xref: /dflybsd-src/sys/vm/vm_map.c (revision 3e4a09e71e628ef90f06defa19a42cbcf75e84e5)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.17 2003/12/27 05:13:32 hsu Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93 
94 #include <sys/thread2.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139 
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142 
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150 		vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153 
154 void
155 vm_map_startup()
156 {
157 	mapzone = &mapzone_store;
158 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 		map_init, MAX_KMAP);
160 	mapentzone = &mapentzone_store;
161 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 		map_entry_init, MAX_MAPENT);
163 }
164 
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172 	vm_offset_t min, max;
173 {
174 	struct vmspace *vm;
175 
176 	vm = zalloc(vmspace_zone);
177 	vm_map_init(&vm->vm_map, min, max);
178 	pmap_pinit(vmspace_pmap(vm));
179 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
180 	vm->vm_refcnt = 1;
181 	vm->vm_shm = NULL;
182 	vm->vm_exitingcnt = 0;
183 	return (vm);
184 }
185 
186 void
187 vm_init2(void)
188 {
189 	zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192 	pmap_init2();
193 	vm_object_init2();
194 }
195 
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199 	int count;
200 
201 	/*
202 	 * Make sure any SysV shm is freed, it might not have in
203 	 * exit1()
204 	 */
205 	shmexit(vm);
206 
207 	KKASSERT(vm->vm_upcalls == NULL);
208 
209 	/*
210 	 * Lock the map, to wait out all other references to it.
211 	 * Delete all of the mappings and pages they hold, then call
212 	 * the pmap module to reclaim anything left.
213 	 */
214 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
215 	vm_map_lock(&vm->vm_map);
216 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
217 		vm->vm_map.max_offset, &count);
218 	vm_map_unlock(&vm->vm_map);
219 	vm_map_entry_release(count);
220 
221 	pmap_release(vmspace_pmap(vm));
222 	zfree(vmspace_zone, vm);
223 }
224 
225 void
226 vmspace_free(struct vmspace *vm)
227 {
228 	if (vm->vm_refcnt == 0)
229 		panic("vmspace_free: attempt to free already freed vmspace");
230 
231 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
232 		vmspace_dofree(vm);
233 }
234 
235 void
236 vmspace_exitfree(struct proc *p)
237 {
238 	struct vmspace *vm;
239 
240 	vm = p->p_vmspace;
241 	p->p_vmspace = NULL;
242 
243 	/*
244 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
245 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
246 	 * exitingcnt may increment above 0 and drop back down to zero
247 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
248 	 * may also increment above 0 and drop back down to zero several
249 	 * times while vm_exitingcnt is held non-zero.
250 	 *
251 	 * The last wait on the exiting child's vmspace will clean up
252 	 * the remainder of the vmspace.
253 	 */
254 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
255 		vmspace_dofree(vm);
256 }
257 
258 /*
259  * vmspace_swap_count() - count the approximate swap useage in pages for a
260  *			  vmspace.
261  *
262  *	Swap useage is determined by taking the proportional swap used by
263  *	VM objects backing the VM map.  To make up for fractional losses,
264  *	if the VM object has any swap use at all the associated map entries
265  *	count for at least 1 swap page.
266  */
267 int
268 vmspace_swap_count(struct vmspace *vmspace)
269 {
270 	vm_map_t map = &vmspace->vm_map;
271 	vm_map_entry_t cur;
272 	int count = 0;
273 
274 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
275 		vm_object_t object;
276 
277 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
278 		    (object = cur->object.vm_object) != NULL &&
279 		    object->type == OBJT_SWAP
280 		) {
281 			int n = (cur->end - cur->start) / PAGE_SIZE;
282 
283 			if (object->un_pager.swp.swp_bcount) {
284 				count += object->un_pager.swp.swp_bcount *
285 				    SWAP_META_PAGES * n / object->size + 1;
286 			}
287 		}
288 	}
289 	return(count);
290 }
291 
292 
293 /*
294  *	vm_map_create:
295  *
296  *	Creates and returns a new empty VM map with
297  *	the given physical map structure, and having
298  *	the given lower and upper address bounds.
299  */
300 vm_map_t
301 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
302 {
303 	vm_map_t result;
304 
305 	result = zalloc(mapzone);
306 	vm_map_init(result, min, max);
307 	result->pmap = pmap;
308 	return (result);
309 }
310 
311 /*
312  * Initialize an existing vm_map structure
313  * such as that in the vmspace structure.
314  * The pmap is set elsewhere.
315  */
316 void
317 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
318 {
319 	map->header.next = map->header.prev = &map->header;
320 	map->nentries = 0;
321 	map->size = 0;
322 	map->system_map = 0;
323 	map->infork = 0;
324 	map->min_offset = min;
325 	map->max_offset = max;
326 	map->first_free = &map->header;
327 	map->hint = &map->header;
328 	map->timestamp = 0;
329 	lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
330 }
331 
332 /*
333  *	vm_map_entry_reserve:
334  *
335  *	Reserves vm_map_entry structures outside of the critical path
336  */
337 int
338 vm_map_entry_reserve(int count)
339 {
340 	struct globaldata *gd = mycpu;
341 	vm_map_entry_t entry;
342 
343 	crit_enter();
344 	gd->gd_vme_avail -= count;
345 
346 	/*
347 	 * Make sure we have enough structures in gd_vme_base to handle
348 	 * the reservation request.
349 	 */
350 	while (gd->gd_vme_avail < 0) {
351 		entry = zalloc(mapentzone);
352 		entry->next = gd->gd_vme_base;
353 		gd->gd_vme_base = entry;
354 		++gd->gd_vme_avail;
355 	}
356 	crit_exit();
357 	return(count);
358 }
359 
360 /*
361  *	vm_map_entry_release:
362  *
363  *	Releases previously reserved vm_map_entry structures that were not
364  *	used.  If we have too much junk in our per-cpu cache clean some of
365  *	it out.
366  */
367 void
368 vm_map_entry_release(int count)
369 {
370 	struct globaldata *gd = mycpu;
371 	vm_map_entry_t entry;
372 
373 	crit_enter();
374 	gd->gd_vme_avail += count;
375 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
376 		entry = gd->gd_vme_base;
377 		KKASSERT(entry != NULL);
378 		gd->gd_vme_base = entry->next;
379 		--gd->gd_vme_avail;
380 		crit_exit();
381 		zfree(mapentzone, entry);
382 		crit_enter();
383 	}
384 	crit_exit();
385 }
386 
387 /*
388  *	vm_map_entry_kreserve:
389  *
390  *	Reserve map entry structures for use in kernel_map or (if it exists)
391  *	kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
392  *	basis.
393  *
394  *	XXX if multiple kernel map entries are used without any intervening
395  *	use by another map the KKASSERT() may assert.
396  */
397 int
398 vm_map_entry_kreserve(int count)
399 {
400 	struct globaldata *gd = mycpu;
401 
402 	crit_enter();
403 	gd->gd_vme_kdeficit += count;
404 	crit_exit();
405 	KKASSERT(gd->gd_vme_base != NULL);
406 	return(count);
407 }
408 
409 /*
410  *	vm_map_entry_krelease:
411  *
412  *	Release previously reserved map entries for kernel_map or kmem_map
413  *	use.  This routine determines how many entries were actually used and
414  *	replentishes the kernel reserve supply from vme_avail.
415  *
416  *	If there is insufficient supply vme_avail will go negative, which is
417  *	ok.  We cannot safely call zalloc in this function without getting
418  *	into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
419  *	to regenerate the lost entries.
420  */
421 void
422 vm_map_entry_krelease(int count)
423 {
424 	struct globaldata *gd = mycpu;
425 
426 	crit_enter();
427 	gd->gd_vme_kdeficit -= count;
428 	gd->gd_vme_avail -= gd->gd_vme_kdeficit;	/* can go negative */
429 	gd->gd_vme_kdeficit = 0;
430 	crit_exit();
431 }
432 
433 /*
434  *	vm_map_entry_create:	[ internal use only ]
435  *
436  *	Allocates a VM map entry for insertion.  No entry fields are filled
437  *	in.
438  *
439  *	This routine may be called from an interrupt thread but not a FAST
440  *	interrupt.  This routine may recurse the map lock.
441  */
442 static vm_map_entry_t
443 vm_map_entry_create(vm_map_t map, int *countp)
444 {
445 	struct globaldata *gd = mycpu;
446 	vm_map_entry_t entry;
447 
448 	KKASSERT(*countp > 0);
449 	--*countp;
450 	crit_enter();
451 	entry = gd->gd_vme_base;
452 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
453 	gd->gd_vme_base = entry->next;
454 	crit_exit();
455 	return(entry);
456 }
457 
458 /*
459  *	vm_map_entry_dispose:	[ internal use only ]
460  *
461  *	Dispose of a vm_map_entry that is no longer being referenced.  This
462  *	function may be called from an interrupt.
463  */
464 static void
465 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
466 {
467 	struct globaldata *gd = mycpu;
468 
469 	++*countp;
470 	crit_enter();
471 	entry->next = gd->gd_vme_base;
472 	gd->gd_vme_base = entry;
473 	crit_exit();
474 }
475 
476 
477 /*
478  *	vm_map_entry_{un,}link:
479  *
480  *	Insert/remove entries from maps.
481  */
482 static __inline void
483 vm_map_entry_link(vm_map_t map,
484 		  vm_map_entry_t after_where,
485 		  vm_map_entry_t entry)
486 {
487 	map->nentries++;
488 	entry->prev = after_where;
489 	entry->next = after_where->next;
490 	entry->next->prev = entry;
491 	after_where->next = entry;
492 }
493 
494 static __inline void
495 vm_map_entry_unlink(vm_map_t map,
496 		    vm_map_entry_t entry)
497 {
498 	vm_map_entry_t prev;
499 	vm_map_entry_t next;
500 
501 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
502 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
503 	prev = entry->prev;
504 	next = entry->next;
505 	next->prev = prev;
506 	prev->next = next;
507 	map->nentries--;
508 }
509 
510 /*
511  *	SAVE_HINT:
512  *
513  *	Saves the specified entry as the hint for
514  *	future lookups.
515  */
516 #define	SAVE_HINT(map,value) \
517 		(map)->hint = (value);
518 
519 /*
520  *	vm_map_lookup_entry:	[ internal use only ]
521  *
522  *	Finds the map entry containing (or
523  *	immediately preceding) the specified address
524  *	in the given map; the entry is returned
525  *	in the "entry" parameter.  The boolean
526  *	result indicates whether the address is
527  *	actually contained in the map.
528  */
529 boolean_t
530 vm_map_lookup_entry(map, address, entry)
531 	vm_map_t map;
532 	vm_offset_t address;
533 	vm_map_entry_t *entry;	/* OUT */
534 {
535 	vm_map_entry_t cur;
536 	vm_map_entry_t last;
537 
538 	/*
539 	 * Start looking either from the head of the list, or from the hint.
540 	 */
541 
542 	cur = map->hint;
543 
544 	if (cur == &map->header)
545 		cur = cur->next;
546 
547 	if (address >= cur->start) {
548 		/*
549 		 * Go from hint to end of list.
550 		 *
551 		 * But first, make a quick check to see if we are already looking
552 		 * at the entry we want (which is usually the case). Note also
553 		 * that we don't need to save the hint here... it is the same
554 		 * hint (unless we are at the header, in which case the hint
555 		 * didn't buy us anything anyway).
556 		 */
557 		last = &map->header;
558 		if ((cur != last) && (cur->end > address)) {
559 			*entry = cur;
560 			return (TRUE);
561 		}
562 	} else {
563 		/*
564 		 * Go from start to hint, *inclusively*
565 		 */
566 		last = cur->next;
567 		cur = map->header.next;
568 	}
569 
570 	/*
571 	 * Search linearly
572 	 */
573 
574 	while (cur != last) {
575 		if (cur->end > address) {
576 			if (address >= cur->start) {
577 				/*
578 				 * Save this lookup for future hints, and
579 				 * return
580 				 */
581 
582 				*entry = cur;
583 				SAVE_HINT(map, cur);
584 				return (TRUE);
585 			}
586 			break;
587 		}
588 		cur = cur->next;
589 	}
590 	*entry = cur->prev;
591 	SAVE_HINT(map, *entry);
592 	return (FALSE);
593 }
594 
595 /*
596  *	vm_map_insert:
597  *
598  *	Inserts the given whole VM object into the target
599  *	map at the specified address range.  The object's
600  *	size should match that of the address range.
601  *
602  *	Requires that the map be locked, and leaves it so.  Requires that
603  *	sufficient vm_map_entry structures have been reserved and tracks
604  *	the use via countp.
605  *
606  *	If object is non-NULL, ref count must be bumped by caller
607  *	prior to making call to account for the new entry.
608  */
609 int
610 vm_map_insert(vm_map_t map, int *countp,
611 	      vm_object_t object, vm_ooffset_t offset,
612 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
613 	      int cow)
614 {
615 	vm_map_entry_t new_entry;
616 	vm_map_entry_t prev_entry;
617 	vm_map_entry_t temp_entry;
618 	vm_eflags_t protoeflags;
619 
620 	/*
621 	 * Check that the start and end points are not bogus.
622 	 */
623 
624 	if ((start < map->min_offset) || (end > map->max_offset) ||
625 	    (start >= end))
626 		return (KERN_INVALID_ADDRESS);
627 
628 	/*
629 	 * Find the entry prior to the proposed starting address; if it's part
630 	 * of an existing entry, this range is bogus.
631 	 */
632 
633 	if (vm_map_lookup_entry(map, start, &temp_entry))
634 		return (KERN_NO_SPACE);
635 
636 	prev_entry = temp_entry;
637 
638 	/*
639 	 * Assert that the next entry doesn't overlap the end point.
640 	 */
641 
642 	if ((prev_entry->next != &map->header) &&
643 	    (prev_entry->next->start < end))
644 		return (KERN_NO_SPACE);
645 
646 	protoeflags = 0;
647 
648 	if (cow & MAP_COPY_ON_WRITE)
649 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
650 
651 	if (cow & MAP_NOFAULT) {
652 		protoeflags |= MAP_ENTRY_NOFAULT;
653 
654 		KASSERT(object == NULL,
655 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
656 	}
657 	if (cow & MAP_DISABLE_SYNCER)
658 		protoeflags |= MAP_ENTRY_NOSYNC;
659 	if (cow & MAP_DISABLE_COREDUMP)
660 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
661 
662 	if (object) {
663 		/*
664 		 * When object is non-NULL, it could be shared with another
665 		 * process.  We have to set or clear OBJ_ONEMAPPING
666 		 * appropriately.
667 		 */
668 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
669 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
670 		}
671 	}
672 	else if ((prev_entry != &map->header) &&
673 		 (prev_entry->eflags == protoeflags) &&
674 		 (prev_entry->end == start) &&
675 		 (prev_entry->wired_count == 0) &&
676 		 ((prev_entry->object.vm_object == NULL) ||
677 		  vm_object_coalesce(prev_entry->object.vm_object,
678 				     OFF_TO_IDX(prev_entry->offset),
679 				     (vm_size_t)(prev_entry->end - prev_entry->start),
680 				     (vm_size_t)(end - prev_entry->end)))) {
681 		/*
682 		 * We were able to extend the object.  Determine if we
683 		 * can extend the previous map entry to include the
684 		 * new range as well.
685 		 */
686 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
687 		    (prev_entry->protection == prot) &&
688 		    (prev_entry->max_protection == max)) {
689 			map->size += (end - prev_entry->end);
690 			prev_entry->end = end;
691 			vm_map_simplify_entry(map, prev_entry, countp);
692 			return (KERN_SUCCESS);
693 		}
694 
695 		/*
696 		 * If we can extend the object but cannot extend the
697 		 * map entry, we have to create a new map entry.  We
698 		 * must bump the ref count on the extended object to
699 		 * account for it.  object may be NULL.
700 		 */
701 		object = prev_entry->object.vm_object;
702 		offset = prev_entry->offset +
703 			(prev_entry->end - prev_entry->start);
704 		vm_object_reference(object);
705 	}
706 
707 	/*
708 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
709 	 * in things like the buffer map where we manage kva but do not manage
710 	 * backing objects.
711 	 */
712 
713 	/*
714 	 * Create a new entry
715 	 */
716 
717 	new_entry = vm_map_entry_create(map, countp);
718 	new_entry->start = start;
719 	new_entry->end = end;
720 
721 	new_entry->eflags = protoeflags;
722 	new_entry->object.vm_object = object;
723 	new_entry->offset = offset;
724 	new_entry->avail_ssize = 0;
725 
726 	new_entry->inheritance = VM_INHERIT_DEFAULT;
727 	new_entry->protection = prot;
728 	new_entry->max_protection = max;
729 	new_entry->wired_count = 0;
730 
731 	/*
732 	 * Insert the new entry into the list
733 	 */
734 
735 	vm_map_entry_link(map, prev_entry, new_entry);
736 	map->size += new_entry->end - new_entry->start;
737 
738 	/*
739 	 * Update the free space hint
740 	 */
741 	if ((map->first_free == prev_entry) &&
742 	    (prev_entry->end >= new_entry->start)) {
743 		map->first_free = new_entry;
744 	}
745 
746 #if 0
747 	/*
748 	 * Temporarily removed to avoid MAP_STACK panic, due to
749 	 * MAP_STACK being a huge hack.  Will be added back in
750 	 * when MAP_STACK (and the user stack mapping) is fixed.
751 	 */
752 	/*
753 	 * It may be possible to simplify the entry
754 	 */
755 	vm_map_simplify_entry(map, new_entry, countp);
756 #endif
757 
758 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
759 		pmap_object_init_pt(map->pmap, start,
760 				    object, OFF_TO_IDX(offset), end - start,
761 				    cow & MAP_PREFAULT_PARTIAL);
762 	}
763 
764 	return (KERN_SUCCESS);
765 }
766 
767 /*
768  * Find sufficient space for `length' bytes in the given map, starting at
769  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
770  *
771  * This function will returned an arbitrarily aligned pointer.  If no
772  * particular alignment is required you should pass align as 1.  Note that
773  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
774  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
775  * argument.
776  *
777  * 'align' should be a power of 2 but is not required to be.
778  */
779 int
780 vm_map_findspace(
781 	vm_map_t map,
782 	vm_offset_t start,
783 	vm_size_t length,
784 	vm_offset_t align,
785 	vm_offset_t *addr)
786 {
787 	vm_map_entry_t entry, next;
788 	vm_offset_t end;
789 	vm_offset_t align_mask;
790 
791 	if (start < map->min_offset)
792 		start = map->min_offset;
793 	if (start > map->max_offset)
794 		return (1);
795 
796 	/*
797 	 * If the alignment is not a power of 2 we will have to use
798 	 * a mod/division, set align_mask to a special value.
799 	 */
800 	if ((align | (align - 1)) + 1 != (align << 1))
801 		align_mask = (vm_offset_t)-1;
802 	else
803 		align_mask = align - 1;
804 
805 retry:
806 	/*
807 	 * Look for the first possible address; if there's already something
808 	 * at this address, we have to start after it.
809 	 */
810 	if (start == map->min_offset) {
811 		if ((entry = map->first_free) != &map->header)
812 			start = entry->end;
813 	} else {
814 		vm_map_entry_t tmp;
815 
816 		if (vm_map_lookup_entry(map, start, &tmp))
817 			start = tmp->end;
818 		entry = tmp;
819 	}
820 
821 	/*
822 	 * Look through the rest of the map, trying to fit a new region in the
823 	 * gap between existing regions, or after the very last region.
824 	 */
825 	for (;; start = (entry = next)->end) {
826 		/*
827 		 * Adjust the proposed start by the requested alignment,
828 		 * be sure that we didn't wrap the address.
829 		 */
830 		if (align_mask == (vm_offset_t)-1)
831 			end = ((start + align - 1) / align) * align;
832 		else
833 			end = (start + align_mask) & ~align_mask;
834 		if (end < start)
835 			return (1);
836 		start = end;
837 		/*
838 		 * Find the end of the proposed new region.  Be sure we didn't
839 		 * go beyond the end of the map, or wrap around the address.
840 		 * Then check to see if this is the last entry or if the
841 		 * proposed end fits in the gap between this and the next
842 		 * entry.
843 		 */
844 		end = start + length;
845 		if (end > map->max_offset || end < start)
846 			return (1);
847 		next = entry->next;
848 		if (next == &map->header || next->start >= end)
849 			break;
850 	}
851 	SAVE_HINT(map, entry);
852 	if (map == kernel_map) {
853 		vm_offset_t ksize;
854 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
855 			pmap_growkernel(ksize);
856 			goto retry;
857 		}
858 	}
859 	*addr = start;
860 	return (0);
861 }
862 
863 /*
864  *	vm_map_find finds an unallocated region in the target address
865  *	map with the given length.  The search is defined to be
866  *	first-fit from the specified address; the region found is
867  *	returned in the same parameter.
868  *
869  *	If object is non-NULL, ref count must be bumped by caller
870  *	prior to making call to account for the new entry.
871  */
872 int
873 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
874 	    vm_offset_t *addr,	/* IN/OUT */
875 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
876 	    vm_prot_t max, int cow)
877 {
878 	vm_offset_t start;
879 	int result;
880 	int count;
881 
882 	start = *addr;
883 
884 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
885 	vm_map_lock(map);
886 	if (find_space) {
887 		if (vm_map_findspace(map, start, length, 1, addr)) {
888 			vm_map_unlock(map);
889 			vm_map_entry_release(count);
890 			return (KERN_NO_SPACE);
891 		}
892 		start = *addr;
893 	}
894 	result = vm_map_insert(map, &count, object, offset,
895 		start, start + length, prot, max, cow);
896 	vm_map_unlock(map);
897 	vm_map_entry_release(count);
898 
899 	return (result);
900 }
901 
902 /*
903  *	vm_map_simplify_entry:
904  *
905  *	Simplify the given map entry by merging with either neighbor.  This
906  *	routine also has the ability to merge with both neighbors.
907  *
908  *	The map must be locked.
909  *
910  *	This routine guarentees that the passed entry remains valid (though
911  *	possibly extended).  When merging, this routine may delete one or
912  *	both neighbors.  No action is taken on entries which have their
913  *	in-transition flag set.
914  */
915 void
916 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
917 {
918 	vm_map_entry_t next, prev;
919 	vm_size_t prevsize, esize;
920 
921 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
922 		++mycpu->gd_cnt.v_intrans_coll;
923 		return;
924 	}
925 
926 	prev = entry->prev;
927 	if (prev != &map->header) {
928 		prevsize = prev->end - prev->start;
929 		if ( (prev->end == entry->start) &&
930 		     (prev->object.vm_object == entry->object.vm_object) &&
931 		     (!prev->object.vm_object ||
932 			(prev->offset + prevsize == entry->offset)) &&
933 		     (prev->eflags == entry->eflags) &&
934 		     (prev->protection == entry->protection) &&
935 		     (prev->max_protection == entry->max_protection) &&
936 		     (prev->inheritance == entry->inheritance) &&
937 		     (prev->wired_count == entry->wired_count)) {
938 			if (map->first_free == prev)
939 				map->first_free = entry;
940 			if (map->hint == prev)
941 				map->hint = entry;
942 			vm_map_entry_unlink(map, prev);
943 			entry->start = prev->start;
944 			entry->offset = prev->offset;
945 			if (prev->object.vm_object)
946 				vm_object_deallocate(prev->object.vm_object);
947 			vm_map_entry_dispose(map, prev, countp);
948 		}
949 	}
950 
951 	next = entry->next;
952 	if (next != &map->header) {
953 		esize = entry->end - entry->start;
954 		if ((entry->end == next->start) &&
955 		    (next->object.vm_object == entry->object.vm_object) &&
956 		     (!entry->object.vm_object ||
957 			(entry->offset + esize == next->offset)) &&
958 		    (next->eflags == entry->eflags) &&
959 		    (next->protection == entry->protection) &&
960 		    (next->max_protection == entry->max_protection) &&
961 		    (next->inheritance == entry->inheritance) &&
962 		    (next->wired_count == entry->wired_count)) {
963 			if (map->first_free == next)
964 				map->first_free = entry;
965 			if (map->hint == next)
966 				map->hint = entry;
967 			vm_map_entry_unlink(map, next);
968 			entry->end = next->end;
969 			if (next->object.vm_object)
970 				vm_object_deallocate(next->object.vm_object);
971 			vm_map_entry_dispose(map, next, countp);
972 	        }
973 	}
974 }
975 /*
976  *	vm_map_clip_start:	[ internal use only ]
977  *
978  *	Asserts that the given entry begins at or after
979  *	the specified address; if necessary,
980  *	it splits the entry into two.
981  */
982 #define vm_map_clip_start(map, entry, startaddr, countp) \
983 { \
984 	if (startaddr > entry->start) \
985 		_vm_map_clip_start(map, entry, startaddr, countp); \
986 }
987 
988 /*
989  *	This routine is called only when it is known that
990  *	the entry must be split.
991  */
992 static void
993 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
994 {
995 	vm_map_entry_t new_entry;
996 
997 	/*
998 	 * Split off the front portion -- note that we must insert the new
999 	 * entry BEFORE this one, so that this entry has the specified
1000 	 * starting address.
1001 	 */
1002 
1003 	vm_map_simplify_entry(map, entry, countp);
1004 
1005 	/*
1006 	 * If there is no object backing this entry, we might as well create
1007 	 * one now.  If we defer it, an object can get created after the map
1008 	 * is clipped, and individual objects will be created for the split-up
1009 	 * map.  This is a bit of a hack, but is also about the best place to
1010 	 * put this improvement.
1011 	 */
1012 
1013 	if (entry->object.vm_object == NULL && !map->system_map) {
1014 		vm_object_t object;
1015 		object = vm_object_allocate(OBJT_DEFAULT,
1016 				atop(entry->end - entry->start));
1017 		entry->object.vm_object = object;
1018 		entry->offset = 0;
1019 	}
1020 
1021 	new_entry = vm_map_entry_create(map, countp);
1022 	*new_entry = *entry;
1023 
1024 	new_entry->end = start;
1025 	entry->offset += (start - entry->start);
1026 	entry->start = start;
1027 
1028 	vm_map_entry_link(map, entry->prev, new_entry);
1029 
1030 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1031 		vm_object_reference(new_entry->object.vm_object);
1032 	}
1033 }
1034 
1035 /*
1036  *	vm_map_clip_end:	[ internal use only ]
1037  *
1038  *	Asserts that the given entry ends at or before
1039  *	the specified address; if necessary,
1040  *	it splits the entry into two.
1041  */
1042 
1043 #define vm_map_clip_end(map, entry, endaddr, countp) \
1044 { \
1045 	if (endaddr < entry->end) \
1046 		_vm_map_clip_end(map, entry, endaddr, countp); \
1047 }
1048 
1049 /*
1050  *	This routine is called only when it is known that
1051  *	the entry must be split.
1052  */
1053 static void
1054 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1055 {
1056 	vm_map_entry_t new_entry;
1057 
1058 	/*
1059 	 * If there is no object backing this entry, we might as well create
1060 	 * one now.  If we defer it, an object can get created after the map
1061 	 * is clipped, and individual objects will be created for the split-up
1062 	 * map.  This is a bit of a hack, but is also about the best place to
1063 	 * put this improvement.
1064 	 */
1065 
1066 	if (entry->object.vm_object == NULL && !map->system_map) {
1067 		vm_object_t object;
1068 		object = vm_object_allocate(OBJT_DEFAULT,
1069 				atop(entry->end - entry->start));
1070 		entry->object.vm_object = object;
1071 		entry->offset = 0;
1072 	}
1073 
1074 	/*
1075 	 * Create a new entry and insert it AFTER the specified entry
1076 	 */
1077 
1078 	new_entry = vm_map_entry_create(map, countp);
1079 	*new_entry = *entry;
1080 
1081 	new_entry->start = entry->end = end;
1082 	new_entry->offset += (end - entry->start);
1083 
1084 	vm_map_entry_link(map, entry, new_entry);
1085 
1086 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1087 		vm_object_reference(new_entry->object.vm_object);
1088 	}
1089 }
1090 
1091 /*
1092  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1093  *
1094  *	Asserts that the starting and ending region
1095  *	addresses fall within the valid range of the map.
1096  */
1097 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1098 		{					\
1099 		if (start < vm_map_min(map))		\
1100 			start = vm_map_min(map);	\
1101 		if (end > vm_map_max(map))		\
1102 			end = vm_map_max(map);		\
1103 		if (start > end)			\
1104 			start = end;			\
1105 		}
1106 
1107 /*
1108  *	vm_map_transition_wait:	[ kernel use only ]
1109  *
1110  *	Used to block when an in-transition collison occurs.  The map
1111  *	is unlocked for the sleep and relocked before the return.
1112  */
1113 static
1114 void
1115 vm_map_transition_wait(vm_map_t map)
1116 {
1117 	vm_map_unlock(map);
1118 	tsleep(map, 0, "vment", 0);
1119 	vm_map_lock(map);
1120 }
1121 
1122 /*
1123  * CLIP_CHECK_BACK
1124  * CLIP_CHECK_FWD
1125  *
1126  *	When we do blocking operations with the map lock held it is
1127  *	possible that a clip might have occured on our in-transit entry,
1128  *	requiring an adjustment to the entry in our loop.  These macros
1129  *	help the pageable and clip_range code deal with the case.  The
1130  *	conditional costs virtually nothing if no clipping has occured.
1131  */
1132 
1133 #define CLIP_CHECK_BACK(entry, save_start)		\
1134     do {						\
1135 	    while (entry->start != save_start) {	\
1136 		    entry = entry->prev;		\
1137 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1138 	    }						\
1139     } while(0)
1140 
1141 #define CLIP_CHECK_FWD(entry, save_end)			\
1142     do {						\
1143 	    while (entry->end != save_end) {		\
1144 		    entry = entry->next;		\
1145 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1146 	    }						\
1147     } while(0)
1148 
1149 
1150 /*
1151  *	vm_map_clip_range:	[ kernel use only ]
1152  *
1153  *	Clip the specified range and return the base entry.  The
1154  *	range may cover several entries starting at the returned base
1155  *	and the first and last entry in the covering sequence will be
1156  *	properly clipped to the requested start and end address.
1157  *
1158  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1159  *	flag.
1160  *
1161  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1162  *	covered by the requested range.
1163  *
1164  *	The map must be exclusively locked on entry and will remain locked
1165  *	on return. If no range exists or the range contains holes and you
1166  *	specified that no holes were allowed, NULL will be returned.  This
1167  *	routine may temporarily unlock the map in order avoid a deadlock when
1168  *	sleeping.
1169  */
1170 static
1171 vm_map_entry_t
1172 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1173 	int *countp, int flags)
1174 {
1175 	vm_map_entry_t start_entry;
1176 	vm_map_entry_t entry;
1177 
1178 	/*
1179 	 * Locate the entry and effect initial clipping.  The in-transition
1180 	 * case does not occur very often so do not try to optimize it.
1181 	 */
1182 again:
1183 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1184 		return (NULL);
1185 	entry = start_entry;
1186 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1187 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1188 		++mycpu->gd_cnt.v_intrans_coll;
1189 		++mycpu->gd_cnt.v_intrans_wait;
1190 		vm_map_transition_wait(map);
1191 		/*
1192 		 * entry and/or start_entry may have been clipped while
1193 		 * we slept, or may have gone away entirely.  We have
1194 		 * to restart from the lookup.
1195 		 */
1196 		goto again;
1197 	}
1198 	/*
1199 	 * Since we hold an exclusive map lock we do not have to restart
1200 	 * after clipping, even though clipping may block in zalloc.
1201 	 */
1202 	vm_map_clip_start(map, entry, start, countp);
1203 	vm_map_clip_end(map, entry, end, countp);
1204 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1205 
1206 	/*
1207 	 * Scan entries covered by the range.  When working on the next
1208 	 * entry a restart need only re-loop on the current entry which
1209 	 * we have already locked, since 'next' may have changed.  Also,
1210 	 * even though entry is safe, it may have been clipped so we
1211 	 * have to iterate forwards through the clip after sleeping.
1212 	 */
1213 	while (entry->next != &map->header && entry->next->start < end) {
1214 		vm_map_entry_t next = entry->next;
1215 
1216 		if (flags & MAP_CLIP_NO_HOLES) {
1217 			if (next->start > entry->end) {
1218 				vm_map_unclip_range(map, start_entry,
1219 					start, entry->end, countp, flags);
1220 				return(NULL);
1221 			}
1222 		}
1223 
1224 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1225 			vm_offset_t save_end = entry->end;
1226 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1227 			++mycpu->gd_cnt.v_intrans_coll;
1228 			++mycpu->gd_cnt.v_intrans_wait;
1229 			vm_map_transition_wait(map);
1230 
1231 			/*
1232 			 * clips might have occured while we blocked.
1233 			 */
1234 			CLIP_CHECK_FWD(entry, save_end);
1235 			CLIP_CHECK_BACK(start_entry, start);
1236 			continue;
1237 		}
1238 		/*
1239 		 * No restart necessary even though clip_end may block, we
1240 		 * are holding the map lock.
1241 		 */
1242 		vm_map_clip_end(map, next, end, countp);
1243 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1244 		entry = next;
1245 	}
1246 	if (flags & MAP_CLIP_NO_HOLES) {
1247 		if (entry->end != end) {
1248 			vm_map_unclip_range(map, start_entry,
1249 				start, entry->end, countp, flags);
1250 			return(NULL);
1251 		}
1252 	}
1253 	return(start_entry);
1254 }
1255 
1256 /*
1257  *	vm_map_unclip_range:	[ kernel use only ]
1258  *
1259  *	Undo the effect of vm_map_clip_range().  You should pass the same
1260  *	flags and the same range that you passed to vm_map_clip_range().
1261  *	This code will clear the in-transition flag on the entries and
1262  *	wake up anyone waiting.  This code will also simplify the sequence
1263  *	and attempt to merge it with entries before and after the sequence.
1264  *
1265  *	The map must be locked on entry and will remain locked on return.
1266  *
1267  *	Note that you should also pass the start_entry returned by
1268  *	vm_map_clip_range().  However, if you block between the two calls
1269  *	with the map unlocked please be aware that the start_entry may
1270  *	have been clipped and you may need to scan it backwards to find
1271  *	the entry corresponding with the original start address.  You are
1272  *	responsible for this, vm_map_unclip_range() expects the correct
1273  *	start_entry to be passed to it and will KASSERT otherwise.
1274  */
1275 static
1276 void
1277 vm_map_unclip_range(
1278 	vm_map_t map,
1279 	vm_map_entry_t start_entry,
1280 	vm_offset_t start,
1281 	vm_offset_t end,
1282 	int *countp,
1283 	int flags)
1284 {
1285 	vm_map_entry_t entry;
1286 
1287 	entry = start_entry;
1288 
1289 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1290 	while (entry != &map->header && entry->start < end) {
1291 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1292 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1293 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1294 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1295 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1296 			wakeup(map);
1297 		}
1298 		entry = entry->next;
1299 	}
1300 
1301 	/*
1302 	 * Simplification does not block so there is no restart case.
1303 	 */
1304 	entry = start_entry;
1305 	while (entry != &map->header && entry->start < end) {
1306 		vm_map_simplify_entry(map, entry, countp);
1307 		entry = entry->next;
1308 	}
1309 }
1310 
1311 /*
1312  *	vm_map_submap:		[ kernel use only ]
1313  *
1314  *	Mark the given range as handled by a subordinate map.
1315  *
1316  *	This range must have been created with vm_map_find,
1317  *	and no other operations may have been performed on this
1318  *	range prior to calling vm_map_submap.
1319  *
1320  *	Only a limited number of operations can be performed
1321  *	within this rage after calling vm_map_submap:
1322  *		vm_fault
1323  *	[Don't try vm_map_copy!]
1324  *
1325  *	To remove a submapping, one must first remove the
1326  *	range from the superior map, and then destroy the
1327  *	submap (if desired).  [Better yet, don't try it.]
1328  */
1329 int
1330 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1331 {
1332 	vm_map_entry_t entry;
1333 	int result = KERN_INVALID_ARGUMENT;
1334 	int count;
1335 
1336 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1337 	vm_map_lock(map);
1338 
1339 	VM_MAP_RANGE_CHECK(map, start, end);
1340 
1341 	if (vm_map_lookup_entry(map, start, &entry)) {
1342 		vm_map_clip_start(map, entry, start, &count);
1343 	} else {
1344 		entry = entry->next;
1345 	}
1346 
1347 	vm_map_clip_end(map, entry, end, &count);
1348 
1349 	if ((entry->start == start) && (entry->end == end) &&
1350 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1351 	    (entry->object.vm_object == NULL)) {
1352 		entry->object.sub_map = submap;
1353 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1354 		result = KERN_SUCCESS;
1355 	}
1356 	vm_map_unlock(map);
1357 	vm_map_entry_release(count);
1358 
1359 	return (result);
1360 }
1361 
1362 /*
1363  *	vm_map_protect:
1364  *
1365  *	Sets the protection of the specified address
1366  *	region in the target map.  If "set_max" is
1367  *	specified, the maximum protection is to be set;
1368  *	otherwise, only the current protection is affected.
1369  */
1370 int
1371 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1372 	       vm_prot_t new_prot, boolean_t set_max)
1373 {
1374 	vm_map_entry_t current;
1375 	vm_map_entry_t entry;
1376 	int count;
1377 
1378 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1379 	vm_map_lock(map);
1380 
1381 	VM_MAP_RANGE_CHECK(map, start, end);
1382 
1383 	if (vm_map_lookup_entry(map, start, &entry)) {
1384 		vm_map_clip_start(map, entry, start, &count);
1385 	} else {
1386 		entry = entry->next;
1387 	}
1388 
1389 	/*
1390 	 * Make a first pass to check for protection violations.
1391 	 */
1392 
1393 	current = entry;
1394 	while ((current != &map->header) && (current->start < end)) {
1395 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1396 			vm_map_unlock(map);
1397 			vm_map_entry_release(count);
1398 			return (KERN_INVALID_ARGUMENT);
1399 		}
1400 		if ((new_prot & current->max_protection) != new_prot) {
1401 			vm_map_unlock(map);
1402 			vm_map_entry_release(count);
1403 			return (KERN_PROTECTION_FAILURE);
1404 		}
1405 		current = current->next;
1406 	}
1407 
1408 	/*
1409 	 * Go back and fix up protections. [Note that clipping is not
1410 	 * necessary the second time.]
1411 	 */
1412 	current = entry;
1413 
1414 	while ((current != &map->header) && (current->start < end)) {
1415 		vm_prot_t old_prot;
1416 
1417 		vm_map_clip_end(map, current, end, &count);
1418 
1419 		old_prot = current->protection;
1420 		if (set_max)
1421 			current->protection =
1422 			    (current->max_protection = new_prot) &
1423 			    old_prot;
1424 		else
1425 			current->protection = new_prot;
1426 
1427 		/*
1428 		 * Update physical map if necessary. Worry about copy-on-write
1429 		 * here -- CHECK THIS XXX
1430 		 */
1431 
1432 		if (current->protection != old_prot) {
1433 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1434 							VM_PROT_ALL)
1435 
1436 			pmap_protect(map->pmap, current->start,
1437 			    current->end,
1438 			    current->protection & MASK(current));
1439 #undef	MASK
1440 		}
1441 
1442 		vm_map_simplify_entry(map, current, &count);
1443 
1444 		current = current->next;
1445 	}
1446 
1447 	vm_map_unlock(map);
1448 	vm_map_entry_release(count);
1449 	return (KERN_SUCCESS);
1450 }
1451 
1452 /*
1453  *	vm_map_madvise:
1454  *
1455  * 	This routine traverses a processes map handling the madvise
1456  *	system call.  Advisories are classified as either those effecting
1457  *	the vm_map_entry structure, or those effecting the underlying
1458  *	objects.
1459  */
1460 
1461 int
1462 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1463 {
1464 	vm_map_entry_t current, entry;
1465 	int modify_map = 0;
1466 	int count;
1467 
1468 	/*
1469 	 * Some madvise calls directly modify the vm_map_entry, in which case
1470 	 * we need to use an exclusive lock on the map and we need to perform
1471 	 * various clipping operations.  Otherwise we only need a read-lock
1472 	 * on the map.
1473 	 */
1474 
1475 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1476 
1477 	switch(behav) {
1478 	case MADV_NORMAL:
1479 	case MADV_SEQUENTIAL:
1480 	case MADV_RANDOM:
1481 	case MADV_NOSYNC:
1482 	case MADV_AUTOSYNC:
1483 	case MADV_NOCORE:
1484 	case MADV_CORE:
1485 		modify_map = 1;
1486 		vm_map_lock(map);
1487 		break;
1488 	case MADV_WILLNEED:
1489 	case MADV_DONTNEED:
1490 	case MADV_FREE:
1491 		vm_map_lock_read(map);
1492 		break;
1493 	default:
1494 		vm_map_entry_release(count);
1495 		return (KERN_INVALID_ARGUMENT);
1496 	}
1497 
1498 	/*
1499 	 * Locate starting entry and clip if necessary.
1500 	 */
1501 
1502 	VM_MAP_RANGE_CHECK(map, start, end);
1503 
1504 	if (vm_map_lookup_entry(map, start, &entry)) {
1505 		if (modify_map)
1506 			vm_map_clip_start(map, entry, start, &count);
1507 	} else {
1508 		entry = entry->next;
1509 	}
1510 
1511 	if (modify_map) {
1512 		/*
1513 		 * madvise behaviors that are implemented in the vm_map_entry.
1514 		 *
1515 		 * We clip the vm_map_entry so that behavioral changes are
1516 		 * limited to the specified address range.
1517 		 */
1518 		for (current = entry;
1519 		     (current != &map->header) && (current->start < end);
1520 		     current = current->next
1521 		) {
1522 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1523 				continue;
1524 
1525 			vm_map_clip_end(map, current, end, &count);
1526 
1527 			switch (behav) {
1528 			case MADV_NORMAL:
1529 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1530 				break;
1531 			case MADV_SEQUENTIAL:
1532 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1533 				break;
1534 			case MADV_RANDOM:
1535 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1536 				break;
1537 			case MADV_NOSYNC:
1538 				current->eflags |= MAP_ENTRY_NOSYNC;
1539 				break;
1540 			case MADV_AUTOSYNC:
1541 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1542 				break;
1543 			case MADV_NOCORE:
1544 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1545 				break;
1546 			case MADV_CORE:
1547 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1548 				break;
1549 			default:
1550 				break;
1551 			}
1552 			vm_map_simplify_entry(map, current, &count);
1553 		}
1554 		vm_map_unlock(map);
1555 	} else {
1556 		vm_pindex_t pindex;
1557 		int count;
1558 
1559 		/*
1560 		 * madvise behaviors that are implemented in the underlying
1561 		 * vm_object.
1562 		 *
1563 		 * Since we don't clip the vm_map_entry, we have to clip
1564 		 * the vm_object pindex and count.
1565 		 */
1566 		for (current = entry;
1567 		     (current != &map->header) && (current->start < end);
1568 		     current = current->next
1569 		) {
1570 			vm_offset_t useStart;
1571 
1572 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1573 				continue;
1574 
1575 			pindex = OFF_TO_IDX(current->offset);
1576 			count = atop(current->end - current->start);
1577 			useStart = current->start;
1578 
1579 			if (current->start < start) {
1580 				pindex += atop(start - current->start);
1581 				count -= atop(start - current->start);
1582 				useStart = start;
1583 			}
1584 			if (current->end > end)
1585 				count -= atop(current->end - end);
1586 
1587 			if (count <= 0)
1588 				continue;
1589 
1590 			vm_object_madvise(current->object.vm_object,
1591 					  pindex, count, behav);
1592 			if (behav == MADV_WILLNEED) {
1593 				pmap_object_init_pt(
1594 				    map->pmap,
1595 				    useStart,
1596 				    current->object.vm_object,
1597 				    pindex,
1598 				    (count << PAGE_SHIFT),
1599 				    MAP_PREFAULT_MADVISE
1600 				);
1601 			}
1602 		}
1603 		vm_map_unlock_read(map);
1604 	}
1605 	vm_map_entry_release(count);
1606 	return(0);
1607 }
1608 
1609 
1610 /*
1611  *	vm_map_inherit:
1612  *
1613  *	Sets the inheritance of the specified address
1614  *	range in the target map.  Inheritance
1615  *	affects how the map will be shared with
1616  *	child maps at the time of vm_map_fork.
1617  */
1618 int
1619 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1620 	       vm_inherit_t new_inheritance)
1621 {
1622 	vm_map_entry_t entry;
1623 	vm_map_entry_t temp_entry;
1624 	int count;
1625 
1626 	switch (new_inheritance) {
1627 	case VM_INHERIT_NONE:
1628 	case VM_INHERIT_COPY:
1629 	case VM_INHERIT_SHARE:
1630 		break;
1631 	default:
1632 		return (KERN_INVALID_ARGUMENT);
1633 	}
1634 
1635 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1636 	vm_map_lock(map);
1637 
1638 	VM_MAP_RANGE_CHECK(map, start, end);
1639 
1640 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1641 		entry = temp_entry;
1642 		vm_map_clip_start(map, entry, start, &count);
1643 	} else
1644 		entry = temp_entry->next;
1645 
1646 	while ((entry != &map->header) && (entry->start < end)) {
1647 		vm_map_clip_end(map, entry, end, &count);
1648 
1649 		entry->inheritance = new_inheritance;
1650 
1651 		vm_map_simplify_entry(map, entry, &count);
1652 
1653 		entry = entry->next;
1654 	}
1655 	vm_map_unlock(map);
1656 	vm_map_entry_release(count);
1657 	return (KERN_SUCCESS);
1658 }
1659 
1660 /*
1661  * Implement the semantics of mlock
1662  */
1663 int
1664 vm_map_unwire(map, start, real_end, new_pageable)
1665 	vm_map_t map;
1666 	vm_offset_t start;
1667 	vm_offset_t real_end;
1668 	boolean_t new_pageable;
1669 {
1670 	vm_map_entry_t entry;
1671 	vm_map_entry_t start_entry;
1672 	vm_offset_t end;
1673 	int rv = KERN_SUCCESS;
1674 	int count;
1675 
1676 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1677 	vm_map_lock(map);
1678 	VM_MAP_RANGE_CHECK(map, start, real_end);
1679 	end = real_end;
1680 
1681 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1682 	if (start_entry == NULL) {
1683 		vm_map_unlock(map);
1684 		vm_map_entry_release(count);
1685 		return (KERN_INVALID_ADDRESS);
1686 	}
1687 
1688 	if (new_pageable == 0) {
1689 		entry = start_entry;
1690 		while ((entry != &map->header) && (entry->start < end)) {
1691 			vm_offset_t save_start;
1692 			vm_offset_t save_end;
1693 
1694 			/*
1695 			 * Already user wired or hard wired (trivial cases)
1696 			 */
1697 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1698 				entry = entry->next;
1699 				continue;
1700 			}
1701 			if (entry->wired_count != 0) {
1702 				entry->wired_count++;
1703 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1704 				entry = entry->next;
1705 				continue;
1706 			}
1707 
1708 			/*
1709 			 * A new wiring requires instantiation of appropriate
1710 			 * management structures and the faulting in of the
1711 			 * page.
1712 			 */
1713 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1714 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1715 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1716 
1717 					vm_object_shadow(&entry->object.vm_object,
1718 					    &entry->offset,
1719 					    atop(entry->end - entry->start));
1720 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1721 
1722 				} else if (entry->object.vm_object == NULL &&
1723 					   !map->system_map) {
1724 
1725 					entry->object.vm_object =
1726 					    vm_object_allocate(OBJT_DEFAULT,
1727 						atop(entry->end - entry->start));
1728 					entry->offset = (vm_offset_t) 0;
1729 
1730 				}
1731 			}
1732 			entry->wired_count++;
1733 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1734 
1735 			/*
1736 			 * Now fault in the area.  The map lock needs to be
1737 			 * manipulated to avoid deadlocks.  The in-transition
1738 			 * flag protects the entries.
1739 			 */
1740 			save_start = entry->start;
1741 			save_end = entry->end;
1742 			vm_map_unlock(map);
1743 			map->timestamp++;
1744 			rv = vm_fault_user_wire(map, save_start, save_end);
1745 			vm_map_lock(map);
1746 			if (rv) {
1747 				CLIP_CHECK_BACK(entry, save_start);
1748 				for (;;) {
1749 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1750 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1751 					entry->wired_count = 0;
1752 					if (entry->end == save_end)
1753 						break;
1754 					entry = entry->next;
1755 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1756 				}
1757 				end = save_start;	/* unwire the rest */
1758 				break;
1759 			}
1760 			/*
1761 			 * note that even though the entry might have been
1762 			 * clipped, the USER_WIRED flag we set prevents
1763 			 * duplication so we do not have to do a
1764 			 * clip check.
1765 			 */
1766 			entry = entry->next;
1767 		}
1768 
1769 		/*
1770 		 * If we failed fall through to the unwiring section to
1771 		 * unwire what we had wired so far.  'end' has already
1772 		 * been adjusted.
1773 		 */
1774 		if (rv)
1775 			new_pageable = 1;
1776 
1777 		/*
1778 		 * start_entry might have been clipped if we unlocked the
1779 		 * map and blocked.  No matter how clipped it has gotten
1780 		 * there should be a fragment that is on our start boundary.
1781 		 */
1782 		CLIP_CHECK_BACK(start_entry, start);
1783 	}
1784 
1785 	/*
1786 	 * Deal with the unwiring case.
1787 	 */
1788 	if (new_pageable) {
1789 		/*
1790 		 * This is the unwiring case.  We must first ensure that the
1791 		 * range to be unwired is really wired down.  We know there
1792 		 * are no holes.
1793 		 */
1794 		entry = start_entry;
1795 		while ((entry != &map->header) && (entry->start < end)) {
1796 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1797 				rv = KERN_INVALID_ARGUMENT;
1798 				goto done;
1799 			}
1800 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1801 			entry = entry->next;
1802 		}
1803 
1804 		/*
1805 		 * Now decrement the wiring count for each region. If a region
1806 		 * becomes completely unwired, unwire its physical pages and
1807 		 * mappings.
1808 		 */
1809 		/*
1810 		 * The map entries are processed in a loop, checking to
1811 		 * make sure the entry is wired and asserting it has a wired
1812 		 * count. However, another loop was inserted more-or-less in
1813 		 * the middle of the unwiring path. This loop picks up the
1814 		 * "entry" loop variable from the first loop without first
1815 		 * setting it to start_entry. Naturally, the secound loop
1816 		 * is never entered and the pages backing the entries are
1817 		 * never unwired. This can lead to a leak of wired pages.
1818 		 */
1819 		entry = start_entry;
1820 		while ((entry != &map->header) && (entry->start < end)) {
1821 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1822 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1823 			entry->wired_count--;
1824 			if (entry->wired_count == 0)
1825 				vm_fault_unwire(map, entry->start, entry->end);
1826 			entry = entry->next;
1827 		}
1828 	}
1829 done:
1830 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1831 		MAP_CLIP_NO_HOLES);
1832 	map->timestamp++;
1833 	vm_map_unlock(map);
1834 	vm_map_entry_release(count);
1835 	return (rv);
1836 }
1837 
1838 /*
1839  *	vm_map_wire:
1840  *
1841  *	Sets the pageability of the specified address
1842  *	range in the target map.  Regions specified
1843  *	as not pageable require locked-down physical
1844  *	memory and physical page maps.
1845  *
1846  *	The map must not be locked, but a reference
1847  *	must remain to the map throughout the call.
1848  *
1849  *	This function may be called via the zalloc path and must properly
1850  *	reserve map entries for kernel_map.
1851  */
1852 int
1853 vm_map_wire(vm_map_t map, vm_offset_t start,
1854 	vm_offset_t real_end, boolean_t new_pageable)
1855 {
1856 	vm_map_entry_t entry;
1857 	vm_map_entry_t start_entry;
1858 	vm_offset_t end;
1859 	int rv = KERN_SUCCESS;
1860 	int count;
1861 	int s;
1862 
1863 	if (map == kernel_map)
1864 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1865 	else
1866 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1867 	vm_map_lock(map);
1868 	VM_MAP_RANGE_CHECK(map, start, real_end);
1869 	end = real_end;
1870 
1871 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1872 	if (start_entry == NULL) {
1873 		vm_map_unlock(map);
1874 		rv = KERN_INVALID_ADDRESS;
1875 		goto failure;
1876 	}
1877 	if (new_pageable == 0) {
1878 		/*
1879 		 * Wiring.
1880 		 *
1881 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1882 		 * objects that need to be created. Then we clip each map
1883 		 * entry to the region to be wired and increment its wiring
1884 		 * count.  We create objects before clipping the map entries
1885 		 * to avoid object proliferation.
1886 		 *
1887 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1888 		 * fault in the pages for any newly wired area (wired_count is
1889 		 * 1).
1890 		 *
1891 		 * Downgrading to a read lock for vm_fault_wire avoids a
1892 		 * possible deadlock with another process that may have faulted
1893 		 * on one of the pages to be wired (it would mark the page busy,
1894 		 * blocking us, then in turn block on the map lock that we
1895 		 * hold).  Because of problems in the recursive lock package,
1896 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1897 		 * any actions that require the write lock must be done
1898 		 * beforehand.  Because we keep the read lock on the map, the
1899 		 * copy-on-write status of the entries we modify here cannot
1900 		 * change.
1901 		 */
1902 
1903 		entry = start_entry;
1904 		while ((entry != &map->header) && (entry->start < end)) {
1905 			/*
1906 			 * Trivial case if the entry is already wired
1907 			 */
1908 			if (entry->wired_count) {
1909 				entry->wired_count++;
1910 				entry = entry->next;
1911 				continue;
1912 			}
1913 
1914 			/*
1915 			 * The entry is being newly wired, we have to setup
1916 			 * appropriate management structures.  A shadow
1917 			 * object is required for a copy-on-write region,
1918 			 * or a normal object for a zero-fill region.  We
1919 			 * do not have to do this for entries that point to sub
1920 			 * maps because we won't hold the lock on the sub map.
1921 			 */
1922 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1923 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1924 				if (copyflag &&
1925 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1926 
1927 					vm_object_shadow(&entry->object.vm_object,
1928 					    &entry->offset,
1929 					    atop(entry->end - entry->start));
1930 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1931 				} else if (entry->object.vm_object == NULL &&
1932 					   !map->system_map) {
1933 					entry->object.vm_object =
1934 					    vm_object_allocate(OBJT_DEFAULT,
1935 						atop(entry->end - entry->start));
1936 					entry->offset = (vm_offset_t) 0;
1937 				}
1938 			}
1939 
1940 			entry->wired_count++;
1941 			entry = entry->next;
1942 		}
1943 
1944 		/*
1945 		 * Pass 2.
1946 		 */
1947 
1948 		/*
1949 		 * HACK HACK HACK HACK
1950 		 *
1951 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1952 		 * protects us from most changes but note that
1953 		 * clipping may still occur.  To prevent clipping from
1954 		 * occuring after the unlock, except for when we are
1955 		 * blocking in vm_fault_wire, we must run at splvm().
1956 		 * Otherwise our accesses to entry->start and entry->end
1957 		 * could be corrupted.  We have to set splvm() prior to
1958 		 * unlocking so start_entry does not change out from
1959 		 * under us at the very beginning of the loop.
1960 		 *
1961 		 * HACK HACK HACK HACK
1962 		 */
1963 
1964 		s = splvm();
1965 		vm_map_unlock(map);
1966 
1967 		entry = start_entry;
1968 		while (entry != &map->header && entry->start < end) {
1969 			/*
1970 			 * If vm_fault_wire fails for any page we need to undo
1971 			 * what has been done.  We decrement the wiring count
1972 			 * for those pages which have not yet been wired (now)
1973 			 * and unwire those that have (later).
1974 			 */
1975 			vm_offset_t save_start = entry->start;
1976 			vm_offset_t save_end = entry->end;
1977 
1978 			if (entry->wired_count == 1)
1979 				rv = vm_fault_wire(map, entry->start, entry->end);
1980 			if (rv) {
1981 				CLIP_CHECK_BACK(entry, save_start);
1982 				for (;;) {
1983 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1984 					entry->wired_count = 0;
1985 					if (entry->end == save_end)
1986 						break;
1987 					entry = entry->next;
1988 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1989 				}
1990 				end = save_start;
1991 				break;
1992 			}
1993 			CLIP_CHECK_FWD(entry, save_end);
1994 			entry = entry->next;
1995 		}
1996 		splx(s);
1997 
1998 		/*
1999 		 * relock.  start_entry is still IN_TRANSITION and must
2000 		 * still exist, but may have been clipped (handled just
2001 		 * below).
2002 		 */
2003 		vm_map_lock(map);
2004 
2005 		/*
2006 		 * If a failure occured undo everything by falling through
2007 		 * to the unwiring code.  'end' has already been adjusted
2008 		 * appropriately.
2009 		 */
2010 		if (rv)
2011 			new_pageable = 1;
2012 
2013 		/*
2014 		 * start_entry might have been clipped if we unlocked the
2015 		 * map and blocked.  No matter how clipped it has gotten
2016 		 * there should be a fragment that is on our start boundary.
2017 		 */
2018 		CLIP_CHECK_BACK(start_entry, start);
2019 	}
2020 
2021 	if (new_pageable) {
2022 		/*
2023 		 * This is the unwiring case.  We must first ensure that the
2024 		 * range to be unwired is really wired down.  We know there
2025 		 * are no holes.
2026 		 */
2027 		entry = start_entry;
2028 		while ((entry != &map->header) && (entry->start < end)) {
2029 			if (entry->wired_count == 0) {
2030 				rv = KERN_INVALID_ARGUMENT;
2031 				goto done;
2032 			}
2033 			entry = entry->next;
2034 		}
2035 
2036 		/*
2037 		 * Now decrement the wiring count for each region. If a region
2038 		 * becomes completely unwired, unwire its physical pages and
2039 		 * mappings.
2040 		 */
2041 		entry = start_entry;
2042 		while ((entry != &map->header) && (entry->start < end)) {
2043 			entry->wired_count--;
2044 			if (entry->wired_count == 0)
2045 				vm_fault_unwire(map, entry->start, entry->end);
2046 			entry = entry->next;
2047 		}
2048 	}
2049 done:
2050 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2051 		MAP_CLIP_NO_HOLES);
2052 	map->timestamp++;
2053 	vm_map_unlock(map);
2054 failure:
2055 	if (map == kernel_map)
2056 		vm_map_entry_krelease(count);
2057 	else
2058 		vm_map_entry_release(count);
2059 	return (rv);
2060 }
2061 
2062 /*
2063  * vm_map_set_wired_quick()
2064  *
2065  *	Mark a newly allocated address range as wired but do not fault in
2066  *	the pages.  The caller is expected to load the pages into the object.
2067  *
2068  *	The map must be locked on entry and will remain locked on return.
2069  */
2070 void
2071 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2072 {
2073 	vm_map_entry_t scan;
2074 	vm_map_entry_t entry;
2075 
2076 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2077 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2078 	    KKASSERT(entry->wired_count == 0);
2079 	    entry->wired_count = 1;
2080 	}
2081 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2082 }
2083 
2084 /*
2085  * vm_map_clean
2086  *
2087  * Push any dirty cached pages in the address range to their pager.
2088  * If syncio is TRUE, dirty pages are written synchronously.
2089  * If invalidate is TRUE, any cached pages are freed as well.
2090  *
2091  * Returns an error if any part of the specified range is not mapped.
2092  */
2093 int
2094 vm_map_clean(map, start, end, syncio, invalidate)
2095 	vm_map_t map;
2096 	vm_offset_t start;
2097 	vm_offset_t end;
2098 	boolean_t syncio;
2099 	boolean_t invalidate;
2100 {
2101 	vm_map_entry_t current;
2102 	vm_map_entry_t entry;
2103 	vm_size_t size;
2104 	vm_object_t object;
2105 	vm_ooffset_t offset;
2106 
2107 	vm_map_lock_read(map);
2108 	VM_MAP_RANGE_CHECK(map, start, end);
2109 	if (!vm_map_lookup_entry(map, start, &entry)) {
2110 		vm_map_unlock_read(map);
2111 		return (KERN_INVALID_ADDRESS);
2112 	}
2113 	/*
2114 	 * Make a first pass to check for holes.
2115 	 */
2116 	for (current = entry; current->start < end; current = current->next) {
2117 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2118 			vm_map_unlock_read(map);
2119 			return (KERN_INVALID_ARGUMENT);
2120 		}
2121 		if (end > current->end &&
2122 		    (current->next == &map->header ||
2123 			current->end != current->next->start)) {
2124 			vm_map_unlock_read(map);
2125 			return (KERN_INVALID_ADDRESS);
2126 		}
2127 	}
2128 
2129 	if (invalidate)
2130 		pmap_remove(vm_map_pmap(map), start, end);
2131 	/*
2132 	 * Make a second pass, cleaning/uncaching pages from the indicated
2133 	 * objects as we go.
2134 	 */
2135 	for (current = entry; current->start < end; current = current->next) {
2136 		offset = current->offset + (start - current->start);
2137 		size = (end <= current->end ? end : current->end) - start;
2138 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2139 			vm_map_t smap;
2140 			vm_map_entry_t tentry;
2141 			vm_size_t tsize;
2142 
2143 			smap = current->object.sub_map;
2144 			vm_map_lock_read(smap);
2145 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2146 			tsize = tentry->end - offset;
2147 			if (tsize < size)
2148 				size = tsize;
2149 			object = tentry->object.vm_object;
2150 			offset = tentry->offset + (offset - tentry->start);
2151 			vm_map_unlock_read(smap);
2152 		} else {
2153 			object = current->object.vm_object;
2154 		}
2155 		/*
2156 		 * Note that there is absolutely no sense in writing out
2157 		 * anonymous objects, so we track down the vnode object
2158 		 * to write out.
2159 		 * We invalidate (remove) all pages from the address space
2160 		 * anyway, for semantic correctness.
2161 		 *
2162 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2163 		 * may start out with a NULL object.
2164 		 */
2165 		while (object && object->backing_object) {
2166 			object = object->backing_object;
2167 			offset += object->backing_object_offset;
2168 			if (object->size < OFF_TO_IDX( offset + size))
2169 				size = IDX_TO_OFF(object->size) - offset;
2170 		}
2171 		if (object && (object->type == OBJT_VNODE) &&
2172 		    (current->protection & VM_PROT_WRITE)) {
2173 			/*
2174 			 * Flush pages if writing is allowed, invalidate them
2175 			 * if invalidation requested.  Pages undergoing I/O
2176 			 * will be ignored by vm_object_page_remove().
2177 			 *
2178 			 * We cannot lock the vnode and then wait for paging
2179 			 * to complete without deadlocking against vm_fault.
2180 			 * Instead we simply call vm_object_page_remove() and
2181 			 * allow it to block internally on a page-by-page
2182 			 * basis when it encounters pages undergoing async
2183 			 * I/O.
2184 			 */
2185 			int flags;
2186 
2187 			vm_object_reference(object);
2188 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
2189 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2190 			flags |= invalidate ? OBJPC_INVAL : 0;
2191 			vm_object_page_clean(object,
2192 			    OFF_TO_IDX(offset),
2193 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2194 			    flags);
2195 			VOP_UNLOCK(object->handle, 0, curthread);
2196 			vm_object_deallocate(object);
2197 		}
2198 		if (object && invalidate &&
2199 		   ((object->type == OBJT_VNODE) ||
2200 		    (object->type == OBJT_DEVICE))) {
2201 			vm_object_reference(object);
2202 			vm_object_page_remove(object,
2203 			    OFF_TO_IDX(offset),
2204 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2205 			    FALSE);
2206 			vm_object_deallocate(object);
2207 		}
2208 		start += size;
2209 	}
2210 
2211 	vm_map_unlock_read(map);
2212 	return (KERN_SUCCESS);
2213 }
2214 
2215 /*
2216  *	vm_map_entry_unwire:	[ internal use only ]
2217  *
2218  *	Make the region specified by this entry pageable.
2219  *
2220  *	The map in question should be locked.
2221  *	[This is the reason for this routine's existence.]
2222  */
2223 static void
2224 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2225 {
2226 	vm_fault_unwire(map, entry->start, entry->end);
2227 	entry->wired_count = 0;
2228 }
2229 
2230 /*
2231  *	vm_map_entry_delete:	[ internal use only ]
2232  *
2233  *	Deallocate the given entry from the target map.
2234  */
2235 static void
2236 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2237 {
2238 	vm_map_entry_unlink(map, entry);
2239 	map->size -= entry->end - entry->start;
2240 
2241 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2242 		vm_object_deallocate(entry->object.vm_object);
2243 	}
2244 
2245 	vm_map_entry_dispose(map, entry, countp);
2246 }
2247 
2248 /*
2249  *	vm_map_delete:	[ internal use only ]
2250  *
2251  *	Deallocates the given address range from the target
2252  *	map.
2253  */
2254 int
2255 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2256 {
2257 	vm_object_t object;
2258 	vm_map_entry_t entry;
2259 	vm_map_entry_t first_entry;
2260 
2261 	/*
2262 	 * Find the start of the region, and clip it
2263 	 */
2264 
2265 again:
2266 	if (!vm_map_lookup_entry(map, start, &first_entry))
2267 		entry = first_entry->next;
2268 	else {
2269 		entry = first_entry;
2270 		vm_map_clip_start(map, entry, start, countp);
2271 		/*
2272 		 * Fix the lookup hint now, rather than each time though the
2273 		 * loop.
2274 		 */
2275 		SAVE_HINT(map, entry->prev);
2276 	}
2277 
2278 	/*
2279 	 * Save the free space hint
2280 	 */
2281 
2282 	if (entry == &map->header) {
2283 		map->first_free = &map->header;
2284 	} else if (map->first_free->start >= start) {
2285 		map->first_free = entry->prev;
2286 	}
2287 
2288 	/*
2289 	 * Step through all entries in this region
2290 	 */
2291 
2292 	while ((entry != &map->header) && (entry->start < end)) {
2293 		vm_map_entry_t next;
2294 		vm_offset_t s, e;
2295 		vm_pindex_t offidxstart, offidxend, count;
2296 
2297 		/*
2298 		 * If we hit an in-transition entry we have to sleep and
2299 		 * retry.  It's easier (and not really slower) to just retry
2300 		 * since this case occurs so rarely and the hint is already
2301 		 * pointing at the right place.  We have to reset the
2302 		 * start offset so as not to accidently delete an entry
2303 		 * another process just created in vacated space.
2304 		 */
2305 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2306 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2307 			start = entry->start;
2308 			++mycpu->gd_cnt.v_intrans_coll;
2309 			++mycpu->gd_cnt.v_intrans_wait;
2310 			vm_map_transition_wait(map);
2311 			goto again;
2312 		}
2313 		vm_map_clip_end(map, entry, end, countp);
2314 
2315 		s = entry->start;
2316 		e = entry->end;
2317 		next = entry->next;
2318 
2319 		offidxstart = OFF_TO_IDX(entry->offset);
2320 		count = OFF_TO_IDX(e - s);
2321 		object = entry->object.vm_object;
2322 
2323 		/*
2324 		 * Unwire before removing addresses from the pmap; otherwise,
2325 		 * unwiring will put the entries back in the pmap.
2326 		 */
2327 		if (entry->wired_count != 0) {
2328 			vm_map_entry_unwire(map, entry);
2329 		}
2330 
2331 		offidxend = offidxstart + count;
2332 
2333 		if ((object == kernel_object) || (object == kmem_object)) {
2334 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2335 		} else {
2336 			pmap_remove(map->pmap, s, e);
2337 			if (object != NULL &&
2338 			    object->ref_count != 1 &&
2339 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2340 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2341 				vm_object_collapse(object);
2342 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2343 				if (object->type == OBJT_SWAP) {
2344 					swap_pager_freespace(object, offidxstart, count);
2345 				}
2346 				if (offidxend >= object->size &&
2347 				    offidxstart < object->size) {
2348 					object->size = offidxstart;
2349 				}
2350 			}
2351 		}
2352 
2353 		/*
2354 		 * Delete the entry (which may delete the object) only after
2355 		 * removing all pmap entries pointing to its pages.
2356 		 * (Otherwise, its page frames may be reallocated, and any
2357 		 * modify bits will be set in the wrong object!)
2358 		 */
2359 		vm_map_entry_delete(map, entry, countp);
2360 		entry = next;
2361 	}
2362 	return (KERN_SUCCESS);
2363 }
2364 
2365 /*
2366  *	vm_map_remove:
2367  *
2368  *	Remove the given address range from the target map.
2369  *	This is the exported form of vm_map_delete.
2370  */
2371 int
2372 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2373 {
2374 	int result;
2375 	int count;
2376 
2377 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2378 	vm_map_lock(map);
2379 	VM_MAP_RANGE_CHECK(map, start, end);
2380 	result = vm_map_delete(map, start, end, &count);
2381 	vm_map_unlock(map);
2382 	vm_map_entry_release(count);
2383 
2384 	return (result);
2385 }
2386 
2387 /*
2388  *	vm_map_check_protection:
2389  *
2390  *	Assert that the target map allows the specified
2391  *	privilege on the entire address region given.
2392  *	The entire region must be allocated.
2393  */
2394 boolean_t
2395 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2396 			vm_prot_t protection)
2397 {
2398 	vm_map_entry_t entry;
2399 	vm_map_entry_t tmp_entry;
2400 
2401 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2402 		return (FALSE);
2403 	}
2404 	entry = tmp_entry;
2405 
2406 	while (start < end) {
2407 		if (entry == &map->header) {
2408 			return (FALSE);
2409 		}
2410 		/*
2411 		 * No holes allowed!
2412 		 */
2413 
2414 		if (start < entry->start) {
2415 			return (FALSE);
2416 		}
2417 		/*
2418 		 * Check protection associated with entry.
2419 		 */
2420 
2421 		if ((entry->protection & protection) != protection) {
2422 			return (FALSE);
2423 		}
2424 		/* go to next entry */
2425 
2426 		start = entry->end;
2427 		entry = entry->next;
2428 	}
2429 	return (TRUE);
2430 }
2431 
2432 /*
2433  * Split the pages in a map entry into a new object.  This affords
2434  * easier removal of unused pages, and keeps object inheritance from
2435  * being a negative impact on memory usage.
2436  */
2437 static void
2438 vm_map_split(vm_map_entry_t entry)
2439 {
2440 	vm_page_t m;
2441 	vm_object_t orig_object, new_object, source;
2442 	vm_offset_t s, e;
2443 	vm_pindex_t offidxstart, offidxend, idx;
2444 	vm_size_t size;
2445 	vm_ooffset_t offset;
2446 
2447 	orig_object = entry->object.vm_object;
2448 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2449 		return;
2450 	if (orig_object->ref_count <= 1)
2451 		return;
2452 
2453 	offset = entry->offset;
2454 	s = entry->start;
2455 	e = entry->end;
2456 
2457 	offidxstart = OFF_TO_IDX(offset);
2458 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2459 	size = offidxend - offidxstart;
2460 
2461 	new_object = vm_pager_allocate(orig_object->type,
2462 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2463 	if (new_object == NULL)
2464 		return;
2465 
2466 	source = orig_object->backing_object;
2467 	if (source != NULL) {
2468 		vm_object_reference(source);	/* Referenced by new_object */
2469 		LIST_INSERT_HEAD(&source->shadow_head,
2470 				  new_object, shadow_list);
2471 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2472 		new_object->backing_object_offset =
2473 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2474 		new_object->backing_object = source;
2475 		source->shadow_count++;
2476 		source->generation++;
2477 	}
2478 
2479 	for (idx = 0; idx < size; idx++) {
2480 		vm_page_t m;
2481 
2482 	retry:
2483 		m = vm_page_lookup(orig_object, offidxstart + idx);
2484 		if (m == NULL)
2485 			continue;
2486 
2487 		/*
2488 		 * We must wait for pending I/O to complete before we can
2489 		 * rename the page.
2490 		 *
2491 		 * We do not have to VM_PROT_NONE the page as mappings should
2492 		 * not be changed by this operation.
2493 		 */
2494 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2495 			goto retry;
2496 
2497 		vm_page_busy(m);
2498 		vm_page_rename(m, new_object, idx);
2499 		/* page automatically made dirty by rename and cache handled */
2500 		vm_page_busy(m);
2501 	}
2502 
2503 	if (orig_object->type == OBJT_SWAP) {
2504 		vm_object_pip_add(orig_object, 1);
2505 		/*
2506 		 * copy orig_object pages into new_object
2507 		 * and destroy unneeded pages in
2508 		 * shadow object.
2509 		 */
2510 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2511 		vm_object_pip_wakeup(orig_object);
2512 	}
2513 
2514 	for (idx = 0; idx < size; idx++) {
2515 		m = vm_page_lookup(new_object, idx);
2516 		if (m) {
2517 			vm_page_wakeup(m);
2518 		}
2519 	}
2520 
2521 	entry->object.vm_object = new_object;
2522 	entry->offset = 0LL;
2523 	vm_object_deallocate(orig_object);
2524 }
2525 
2526 /*
2527  *	vm_map_copy_entry:
2528  *
2529  *	Copies the contents of the source entry to the destination
2530  *	entry.  The entries *must* be aligned properly.
2531  */
2532 static void
2533 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2534 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2535 {
2536 	vm_object_t src_object;
2537 
2538 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2539 		return;
2540 
2541 	if (src_entry->wired_count == 0) {
2542 
2543 		/*
2544 		 * If the source entry is marked needs_copy, it is already
2545 		 * write-protected.
2546 		 */
2547 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2548 			pmap_protect(src_map->pmap,
2549 			    src_entry->start,
2550 			    src_entry->end,
2551 			    src_entry->protection & ~VM_PROT_WRITE);
2552 		}
2553 
2554 		/*
2555 		 * Make a copy of the object.
2556 		 */
2557 		if ((src_object = src_entry->object.vm_object) != NULL) {
2558 
2559 			if ((src_object->handle == NULL) &&
2560 				(src_object->type == OBJT_DEFAULT ||
2561 				 src_object->type == OBJT_SWAP)) {
2562 				vm_object_collapse(src_object);
2563 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2564 					vm_map_split(src_entry);
2565 					src_object = src_entry->object.vm_object;
2566 				}
2567 			}
2568 
2569 			vm_object_reference(src_object);
2570 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2571 			dst_entry->object.vm_object = src_object;
2572 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2573 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2574 			dst_entry->offset = src_entry->offset;
2575 		} else {
2576 			dst_entry->object.vm_object = NULL;
2577 			dst_entry->offset = 0;
2578 		}
2579 
2580 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2581 		    dst_entry->end - dst_entry->start, src_entry->start);
2582 	} else {
2583 		/*
2584 		 * Of course, wired down pages can't be set copy-on-write.
2585 		 * Cause wired pages to be copied into the new map by
2586 		 * simulating faults (the new pages are pageable)
2587 		 */
2588 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2589 	}
2590 }
2591 
2592 /*
2593  * vmspace_fork:
2594  * Create a new process vmspace structure and vm_map
2595  * based on those of an existing process.  The new map
2596  * is based on the old map, according to the inheritance
2597  * values on the regions in that map.
2598  *
2599  * The source map must not be locked.
2600  */
2601 struct vmspace *
2602 vmspace_fork(struct vmspace *vm1)
2603 {
2604 	struct vmspace *vm2;
2605 	vm_map_t old_map = &vm1->vm_map;
2606 	vm_map_t new_map;
2607 	vm_map_entry_t old_entry;
2608 	vm_map_entry_t new_entry;
2609 	vm_object_t object;
2610 	int count;
2611 
2612 	vm_map_lock(old_map);
2613 	old_map->infork = 1;
2614 
2615 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2616 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2617 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2618 	new_map = &vm2->vm_map;	/* XXX */
2619 	new_map->timestamp = 1;
2620 
2621 	count = 0;
2622 	old_entry = old_map->header.next;
2623 	while (old_entry != &old_map->header) {
2624 		++count;
2625 		old_entry = old_entry->next;
2626 	}
2627 
2628 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2629 
2630 	old_entry = old_map->header.next;
2631 	while (old_entry != &old_map->header) {
2632 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2633 			panic("vm_map_fork: encountered a submap");
2634 
2635 		switch (old_entry->inheritance) {
2636 		case VM_INHERIT_NONE:
2637 			break;
2638 
2639 		case VM_INHERIT_SHARE:
2640 			/*
2641 			 * Clone the entry, creating the shared object if necessary.
2642 			 */
2643 			object = old_entry->object.vm_object;
2644 			if (object == NULL) {
2645 				object = vm_object_allocate(OBJT_DEFAULT,
2646 					atop(old_entry->end - old_entry->start));
2647 				old_entry->object.vm_object = object;
2648 				old_entry->offset = (vm_offset_t) 0;
2649 			}
2650 
2651 			/*
2652 			 * Add the reference before calling vm_object_shadow
2653 			 * to insure that a shadow object is created.
2654 			 */
2655 			vm_object_reference(object);
2656 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2657 				vm_object_shadow(&old_entry->object.vm_object,
2658 					&old_entry->offset,
2659 					atop(old_entry->end - old_entry->start));
2660 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2661 				/* Transfer the second reference too. */
2662 				vm_object_reference(
2663 				    old_entry->object.vm_object);
2664 				vm_object_deallocate(object);
2665 				object = old_entry->object.vm_object;
2666 			}
2667 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2668 
2669 			/*
2670 			 * Clone the entry, referencing the shared object.
2671 			 */
2672 			new_entry = vm_map_entry_create(new_map, &count);
2673 			*new_entry = *old_entry;
2674 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2675 			new_entry->wired_count = 0;
2676 
2677 			/*
2678 			 * Insert the entry into the new map -- we know we're
2679 			 * inserting at the end of the new map.
2680 			 */
2681 
2682 			vm_map_entry_link(new_map, new_map->header.prev,
2683 			    new_entry);
2684 
2685 			/*
2686 			 * Update the physical map
2687 			 */
2688 
2689 			pmap_copy(new_map->pmap, old_map->pmap,
2690 			    new_entry->start,
2691 			    (old_entry->end - old_entry->start),
2692 			    old_entry->start);
2693 			break;
2694 
2695 		case VM_INHERIT_COPY:
2696 			/*
2697 			 * Clone the entry and link into the map.
2698 			 */
2699 			new_entry = vm_map_entry_create(new_map, &count);
2700 			*new_entry = *old_entry;
2701 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2702 			new_entry->wired_count = 0;
2703 			new_entry->object.vm_object = NULL;
2704 			vm_map_entry_link(new_map, new_map->header.prev,
2705 			    new_entry);
2706 			vm_map_copy_entry(old_map, new_map, old_entry,
2707 			    new_entry);
2708 			break;
2709 		}
2710 		old_entry = old_entry->next;
2711 	}
2712 
2713 	new_map->size = old_map->size;
2714 	old_map->infork = 0;
2715 	vm_map_unlock(old_map);
2716 	vm_map_entry_release(count);
2717 
2718 	return (vm2);
2719 }
2720 
2721 int
2722 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2723 	      vm_prot_t prot, vm_prot_t max, int cow)
2724 {
2725 	vm_map_entry_t prev_entry;
2726 	vm_map_entry_t new_stack_entry;
2727 	vm_size_t      init_ssize;
2728 	int            rv;
2729 	int		count;
2730 
2731 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2732 		return (KERN_NO_SPACE);
2733 
2734 	if (max_ssize < sgrowsiz)
2735 		init_ssize = max_ssize;
2736 	else
2737 		init_ssize = sgrowsiz;
2738 
2739 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2740 	vm_map_lock(map);
2741 
2742 	/* If addr is already mapped, no go */
2743 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2744 		vm_map_unlock(map);
2745 		vm_map_entry_release(count);
2746 		return (KERN_NO_SPACE);
2747 	}
2748 
2749 	/* If we would blow our VMEM resource limit, no go */
2750 	if (map->size + init_ssize >
2751 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2752 		vm_map_unlock(map);
2753 		vm_map_entry_release(count);
2754 		return (KERN_NO_SPACE);
2755 	}
2756 
2757 	/* If we can't accomodate max_ssize in the current mapping,
2758 	 * no go.  However, we need to be aware that subsequent user
2759 	 * mappings might map into the space we have reserved for
2760 	 * stack, and currently this space is not protected.
2761 	 *
2762 	 * Hopefully we will at least detect this condition
2763 	 * when we try to grow the stack.
2764 	 */
2765 	if ((prev_entry->next != &map->header) &&
2766 	    (prev_entry->next->start < addrbos + max_ssize)) {
2767 		vm_map_unlock(map);
2768 		vm_map_entry_release(count);
2769 		return (KERN_NO_SPACE);
2770 	}
2771 
2772 	/* We initially map a stack of only init_ssize.  We will
2773 	 * grow as needed later.  Since this is to be a grow
2774 	 * down stack, we map at the top of the range.
2775 	 *
2776 	 * Note: we would normally expect prot and max to be
2777 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2778 	 * eliminate these as input parameters, and just
2779 	 * pass these values here in the insert call.
2780 	 */
2781 	rv = vm_map_insert(map, &count,
2782 			   NULL, 0, addrbos + max_ssize - init_ssize,
2783 	                   addrbos + max_ssize, prot, max, cow);
2784 
2785 	/* Now set the avail_ssize amount */
2786 	if (rv == KERN_SUCCESS){
2787 		if (prev_entry != &map->header)
2788 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2789 		new_stack_entry = prev_entry->next;
2790 		if (new_stack_entry->end   != addrbos + max_ssize ||
2791 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2792 			panic ("Bad entry start/end for new stack entry");
2793 		else
2794 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2795 	}
2796 
2797 	vm_map_unlock(map);
2798 	vm_map_entry_release(count);
2799 	return (rv);
2800 }
2801 
2802 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2803  * desired address is already mapped, or if we successfully grow
2804  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2805  * stack range (this is strange, but preserves compatibility with
2806  * the grow function in vm_machdep.c).
2807  */
2808 int
2809 vm_map_growstack (struct proc *p, vm_offset_t addr)
2810 {
2811 	vm_map_entry_t prev_entry;
2812 	vm_map_entry_t stack_entry;
2813 	vm_map_entry_t new_stack_entry;
2814 	struct vmspace *vm = p->p_vmspace;
2815 	vm_map_t map = &vm->vm_map;
2816 	vm_offset_t    end;
2817 	int grow_amount;
2818 	int rv = KERN_SUCCESS;
2819 	int is_procstack;
2820 	int use_read_lock = 1;
2821 	int count;
2822 
2823 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2824 Retry:
2825 	if (use_read_lock)
2826 		vm_map_lock_read(map);
2827 	else
2828 		vm_map_lock(map);
2829 
2830 	/* If addr is already in the entry range, no need to grow.*/
2831 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2832 		goto done;
2833 
2834 	if ((stack_entry = prev_entry->next) == &map->header)
2835 		goto done;
2836 	if (prev_entry == &map->header)
2837 		end = stack_entry->start - stack_entry->avail_ssize;
2838 	else
2839 		end = prev_entry->end;
2840 
2841 	/* This next test mimics the old grow function in vm_machdep.c.
2842 	 * It really doesn't quite make sense, but we do it anyway
2843 	 * for compatibility.
2844 	 *
2845 	 * If not growable stack, return success.  This signals the
2846 	 * caller to proceed as he would normally with normal vm.
2847 	 */
2848 	if (stack_entry->avail_ssize < 1 ||
2849 	    addr >= stack_entry->start ||
2850 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2851 		goto done;
2852 	}
2853 
2854 	/* Find the minimum grow amount */
2855 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2856 	if (grow_amount > stack_entry->avail_ssize) {
2857 		rv = KERN_NO_SPACE;
2858 		goto done;
2859 	}
2860 
2861 	/* If there is no longer enough space between the entries
2862 	 * nogo, and adjust the available space.  Note: this
2863 	 * should only happen if the user has mapped into the
2864 	 * stack area after the stack was created, and is
2865 	 * probably an error.
2866 	 *
2867 	 * This also effectively destroys any guard page the user
2868 	 * might have intended by limiting the stack size.
2869 	 */
2870 	if (grow_amount > stack_entry->start - end) {
2871 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2872 			use_read_lock = 0;
2873 			goto Retry;
2874 		}
2875 		use_read_lock = 0;
2876 		stack_entry->avail_ssize = stack_entry->start - end;
2877 		rv = KERN_NO_SPACE;
2878 		goto done;
2879 	}
2880 
2881 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2882 
2883 	/* If this is the main process stack, see if we're over the
2884 	 * stack limit.
2885 	 */
2886 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2887 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2888 		rv = KERN_NO_SPACE;
2889 		goto done;
2890 	}
2891 
2892 	/* Round up the grow amount modulo SGROWSIZ */
2893 	grow_amount = roundup (grow_amount, sgrowsiz);
2894 	if (grow_amount > stack_entry->avail_ssize) {
2895 		grow_amount = stack_entry->avail_ssize;
2896 	}
2897 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2898 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2899 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2900 		              ctob(vm->vm_ssize);
2901 	}
2902 
2903 	/* If we would blow our VMEM resource limit, no go */
2904 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2905 		rv = KERN_NO_SPACE;
2906 		goto done;
2907 	}
2908 
2909 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2910 		use_read_lock = 0;
2911 		goto Retry;
2912 	}
2913 	use_read_lock = 0;
2914 
2915 	/* Get the preliminary new entry start value */
2916 	addr = stack_entry->start - grow_amount;
2917 
2918 	/* If this puts us into the previous entry, cut back our growth
2919 	 * to the available space.  Also, see the note above.
2920 	 */
2921 	if (addr < end) {
2922 		stack_entry->avail_ssize = stack_entry->start - end;
2923 		addr = end;
2924 	}
2925 
2926 	rv = vm_map_insert(map, &count,
2927 			   NULL, 0, addr, stack_entry->start,
2928 			   VM_PROT_ALL,
2929 			   VM_PROT_ALL,
2930 			   0);
2931 
2932 	/* Adjust the available stack space by the amount we grew. */
2933 	if (rv == KERN_SUCCESS) {
2934 		if (prev_entry != &map->header)
2935 			vm_map_clip_end(map, prev_entry, addr, &count);
2936 		new_stack_entry = prev_entry->next;
2937 		if (new_stack_entry->end   != stack_entry->start  ||
2938 		    new_stack_entry->start != addr)
2939 			panic ("Bad stack grow start/end in new stack entry");
2940 		else {
2941 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2942 							(new_stack_entry->end -
2943 							 new_stack_entry->start);
2944 			if (is_procstack)
2945 				vm->vm_ssize += btoc(new_stack_entry->end -
2946 						     new_stack_entry->start);
2947 		}
2948 	}
2949 
2950 done:
2951 	if (use_read_lock)
2952 		vm_map_unlock_read(map);
2953 	else
2954 		vm_map_unlock(map);
2955 	vm_map_entry_release(count);
2956 	return (rv);
2957 }
2958 
2959 /*
2960  * Unshare the specified VM space for exec.  If other processes are
2961  * mapped to it, then create a new one.  The new vmspace is null.
2962  */
2963 
2964 void
2965 vmspace_exec(struct proc *p)
2966 {
2967 	struct vmspace *oldvmspace = p->p_vmspace;
2968 	struct vmspace *newvmspace;
2969 	vm_map_t map = &p->p_vmspace->vm_map;
2970 
2971 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2972 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2973 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2974 	/*
2975 	 * This code is written like this for prototype purposes.  The
2976 	 * goal is to avoid running down the vmspace here, but let the
2977 	 * other process's that are still using the vmspace to finally
2978 	 * run it down.  Even though there is little or no chance of blocking
2979 	 * here, it is a good idea to keep this form for future mods.
2980 	 */
2981 	vmspace_free(oldvmspace);
2982 	p->p_vmspace = newvmspace;
2983 	pmap_pinit2(vmspace_pmap(newvmspace));
2984 	if (p == curproc)
2985 		pmap_activate(p);
2986 }
2987 
2988 /*
2989  * Unshare the specified VM space for forcing COW.  This
2990  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2991  */
2992 
2993 void
2994 vmspace_unshare(struct proc *p)
2995 {
2996 	struct vmspace *oldvmspace = p->p_vmspace;
2997 	struct vmspace *newvmspace;
2998 
2999 	if (oldvmspace->vm_refcnt == 1)
3000 		return;
3001 	newvmspace = vmspace_fork(oldvmspace);
3002 	vmspace_free(oldvmspace);
3003 	p->p_vmspace = newvmspace;
3004 	pmap_pinit2(vmspace_pmap(newvmspace));
3005 	if (p == curproc)
3006 		pmap_activate(p);
3007 }
3008 
3009 /*
3010  *	vm_map_lookup:
3011  *
3012  *	Finds the VM object, offset, and
3013  *	protection for a given virtual address in the
3014  *	specified map, assuming a page fault of the
3015  *	type specified.
3016  *
3017  *	Leaves the map in question locked for read; return
3018  *	values are guaranteed until a vm_map_lookup_done
3019  *	call is performed.  Note that the map argument
3020  *	is in/out; the returned map must be used in
3021  *	the call to vm_map_lookup_done.
3022  *
3023  *	A handle (out_entry) is returned for use in
3024  *	vm_map_lookup_done, to make that fast.
3025  *
3026  *	If a lookup is requested with "write protection"
3027  *	specified, the map may be changed to perform virtual
3028  *	copying operations, although the data referenced will
3029  *	remain the same.
3030  */
3031 int
3032 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3033 	      vm_offset_t vaddr,
3034 	      vm_prot_t fault_typea,
3035 	      vm_map_entry_t *out_entry,	/* OUT */
3036 	      vm_object_t *object,		/* OUT */
3037 	      vm_pindex_t *pindex,		/* OUT */
3038 	      vm_prot_t *out_prot,		/* OUT */
3039 	      boolean_t *wired)			/* OUT */
3040 {
3041 	vm_map_entry_t entry;
3042 	vm_map_t map = *var_map;
3043 	vm_prot_t prot;
3044 	vm_prot_t fault_type = fault_typea;
3045 	int use_read_lock = 1;
3046 	int rv = KERN_SUCCESS;
3047 
3048 RetryLookup:
3049 	if (use_read_lock)
3050 		vm_map_lock_read(map);
3051 	else
3052 		vm_map_lock(map);
3053 
3054 	/*
3055 	 * If the map has an interesting hint, try it before calling full
3056 	 * blown lookup routine.
3057 	 */
3058 	entry = map->hint;
3059 	*out_entry = entry;
3060 
3061 	if ((entry == &map->header) ||
3062 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3063 		vm_map_entry_t tmp_entry;
3064 
3065 		/*
3066 		 * Entry was either not a valid hint, or the vaddr was not
3067 		 * contained in the entry, so do a full lookup.
3068 		 */
3069 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3070 			rv = KERN_INVALID_ADDRESS;
3071 			goto done;
3072 		}
3073 
3074 		entry = tmp_entry;
3075 		*out_entry = entry;
3076 	}
3077 
3078 	/*
3079 	 * Handle submaps.
3080 	 */
3081 
3082 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3083 		vm_map_t old_map = map;
3084 
3085 		*var_map = map = entry->object.sub_map;
3086 		if (use_read_lock)
3087 			vm_map_unlock_read(old_map);
3088 		else
3089 			vm_map_unlock(old_map);
3090 		use_read_lock = 1;
3091 		goto RetryLookup;
3092 	}
3093 
3094 	/*
3095 	 * Check whether this task is allowed to have this page.
3096 	 * Note the special case for MAP_ENTRY_COW
3097 	 * pages with an override.  This is to implement a forced
3098 	 * COW for debuggers.
3099 	 */
3100 
3101 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3102 		prot = entry->max_protection;
3103 	else
3104 		prot = entry->protection;
3105 
3106 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3107 	if ((fault_type & prot) != fault_type) {
3108 		rv = KERN_PROTECTION_FAILURE;
3109 		goto done;
3110 	}
3111 
3112 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3113 	    (entry->eflags & MAP_ENTRY_COW) &&
3114 	    (fault_type & VM_PROT_WRITE) &&
3115 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3116 		rv = KERN_PROTECTION_FAILURE;
3117 		goto done;
3118 	}
3119 
3120 	/*
3121 	 * If this page is not pageable, we have to get it for all possible
3122 	 * accesses.
3123 	 */
3124 
3125 	*wired = (entry->wired_count != 0);
3126 	if (*wired)
3127 		prot = fault_type = entry->protection;
3128 
3129 	/*
3130 	 * If the entry was copy-on-write, we either ...
3131 	 */
3132 
3133 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3134 		/*
3135 		 * If we want to write the page, we may as well handle that
3136 		 * now since we've got the map locked.
3137 		 *
3138 		 * If we don't need to write the page, we just demote the
3139 		 * permissions allowed.
3140 		 */
3141 
3142 		if (fault_type & VM_PROT_WRITE) {
3143 			/*
3144 			 * Make a new object, and place it in the object
3145 			 * chain.  Note that no new references have appeared
3146 			 * -- one just moved from the map to the new
3147 			 * object.
3148 			 */
3149 
3150 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3151 				use_read_lock = 0;
3152 				goto RetryLookup;
3153 			}
3154 			use_read_lock = 0;
3155 
3156 			vm_object_shadow(
3157 			    &entry->object.vm_object,
3158 			    &entry->offset,
3159 			    atop(entry->end - entry->start));
3160 
3161 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3162 		} else {
3163 			/*
3164 			 * We're attempting to read a copy-on-write page --
3165 			 * don't allow writes.
3166 			 */
3167 
3168 			prot &= ~VM_PROT_WRITE;
3169 		}
3170 	}
3171 
3172 	/*
3173 	 * Create an object if necessary.
3174 	 */
3175 	if (entry->object.vm_object == NULL &&
3176 	    !map->system_map) {
3177 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3178 			use_read_lock = 0;
3179 			goto RetryLookup;
3180 		}
3181 		use_read_lock = 0;
3182 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3183 		    atop(entry->end - entry->start));
3184 		entry->offset = 0;
3185 	}
3186 
3187 	/*
3188 	 * Return the object/offset from this entry.  If the entry was
3189 	 * copy-on-write or empty, it has been fixed up.
3190 	 */
3191 
3192 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3193 	*object = entry->object.vm_object;
3194 
3195 	/*
3196 	 * Return whether this is the only map sharing this data.  On
3197 	 * success we return with a read lock held on the map.  On failure
3198 	 * we return with the map unlocked.
3199 	 */
3200 	*out_prot = prot;
3201 done:
3202 	if (rv == KERN_SUCCESS) {
3203 		if (use_read_lock == 0)
3204 			vm_map_lock_downgrade(map);
3205 	} else if (use_read_lock) {
3206 		vm_map_unlock_read(map);
3207 	} else {
3208 		vm_map_unlock(map);
3209 	}
3210 	return (rv);
3211 }
3212 
3213 /*
3214  *	vm_map_lookup_done:
3215  *
3216  *	Releases locks acquired by a vm_map_lookup
3217  *	(according to the handle returned by that lookup).
3218  */
3219 
3220 void
3221 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3222 {
3223 	/*
3224 	 * Unlock the main-level map
3225 	 */
3226 	vm_map_unlock_read(map);
3227 	if (count)
3228 		vm_map_entry_release(count);
3229 }
3230 
3231 /*
3232  * Implement uiomove with VM operations.  This handles (and collateral changes)
3233  * support every combination of source object modification, and COW type
3234  * operations.
3235  */
3236 int
3237 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3238 	vm_map_t mapa;
3239 	vm_object_t srcobject;
3240 	off_t cp;
3241 	int cnta;
3242 	vm_offset_t uaddra;
3243 	int *npages;
3244 {
3245 	vm_map_t map;
3246 	vm_object_t first_object, oldobject, object;
3247 	vm_map_entry_t entry;
3248 	vm_prot_t prot;
3249 	boolean_t wired;
3250 	int tcnt, rv;
3251 	vm_offset_t uaddr, start, end, tend;
3252 	vm_pindex_t first_pindex, osize, oindex;
3253 	off_t ooffset;
3254 	int cnt;
3255 	int count;
3256 
3257 	if (npages)
3258 		*npages = 0;
3259 
3260 	cnt = cnta;
3261 	uaddr = uaddra;
3262 
3263 	while (cnt > 0) {
3264 		map = mapa;
3265 
3266 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3267 
3268 		if ((vm_map_lookup(&map, uaddr,
3269 			VM_PROT_READ, &entry, &first_object,
3270 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3271 			return EFAULT;
3272 		}
3273 
3274 		vm_map_clip_start(map, entry, uaddr, &count);
3275 
3276 		tcnt = cnt;
3277 		tend = uaddr + tcnt;
3278 		if (tend > entry->end) {
3279 			tcnt = entry->end - uaddr;
3280 			tend = entry->end;
3281 		}
3282 
3283 		vm_map_clip_end(map, entry, tend, &count);
3284 
3285 		start = entry->start;
3286 		end = entry->end;
3287 
3288 		osize = atop(tcnt);
3289 
3290 		oindex = OFF_TO_IDX(cp);
3291 		if (npages) {
3292 			vm_pindex_t idx;
3293 			for (idx = 0; idx < osize; idx++) {
3294 				vm_page_t m;
3295 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3296 					vm_map_lookup_done(map, entry, count);
3297 					return 0;
3298 				}
3299 				/*
3300 				 * disallow busy or invalid pages, but allow
3301 				 * m->busy pages if they are entirely valid.
3302 				 */
3303 				if ((m->flags & PG_BUSY) ||
3304 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3305 					vm_map_lookup_done(map, entry, count);
3306 					return 0;
3307 				}
3308 			}
3309 		}
3310 
3311 /*
3312  * If we are changing an existing map entry, just redirect
3313  * the object, and change mappings.
3314  */
3315 		if ((first_object->type == OBJT_VNODE) &&
3316 			((oldobject = entry->object.vm_object) == first_object)) {
3317 
3318 			if ((entry->offset != cp) || (oldobject != srcobject)) {
3319 				/*
3320    				* Remove old window into the file
3321    				*/
3322 				pmap_remove (map->pmap, uaddr, tend);
3323 
3324 				/*
3325    				* Force copy on write for mmaped regions
3326    				*/
3327 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3328 
3329 				/*
3330    				* Point the object appropriately
3331    				*/
3332 				if (oldobject != srcobject) {
3333 
3334 				/*
3335    				* Set the object optimization hint flag
3336    				*/
3337 					vm_object_set_flag(srcobject, OBJ_OPT);
3338 					vm_object_reference(srcobject);
3339 					entry->object.vm_object = srcobject;
3340 
3341 					if (oldobject) {
3342 						vm_object_deallocate(oldobject);
3343 					}
3344 				}
3345 
3346 				entry->offset = cp;
3347 				map->timestamp++;
3348 			} else {
3349 				pmap_remove (map->pmap, uaddr, tend);
3350 			}
3351 
3352 		} else if ((first_object->ref_count == 1) &&
3353 			(first_object->size == osize) &&
3354 			((first_object->type == OBJT_DEFAULT) ||
3355 				(first_object->type == OBJT_SWAP)) ) {
3356 
3357 			oldobject = first_object->backing_object;
3358 
3359 			if ((first_object->backing_object_offset != cp) ||
3360 				(oldobject != srcobject)) {
3361 				/*
3362    				* Remove old window into the file
3363    				*/
3364 				pmap_remove (map->pmap, uaddr, tend);
3365 
3366 				/*
3367 				 * Remove unneeded old pages
3368 				 */
3369 				vm_object_page_remove(first_object, 0, 0, 0);
3370 
3371 				/*
3372 				 * Invalidate swap space
3373 				 */
3374 				if (first_object->type == OBJT_SWAP) {
3375 					swap_pager_freespace(first_object,
3376 						0,
3377 						first_object->size);
3378 				}
3379 
3380 				/*
3381    				* Force copy on write for mmaped regions
3382    				*/
3383 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3384 
3385 				/*
3386    				* Point the object appropriately
3387    				*/
3388 				if (oldobject != srcobject) {
3389 
3390 				/*
3391    				* Set the object optimization hint flag
3392    				*/
3393 					vm_object_set_flag(srcobject, OBJ_OPT);
3394 					vm_object_reference(srcobject);
3395 
3396 					if (oldobject) {
3397 						LIST_REMOVE(
3398 							first_object, shadow_list);
3399 						oldobject->shadow_count--;
3400 						/* XXX bump generation? */
3401 						vm_object_deallocate(oldobject);
3402 					}
3403 
3404 					LIST_INSERT_HEAD(&srcobject->shadow_head,
3405 						first_object, shadow_list);
3406 					srcobject->shadow_count++;
3407 					/* XXX bump generation? */
3408 
3409 					first_object->backing_object = srcobject;
3410 				}
3411 				first_object->backing_object_offset = cp;
3412 				map->timestamp++;
3413 			} else {
3414 				pmap_remove (map->pmap, uaddr, tend);
3415 			}
3416 /*
3417  * Otherwise, we have to do a logical mmap.
3418  */
3419 		} else {
3420 
3421 			vm_object_set_flag(srcobject, OBJ_OPT);
3422 			vm_object_reference(srcobject);
3423 
3424 			pmap_remove (map->pmap, uaddr, tend);
3425 
3426 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3427 			vm_map_lock_upgrade(map);
3428 
3429 			if (entry == &map->header) {
3430 				map->first_free = &map->header;
3431 			} else if (map->first_free->start >= start) {
3432 				map->first_free = entry->prev;
3433 			}
3434 
3435 			SAVE_HINT(map, entry->prev);
3436 			vm_map_entry_delete(map, entry, &count);
3437 
3438 			object = srcobject;
3439 			ooffset = cp;
3440 
3441 			rv = vm_map_insert(map, &count,
3442 				object, ooffset, start, tend,
3443 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3444 
3445 			if (rv != KERN_SUCCESS)
3446 				panic("vm_uiomove: could not insert new entry: %d", rv);
3447 		}
3448 
3449 /*
3450  * Map the window directly, if it is already in memory
3451  */
3452 		pmap_object_init_pt(map->pmap, uaddr,
3453 			srcobject, oindex, tcnt, 0);
3454 
3455 		map->timestamp++;
3456 		vm_map_unlock(map);
3457 		vm_map_entry_release(count);
3458 
3459 		cnt -= tcnt;
3460 		uaddr += tcnt;
3461 		cp += tcnt;
3462 		if (npages)
3463 			*npages += osize;
3464 	}
3465 	return 0;
3466 }
3467 
3468 /*
3469  * Performs the copy_on_write operations necessary to allow the virtual copies
3470  * into user space to work.  This has to be called for write(2) system calls
3471  * from other processes, file unlinking, and file size shrinkage.
3472  */
3473 void
3474 vm_freeze_copyopts(object, froma, toa)
3475 	vm_object_t object;
3476 	vm_pindex_t froma, toa;
3477 {
3478 	int rv;
3479 	vm_object_t robject;
3480 	vm_pindex_t idx;
3481 
3482 	if ((object == NULL) ||
3483 		((object->flags & OBJ_OPT) == 0))
3484 		return;
3485 
3486 	if (object->shadow_count > object->ref_count)
3487 		panic("vm_freeze_copyopts: sc > rc");
3488 
3489 	while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3490 		vm_pindex_t bo_pindex;
3491 		vm_page_t m_in, m_out;
3492 
3493 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3494 
3495 		vm_object_reference(robject);
3496 
3497 		vm_object_pip_wait(robject, "objfrz");
3498 
3499 		if (robject->ref_count == 1) {
3500 			vm_object_deallocate(robject);
3501 			continue;
3502 		}
3503 
3504 		vm_object_pip_add(robject, 1);
3505 
3506 		for (idx = 0; idx < robject->size; idx++) {
3507 
3508 			m_out = vm_page_grab(robject, idx,
3509 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3510 
3511 			if (m_out->valid == 0) {
3512 				m_in = vm_page_grab(object, bo_pindex + idx,
3513 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3514 				if (m_in->valid == 0) {
3515 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3516 					if (rv != VM_PAGER_OK) {
3517 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3518 						continue;
3519 					}
3520 					vm_page_deactivate(m_in);
3521 				}
3522 
3523 				vm_page_protect(m_in, VM_PROT_NONE);
3524 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3525 				m_out->valid = m_in->valid;
3526 				vm_page_dirty(m_out);
3527 				vm_page_activate(m_out);
3528 				vm_page_wakeup(m_in);
3529 			}
3530 			vm_page_wakeup(m_out);
3531 		}
3532 
3533 		object->shadow_count--;
3534 		object->ref_count--;
3535 		LIST_REMOVE(robject, shadow_list);
3536 		robject->backing_object = NULL;
3537 		robject->backing_object_offset = 0;
3538 
3539 		vm_object_pip_wakeup(robject);
3540 		vm_object_deallocate(robject);
3541 	}
3542 
3543 	vm_object_clear_flag(object, OBJ_OPT);
3544 }
3545 
3546 #include "opt_ddb.h"
3547 #ifdef DDB
3548 #include <sys/kernel.h>
3549 
3550 #include <ddb/ddb.h>
3551 
3552 /*
3553  *	vm_map_print:	[ debug ]
3554  */
3555 DB_SHOW_COMMAND(map, vm_map_print)
3556 {
3557 	static int nlines;
3558 	/* XXX convert args. */
3559 	vm_map_t map = (vm_map_t)addr;
3560 	boolean_t full = have_addr;
3561 
3562 	vm_map_entry_t entry;
3563 
3564 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3565 	    (void *)map,
3566 	    (void *)map->pmap, map->nentries, map->timestamp);
3567 	nlines++;
3568 
3569 	if (!full && db_indent)
3570 		return;
3571 
3572 	db_indent += 2;
3573 	for (entry = map->header.next; entry != &map->header;
3574 	    entry = entry->next) {
3575 		db_iprintf("map entry %p: start=%p, end=%p\n",
3576 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3577 		nlines++;
3578 		{
3579 			static char *inheritance_name[4] =
3580 			{"share", "copy", "none", "donate_copy"};
3581 
3582 			db_iprintf(" prot=%x/%x/%s",
3583 			    entry->protection,
3584 			    entry->max_protection,
3585 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3586 			if (entry->wired_count != 0)
3587 				db_printf(", wired");
3588 		}
3589 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3590 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3591 			db_printf(", share=%p, offset=0x%lx\n",
3592 			    (void *)entry->object.sub_map,
3593 			    (long)entry->offset);
3594 			nlines++;
3595 			if ((entry->prev == &map->header) ||
3596 			    (entry->prev->object.sub_map !=
3597 				entry->object.sub_map)) {
3598 				db_indent += 2;
3599 				vm_map_print((db_expr_t)(intptr_t)
3600 					     entry->object.sub_map,
3601 					     full, 0, (char *)0);
3602 				db_indent -= 2;
3603 			}
3604 		} else {
3605 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3606 			db_printf(", object=%p, offset=0x%lx",
3607 			    (void *)entry->object.vm_object,
3608 			    (long)entry->offset);
3609 			if (entry->eflags & MAP_ENTRY_COW)
3610 				db_printf(", copy (%s)",
3611 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3612 			db_printf("\n");
3613 			nlines++;
3614 
3615 			if ((entry->prev == &map->header) ||
3616 			    (entry->prev->object.vm_object !=
3617 				entry->object.vm_object)) {
3618 				db_indent += 2;
3619 				vm_object_print((db_expr_t)(intptr_t)
3620 						entry->object.vm_object,
3621 						full, 0, (char *)0);
3622 				nlines += 4;
3623 				db_indent -= 2;
3624 			}
3625 		}
3626 	}
3627 	db_indent -= 2;
3628 	if (db_indent == 0)
3629 		nlines = 0;
3630 }
3631 
3632 
3633 DB_SHOW_COMMAND(procvm, procvm)
3634 {
3635 	struct proc *p;
3636 
3637 	if (have_addr) {
3638 		p = (struct proc *) addr;
3639 	} else {
3640 		p = curproc;
3641 	}
3642 
3643 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3644 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3645 	    (void *)vmspace_pmap(p->p_vmspace));
3646 
3647 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3648 }
3649 
3650 #endif /* DDB */
3651