gd_vme_base = entry; 492 crit_exit(); 493 } 494 495 496 /* 497 * vm_map_entry_{un,}link: 498 * 499 * Insert/remove entries from maps. 500 */ 501 static __inline void 502 vm_map_entry_link(vm_map_t map, 503 vm_map_entry_t after_where, 504 vm_map_entry_t entry) 505 { 506 map->nentries++; 507 entry->prev = after_where; 508 entry->next = after_where->next; 509 entry->next->prev = entry; 510 after_where->next = entry; 511 } 512 513 static __inline void 514 vm_map_entry_unlink(vm_map_t map, 515 vm_map_entry_t entry) 516 { 517 vm_map_entry_t prev; 518 vm_map_entry_t next; 519 520 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) 521 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry); 522 prev = entry->prev; 523 next = entry->next; 524 next->prev = prev; 525 prev->next = next; 526 map->nentries--; 527 } 528 529 /* 530 * SAVE_HINT: 531 * 532 * Saves the specified entry as the hint for 533 * future lookups. 534 */ 535 #define SAVE_HINT(map,value) \ 536 (map)->hint = (value); 537 538 /* 539 * vm_map_lookup_entry: [ internal use only ] 540 * 541 * Finds the map entry containing (or 542 * immediately preceding) the specified address 543 * in the given map; the entry is returned 544 * in the "entry" parameter. The boolean 545 * result indicates whether the address is 546 * actually contained in the map. 547 */ 548 boolean_t 549 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, 550 vm_map_entry_t *entry /* OUT */) 551 { 552 vm_map_entry_t cur; 553 vm_map_entry_t last; 554 555 /* 556 * Start looking either from the head of the list, or from the hint. 557 */ 558 559 cur = map->hint; 560 561 if (cur == &map->header) 562 cur = cur->next; 563 564 if (address >= cur->start) { 565 /* 566 * Go from hint to end of list. 567 * 568 * But first, make a quick check to see if we are already looking 569 * at the entry we want (which is usually the case). Note also 570 * that we don't need to save the hint here... it is the same 571 * hint (unless we are at the header, in which case the hint 572 * didn't buy us anything anyway). 573 */ 574 last = &map->header; 575 if ((cur != last) && (cur->end > address)) { 576 *entry = cur; 577 return (TRUE); 578 } 579 } else { 580 /* 581 * Go from start to hint, *inclusively* 582 */ 583 last = cur->next; 584 cur = map->header.next; 585 } 586 587 /* 588 * Search linearly 589 */ 590 591 while (cur != last) { 592 if (cur->end > address) { 593 if (address >= cur->start) { 594 /* 595 * Save this lookup for future hints, and 596 * return 597 */ 598 599 *entry = cur; 600 SAVE_HINT(map, cur); 601 return (TRUE); 602 } 603 break; 604 } 605 cur = cur->next; 606 } 607 *entry = cur->prev; 608 SAVE_HINT(map, *entry); 609 return (FALSE); 610 } 611 612 /* 613 * vm_map_insert: 614 * 615 * Inserts the given whole VM object into the target 616 * map at the specified address range. The object's 617 * size should match that of the address range. 618 * 619 * Requires that the map be locked, and leaves it so. Requires that 620 * sufficient vm_map_entry structures have been reserved and tracks 621 * the use via countp. 622 * 623 * If object is non-NULL, ref count must be bumped by caller 624 * prior to making call to account for the new entry. 625 */ 626 int 627 vm_map_insert(vm_map_t map, int *countp, 628 vm_object_t object, vm_ooffset_t offset, 629 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 630 int cow) 631 { 632 vm_map_entry_t new_entry; 633 vm_map_entry_t prev_entry; 634 vm_map_entry_t temp_entry; 635 vm_eflags_t protoeflags; 636 637 /* 638 * Check that the start and end points are not bogus. 639 */ 640 641 if ((start < map->min_offset) || (end > map->max_offset) || 642 (start >= end)) 643 return (KERN_INVALID_ADDRESS); 644 645 /* 646 * Find the entry prior to the proposed starting address; if it's part 647 * of an existing entry, this range is bogus. 648 */ 649 650 if (vm_map_lookup_entry(map, start, &temp_entry)) 651 return (KERN_NO_SPACE); 652 653 prev_entry = temp_entry; 654 655 /* 656 * Assert that the next entry doesn't overlap the end point. 657 */ 658 659 if ((prev_entry->next != &map->header) && 660 (prev_entry->next->start < end)) 661 return (KERN_NO_SPACE); 662 663 protoeflags = 0; 664 665 if (cow & MAP_COPY_ON_WRITE) 666 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 667 668 if (cow & MAP_NOFAULT) { 669 protoeflags |= MAP_ENTRY_NOFAULT; 670 671 KASSERT(object == NULL, 672 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 673 } 674 if (cow & MAP_DISABLE_SYNCER) 675 protoeflags |= MAP_ENTRY_NOSYNC; 676 if (cow & MAP_DISABLE_COREDUMP) 677 protoeflags |= MAP_ENTRY_NOCOREDUMP; 678 679 if (object) { 680 /* 681 * When object is non-NULL, it could be shared with another 682 * process. We have to set or clear OBJ_ONEMAPPING 683 * appropriately. 684 */ 685 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 686 vm_object_clear_flag(object, OBJ_ONEMAPPING); 687 } 688 } 689 else if ((prev_entry != &map->header) && 690 (prev_entry->eflags == protoeflags) && 691 (prev_entry->end == start) && 692 (prev_entry->wired_count == 0) && 693 ((prev_entry->object.vm_object == NULL) || 694 vm_object_coalesce(prev_entry->object.vm_object, 695 OFF_TO_IDX(prev_entry->offset), 696 (vm_size_t)(prev_entry->end - prev_entry->start), 697 (vm_size_t)(end - prev_entry->end)))) { 698 /* 699 * We were able to extend the object. Determine if we 700 * can extend the previous map entry to include the 701 * new range as well. 702 */ 703 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 704 (prev_entry->protection == prot) && 705 (prev_entry->max_protection == max)) { 706 map->size += (end - prev_entry->end); 707 prev_entry->end = end; 708 vm_map_simplify_entry(map, prev_entry, countp); 709 return (KERN_SUCCESS); 710 } 711 712 /* 713 * If we can extend the object but cannot extend the 714 * map entry, we have to create a new map entry. We 715 * must bump the ref count on the extended object to 716 * account for it. object may be NULL. 717 */ 718 object = prev_entry->object.vm_object; 719 offset = prev_entry->offset + 720 (prev_entry->end - prev_entry->start); 721 vm_object_reference(object); 722 } 723 724 /* 725 * NOTE: if conditionals fail, object can be NULL here. This occurs 726 * in things like the buffer map where we manage kva but do not manage 727 * backing objects. 728 */ 729 730 /* 731 * Create a new entry 732 */ 733 734 new_entry = vm_map_entry_create(map, countp); 735 new_entry->start = start; 736 new_entry->end = end; 737 738 new_entry->eflags = protoeflags; 739 new_entry->object.vm_object = object; 740 new_entry->offset = offset; 741 new_entry->avail_ssize = 0; 742 743 new_entry->inheritance = VM_INHERIT_DEFAULT; 744 new_entry->protection = prot; 745 new_entry->max_protection = max; 746 new_entry->wired_count = 0; 747 748 /* 749 * Insert the new entry into the list 750 */ 751 752 vm_map_entry_link(map, prev_entry, new_entry); 753 map->size += new_entry->end - new_entry->start; 754 755 /* 756 * Update the free space hint 757 */ 758 if ((map->first_free == prev_entry) && 759 (prev_entry->end >= new_entry->start)) { 760 map->first_free = new_entry; 761 } 762 763 #if 0 764 /* 765 * Temporarily removed to avoid MAP_STACK panic, due to 766 * MAP_STACK being a huge hack. Will be added back in 767 * when MAP_STACK (and the user stack mapping) is fixed. 768 */ 769 /* 770 * It may be possible to simplify the entry 771 */ 772 vm_map_simplify_entry(map, new_entry, countp); 773 #endif 774 775 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 776 pmap_object_init_pt(map->pmap, start, prot, 777 object, OFF_TO_IDX(offset), end - start, 778 cow & MAP_PREFAULT_PARTIAL); 779 } 780 781 return (KERN_SUCCESS); 782 } 783 784 /* 785 * Find sufficient space for `length' bytes in the given map, starting at 786 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 787 * 788 * This function will returned an arbitrarily aligned pointer. If no 789 * particular alignment is required you should pass align as 1. Note that 790 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 791 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 792 * argument. 793 * 794 * 'align' should be a power of 2 but is not required to be. 795 */ 796 int 797 vm_map_findspace( 798 vm_map_t map, 799 vm_offset_t start, 800 vm_size_t length, 801 vm_offset_t align, 802 vm_offset_t *addr) 803 { 804 vm_map_entry_t entry, next; 805 vm_offset_t end; 806 vm_offset_t align_mask; 807 808 if (start < map->min_offset) 809 start = map->min_offset; 810 if (start > map->max_offset) 811 return (1); 812 813 /* 814 * If the alignment is not a power of 2 we will have to use 815 * a mod/division, set align_mask to a special value. 816 */ 817 if ((align | (align - 1)) + 1 != (align << 1)) 818 align_mask = (vm_offset_t)-1; 819 else 820 align_mask = align - 1; 821 822 retry: 823 /* 824 * Look for the first possible address; if there's already something 825 * at this address, we have to start after it. 826 */ 827 if (start == map->min_offset) { 828 if ((entry = map->first_free) != &map->header) 829 start = entry->end; 830 } else { 831 vm_map_entry_t tmp; 832 833 if (vm_map_lookup_entry(map, start, &tmp)) 834 start = tmp->end; 835 entry = tmp; 836 } 837 838 /* 839 * Look through the rest of the map, trying to fit a new region in the 840 * gap between existing regions, or after the very last region. 841 */ 842 for (;; start = (entry = next)->end) { 843 /* 844 * Adjust the proposed start by the requested alignment, 845 * be sure that we didn't wrap the address. 846 */ 847 if (align_mask == (vm_offset_t)-1) 848 end = ((start + align - 1) / align) * align; 849 else 850 end = (start + align_mask) & ~align_mask; 851 if (end < start) 852 return (1); 853 start = end; 854 /* 855 * Find the end of the proposed new region. Be sure we didn't 856 * go beyond the end of the map, or wrap around the address. 857 * Then check to see if this is the last entry or if the 858 * proposed end fits in the gap between this and the next 859 * entry. 860 */ 861 end = start + length; 862 if (end > map->max_offset || end < start) 863 return (1); 864 next = entry->next; 865 if (next == &map->header || next->start >= end) 866 break; 867 } 868 SAVE_HINT(map, entry); 869 if (map == kernel_map) { 870 vm_offset_t ksize; 871 if ((ksize = round_page(start + length)) > kernel_vm_end) { 872 pmap_growkernel(ksize); 873 goto retry; 874 } 875 } 876 *addr = start; 877 return (0); 878 } 879 880 /* 881 * vm_map_find finds an unallocated region in the target address 882 * map with the given length. The search is defined to be 883 * first-fit from the specified address; the region found is 884 * returned in the same parameter. 885 * 886 * If object is non-NULL, ref count must be bumped by caller 887 * prior to making call to account for the new entry. 888 */ 889 int 890 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 891 vm_offset_t *addr, /* IN/OUT */ 892 vm_size_t length, boolean_t find_space, vm_prot_t prot, 893 vm_prot_t max, int cow) 894 { 895 vm_offset_t start; 896 int result; 897 int count; 898 899 start = *addr; 900 901 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 902 vm_map_lock(map); 903 if (find_space) { 904 if (vm_map_findspace(map, start, length, 1, addr)) { 905 vm_map_unlock(map); 906 vm_map_entry_release(count); 907 return (KERN_NO_SPACE); 908 } 909 start = *addr; 910 } 911 result = vm_map_insert(map, &count, object, offset, 912 start, start + length, prot, max, cow); 913 vm_map_unlock(map); 914 vm_map_entry_release(count); 915 916 return (result); 917 } 918 919 /* 920 * vm_map_simplify_entry: 921 * 922 * Simplify the given map entry by merging with either neighbor. This 923 * routine also has the ability to merge with both neighbors. 924 * 925 * The map must be locked. 926 * 927 * This routine guarentees that the passed entry remains valid (though 928 * possibly extended). When merging, this routine may delete one or 929 * both neighbors. No action is taken on entries which have their 930 * in-transition flag set. 931 */ 932 void 933 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 934 { 935 vm_map_entry_t next, prev; 936 vm_size_t prevsize, esize; 937 938 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) { 939 ++mycpu->gd_cnt.v_intrans_coll; 940 return; 941 } 942 943 prev = entry->prev; 944 if (prev != &map->header) { 945 prevsize = prev->end - prev->start; 946 if ( (prev->end == entry->start) && 947 (prev->object.vm_object == entry->object.vm_object) && 948 (!prev->object.vm_object || 949 (prev->offset + prevsize == entry->offset)) && 950 (prev->eflags == entry->eflags) && 951 (prev->protection == entry->protection) && 952 (prev->max_protection == entry->max_protection) && 953 (prev->inheritance == entry->inheritance) && 954 (prev->wired_count == entry->wired_count)) { 955 if (map->first_free == prev) 956 map->first_free = entry; 957 if (map->hint == prev) 958 map->hint = entry; 959 vm_map_entry_unlink(map, prev); 960 entry->start = prev->start; 961 entry->offset = prev->offset; 962 if (prev->object.vm_object) 963 vm_object_deallocate(prev->object.vm_object); 964 vm_map_entry_dispose(map, prev, countp); 965 } 966 } 967 968 next = entry->next; 969 if (next != &map->header) { 970 esize = entry->end - entry->start; 971 if ((entry->end == next->start) && 972 (next->object.vm_object == entry->object.vm_object) && 973 (!entry->object.vm_object || 974 (entry->offset + esize == next->offset)) && 975 (next->eflags == entry->eflags) && 976 (next->protection == entry->protection) && 977 (next->max_protection == entry->max_protection) && 978 (next->inheritance == entry->inheritance) && 979 (next->wired_count == entry->wired_count)) { 980 if (map->first_free == next) 981 map->first_free = entry; 982 if (map->hint == next) 983 map->hint = entry; 984 vm_map_entry_unlink(map, next); 985 entry->end = next->end; 986 if (next->object.vm_object) 987 vm_object_deallocate(next->object.vm_object); 988 vm_map_entry_dispose(map, next, countp); 989 } 990 } 991 } 992 /* 993 * vm_map_clip_start: [ internal use only ] 994 * 995 * Asserts that the given entry begins at or after 996 * the specified address; if necessary, 997 * it splits the entry into two. 998 */ 999 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1000 { \ 1001 if (startaddr > entry->start) \ 1002 _vm_map_clip_start(map, entry, startaddr, countp); \ 1003 } 1004 1005 /* 1006 * This routine is called only when it is known that 1007 * the entry must be split. 1008 */ 1009 static void 1010 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp) 1011 { 1012 vm_map_entry_t new_entry; 1013 1014 /* 1015 * Split off the front portion -- note that we must insert the new 1016 * entry BEFORE this one, so that this entry has the specified 1017 * starting address. 1018 */ 1019 1020 vm_map_simplify_entry(map, entry, countp); 1021 1022 /* 1023 * If there is no object backing this entry, we might as well create 1024 * one now. If we defer it, an object can get created after the map 1025 * is clipped, and individual objects will be created for the split-up 1026 * map. This is a bit of a hack, but is also about the best place to 1027 * put this improvement. 1028 */ 1029 1030 if (entry->object.vm_object == NULL && !map->system_map) { 1031 vm_object_t object; 1032 object = vm_object_allocate(OBJT_DEFAULT, 1033 atop(entry->end - entry->start)); 1034 entry->object.vm_object = object; 1035 entry->offset = 0; 1036 } 1037 1038 new_entry = vm_map_entry_create(map, countp); 1039 *new_entry = *entry; 1040 1041 new_entry->end = start; 1042 entry->offset += (start - entry->start); 1043 entry->start = start; 1044 1045 vm_map_entry_link(map, entry->prev, new_entry); 1046 1047 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1048 vm_object_reference(new_entry->object.vm_object); 1049 } 1050 } 1051 1052 /* 1053 * vm_map_clip_end: [ internal use only ] 1054 * 1055 * Asserts that the given entry ends at or before 1056 * the specified address; if necessary, 1057 * it splits the entry into two. 1058 */ 1059 1060 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1061 { \ 1062 if (endaddr < entry->end) \ 1063 _vm_map_clip_end(map, entry, endaddr, countp); \ 1064 } 1065 1066 /* 1067 * This routine is called only when it is known that 1068 * the entry must be split. 1069 */ 1070 static void 1071 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp) 1072 { 1073 vm_map_entry_t new_entry; 1074 1075 /* 1076 * If there is no object backing this entry, we might as well create 1077 * one now. If we defer it, an object can get created after the map 1078 * is clipped, and individual objects will be created for the split-up 1079 * map. This is a bit of a hack, but is also about the best place to 1080 * put this improvement. 1081 */ 1082 1083 if (entry->object.vm_object == NULL && !map->system_map) { 1084 vm_object_t object; 1085 object = vm_object_allocate(OBJT_DEFAULT, 1086 atop(entry->end - entry->start)); 1087 entry->object.vm_object = object; 1088 entry->offset = 0; 1089 } 1090 1091 /* 1092 * Create a new entry and insert it AFTER the specified entry 1093 */ 1094 1095 new_entry = vm_map_entry_create(map, countp); 1096 *new_entry = *entry; 1097 1098 new_entry->start = entry->end = end; 1099 new_entry->offset += (end - entry->start); 1100 1101 vm_map_entry_link(map, entry, new_entry); 1102 1103 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1104 vm_object_reference(new_entry->object.vm_object); 1105 } 1106 } 1107 1108 /* 1109 * VM_MAP_RANGE_CHECK: [ internal use only ] 1110 * 1111 * Asserts that the starting and ending region 1112 * addresses fall within the valid range of the map. 1113 */ 1114 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1115 { \ 1116 if (start < vm_map_min(map)) \ 1117 start = vm_map_min(map); \ 1118 if (end > vm_map_max(map)) \ 1119 end = vm_map_max(map); \ 1120 if (start > end) \ 1121 start = end; \ 1122 } 1123 1124 /* 1125 * vm_map_transition_wait: [ kernel use only ] 1126 * 1127 * Used to block when an in-transition collison occurs. The map 1128 * is unlocked for the sleep and relocked before the return. 1129 */ 1130 static 1131 void 1132 vm_map_transition_wait(vm_map_t map) 1133 { 1134 vm_map_unlock(map); 1135 tsleep(map, 0, "vment", 0); 1136 vm_map_lock(map); 1137 } 1138 1139 /* 1140 * CLIP_CHECK_BACK 1141 * CLIP_CHECK_FWD 1142 * 1143 * When we do blocking operations with the map lock held it is 1144 * possible that a clip might have occured on our in-transit entry, 1145 * requiring an adjustment to the entry in our loop. These macros 1146 * help the pageable and clip_range code deal with the case. The 1147 * conditional costs virtually nothing if no clipping has occured. 1148 */ 1149 1150 #define CLIP_CHECK_BACK(entry, save_start) \ 1151 do { \ 1152 while (entry->start != save_start) { \ 1153 entry = entry->prev; \ 1154 KASSERT(entry != &map->header, ("bad entry clip")); \ 1155 } \ 1156 } while(0) 1157 1158 #define CLIP_CHECK_FWD(entry, save_end) \ 1159 do { \ 1160 while (entry->end != save_end) { \ 1161 entry = entry->next; \ 1162 KASSERT(entry != &map->header, ("bad entry clip")); \ 1163 } \ 1164 } while(0) 1165 1166 1167 /* 1168 * vm_map_clip_range: [ kernel use only ] 1169 * 1170 * Clip the specified range and return the base entry. The 1171 * range may cover several entries starting at the returned base 1172 * and the first and last entry in the covering sequence will be 1173 * properly clipped to the requested start and end address. 1174 * 1175 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1176 * flag. 1177 * 1178 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1179 * covered by the requested range. 1180 * 1181 * The map must be exclusively locked on entry and will remain locked 1182 * on return. If no range exists or the range contains holes and you 1183 * specified that no holes were allowed, NULL will be returned. This 1184 * routine may temporarily unlock the map in order avoid a deadlock when 1185 * sleeping. 1186 */ 1187 static 1188 vm_map_entry_t 1189 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1190 int *countp, int flags) 1191 { 1192 vm_map_entry_t start_entry; 1193 vm_map_entry_t entry; 1194 1195 /* 1196 * Locate the entry and effect initial clipping. The in-transition 1197 * case does not occur very often so do not try to optimize it. 1198 */ 1199 again: 1200 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1201 return (NULL); 1202 entry = start_entry; 1203 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1204 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1205 ++mycpu->gd_cnt.v_intrans_coll; 1206 ++mycpu->gd_cnt.v_intrans_wait; 1207 vm_map_transition_wait(map); 1208 /* 1209 * entry and/or start_entry may have been clipped while 1210 * we slept, or may have gone away entirely. We have 1211 * to restart from the lookup. 1212 */ 1213 goto again; 1214 } 1215 /* 1216 * Since we hold an exclusive map lock we do not have to restart 1217 * after clipping, even though clipping may block in zalloc. 1218 */ 1219 vm_map_clip_start(map, entry, start, countp); 1220 vm_map_clip_end(map, entry, end, countp); 1221 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1222 1223 /* 1224 * Scan entries covered by the range. When working on the next 1225 * entry a restart need only re-loop on the current entry which 1226 * we have already locked, since 'next' may have changed. Also, 1227 * even though entry is safe, it may have been clipped so we 1228 * have to iterate forwards through the clip after sleeping. 1229 */ 1230 while (entry->next != &map->header && entry->next->start < end) { 1231 vm_map_entry_t next = entry->next; 1232 1233 if (flags & MAP_CLIP_NO_HOLES) { 1234 if (next->start > entry->end) { 1235 vm_map_unclip_range(map, start_entry, 1236 start, entry->end, countp, flags); 1237 return(NULL); 1238 } 1239 } 1240 1241 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1242 vm_offset_t save_end = entry->end; 1243 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1244 ++mycpu->gd_cnt.v_intrans_coll; 1245 ++mycpu->gd_cnt.v_intrans_wait; 1246 vm_map_transition_wait(map); 1247 1248 /* 1249 * clips might have occured while we blocked. 1250 */ 1251 CLIP_CHECK_FWD(entry, save_end); 1252 CLIP_CHECK_BACK(start_entry, start); 1253 continue; 1254 } 1255 /* 1256 * No restart necessary even though clip_end may block, we 1257 * are holding the map lock. 1258 */ 1259 vm_map_clip_end(map, next, end, countp); 1260 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1261 entry = next; 1262 } 1263 if (flags & MAP_CLIP_NO_HOLES) { 1264 if (entry->end != end) { 1265 vm_map_unclip_range(map, start_entry, 1266 start, entry->end, countp, flags); 1267 return(NULL); 1268 } 1269 } 1270 return(start_entry); 1271 } 1272 1273 /* 1274 * vm_map_unclip_range: [ kernel use only ] 1275 * 1276 * Undo the effect of vm_map_clip_range(). You should pass the same 1277 * flags and the same range that you passed to vm_map_clip_range(). 1278 * This code will clear the in-transition flag on the entries and 1279 * wake up anyone waiting. This code will also simplify the sequence 1280 * and attempt to merge it with entries before and after the sequence. 1281 * 1282 * The map must be locked on entry and will remain locked on return. 1283 * 1284 * Note that you should also pass the start_entry returned by 1285 * vm_map_clip_range(). However, if you block between the two calls 1286 * with the map unlocked please be aware that the start_entry may 1287 * have been clipped and you may need to scan it backwards to find 1288 * the entry corresponding with the original start address. You are 1289 * responsible for this, vm_map_unclip_range() expects the correct 1290 * start_entry to be passed to it and will KASSERT otherwise. 1291 */ 1292 static 1293 void 1294 vm_map_unclip_range( 1295 vm_map_t map, 1296 vm_map_entry_t start_entry, 1297 vm_offset_t start, 1298 vm_offset_t end, 1299 int *countp, 1300 int flags) 1301 { 1302 vm_map_entry_t entry; 1303 1304 entry = start_entry; 1305 1306 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1307 while (entry != &map->header && entry->start < end) { 1308 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry)); 1309 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped")); 1310 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1311 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1312 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1313 wakeup(map); 1314 } 1315 entry = entry->next; 1316 } 1317 1318 /* 1319 * Simplification does not block so there is no restart case. 1320 */ 1321 entry = start_entry; 1322 while (entry != &map->header && entry->start < end) { 1323 vm_map_simplify_entry(map, entry, countp); 1324 entry = entry->next; 1325 } 1326 } 1327 1328 /* 1329 * vm_map_submap: [ kernel use only ] 1330 * 1331 * Mark the given range as handled by a subordinate map. 1332 * 1333 * This range must have been created with vm_map_find, 1334 * and no other operations may have been performed on this 1335 * range prior to calling vm_map_submap. 1336 * 1337 * Only a limited number of operations can be performed 1338 * within this rage after calling vm_map_submap: 1339 * vm_fault 1340 * [Don't try vm_map_copy!] 1341 * 1342 * To remove a submapping, one must first remove the 1343 * range from the superior map, and then destroy the 1344 * submap (if desired). [Better yet, don't try it.] 1345 */ 1346 int 1347 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1348 { 1349 vm_map_entry_t entry; 1350 int result = KERN_INVALID_ARGUMENT; 1351 int count; 1352 1353 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1354 vm_map_lock(map); 1355 1356 VM_MAP_RANGE_CHECK(map, start, end); 1357 1358 if (vm_map_lookup_entry(map, start, &entry)) { 1359 vm_map_clip_start(map, entry, start, &count); 1360 } else { 1361 entry = entry->next; 1362 } 1363 1364 vm_map_clip_end(map, entry, end, &count); 1365 1366 if ((entry->start == start) && (entry->end == end) && 1367 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1368 (entry->object.vm_object == NULL)) { 1369 entry->object.sub_map = submap; 1370 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1371 result = KERN_SUCCESS; 1372 } 1373 vm_map_unlock(map); 1374 vm_map_entry_release(count); 1375 1376 return (result); 1377 } 1378 1379 /* 1380 * vm_map_protect: 1381 * 1382 * Sets the protection of the specified address 1383 * region in the target map. If "set_max" is 1384 * specified, the maximum protection is to be set; 1385 * otherwise, only the current protection is affected. 1386 */ 1387 int 1388 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1389 vm_prot_t new_prot, boolean_t set_max) 1390 { 1391 vm_map_entry_t current; 1392 vm_map_entry_t entry; 1393 int count; 1394 1395 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1396 vm_map_lock(map); 1397 1398 VM_MAP_RANGE_CHECK(map, start, end); 1399 1400 if (vm_map_lookup_entry(map, start, &entry)) { 1401 vm_map_clip_start(map, entry, start, &count); 1402 } else { 1403 entry = entry->next; 1404 } 1405 1406 /* 1407 * Make a first pass to check for protection violations. 1408 */ 1409 1410 current = entry; 1411 while ((current != &map->header) && (current->start < end)) { 1412 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1413 vm_map_unlock(map); 1414 vm_map_entry_release(count); 1415 return (KERN_INVALID_ARGUMENT); 1416 } 1417 if ((new_prot & current->max_protection) != new_prot) { 1418 vm_map_unlock(map); 1419 vm_map_entry_release(count); 1420 return (KERN_PROTECTION_FAILURE); 1421 } 1422 current = current->next; 1423 } 1424 1425 /* 1426 * Go back and fix up protections. [Note that clipping is not 1427 * necessary the second time.] 1428 */ 1429 current = entry; 1430 1431 while ((current != &map->header) && (current->start < end)) { 1432 vm_prot_t old_prot; 1433 1434 vm_map_clip_end(map, current, end, &count); 1435 1436 old_prot = current->protection; 1437 if (set_max) 1438 current->protection = 1439 (current->max_protection = new_prot) & 1440 old_prot; 1441 else 1442 current->protection = new_prot; 1443 1444 /* 1445 * Update physical map if necessary. Worry about copy-on-write 1446 * here -- CHECK THIS XXX 1447 */ 1448 1449 if (current->protection != old_prot) { 1450 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1451 VM_PROT_ALL) 1452 1453 pmap_protect(map->pmap, current->start, 1454 current->end, 1455 current->protection & MASK(current)); 1456 #undef MASK 1457 } 1458 1459 vm_map_simplify_entry(map, current, &count); 1460 1461 current = current->next; 1462 } 1463 1464 vm_map_unlock(map); 1465 vm_map_entry_release(count); 1466 return (KERN_SUCCESS); 1467 } 1468 1469 /* 1470 * vm_map_madvise: 1471 * 1472 * This routine traverses a processes map handling the madvise 1473 * system call. Advisories are classified as either those effecting 1474 * the vm_map_entry structure, or those effecting the underlying 1475 * objects. 1476 */ 1477 1478 int 1479 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav) 1480 { 1481 vm_map_entry_t current, entry; 1482 int modify_map = 0; 1483 int count; 1484 1485 /* 1486 * Some madvise calls directly modify the vm_map_entry, in which case 1487 * we need to use an exclusive lock on the map and we need to perform 1488 * various clipping operations. Otherwise we only need a read-lock 1489 * on the map. 1490 */ 1491 1492 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1493 1494 switch(behav) { 1495 case MADV_NORMAL: 1496 case MADV_SEQUENTIAL: 1497 case MADV_RANDOM: 1498 case MADV_NOSYNC: 1499 case MADV_AUTOSYNC: 1500 case MADV_NOCORE: 1501 case MADV_CORE: 1502 modify_map = 1; 1503 vm_map_lock(map); 1504 break; 1505 case MADV_WILLNEED: 1506 case MADV_DONTNEED: 1507 case MADV_FREE: 1508 vm_map_lock_read(map); 1509 break; 1510 default: 1511 vm_map_entry_release(count); 1512 return (KERN_INVALID_ARGUMENT); 1513 } 1514 1515 /* 1516 * Locate starting entry and clip if necessary. 1517 */ 1518 1519 VM_MAP_RANGE_CHECK(map, start, end); 1520 1521 if (vm_map_lookup_entry(map, start, &entry)) { 1522 if (modify_map) 1523 vm_map_clip_start(map, entry, start, &count); 1524 } else { 1525 entry = entry->next; 1526 } 1527 1528 if (modify_map) { 1529 /* 1530 * madvise behaviors that are implemented in the vm_map_entry. 1531 * 1532 * We clip the vm_map_entry so that behavioral changes are 1533 * limited to the specified address range. 1534 */ 1535 for (current = entry; 1536 (current != &map->header) && (current->start < end); 1537 current = current->next 1538 ) { 1539 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1540 continue; 1541 1542 vm_map_clip_end(map, current, end, &count); 1543 1544 switch (behav) { 1545 case MADV_NORMAL: 1546 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1547 break; 1548 case MADV_SEQUENTIAL: 1549 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1550 break; 1551 case MADV_RANDOM: 1552 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1553 break; 1554 case MADV_NOSYNC: 1555 current->eflags |= MAP_ENTRY_NOSYNC; 1556 break; 1557 case MADV_AUTOSYNC: 1558 current->eflags &= ~MAP_ENTRY_NOSYNC; 1559 break; 1560 case MADV_NOCORE: 1561 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1562 break; 1563 case MADV_CORE: 1564 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1565 break; 1566 default: 1567 break; 1568 } 1569 vm_map_simplify_entry(map, current, &count); 1570 } 1571 vm_map_unlock(map); 1572 } else { 1573 vm_pindex_t pindex; 1574 int count; 1575 1576 /* 1577 * madvise behaviors that are implemented in the underlying 1578 * vm_object. 1579 * 1580 * Since we don't clip the vm_map_entry, we have to clip 1581 * the vm_object pindex and count. 1582 */ 1583 for (current = entry; 1584 (current != &map->header) && (current->start < end); 1585 current = current->next 1586 ) { 1587 vm_offset_t useStart; 1588 1589 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1590 continue; 1591 1592 pindex = OFF_TO_IDX(current->offset); 1593 count = atop(current->end - current->start); 1594 useStart = current->start; 1595 1596 if (current->start < start) { 1597 pindex += atop(start - current->start); 1598 count -= atop(start - current->start); 1599 useStart = start; 1600 } 1601 if (current->end > end) 1602 count -= atop(current->end - end); 1603 1604 if (count <= 0) 1605 continue; 1606 1607 vm_object_madvise(current->object.vm_object, 1608 pindex, count, behav); 1609 if (behav == MADV_WILLNEED) { 1610 pmap_object_init_pt( 1611 map->pmap, 1612 useStart, 1613 current->protection, 1614 current->object.vm_object, 1615 pindex, 1616 (count << PAGE_SHIFT), 1617 MAP_PREFAULT_MADVISE 1618 ); 1619 } 1620 } 1621 vm_map_unlock_read(map); 1622 } 1623 vm_map_entry_release(count); 1624 return(0); 1625 } 1626 1627 1628 /* 1629 * vm_map_inherit: 1630 * 1631 * Sets the inheritance of the specified address 1632 * range in the target map. Inheritance 1633 * affects how the map will be shared with 1634 * child maps at the time of vm_map_fork. 1635 */ 1636 int 1637 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1638 vm_inherit_t new_inheritance) 1639 { 1640 vm_map_entry_t entry; 1641 vm_map_entry_t temp_entry; 1642 int count; 1643 1644 switch (new_inheritance) { 1645 case VM_INHERIT_NONE: 1646 case VM_INHERIT_COPY: 1647 case VM_INHERIT_SHARE: 1648 break; 1649 default: 1650 return (KERN_INVALID_ARGUMENT); 1651 } 1652 1653 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1654 vm_map_lock(map); 1655 1656 VM_MAP_RANGE_CHECK(map, start, end); 1657 1658 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1659 entry = temp_entry; 1660 vm_map_clip_start(map, entry, start, &count); 1661 } else 1662 entry = temp_entry->next; 1663 1664 while ((entry != &map->header) && (entry->start < end)) { 1665 vm_map_clip_end(map, entry, end, &count); 1666 1667 entry->inheritance = new_inheritance; 1668 1669 vm_map_simplify_entry(map, entry, &count); 1670 1671 entry = entry->next; 1672 } 1673 vm_map_unlock(map); 1674 vm_map_entry_release(count); 1675 return (KERN_SUCCESS); 1676 } 1677 1678 /* 1679 * Implement the semantics of mlock 1680 */ 1681 int 1682 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 1683 boolean_t new_pageable) 1684 { 1685 vm_map_entry_t entry; 1686 vm_map_entry_t start_entry; 1687 vm_offset_t end; 1688 int rv = KERN_SUCCESS; 1689 int count; 1690 1691 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1692 vm_map_lock(map); 1693 VM_MAP_RANGE_CHECK(map, start, real_end); 1694 end = real_end; 1695 1696 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1697 if (start_entry == NULL) { 1698 vm_map_unlock(map); 1699 vm_map_entry_release(count); 1700 return (KERN_INVALID_ADDRESS); 1701 } 1702 1703 if (new_pageable == 0) { 1704 entry = start_entry; 1705 while ((entry != &map->header) && (entry->start < end)) { 1706 vm_offset_t save_start; 1707 vm_offset_t save_end; 1708 1709 /* 1710 * Already user wired or hard wired (trivial cases) 1711 */ 1712 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1713 entry = entry->next; 1714 continue; 1715 } 1716 if (entry->wired_count != 0) { 1717 entry->wired_count++; 1718 entry->eflags |= MAP_ENTRY_USER_WIRED; 1719 entry = entry->next; 1720 continue; 1721 } 1722 1723 /* 1724 * A new wiring requires instantiation of appropriate 1725 * management structures and the faulting in of the 1726 * page. 1727 */ 1728 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1729 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1730 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1731 1732 vm_object_shadow(&entry->object.vm_object, 1733 &entry->offset, 1734 atop(entry->end - entry->start)); 1735 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1736 1737 } else if (entry->object.vm_object == NULL && 1738 !map->system_map) { 1739 1740 entry->object.vm_object = 1741 vm_object_allocate(OBJT_DEFAULT, 1742 atop(entry->end - entry->start)); 1743 entry->offset = (vm_offset_t) 0; 1744 1745 } 1746 } 1747 entry->wired_count++; 1748 entry->eflags |= MAP_ENTRY_USER_WIRED; 1749 1750 /* 1751 * Now fault in the area. Note that vm_fault_wire() 1752 * may release the map lock temporarily, it will be 1753 * relocked on return. The in-transition 1754 * flag protects the entries. 1755 */ 1756 save_start = entry->start; 1757 save_end = entry->end; 1758 rv = vm_fault_wire(map, entry, TRUE); 1759 if (rv) { 1760 CLIP_CHECK_BACK(entry, save_start); 1761 for (;;) { 1762 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 1763 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1764 entry->wired_count = 0; 1765 if (entry->end == save_end) 1766 break; 1767 entry = entry->next; 1768 KASSERT(entry != &map->header, ("bad entry clip during backout")); 1769 } 1770 end = save_start; /* unwire the rest */ 1771 break; 1772 } 1773 /* 1774 * note that even though the entry might have been 1775 * clipped, the USER_WIRED flag we set prevents 1776 * duplication so we do not have to do a 1777 * clip check. 1778 */ 1779 entry = entry->next; 1780 } 1781 1782 /* 1783 * If we failed fall through to the unwiring section to 1784 * unwire what we had wired so far. 'end' has already 1785 * been adjusted. 1786 */ 1787 if (rv) 1788 new_pageable = 1; 1789 1790 /* 1791 * start_entry might have been clipped if we unlocked the 1792 * map and blocked. No matter how clipped it has gotten 1793 * there should be a fragment that is on our start boundary. 1794 */ 1795 CLIP_CHECK_BACK(start_entry, start); 1796 } 1797 1798 /* 1799 * Deal with the unwiring case. 1800 */ 1801 if (new_pageable) { 1802 /* 1803 * This is the unwiring case. We must first ensure that the 1804 * range to be unwired is really wired down. We know there 1805 * are no holes. 1806 */ 1807 entry = start_entry; 1808 while ((entry != &map->header) && (entry->start < end)) { 1809 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1810 rv = KERN_INVALID_ARGUMENT; 1811 goto done; 1812 } 1813 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 1814 entry = entry->next; 1815 } 1816 1817 /* 1818 * Now decrement the wiring count for each region. If a region 1819 * becomes completely unwired, unwire its physical pages and 1820 * mappings. 1821 */ 1822 /* 1823 * The map entries are processed in a loop, checking to 1824 * make sure the entry is wired and asserting it has a wired 1825 * count. However, another loop was inserted more-or-less in 1826 * the middle of the unwiring path. This loop picks up the 1827 * "entry" loop variable from the first loop without first 1828 * setting it to start_entry. Naturally, the secound loop 1829 * is never entered and the pages backing the entries are 1830 * never unwired. This can lead to a leak of wired pages. 1831 */ 1832 entry = start_entry; 1833 while ((entry != &map->header) && (entry->start < end)) { 1834 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 1835 ("expected USER_WIRED on entry %p", entry)); 1836 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1837 entry->wired_count--; 1838 if (entry->wired_count == 0) 1839 vm_fault_unwire(map, entry); 1840 entry = entry->next; 1841 } 1842 } 1843 done: 1844 vm_map_unclip_range(map, start_entry, start, real_end, &count, 1845 MAP_CLIP_NO_HOLES); 1846 map->timestamp++; 1847 vm_map_unlock(map); 1848 vm_map_entry_release(count); 1849 return (rv); 1850 } 1851 1852 /* 1853 * vm_map_wire: 1854 * 1855 * Sets the pageability of the specified address 1856 * range in the target map. Regions specified 1857 * as not pageable require locked-down physical 1858 * memory and physical page maps. 1859 * 1860 * The map must not be locked, but a reference 1861 * must remain to the map throughout the call. 1862 * 1863 * This function may be called via the zalloc path and must properly 1864 * reserve map entries for kernel_map. 1865 */ 1866 int 1867 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 1868 { 1869 vm_map_entry_t entry; 1870 vm_map_entry_t start_entry; 1871 vm_offset_t end; 1872 int rv = KERN_SUCCESS; 1873 int count; 1874 int s; 1875 1876 if (kmflags & KM_KRESERVE) 1877 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 1878 else 1879 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1880 vm_map_lock(map); 1881 VM_MAP_RANGE_CHECK(map, start, real_end); 1882 end = real_end; 1883 1884 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1885 if (start_entry == NULL) { 1886 vm_map_unlock(map); 1887 rv = KERN_INVALID_ADDRESS; 1888 goto failure; 1889 } 1890 if ((kmflags & KM_PAGEABLE) == 0) { 1891 /* 1892 * Wiring. 1893 * 1894 * 1. Holding the write lock, we create any shadow or zero-fill 1895 * objects that need to be created. Then we clip each map 1896 * entry to the region to be wired and increment its wiring 1897 * count. We create objects before clipping the map entries 1898 * to avoid object proliferation. 1899 * 1900 * 2. We downgrade to a read lock, and call vm_fault_wire to 1901 * fault in the pages for any newly wired area (wired_count is 1902 * 1). 1903 * 1904 * Downgrading to a read lock for vm_fault_wire avoids a 1905 * possible deadlock with another process that may have faulted 1906 * on one of the pages to be wired (it would mark the page busy, 1907 * blocking us, then in turn block on the map lock that we 1908 * hold). Because of problems in the recursive lock package, 1909 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1910 * any actions that require the write lock must be done 1911 * beforehand. Because we keep the read lock on the map, the 1912 * copy-on-write status of the entries we modify here cannot 1913 * change. 1914 */ 1915 1916 entry = start_entry; 1917 while ((entry != &map->header) && (entry->start < end)) { 1918 /* 1919 * Trivial case if the entry is already wired 1920 */ 1921 if (entry->wired_count) { 1922 entry->wired_count++; 1923 entry = entry->next; 1924 continue; 1925 } 1926 1927 /* 1928 * The entry is being newly wired, we have to setup 1929 * appropriate management structures. A shadow 1930 * object is required for a copy-on-write region, 1931 * or a normal object for a zero-fill region. We 1932 * do not have to do this for entries that point to sub 1933 * maps because we won't hold the lock on the sub map. 1934 */ 1935 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1936 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1937 if (copyflag && 1938 ((entry->protection & VM_PROT_WRITE) != 0)) { 1939 1940 vm_object_shadow(&entry->object.vm_object, 1941 &entry->offset, 1942 atop(entry->end - entry->start)); 1943 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1944 } else if (entry->object.vm_object == NULL && 1945 !map->system_map) { 1946 entry->object.vm_object = 1947 vm_object_allocate(OBJT_DEFAULT, 1948 atop(entry->end - entry->start)); 1949 entry->offset = (vm_offset_t) 0; 1950 } 1951 } 1952 1953 entry->wired_count++; 1954 entry = entry->next; 1955 } 1956 1957 /* 1958 * Pass 2. 1959 */ 1960 1961 /* 1962 * HACK HACK HACK HACK 1963 * 1964 * Unlock the map to avoid deadlocks. The in-transit flag 1965 * protects us from most changes but note that 1966 * clipping may still occur. To prevent clipping from 1967 * occuring after the unlock, except for when we are 1968 * blocking in vm_fault_wire, we must run at splvm(). 1969 * Otherwise our accesses to entry->start and entry->end 1970 * could be corrupted. We have to set splvm() prior to 1971 * unlocking so start_entry does not change out from 1972 * under us at the very beginning of the loop. 1973 * 1974 * HACK HACK HACK HACK 1975 */ 1976 1977 s = splvm(); 1978 1979 entry = start_entry; 1980 while (entry != &map->header && entry->start < end) { 1981 /* 1982 * If vm_fault_wire fails for any page we need to undo 1983 * what has been done. We decrement the wiring count 1984 * for those pages which have not yet been wired (now) 1985 * and unwire those that have (later). 1986 */ 1987 vm_offset_t save_start = entry->start; 1988 vm_offset_t save_end = entry->end; 1989 1990 if (entry->wired_count == 1) 1991 rv = vm_fault_wire(map, entry, FALSE); 1992 if (rv) { 1993 CLIP_CHECK_BACK(entry, save_start); 1994 for (;;) { 1995 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 1996 entry->wired_count = 0; 1997 if (entry->end == save_end) 1998 break; 1999 entry = entry->next; 2000 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2001 } 2002 end = save_start; 2003 break; 2004 } 2005 CLIP_CHECK_FWD(entry, save_end); 2006 entry = entry->next; 2007 } 2008 splx(s); 2009 2010 /* 2011 * If a failure occured undo everything by falling through 2012 * to the unwiring code. 'end' has already been adjusted 2013 * appropriately. 2014 */ 2015 if (rv) 2016 kmflags |= KM_PAGEABLE; 2017 2018 /* 2019 * start_entry is still IN_TRANSITION but may have been 2020 * clipped since vm_fault_wire() unlocks and relocks the 2021 * map. No matter how clipped it has gotten there should 2022 * be a fragment that is on our start boundary. 2023 */ 2024 CLIP_CHECK_BACK(start_entry, start); 2025 } 2026 2027 if (kmflags & KM_PAGEABLE) { 2028 /* 2029 * This is the unwiring case. We must first ensure that the 2030 * range to be unwired is really wired down. We know there 2031 * are no holes. 2032 */ 2033 entry = start_entry; 2034 while ((entry != &map->header) && (entry->start < end)) { 2035 if (entry->wired_count == 0) { 2036 rv = KERN_INVALID_ARGUMENT; 2037 goto done; 2038 } 2039 entry = entry->next; 2040 } 2041 2042 /* 2043 * Now decrement the wiring count for each region. If a region 2044 * becomes completely unwired, unwire its physical pages and 2045 * mappings. 2046 */ 2047 entry = start_entry; 2048 while ((entry != &map->header) && (entry->start < end)) { 2049 entry->wired_count--; 2050 if (entry->wired_count == 0) 2051 vm_fault_unwire(map, entry); 2052 entry = entry->next; 2053 } 2054 } 2055 done: 2056 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2057 MAP_CLIP_NO_HOLES); 2058 map->timestamp++; 2059 vm_map_unlock(map); 2060 failure: 2061 if (kmflags & KM_KRESERVE) 2062 vm_map_entry_krelease(count); 2063 else 2064 vm_map_entry_release(count); 2065 return (rv); 2066 } 2067 2068 /* 2069 * vm_map_set_wired_quick() 2070 * 2071 * Mark a newly allocated address range as wired but do not fault in 2072 * the pages. The caller is expected to load the pages into the object. 2073 * 2074 * The map must be locked on entry and will remain locked on return. 2075 */ 2076 void 2077 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp) 2078 { 2079 vm_map_entry_t scan; 2080 vm_map_entry_t entry; 2081 2082 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2083 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) { 2084 KKASSERT(entry->wired_count == 0); 2085 entry->wired_count = 1; 2086 } 2087 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2088 } 2089 2090 /* 2091 * vm_map_clean 2092 * 2093 * Push any dirty cached pages in the address range to their pager. 2094 * If syncio is TRUE, dirty pages are written synchronously. 2095 * If invalidate is TRUE, any cached pages are freed as well. 2096 * 2097 * Returns an error if any part of the specified range is not mapped. 2098 */ 2099 int 2100 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, 2101 boolean_t invalidate) 2102 { 2103 vm_map_entry_t current; 2104 vm_map_entry_t entry; 2105 vm_size_t size; 2106 vm_object_t object; 2107 vm_ooffset_t offset; 2108 2109 vm_map_lock_read(map); 2110 VM_MAP_RANGE_CHECK(map, start, end); 2111 if (!vm_map_lookup_entry(map, start, &entry)) { 2112 vm_map_unlock_read(map); 2113 return (KERN_INVALID_ADDRESS); 2114 } 2115 /* 2116 * Make a first pass to check for holes. 2117 */ 2118 for (current = entry; current->start < end; current = current->next) { 2119 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2120 vm_map_unlock_read(map); 2121 return (KERN_INVALID_ARGUMENT); 2122 } 2123 if (end > current->end && 2124 (current->next == &map->header || 2125 current->end != current->next->start)) { 2126 vm_map_unlock_read(map); 2127 return (KERN_INVALID_ADDRESS); 2128 } 2129 } 2130 2131 if (invalidate) 2132 pmap_remove(vm_map_pmap(map), start, end); 2133 /* 2134 * Make a second pass, cleaning/uncaching pages from the indicated 2135 * objects as we go. 2136 */ 2137 for (current = entry; current->start < end; current = current->next) { 2138 offset = current->offset + (start - current->start); 2139 size = (end <= current->end ? end : current->end) - start; 2140 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2141 vm_map_t smap; 2142 vm_map_entry_t tentry; 2143 vm_size_t tsize; 2144 2145 smap = current->object.sub_map; 2146 vm_map_lock_read(smap); 2147 (void) vm_map_lookup_entry(smap, offset, &tentry); 2148 tsize = tentry->end - offset; 2149 if (tsize < size) 2150 size = tsize; 2151 object = tentry->object.vm_object; 2152 offset = tentry->offset + (offset - tentry->start); 2153 vm_map_unlock_read(smap); 2154 } else { 2155 object = current->object.vm_object; 2156 } 2157 /* 2158 * Note that there is absolutely no sense in writing out 2159 * anonymous objects, so we track down the vnode object 2160 * to write out. 2161 * We invalidate (remove) all pages from the address space 2162 * anyway, for semantic correctness. 2163 * 2164 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2165 * may start out with a NULL object. 2166 */ 2167 while (object && object->backing_object) { 2168 offset += object->backing_object_offset; 2169 object = object->backing_object; 2170 if (object->size < OFF_TO_IDX( offset + size)) 2171 size = IDX_TO_OFF(object->size) - offset; 2172 } 2173 if (object && (object->type == OBJT_VNODE) && 2174 (current->protection & VM_PROT_WRITE)) { 2175 /* 2176 * Flush pages if writing is allowed, invalidate them 2177 * if invalidation requested. Pages undergoing I/O 2178 * will be ignored by vm_object_page_remove(). 2179 * 2180 * We cannot lock the vnode and then wait for paging 2181 * to complete without deadlocking against vm_fault. 2182 * Instead we simply call vm_object_page_remove() and 2183 * allow it to block internally on a page-by-page 2184 * basis when it encounters pages undergoing async 2185 * I/O. 2186 */ 2187 int flags; 2188 2189 vm_object_reference(object); 2190 vn_lock(object->handle, NULL, 2191 LK_EXCLUSIVE | LK_RETRY, curthread); 2192 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2193 flags |= invalidate ? OBJPC_INVAL : 0; 2194 vm_object_page_clean(object, 2195 OFF_TO_IDX(offset), 2196 OFF_TO_IDX(offset + size + PAGE_MASK), 2197 flags); 2198 VOP_UNLOCK(((struct vnode *)object->handle), 2199 NULL, 0, curthread); 2200 vm_object_deallocate(object); 2201 } 2202 if (object && invalidate && 2203 ((object->type == OBJT_VNODE) || 2204 (object->type == OBJT_DEVICE))) { 2205 int clean_only = 2206 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2207 vm_object_reference(object); 2208 vm_object_page_remove(object, 2209 OFF_TO_IDX(offset), 2210 OFF_TO_IDX(offset + size + PAGE_MASK), 2211 clean_only); 2212 vm_object_deallocate(object); 2213 } 2214 start += size; 2215 } 2216 2217 vm_map_unlock_read(map); 2218 return (KERN_SUCCESS); 2219 } 2220 2221 /* 2222 * vm_map_entry_unwire: [ internal use only ] 2223 * 2224 * Make the region specified by this entry pageable. 2225 * 2226 * The map in question should be locked. 2227 * [This is the reason for this routine's existence.] 2228 */ 2229 static void 2230 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2231 { 2232 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2233 entry->wired_count = 0; 2234 vm_fault_unwire(map, entry); 2235 } 2236 2237 /* 2238 * vm_map_entry_delete: [ internal use only ] 2239 * 2240 * Deallocate the given entry from the target map. 2241 */ 2242 static void 2243 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2244 { 2245 vm_map_entry_unlink(map, entry); 2246 map->size -= entry->end - entry->start; 2247 2248 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2249 vm_object_deallocate(entry->object.vm_object); 2250 } 2251 2252 vm_map_entry_dispose(map, entry, countp); 2253 } 2254 2255 /* 2256 * vm_map_delete: [ internal use only ] 2257 * 2258 * Deallocates the given address range from the target 2259 * map. 2260 */ 2261 int 2262 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2263 { 2264 vm_object_t object; 2265 vm_map_entry_t entry; 2266 vm_map_entry_t first_entry; 2267 2268 /* 2269 * Find the start of the region, and clip it 2270 */ 2271 2272 again: 2273 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2274 entry = first_entry->next; 2275 } else { 2276 entry = first_entry; 2277 vm_map_clip_start(map, entry, start, countp); 2278 /* 2279 * Fix the lookup hint now, rather than each time though the 2280 * loop. 2281 */ 2282 SAVE_HINT(map, entry->prev); 2283 } 2284 2285 /* 2286 * Save the free space hint 2287 */ 2288 2289 if (entry == &map->header) { 2290 map->first_free = &map->header; 2291 } else if (map->first_free->start >= start) { 2292 map->first_free = entry->prev; 2293 } 2294 2295 /* 2296 * Step through all entries in this region 2297 */ 2298 2299 while ((entry != &map->header) && (entry->start < end)) { 2300 vm_map_entry_t next; 2301 vm_offset_t s, e; 2302 vm_pindex_t offidxstart, offidxend, count; 2303 2304 /* 2305 * If we hit an in-transition entry we have to sleep and 2306 * retry. It's easier (and not really slower) to just retry 2307 * since this case occurs so rarely and the hint is already 2308 * pointing at the right place. We have to reset the 2309 * start offset so as not to accidently delete an entry 2310 * another process just created in vacated space. 2311 */ 2312 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2313 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2314 start = entry->start; 2315 ++mycpu->gd_cnt.v_intrans_coll; 2316 ++mycpu->gd_cnt.v_intrans_wait; 2317 vm_map_transition_wait(map); 2318 goto again; 2319 } 2320 vm_map_clip_end(map, entry, end, countp); 2321 2322 s = entry->start; 2323 e = entry->end; 2324 next = entry->next; 2325 2326 offidxstart = OFF_TO_IDX(entry->offset); 2327 count = OFF_TO_IDX(e - s); 2328 object = entry->object.vm_object; 2329 2330 /* 2331 * Unwire before removing addresses from the pmap; otherwise, 2332 * unwiring will put the entries back in the pmap. 2333 */ 2334 if (entry->wired_count != 0) 2335 vm_map_entry_unwire(map, entry); 2336 2337 offidxend = offidxstart + count; 2338 2339 if ((object == kernel_object) || (object == kmem_object)) { 2340 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2341 } else { 2342 pmap_remove(map->pmap, s, e); 2343 if (object != NULL && 2344 object->ref_count != 1 && 2345 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2346 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2347 vm_object_collapse(object); 2348 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2349 if (object->type == OBJT_SWAP) { 2350 swap_pager_freespace(object, offidxstart, count); 2351 } 2352 if (offidxend >= object->size && 2353 offidxstart < object->size) { 2354 object->size = offidxstart; 2355 } 2356 } 2357 } 2358 2359 /* 2360 * Delete the entry (which may delete the object) only after 2361 * removing all pmap entries pointing to its pages. 2362 * (Otherwise, its page frames may be reallocated, and any 2363 * modify bits will be set in the wrong object!) 2364 */ 2365 vm_map_entry_delete(map, entry, countp); 2366 entry = next; 2367 } 2368 return (KERN_SUCCESS); 2369 } 2370 2371 /* 2372 * vm_map_remove: 2373 * 2374 * Remove the given address range from the target map. 2375 * This is the exported form of vm_map_delete. 2376 */ 2377 int 2378 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2379 { 2380 int result; 2381 int count; 2382 2383 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2384 vm_map_lock(map); 2385 VM_MAP_RANGE_CHECK(map, start, end); 2386 result = vm_map_delete(map, start, end, &count); 2387 vm_map_unlock(map); 2388 vm_map_entry_release(count); 2389 2390 return (result); 2391 } 2392 2393 /* 2394 * vm_map_check_protection: 2395 * 2396 * Assert that the target map allows the specified 2397 * privilege on the entire address region given. 2398 * The entire region must be allocated. 2399 */ 2400 boolean_t 2401 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2402 vm_prot_t protection) 2403 { 2404 vm_map_entry_t entry; 2405 vm_map_entry_t tmp_entry; 2406 2407 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2408 return (FALSE); 2409 } 2410 entry = tmp_entry; 2411 2412 while (start < end) { 2413 if (entry == &map->header) { 2414 return (FALSE); 2415 } 2416 /* 2417 * No holes allowed! 2418 */ 2419 2420 if (start < entry->start) { 2421 return (FALSE); 2422 } 2423 /* 2424 * Check protection associated with entry. 2425 */ 2426 2427 if ((entry->protection & protection) != protection) { 2428 return (FALSE); 2429 } 2430 /* go to next entry */ 2431 2432 start = entry->end; 2433 entry = entry->next; 2434 } 2435 return (TRUE); 2436 } 2437 2438 /* 2439 * Split the pages in a map entry into a new object. This affords 2440 * easier removal of unused pages, and keeps object inheritance from 2441 * being a negative impact on memory usage. 2442 */ 2443 static void 2444 vm_map_split(vm_map_entry_t entry) 2445 { 2446 vm_page_t m; 2447 vm_object_t orig_object, new_object, source; 2448 vm_offset_t s, e; 2449 vm_pindex_t offidxstart, offidxend, idx; 2450 vm_size_t size; 2451 vm_ooffset_t offset; 2452 2453 orig_object = entry->object.vm_object; 2454 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2455 return; 2456 if (orig_object->ref_count <= 1) 2457 return; 2458 2459 offset = entry->offset; 2460 s = entry->start; 2461 e = entry->end; 2462 2463 offidxstart = OFF_TO_IDX(offset); 2464 offidxend = offidxstart + OFF_TO_IDX(e - s); 2465 size = offidxend - offidxstart; 2466 2467 new_object = vm_pager_allocate(orig_object->type, 2468 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 2469 if (new_object == NULL) 2470 return; 2471 2472 source = orig_object->backing_object; 2473 if (source != NULL) { 2474 vm_object_reference(source); /* Referenced by new_object */ 2475 LIST_INSERT_HEAD(&source->shadow_head, 2476 new_object, shadow_list); 2477 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2478 new_object->backing_object_offset = 2479 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2480 new_object->backing_object = source; 2481 source->shadow_count++; 2482 source->generation++; 2483 } 2484 2485 for (idx = 0; idx < size; idx++) { 2486 vm_page_t m; 2487 int ss; /* s used */ 2488 2489 /* 2490 * splvm protection is required to avoid a race between 2491 * the lookup and an interrupt/unbusy/free and our busy 2492 * check. 2493 */ 2494 ss = splvm(); 2495 retry: 2496 m = vm_page_lookup(orig_object, offidxstart + idx); 2497 if (m == NULL) { 2498 splx(ss); 2499 continue; 2500 } 2501 2502 /* 2503 * We must wait for pending I/O to complete before we can 2504 * rename the page. 2505 * 2506 * We do not have to VM_PROT_NONE the page as mappings should 2507 * not be changed by this operation. 2508 */ 2509 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2510 goto retry; 2511 vm_page_busy(m); 2512 vm_page_rename(m, new_object, idx); 2513 /* page automatically made dirty by rename and cache handled */ 2514 vm_page_busy(m); 2515 splx(ss); 2516 } 2517 2518 if (orig_object->type == OBJT_SWAP) { 2519 vm_object_pip_add(orig_object, 1); 2520 /* 2521 * copy orig_object pages into new_object 2522 * and destroy unneeded pages in 2523 * shadow object. 2524 */ 2525 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2526 vm_object_pip_wakeup(orig_object); 2527 } 2528 2529 /* 2530 * Wakeup the pages we played with. No spl protection is needed 2531 * for a simple wakeup. 2532 */ 2533 for (idx = 0; idx < size; idx++) { 2534 m = vm_page_lookup(new_object, idx); 2535 if (m) 2536 vm_page_wakeup(m); 2537 } 2538 2539 entry->object.vm_object = new_object; 2540 entry->offset = 0LL; 2541 vm_object_deallocate(orig_object); 2542 } 2543 2544 /* 2545 * vm_map_copy_entry: 2546 * 2547 * Copies the contents of the source entry to the destination 2548 * entry. The entries *must* be aligned properly. 2549 */ 2550 static void 2551 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2552 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2553 { 2554 vm_object_t src_object; 2555 2556 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2557 return; 2558 2559 if (src_entry->wired_count == 0) { 2560 2561 /* 2562 * If the source entry is marked needs_copy, it is already 2563 * write-protected. 2564 */ 2565 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2566 pmap_protect(src_map->pmap, 2567 src_entry->start, 2568 src_entry->end, 2569 src_entry->protection & ~VM_PROT_WRITE); 2570 } 2571 2572 /* 2573 * Make a copy of the object. 2574 */ 2575 if ((src_object = src_entry->object.vm_object) != NULL) { 2576 2577 if ((src_object->handle == NULL) && 2578 (src_object->type == OBJT_DEFAULT || 2579 src_object->type == OBJT_SWAP)) { 2580 vm_object_collapse(src_object); 2581 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2582 vm_map_split(src_entry); 2583 src_object = src_entry->object.vm_object; 2584 } 2585 } 2586 2587 vm_object_reference(src_object); 2588 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2589 dst_entry->object.vm_object = src_object; 2590 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2591 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2592 dst_entry->offset = src_entry->offset; 2593 } else { 2594 dst_entry->object.vm_object = NULL; 2595 dst_entry->offset = 0; 2596 } 2597 2598 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2599 dst_entry->end - dst_entry->start, src_entry->start); 2600 } else { 2601 /* 2602 * Of course, wired down pages can't be set copy-on-write. 2603 * Cause wired pages to be copied into the new map by 2604 * simulating faults (the new pages are pageable) 2605 */ 2606 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2607 } 2608 } 2609 2610 /* 2611 * vmspace_fork: 2612 * Create a new process vmspace structure and vm_map 2613 * based on those of an existing process. The new map 2614 * is based on the old map, according to the inheritance 2615 * values on the regions in that map. 2616 * 2617 * The source map must not be locked. 2618 */ 2619 struct vmspace * 2620 vmspace_fork(struct vmspace *vm1) 2621 { 2622 struct vmspace *vm2; 2623 vm_map_t old_map = &vm1->vm_map; 2624 vm_map_t new_map; 2625 vm_map_entry_t old_entry; 2626 vm_map_entry_t new_entry; 2627 vm_object_t object; 2628 int count; 2629 2630 vm_map_lock(old_map); 2631 old_map->infork = 1; 2632 2633 /* 2634 * XXX Note: upcalls are not copied. 2635 */ 2636 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2637 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2638 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 2639 new_map = &vm2->vm_map; /* XXX */ 2640 new_map->timestamp = 1; 2641 2642 count = 0; 2643 old_entry = old_map->header.next; 2644 while (old_entry != &old_map->header) { 2645 ++count; 2646 old_entry = old_entry->next; 2647 } 2648 2649 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 2650 2651 old_entry = old_map->header.next; 2652 while (old_entry != &old_map->header) { 2653 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2654 panic("vm_map_fork: encountered a submap"); 2655 2656 switch (old_entry->inheritance) { 2657 case VM_INHERIT_NONE: 2658 break; 2659 2660 case VM_INHERIT_SHARE: 2661 /* 2662 * Clone the entry, creating the shared object if necessary. 2663 */ 2664 object = old_entry->object.vm_object; 2665 if (object == NULL) { 2666 object = vm_object_allocate(OBJT_DEFAULT, 2667 atop(old_entry->end - old_entry->start)); 2668 old_entry->object.vm_object = object; 2669 old_entry->offset = (vm_offset_t) 0; 2670 } 2671 2672 /* 2673 * Add the reference before calling vm_object_shadow 2674 * to insure that a shadow object is created. 2675 */ 2676 vm_object_reference(object); 2677 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2678 vm_object_shadow(&old_entry->object.vm_object, 2679 &old_entry->offset, 2680 atop(old_entry->end - old_entry->start)); 2681 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2682 /* Transfer the second reference too. */ 2683 vm_object_reference( 2684 old_entry->object.vm_object); 2685 vm_object_deallocate(object); 2686 object = old_entry->object.vm_object; 2687 } 2688 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2689 2690 /* 2691 * Clone the entry, referencing the shared object. 2692 */ 2693 new_entry = vm_map_entry_create(new_map, &count); 2694 *new_entry = *old_entry; 2695 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2696 new_entry->wired_count = 0; 2697 2698 /* 2699 * Insert the entry into the new map -- we know we're 2700 * inserting at the end of the new map. 2701 */ 2702 2703 vm_map_entry_link(new_map, new_map->header.prev, 2704 new_entry); 2705 2706 /* 2707 * Update the physical map 2708 */ 2709 2710 pmap_copy(new_map->pmap, old_map->pmap, 2711 new_entry->start, 2712 (old_entry->end - old_entry->start), 2713 old_entry->start); 2714 break; 2715 2716 case VM_INHERIT_COPY: 2717 /* 2718 * Clone the entry and link into the map. 2719 */ 2720 new_entry = vm_map_entry_create(new_map, &count); 2721 *new_entry = *old_entry; 2722 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2723 new_entry->wired_count = 0; 2724 new_entry->object.vm_object = NULL; 2725 vm_map_entry_link(new_map, new_map->header.prev, 2726 new_entry); 2727 vm_map_copy_entry(old_map, new_map, old_entry, 2728 new_entry); 2729 break; 2730 } 2731 old_entry = old_entry->next; 2732 } 2733 2734 new_map->size = old_map->size; 2735 old_map->infork = 0; 2736 vm_map_unlock(old_map); 2737 vm_map_entry_release(count); 2738 2739 return (vm2); 2740 } 2741 2742 int 2743 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2744 vm_prot_t prot, vm_prot_t max, int cow) 2745 { 2746 vm_map_entry_t prev_entry; 2747 vm_map_entry_t new_stack_entry; 2748 vm_size_t init_ssize; 2749 int rv; 2750 int count; 2751 2752 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2753 return (KERN_NO_SPACE); 2754 2755 if (max_ssize < sgrowsiz) 2756 init_ssize = max_ssize; 2757 else 2758 init_ssize = sgrowsiz; 2759 2760 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2761 vm_map_lock(map); 2762 2763 /* If addr is already mapped, no go */ 2764 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2765 vm_map_unlock(map); 2766 vm_map_entry_release(count); 2767 return (KERN_NO_SPACE); 2768 } 2769 2770 /* If we would blow our VMEM resource limit, no go */ 2771 if (map->size + init_ssize > 2772 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2773 vm_map_unlock(map); 2774 vm_map_entry_release(count); 2775 return (KERN_NO_SPACE); 2776 } 2777 2778 /* If we can't accomodate max_ssize in the current mapping, 2779 * no go. However, we need to be aware that subsequent user 2780 * mappings might map into the space we have reserved for 2781 * stack, and currently this space is not protected. 2782 * 2783 * Hopefully we will at least detect this condition 2784 * when we try to grow the stack. 2785 */ 2786 if ((prev_entry->next != &map->header) && 2787 (prev_entry->next->start < addrbos + max_ssize)) { 2788 vm_map_unlock(map); 2789 vm_map_entry_release(count); 2790 return (KERN_NO_SPACE); 2791 } 2792 2793 /* We initially map a stack of only init_ssize. We will 2794 * grow as needed later. Since this is to be a grow 2795 * down stack, we map at the top of the range. 2796 * 2797 * Note: we would normally expect prot and max to be 2798 * VM_PROT_ALL, and cow to be 0. Possibly we should 2799 * eliminate these as input parameters, and just 2800 * pass these values here in the insert call. 2801 */ 2802 rv = vm_map_insert(map, &count, 2803 NULL, 0, addrbos + max_ssize - init_ssize, 2804 addrbos + max_ssize, prot, max, cow); 2805 2806 /* Now set the avail_ssize amount */ 2807 if (rv == KERN_SUCCESS){ 2808 if (prev_entry != &map->header) 2809 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 2810 new_stack_entry = prev_entry->next; 2811 if (new_stack_entry->end != addrbos + max_ssize || 2812 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2813 panic ("Bad entry start/end for new stack entry"); 2814 else 2815 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2816 } 2817 2818 vm_map_unlock(map); 2819 vm_map_entry_release(count); 2820 return (rv); 2821 } 2822 2823 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2824 * desired address is already mapped, or if we successfully grow 2825 * the stack. Also returns KERN_SUCCESS if addr is outside the 2826 * stack range (this is strange, but preserves compatibility with 2827 * the grow function in vm_machdep.c). 2828 */ 2829 int 2830 vm_map_growstack (struct proc *p, vm_offset_t addr) 2831 { 2832 vm_map_entry_t prev_entry; 2833 vm_map_entry_t stack_entry; 2834 vm_map_entry_t new_stack_entry; 2835 struct vmspace *vm = p->p_vmspace; 2836 vm_map_t map = &vm->vm_map; 2837 vm_offset_t end; 2838 int grow_amount; 2839 int rv = KERN_SUCCESS; 2840 int is_procstack; 2841 int use_read_lock = 1; 2842 int count; 2843 2844 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2845 Retry: 2846 if (use_read_lock) 2847 vm_map_lock_read(map); 2848 else 2849 vm_map_lock(map); 2850 2851 /* If addr is already in the entry range, no need to grow.*/ 2852 if (vm_map_lookup_entry(map, addr, &prev_entry)) 2853 goto done; 2854 2855 if ((stack_entry = prev_entry->next) == &map->header) 2856 goto done; 2857 if (prev_entry == &map->header) 2858 end = stack_entry->start - stack_entry->avail_ssize; 2859 else 2860 end = prev_entry->end; 2861 2862 /* This next test mimics the old grow function in vm_machdep.c. 2863 * It really doesn't quite make sense, but we do it anyway 2864 * for compatibility. 2865 * 2866 * If not growable stack, return success. This signals the 2867 * caller to proceed as he would normally with normal vm. 2868 */ 2869 if (stack_entry->avail_ssize < 1 || 2870 addr >= stack_entry->start || 2871 addr < stack_entry->start - stack_entry->avail_ssize) { 2872 goto done; 2873 } 2874 2875 /* Find the minimum grow amount */ 2876 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2877 if (grow_amount > stack_entry->avail_ssize) { 2878 rv = KERN_NO_SPACE; 2879 goto done; 2880 } 2881 2882 /* If there is no longer enough space between the entries 2883 * nogo, and adjust the available space. Note: this 2884 * should only happen if the user has mapped into the 2885 * stack area after the stack was created, and is 2886 * probably an error. 2887 * 2888 * This also effectively destroys any guard page the user 2889 * might have intended by limiting the stack size. 2890 */ 2891 if (grow_amount > stack_entry->start - end) { 2892 if (use_read_lock && vm_map_lock_upgrade(map)) { 2893 use_read_lock = 0; 2894 goto Retry; 2895 } 2896 use_read_lock = 0; 2897 stack_entry->avail_ssize = stack_entry->start - end; 2898 rv = KERN_NO_SPACE; 2899 goto done; 2900 } 2901 2902 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2903 2904 /* If this is the main process stack, see if we're over the 2905 * stack limit. 2906 */ 2907 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2908 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2909 rv = KERN_NO_SPACE; 2910 goto done; 2911 } 2912 2913 /* Round up the grow amount modulo SGROWSIZ */ 2914 grow_amount = roundup (grow_amount, sgrowsiz); 2915 if (grow_amount > stack_entry->avail_ssize) { 2916 grow_amount = stack_entry->avail_ssize; 2917 } 2918 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2919 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2920 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2921 ctob(vm->vm_ssize); 2922 } 2923 2924 /* If we would blow our VMEM resource limit, no go */ 2925 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2926 rv = KERN_NO_SPACE; 2927 goto done; 2928 } 2929 2930 if (use_read_lock && vm_map_lock_upgrade(map)) { 2931 use_read_lock = 0; 2932 goto Retry; 2933 } 2934 use_read_lock = 0; 2935 2936 /* Get the preliminary new entry start value */ 2937 addr = stack_entry->start - grow_amount; 2938 2939 /* If this puts us into the previous entry, cut back our growth 2940 * to the available space. Also, see the note above. 2941 */ 2942 if (addr < end) { 2943 stack_entry->avail_ssize = stack_entry->start - end; 2944 addr = end; 2945 } 2946 2947 rv = vm_map_insert(map, &count, 2948 NULL, 0, addr, stack_entry->start, 2949 VM_PROT_ALL, 2950 VM_PROT_ALL, 2951 0); 2952 2953 /* Adjust the available stack space by the amount we grew. */ 2954 if (rv == KERN_SUCCESS) { 2955 if (prev_entry != &map->header) 2956 vm_map_clip_end(map, prev_entry, addr, &count); 2957 new_stack_entry = prev_entry->next; 2958 if (new_stack_entry->end != stack_entry->start || 2959 new_stack_entry->start != addr) 2960 panic ("Bad stack grow start/end in new stack entry"); 2961 else { 2962 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2963 (new_stack_entry->end - 2964 new_stack_entry->start); 2965 if (is_procstack) 2966 vm->vm_ssize += btoc(new_stack_entry->end - 2967 new_stack_entry->start); 2968 } 2969 } 2970 2971 done: 2972 if (use_read_lock) 2973 vm_map_unlock_read(map); 2974 else 2975 vm_map_unlock(map); 2976 vm_map_entry_release(count); 2977 return (rv); 2978 } 2979 2980 /* 2981 * Unshare the specified VM space for exec. If other processes are 2982 * mapped to it, then create a new one. The new vmspace is null. 2983 */ 2984 2985 void 2986 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 2987 { 2988 struct vmspace *oldvmspace = p->p_vmspace; 2989 struct vmspace *newvmspace; 2990 vm_map_t map = &p->p_vmspace->vm_map; 2991 2992 /* 2993 * If we are execing a resident vmspace we fork it, otherwise 2994 * we create a new vmspace. Note that exitingcnt and upcalls 2995 * are not copied to the new vmspace. 2996 */ 2997 if (vmcopy) { 2998 newvmspace = vmspace_fork(vmcopy); 2999 } else { 3000 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3001 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3002 (caddr_t)&oldvmspace->vm_endcopy - 3003 (caddr_t)&oldvmspace->vm_startcopy); 3004 } 3005 3006 /* 3007 * This code is written like this for prototype purposes. The 3008 * goal is to avoid running down the vmspace here, but let the 3009 * other process's that are still using the vmspace to finally 3010 * run it down. Even though there is little or no chance of blocking 3011 * here, it is a good idea to keep this form for future mods. 3012 */ 3013 p->p_vmspace = newvmspace; 3014 pmap_pinit2(vmspace_pmap(newvmspace)); 3015 if (p == curproc) 3016 pmap_activate(p); 3017 vmspace_free(oldvmspace); 3018 } 3019 3020 /* 3021 * Unshare the specified VM space for forcing COW. This 3022 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3023 * 3024 * The exitingcnt test is not strictly necessary but has been 3025 * included for code sanity (to make the code a bit more deterministic). 3026 */ 3027 3028 void 3029 vmspace_unshare(struct proc *p) 3030 { 3031 struct vmspace *oldvmspace = p->p_vmspace; 3032 struct vmspace *newvmspace; 3033 3034 if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3035 return; 3036 newvmspace = vmspace_fork(oldvmspace); 3037 p->p_vmspace = newvmspace; 3038 pmap_pinit2(vmspace_pmap(newvmspace)); 3039 if (p == curproc) 3040 pmap_activate(p); 3041 vmspace_free(oldvmspace); 3042 } 3043 3044 /* 3045 * vm_map_lookup: 3046 * 3047 * Finds the VM object, offset, and 3048 * protection for a given virtual address in the 3049 * specified map, assuming a page fault of the 3050 * type specified. 3051 * 3052 * Leaves the map in question locked for read; return 3053 * values are guaranteed until a vm_map_lookup_done 3054 * call is performed. Note that the map argument 3055 * is in/out; the returned map must be used in 3056 * the call to vm_map_lookup_done. 3057 * 3058 * A handle (out_entry) is returned for use in 3059 * vm_map_lookup_done, to make that fast. 3060 * 3061 * If a lookup is requested with "write protection" 3062 * specified, the map may be changed to perform virtual 3063 * copying operations, although the data referenced will 3064 * remain the same. 3065 */ 3066 int 3067 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3068 vm_offset_t vaddr, 3069 vm_prot_t fault_typea, 3070 vm_map_entry_t *out_entry, /* OUT */ 3071 vm_object_t *object, /* OUT */ 3072 vm_pindex_t *pindex, /* OUT */ 3073 vm_prot_t *out_prot, /* OUT */ 3074 boolean_t *wired) /* OUT */ 3075 { 3076 vm_map_entry_t entry; 3077 vm_map_t map = *var_map; 3078 vm_prot_t prot; 3079 vm_prot_t fault_type = fault_typea; 3080 int use_read_lock = 1; 3081 int rv = KERN_SUCCESS; 3082 3083 RetryLookup: 3084 if (use_read_lock) 3085 vm_map_lock_read(map); 3086 else 3087 vm_map_lock(map); 3088 3089 /* 3090 * If the map has an interesting hint, try it before calling full 3091 * blown lookup routine. 3092 */ 3093 entry = map->hint; 3094 *out_entry = entry; 3095 3096 if ((entry == &map->header) || 3097 (vaddr < entry->start) || (vaddr >= entry->end)) { 3098 vm_map_entry_t tmp_entry; 3099 3100 /* 3101 * Entry was either not a valid hint, or the vaddr was not 3102 * contained in the entry, so do a full lookup. 3103 */ 3104 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3105 rv = KERN_INVALID_ADDRESS; 3106 goto done; 3107 } 3108 3109 entry = tmp_entry; 3110 *out_entry = entry; 3111 } 3112 3113 /* 3114 * Handle submaps. 3115 */ 3116 3117 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3118 vm_map_t old_map = map; 3119 3120 *var_map = map = entry->object.sub_map; 3121 if (use_read_lock) 3122 vm_map_unlock_read(old_map); 3123 else 3124 vm_map_unlock(old_map); 3125 use_read_lock = 1; 3126 goto RetryLookup; 3127 } 3128 3129 /* 3130 * Check whether this task is allowed to have this page. 3131 * Note the special case for MAP_ENTRY_COW 3132 * pages with an override. This is to implement a forced 3133 * COW for debuggers. 3134 */ 3135 3136 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3137 prot = entry->max_protection; 3138 else 3139 prot = entry->protection; 3140 3141 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3142 if ((fault_type & prot) != fault_type) { 3143 rv = KERN_PROTECTION_FAILURE; 3144 goto done; 3145 } 3146 3147 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3148 (entry->eflags & MAP_ENTRY_COW) && 3149 (fault_type & VM_PROT_WRITE) && 3150 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3151 rv = KERN_PROTECTION_FAILURE; 3152 goto done; 3153 } 3154 3155 /* 3156 * If this page is not pageable, we have to get it for all possible 3157 * accesses. 3158 */ 3159 3160 *wired = (entry->wired_count != 0); 3161 if (*wired) 3162 prot = fault_type = entry->protection; 3163 3164 /* 3165 * If the entry was copy-on-write, we either ... 3166 */ 3167 3168 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3169 /* 3170 * If we want to write the page, we may as well handle that 3171 * now since we've got the map locked. 3172 * 3173 * If we don't need to write the page, we just demote the 3174 * permissions allowed. 3175 */ 3176 3177 if (fault_type & VM_PROT_WRITE) { 3178 /* 3179 * Make a new object, and place it in the object 3180 * chain. Note that no new references have appeared 3181 * -- one just moved from the map to the new 3182 * object. 3183 */ 3184 3185 if (use_read_lock && vm_map_lock_upgrade(map)) { 3186 use_read_lock = 0; 3187 goto RetryLookup; 3188 } 3189 use_read_lock = 0; 3190 3191 vm_object_shadow( 3192 &entry->object.vm_object, 3193 &entry->offset, 3194 atop(entry->end - entry->start)); 3195 3196 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3197 } else { 3198 /* 3199 * We're attempting to read a copy-on-write page -- 3200 * don't allow writes. 3201 */ 3202 3203 prot &= ~VM_PROT_WRITE; 3204 } 3205 } 3206 3207 /* 3208 * Create an object if necessary. 3209 */ 3210 if (entry->object.vm_object == NULL && 3211 !map->system_map) { 3212 if (use_read_lock && vm_map_lock_upgrade(map)) { 3213 use_read_lock = 0; 3214 goto RetryLookup; 3215 } 3216 use_read_lock = 0; 3217 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3218 atop(entry->end - entry->start)); 3219 entry->offset = 0; 3220 } 3221 3222 /* 3223 * Return the object/offset from this entry. If the entry was 3224 * copy-on-write or empty, it has been fixed up. 3225 */ 3226 3227 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3228 *object = entry->object.vm_object; 3229 3230 /* 3231 * Return whether this is the only map sharing this data. On 3232 * success we return with a read lock held on the map. On failure 3233 * we return with the map unlocked. 3234 */ 3235 *out_prot = prot; 3236 done: 3237 if (rv == KERN_SUCCESS) { 3238 if (use_read_lock == 0) 3239 vm_map_lock_downgrade(map); 3240 } else if (use_read_lock) { 3241 vm_map_unlock_read(map); 3242 } else { 3243 vm_map_unlock(map); 3244 } 3245 return (rv); 3246 } 3247 3248 /* 3249 * vm_map_lookup_done: 3250 * 3251 * Releases locks acquired by a vm_map_lookup 3252 * (according to the handle returned by that lookup). 3253 */ 3254 3255 void 3256 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3257 { 3258 /* 3259 * Unlock the main-level map 3260 */ 3261 vm_map_unlock_read(map); 3262 if (count) 3263 vm_map_entry_release(count); 3264 } 3265 3266 #ifdef ENABLE_VFS_IOOPT 3267 3268 /* 3269 * Implement uiomove with VM operations. This handles (and collateral changes) 3270 * support every combination of source object modification, and COW type 3271 * operations. 3272 * 3273 * XXX this is extremely dangerous, enabling this option is NOT recommended. 3274 */ 3275 int 3276 vm_uiomove(vm_map_t mapa, vm_object_t srcobject, off_t cp, int cnta, 3277 vm_offset_t uaddra, int *npages) 3278 { 3279 vm_map_t map; 3280 vm_object_t first_object, oldobject, object; 3281 vm_map_entry_t entry; 3282 vm_prot_t prot; 3283 boolean_t wired; 3284 int tcnt, rv; 3285 vm_offset_t uaddr, start, end, tend; 3286 vm_pindex_t first_pindex, osize, oindex; 3287 off_t ooffset; 3288 int cnt; 3289 int count; 3290 int s; 3291 3292 if (npages) 3293 *npages = 0; 3294 3295 cnt = cnta; 3296 uaddr = uaddra; 3297 3298 while (cnt > 0) { 3299 map = mapa; 3300 3301 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3302 3303 if ((vm_map_lookup(&map, uaddr, 3304 VM_PROT_READ, &entry, &first_object, 3305 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 3306 return EFAULT; 3307 } 3308 3309 vm_map_clip_start(map, entry, uaddr, &count); 3310 3311 tcnt = cnt; 3312 tend = uaddr + tcnt; 3313 if (tend > entry->end) { 3314 tcnt = entry->end - uaddr; 3315 tend = entry->end; 3316 } 3317 3318 vm_map_clip_end(map, entry, tend, &count); 3319 3320 start = entry->start; 3321 end = entry->end; 3322 3323 osize = atop(tcnt); 3324 3325 oindex = OFF_TO_IDX(cp); 3326 if (npages) { 3327 vm_pindex_t idx; 3328 3329 /* 3330 * spl protection is needed to avoid a race between 3331 * the lookup and an interrupt/unbusy/free occuring 3332 * prior to our busy check. 3333 */ 3334 s = splvm(); 3335 for (idx = 0; idx < osize; idx++) { 3336 vm_page_t m; 3337 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 3338 splx(s); 3339 vm_map_lookup_done(map, entry, count); 3340 return 0; 3341 } 3342 /* 3343 * disallow busy or invalid pages, but allow 3344 * m->busy pages if they are entirely valid. 3345 */ 3346 if ((m->flags & PG_BUSY) || 3347 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 3348 splx(s); 3349 vm_map_lookup_done(map, entry, count); 3350 return 0; 3351 } 3352 } 3353 splx(s); 3354 } 3355 3356 /* 3357 * If we are changing an existing map entry, just redirect 3358 * the object, and change mappings. 3359 */ 3360 if ((first_object->type == OBJT_VNODE) && 3361 ((oldobject = entry->object.vm_object) == first_object)) { 3362 3363 if ((entry->offset != cp) || (oldobject != srcobject)) { 3364 /* 3365 * Remove old window into the file 3366 */ 3367 pmap_remove (map->pmap, uaddr, tend); 3368 3369 /* 3370 * Force copy on write for mmaped regions 3371 */ 3372 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3373 3374 /* 3375 * Point the object appropriately 3376 */ 3377 if (oldobject != srcobject) { 3378 3379 /* 3380 * Set the object optimization hint flag 3381 */ 3382 vm_object_set_flag(srcobject, OBJ_OPT); 3383 vm_object_reference(srcobject); 3384 entry->object.vm_object = srcobject; 3385 3386 if (oldobject) { 3387 vm_object_deallocate(oldobject); 3388 } 3389 } 3390 3391 entry->offset = cp; 3392 map->timestamp++; 3393 } else { 3394 pmap_remove (map->pmap, uaddr, tend); 3395 } 3396 3397 } else if ((first_object->ref_count == 1) && 3398 (first_object->size == osize) && 3399 ((first_object->type == OBJT_DEFAULT) || 3400 (first_object->type == OBJT_SWAP)) ) { 3401 3402 oldobject = first_object->backing_object; 3403 3404 if ((first_object->backing_object_offset != cp) || 3405 (oldobject != srcobject)) { 3406 /* 3407 * Remove old window into the file 3408 */ 3409 pmap_remove (map->pmap, uaddr, tend); 3410 3411 /* 3412 * Remove unneeded old pages 3413 */ 3414 vm_object_page_remove(first_object, 0, 0, 0); 3415 3416 /* 3417 * Invalidate swap space 3418 */ 3419 if (first_object->type == OBJT_SWAP) { 3420 swap_pager_freespace(first_object, 3421 0, 3422 first_object->size); 3423 } 3424 3425 /* 3426 * Force copy on write for mmaped regions 3427 */ 3428 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3429 3430 /* 3431 * Point the object appropriately 3432 */ 3433 if (oldobject != srcobject) { 3434 3435 /* 3436 * Set the object optimization hint flag 3437 */ 3438 vm_object_set_flag(srcobject, OBJ_OPT); 3439 vm_object_reference(srcobject); 3440 3441 if (oldobject) { 3442 LIST_REMOVE( 3443 first_object, shadow_list); 3444 oldobject->shadow_count--; 3445 /* XXX bump generation? */ 3446 vm_object_deallocate(oldobject); 3447 } 3448 3449 LIST_INSERT_HEAD(&srcobject->shadow_head, 3450 first_object, shadow_list); 3451 srcobject->shadow_count++; 3452 /* XXX bump generation? */ 3453 3454 first_object->backing_object = srcobject; 3455 } 3456 first_object->backing_object_offset = cp; 3457 map->timestamp++; 3458 } else { 3459 pmap_remove (map->pmap, uaddr, tend); 3460 } 3461 /* 3462 * Otherwise, we have to do a logical mmap. 3463 */ 3464 } else { 3465 3466 vm_object_set_flag(srcobject, OBJ_OPT); 3467 vm_object_reference(srcobject); 3468 3469 pmap_remove (map->pmap, uaddr, tend); 3470 3471 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3472 vm_map_lock_upgrade(map); 3473 3474 if (entry == &map->header) { 3475 map->first_free = &map->header; 3476 } else if (map->first_free->start >= start) { 3477 map->first_free = entry->prev; 3478 } 3479 3480 SAVE_HINT(map, entry->prev); 3481 vm_map_entry_delete(map, entry, &count); 3482 3483 object = srcobject; 3484 ooffset = cp; 3485 3486 rv = vm_map_insert(map, &count, 3487 object, ooffset, start, tend, 3488 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3489 3490 if (rv != KERN_SUCCESS) 3491 panic("vm_uiomove: could not insert new entry: %d", rv); 3492 } 3493 3494 /* 3495 * Map the window directly, if it is already in memory 3496 */ 3497 pmap_object_init_pt(map->pmap, uaddr, entry->protection, 3498 srcobject, oindex, tcnt, 0); 3499 3500 map->timestamp++; 3501 vm_map_unlock(map); 3502 vm_map_entry_release(count); 3503 3504 cnt -= tcnt; 3505 uaddr += tcnt; 3506 cp += tcnt; 3507 if (npages) 3508 *npages += osize; 3509 } 3510 return 0; 3511 } 3512 3513 #endif 3514 3515 /* 3516 * Performs the copy_on_write operations necessary to allow the virtual copies 3517 * into user space to work. This has to be called for write(2) system calls 3518 * from other processes, file unlinking, and file size shrinkage. 3519 */ 3520 void 3521 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa) 3522 { 3523 int rv; 3524 vm_object_t robject; 3525 vm_pindex_t idx; 3526 3527 if ((object == NULL) || 3528 ((object->flags & OBJ_OPT) == 0)) 3529 return; 3530 3531 if (object->shadow_count > object->ref_count) 3532 panic("vm_freeze_copyopts: sc > rc"); 3533 3534 while ((robject = LIST_FIRST(&object->shadow_head)) != NULL) { 3535 vm_pindex_t bo_pindex; 3536 vm_page_t m_in, m_out; 3537 3538 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 3539 3540 vm_object_reference(robject); 3541 3542 vm_object_pip_wait(robject, "objfrz"); 3543 3544 if (robject->ref_count == 1) { 3545 vm_object_deallocate(robject); 3546 continue; 3547 } 3548 3549 vm_object_pip_add(robject, 1); 3550 3551 for (idx = 0; idx < robject->size; idx++) { 3552 3553 m_out = vm_page_grab(robject, idx, 3554 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 3555 3556 if (m_out->valid == 0) { 3557 m_in = vm_page_grab(object, bo_pindex + idx, 3558 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 3559 if (m_in->valid == 0) { 3560 rv = vm_pager_get_pages(object, &m_in, 1, 0); 3561 if (rv != VM_PAGER_OK) { 3562 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex); 3563 continue; 3564 } 3565 vm_page_deactivate(m_in); 3566 } 3567 3568 vm_page_protect(m_in, VM_PROT_NONE); 3569 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 3570 m_out->valid = m_in->valid; 3571 vm_page_dirty(m_out); 3572 vm_page_activate(m_out); 3573 vm_page_wakeup(m_in); 3574 } 3575 vm_page_wakeup(m_out); 3576 } 3577 3578 object->shadow_count--; 3579 object->ref_count--; 3580 LIST_REMOVE(robject, shadow_list); 3581 robject->backing_object = NULL; 3582 robject->backing_object_offset = 0; 3583 3584 vm_object_pip_wakeup(robject); 3585 vm_object_deallocate(robject); 3586 } 3587 3588 vm_object_clear_flag(object, OBJ_OPT); 3589 } 3590 3591 #include "opt_ddb.h" 3592 #ifdef DDB 3593 #include <sys/kernel.h> 3594 3595 #include <ddb/ddb.h> 3596 3597 /* 3598 * vm_map_print: [ debug ] 3599 */ 3600 DB_SHOW_COMMAND(map, vm_map_print) 3601 { 3602 static int nlines; 3603 /* XXX convert args. */ 3604 vm_map_t map = (vm_map_t)addr; 3605 boolean_t full = have_addr; 3606 3607 vm_map_entry_t entry; 3608 3609 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3610 (void *)map, 3611 (void *)map->pmap, map->nentries, map->timestamp); 3612 nlines++; 3613 3614 if (!full && db_indent) 3615 return; 3616 3617 db_indent += 2; 3618 for (entry = map->header.next; entry != &map->header; 3619 entry = entry->next) { 3620 db_iprintf("map entry %p: start=%p, end=%p\n", 3621 (void *)entry, (void *)entry->start, (void *)entry->end); 3622 nlines++; 3623 { 3624 static char *inheritance_name[4] = 3625 {"share", "copy", "none", "donate_copy"}; 3626 3627 db_iprintf(" prot=%x/%x/%s", 3628 entry->protection, 3629 entry->max_protection, 3630 inheritance_name[(int)(unsigned char)entry->inheritance]); 3631 if (entry->wired_count != 0) 3632 db_printf(", wired"); 3633 } 3634 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3635 /* XXX no %qd in kernel. Truncate entry->offset. */ 3636 db_printf(", share=%p, offset=0x%lx\n", 3637 (void *)entry->object.sub_map, 3638 (long)entry->offset); 3639 nlines++; 3640 if ((entry->prev == &map->header) || 3641 (entry->prev->object.sub_map != 3642 entry->object.sub_map)) { 3643 db_indent += 2; 3644 vm_map_print((db_expr_t)(intptr_t) 3645 entry->object.sub_map, 3646 full, 0, (char *)0); 3647 db_indent -= 2; 3648 } 3649 } else { 3650 /* XXX no %qd in kernel. Truncate entry->offset. */ 3651 db_printf(", object=%p, offset=0x%lx", 3652 (void *)entry->object.vm_object, 3653 (long)entry->offset); 3654 if (entry->eflags & MAP_ENTRY_COW) 3655 db_printf(", copy (%s)", 3656 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3657 db_printf("\n"); 3658 nlines++; 3659 3660 if ((entry->prev == &map->header) || 3661 (entry->prev->object.vm_object != 3662 entry->object.vm_object)) { 3663 db_indent += 2; 3664 vm_object_print((db_expr_t)(intptr_t) 3665 entry->object.vm_object, 3666 full, 0, (char *)0); 3667 nlines += 4; 3668 db_indent -= 2; 3669 } 3670 } 3671 } 3672 db_indent -= 2; 3673 if (db_indent == 0) 3674 nlines = 0; 3675 } 3676 3677 3678 DB_SHOW_COMMAND(procvm, procvm) 3679 { 3680 struct proc *p; 3681 3682 if (have_addr) { 3683 p = (struct proc *) addr; 3684 } else { 3685 p = curproc; 3686 } 3687 3688 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3689 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3690 (void *)vmspace_pmap(p->p_vmspace)); 3691 3692 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3693 } 3694 3695 #endif /* DDB */ 3696