1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.17 2003/12/27 05:13:32 hsu Exp $ 66 */ 67 68 /* 69 * Virtual memory mapping module. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/lock.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 #include <sys/vnode.h> 79 #include <sys/resourcevar.h> 80 #include <sys/shm.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/vm_zone.h> 93 94 #include <sys/thread2.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a single hint is used to speed up lookups. 106 * 107 * Since portions of maps are specified by start/end addresses, 108 * which may not align with existing map entries, all 109 * routines merely "clip" entries to these start/end values. 110 * [That is, an entry is split into two, bordering at a 111 * start or end value.] Note that these clippings may not 112 * always be necessary (as the two resulting entries are then 113 * not changed); however, the clipping is done for convenience. 114 * 115 * As mentioned above, virtual copy operations are performed 116 * by copying VM object references from one map to 117 * another, and then marking both regions as copy-on-write. 118 */ 119 120 /* 121 * vm_map_startup: 122 * 123 * Initialize the vm_map module. Must be called before 124 * any other vm_map routines. 125 * 126 * Map and entry structures are allocated from the general 127 * purpose memory pool with some exceptions: 128 * 129 * - The kernel map and kmem submap are allocated statically. 130 * - Kernel map entries are allocated out of a static pool. 131 * 132 * These restrictions are necessary since malloc() uses the 133 * maps and requires map entries. 134 */ 135 136 static struct vm_zone mapentzone_store, mapzone_store; 137 static vm_zone_t mapentzone, mapzone, vmspace_zone; 138 static struct vm_object mapentobj, mapobj; 139 140 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 141 static struct vm_map map_init[MAX_KMAP]; 142 143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 150 vm_map_entry_t); 151 static void vm_map_split (vm_map_entry_t); 152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 153 154 void 155 vm_map_startup() 156 { 157 mapzone = &mapzone_store; 158 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 159 map_init, MAX_KMAP); 160 mapentzone = &mapentzone_store; 161 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 162 map_entry_init, MAX_MAPENT); 163 } 164 165 /* 166 * Allocate a vmspace structure, including a vm_map and pmap, 167 * and initialize those structures. The refcnt is set to 1. 168 * The remaining fields must be initialized by the caller. 169 */ 170 struct vmspace * 171 vmspace_alloc(min, max) 172 vm_offset_t min, max; 173 { 174 struct vmspace *vm; 175 176 vm = zalloc(vmspace_zone); 177 vm_map_init(&vm->vm_map, min, max); 178 pmap_pinit(vmspace_pmap(vm)); 179 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 180 vm->vm_refcnt = 1; 181 vm->vm_shm = NULL; 182 vm->vm_exitingcnt = 0; 183 return (vm); 184 } 185 186 void 187 vm_init2(void) 188 { 189 zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1); 190 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 191 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 192 pmap_init2(); 193 vm_object_init2(); 194 } 195 196 static __inline void 197 vmspace_dofree(struct vmspace *vm) 198 { 199 int count; 200 201 /* 202 * Make sure any SysV shm is freed, it might not have in 203 * exit1() 204 */ 205 shmexit(vm); 206 207 KKASSERT(vm->vm_upcalls == NULL); 208 209 /* 210 * Lock the map, to wait out all other references to it. 211 * Delete all of the mappings and pages they hold, then call 212 * the pmap module to reclaim anything left. 213 */ 214 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 215 vm_map_lock(&vm->vm_map); 216 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 217 vm->vm_map.max_offset, &count); 218 vm_map_unlock(&vm->vm_map); 219 vm_map_entry_release(count); 220 221 pmap_release(vmspace_pmap(vm)); 222 zfree(vmspace_zone, vm); 223 } 224 225 void 226 vmspace_free(struct vmspace *vm) 227 { 228 if (vm->vm_refcnt == 0) 229 panic("vmspace_free: attempt to free already freed vmspace"); 230 231 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 232 vmspace_dofree(vm); 233 } 234 235 void 236 vmspace_exitfree(struct proc *p) 237 { 238 struct vmspace *vm; 239 240 vm = p->p_vmspace; 241 p->p_vmspace = NULL; 242 243 /* 244 * cleanup by parent process wait()ing on exiting child. vm_refcnt 245 * may not be 0 (e.g. fork() and child exits without exec()ing). 246 * exitingcnt may increment above 0 and drop back down to zero 247 * several times while vm_refcnt is held non-zero. vm_refcnt 248 * may also increment above 0 and drop back down to zero several 249 * times while vm_exitingcnt is held non-zero. 250 * 251 * The last wait on the exiting child's vmspace will clean up 252 * the remainder of the vmspace. 253 */ 254 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 255 vmspace_dofree(vm); 256 } 257 258 /* 259 * vmspace_swap_count() - count the approximate swap useage in pages for a 260 * vmspace. 261 * 262 * Swap useage is determined by taking the proportional swap used by 263 * VM objects backing the VM map. To make up for fractional losses, 264 * if the VM object has any swap use at all the associated map entries 265 * count for at least 1 swap page. 266 */ 267 int 268 vmspace_swap_count(struct vmspace *vmspace) 269 { 270 vm_map_t map = &vmspace->vm_map; 271 vm_map_entry_t cur; 272 int count = 0; 273 274 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 275 vm_object_t object; 276 277 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 278 (object = cur->object.vm_object) != NULL && 279 object->type == OBJT_SWAP 280 ) { 281 int n = (cur->end - cur->start) / PAGE_SIZE; 282 283 if (object->un_pager.swp.swp_bcount) { 284 count += object->un_pager.swp.swp_bcount * 285 SWAP_META_PAGES * n / object->size + 1; 286 } 287 } 288 } 289 return(count); 290 } 291 292 293 /* 294 * vm_map_create: 295 * 296 * Creates and returns a new empty VM map with 297 * the given physical map structure, and having 298 * the given lower and upper address bounds. 299 */ 300 vm_map_t 301 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 302 { 303 vm_map_t result; 304 305 result = zalloc(mapzone); 306 vm_map_init(result, min, max); 307 result->pmap = pmap; 308 return (result); 309 } 310 311 /* 312 * Initialize an existing vm_map structure 313 * such as that in the vmspace structure. 314 * The pmap is set elsewhere. 315 */ 316 void 317 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max) 318 { 319 map->header.next = map->header.prev = &map->header; 320 map->nentries = 0; 321 map->size = 0; 322 map->system_map = 0; 323 map->infork = 0; 324 map->min_offset = min; 325 map->max_offset = max; 326 map->first_free = &map->header; 327 map->hint = &map->header; 328 map->timestamp = 0; 329 lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE); 330 } 331 332 /* 333 * vm_map_entry_reserve: 334 * 335 * Reserves vm_map_entry structures outside of the critical path 336 */ 337 int 338 vm_map_entry_reserve(int count) 339 { 340 struct globaldata *gd = mycpu; 341 vm_map_entry_t entry; 342 343 crit_enter(); 344 gd->gd_vme_avail -= count; 345 346 /* 347 * Make sure we have enough structures in gd_vme_base to handle 348 * the reservation request. 349 */ 350 while (gd->gd_vme_avail < 0) { 351 entry = zalloc(mapentzone); 352 entry->next = gd->gd_vme_base; 353 gd->gd_vme_base = entry; 354 ++gd->gd_vme_avail; 355 } 356 crit_exit(); 357 return(count); 358 } 359 360 /* 361 * vm_map_entry_release: 362 * 363 * Releases previously reserved vm_map_entry structures that were not 364 * used. If we have too much junk in our per-cpu cache clean some of 365 * it out. 366 */ 367 void 368 vm_map_entry_release(int count) 369 { 370 struct globaldata *gd = mycpu; 371 vm_map_entry_t entry; 372 373 crit_enter(); 374 gd->gd_vme_avail += count; 375 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 376 entry = gd->gd_vme_base; 377 KKASSERT(entry != NULL); 378 gd->gd_vme_base = entry->next; 379 --gd->gd_vme_avail; 380 crit_exit(); 381 zfree(mapentzone, entry); 382 crit_enter(); 383 } 384 crit_exit(); 385 } 386 387 /* 388 * vm_map_entry_kreserve: 389 * 390 * Reserve map entry structures for use in kernel_map or (if it exists) 391 * kmem_map. These entries have *ALREADY* been reserved on a per-cpu 392 * basis. 393 * 394 * XXX if multiple kernel map entries are used without any intervening 395 * use by another map the KKASSERT() may assert. 396 */ 397 int 398 vm_map_entry_kreserve(int count) 399 { 400 struct globaldata *gd = mycpu; 401 402 crit_enter(); 403 gd->gd_vme_kdeficit += count; 404 crit_exit(); 405 KKASSERT(gd->gd_vme_base != NULL); 406 return(count); 407 } 408 409 /* 410 * vm_map_entry_krelease: 411 * 412 * Release previously reserved map entries for kernel_map or kmem_map 413 * use. This routine determines how many entries were actually used and 414 * replentishes the kernel reserve supply from vme_avail. 415 * 416 * If there is insufficient supply vme_avail will go negative, which is 417 * ok. We cannot safely call zalloc in this function without getting 418 * into a recursion deadlock. zalloc() will call vm_map_entry_reserve() 419 * to regenerate the lost entries. 420 */ 421 void 422 vm_map_entry_krelease(int count) 423 { 424 struct globaldata *gd = mycpu; 425 426 crit_enter(); 427 gd->gd_vme_kdeficit -= count; 428 gd->gd_vme_avail -= gd->gd_vme_kdeficit; /* can go negative */ 429 gd->gd_vme_kdeficit = 0; 430 crit_exit(); 431 } 432 433 /* 434 * vm_map_entry_create: [ internal use only ] 435 * 436 * Allocates a VM map entry for insertion. No entry fields are filled 437 * in. 438 * 439 * This routine may be called from an interrupt thread but not a FAST 440 * interrupt. This routine may recurse the map lock. 441 */ 442 static vm_map_entry_t 443 vm_map_entry_create(vm_map_t map, int *countp) 444 { 445 struct globaldata *gd = mycpu; 446 vm_map_entry_t entry; 447 448 KKASSERT(*countp > 0); 449 --*countp; 450 crit_enter(); 451 entry = gd->gd_vme_base; 452 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 453 gd->gd_vme_base = entry->next; 454 crit_exit(); 455 return(entry); 456 } 457 458 /* 459 * vm_map_entry_dispose: [ internal use only ] 460 * 461 * Dispose of a vm_map_entry that is no longer being referenced. This 462 * function may be called from an interrupt. 463 */ 464 static void 465 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 466 { 467 struct globaldata *gd = mycpu; 468 469 ++*countp; 470 crit_enter(); 471 entry->next = gd->gd_vme_base; 472 gd->gd_vme_base = entry; 473 crit_exit(); 474 } 475 476 477 /* 478 * vm_map_entry_{un,}link: 479 * 480 * Insert/remove entries from maps. 481 */ 482 static __inline void 483 vm_map_entry_link(vm_map_t map, 484 vm_map_entry_t after_where, 485 vm_map_entry_t entry) 486 { 487 map->nentries++; 488 entry->prev = after_where; 489 entry->next = after_where->next; 490 entry->next->prev = entry; 491 after_where->next = entry; 492 } 493 494 static __inline void 495 vm_map_entry_unlink(vm_map_t map, 496 vm_map_entry_t entry) 497 { 498 vm_map_entry_t prev; 499 vm_map_entry_t next; 500 501 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) 502 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry); 503 prev = entry->prev; 504 next = entry->next; 505 next->prev = prev; 506 prev->next = next; 507 map->nentries--; 508 } 509 510 /* 511 * SAVE_HINT: 512 * 513 * Saves the specified entry as the hint for 514 * future lookups. 515 */ 516 #define SAVE_HINT(map,value) \ 517 (map)->hint = (value); 518 519 /* 520 * vm_map_lookup_entry: [ internal use only ] 521 * 522 * Finds the map entry containing (or 523 * immediately preceding) the specified address 524 * in the given map; the entry is returned 525 * in the "entry" parameter. The boolean 526 * result indicates whether the address is 527 * actually contained in the map. 528 */ 529 boolean_t 530 vm_map_lookup_entry(map, address, entry) 531 vm_map_t map; 532 vm_offset_t address; 533 vm_map_entry_t *entry; /* OUT */ 534 { 535 vm_map_entry_t cur; 536 vm_map_entry_t last; 537 538 /* 539 * Start looking either from the head of the list, or from the hint. 540 */ 541 542 cur = map->hint; 543 544 if (cur == &map->header) 545 cur = cur->next; 546 547 if (address >= cur->start) { 548 /* 549 * Go from hint to end of list. 550 * 551 * But first, make a quick check to see if we are already looking 552 * at the entry we want (which is usually the case). Note also 553 * that we don't need to save the hint here... it is the same 554 * hint (unless we are at the header, in which case the hint 555 * didn't buy us anything anyway). 556 */ 557 last = &map->header; 558 if ((cur != last) && (cur->end > address)) { 559 *entry = cur; 560 return (TRUE); 561 } 562 } else { 563 /* 564 * Go from start to hint, *inclusively* 565 */ 566 last = cur->next; 567 cur = map->header.next; 568 } 569 570 /* 571 * Search linearly 572 */ 573 574 while (cur != last) { 575 if (cur->end > address) { 576 if (address >= cur->start) { 577 /* 578 * Save this lookup for future hints, and 579 * return 580 */ 581 582 *entry = cur; 583 SAVE_HINT(map, cur); 584 return (TRUE); 585 } 586 break; 587 } 588 cur = cur->next; 589 } 590 *entry = cur->prev; 591 SAVE_HINT(map, *entry); 592 return (FALSE); 593 } 594 595 /* 596 * vm_map_insert: 597 * 598 * Inserts the given whole VM object into the target 599 * map at the specified address range. The object's 600 * size should match that of the address range. 601 * 602 * Requires that the map be locked, and leaves it so. Requires that 603 * sufficient vm_map_entry structures have been reserved and tracks 604 * the use via countp. 605 * 606 * If object is non-NULL, ref count must be bumped by caller 607 * prior to making call to account for the new entry. 608 */ 609 int 610 vm_map_insert(vm_map_t map, int *countp, 611 vm_object_t object, vm_ooffset_t offset, 612 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 613 int cow) 614 { 615 vm_map_entry_t new_entry; 616 vm_map_entry_t prev_entry; 617 vm_map_entry_t temp_entry; 618 vm_eflags_t protoeflags; 619 620 /* 621 * Check that the start and end points are not bogus. 622 */ 623 624 if ((start < map->min_offset) || (end > map->max_offset) || 625 (start >= end)) 626 return (KERN_INVALID_ADDRESS); 627 628 /* 629 * Find the entry prior to the proposed starting address; if it's part 630 * of an existing entry, this range is bogus. 631 */ 632 633 if (vm_map_lookup_entry(map, start, &temp_entry)) 634 return (KERN_NO_SPACE); 635 636 prev_entry = temp_entry; 637 638 /* 639 * Assert that the next entry doesn't overlap the end point. 640 */ 641 642 if ((prev_entry->next != &map->header) && 643 (prev_entry->next->start < end)) 644 return (KERN_NO_SPACE); 645 646 protoeflags = 0; 647 648 if (cow & MAP_COPY_ON_WRITE) 649 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 650 651 if (cow & MAP_NOFAULT) { 652 protoeflags |= MAP_ENTRY_NOFAULT; 653 654 KASSERT(object == NULL, 655 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 656 } 657 if (cow & MAP_DISABLE_SYNCER) 658 protoeflags |= MAP_ENTRY_NOSYNC; 659 if (cow & MAP_DISABLE_COREDUMP) 660 protoeflags |= MAP_ENTRY_NOCOREDUMP; 661 662 if (object) { 663 /* 664 * When object is non-NULL, it could be shared with another 665 * process. We have to set or clear OBJ_ONEMAPPING 666 * appropriately. 667 */ 668 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 669 vm_object_clear_flag(object, OBJ_ONEMAPPING); 670 } 671 } 672 else if ((prev_entry != &map->header) && 673 (prev_entry->eflags == protoeflags) && 674 (prev_entry->end == start) && 675 (prev_entry->wired_count == 0) && 676 ((prev_entry->object.vm_object == NULL) || 677 vm_object_coalesce(prev_entry->object.vm_object, 678 OFF_TO_IDX(prev_entry->offset), 679 (vm_size_t)(prev_entry->end - prev_entry->start), 680 (vm_size_t)(end - prev_entry->end)))) { 681 /* 682 * We were able to extend the object. Determine if we 683 * can extend the previous map entry to include the 684 * new range as well. 685 */ 686 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 687 (prev_entry->protection == prot) && 688 (prev_entry->max_protection == max)) { 689 map->size += (end - prev_entry->end); 690 prev_entry->end = end; 691 vm_map_simplify_entry(map, prev_entry, countp); 692 return (KERN_SUCCESS); 693 } 694 695 /* 696 * If we can extend the object but cannot extend the 697 * map entry, we have to create a new map entry. We 698 * must bump the ref count on the extended object to 699 * account for it. object may be NULL. 700 */ 701 object = prev_entry->object.vm_object; 702 offset = prev_entry->offset + 703 (prev_entry->end - prev_entry->start); 704 vm_object_reference(object); 705 } 706 707 /* 708 * NOTE: if conditionals fail, object can be NULL here. This occurs 709 * in things like the buffer map where we manage kva but do not manage 710 * backing objects. 711 */ 712 713 /* 714 * Create a new entry 715 */ 716 717 new_entry = vm_map_entry_create(map, countp); 718 new_entry->start = start; 719 new_entry->end = end; 720 721 new_entry->eflags = protoeflags; 722 new_entry->object.vm_object = object; 723 new_entry->offset = offset; 724 new_entry->avail_ssize = 0; 725 726 new_entry->inheritance = VM_INHERIT_DEFAULT; 727 new_entry->protection = prot; 728 new_entry->max_protection = max; 729 new_entry->wired_count = 0; 730 731 /* 732 * Insert the new entry into the list 733 */ 734 735 vm_map_entry_link(map, prev_entry, new_entry); 736 map->size += new_entry->end - new_entry->start; 737 738 /* 739 * Update the free space hint 740 */ 741 if ((map->first_free == prev_entry) && 742 (prev_entry->end >= new_entry->start)) { 743 map->first_free = new_entry; 744 } 745 746 #if 0 747 /* 748 * Temporarily removed to avoid MAP_STACK panic, due to 749 * MAP_STACK being a huge hack. Will be added back in 750 * when MAP_STACK (and the user stack mapping) is fixed. 751 */ 752 /* 753 * It may be possible to simplify the entry 754 */ 755 vm_map_simplify_entry(map, new_entry, countp); 756 #endif 757 758 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 759 pmap_object_init_pt(map->pmap, start, 760 object, OFF_TO_IDX(offset), end - start, 761 cow & MAP_PREFAULT_PARTIAL); 762 } 763 764 return (KERN_SUCCESS); 765 } 766 767 /* 768 * Find sufficient space for `length' bytes in the given map, starting at 769 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 770 * 771 * This function will returned an arbitrarily aligned pointer. If no 772 * particular alignment is required you should pass align as 1. Note that 773 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 774 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 775 * argument. 776 * 777 * 'align' should be a power of 2 but is not required to be. 778 */ 779 int 780 vm_map_findspace( 781 vm_map_t map, 782 vm_offset_t start, 783 vm_size_t length, 784 vm_offset_t align, 785 vm_offset_t *addr) 786 { 787 vm_map_entry_t entry, next; 788 vm_offset_t end; 789 vm_offset_t align_mask; 790 791 if (start < map->min_offset) 792 start = map->min_offset; 793 if (start > map->max_offset) 794 return (1); 795 796 /* 797 * If the alignment is not a power of 2 we will have to use 798 * a mod/division, set align_mask to a special value. 799 */ 800 if ((align | (align - 1)) + 1 != (align << 1)) 801 align_mask = (vm_offset_t)-1; 802 else 803 align_mask = align - 1; 804 805 retry: 806 /* 807 * Look for the first possible address; if there's already something 808 * at this address, we have to start after it. 809 */ 810 if (start == map->min_offset) { 811 if ((entry = map->first_free) != &map->header) 812 start = entry->end; 813 } else { 814 vm_map_entry_t tmp; 815 816 if (vm_map_lookup_entry(map, start, &tmp)) 817 start = tmp->end; 818 entry = tmp; 819 } 820 821 /* 822 * Look through the rest of the map, trying to fit a new region in the 823 * gap between existing regions, or after the very last region. 824 */ 825 for (;; start = (entry = next)->end) { 826 /* 827 * Adjust the proposed start by the requested alignment, 828 * be sure that we didn't wrap the address. 829 */ 830 if (align_mask == (vm_offset_t)-1) 831 end = ((start + align - 1) / align) * align; 832 else 833 end = (start + align_mask) & ~align_mask; 834 if (end < start) 835 return (1); 836 start = end; 837 /* 838 * Find the end of the proposed new region. Be sure we didn't 839 * go beyond the end of the map, or wrap around the address. 840 * Then check to see if this is the last entry or if the 841 * proposed end fits in the gap between this and the next 842 * entry. 843 */ 844 end = start + length; 845 if (end > map->max_offset || end < start) 846 return (1); 847 next = entry->next; 848 if (next == &map->header || next->start >= end) 849 break; 850 } 851 SAVE_HINT(map, entry); 852 if (map == kernel_map) { 853 vm_offset_t ksize; 854 if ((ksize = round_page(start + length)) > kernel_vm_end) { 855 pmap_growkernel(ksize); 856 goto retry; 857 } 858 } 859 *addr = start; 860 return (0); 861 } 862 863 /* 864 * vm_map_find finds an unallocated region in the target address 865 * map with the given length. The search is defined to be 866 * first-fit from the specified address; the region found is 867 * returned in the same parameter. 868 * 869 * If object is non-NULL, ref count must be bumped by caller 870 * prior to making call to account for the new entry. 871 */ 872 int 873 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 874 vm_offset_t *addr, /* IN/OUT */ 875 vm_size_t length, boolean_t find_space, vm_prot_t prot, 876 vm_prot_t max, int cow) 877 { 878 vm_offset_t start; 879 int result; 880 int count; 881 882 start = *addr; 883 884 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 885 vm_map_lock(map); 886 if (find_space) { 887 if (vm_map_findspace(map, start, length, 1, addr)) { 888 vm_map_unlock(map); 889 vm_map_entry_release(count); 890 return (KERN_NO_SPACE); 891 } 892 start = *addr; 893 } 894 result = vm_map_insert(map, &count, object, offset, 895 start, start + length, prot, max, cow); 896 vm_map_unlock(map); 897 vm_map_entry_release(count); 898 899 return (result); 900 } 901 902 /* 903 * vm_map_simplify_entry: 904 * 905 * Simplify the given map entry by merging with either neighbor. This 906 * routine also has the ability to merge with both neighbors. 907 * 908 * The map must be locked. 909 * 910 * This routine guarentees that the passed entry remains valid (though 911 * possibly extended). When merging, this routine may delete one or 912 * both neighbors. No action is taken on entries which have their 913 * in-transition flag set. 914 */ 915 void 916 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 917 { 918 vm_map_entry_t next, prev; 919 vm_size_t prevsize, esize; 920 921 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) { 922 ++mycpu->gd_cnt.v_intrans_coll; 923 return; 924 } 925 926 prev = entry->prev; 927 if (prev != &map->header) { 928 prevsize = prev->end - prev->start; 929 if ( (prev->end == entry->start) && 930 (prev->object.vm_object == entry->object.vm_object) && 931 (!prev->object.vm_object || 932 (prev->offset + prevsize == entry->offset)) && 933 (prev->eflags == entry->eflags) && 934 (prev->protection == entry->protection) && 935 (prev->max_protection == entry->max_protection) && 936 (prev->inheritance == entry->inheritance) && 937 (prev->wired_count == entry->wired_count)) { 938 if (map->first_free == prev) 939 map->first_free = entry; 940 if (map->hint == prev) 941 map->hint = entry; 942 vm_map_entry_unlink(map, prev); 943 entry->start = prev->start; 944 entry->offset = prev->offset; 945 if (prev->object.vm_object) 946 vm_object_deallocate(prev->object.vm_object); 947 vm_map_entry_dispose(map, prev, countp); 948 } 949 } 950 951 next = entry->next; 952 if (next != &map->header) { 953 esize = entry->end - entry->start; 954 if ((entry->end == next->start) && 955 (next->object.vm_object == entry->object.vm_object) && 956 (!entry->object.vm_object || 957 (entry->offset + esize == next->offset)) && 958 (next->eflags == entry->eflags) && 959 (next->protection == entry->protection) && 960 (next->max_protection == entry->max_protection) && 961 (next->inheritance == entry->inheritance) && 962 (next->wired_count == entry->wired_count)) { 963 if (map->first_free == next) 964 map->first_free = entry; 965 if (map->hint == next) 966 map->hint = entry; 967 vm_map_entry_unlink(map, next); 968 entry->end = next->end; 969 if (next->object.vm_object) 970 vm_object_deallocate(next->object.vm_object); 971 vm_map_entry_dispose(map, next, countp); 972 } 973 } 974 } 975 /* 976 * vm_map_clip_start: [ internal use only ] 977 * 978 * Asserts that the given entry begins at or after 979 * the specified address; if necessary, 980 * it splits the entry into two. 981 */ 982 #define vm_map_clip_start(map, entry, startaddr, countp) \ 983 { \ 984 if (startaddr > entry->start) \ 985 _vm_map_clip_start(map, entry, startaddr, countp); \ 986 } 987 988 /* 989 * This routine is called only when it is known that 990 * the entry must be split. 991 */ 992 static void 993 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp) 994 { 995 vm_map_entry_t new_entry; 996 997 /* 998 * Split off the front portion -- note that we must insert the new 999 * entry BEFORE this one, so that this entry has the specified 1000 * starting address. 1001 */ 1002 1003 vm_map_simplify_entry(map, entry, countp); 1004 1005 /* 1006 * If there is no object backing this entry, we might as well create 1007 * one now. If we defer it, an object can get created after the map 1008 * is clipped, and individual objects will be created for the split-up 1009 * map. This is a bit of a hack, but is also about the best place to 1010 * put this improvement. 1011 */ 1012 1013 if (entry->object.vm_object == NULL && !map->system_map) { 1014 vm_object_t object; 1015 object = vm_object_allocate(OBJT_DEFAULT, 1016 atop(entry->end - entry->start)); 1017 entry->object.vm_object = object; 1018 entry->offset = 0; 1019 } 1020 1021 new_entry = vm_map_entry_create(map, countp); 1022 *new_entry = *entry; 1023 1024 new_entry->end = start; 1025 entry->offset += (start - entry->start); 1026 entry->start = start; 1027 1028 vm_map_entry_link(map, entry->prev, new_entry); 1029 1030 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1031 vm_object_reference(new_entry->object.vm_object); 1032 } 1033 } 1034 1035 /* 1036 * vm_map_clip_end: [ internal use only ] 1037 * 1038 * Asserts that the given entry ends at or before 1039 * the specified address; if necessary, 1040 * it splits the entry into two. 1041 */ 1042 1043 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1044 { \ 1045 if (endaddr < entry->end) \ 1046 _vm_map_clip_end(map, entry, endaddr, countp); \ 1047 } 1048 1049 /* 1050 * This routine is called only when it is known that 1051 * the entry must be split. 1052 */ 1053 static void 1054 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp) 1055 { 1056 vm_map_entry_t new_entry; 1057 1058 /* 1059 * If there is no object backing this entry, we might as well create 1060 * one now. If we defer it, an object can get created after the map 1061 * is clipped, and individual objects will be created for the split-up 1062 * map. This is a bit of a hack, but is also about the best place to 1063 * put this improvement. 1064 */ 1065 1066 if (entry->object.vm_object == NULL && !map->system_map) { 1067 vm_object_t object; 1068 object = vm_object_allocate(OBJT_DEFAULT, 1069 atop(entry->end - entry->start)); 1070 entry->object.vm_object = object; 1071 entry->offset = 0; 1072 } 1073 1074 /* 1075 * Create a new entry and insert it AFTER the specified entry 1076 */ 1077 1078 new_entry = vm_map_entry_create(map, countp); 1079 *new_entry = *entry; 1080 1081 new_entry->start = entry->end = end; 1082 new_entry->offset += (end - entry->start); 1083 1084 vm_map_entry_link(map, entry, new_entry); 1085 1086 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1087 vm_object_reference(new_entry->object.vm_object); 1088 } 1089 } 1090 1091 /* 1092 * VM_MAP_RANGE_CHECK: [ internal use only ] 1093 * 1094 * Asserts that the starting and ending region 1095 * addresses fall within the valid range of the map. 1096 */ 1097 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1098 { \ 1099 if (start < vm_map_min(map)) \ 1100 start = vm_map_min(map); \ 1101 if (end > vm_map_max(map)) \ 1102 end = vm_map_max(map); \ 1103 if (start > end) \ 1104 start = end; \ 1105 } 1106 1107 /* 1108 * vm_map_transition_wait: [ kernel use only ] 1109 * 1110 * Used to block when an in-transition collison occurs. The map 1111 * is unlocked for the sleep and relocked before the return. 1112 */ 1113 static 1114 void 1115 vm_map_transition_wait(vm_map_t map) 1116 { 1117 vm_map_unlock(map); 1118 tsleep(map, 0, "vment", 0); 1119 vm_map_lock(map); 1120 } 1121 1122 /* 1123 * CLIP_CHECK_BACK 1124 * CLIP_CHECK_FWD 1125 * 1126 * When we do blocking operations with the map lock held it is 1127 * possible that a clip might have occured on our in-transit entry, 1128 * requiring an adjustment to the entry in our loop. These macros 1129 * help the pageable and clip_range code deal with the case. The 1130 * conditional costs virtually nothing if no clipping has occured. 1131 */ 1132 1133 #define CLIP_CHECK_BACK(entry, save_start) \ 1134 do { \ 1135 while (entry->start != save_start) { \ 1136 entry = entry->prev; \ 1137 KASSERT(entry != &map->header, ("bad entry clip")); \ 1138 } \ 1139 } while(0) 1140 1141 #define CLIP_CHECK_FWD(entry, save_end) \ 1142 do { \ 1143 while (entry->end != save_end) { \ 1144 entry = entry->next; \ 1145 KASSERT(entry != &map->header, ("bad entry clip")); \ 1146 } \ 1147 } while(0) 1148 1149 1150 /* 1151 * vm_map_clip_range: [ kernel use only ] 1152 * 1153 * Clip the specified range and return the base entry. The 1154 * range may cover several entries starting at the returned base 1155 * and the first and last entry in the covering sequence will be 1156 * properly clipped to the requested start and end address. 1157 * 1158 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1159 * flag. 1160 * 1161 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1162 * covered by the requested range. 1163 * 1164 * The map must be exclusively locked on entry and will remain locked 1165 * on return. If no range exists or the range contains holes and you 1166 * specified that no holes were allowed, NULL will be returned. This 1167 * routine may temporarily unlock the map in order avoid a deadlock when 1168 * sleeping. 1169 */ 1170 static 1171 vm_map_entry_t 1172 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1173 int *countp, int flags) 1174 { 1175 vm_map_entry_t start_entry; 1176 vm_map_entry_t entry; 1177 1178 /* 1179 * Locate the entry and effect initial clipping. The in-transition 1180 * case does not occur very often so do not try to optimize it. 1181 */ 1182 again: 1183 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1184 return (NULL); 1185 entry = start_entry; 1186 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1187 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1188 ++mycpu->gd_cnt.v_intrans_coll; 1189 ++mycpu->gd_cnt.v_intrans_wait; 1190 vm_map_transition_wait(map); 1191 /* 1192 * entry and/or start_entry may have been clipped while 1193 * we slept, or may have gone away entirely. We have 1194 * to restart from the lookup. 1195 */ 1196 goto again; 1197 } 1198 /* 1199 * Since we hold an exclusive map lock we do not have to restart 1200 * after clipping, even though clipping may block in zalloc. 1201 */ 1202 vm_map_clip_start(map, entry, start, countp); 1203 vm_map_clip_end(map, entry, end, countp); 1204 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1205 1206 /* 1207 * Scan entries covered by the range. When working on the next 1208 * entry a restart need only re-loop on the current entry which 1209 * we have already locked, since 'next' may have changed. Also, 1210 * even though entry is safe, it may have been clipped so we 1211 * have to iterate forwards through the clip after sleeping. 1212 */ 1213 while (entry->next != &map->header && entry->next->start < end) { 1214 vm_map_entry_t next = entry->next; 1215 1216 if (flags & MAP_CLIP_NO_HOLES) { 1217 if (next->start > entry->end) { 1218 vm_map_unclip_range(map, start_entry, 1219 start, entry->end, countp, flags); 1220 return(NULL); 1221 } 1222 } 1223 1224 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1225 vm_offset_t save_end = entry->end; 1226 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1227 ++mycpu->gd_cnt.v_intrans_coll; 1228 ++mycpu->gd_cnt.v_intrans_wait; 1229 vm_map_transition_wait(map); 1230 1231 /* 1232 * clips might have occured while we blocked. 1233 */ 1234 CLIP_CHECK_FWD(entry, save_end); 1235 CLIP_CHECK_BACK(start_entry, start); 1236 continue; 1237 } 1238 /* 1239 * No restart necessary even though clip_end may block, we 1240 * are holding the map lock. 1241 */ 1242 vm_map_clip_end(map, next, end, countp); 1243 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1244 entry = next; 1245 } 1246 if (flags & MAP_CLIP_NO_HOLES) { 1247 if (entry->end != end) { 1248 vm_map_unclip_range(map, start_entry, 1249 start, entry->end, countp, flags); 1250 return(NULL); 1251 } 1252 } 1253 return(start_entry); 1254 } 1255 1256 /* 1257 * vm_map_unclip_range: [ kernel use only ] 1258 * 1259 * Undo the effect of vm_map_clip_range(). You should pass the same 1260 * flags and the same range that you passed to vm_map_clip_range(). 1261 * This code will clear the in-transition flag on the entries and 1262 * wake up anyone waiting. This code will also simplify the sequence 1263 * and attempt to merge it with entries before and after the sequence. 1264 * 1265 * The map must be locked on entry and will remain locked on return. 1266 * 1267 * Note that you should also pass the start_entry returned by 1268 * vm_map_clip_range(). However, if you block between the two calls 1269 * with the map unlocked please be aware that the start_entry may 1270 * have been clipped and you may need to scan it backwards to find 1271 * the entry corresponding with the original start address. You are 1272 * responsible for this, vm_map_unclip_range() expects the correct 1273 * start_entry to be passed to it and will KASSERT otherwise. 1274 */ 1275 static 1276 void 1277 vm_map_unclip_range( 1278 vm_map_t map, 1279 vm_map_entry_t start_entry, 1280 vm_offset_t start, 1281 vm_offset_t end, 1282 int *countp, 1283 int flags) 1284 { 1285 vm_map_entry_t entry; 1286 1287 entry = start_entry; 1288 1289 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1290 while (entry != &map->header && entry->start < end) { 1291 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry)); 1292 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped")); 1293 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1294 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1295 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1296 wakeup(map); 1297 } 1298 entry = entry->next; 1299 } 1300 1301 /* 1302 * Simplification does not block so there is no restart case. 1303 */ 1304 entry = start_entry; 1305 while (entry != &map->header && entry->start < end) { 1306 vm_map_simplify_entry(map, entry, countp); 1307 entry = entry->next; 1308 } 1309 } 1310 1311 /* 1312 * vm_map_submap: [ kernel use only ] 1313 * 1314 * Mark the given range as handled by a subordinate map. 1315 * 1316 * This range must have been created with vm_map_find, 1317 * and no other operations may have been performed on this 1318 * range prior to calling vm_map_submap. 1319 * 1320 * Only a limited number of operations can be performed 1321 * within this rage after calling vm_map_submap: 1322 * vm_fault 1323 * [Don't try vm_map_copy!] 1324 * 1325 * To remove a submapping, one must first remove the 1326 * range from the superior map, and then destroy the 1327 * submap (if desired). [Better yet, don't try it.] 1328 */ 1329 int 1330 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1331 { 1332 vm_map_entry_t entry; 1333 int result = KERN_INVALID_ARGUMENT; 1334 int count; 1335 1336 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1337 vm_map_lock(map); 1338 1339 VM_MAP_RANGE_CHECK(map, start, end); 1340 1341 if (vm_map_lookup_entry(map, start, &entry)) { 1342 vm_map_clip_start(map, entry, start, &count); 1343 } else { 1344 entry = entry->next; 1345 } 1346 1347 vm_map_clip_end(map, entry, end, &count); 1348 1349 if ((entry->start == start) && (entry->end == end) && 1350 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1351 (entry->object.vm_object == NULL)) { 1352 entry->object.sub_map = submap; 1353 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1354 result = KERN_SUCCESS; 1355 } 1356 vm_map_unlock(map); 1357 vm_map_entry_release(count); 1358 1359 return (result); 1360 } 1361 1362 /* 1363 * vm_map_protect: 1364 * 1365 * Sets the protection of the specified address 1366 * region in the target map. If "set_max" is 1367 * specified, the maximum protection is to be set; 1368 * otherwise, only the current protection is affected. 1369 */ 1370 int 1371 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1372 vm_prot_t new_prot, boolean_t set_max) 1373 { 1374 vm_map_entry_t current; 1375 vm_map_entry_t entry; 1376 int count; 1377 1378 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1379 vm_map_lock(map); 1380 1381 VM_MAP_RANGE_CHECK(map, start, end); 1382 1383 if (vm_map_lookup_entry(map, start, &entry)) { 1384 vm_map_clip_start(map, entry, start, &count); 1385 } else { 1386 entry = entry->next; 1387 } 1388 1389 /* 1390 * Make a first pass to check for protection violations. 1391 */ 1392 1393 current = entry; 1394 while ((current != &map->header) && (current->start < end)) { 1395 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1396 vm_map_unlock(map); 1397 vm_map_entry_release(count); 1398 return (KERN_INVALID_ARGUMENT); 1399 } 1400 if ((new_prot & current->max_protection) != new_prot) { 1401 vm_map_unlock(map); 1402 vm_map_entry_release(count); 1403 return (KERN_PROTECTION_FAILURE); 1404 } 1405 current = current->next; 1406 } 1407 1408 /* 1409 * Go back and fix up protections. [Note that clipping is not 1410 * necessary the second time.] 1411 */ 1412 current = entry; 1413 1414 while ((current != &map->header) && (current->start < end)) { 1415 vm_prot_t old_prot; 1416 1417 vm_map_clip_end(map, current, end, &count); 1418 1419 old_prot = current->protection; 1420 if (set_max) 1421 current->protection = 1422 (current->max_protection = new_prot) & 1423 old_prot; 1424 else 1425 current->protection = new_prot; 1426 1427 /* 1428 * Update physical map if necessary. Worry about copy-on-write 1429 * here -- CHECK THIS XXX 1430 */ 1431 1432 if (current->protection != old_prot) { 1433 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1434 VM_PROT_ALL) 1435 1436 pmap_protect(map->pmap, current->start, 1437 current->end, 1438 current->protection & MASK(current)); 1439 #undef MASK 1440 } 1441 1442 vm_map_simplify_entry(map, current, &count); 1443 1444 current = current->next; 1445 } 1446 1447 vm_map_unlock(map); 1448 vm_map_entry_release(count); 1449 return (KERN_SUCCESS); 1450 } 1451 1452 /* 1453 * vm_map_madvise: 1454 * 1455 * This routine traverses a processes map handling the madvise 1456 * system call. Advisories are classified as either those effecting 1457 * the vm_map_entry structure, or those effecting the underlying 1458 * objects. 1459 */ 1460 1461 int 1462 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav) 1463 { 1464 vm_map_entry_t current, entry; 1465 int modify_map = 0; 1466 int count; 1467 1468 /* 1469 * Some madvise calls directly modify the vm_map_entry, in which case 1470 * we need to use an exclusive lock on the map and we need to perform 1471 * various clipping operations. Otherwise we only need a read-lock 1472 * on the map. 1473 */ 1474 1475 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1476 1477 switch(behav) { 1478 case MADV_NORMAL: 1479 case MADV_SEQUENTIAL: 1480 case MADV_RANDOM: 1481 case MADV_NOSYNC: 1482 case MADV_AUTOSYNC: 1483 case MADV_NOCORE: 1484 case MADV_CORE: 1485 modify_map = 1; 1486 vm_map_lock(map); 1487 break; 1488 case MADV_WILLNEED: 1489 case MADV_DONTNEED: 1490 case MADV_FREE: 1491 vm_map_lock_read(map); 1492 break; 1493 default: 1494 vm_map_entry_release(count); 1495 return (KERN_INVALID_ARGUMENT); 1496 } 1497 1498 /* 1499 * Locate starting entry and clip if necessary. 1500 */ 1501 1502 VM_MAP_RANGE_CHECK(map, start, end); 1503 1504 if (vm_map_lookup_entry(map, start, &entry)) { 1505 if (modify_map) 1506 vm_map_clip_start(map, entry, start, &count); 1507 } else { 1508 entry = entry->next; 1509 } 1510 1511 if (modify_map) { 1512 /* 1513 * madvise behaviors that are implemented in the vm_map_entry. 1514 * 1515 * We clip the vm_map_entry so that behavioral changes are 1516 * limited to the specified address range. 1517 */ 1518 for (current = entry; 1519 (current != &map->header) && (current->start < end); 1520 current = current->next 1521 ) { 1522 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1523 continue; 1524 1525 vm_map_clip_end(map, current, end, &count); 1526 1527 switch (behav) { 1528 case MADV_NORMAL: 1529 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1530 break; 1531 case MADV_SEQUENTIAL: 1532 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1533 break; 1534 case MADV_RANDOM: 1535 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1536 break; 1537 case MADV_NOSYNC: 1538 current->eflags |= MAP_ENTRY_NOSYNC; 1539 break; 1540 case MADV_AUTOSYNC: 1541 current->eflags &= ~MAP_ENTRY_NOSYNC; 1542 break; 1543 case MADV_NOCORE: 1544 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1545 break; 1546 case MADV_CORE: 1547 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1548 break; 1549 default: 1550 break; 1551 } 1552 vm_map_simplify_entry(map, current, &count); 1553 } 1554 vm_map_unlock(map); 1555 } else { 1556 vm_pindex_t pindex; 1557 int count; 1558 1559 /* 1560 * madvise behaviors that are implemented in the underlying 1561 * vm_object. 1562 * 1563 * Since we don't clip the vm_map_entry, we have to clip 1564 * the vm_object pindex and count. 1565 */ 1566 for (current = entry; 1567 (current != &map->header) && (current->start < end); 1568 current = current->next 1569 ) { 1570 vm_offset_t useStart; 1571 1572 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1573 continue; 1574 1575 pindex = OFF_TO_IDX(current->offset); 1576 count = atop(current->end - current->start); 1577 useStart = current->start; 1578 1579 if (current->start < start) { 1580 pindex += atop(start - current->start); 1581 count -= atop(start - current->start); 1582 useStart = start; 1583 } 1584 if (current->end > end) 1585 count -= atop(current->end - end); 1586 1587 if (count <= 0) 1588 continue; 1589 1590 vm_object_madvise(current->object.vm_object, 1591 pindex, count, behav); 1592 if (behav == MADV_WILLNEED) { 1593 pmap_object_init_pt( 1594 map->pmap, 1595 useStart, 1596 current->object.vm_object, 1597 pindex, 1598 (count << PAGE_SHIFT), 1599 MAP_PREFAULT_MADVISE 1600 ); 1601 } 1602 } 1603 vm_map_unlock_read(map); 1604 } 1605 vm_map_entry_release(count); 1606 return(0); 1607 } 1608 1609 1610 /* 1611 * vm_map_inherit: 1612 * 1613 * Sets the inheritance of the specified address 1614 * range in the target map. Inheritance 1615 * affects how the map will be shared with 1616 * child maps at the time of vm_map_fork. 1617 */ 1618 int 1619 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1620 vm_inherit_t new_inheritance) 1621 { 1622 vm_map_entry_t entry; 1623 vm_map_entry_t temp_entry; 1624 int count; 1625 1626 switch (new_inheritance) { 1627 case VM_INHERIT_NONE: 1628 case VM_INHERIT_COPY: 1629 case VM_INHERIT_SHARE: 1630 break; 1631 default: 1632 return (KERN_INVALID_ARGUMENT); 1633 } 1634 1635 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1636 vm_map_lock(map); 1637 1638 VM_MAP_RANGE_CHECK(map, start, end); 1639 1640 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1641 entry = temp_entry; 1642 vm_map_clip_start(map, entry, start, &count); 1643 } else 1644 entry = temp_entry->next; 1645 1646 while ((entry != &map->header) && (entry->start < end)) { 1647 vm_map_clip_end(map, entry, end, &count); 1648 1649 entry->inheritance = new_inheritance; 1650 1651 vm_map_simplify_entry(map, entry, &count); 1652 1653 entry = entry->next; 1654 } 1655 vm_map_unlock(map); 1656 vm_map_entry_release(count); 1657 return (KERN_SUCCESS); 1658 } 1659 1660 /* 1661 * Implement the semantics of mlock 1662 */ 1663 int 1664 vm_map_unwire(map, start, real_end, new_pageable) 1665 vm_map_t map; 1666 vm_offset_t start; 1667 vm_offset_t real_end; 1668 boolean_t new_pageable; 1669 { 1670 vm_map_entry_t entry; 1671 vm_map_entry_t start_entry; 1672 vm_offset_t end; 1673 int rv = KERN_SUCCESS; 1674 int count; 1675 1676 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1677 vm_map_lock(map); 1678 VM_MAP_RANGE_CHECK(map, start, real_end); 1679 end = real_end; 1680 1681 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1682 if (start_entry == NULL) { 1683 vm_map_unlock(map); 1684 vm_map_entry_release(count); 1685 return (KERN_INVALID_ADDRESS); 1686 } 1687 1688 if (new_pageable == 0) { 1689 entry = start_entry; 1690 while ((entry != &map->header) && (entry->start < end)) { 1691 vm_offset_t save_start; 1692 vm_offset_t save_end; 1693 1694 /* 1695 * Already user wired or hard wired (trivial cases) 1696 */ 1697 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1698 entry = entry->next; 1699 continue; 1700 } 1701 if (entry->wired_count != 0) { 1702 entry->wired_count++; 1703 entry->eflags |= MAP_ENTRY_USER_WIRED; 1704 entry = entry->next; 1705 continue; 1706 } 1707 1708 /* 1709 * A new wiring requires instantiation of appropriate 1710 * management structures and the faulting in of the 1711 * page. 1712 */ 1713 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1714 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1715 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1716 1717 vm_object_shadow(&entry->object.vm_object, 1718 &entry->offset, 1719 atop(entry->end - entry->start)); 1720 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1721 1722 } else if (entry->object.vm_object == NULL && 1723 !map->system_map) { 1724 1725 entry->object.vm_object = 1726 vm_object_allocate(OBJT_DEFAULT, 1727 atop(entry->end - entry->start)); 1728 entry->offset = (vm_offset_t) 0; 1729 1730 } 1731 } 1732 entry->wired_count++; 1733 entry->eflags |= MAP_ENTRY_USER_WIRED; 1734 1735 /* 1736 * Now fault in the area. The map lock needs to be 1737 * manipulated to avoid deadlocks. The in-transition 1738 * flag protects the entries. 1739 */ 1740 save_start = entry->start; 1741 save_end = entry->end; 1742 vm_map_unlock(map); 1743 map->timestamp++; 1744 rv = vm_fault_user_wire(map, save_start, save_end); 1745 vm_map_lock(map); 1746 if (rv) { 1747 CLIP_CHECK_BACK(entry, save_start); 1748 for (;;) { 1749 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 1750 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1751 entry->wired_count = 0; 1752 if (entry->end == save_end) 1753 break; 1754 entry = entry->next; 1755 KASSERT(entry != &map->header, ("bad entry clip during backout")); 1756 } 1757 end = save_start; /* unwire the rest */ 1758 break; 1759 } 1760 /* 1761 * note that even though the entry might have been 1762 * clipped, the USER_WIRED flag we set prevents 1763 * duplication so we do not have to do a 1764 * clip check. 1765 */ 1766 entry = entry->next; 1767 } 1768 1769 /* 1770 * If we failed fall through to the unwiring section to 1771 * unwire what we had wired so far. 'end' has already 1772 * been adjusted. 1773 */ 1774 if (rv) 1775 new_pageable = 1; 1776 1777 /* 1778 * start_entry might have been clipped if we unlocked the 1779 * map and blocked. No matter how clipped it has gotten 1780 * there should be a fragment that is on our start boundary. 1781 */ 1782 CLIP_CHECK_BACK(start_entry, start); 1783 } 1784 1785 /* 1786 * Deal with the unwiring case. 1787 */ 1788 if (new_pageable) { 1789 /* 1790 * This is the unwiring case. We must first ensure that the 1791 * range to be unwired is really wired down. We know there 1792 * are no holes. 1793 */ 1794 entry = start_entry; 1795 while ((entry != &map->header) && (entry->start < end)) { 1796 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1797 rv = KERN_INVALID_ARGUMENT; 1798 goto done; 1799 } 1800 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 1801 entry = entry->next; 1802 } 1803 1804 /* 1805 * Now decrement the wiring count for each region. If a region 1806 * becomes completely unwired, unwire its physical pages and 1807 * mappings. 1808 */ 1809 /* 1810 * The map entries are processed in a loop, checking to 1811 * make sure the entry is wired and asserting it has a wired 1812 * count. However, another loop was inserted more-or-less in 1813 * the middle of the unwiring path. This loop picks up the 1814 * "entry" loop variable from the first loop without first 1815 * setting it to start_entry. Naturally, the secound loop 1816 * is never entered and the pages backing the entries are 1817 * never unwired. This can lead to a leak of wired pages. 1818 */ 1819 entry = start_entry; 1820 while ((entry != &map->header) && (entry->start < end)) { 1821 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry)); 1822 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1823 entry->wired_count--; 1824 if (entry->wired_count == 0) 1825 vm_fault_unwire(map, entry->start, entry->end); 1826 entry = entry->next; 1827 } 1828 } 1829 done: 1830 vm_map_unclip_range(map, start_entry, start, real_end, &count, 1831 MAP_CLIP_NO_HOLES); 1832 map->timestamp++; 1833 vm_map_unlock(map); 1834 vm_map_entry_release(count); 1835 return (rv); 1836 } 1837 1838 /* 1839 * vm_map_wire: 1840 * 1841 * Sets the pageability of the specified address 1842 * range in the target map. Regions specified 1843 * as not pageable require locked-down physical 1844 * memory and physical page maps. 1845 * 1846 * The map must not be locked, but a reference 1847 * must remain to the map throughout the call. 1848 * 1849 * This function may be called via the zalloc path and must properly 1850 * reserve map entries for kernel_map. 1851 */ 1852 int 1853 vm_map_wire(vm_map_t map, vm_offset_t start, 1854 vm_offset_t real_end, boolean_t new_pageable) 1855 { 1856 vm_map_entry_t entry; 1857 vm_map_entry_t start_entry; 1858 vm_offset_t end; 1859 int rv = KERN_SUCCESS; 1860 int count; 1861 int s; 1862 1863 if (map == kernel_map) 1864 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 1865 else 1866 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1867 vm_map_lock(map); 1868 VM_MAP_RANGE_CHECK(map, start, real_end); 1869 end = real_end; 1870 1871 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1872 if (start_entry == NULL) { 1873 vm_map_unlock(map); 1874 rv = KERN_INVALID_ADDRESS; 1875 goto failure; 1876 } 1877 if (new_pageable == 0) { 1878 /* 1879 * Wiring. 1880 * 1881 * 1. Holding the write lock, we create any shadow or zero-fill 1882 * objects that need to be created. Then we clip each map 1883 * entry to the region to be wired and increment its wiring 1884 * count. We create objects before clipping the map entries 1885 * to avoid object proliferation. 1886 * 1887 * 2. We downgrade to a read lock, and call vm_fault_wire to 1888 * fault in the pages for any newly wired area (wired_count is 1889 * 1). 1890 * 1891 * Downgrading to a read lock for vm_fault_wire avoids a 1892 * possible deadlock with another process that may have faulted 1893 * on one of the pages to be wired (it would mark the page busy, 1894 * blocking us, then in turn block on the map lock that we 1895 * hold). Because of problems in the recursive lock package, 1896 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1897 * any actions that require the write lock must be done 1898 * beforehand. Because we keep the read lock on the map, the 1899 * copy-on-write status of the entries we modify here cannot 1900 * change. 1901 */ 1902 1903 entry = start_entry; 1904 while ((entry != &map->header) && (entry->start < end)) { 1905 /* 1906 * Trivial case if the entry is already wired 1907 */ 1908 if (entry->wired_count) { 1909 entry->wired_count++; 1910 entry = entry->next; 1911 continue; 1912 } 1913 1914 /* 1915 * The entry is being newly wired, we have to setup 1916 * appropriate management structures. A shadow 1917 * object is required for a copy-on-write region, 1918 * or a normal object for a zero-fill region. We 1919 * do not have to do this for entries that point to sub 1920 * maps because we won't hold the lock on the sub map. 1921 */ 1922 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1923 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1924 if (copyflag && 1925 ((entry->protection & VM_PROT_WRITE) != 0)) { 1926 1927 vm_object_shadow(&entry->object.vm_object, 1928 &entry->offset, 1929 atop(entry->end - entry->start)); 1930 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1931 } else if (entry->object.vm_object == NULL && 1932 !map->system_map) { 1933 entry->object.vm_object = 1934 vm_object_allocate(OBJT_DEFAULT, 1935 atop(entry->end - entry->start)); 1936 entry->offset = (vm_offset_t) 0; 1937 } 1938 } 1939 1940 entry->wired_count++; 1941 entry = entry->next; 1942 } 1943 1944 /* 1945 * Pass 2. 1946 */ 1947 1948 /* 1949 * HACK HACK HACK HACK 1950 * 1951 * Unlock the map to avoid deadlocks. The in-transit flag 1952 * protects us from most changes but note that 1953 * clipping may still occur. To prevent clipping from 1954 * occuring after the unlock, except for when we are 1955 * blocking in vm_fault_wire, we must run at splvm(). 1956 * Otherwise our accesses to entry->start and entry->end 1957 * could be corrupted. We have to set splvm() prior to 1958 * unlocking so start_entry does not change out from 1959 * under us at the very beginning of the loop. 1960 * 1961 * HACK HACK HACK HACK 1962 */ 1963 1964 s = splvm(); 1965 vm_map_unlock(map); 1966 1967 entry = start_entry; 1968 while (entry != &map->header && entry->start < end) { 1969 /* 1970 * If vm_fault_wire fails for any page we need to undo 1971 * what has been done. We decrement the wiring count 1972 * for those pages which have not yet been wired (now) 1973 * and unwire those that have (later). 1974 */ 1975 vm_offset_t save_start = entry->start; 1976 vm_offset_t save_end = entry->end; 1977 1978 if (entry->wired_count == 1) 1979 rv = vm_fault_wire(map, entry->start, entry->end); 1980 if (rv) { 1981 CLIP_CHECK_BACK(entry, save_start); 1982 for (;;) { 1983 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 1984 entry->wired_count = 0; 1985 if (entry->end == save_end) 1986 break; 1987 entry = entry->next; 1988 KASSERT(entry != &map->header, ("bad entry clip during backout")); 1989 } 1990 end = save_start; 1991 break; 1992 } 1993 CLIP_CHECK_FWD(entry, save_end); 1994 entry = entry->next; 1995 } 1996 splx(s); 1997 1998 /* 1999 * relock. start_entry is still IN_TRANSITION and must 2000 * still exist, but may have been clipped (handled just 2001 * below). 2002 */ 2003 vm_map_lock(map); 2004 2005 /* 2006 * If a failure occured undo everything by falling through 2007 * to the unwiring code. 'end' has already been adjusted 2008 * appropriately. 2009 */ 2010 if (rv) 2011 new_pageable = 1; 2012 2013 /* 2014 * start_entry might have been clipped if we unlocked the 2015 * map and blocked. No matter how clipped it has gotten 2016 * there should be a fragment that is on our start boundary. 2017 */ 2018 CLIP_CHECK_BACK(start_entry, start); 2019 } 2020 2021 if (new_pageable) { 2022 /* 2023 * This is the unwiring case. We must first ensure that the 2024 * range to be unwired is really wired down. We know there 2025 * are no holes. 2026 */ 2027 entry = start_entry; 2028 while ((entry != &map->header) && (entry->start < end)) { 2029 if (entry->wired_count == 0) { 2030 rv = KERN_INVALID_ARGUMENT; 2031 goto done; 2032 } 2033 entry = entry->next; 2034 } 2035 2036 /* 2037 * Now decrement the wiring count for each region. If a region 2038 * becomes completely unwired, unwire its physical pages and 2039 * mappings. 2040 */ 2041 entry = start_entry; 2042 while ((entry != &map->header) && (entry->start < end)) { 2043 entry->wired_count--; 2044 if (entry->wired_count == 0) 2045 vm_fault_unwire(map, entry->start, entry->end); 2046 entry = entry->next; 2047 } 2048 } 2049 done: 2050 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2051 MAP_CLIP_NO_HOLES); 2052 map->timestamp++; 2053 vm_map_unlock(map); 2054 failure: 2055 if (map == kernel_map) 2056 vm_map_entry_krelease(count); 2057 else 2058 vm_map_entry_release(count); 2059 return (rv); 2060 } 2061 2062 /* 2063 * vm_map_set_wired_quick() 2064 * 2065 * Mark a newly allocated address range as wired but do not fault in 2066 * the pages. The caller is expected to load the pages into the object. 2067 * 2068 * The map must be locked on entry and will remain locked on return. 2069 */ 2070 void 2071 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp) 2072 { 2073 vm_map_entry_t scan; 2074 vm_map_entry_t entry; 2075 2076 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2077 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) { 2078 KKASSERT(entry->wired_count == 0); 2079 entry->wired_count = 1; 2080 } 2081 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2082 } 2083 2084 /* 2085 * vm_map_clean 2086 * 2087 * Push any dirty cached pages in the address range to their pager. 2088 * If syncio is TRUE, dirty pages are written synchronously. 2089 * If invalidate is TRUE, any cached pages are freed as well. 2090 * 2091 * Returns an error if any part of the specified range is not mapped. 2092 */ 2093 int 2094 vm_map_clean(map, start, end, syncio, invalidate) 2095 vm_map_t map; 2096 vm_offset_t start; 2097 vm_offset_t end; 2098 boolean_t syncio; 2099 boolean_t invalidate; 2100 { 2101 vm_map_entry_t current; 2102 vm_map_entry_t entry; 2103 vm_size_t size; 2104 vm_object_t object; 2105 vm_ooffset_t offset; 2106 2107 vm_map_lock_read(map); 2108 VM_MAP_RANGE_CHECK(map, start, end); 2109 if (!vm_map_lookup_entry(map, start, &entry)) { 2110 vm_map_unlock_read(map); 2111 return (KERN_INVALID_ADDRESS); 2112 } 2113 /* 2114 * Make a first pass to check for holes. 2115 */ 2116 for (current = entry; current->start < end; current = current->next) { 2117 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2118 vm_map_unlock_read(map); 2119 return (KERN_INVALID_ARGUMENT); 2120 } 2121 if (end > current->end && 2122 (current->next == &map->header || 2123 current->end != current->next->start)) { 2124 vm_map_unlock_read(map); 2125 return (KERN_INVALID_ADDRESS); 2126 } 2127 } 2128 2129 if (invalidate) 2130 pmap_remove(vm_map_pmap(map), start, end); 2131 /* 2132 * Make a second pass, cleaning/uncaching pages from the indicated 2133 * objects as we go. 2134 */ 2135 for (current = entry; current->start < end; current = current->next) { 2136 offset = current->offset + (start - current->start); 2137 size = (end <= current->end ? end : current->end) - start; 2138 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2139 vm_map_t smap; 2140 vm_map_entry_t tentry; 2141 vm_size_t tsize; 2142 2143 smap = current->object.sub_map; 2144 vm_map_lock_read(smap); 2145 (void) vm_map_lookup_entry(smap, offset, &tentry); 2146 tsize = tentry->end - offset; 2147 if (tsize < size) 2148 size = tsize; 2149 object = tentry->object.vm_object; 2150 offset = tentry->offset + (offset - tentry->start); 2151 vm_map_unlock_read(smap); 2152 } else { 2153 object = current->object.vm_object; 2154 } 2155 /* 2156 * Note that there is absolutely no sense in writing out 2157 * anonymous objects, so we track down the vnode object 2158 * to write out. 2159 * We invalidate (remove) all pages from the address space 2160 * anyway, for semantic correctness. 2161 * 2162 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2163 * may start out with a NULL object. 2164 */ 2165 while (object && object->backing_object) { 2166 object = object->backing_object; 2167 offset += object->backing_object_offset; 2168 if (object->size < OFF_TO_IDX( offset + size)) 2169 size = IDX_TO_OFF(object->size) - offset; 2170 } 2171 if (object && (object->type == OBJT_VNODE) && 2172 (current->protection & VM_PROT_WRITE)) { 2173 /* 2174 * Flush pages if writing is allowed, invalidate them 2175 * if invalidation requested. Pages undergoing I/O 2176 * will be ignored by vm_object_page_remove(). 2177 * 2178 * We cannot lock the vnode and then wait for paging 2179 * to complete without deadlocking against vm_fault. 2180 * Instead we simply call vm_object_page_remove() and 2181 * allow it to block internally on a page-by-page 2182 * basis when it encounters pages undergoing async 2183 * I/O. 2184 */ 2185 int flags; 2186 2187 vm_object_reference(object); 2188 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 2189 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2190 flags |= invalidate ? OBJPC_INVAL : 0; 2191 vm_object_page_clean(object, 2192 OFF_TO_IDX(offset), 2193 OFF_TO_IDX(offset + size + PAGE_MASK), 2194 flags); 2195 VOP_UNLOCK(object->handle, 0, curthread); 2196 vm_object_deallocate(object); 2197 } 2198 if (object && invalidate && 2199 ((object->type == OBJT_VNODE) || 2200 (object->type == OBJT_DEVICE))) { 2201 vm_object_reference(object); 2202 vm_object_page_remove(object, 2203 OFF_TO_IDX(offset), 2204 OFF_TO_IDX(offset + size + PAGE_MASK), 2205 FALSE); 2206 vm_object_deallocate(object); 2207 } 2208 start += size; 2209 } 2210 2211 vm_map_unlock_read(map); 2212 return (KERN_SUCCESS); 2213 } 2214 2215 /* 2216 * vm_map_entry_unwire: [ internal use only ] 2217 * 2218 * Make the region specified by this entry pageable. 2219 * 2220 * The map in question should be locked. 2221 * [This is the reason for this routine's existence.] 2222 */ 2223 static void 2224 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2225 { 2226 vm_fault_unwire(map, entry->start, entry->end); 2227 entry->wired_count = 0; 2228 } 2229 2230 /* 2231 * vm_map_entry_delete: [ internal use only ] 2232 * 2233 * Deallocate the given entry from the target map. 2234 */ 2235 static void 2236 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2237 { 2238 vm_map_entry_unlink(map, entry); 2239 map->size -= entry->end - entry->start; 2240 2241 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2242 vm_object_deallocate(entry->object.vm_object); 2243 } 2244 2245 vm_map_entry_dispose(map, entry, countp); 2246 } 2247 2248 /* 2249 * vm_map_delete: [ internal use only ] 2250 * 2251 * Deallocates the given address range from the target 2252 * map. 2253 */ 2254 int 2255 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2256 { 2257 vm_object_t object; 2258 vm_map_entry_t entry; 2259 vm_map_entry_t first_entry; 2260 2261 /* 2262 * Find the start of the region, and clip it 2263 */ 2264 2265 again: 2266 if (!vm_map_lookup_entry(map, start, &first_entry)) 2267 entry = first_entry->next; 2268 else { 2269 entry = first_entry; 2270 vm_map_clip_start(map, entry, start, countp); 2271 /* 2272 * Fix the lookup hint now, rather than each time though the 2273 * loop. 2274 */ 2275 SAVE_HINT(map, entry->prev); 2276 } 2277 2278 /* 2279 * Save the free space hint 2280 */ 2281 2282 if (entry == &map->header) { 2283 map->first_free = &map->header; 2284 } else if (map->first_free->start >= start) { 2285 map->first_free = entry->prev; 2286 } 2287 2288 /* 2289 * Step through all entries in this region 2290 */ 2291 2292 while ((entry != &map->header) && (entry->start < end)) { 2293 vm_map_entry_t next; 2294 vm_offset_t s, e; 2295 vm_pindex_t offidxstart, offidxend, count; 2296 2297 /* 2298 * If we hit an in-transition entry we have to sleep and 2299 * retry. It's easier (and not really slower) to just retry 2300 * since this case occurs so rarely and the hint is already 2301 * pointing at the right place. We have to reset the 2302 * start offset so as not to accidently delete an entry 2303 * another process just created in vacated space. 2304 */ 2305 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2306 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2307 start = entry->start; 2308 ++mycpu->gd_cnt.v_intrans_coll; 2309 ++mycpu->gd_cnt.v_intrans_wait; 2310 vm_map_transition_wait(map); 2311 goto again; 2312 } 2313 vm_map_clip_end(map, entry, end, countp); 2314 2315 s = entry->start; 2316 e = entry->end; 2317 next = entry->next; 2318 2319 offidxstart = OFF_TO_IDX(entry->offset); 2320 count = OFF_TO_IDX(e - s); 2321 object = entry->object.vm_object; 2322 2323 /* 2324 * Unwire before removing addresses from the pmap; otherwise, 2325 * unwiring will put the entries back in the pmap. 2326 */ 2327 if (entry->wired_count != 0) { 2328 vm_map_entry_unwire(map, entry); 2329 } 2330 2331 offidxend = offidxstart + count; 2332 2333 if ((object == kernel_object) || (object == kmem_object)) { 2334 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2335 } else { 2336 pmap_remove(map->pmap, s, e); 2337 if (object != NULL && 2338 object->ref_count != 1 && 2339 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2340 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2341 vm_object_collapse(object); 2342 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2343 if (object->type == OBJT_SWAP) { 2344 swap_pager_freespace(object, offidxstart, count); 2345 } 2346 if (offidxend >= object->size && 2347 offidxstart < object->size) { 2348 object->size = offidxstart; 2349 } 2350 } 2351 } 2352 2353 /* 2354 * Delete the entry (which may delete the object) only after 2355 * removing all pmap entries pointing to its pages. 2356 * (Otherwise, its page frames may be reallocated, and any 2357 * modify bits will be set in the wrong object!) 2358 */ 2359 vm_map_entry_delete(map, entry, countp); 2360 entry = next; 2361 } 2362 return (KERN_SUCCESS); 2363 } 2364 2365 /* 2366 * vm_map_remove: 2367 * 2368 * Remove the given address range from the target map. 2369 * This is the exported form of vm_map_delete. 2370 */ 2371 int 2372 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2373 { 2374 int result; 2375 int count; 2376 2377 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2378 vm_map_lock(map); 2379 VM_MAP_RANGE_CHECK(map, start, end); 2380 result = vm_map_delete(map, start, end, &count); 2381 vm_map_unlock(map); 2382 vm_map_entry_release(count); 2383 2384 return (result); 2385 } 2386 2387 /* 2388 * vm_map_check_protection: 2389 * 2390 * Assert that the target map allows the specified 2391 * privilege on the entire address region given. 2392 * The entire region must be allocated. 2393 */ 2394 boolean_t 2395 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2396 vm_prot_t protection) 2397 { 2398 vm_map_entry_t entry; 2399 vm_map_entry_t tmp_entry; 2400 2401 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2402 return (FALSE); 2403 } 2404 entry = tmp_entry; 2405 2406 while (start < end) { 2407 if (entry == &map->header) { 2408 return (FALSE); 2409 } 2410 /* 2411 * No holes allowed! 2412 */ 2413 2414 if (start < entry->start) { 2415 return (FALSE); 2416 } 2417 /* 2418 * Check protection associated with entry. 2419 */ 2420 2421 if ((entry->protection & protection) != protection) { 2422 return (FALSE); 2423 } 2424 /* go to next entry */ 2425 2426 start = entry->end; 2427 entry = entry->next; 2428 } 2429 return (TRUE); 2430 } 2431 2432 /* 2433 * Split the pages in a map entry into a new object. This affords 2434 * easier removal of unused pages, and keeps object inheritance from 2435 * being a negative impact on memory usage. 2436 */ 2437 static void 2438 vm_map_split(vm_map_entry_t entry) 2439 { 2440 vm_page_t m; 2441 vm_object_t orig_object, new_object, source; 2442 vm_offset_t s, e; 2443 vm_pindex_t offidxstart, offidxend, idx; 2444 vm_size_t size; 2445 vm_ooffset_t offset; 2446 2447 orig_object = entry->object.vm_object; 2448 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2449 return; 2450 if (orig_object->ref_count <= 1) 2451 return; 2452 2453 offset = entry->offset; 2454 s = entry->start; 2455 e = entry->end; 2456 2457 offidxstart = OFF_TO_IDX(offset); 2458 offidxend = offidxstart + OFF_TO_IDX(e - s); 2459 size = offidxend - offidxstart; 2460 2461 new_object = vm_pager_allocate(orig_object->type, 2462 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 2463 if (new_object == NULL) 2464 return; 2465 2466 source = orig_object->backing_object; 2467 if (source != NULL) { 2468 vm_object_reference(source); /* Referenced by new_object */ 2469 LIST_INSERT_HEAD(&source->shadow_head, 2470 new_object, shadow_list); 2471 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2472 new_object->backing_object_offset = 2473 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2474 new_object->backing_object = source; 2475 source->shadow_count++; 2476 source->generation++; 2477 } 2478 2479 for (idx = 0; idx < size; idx++) { 2480 vm_page_t m; 2481 2482 retry: 2483 m = vm_page_lookup(orig_object, offidxstart + idx); 2484 if (m == NULL) 2485 continue; 2486 2487 /* 2488 * We must wait for pending I/O to complete before we can 2489 * rename the page. 2490 * 2491 * We do not have to VM_PROT_NONE the page as mappings should 2492 * not be changed by this operation. 2493 */ 2494 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2495 goto retry; 2496 2497 vm_page_busy(m); 2498 vm_page_rename(m, new_object, idx); 2499 /* page automatically made dirty by rename and cache handled */ 2500 vm_page_busy(m); 2501 } 2502 2503 if (orig_object->type == OBJT_SWAP) { 2504 vm_object_pip_add(orig_object, 1); 2505 /* 2506 * copy orig_object pages into new_object 2507 * and destroy unneeded pages in 2508 * shadow object. 2509 */ 2510 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2511 vm_object_pip_wakeup(orig_object); 2512 } 2513 2514 for (idx = 0; idx < size; idx++) { 2515 m = vm_page_lookup(new_object, idx); 2516 if (m) { 2517 vm_page_wakeup(m); 2518 } 2519 } 2520 2521 entry->object.vm_object = new_object; 2522 entry->offset = 0LL; 2523 vm_object_deallocate(orig_object); 2524 } 2525 2526 /* 2527 * vm_map_copy_entry: 2528 * 2529 * Copies the contents of the source entry to the destination 2530 * entry. The entries *must* be aligned properly. 2531 */ 2532 static void 2533 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2534 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2535 { 2536 vm_object_t src_object; 2537 2538 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2539 return; 2540 2541 if (src_entry->wired_count == 0) { 2542 2543 /* 2544 * If the source entry is marked needs_copy, it is already 2545 * write-protected. 2546 */ 2547 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2548 pmap_protect(src_map->pmap, 2549 src_entry->start, 2550 src_entry->end, 2551 src_entry->protection & ~VM_PROT_WRITE); 2552 } 2553 2554 /* 2555 * Make a copy of the object. 2556 */ 2557 if ((src_object = src_entry->object.vm_object) != NULL) { 2558 2559 if ((src_object->handle == NULL) && 2560 (src_object->type == OBJT_DEFAULT || 2561 src_object->type == OBJT_SWAP)) { 2562 vm_object_collapse(src_object); 2563 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2564 vm_map_split(src_entry); 2565 src_object = src_entry->object.vm_object; 2566 } 2567 } 2568 2569 vm_object_reference(src_object); 2570 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2571 dst_entry->object.vm_object = src_object; 2572 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2573 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2574 dst_entry->offset = src_entry->offset; 2575 } else { 2576 dst_entry->object.vm_object = NULL; 2577 dst_entry->offset = 0; 2578 } 2579 2580 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2581 dst_entry->end - dst_entry->start, src_entry->start); 2582 } else { 2583 /* 2584 * Of course, wired down pages can't be set copy-on-write. 2585 * Cause wired pages to be copied into the new map by 2586 * simulating faults (the new pages are pageable) 2587 */ 2588 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2589 } 2590 } 2591 2592 /* 2593 * vmspace_fork: 2594 * Create a new process vmspace structure and vm_map 2595 * based on those of an existing process. The new map 2596 * is based on the old map, according to the inheritance 2597 * values on the regions in that map. 2598 * 2599 * The source map must not be locked. 2600 */ 2601 struct vmspace * 2602 vmspace_fork(struct vmspace *vm1) 2603 { 2604 struct vmspace *vm2; 2605 vm_map_t old_map = &vm1->vm_map; 2606 vm_map_t new_map; 2607 vm_map_entry_t old_entry; 2608 vm_map_entry_t new_entry; 2609 vm_object_t object; 2610 int count; 2611 2612 vm_map_lock(old_map); 2613 old_map->infork = 1; 2614 2615 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2616 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2617 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2618 new_map = &vm2->vm_map; /* XXX */ 2619 new_map->timestamp = 1; 2620 2621 count = 0; 2622 old_entry = old_map->header.next; 2623 while (old_entry != &old_map->header) { 2624 ++count; 2625 old_entry = old_entry->next; 2626 } 2627 2628 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 2629 2630 old_entry = old_map->header.next; 2631 while (old_entry != &old_map->header) { 2632 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2633 panic("vm_map_fork: encountered a submap"); 2634 2635 switch (old_entry->inheritance) { 2636 case VM_INHERIT_NONE: 2637 break; 2638 2639 case VM_INHERIT_SHARE: 2640 /* 2641 * Clone the entry, creating the shared object if necessary. 2642 */ 2643 object = old_entry->object.vm_object; 2644 if (object == NULL) { 2645 object = vm_object_allocate(OBJT_DEFAULT, 2646 atop(old_entry->end - old_entry->start)); 2647 old_entry->object.vm_object = object; 2648 old_entry->offset = (vm_offset_t) 0; 2649 } 2650 2651 /* 2652 * Add the reference before calling vm_object_shadow 2653 * to insure that a shadow object is created. 2654 */ 2655 vm_object_reference(object); 2656 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2657 vm_object_shadow(&old_entry->object.vm_object, 2658 &old_entry->offset, 2659 atop(old_entry->end - old_entry->start)); 2660 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2661 /* Transfer the second reference too. */ 2662 vm_object_reference( 2663 old_entry->object.vm_object); 2664 vm_object_deallocate(object); 2665 object = old_entry->object.vm_object; 2666 } 2667 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2668 2669 /* 2670 * Clone the entry, referencing the shared object. 2671 */ 2672 new_entry = vm_map_entry_create(new_map, &count); 2673 *new_entry = *old_entry; 2674 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2675 new_entry->wired_count = 0; 2676 2677 /* 2678 * Insert the entry into the new map -- we know we're 2679 * inserting at the end of the new map. 2680 */ 2681 2682 vm_map_entry_link(new_map, new_map->header.prev, 2683 new_entry); 2684 2685 /* 2686 * Update the physical map 2687 */ 2688 2689 pmap_copy(new_map->pmap, old_map->pmap, 2690 new_entry->start, 2691 (old_entry->end - old_entry->start), 2692 old_entry->start); 2693 break; 2694 2695 case VM_INHERIT_COPY: 2696 /* 2697 * Clone the entry and link into the map. 2698 */ 2699 new_entry = vm_map_entry_create(new_map, &count); 2700 *new_entry = *old_entry; 2701 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2702 new_entry->wired_count = 0; 2703 new_entry->object.vm_object = NULL; 2704 vm_map_entry_link(new_map, new_map->header.prev, 2705 new_entry); 2706 vm_map_copy_entry(old_map, new_map, old_entry, 2707 new_entry); 2708 break; 2709 } 2710 old_entry = old_entry->next; 2711 } 2712 2713 new_map->size = old_map->size; 2714 old_map->infork = 0; 2715 vm_map_unlock(old_map); 2716 vm_map_entry_release(count); 2717 2718 return (vm2); 2719 } 2720 2721 int 2722 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2723 vm_prot_t prot, vm_prot_t max, int cow) 2724 { 2725 vm_map_entry_t prev_entry; 2726 vm_map_entry_t new_stack_entry; 2727 vm_size_t init_ssize; 2728 int rv; 2729 int count; 2730 2731 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2732 return (KERN_NO_SPACE); 2733 2734 if (max_ssize < sgrowsiz) 2735 init_ssize = max_ssize; 2736 else 2737 init_ssize = sgrowsiz; 2738 2739 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2740 vm_map_lock(map); 2741 2742 /* If addr is already mapped, no go */ 2743 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2744 vm_map_unlock(map); 2745 vm_map_entry_release(count); 2746 return (KERN_NO_SPACE); 2747 } 2748 2749 /* If we would blow our VMEM resource limit, no go */ 2750 if (map->size + init_ssize > 2751 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2752 vm_map_unlock(map); 2753 vm_map_entry_release(count); 2754 return (KERN_NO_SPACE); 2755 } 2756 2757 /* If we can't accomodate max_ssize in the current mapping, 2758 * no go. However, we need to be aware that subsequent user 2759 * mappings might map into the space we have reserved for 2760 * stack, and currently this space is not protected. 2761 * 2762 * Hopefully we will at least detect this condition 2763 * when we try to grow the stack. 2764 */ 2765 if ((prev_entry->next != &map->header) && 2766 (prev_entry->next->start < addrbos + max_ssize)) { 2767 vm_map_unlock(map); 2768 vm_map_entry_release(count); 2769 return (KERN_NO_SPACE); 2770 } 2771 2772 /* We initially map a stack of only init_ssize. We will 2773 * grow as needed later. Since this is to be a grow 2774 * down stack, we map at the top of the range. 2775 * 2776 * Note: we would normally expect prot and max to be 2777 * VM_PROT_ALL, and cow to be 0. Possibly we should 2778 * eliminate these as input parameters, and just 2779 * pass these values here in the insert call. 2780 */ 2781 rv = vm_map_insert(map, &count, 2782 NULL, 0, addrbos + max_ssize - init_ssize, 2783 addrbos + max_ssize, prot, max, cow); 2784 2785 /* Now set the avail_ssize amount */ 2786 if (rv == KERN_SUCCESS){ 2787 if (prev_entry != &map->header) 2788 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 2789 new_stack_entry = prev_entry->next; 2790 if (new_stack_entry->end != addrbos + max_ssize || 2791 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2792 panic ("Bad entry start/end for new stack entry"); 2793 else 2794 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2795 } 2796 2797 vm_map_unlock(map); 2798 vm_map_entry_release(count); 2799 return (rv); 2800 } 2801 2802 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2803 * desired address is already mapped, or if we successfully grow 2804 * the stack. Also returns KERN_SUCCESS if addr is outside the 2805 * stack range (this is strange, but preserves compatibility with 2806 * the grow function in vm_machdep.c). 2807 */ 2808 int 2809 vm_map_growstack (struct proc *p, vm_offset_t addr) 2810 { 2811 vm_map_entry_t prev_entry; 2812 vm_map_entry_t stack_entry; 2813 vm_map_entry_t new_stack_entry; 2814 struct vmspace *vm = p->p_vmspace; 2815 vm_map_t map = &vm->vm_map; 2816 vm_offset_t end; 2817 int grow_amount; 2818 int rv = KERN_SUCCESS; 2819 int is_procstack; 2820 int use_read_lock = 1; 2821 int count; 2822 2823 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2824 Retry: 2825 if (use_read_lock) 2826 vm_map_lock_read(map); 2827 else 2828 vm_map_lock(map); 2829 2830 /* If addr is already in the entry range, no need to grow.*/ 2831 if (vm_map_lookup_entry(map, addr, &prev_entry)) 2832 goto done; 2833 2834 if ((stack_entry = prev_entry->next) == &map->header) 2835 goto done; 2836 if (prev_entry == &map->header) 2837 end = stack_entry->start - stack_entry->avail_ssize; 2838 else 2839 end = prev_entry->end; 2840 2841 /* This next test mimics the old grow function in vm_machdep.c. 2842 * It really doesn't quite make sense, but we do it anyway 2843 * for compatibility. 2844 * 2845 * If not growable stack, return success. This signals the 2846 * caller to proceed as he would normally with normal vm. 2847 */ 2848 if (stack_entry->avail_ssize < 1 || 2849 addr >= stack_entry->start || 2850 addr < stack_entry->start - stack_entry->avail_ssize) { 2851 goto done; 2852 } 2853 2854 /* Find the minimum grow amount */ 2855 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2856 if (grow_amount > stack_entry->avail_ssize) { 2857 rv = KERN_NO_SPACE; 2858 goto done; 2859 } 2860 2861 /* If there is no longer enough space between the entries 2862 * nogo, and adjust the available space. Note: this 2863 * should only happen if the user has mapped into the 2864 * stack area after the stack was created, and is 2865 * probably an error. 2866 * 2867 * This also effectively destroys any guard page the user 2868 * might have intended by limiting the stack size. 2869 */ 2870 if (grow_amount > stack_entry->start - end) { 2871 if (use_read_lock && vm_map_lock_upgrade(map)) { 2872 use_read_lock = 0; 2873 goto Retry; 2874 } 2875 use_read_lock = 0; 2876 stack_entry->avail_ssize = stack_entry->start - end; 2877 rv = KERN_NO_SPACE; 2878 goto done; 2879 } 2880 2881 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2882 2883 /* If this is the main process stack, see if we're over the 2884 * stack limit. 2885 */ 2886 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2887 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2888 rv = KERN_NO_SPACE; 2889 goto done; 2890 } 2891 2892 /* Round up the grow amount modulo SGROWSIZ */ 2893 grow_amount = roundup (grow_amount, sgrowsiz); 2894 if (grow_amount > stack_entry->avail_ssize) { 2895 grow_amount = stack_entry->avail_ssize; 2896 } 2897 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2898 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2899 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2900 ctob(vm->vm_ssize); 2901 } 2902 2903 /* If we would blow our VMEM resource limit, no go */ 2904 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2905 rv = KERN_NO_SPACE; 2906 goto done; 2907 } 2908 2909 if (use_read_lock && vm_map_lock_upgrade(map)) { 2910 use_read_lock = 0; 2911 goto Retry; 2912 } 2913 use_read_lock = 0; 2914 2915 /* Get the preliminary new entry start value */ 2916 addr = stack_entry->start - grow_amount; 2917 2918 /* If this puts us into the previous entry, cut back our growth 2919 * to the available space. Also, see the note above. 2920 */ 2921 if (addr < end) { 2922 stack_entry->avail_ssize = stack_entry->start - end; 2923 addr = end; 2924 } 2925 2926 rv = vm_map_insert(map, &count, 2927 NULL, 0, addr, stack_entry->start, 2928 VM_PROT_ALL, 2929 VM_PROT_ALL, 2930 0); 2931 2932 /* Adjust the available stack space by the amount we grew. */ 2933 if (rv == KERN_SUCCESS) { 2934 if (prev_entry != &map->header) 2935 vm_map_clip_end(map, prev_entry, addr, &count); 2936 new_stack_entry = prev_entry->next; 2937 if (new_stack_entry->end != stack_entry->start || 2938 new_stack_entry->start != addr) 2939 panic ("Bad stack grow start/end in new stack entry"); 2940 else { 2941 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2942 (new_stack_entry->end - 2943 new_stack_entry->start); 2944 if (is_procstack) 2945 vm->vm_ssize += btoc(new_stack_entry->end - 2946 new_stack_entry->start); 2947 } 2948 } 2949 2950 done: 2951 if (use_read_lock) 2952 vm_map_unlock_read(map); 2953 else 2954 vm_map_unlock(map); 2955 vm_map_entry_release(count); 2956 return (rv); 2957 } 2958 2959 /* 2960 * Unshare the specified VM space for exec. If other processes are 2961 * mapped to it, then create a new one. The new vmspace is null. 2962 */ 2963 2964 void 2965 vmspace_exec(struct proc *p) 2966 { 2967 struct vmspace *oldvmspace = p->p_vmspace; 2968 struct vmspace *newvmspace; 2969 vm_map_t map = &p->p_vmspace->vm_map; 2970 2971 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2972 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2973 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2974 /* 2975 * This code is written like this for prototype purposes. The 2976 * goal is to avoid running down the vmspace here, but let the 2977 * other process's that are still using the vmspace to finally 2978 * run it down. Even though there is little or no chance of blocking 2979 * here, it is a good idea to keep this form for future mods. 2980 */ 2981 vmspace_free(oldvmspace); 2982 p->p_vmspace = newvmspace; 2983 pmap_pinit2(vmspace_pmap(newvmspace)); 2984 if (p == curproc) 2985 pmap_activate(p); 2986 } 2987 2988 /* 2989 * Unshare the specified VM space for forcing COW. This 2990 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2991 */ 2992 2993 void 2994 vmspace_unshare(struct proc *p) 2995 { 2996 struct vmspace *oldvmspace = p->p_vmspace; 2997 struct vmspace *newvmspace; 2998 2999 if (oldvmspace->vm_refcnt == 1) 3000 return; 3001 newvmspace = vmspace_fork(oldvmspace); 3002 vmspace_free(oldvmspace); 3003 p->p_vmspace = newvmspace; 3004 pmap_pinit2(vmspace_pmap(newvmspace)); 3005 if (p == curproc) 3006 pmap_activate(p); 3007 } 3008 3009 /* 3010 * vm_map_lookup: 3011 * 3012 * Finds the VM object, offset, and 3013 * protection for a given virtual address in the 3014 * specified map, assuming a page fault of the 3015 * type specified. 3016 * 3017 * Leaves the map in question locked for read; return 3018 * values are guaranteed until a vm_map_lookup_done 3019 * call is performed. Note that the map argument 3020 * is in/out; the returned map must be used in 3021 * the call to vm_map_lookup_done. 3022 * 3023 * A handle (out_entry) is returned for use in 3024 * vm_map_lookup_done, to make that fast. 3025 * 3026 * If a lookup is requested with "write protection" 3027 * specified, the map may be changed to perform virtual 3028 * copying operations, although the data referenced will 3029 * remain the same. 3030 */ 3031 int 3032 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3033 vm_offset_t vaddr, 3034 vm_prot_t fault_typea, 3035 vm_map_entry_t *out_entry, /* OUT */ 3036 vm_object_t *object, /* OUT */ 3037 vm_pindex_t *pindex, /* OUT */ 3038 vm_prot_t *out_prot, /* OUT */ 3039 boolean_t *wired) /* OUT */ 3040 { 3041 vm_map_entry_t entry; 3042 vm_map_t map = *var_map; 3043 vm_prot_t prot; 3044 vm_prot_t fault_type = fault_typea; 3045 int use_read_lock = 1; 3046 int rv = KERN_SUCCESS; 3047 3048 RetryLookup: 3049 if (use_read_lock) 3050 vm_map_lock_read(map); 3051 else 3052 vm_map_lock(map); 3053 3054 /* 3055 * If the map has an interesting hint, try it before calling full 3056 * blown lookup routine. 3057 */ 3058 entry = map->hint; 3059 *out_entry = entry; 3060 3061 if ((entry == &map->header) || 3062 (vaddr < entry->start) || (vaddr >= entry->end)) { 3063 vm_map_entry_t tmp_entry; 3064 3065 /* 3066 * Entry was either not a valid hint, or the vaddr was not 3067 * contained in the entry, so do a full lookup. 3068 */ 3069 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3070 rv = KERN_INVALID_ADDRESS; 3071 goto done; 3072 } 3073 3074 entry = tmp_entry; 3075 *out_entry = entry; 3076 } 3077 3078 /* 3079 * Handle submaps. 3080 */ 3081 3082 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3083 vm_map_t old_map = map; 3084 3085 *var_map = map = entry->object.sub_map; 3086 if (use_read_lock) 3087 vm_map_unlock_read(old_map); 3088 else 3089 vm_map_unlock(old_map); 3090 use_read_lock = 1; 3091 goto RetryLookup; 3092 } 3093 3094 /* 3095 * Check whether this task is allowed to have this page. 3096 * Note the special case for MAP_ENTRY_COW 3097 * pages with an override. This is to implement a forced 3098 * COW for debuggers. 3099 */ 3100 3101 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3102 prot = entry->max_protection; 3103 else 3104 prot = entry->protection; 3105 3106 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3107 if ((fault_type & prot) != fault_type) { 3108 rv = KERN_PROTECTION_FAILURE; 3109 goto done; 3110 } 3111 3112 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3113 (entry->eflags & MAP_ENTRY_COW) && 3114 (fault_type & VM_PROT_WRITE) && 3115 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3116 rv = KERN_PROTECTION_FAILURE; 3117 goto done; 3118 } 3119 3120 /* 3121 * If this page is not pageable, we have to get it for all possible 3122 * accesses. 3123 */ 3124 3125 *wired = (entry->wired_count != 0); 3126 if (*wired) 3127 prot = fault_type = entry->protection; 3128 3129 /* 3130 * If the entry was copy-on-write, we either ... 3131 */ 3132 3133 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3134 /* 3135 * If we want to write the page, we may as well handle that 3136 * now since we've got the map locked. 3137 * 3138 * If we don't need to write the page, we just demote the 3139 * permissions allowed. 3140 */ 3141 3142 if (fault_type & VM_PROT_WRITE) { 3143 /* 3144 * Make a new object, and place it in the object 3145 * chain. Note that no new references have appeared 3146 * -- one just moved from the map to the new 3147 * object. 3148 */ 3149 3150 if (use_read_lock && vm_map_lock_upgrade(map)) { 3151 use_read_lock = 0; 3152 goto RetryLookup; 3153 } 3154 use_read_lock = 0; 3155 3156 vm_object_shadow( 3157 &entry->object.vm_object, 3158 &entry->offset, 3159 atop(entry->end - entry->start)); 3160 3161 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3162 } else { 3163 /* 3164 * We're attempting to read a copy-on-write page -- 3165 * don't allow writes. 3166 */ 3167 3168 prot &= ~VM_PROT_WRITE; 3169 } 3170 } 3171 3172 /* 3173 * Create an object if necessary. 3174 */ 3175 if (entry->object.vm_object == NULL && 3176 !map->system_map) { 3177 if (use_read_lock && vm_map_lock_upgrade(map)) { 3178 use_read_lock = 0; 3179 goto RetryLookup; 3180 } 3181 use_read_lock = 0; 3182 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3183 atop(entry->end - entry->start)); 3184 entry->offset = 0; 3185 } 3186 3187 /* 3188 * Return the object/offset from this entry. If the entry was 3189 * copy-on-write or empty, it has been fixed up. 3190 */ 3191 3192 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3193 *object = entry->object.vm_object; 3194 3195 /* 3196 * Return whether this is the only map sharing this data. On 3197 * success we return with a read lock held on the map. On failure 3198 * we return with the map unlocked. 3199 */ 3200 *out_prot = prot; 3201 done: 3202 if (rv == KERN_SUCCESS) { 3203 if (use_read_lock == 0) 3204 vm_map_lock_downgrade(map); 3205 } else if (use_read_lock) { 3206 vm_map_unlock_read(map); 3207 } else { 3208 vm_map_unlock(map); 3209 } 3210 return (rv); 3211 } 3212 3213 /* 3214 * vm_map_lookup_done: 3215 * 3216 * Releases locks acquired by a vm_map_lookup 3217 * (according to the handle returned by that lookup). 3218 */ 3219 3220 void 3221 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3222 { 3223 /* 3224 * Unlock the main-level map 3225 */ 3226 vm_map_unlock_read(map); 3227 if (count) 3228 vm_map_entry_release(count); 3229 } 3230 3231 /* 3232 * Implement uiomove with VM operations. This handles (and collateral changes) 3233 * support every combination of source object modification, and COW type 3234 * operations. 3235 */ 3236 int 3237 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 3238 vm_map_t mapa; 3239 vm_object_t srcobject; 3240 off_t cp; 3241 int cnta; 3242 vm_offset_t uaddra; 3243 int *npages; 3244 { 3245 vm_map_t map; 3246 vm_object_t first_object, oldobject, object; 3247 vm_map_entry_t entry; 3248 vm_prot_t prot; 3249 boolean_t wired; 3250 int tcnt, rv; 3251 vm_offset_t uaddr, start, end, tend; 3252 vm_pindex_t first_pindex, osize, oindex; 3253 off_t ooffset; 3254 int cnt; 3255 int count; 3256 3257 if (npages) 3258 *npages = 0; 3259 3260 cnt = cnta; 3261 uaddr = uaddra; 3262 3263 while (cnt > 0) { 3264 map = mapa; 3265 3266 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3267 3268 if ((vm_map_lookup(&map, uaddr, 3269 VM_PROT_READ, &entry, &first_object, 3270 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 3271 return EFAULT; 3272 } 3273 3274 vm_map_clip_start(map, entry, uaddr, &count); 3275 3276 tcnt = cnt; 3277 tend = uaddr + tcnt; 3278 if (tend > entry->end) { 3279 tcnt = entry->end - uaddr; 3280 tend = entry->end; 3281 } 3282 3283 vm_map_clip_end(map, entry, tend, &count); 3284 3285 start = entry->start; 3286 end = entry->end; 3287 3288 osize = atop(tcnt); 3289 3290 oindex = OFF_TO_IDX(cp); 3291 if (npages) { 3292 vm_pindex_t idx; 3293 for (idx = 0; idx < osize; idx++) { 3294 vm_page_t m; 3295 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 3296 vm_map_lookup_done(map, entry, count); 3297 return 0; 3298 } 3299 /* 3300 * disallow busy or invalid pages, but allow 3301 * m->busy pages if they are entirely valid. 3302 */ 3303 if ((m->flags & PG_BUSY) || 3304 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 3305 vm_map_lookup_done(map, entry, count); 3306 return 0; 3307 } 3308 } 3309 } 3310 3311 /* 3312 * If we are changing an existing map entry, just redirect 3313 * the object, and change mappings. 3314 */ 3315 if ((first_object->type == OBJT_VNODE) && 3316 ((oldobject = entry->object.vm_object) == first_object)) { 3317 3318 if ((entry->offset != cp) || (oldobject != srcobject)) { 3319 /* 3320 * Remove old window into the file 3321 */ 3322 pmap_remove (map->pmap, uaddr, tend); 3323 3324 /* 3325 * Force copy on write for mmaped regions 3326 */ 3327 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3328 3329 /* 3330 * Point the object appropriately 3331 */ 3332 if (oldobject != srcobject) { 3333 3334 /* 3335 * Set the object optimization hint flag 3336 */ 3337 vm_object_set_flag(srcobject, OBJ_OPT); 3338 vm_object_reference(srcobject); 3339 entry->object.vm_object = srcobject; 3340 3341 if (oldobject) { 3342 vm_object_deallocate(oldobject); 3343 } 3344 } 3345 3346 entry->offset = cp; 3347 map->timestamp++; 3348 } else { 3349 pmap_remove (map->pmap, uaddr, tend); 3350 } 3351 3352 } else if ((first_object->ref_count == 1) && 3353 (first_object->size == osize) && 3354 ((first_object->type == OBJT_DEFAULT) || 3355 (first_object->type == OBJT_SWAP)) ) { 3356 3357 oldobject = first_object->backing_object; 3358 3359 if ((first_object->backing_object_offset != cp) || 3360 (oldobject != srcobject)) { 3361 /* 3362 * Remove old window into the file 3363 */ 3364 pmap_remove (map->pmap, uaddr, tend); 3365 3366 /* 3367 * Remove unneeded old pages 3368 */ 3369 vm_object_page_remove(first_object, 0, 0, 0); 3370 3371 /* 3372 * Invalidate swap space 3373 */ 3374 if (first_object->type == OBJT_SWAP) { 3375 swap_pager_freespace(first_object, 3376 0, 3377 first_object->size); 3378 } 3379 3380 /* 3381 * Force copy on write for mmaped regions 3382 */ 3383 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3384 3385 /* 3386 * Point the object appropriately 3387 */ 3388 if (oldobject != srcobject) { 3389 3390 /* 3391 * Set the object optimization hint flag 3392 */ 3393 vm_object_set_flag(srcobject, OBJ_OPT); 3394 vm_object_reference(srcobject); 3395 3396 if (oldobject) { 3397 LIST_REMOVE( 3398 first_object, shadow_list); 3399 oldobject->shadow_count--; 3400 /* XXX bump generation? */ 3401 vm_object_deallocate(oldobject); 3402 } 3403 3404 LIST_INSERT_HEAD(&srcobject->shadow_head, 3405 first_object, shadow_list); 3406 srcobject->shadow_count++; 3407 /* XXX bump generation? */ 3408 3409 first_object->backing_object = srcobject; 3410 } 3411 first_object->backing_object_offset = cp; 3412 map->timestamp++; 3413 } else { 3414 pmap_remove (map->pmap, uaddr, tend); 3415 } 3416 /* 3417 * Otherwise, we have to do a logical mmap. 3418 */ 3419 } else { 3420 3421 vm_object_set_flag(srcobject, OBJ_OPT); 3422 vm_object_reference(srcobject); 3423 3424 pmap_remove (map->pmap, uaddr, tend); 3425 3426 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3427 vm_map_lock_upgrade(map); 3428 3429 if (entry == &map->header) { 3430 map->first_free = &map->header; 3431 } else if (map->first_free->start >= start) { 3432 map->first_free = entry->prev; 3433 } 3434 3435 SAVE_HINT(map, entry->prev); 3436 vm_map_entry_delete(map, entry, &count); 3437 3438 object = srcobject; 3439 ooffset = cp; 3440 3441 rv = vm_map_insert(map, &count, 3442 object, ooffset, start, tend, 3443 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3444 3445 if (rv != KERN_SUCCESS) 3446 panic("vm_uiomove: could not insert new entry: %d", rv); 3447 } 3448 3449 /* 3450 * Map the window directly, if it is already in memory 3451 */ 3452 pmap_object_init_pt(map->pmap, uaddr, 3453 srcobject, oindex, tcnt, 0); 3454 3455 map->timestamp++; 3456 vm_map_unlock(map); 3457 vm_map_entry_release(count); 3458 3459 cnt -= tcnt; 3460 uaddr += tcnt; 3461 cp += tcnt; 3462 if (npages) 3463 *npages += osize; 3464 } 3465 return 0; 3466 } 3467 3468 /* 3469 * Performs the copy_on_write operations necessary to allow the virtual copies 3470 * into user space to work. This has to be called for write(2) system calls 3471 * from other processes, file unlinking, and file size shrinkage. 3472 */ 3473 void 3474 vm_freeze_copyopts(object, froma, toa) 3475 vm_object_t object; 3476 vm_pindex_t froma, toa; 3477 { 3478 int rv; 3479 vm_object_t robject; 3480 vm_pindex_t idx; 3481 3482 if ((object == NULL) || 3483 ((object->flags & OBJ_OPT) == 0)) 3484 return; 3485 3486 if (object->shadow_count > object->ref_count) 3487 panic("vm_freeze_copyopts: sc > rc"); 3488 3489 while((robject = LIST_FIRST(&object->shadow_head)) != NULL) { 3490 vm_pindex_t bo_pindex; 3491 vm_page_t m_in, m_out; 3492 3493 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 3494 3495 vm_object_reference(robject); 3496 3497 vm_object_pip_wait(robject, "objfrz"); 3498 3499 if (robject->ref_count == 1) { 3500 vm_object_deallocate(robject); 3501 continue; 3502 } 3503 3504 vm_object_pip_add(robject, 1); 3505 3506 for (idx = 0; idx < robject->size; idx++) { 3507 3508 m_out = vm_page_grab(robject, idx, 3509 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 3510 3511 if (m_out->valid == 0) { 3512 m_in = vm_page_grab(object, bo_pindex + idx, 3513 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 3514 if (m_in->valid == 0) { 3515 rv = vm_pager_get_pages(object, &m_in, 1, 0); 3516 if (rv != VM_PAGER_OK) { 3517 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex); 3518 continue; 3519 } 3520 vm_page_deactivate(m_in); 3521 } 3522 3523 vm_page_protect(m_in, VM_PROT_NONE); 3524 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 3525 m_out->valid = m_in->valid; 3526 vm_page_dirty(m_out); 3527 vm_page_activate(m_out); 3528 vm_page_wakeup(m_in); 3529 } 3530 vm_page_wakeup(m_out); 3531 } 3532 3533 object->shadow_count--; 3534 object->ref_count--; 3535 LIST_REMOVE(robject, shadow_list); 3536 robject->backing_object = NULL; 3537 robject->backing_object_offset = 0; 3538 3539 vm_object_pip_wakeup(robject); 3540 vm_object_deallocate(robject); 3541 } 3542 3543 vm_object_clear_flag(object, OBJ_OPT); 3544 } 3545 3546 #include "opt_ddb.h" 3547 #ifdef DDB 3548 #include <sys/kernel.h> 3549 3550 #include <ddb/ddb.h> 3551 3552 /* 3553 * vm_map_print: [ debug ] 3554 */ 3555 DB_SHOW_COMMAND(map, vm_map_print) 3556 { 3557 static int nlines; 3558 /* XXX convert args. */ 3559 vm_map_t map = (vm_map_t)addr; 3560 boolean_t full = have_addr; 3561 3562 vm_map_entry_t entry; 3563 3564 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3565 (void *)map, 3566 (void *)map->pmap, map->nentries, map->timestamp); 3567 nlines++; 3568 3569 if (!full && db_indent) 3570 return; 3571 3572 db_indent += 2; 3573 for (entry = map->header.next; entry != &map->header; 3574 entry = entry->next) { 3575 db_iprintf("map entry %p: start=%p, end=%p\n", 3576 (void *)entry, (void *)entry->start, (void *)entry->end); 3577 nlines++; 3578 { 3579 static char *inheritance_name[4] = 3580 {"share", "copy", "none", "donate_copy"}; 3581 3582 db_iprintf(" prot=%x/%x/%s", 3583 entry->protection, 3584 entry->max_protection, 3585 inheritance_name[(int)(unsigned char)entry->inheritance]); 3586 if (entry->wired_count != 0) 3587 db_printf(", wired"); 3588 } 3589 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3590 /* XXX no %qd in kernel. Truncate entry->offset. */ 3591 db_printf(", share=%p, offset=0x%lx\n", 3592 (void *)entry->object.sub_map, 3593 (long)entry->offset); 3594 nlines++; 3595 if ((entry->prev == &map->header) || 3596 (entry->prev->object.sub_map != 3597 entry->object.sub_map)) { 3598 db_indent += 2; 3599 vm_map_print((db_expr_t)(intptr_t) 3600 entry->object.sub_map, 3601 full, 0, (char *)0); 3602 db_indent -= 2; 3603 } 3604 } else { 3605 /* XXX no %qd in kernel. Truncate entry->offset. */ 3606 db_printf(", object=%p, offset=0x%lx", 3607 (void *)entry->object.vm_object, 3608 (long)entry->offset); 3609 if (entry->eflags & MAP_ENTRY_COW) 3610 db_printf(", copy (%s)", 3611 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3612 db_printf("\n"); 3613 nlines++; 3614 3615 if ((entry->prev == &map->header) || 3616 (entry->prev->object.vm_object != 3617 entry->object.vm_object)) { 3618 db_indent += 2; 3619 vm_object_print((db_expr_t)(intptr_t) 3620 entry->object.vm_object, 3621 full, 0, (char *)0); 3622 nlines += 4; 3623 db_indent -= 2; 3624 } 3625 } 3626 } 3627 db_indent -= 2; 3628 if (db_indent == 0) 3629 nlines = 0; 3630 } 3631 3632 3633 DB_SHOW_COMMAND(procvm, procvm) 3634 { 3635 struct proc *p; 3636 3637 if (have_addr) { 3638 p = (struct proc *) addr; 3639 } else { 3640 p = curproc; 3641 } 3642 3643 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3644 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3645 (void *)vmspace_pmap(p->p_vmspace)); 3646 3647 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3648 } 3649 3650 #endif /* DDB */ 3651