1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 65 * $DragonFly: src/sys/vm/vm_map.c,v 1.51 2006/10/21 04:28:22 dillon Exp $ 66 */ 67 68 /* 69 * Virtual memory mapping module. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 #include <sys/lock.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 #include <sys/vnode.h> 79 #include <sys/resourcevar.h> 80 #include <sys/shm.h> 81 #include <sys/tree.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/swap_pager.h> 93 #include <vm/vm_zone.h> 94 95 #include <sys/thread2.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a single hint is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 /* 122 * vm_map_startup: 123 * 124 * Initialize the vm_map module. Must be called before 125 * any other vm_map routines. 126 * 127 * Map and entry structures are allocated from the general 128 * purpose memory pool with some exceptions: 129 * 130 * - The kernel map and kmem submap are allocated statically. 131 * - Kernel map entries are allocated out of a static pool. 132 * 133 * These restrictions are necessary since malloc() uses the 134 * maps and requires map entries. 135 */ 136 137 #define VMEPERCPU 2 138 139 static struct vm_zone mapentzone_store, mapzone_store; 140 static vm_zone_t mapentzone, mapzone, vmspace_zone; 141 static struct vm_object mapentobj, mapobj; 142 143 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU]; 145 static struct vm_map map_init[MAX_KMAP]; 146 147 static void vm_map_entry_shadow(vm_map_entry_t entry); 148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 155 vm_map_entry_t); 156 static void vm_map_split (vm_map_entry_t); 157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 158 159 void 160 vm_map_startup(void) 161 { 162 mapzone = &mapzone_store; 163 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 164 map_init, MAX_KMAP); 165 mapentzone = &mapentzone_store; 166 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 167 map_entry_init, MAX_MAPENT); 168 } 169 170 /* 171 * Red black tree functions 172 */ 173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 175 176 /* a->start is address, and the only field has to be initialized */ 177 static int 178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 179 { 180 if (a->start < b->start) 181 return(-1); 182 else if (a->start > b->start) 183 return(1); 184 return(0); 185 } 186 187 /* 188 * Allocate a vmspace structure, including a vm_map and pmap, 189 * and initialize those structures. The refcnt is set to 1. 190 * The remaining fields must be initialized by the caller. 191 */ 192 struct vmspace * 193 vmspace_alloc(vm_offset_t min, vm_offset_t max) 194 { 195 struct vmspace *vm; 196 197 vm = zalloc(vmspace_zone); 198 bzero(&vm->vm_startcopy, 199 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 200 vm_map_init(&vm->vm_map, min, max); 201 pmap_pinit(vmspace_pmap(vm)); 202 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 203 vm->vm_refcnt = 1; 204 vm->vm_shm = NULL; 205 vm->vm_exitingcnt = 0; 206 return (vm); 207 } 208 209 void 210 vm_init2(void) 211 { 212 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 213 ZONE_USE_RESERVE | ZONE_SPECIAL, 1); 214 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1); 215 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 216 pmap_init2(); 217 vm_object_init2(); 218 } 219 220 static __inline void 221 vmspace_dofree(struct vmspace *vm) 222 { 223 int count; 224 225 /* 226 * Make sure any SysV shm is freed, it might not have in 227 * exit1() 228 */ 229 shmexit(vm); 230 231 KKASSERT(vm->vm_upcalls == NULL); 232 233 /* 234 * Lock the map, to wait out all other references to it. 235 * Delete all of the mappings and pages they hold, then call 236 * the pmap module to reclaim anything left. 237 */ 238 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 239 vm_map_lock(&vm->vm_map); 240 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 241 vm->vm_map.max_offset, &count); 242 vm_map_unlock(&vm->vm_map); 243 vm_map_entry_release(count); 244 245 pmap_release(vmspace_pmap(vm)); 246 zfree(vmspace_zone, vm); 247 } 248 249 void 250 vmspace_free(struct vmspace *vm) 251 { 252 if (vm->vm_refcnt == 0) 253 panic("vmspace_free: attempt to free already freed vmspace"); 254 255 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 256 vmspace_dofree(vm); 257 } 258 259 void 260 vmspace_exitfree(struct proc *p) 261 { 262 struct vmspace *vm; 263 264 vm = p->p_vmspace; 265 p->p_vmspace = NULL; 266 267 /* 268 * cleanup by parent process wait()ing on exiting child. vm_refcnt 269 * may not be 0 (e.g. fork() and child exits without exec()ing). 270 * exitingcnt may increment above 0 and drop back down to zero 271 * several times while vm_refcnt is held non-zero. vm_refcnt 272 * may also increment above 0 and drop back down to zero several 273 * times while vm_exitingcnt is held non-zero. 274 * 275 * The last wait on the exiting child's vmspace will clean up 276 * the remainder of the vmspace. 277 */ 278 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 279 vmspace_dofree(vm); 280 } 281 282 /* 283 * vmspace_swap_count() - count the approximate swap useage in pages for a 284 * vmspace. 285 * 286 * Swap useage is determined by taking the proportional swap used by 287 * VM objects backing the VM map. To make up for fractional losses, 288 * if the VM object has any swap use at all the associated map entries 289 * count for at least 1 swap page. 290 */ 291 int 292 vmspace_swap_count(struct vmspace *vmspace) 293 { 294 vm_map_t map = &vmspace->vm_map; 295 vm_map_entry_t cur; 296 vm_object_t object; 297 int count = 0; 298 int n; 299 300 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 301 switch(cur->maptype) { 302 case VM_MAPTYPE_NORMAL: 303 case VM_MAPTYPE_VPAGETABLE: 304 if ((object = cur->object.vm_object) == NULL) 305 break; 306 if (object->type != OBJT_SWAP) 307 break; 308 n = (cur->end - cur->start) / PAGE_SIZE; 309 if (object->un_pager.swp.swp_bcount) { 310 count += object->un_pager.swp.swp_bcount * 311 SWAP_META_PAGES * n / object->size + 1; 312 } 313 break; 314 default: 315 break; 316 } 317 } 318 return(count); 319 } 320 321 322 /* 323 * vm_map_create: 324 * 325 * Creates and returns a new empty VM map with 326 * the given physical map structure, and having 327 * the given lower and upper address bounds. 328 */ 329 vm_map_t 330 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 331 { 332 vm_map_t result; 333 334 result = zalloc(mapzone); 335 vm_map_init(result, min, max); 336 result->pmap = pmap; 337 return (result); 338 } 339 340 /* 341 * Initialize an existing vm_map structure 342 * such as that in the vmspace structure. 343 * The pmap is set elsewhere. 344 */ 345 void 346 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max) 347 { 348 map->header.next = map->header.prev = &map->header; 349 RB_INIT(&map->rb_root); 350 map->nentries = 0; 351 map->size = 0; 352 map->system_map = 0; 353 map->infork = 0; 354 map->min_offset = min; 355 map->max_offset = max; 356 map->first_free = &map->header; 357 map->hint = &map->header; 358 map->timestamp = 0; 359 lockinit(&map->lock, "thrd_sleep", 0, 0); 360 } 361 362 /* 363 * Shadow the vm_map_entry's object. This typically needs to be done when 364 * a write fault is taken on an entry which had previously been cloned by 365 * fork(). The shared object (which might be NULL) must become private so 366 * we add a shadow layer above it. 367 * 368 * Object allocation for anonymous mappings is defered as long as possible. 369 * When creating a shadow, however, the underlying object must be instantiated 370 * so it can be shared. 371 * 372 * If the map segment is governed by a virtual page table then it is 373 * possible to address offsets beyond the mapped area. Just allocate 374 * a maximally sized object for this case. 375 */ 376 static 377 void 378 vm_map_entry_shadow(vm_map_entry_t entry) 379 { 380 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 381 vm_object_shadow(&entry->object.vm_object, &entry->offset, 382 0x7FFFFFFF); /* XXX */ 383 } else { 384 vm_object_shadow(&entry->object.vm_object, &entry->offset, 385 atop(entry->end - entry->start)); 386 } 387 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 388 } 389 390 /* 391 * Allocate an object for a vm_map_entry. 392 * 393 * Object allocation for anonymous mappings is defered as long as possible. 394 * This function is called when we can defer no longer, generally when a map 395 * entry might be split or forked or takes a page fault. 396 * 397 * If the map segment is governed by a virtual page table then it is 398 * possible to address offsets beyond the mapped area. Just allocate 399 * a maximally sized object for this case. 400 */ 401 void 402 vm_map_entry_allocate_object(vm_map_entry_t entry) 403 { 404 vm_object_t obj; 405 406 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 407 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 408 } else { 409 obj = vm_object_allocate(OBJT_DEFAULT, 410 atop(entry->end - entry->start)); 411 } 412 entry->object.vm_object = obj; 413 entry->offset = 0; 414 } 415 416 /* 417 * vm_map_entry_reserve_cpu_init: 418 * 419 * Set an initial negative count so the first attempt to reserve 420 * space preloads a bunch of vm_map_entry's for this cpu. Also 421 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 422 * map a new page for vm_map_entry structures. SMP systems are 423 * particularly sensitive. 424 * 425 * This routine is called in early boot so we cannot just call 426 * vm_map_entry_reserve(). 427 * 428 * May be called for a gd other then mycpu, but may only be called 429 * during early boot. 430 */ 431 void 432 vm_map_entry_reserve_cpu_init(globaldata_t gd) 433 { 434 vm_map_entry_t entry; 435 int i; 436 437 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 438 entry = &cpu_map_entry_init[gd->gd_cpuid][0]; 439 for (i = 0; i < VMEPERCPU; ++i, ++entry) { 440 entry->next = gd->gd_vme_base; 441 gd->gd_vme_base = entry; 442 } 443 } 444 445 /* 446 * vm_map_entry_reserve: 447 * 448 * Reserves vm_map_entry structures so code later on can manipulate 449 * map_entry structures within a locked map without blocking trying 450 * to allocate a new vm_map_entry. 451 */ 452 int 453 vm_map_entry_reserve(int count) 454 { 455 struct globaldata *gd = mycpu; 456 vm_map_entry_t entry; 457 458 crit_enter(); 459 460 /* 461 * Make sure we have enough structures in gd_vme_base to handle 462 * the reservation request. 463 */ 464 while (gd->gd_vme_avail < count) { 465 entry = zalloc(mapentzone); 466 entry->next = gd->gd_vme_base; 467 gd->gd_vme_base = entry; 468 ++gd->gd_vme_avail; 469 } 470 gd->gd_vme_avail -= count; 471 crit_exit(); 472 return(count); 473 } 474 475 /* 476 * vm_map_entry_release: 477 * 478 * Releases previously reserved vm_map_entry structures that were not 479 * used. If we have too much junk in our per-cpu cache clean some of 480 * it out. 481 */ 482 void 483 vm_map_entry_release(int count) 484 { 485 struct globaldata *gd = mycpu; 486 vm_map_entry_t entry; 487 488 crit_enter(); 489 gd->gd_vme_avail += count; 490 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 491 entry = gd->gd_vme_base; 492 KKASSERT(entry != NULL); 493 gd->gd_vme_base = entry->next; 494 --gd->gd_vme_avail; 495 crit_exit(); 496 zfree(mapentzone, entry); 497 crit_enter(); 498 } 499 crit_exit(); 500 } 501 502 /* 503 * vm_map_entry_kreserve: 504 * 505 * Reserve map entry structures for use in kernel_map itself. These 506 * entries have *ALREADY* been reserved on a per-cpu basis when the map 507 * was inited. This function is used by zalloc() to avoid a recursion 508 * when zalloc() itself needs to allocate additional kernel memory. 509 * 510 * This function works like the normal reserve but does not load the 511 * vm_map_entry cache (because that would result in an infinite 512 * recursion). Note that gd_vme_avail may go negative. This is expected. 513 * 514 * Any caller of this function must be sure to renormalize after 515 * potentially eating entries to ensure that the reserve supply 516 * remains intact. 517 */ 518 int 519 vm_map_entry_kreserve(int count) 520 { 521 struct globaldata *gd = mycpu; 522 523 crit_enter(); 524 gd->gd_vme_avail -= count; 525 crit_exit(); 526 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail)); 527 return(count); 528 } 529 530 /* 531 * vm_map_entry_krelease: 532 * 533 * Release previously reserved map entries for kernel_map. We do not 534 * attempt to clean up like the normal release function as this would 535 * cause an unnecessary (but probably not fatal) deep procedure call. 536 */ 537 void 538 vm_map_entry_krelease(int count) 539 { 540 struct globaldata *gd = mycpu; 541 542 crit_enter(); 543 gd->gd_vme_avail += count; 544 crit_exit(); 545 } 546 547 /* 548 * vm_map_entry_create: [ internal use only ] 549 * 550 * Allocates a VM map entry for insertion. No entry fields are filled 551 * in. 552 * 553 * This routine may be called from an interrupt thread but not a FAST 554 * interrupt. This routine may recurse the map lock. 555 */ 556 static vm_map_entry_t 557 vm_map_entry_create(vm_map_t map, int *countp) 558 { 559 struct globaldata *gd = mycpu; 560 vm_map_entry_t entry; 561 562 KKASSERT(*countp > 0); 563 --*countp; 564 crit_enter(); 565 entry = gd->gd_vme_base; 566 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 567 gd->gd_vme_base = entry->next; 568 crit_exit(); 569 return(entry); 570 } 571 572 /* 573 * vm_map_entry_dispose: [ internal use only ] 574 * 575 * Dispose of a vm_map_entry that is no longer being referenced. This 576 * function may be called from an interrupt. 577 */ 578 static void 579 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 580 { 581 struct globaldata *gd = mycpu; 582 583 KKASSERT(map->hint != entry); 584 KKASSERT(map->first_free != entry); 585 586 ++*countp; 587 crit_enter(); 588 entry->next = gd->gd_vme_base; 589 gd->gd_vme_base = entry; 590 crit_exit(); 591 } 592 593 594 /* 595 * vm_map_entry_{un,}link: 596 * 597 * Insert/remove entries from maps. 598 */ 599 static __inline void 600 vm_map_entry_link(vm_map_t map, 601 vm_map_entry_t after_where, 602 vm_map_entry_t entry) 603 { 604 map->nentries++; 605 entry->prev = after_where; 606 entry->next = after_where->next; 607 entry->next->prev = entry; 608 after_where->next = entry; 609 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 610 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 611 } 612 613 static __inline void 614 vm_map_entry_unlink(vm_map_t map, 615 vm_map_entry_t entry) 616 { 617 vm_map_entry_t prev; 618 vm_map_entry_t next; 619 620 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) 621 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry); 622 prev = entry->prev; 623 next = entry->next; 624 next->prev = prev; 625 prev->next = next; 626 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 627 map->nentries--; 628 } 629 630 /* 631 * vm_map_lookup_entry: [ internal use only ] 632 * 633 * Finds the map entry containing (or 634 * immediately preceding) the specified address 635 * in the given map; the entry is returned 636 * in the "entry" parameter. The boolean 637 * result indicates whether the address is 638 * actually contained in the map. 639 */ 640 boolean_t 641 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, 642 vm_map_entry_t *entry /* OUT */) 643 { 644 vm_map_entry_t tmp; 645 vm_map_entry_t last; 646 647 #if 0 648 /* 649 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 650 * the hint code with the red-black lookup meets with system crashes 651 * and lockups. We do not yet know why. 652 * 653 * It is possible that the problem is related to the setting 654 * of the hint during map_entry deletion, in the code specified 655 * at the GGG comment later on in this file. 656 */ 657 /* 658 * Quickly check the cached hint, there's a good chance of a match. 659 */ 660 if (map->hint != &map->header) { 661 tmp = map->hint; 662 if (address >= tmp->start && address < tmp->end) { 663 *entry = tmp; 664 return(TRUE); 665 } 666 } 667 #endif 668 669 /* 670 * Locate the record from the top of the tree. 'last' tracks the 671 * closest prior record and is returned if no match is found, which 672 * in binary tree terms means tracking the most recent right-branch 673 * taken. If there is no prior record, &map->header is returned. 674 */ 675 last = &map->header; 676 tmp = RB_ROOT(&map->rb_root); 677 678 while (tmp) { 679 if (address >= tmp->start) { 680 if (address < tmp->end) { 681 *entry = tmp; 682 map->hint = tmp; 683 return(TRUE); 684 } 685 last = tmp; 686 tmp = RB_RIGHT(tmp, rb_entry); 687 } else { 688 tmp = RB_LEFT(tmp, rb_entry); 689 } 690 } 691 *entry = last; 692 return (FALSE); 693 } 694 695 /* 696 * vm_map_insert: 697 * 698 * Inserts the given whole VM object into the target 699 * map at the specified address range. The object's 700 * size should match that of the address range. 701 * 702 * Requires that the map be locked, and leaves it so. Requires that 703 * sufficient vm_map_entry structures have been reserved and tracks 704 * the use via countp. 705 * 706 * If object is non-NULL, ref count must be bumped by caller 707 * prior to making call to account for the new entry. 708 */ 709 int 710 vm_map_insert(vm_map_t map, int *countp, 711 vm_object_t object, vm_ooffset_t offset, 712 vm_offset_t start, vm_offset_t end, 713 vm_maptype_t maptype, 714 vm_prot_t prot, vm_prot_t max, 715 int cow) 716 { 717 vm_map_entry_t new_entry; 718 vm_map_entry_t prev_entry; 719 vm_map_entry_t temp_entry; 720 vm_eflags_t protoeflags; 721 722 /* 723 * Check that the start and end points are not bogus. 724 */ 725 726 if ((start < map->min_offset) || (end > map->max_offset) || 727 (start >= end)) 728 return (KERN_INVALID_ADDRESS); 729 730 /* 731 * Find the entry prior to the proposed starting address; if it's part 732 * of an existing entry, this range is bogus. 733 */ 734 735 if (vm_map_lookup_entry(map, start, &temp_entry)) 736 return (KERN_NO_SPACE); 737 738 prev_entry = temp_entry; 739 740 /* 741 * Assert that the next entry doesn't overlap the end point. 742 */ 743 744 if ((prev_entry->next != &map->header) && 745 (prev_entry->next->start < end)) 746 return (KERN_NO_SPACE); 747 748 protoeflags = 0; 749 750 if (cow & MAP_COPY_ON_WRITE) 751 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 752 753 if (cow & MAP_NOFAULT) { 754 protoeflags |= MAP_ENTRY_NOFAULT; 755 756 KASSERT(object == NULL, 757 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 758 } 759 if (cow & MAP_DISABLE_SYNCER) 760 protoeflags |= MAP_ENTRY_NOSYNC; 761 if (cow & MAP_DISABLE_COREDUMP) 762 protoeflags |= MAP_ENTRY_NOCOREDUMP; 763 764 if (object) { 765 /* 766 * When object is non-NULL, it could be shared with another 767 * process. We have to set or clear OBJ_ONEMAPPING 768 * appropriately. 769 */ 770 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 771 vm_object_clear_flag(object, OBJ_ONEMAPPING); 772 } 773 } 774 else if ((prev_entry != &map->header) && 775 (prev_entry->eflags == protoeflags) && 776 (prev_entry->end == start) && 777 (prev_entry->wired_count == 0) && 778 prev_entry->maptype == maptype && 779 ((prev_entry->object.vm_object == NULL) || 780 vm_object_coalesce(prev_entry->object.vm_object, 781 OFF_TO_IDX(prev_entry->offset), 782 (vm_size_t)(prev_entry->end - prev_entry->start), 783 (vm_size_t)(end - prev_entry->end)))) { 784 /* 785 * We were able to extend the object. Determine if we 786 * can extend the previous map entry to include the 787 * new range as well. 788 */ 789 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 790 (prev_entry->protection == prot) && 791 (prev_entry->max_protection == max)) { 792 map->size += (end - prev_entry->end); 793 prev_entry->end = end; 794 vm_map_simplify_entry(map, prev_entry, countp); 795 return (KERN_SUCCESS); 796 } 797 798 /* 799 * If we can extend the object but cannot extend the 800 * map entry, we have to create a new map entry. We 801 * must bump the ref count on the extended object to 802 * account for it. object may be NULL. 803 */ 804 object = prev_entry->object.vm_object; 805 offset = prev_entry->offset + 806 (prev_entry->end - prev_entry->start); 807 vm_object_reference(object); 808 } 809 810 /* 811 * NOTE: if conditionals fail, object can be NULL here. This occurs 812 * in things like the buffer map where we manage kva but do not manage 813 * backing objects. 814 */ 815 816 /* 817 * Create a new entry 818 */ 819 820 new_entry = vm_map_entry_create(map, countp); 821 new_entry->start = start; 822 new_entry->end = end; 823 824 new_entry->maptype = maptype; 825 new_entry->eflags = protoeflags; 826 new_entry->object.vm_object = object; 827 new_entry->offset = offset; 828 new_entry->aux.master_pde = 0; 829 830 new_entry->inheritance = VM_INHERIT_DEFAULT; 831 new_entry->protection = prot; 832 new_entry->max_protection = max; 833 new_entry->wired_count = 0; 834 835 /* 836 * Insert the new entry into the list 837 */ 838 839 vm_map_entry_link(map, prev_entry, new_entry); 840 map->size += new_entry->end - new_entry->start; 841 842 /* 843 * Update the free space hint 844 */ 845 if ((map->first_free == prev_entry) && 846 (prev_entry->end >= new_entry->start)) { 847 map->first_free = new_entry; 848 } 849 850 #if 0 851 /* 852 * Temporarily removed to avoid MAP_STACK panic, due to 853 * MAP_STACK being a huge hack. Will be added back in 854 * when MAP_STACK (and the user stack mapping) is fixed. 855 */ 856 /* 857 * It may be possible to simplify the entry 858 */ 859 vm_map_simplify_entry(map, new_entry, countp); 860 #endif 861 862 /* 863 * Try to pre-populate the page table. Mappings governed by virtual 864 * page tables cannot be prepopulated without a lot of work, so 865 * don't try. 866 */ 867 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 868 maptype != VM_MAPTYPE_VPAGETABLE) { 869 pmap_object_init_pt(map->pmap, start, prot, 870 object, OFF_TO_IDX(offset), end - start, 871 cow & MAP_PREFAULT_PARTIAL); 872 } 873 874 return (KERN_SUCCESS); 875 } 876 877 /* 878 * Find sufficient space for `length' bytes in the given map, starting at 879 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 880 * 881 * This function will returned an arbitrarily aligned pointer. If no 882 * particular alignment is required you should pass align as 1. Note that 883 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 884 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 885 * argument. 886 * 887 * 'align' should be a power of 2 but is not required to be. 888 */ 889 int 890 vm_map_findspace( 891 vm_map_t map, 892 vm_offset_t start, 893 vm_size_t length, 894 vm_offset_t align, 895 vm_offset_t *addr) 896 { 897 vm_map_entry_t entry, next; 898 vm_offset_t end; 899 vm_offset_t align_mask; 900 901 if (start < map->min_offset) 902 start = map->min_offset; 903 if (start > map->max_offset) 904 return (1); 905 906 /* 907 * If the alignment is not a power of 2 we will have to use 908 * a mod/division, set align_mask to a special value. 909 */ 910 if ((align | (align - 1)) + 1 != (align << 1)) 911 align_mask = (vm_offset_t)-1; 912 else 913 align_mask = align - 1; 914 915 retry: 916 /* 917 * Look for the first possible address; if there's already something 918 * at this address, we have to start after it. 919 */ 920 if (start == map->min_offset) { 921 if ((entry = map->first_free) != &map->header) 922 start = entry->end; 923 } else { 924 vm_map_entry_t tmp; 925 926 if (vm_map_lookup_entry(map, start, &tmp)) 927 start = tmp->end; 928 entry = tmp; 929 } 930 931 /* 932 * Look through the rest of the map, trying to fit a new region in the 933 * gap between existing regions, or after the very last region. 934 */ 935 for (;; start = (entry = next)->end) { 936 /* 937 * Adjust the proposed start by the requested alignment, 938 * be sure that we didn't wrap the address. 939 */ 940 if (align_mask == (vm_offset_t)-1) 941 end = ((start + align - 1) / align) * align; 942 else 943 end = (start + align_mask) & ~align_mask; 944 if (end < start) 945 return (1); 946 start = end; 947 /* 948 * Find the end of the proposed new region. Be sure we didn't 949 * go beyond the end of the map, or wrap around the address. 950 * Then check to see if this is the last entry or if the 951 * proposed end fits in the gap between this and the next 952 * entry. 953 */ 954 end = start + length; 955 if (end > map->max_offset || end < start) 956 return (1); 957 next = entry->next; 958 if (next == &map->header || next->start >= end) 959 break; 960 } 961 map->hint = entry; 962 if (map == kernel_map) { 963 vm_offset_t ksize; 964 if ((ksize = round_page(start + length)) > kernel_vm_end) { 965 pmap_growkernel(ksize); 966 goto retry; 967 } 968 } 969 *addr = start; 970 return (0); 971 } 972 973 /* 974 * vm_map_find finds an unallocated region in the target address 975 * map with the given length. The search is defined to be 976 * first-fit from the specified address; the region found is 977 * returned in the same parameter. 978 * 979 * If object is non-NULL, ref count must be bumped by caller 980 * prior to making call to account for the new entry. 981 */ 982 int 983 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 984 vm_offset_t *addr, vm_size_t length, 985 boolean_t find_space, 986 vm_maptype_t maptype, 987 vm_prot_t prot, vm_prot_t max, 988 int cow) 989 { 990 vm_offset_t start; 991 int result; 992 int count; 993 994 start = *addr; 995 996 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 997 vm_map_lock(map); 998 if (find_space) { 999 if (vm_map_findspace(map, start, length, 1, addr)) { 1000 vm_map_unlock(map); 1001 vm_map_entry_release(count); 1002 return (KERN_NO_SPACE); 1003 } 1004 start = *addr; 1005 } 1006 result = vm_map_insert(map, &count, object, offset, 1007 start, start + length, 1008 maptype, 1009 prot, max, 1010 cow); 1011 vm_map_unlock(map); 1012 vm_map_entry_release(count); 1013 1014 return (result); 1015 } 1016 1017 /* 1018 * vm_map_simplify_entry: 1019 * 1020 * Simplify the given map entry by merging with either neighbor. This 1021 * routine also has the ability to merge with both neighbors. 1022 * 1023 * The map must be locked. 1024 * 1025 * This routine guarentees that the passed entry remains valid (though 1026 * possibly extended). When merging, this routine may delete one or 1027 * both neighbors. No action is taken on entries which have their 1028 * in-transition flag set. 1029 */ 1030 void 1031 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1032 { 1033 vm_map_entry_t next, prev; 1034 vm_size_t prevsize, esize; 1035 1036 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1037 ++mycpu->gd_cnt.v_intrans_coll; 1038 return; 1039 } 1040 1041 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1042 return; 1043 1044 prev = entry->prev; 1045 if (prev != &map->header) { 1046 prevsize = prev->end - prev->start; 1047 if ( (prev->end == entry->start) && 1048 (prev->maptype == entry->maptype) && 1049 (prev->object.vm_object == entry->object.vm_object) && 1050 (!prev->object.vm_object || 1051 (prev->offset + prevsize == entry->offset)) && 1052 (prev->eflags == entry->eflags) && 1053 (prev->protection == entry->protection) && 1054 (prev->max_protection == entry->max_protection) && 1055 (prev->inheritance == entry->inheritance) && 1056 (prev->wired_count == entry->wired_count)) { 1057 if (map->first_free == prev) 1058 map->first_free = entry; 1059 if (map->hint == prev) 1060 map->hint = entry; 1061 vm_map_entry_unlink(map, prev); 1062 entry->start = prev->start; 1063 entry->offset = prev->offset; 1064 if (prev->object.vm_object) 1065 vm_object_deallocate(prev->object.vm_object); 1066 vm_map_entry_dispose(map, prev, countp); 1067 } 1068 } 1069 1070 next = entry->next; 1071 if (next != &map->header) { 1072 esize = entry->end - entry->start; 1073 if ((entry->end == next->start) && 1074 (next->maptype == entry->maptype) && 1075 (next->object.vm_object == entry->object.vm_object) && 1076 (!entry->object.vm_object || 1077 (entry->offset + esize == next->offset)) && 1078 (next->eflags == entry->eflags) && 1079 (next->protection == entry->protection) && 1080 (next->max_protection == entry->max_protection) && 1081 (next->inheritance == entry->inheritance) && 1082 (next->wired_count == entry->wired_count)) { 1083 if (map->first_free == next) 1084 map->first_free = entry; 1085 if (map->hint == next) 1086 map->hint = entry; 1087 vm_map_entry_unlink(map, next); 1088 entry->end = next->end; 1089 if (next->object.vm_object) 1090 vm_object_deallocate(next->object.vm_object); 1091 vm_map_entry_dispose(map, next, countp); 1092 } 1093 } 1094 } 1095 /* 1096 * vm_map_clip_start: [ internal use only ] 1097 * 1098 * Asserts that the given entry begins at or after 1099 * the specified address; if necessary, 1100 * it splits the entry into two. 1101 */ 1102 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1103 { \ 1104 if (startaddr > entry->start) \ 1105 _vm_map_clip_start(map, entry, startaddr, countp); \ 1106 } 1107 1108 /* 1109 * This routine is called only when it is known that 1110 * the entry must be split. 1111 */ 1112 static void 1113 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp) 1114 { 1115 vm_map_entry_t new_entry; 1116 1117 /* 1118 * Split off the front portion -- note that we must insert the new 1119 * entry BEFORE this one, so that this entry has the specified 1120 * starting address. 1121 */ 1122 1123 vm_map_simplify_entry(map, entry, countp); 1124 1125 /* 1126 * If there is no object backing this entry, we might as well create 1127 * one now. If we defer it, an object can get created after the map 1128 * is clipped, and individual objects will be created for the split-up 1129 * map. This is a bit of a hack, but is also about the best place to 1130 * put this improvement. 1131 */ 1132 if (entry->object.vm_object == NULL && !map->system_map) { 1133 vm_map_entry_allocate_object(entry); 1134 } 1135 1136 new_entry = vm_map_entry_create(map, countp); 1137 *new_entry = *entry; 1138 1139 new_entry->end = start; 1140 entry->offset += (start - entry->start); 1141 entry->start = start; 1142 1143 vm_map_entry_link(map, entry->prev, new_entry); 1144 1145 switch(entry->maptype) { 1146 case VM_MAPTYPE_NORMAL: 1147 case VM_MAPTYPE_VPAGETABLE: 1148 vm_object_reference(new_entry->object.vm_object); 1149 break; 1150 default: 1151 break; 1152 } 1153 } 1154 1155 /* 1156 * vm_map_clip_end: [ internal use only ] 1157 * 1158 * Asserts that the given entry ends at or before 1159 * the specified address; if necessary, 1160 * it splits the entry into two. 1161 */ 1162 1163 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1164 { \ 1165 if (endaddr < entry->end) \ 1166 _vm_map_clip_end(map, entry, endaddr, countp); \ 1167 } 1168 1169 /* 1170 * This routine is called only when it is known that 1171 * the entry must be split. 1172 */ 1173 static void 1174 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp) 1175 { 1176 vm_map_entry_t new_entry; 1177 1178 /* 1179 * If there is no object backing this entry, we might as well create 1180 * one now. If we defer it, an object can get created after the map 1181 * is clipped, and individual objects will be created for the split-up 1182 * map. This is a bit of a hack, but is also about the best place to 1183 * put this improvement. 1184 */ 1185 1186 if (entry->object.vm_object == NULL && !map->system_map) { 1187 vm_map_entry_allocate_object(entry); 1188 } 1189 1190 /* 1191 * Create a new entry and insert it AFTER the specified entry 1192 */ 1193 1194 new_entry = vm_map_entry_create(map, countp); 1195 *new_entry = *entry; 1196 1197 new_entry->start = entry->end = end; 1198 new_entry->offset += (end - entry->start); 1199 1200 vm_map_entry_link(map, entry, new_entry); 1201 1202 switch(entry->maptype) { 1203 case VM_MAPTYPE_NORMAL: 1204 case VM_MAPTYPE_VPAGETABLE: 1205 vm_object_reference(new_entry->object.vm_object); 1206 break; 1207 default: 1208 break; 1209 } 1210 } 1211 1212 /* 1213 * VM_MAP_RANGE_CHECK: [ internal use only ] 1214 * 1215 * Asserts that the starting and ending region 1216 * addresses fall within the valid range of the map. 1217 */ 1218 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1219 { \ 1220 if (start < vm_map_min(map)) \ 1221 start = vm_map_min(map); \ 1222 if (end > vm_map_max(map)) \ 1223 end = vm_map_max(map); \ 1224 if (start > end) \ 1225 start = end; \ 1226 } 1227 1228 /* 1229 * vm_map_transition_wait: [ kernel use only ] 1230 * 1231 * Used to block when an in-transition collison occurs. The map 1232 * is unlocked for the sleep and relocked before the return. 1233 */ 1234 static 1235 void 1236 vm_map_transition_wait(vm_map_t map) 1237 { 1238 vm_map_unlock(map); 1239 tsleep(map, 0, "vment", 0); 1240 vm_map_lock(map); 1241 } 1242 1243 /* 1244 * CLIP_CHECK_BACK 1245 * CLIP_CHECK_FWD 1246 * 1247 * When we do blocking operations with the map lock held it is 1248 * possible that a clip might have occured on our in-transit entry, 1249 * requiring an adjustment to the entry in our loop. These macros 1250 * help the pageable and clip_range code deal with the case. The 1251 * conditional costs virtually nothing if no clipping has occured. 1252 */ 1253 1254 #define CLIP_CHECK_BACK(entry, save_start) \ 1255 do { \ 1256 while (entry->start != save_start) { \ 1257 entry = entry->prev; \ 1258 KASSERT(entry != &map->header, ("bad entry clip")); \ 1259 } \ 1260 } while(0) 1261 1262 #define CLIP_CHECK_FWD(entry, save_end) \ 1263 do { \ 1264 while (entry->end != save_end) { \ 1265 entry = entry->next; \ 1266 KASSERT(entry != &map->header, ("bad entry clip")); \ 1267 } \ 1268 } while(0) 1269 1270 1271 /* 1272 * vm_map_clip_range: [ kernel use only ] 1273 * 1274 * Clip the specified range and return the base entry. The 1275 * range may cover several entries starting at the returned base 1276 * and the first and last entry in the covering sequence will be 1277 * properly clipped to the requested start and end address. 1278 * 1279 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1280 * flag. 1281 * 1282 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1283 * covered by the requested range. 1284 * 1285 * The map must be exclusively locked on entry and will remain locked 1286 * on return. If no range exists or the range contains holes and you 1287 * specified that no holes were allowed, NULL will be returned. This 1288 * routine may temporarily unlock the map in order avoid a deadlock when 1289 * sleeping. 1290 */ 1291 static 1292 vm_map_entry_t 1293 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1294 int *countp, int flags) 1295 { 1296 vm_map_entry_t start_entry; 1297 vm_map_entry_t entry; 1298 1299 /* 1300 * Locate the entry and effect initial clipping. The in-transition 1301 * case does not occur very often so do not try to optimize it. 1302 */ 1303 again: 1304 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1305 return (NULL); 1306 entry = start_entry; 1307 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1308 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1309 ++mycpu->gd_cnt.v_intrans_coll; 1310 ++mycpu->gd_cnt.v_intrans_wait; 1311 vm_map_transition_wait(map); 1312 /* 1313 * entry and/or start_entry may have been clipped while 1314 * we slept, or may have gone away entirely. We have 1315 * to restart from the lookup. 1316 */ 1317 goto again; 1318 } 1319 /* 1320 * Since we hold an exclusive map lock we do not have to restart 1321 * after clipping, even though clipping may block in zalloc. 1322 */ 1323 vm_map_clip_start(map, entry, start, countp); 1324 vm_map_clip_end(map, entry, end, countp); 1325 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1326 1327 /* 1328 * Scan entries covered by the range. When working on the next 1329 * entry a restart need only re-loop on the current entry which 1330 * we have already locked, since 'next' may have changed. Also, 1331 * even though entry is safe, it may have been clipped so we 1332 * have to iterate forwards through the clip after sleeping. 1333 */ 1334 while (entry->next != &map->header && entry->next->start < end) { 1335 vm_map_entry_t next = entry->next; 1336 1337 if (flags & MAP_CLIP_NO_HOLES) { 1338 if (next->start > entry->end) { 1339 vm_map_unclip_range(map, start_entry, 1340 start, entry->end, countp, flags); 1341 return(NULL); 1342 } 1343 } 1344 1345 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1346 vm_offset_t save_end = entry->end; 1347 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1348 ++mycpu->gd_cnt.v_intrans_coll; 1349 ++mycpu->gd_cnt.v_intrans_wait; 1350 vm_map_transition_wait(map); 1351 1352 /* 1353 * clips might have occured while we blocked. 1354 */ 1355 CLIP_CHECK_FWD(entry, save_end); 1356 CLIP_CHECK_BACK(start_entry, start); 1357 continue; 1358 } 1359 /* 1360 * No restart necessary even though clip_end may block, we 1361 * are holding the map lock. 1362 */ 1363 vm_map_clip_end(map, next, end, countp); 1364 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1365 entry = next; 1366 } 1367 if (flags & MAP_CLIP_NO_HOLES) { 1368 if (entry->end != end) { 1369 vm_map_unclip_range(map, start_entry, 1370 start, entry->end, countp, flags); 1371 return(NULL); 1372 } 1373 } 1374 return(start_entry); 1375 } 1376 1377 /* 1378 * vm_map_unclip_range: [ kernel use only ] 1379 * 1380 * Undo the effect of vm_map_clip_range(). You should pass the same 1381 * flags and the same range that you passed to vm_map_clip_range(). 1382 * This code will clear the in-transition flag on the entries and 1383 * wake up anyone waiting. This code will also simplify the sequence 1384 * and attempt to merge it with entries before and after the sequence. 1385 * 1386 * The map must be locked on entry and will remain locked on return. 1387 * 1388 * Note that you should also pass the start_entry returned by 1389 * vm_map_clip_range(). However, if you block between the two calls 1390 * with the map unlocked please be aware that the start_entry may 1391 * have been clipped and you may need to scan it backwards to find 1392 * the entry corresponding with the original start address. You are 1393 * responsible for this, vm_map_unclip_range() expects the correct 1394 * start_entry to be passed to it and will KASSERT otherwise. 1395 */ 1396 static 1397 void 1398 vm_map_unclip_range( 1399 vm_map_t map, 1400 vm_map_entry_t start_entry, 1401 vm_offset_t start, 1402 vm_offset_t end, 1403 int *countp, 1404 int flags) 1405 { 1406 vm_map_entry_t entry; 1407 1408 entry = start_entry; 1409 1410 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1411 while (entry != &map->header && entry->start < end) { 1412 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry)); 1413 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped")); 1414 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1415 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1416 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1417 wakeup(map); 1418 } 1419 entry = entry->next; 1420 } 1421 1422 /* 1423 * Simplification does not block so there is no restart case. 1424 */ 1425 entry = start_entry; 1426 while (entry != &map->header && entry->start < end) { 1427 vm_map_simplify_entry(map, entry, countp); 1428 entry = entry->next; 1429 } 1430 } 1431 1432 /* 1433 * vm_map_submap: [ kernel use only ] 1434 * 1435 * Mark the given range as handled by a subordinate map. 1436 * 1437 * This range must have been created with vm_map_find, 1438 * and no other operations may have been performed on this 1439 * range prior to calling vm_map_submap. 1440 * 1441 * Only a limited number of operations can be performed 1442 * within this rage after calling vm_map_submap: 1443 * vm_fault 1444 * [Don't try vm_map_copy!] 1445 * 1446 * To remove a submapping, one must first remove the 1447 * range from the superior map, and then destroy the 1448 * submap (if desired). [Better yet, don't try it.] 1449 */ 1450 int 1451 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1452 { 1453 vm_map_entry_t entry; 1454 int result = KERN_INVALID_ARGUMENT; 1455 int count; 1456 1457 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1458 vm_map_lock(map); 1459 1460 VM_MAP_RANGE_CHECK(map, start, end); 1461 1462 if (vm_map_lookup_entry(map, start, &entry)) { 1463 vm_map_clip_start(map, entry, start, &count); 1464 } else { 1465 entry = entry->next; 1466 } 1467 1468 vm_map_clip_end(map, entry, end, &count); 1469 1470 if ((entry->start == start) && (entry->end == end) && 1471 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1472 (entry->object.vm_object == NULL)) { 1473 entry->object.sub_map = submap; 1474 entry->maptype = VM_MAPTYPE_SUBMAP; 1475 result = KERN_SUCCESS; 1476 } 1477 vm_map_unlock(map); 1478 vm_map_entry_release(count); 1479 1480 return (result); 1481 } 1482 1483 /* 1484 * vm_map_protect: 1485 * 1486 * Sets the protection of the specified address region in the target map. 1487 * If "set_max" is specified, the maximum protection is to be set; 1488 * otherwise, only the current protection is affected. 1489 * 1490 * The protection is not applicable to submaps, but is applicable to normal 1491 * maps and maps governed by virtual page tables. For example, when operating 1492 * on a virtual page table our protection basically controls how COW occurs 1493 * on the backing object, whereas the virtual page table abstraction itself 1494 * is an abstraction for userland. 1495 */ 1496 int 1497 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1498 vm_prot_t new_prot, boolean_t set_max) 1499 { 1500 vm_map_entry_t current; 1501 vm_map_entry_t entry; 1502 int count; 1503 1504 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1505 vm_map_lock(map); 1506 1507 VM_MAP_RANGE_CHECK(map, start, end); 1508 1509 if (vm_map_lookup_entry(map, start, &entry)) { 1510 vm_map_clip_start(map, entry, start, &count); 1511 } else { 1512 entry = entry->next; 1513 } 1514 1515 /* 1516 * Make a first pass to check for protection violations. 1517 */ 1518 current = entry; 1519 while ((current != &map->header) && (current->start < end)) { 1520 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1521 vm_map_unlock(map); 1522 vm_map_entry_release(count); 1523 return (KERN_INVALID_ARGUMENT); 1524 } 1525 if ((new_prot & current->max_protection) != new_prot) { 1526 vm_map_unlock(map); 1527 vm_map_entry_release(count); 1528 return (KERN_PROTECTION_FAILURE); 1529 } 1530 current = current->next; 1531 } 1532 1533 /* 1534 * Go back and fix up protections. [Note that clipping is not 1535 * necessary the second time.] 1536 */ 1537 current = entry; 1538 1539 while ((current != &map->header) && (current->start < end)) { 1540 vm_prot_t old_prot; 1541 1542 vm_map_clip_end(map, current, end, &count); 1543 1544 old_prot = current->protection; 1545 if (set_max) { 1546 current->protection = 1547 (current->max_protection = new_prot) & 1548 old_prot; 1549 } else { 1550 current->protection = new_prot; 1551 } 1552 1553 /* 1554 * Update physical map if necessary. Worry about copy-on-write 1555 * here -- CHECK THIS XXX 1556 */ 1557 1558 if (current->protection != old_prot) { 1559 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1560 VM_PROT_ALL) 1561 1562 pmap_protect(map->pmap, current->start, 1563 current->end, 1564 current->protection & MASK(current)); 1565 #undef MASK 1566 } 1567 1568 vm_map_simplify_entry(map, current, &count); 1569 1570 current = current->next; 1571 } 1572 1573 vm_map_unlock(map); 1574 vm_map_entry_release(count); 1575 return (KERN_SUCCESS); 1576 } 1577 1578 /* 1579 * vm_map_madvise: 1580 * 1581 * This routine traverses a processes map handling the madvise 1582 * system call. Advisories are classified as either those effecting 1583 * the vm_map_entry structure, or those effecting the underlying 1584 * objects. 1585 * 1586 * The <value> argument is used for extended madvise calls. 1587 */ 1588 int 1589 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1590 int behav, off_t value) 1591 { 1592 vm_map_entry_t current, entry; 1593 int modify_map = 0; 1594 int error = 0; 1595 int count; 1596 1597 /* 1598 * Some madvise calls directly modify the vm_map_entry, in which case 1599 * we need to use an exclusive lock on the map and we need to perform 1600 * various clipping operations. Otherwise we only need a read-lock 1601 * on the map. 1602 */ 1603 1604 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1605 1606 switch(behav) { 1607 case MADV_NORMAL: 1608 case MADV_SEQUENTIAL: 1609 case MADV_RANDOM: 1610 case MADV_NOSYNC: 1611 case MADV_AUTOSYNC: 1612 case MADV_NOCORE: 1613 case MADV_CORE: 1614 case MADV_SETMAP: 1615 case MADV_INVAL: 1616 modify_map = 1; 1617 vm_map_lock(map); 1618 break; 1619 case MADV_WILLNEED: 1620 case MADV_DONTNEED: 1621 case MADV_FREE: 1622 vm_map_lock_read(map); 1623 break; 1624 default: 1625 vm_map_entry_release(count); 1626 return (EINVAL); 1627 } 1628 1629 /* 1630 * Locate starting entry and clip if necessary. 1631 */ 1632 1633 VM_MAP_RANGE_CHECK(map, start, end); 1634 1635 if (vm_map_lookup_entry(map, start, &entry)) { 1636 if (modify_map) 1637 vm_map_clip_start(map, entry, start, &count); 1638 } else { 1639 entry = entry->next; 1640 } 1641 1642 if (modify_map) { 1643 /* 1644 * madvise behaviors that are implemented in the vm_map_entry. 1645 * 1646 * We clip the vm_map_entry so that behavioral changes are 1647 * limited to the specified address range. 1648 */ 1649 for (current = entry; 1650 (current != &map->header) && (current->start < end); 1651 current = current->next 1652 ) { 1653 if (current->maptype == VM_MAPTYPE_SUBMAP) 1654 continue; 1655 1656 vm_map_clip_end(map, current, end, &count); 1657 1658 switch (behav) { 1659 case MADV_NORMAL: 1660 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1661 break; 1662 case MADV_SEQUENTIAL: 1663 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1664 break; 1665 case MADV_RANDOM: 1666 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1667 break; 1668 case MADV_NOSYNC: 1669 current->eflags |= MAP_ENTRY_NOSYNC; 1670 break; 1671 case MADV_AUTOSYNC: 1672 current->eflags &= ~MAP_ENTRY_NOSYNC; 1673 break; 1674 case MADV_NOCORE: 1675 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1676 break; 1677 case MADV_CORE: 1678 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1679 break; 1680 case MADV_INVAL: 1681 /* 1682 * Invalidate the related pmap entries, used 1683 * to flush portions of the real kernel's 1684 * pmap when the caller has removed or 1685 * modified existing mappings in a virtual 1686 * page table. 1687 */ 1688 pmap_remove(map->pmap, 1689 current->start, current->end); 1690 break; 1691 case MADV_SETMAP: 1692 /* 1693 * Set the page directory page for a map 1694 * governed by a virtual page table. Mark 1695 * the entry as being governed by a virtual 1696 * page table if it is not. 1697 * 1698 * XXX the page directory page is stored 1699 * in the avail_ssize field if the map_entry. 1700 * 1701 * XXX the map simplification code does not 1702 * compare this field so weird things may 1703 * happen if you do not apply this function 1704 * to the entire mapping governed by the 1705 * virtual page table. 1706 */ 1707 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 1708 error = EINVAL; 1709 break; 1710 } 1711 current->aux.master_pde = value; 1712 pmap_remove(map->pmap, 1713 current->start, current->end); 1714 break; 1715 default: 1716 error = EINVAL; 1717 break; 1718 } 1719 vm_map_simplify_entry(map, current, &count); 1720 } 1721 vm_map_unlock(map); 1722 } else { 1723 vm_pindex_t pindex; 1724 int count; 1725 1726 /* 1727 * madvise behaviors that are implemented in the underlying 1728 * vm_object. 1729 * 1730 * Since we don't clip the vm_map_entry, we have to clip 1731 * the vm_object pindex and count. 1732 * 1733 * NOTE! We currently do not support these functions on 1734 * virtual page tables. 1735 */ 1736 for (current = entry; 1737 (current != &map->header) && (current->start < end); 1738 current = current->next 1739 ) { 1740 vm_offset_t useStart; 1741 1742 if (current->maptype != VM_MAPTYPE_NORMAL) 1743 continue; 1744 1745 pindex = OFF_TO_IDX(current->offset); 1746 count = atop(current->end - current->start); 1747 useStart = current->start; 1748 1749 if (current->start < start) { 1750 pindex += atop(start - current->start); 1751 count -= atop(start - current->start); 1752 useStart = start; 1753 } 1754 if (current->end > end) 1755 count -= atop(current->end - end); 1756 1757 if (count <= 0) 1758 continue; 1759 1760 vm_object_madvise(current->object.vm_object, 1761 pindex, count, behav); 1762 1763 /* 1764 * Try to populate the page table. Mappings governed 1765 * by virtual page tables cannot be pre-populated 1766 * without a lot of work so don't try. 1767 */ 1768 if (behav == MADV_WILLNEED && 1769 current->maptype != VM_MAPTYPE_VPAGETABLE) { 1770 pmap_object_init_pt( 1771 map->pmap, 1772 useStart, 1773 current->protection, 1774 current->object.vm_object, 1775 pindex, 1776 (count << PAGE_SHIFT), 1777 MAP_PREFAULT_MADVISE 1778 ); 1779 } 1780 } 1781 vm_map_unlock_read(map); 1782 } 1783 vm_map_entry_release(count); 1784 return(error); 1785 } 1786 1787 1788 /* 1789 * vm_map_inherit: 1790 * 1791 * Sets the inheritance of the specified address 1792 * range in the target map. Inheritance 1793 * affects how the map will be shared with 1794 * child maps at the time of vm_map_fork. 1795 */ 1796 int 1797 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1798 vm_inherit_t new_inheritance) 1799 { 1800 vm_map_entry_t entry; 1801 vm_map_entry_t temp_entry; 1802 int count; 1803 1804 switch (new_inheritance) { 1805 case VM_INHERIT_NONE: 1806 case VM_INHERIT_COPY: 1807 case VM_INHERIT_SHARE: 1808 break; 1809 default: 1810 return (KERN_INVALID_ARGUMENT); 1811 } 1812 1813 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1814 vm_map_lock(map); 1815 1816 VM_MAP_RANGE_CHECK(map, start, end); 1817 1818 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1819 entry = temp_entry; 1820 vm_map_clip_start(map, entry, start, &count); 1821 } else 1822 entry = temp_entry->next; 1823 1824 while ((entry != &map->header) && (entry->start < end)) { 1825 vm_map_clip_end(map, entry, end, &count); 1826 1827 entry->inheritance = new_inheritance; 1828 1829 vm_map_simplify_entry(map, entry, &count); 1830 1831 entry = entry->next; 1832 } 1833 vm_map_unlock(map); 1834 vm_map_entry_release(count); 1835 return (KERN_SUCCESS); 1836 } 1837 1838 /* 1839 * Implement the semantics of mlock 1840 */ 1841 int 1842 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 1843 boolean_t new_pageable) 1844 { 1845 vm_map_entry_t entry; 1846 vm_map_entry_t start_entry; 1847 vm_offset_t end; 1848 int rv = KERN_SUCCESS; 1849 int count; 1850 1851 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1852 vm_map_lock(map); 1853 VM_MAP_RANGE_CHECK(map, start, real_end); 1854 end = real_end; 1855 1856 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 1857 if (start_entry == NULL) { 1858 vm_map_unlock(map); 1859 vm_map_entry_release(count); 1860 return (KERN_INVALID_ADDRESS); 1861 } 1862 1863 if (new_pageable == 0) { 1864 entry = start_entry; 1865 while ((entry != &map->header) && (entry->start < end)) { 1866 vm_offset_t save_start; 1867 vm_offset_t save_end; 1868 1869 /* 1870 * Already user wired or hard wired (trivial cases) 1871 */ 1872 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1873 entry = entry->next; 1874 continue; 1875 } 1876 if (entry->wired_count != 0) { 1877 entry->wired_count++; 1878 entry->eflags |= MAP_ENTRY_USER_WIRED; 1879 entry = entry->next; 1880 continue; 1881 } 1882 1883 /* 1884 * A new wiring requires instantiation of appropriate 1885 * management structures and the faulting in of the 1886 * page. 1887 */ 1888 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 1889 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1890 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1891 vm_map_entry_shadow(entry); 1892 } else if (entry->object.vm_object == NULL && 1893 !map->system_map) { 1894 vm_map_entry_allocate_object(entry); 1895 } 1896 } 1897 entry->wired_count++; 1898 entry->eflags |= MAP_ENTRY_USER_WIRED; 1899 1900 /* 1901 * Now fault in the area. Note that vm_fault_wire() 1902 * may release the map lock temporarily, it will be 1903 * relocked on return. The in-transition 1904 * flag protects the entries. 1905 */ 1906 save_start = entry->start; 1907 save_end = entry->end; 1908 rv = vm_fault_wire(map, entry, TRUE); 1909 if (rv) { 1910 CLIP_CHECK_BACK(entry, save_start); 1911 for (;;) { 1912 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 1913 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1914 entry->wired_count = 0; 1915 if (entry->end == save_end) 1916 break; 1917 entry = entry->next; 1918 KASSERT(entry != &map->header, ("bad entry clip during backout")); 1919 } 1920 end = save_start; /* unwire the rest */ 1921 break; 1922 } 1923 /* 1924 * note that even though the entry might have been 1925 * clipped, the USER_WIRED flag we set prevents 1926 * duplication so we do not have to do a 1927 * clip check. 1928 */ 1929 entry = entry->next; 1930 } 1931 1932 /* 1933 * If we failed fall through to the unwiring section to 1934 * unwire what we had wired so far. 'end' has already 1935 * been adjusted. 1936 */ 1937 if (rv) 1938 new_pageable = 1; 1939 1940 /* 1941 * start_entry might have been clipped if we unlocked the 1942 * map and blocked. No matter how clipped it has gotten 1943 * there should be a fragment that is on our start boundary. 1944 */ 1945 CLIP_CHECK_BACK(start_entry, start); 1946 } 1947 1948 /* 1949 * Deal with the unwiring case. 1950 */ 1951 if (new_pageable) { 1952 /* 1953 * This is the unwiring case. We must first ensure that the 1954 * range to be unwired is really wired down. We know there 1955 * are no holes. 1956 */ 1957 entry = start_entry; 1958 while ((entry != &map->header) && (entry->start < end)) { 1959 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1960 rv = KERN_INVALID_ARGUMENT; 1961 goto done; 1962 } 1963 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 1964 entry = entry->next; 1965 } 1966 1967 /* 1968 * Now decrement the wiring count for each region. If a region 1969 * becomes completely unwired, unwire its physical pages and 1970 * mappings. 1971 */ 1972 /* 1973 * The map entries are processed in a loop, checking to 1974 * make sure the entry is wired and asserting it has a wired 1975 * count. However, another loop was inserted more-or-less in 1976 * the middle of the unwiring path. This loop picks up the 1977 * "entry" loop variable from the first loop without first 1978 * setting it to start_entry. Naturally, the secound loop 1979 * is never entered and the pages backing the entries are 1980 * never unwired. This can lead to a leak of wired pages. 1981 */ 1982 entry = start_entry; 1983 while ((entry != &map->header) && (entry->start < end)) { 1984 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 1985 ("expected USER_WIRED on entry %p", entry)); 1986 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1987 entry->wired_count--; 1988 if (entry->wired_count == 0) 1989 vm_fault_unwire(map, entry); 1990 entry = entry->next; 1991 } 1992 } 1993 done: 1994 vm_map_unclip_range(map, start_entry, start, real_end, &count, 1995 MAP_CLIP_NO_HOLES); 1996 map->timestamp++; 1997 vm_map_unlock(map); 1998 vm_map_entry_release(count); 1999 return (rv); 2000 } 2001 2002 /* 2003 * vm_map_wire: 2004 * 2005 * Sets the pageability of the specified address 2006 * range in the target map. Regions specified 2007 * as not pageable require locked-down physical 2008 * memory and physical page maps. 2009 * 2010 * The map must not be locked, but a reference 2011 * must remain to the map throughout the call. 2012 * 2013 * This function may be called via the zalloc path and must properly 2014 * reserve map entries for kernel_map. 2015 */ 2016 int 2017 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2018 { 2019 vm_map_entry_t entry; 2020 vm_map_entry_t start_entry; 2021 vm_offset_t end; 2022 int rv = KERN_SUCCESS; 2023 int count; 2024 2025 if (kmflags & KM_KRESERVE) 2026 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2027 else 2028 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2029 vm_map_lock(map); 2030 VM_MAP_RANGE_CHECK(map, start, real_end); 2031 end = real_end; 2032 2033 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES); 2034 if (start_entry == NULL) { 2035 vm_map_unlock(map); 2036 rv = KERN_INVALID_ADDRESS; 2037 goto failure; 2038 } 2039 if ((kmflags & KM_PAGEABLE) == 0) { 2040 /* 2041 * Wiring. 2042 * 2043 * 1. Holding the write lock, we create any shadow or zero-fill 2044 * objects that need to be created. Then we clip each map 2045 * entry to the region to be wired and increment its wiring 2046 * count. We create objects before clipping the map entries 2047 * to avoid object proliferation. 2048 * 2049 * 2. We downgrade to a read lock, and call vm_fault_wire to 2050 * fault in the pages for any newly wired area (wired_count is 2051 * 1). 2052 * 2053 * Downgrading to a read lock for vm_fault_wire avoids a 2054 * possible deadlock with another process that may have faulted 2055 * on one of the pages to be wired (it would mark the page busy, 2056 * blocking us, then in turn block on the map lock that we 2057 * hold). Because of problems in the recursive lock package, 2058 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2059 * any actions that require the write lock must be done 2060 * beforehand. Because we keep the read lock on the map, the 2061 * copy-on-write status of the entries we modify here cannot 2062 * change. 2063 */ 2064 2065 entry = start_entry; 2066 while ((entry != &map->header) && (entry->start < end)) { 2067 /* 2068 * Trivial case if the entry is already wired 2069 */ 2070 if (entry->wired_count) { 2071 entry->wired_count++; 2072 entry = entry->next; 2073 continue; 2074 } 2075 2076 /* 2077 * The entry is being newly wired, we have to setup 2078 * appropriate management structures. A shadow 2079 * object is required for a copy-on-write region, 2080 * or a normal object for a zero-fill region. We 2081 * do not have to do this for entries that point to sub 2082 * maps because we won't hold the lock on the sub map. 2083 */ 2084 if (entry->maptype != VM_MAPTYPE_SUBMAP) { 2085 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 2086 if (copyflag && 2087 ((entry->protection & VM_PROT_WRITE) != 0)) { 2088 vm_map_entry_shadow(entry); 2089 } else if (entry->object.vm_object == NULL && 2090 !map->system_map) { 2091 vm_map_entry_allocate_object(entry); 2092 } 2093 } 2094 2095 entry->wired_count++; 2096 entry = entry->next; 2097 } 2098 2099 /* 2100 * Pass 2. 2101 */ 2102 2103 /* 2104 * HACK HACK HACK HACK 2105 * 2106 * Unlock the map to avoid deadlocks. The in-transit flag 2107 * protects us from most changes but note that 2108 * clipping may still occur. To prevent clipping from 2109 * occuring after the unlock, except for when we are 2110 * blocking in vm_fault_wire, we must run in a critical 2111 * section, otherwise our accesses to entry->start and 2112 * entry->end could be corrupted. We have to enter the 2113 * critical section prior to unlocking so start_entry does 2114 * not change out from under us at the very beginning of the 2115 * loop. 2116 * 2117 * HACK HACK HACK HACK 2118 */ 2119 2120 crit_enter(); 2121 2122 entry = start_entry; 2123 while (entry != &map->header && entry->start < end) { 2124 /* 2125 * If vm_fault_wire fails for any page we need to undo 2126 * what has been done. We decrement the wiring count 2127 * for those pages which have not yet been wired (now) 2128 * and unwire those that have (later). 2129 */ 2130 vm_offset_t save_start = entry->start; 2131 vm_offset_t save_end = entry->end; 2132 2133 if (entry->wired_count == 1) 2134 rv = vm_fault_wire(map, entry, FALSE); 2135 if (rv) { 2136 CLIP_CHECK_BACK(entry, save_start); 2137 for (;;) { 2138 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2139 entry->wired_count = 0; 2140 if (entry->end == save_end) 2141 break; 2142 entry = entry->next; 2143 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2144 } 2145 end = save_start; 2146 break; 2147 } 2148 CLIP_CHECK_FWD(entry, save_end); 2149 entry = entry->next; 2150 } 2151 crit_exit(); 2152 2153 /* 2154 * If a failure occured undo everything by falling through 2155 * to the unwiring code. 'end' has already been adjusted 2156 * appropriately. 2157 */ 2158 if (rv) 2159 kmflags |= KM_PAGEABLE; 2160 2161 /* 2162 * start_entry is still IN_TRANSITION but may have been 2163 * clipped since vm_fault_wire() unlocks and relocks the 2164 * map. No matter how clipped it has gotten there should 2165 * be a fragment that is on our start boundary. 2166 */ 2167 CLIP_CHECK_BACK(start_entry, start); 2168 } 2169 2170 if (kmflags & KM_PAGEABLE) { 2171 /* 2172 * This is the unwiring case. We must first ensure that the 2173 * range to be unwired is really wired down. We know there 2174 * are no holes. 2175 */ 2176 entry = start_entry; 2177 while ((entry != &map->header) && (entry->start < end)) { 2178 if (entry->wired_count == 0) { 2179 rv = KERN_INVALID_ARGUMENT; 2180 goto done; 2181 } 2182 entry = entry->next; 2183 } 2184 2185 /* 2186 * Now decrement the wiring count for each region. If a region 2187 * becomes completely unwired, unwire its physical pages and 2188 * mappings. 2189 */ 2190 entry = start_entry; 2191 while ((entry != &map->header) && (entry->start < end)) { 2192 entry->wired_count--; 2193 if (entry->wired_count == 0) 2194 vm_fault_unwire(map, entry); 2195 entry = entry->next; 2196 } 2197 } 2198 done: 2199 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2200 MAP_CLIP_NO_HOLES); 2201 map->timestamp++; 2202 vm_map_unlock(map); 2203 failure: 2204 if (kmflags & KM_KRESERVE) 2205 vm_map_entry_krelease(count); 2206 else 2207 vm_map_entry_release(count); 2208 return (rv); 2209 } 2210 2211 /* 2212 * vm_map_set_wired_quick() 2213 * 2214 * Mark a newly allocated address range as wired but do not fault in 2215 * the pages. The caller is expected to load the pages into the object. 2216 * 2217 * The map must be locked on entry and will remain locked on return. 2218 */ 2219 void 2220 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp) 2221 { 2222 vm_map_entry_t scan; 2223 vm_map_entry_t entry; 2224 2225 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2226 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) { 2227 KKASSERT(entry->wired_count == 0); 2228 entry->wired_count = 1; 2229 } 2230 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES); 2231 } 2232 2233 /* 2234 * vm_map_clean 2235 * 2236 * Push any dirty cached pages in the address range to their pager. 2237 * If syncio is TRUE, dirty pages are written synchronously. 2238 * If invalidate is TRUE, any cached pages are freed as well. 2239 * 2240 * Returns an error if any part of the specified range is not mapped. 2241 */ 2242 int 2243 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, 2244 boolean_t invalidate) 2245 { 2246 vm_map_entry_t current; 2247 vm_map_entry_t entry; 2248 vm_size_t size; 2249 vm_object_t object; 2250 vm_ooffset_t offset; 2251 2252 vm_map_lock_read(map); 2253 VM_MAP_RANGE_CHECK(map, start, end); 2254 if (!vm_map_lookup_entry(map, start, &entry)) { 2255 vm_map_unlock_read(map); 2256 return (KERN_INVALID_ADDRESS); 2257 } 2258 /* 2259 * Make a first pass to check for holes. 2260 */ 2261 for (current = entry; current->start < end; current = current->next) { 2262 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2263 vm_map_unlock_read(map); 2264 return (KERN_INVALID_ARGUMENT); 2265 } 2266 if (end > current->end && 2267 (current->next == &map->header || 2268 current->end != current->next->start)) { 2269 vm_map_unlock_read(map); 2270 return (KERN_INVALID_ADDRESS); 2271 } 2272 } 2273 2274 if (invalidate) 2275 pmap_remove(vm_map_pmap(map), start, end); 2276 /* 2277 * Make a second pass, cleaning/uncaching pages from the indicated 2278 * objects as we go. 2279 */ 2280 for (current = entry; current->start < end; current = current->next) { 2281 offset = current->offset + (start - current->start); 2282 size = (end <= current->end ? end : current->end) - start; 2283 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2284 vm_map_t smap; 2285 vm_map_entry_t tentry; 2286 vm_size_t tsize; 2287 2288 smap = current->object.sub_map; 2289 vm_map_lock_read(smap); 2290 vm_map_lookup_entry(smap, offset, &tentry); 2291 tsize = tentry->end - offset; 2292 if (tsize < size) 2293 size = tsize; 2294 object = tentry->object.vm_object; 2295 offset = tentry->offset + (offset - tentry->start); 2296 vm_map_unlock_read(smap); 2297 } else { 2298 object = current->object.vm_object; 2299 } 2300 /* 2301 * Note that there is absolutely no sense in writing out 2302 * anonymous objects, so we track down the vnode object 2303 * to write out. 2304 * We invalidate (remove) all pages from the address space 2305 * anyway, for semantic correctness. 2306 * 2307 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2308 * may start out with a NULL object. 2309 */ 2310 while (object && object->backing_object) { 2311 offset += object->backing_object_offset; 2312 object = object->backing_object; 2313 if (object->size < OFF_TO_IDX( offset + size)) 2314 size = IDX_TO_OFF(object->size) - offset; 2315 } 2316 if (object && (object->type == OBJT_VNODE) && 2317 (current->protection & VM_PROT_WRITE)) { 2318 /* 2319 * Flush pages if writing is allowed, invalidate them 2320 * if invalidation requested. Pages undergoing I/O 2321 * will be ignored by vm_object_page_remove(). 2322 * 2323 * We cannot lock the vnode and then wait for paging 2324 * to complete without deadlocking against vm_fault. 2325 * Instead we simply call vm_object_page_remove() and 2326 * allow it to block internally on a page-by-page 2327 * basis when it encounters pages undergoing async 2328 * I/O. 2329 */ 2330 int flags; 2331 2332 vm_object_reference(object); 2333 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2334 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2335 flags |= invalidate ? OBJPC_INVAL : 0; 2336 2337 /* 2338 * When operating on a virtual page table just 2339 * flush the whole object. XXX we probably ought 2340 * to 2341 */ 2342 switch(current->maptype) { 2343 case VM_MAPTYPE_NORMAL: 2344 vm_object_page_clean(object, 2345 OFF_TO_IDX(offset), 2346 OFF_TO_IDX(offset + size + PAGE_MASK), 2347 flags); 2348 break; 2349 case VM_MAPTYPE_VPAGETABLE: 2350 vm_object_page_clean(object, 0, 0, flags); 2351 break; 2352 } 2353 vn_unlock(((struct vnode *)object->handle)); 2354 vm_object_deallocate(object); 2355 } 2356 if (object && invalidate && 2357 ((object->type == OBJT_VNODE) || 2358 (object->type == OBJT_DEVICE))) { 2359 int clean_only = 2360 (object->type == OBJT_DEVICE) ? FALSE : TRUE; 2361 vm_object_reference(object); 2362 switch(current->maptype) { 2363 case VM_MAPTYPE_NORMAL: 2364 vm_object_page_remove(object, 2365 OFF_TO_IDX(offset), 2366 OFF_TO_IDX(offset + size + PAGE_MASK), 2367 clean_only); 2368 break; 2369 case VM_MAPTYPE_VPAGETABLE: 2370 vm_object_page_remove(object, 0, 0, clean_only); 2371 break; 2372 } 2373 vm_object_deallocate(object); 2374 } 2375 start += size; 2376 } 2377 2378 vm_map_unlock_read(map); 2379 return (KERN_SUCCESS); 2380 } 2381 2382 /* 2383 * vm_map_entry_unwire: [ internal use only ] 2384 * 2385 * Make the region specified by this entry pageable. 2386 * 2387 * The map in question should be locked. 2388 * [This is the reason for this routine's existence.] 2389 */ 2390 static void 2391 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2392 { 2393 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2394 entry->wired_count = 0; 2395 vm_fault_unwire(map, entry); 2396 } 2397 2398 /* 2399 * vm_map_entry_delete: [ internal use only ] 2400 * 2401 * Deallocate the given entry from the target map. 2402 */ 2403 static void 2404 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2405 { 2406 vm_map_entry_unlink(map, entry); 2407 map->size -= entry->end - entry->start; 2408 2409 switch(entry->maptype) { 2410 case VM_MAPTYPE_NORMAL: 2411 case VM_MAPTYPE_VPAGETABLE: 2412 vm_object_deallocate(entry->object.vm_object); 2413 break; 2414 default: 2415 break; 2416 } 2417 2418 vm_map_entry_dispose(map, entry, countp); 2419 } 2420 2421 /* 2422 * vm_map_delete: [ internal use only ] 2423 * 2424 * Deallocates the given address range from the target 2425 * map. 2426 */ 2427 int 2428 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2429 { 2430 vm_object_t object; 2431 vm_map_entry_t entry; 2432 vm_map_entry_t first_entry; 2433 2434 again: 2435 /* 2436 * Find the start of the region, and clip it. Set entry to point 2437 * at the first record containing the requested address or, if no 2438 * such record exists, the next record with a greater address. The 2439 * loop will run from this point until a record beyond the termination 2440 * address is encountered. 2441 * 2442 * map->hint must be adjusted to not point to anything we delete, 2443 * so set it to the entry prior to the one being deleted. 2444 * 2445 * GGG see other GGG comment. 2446 */ 2447 if (vm_map_lookup_entry(map, start, &first_entry)) { 2448 entry = first_entry; 2449 vm_map_clip_start(map, entry, start, countp); 2450 map->hint = entry->prev; /* possible problem XXX */ 2451 } else { 2452 map->hint = first_entry; /* possible problem XXX */ 2453 entry = first_entry->next; 2454 } 2455 2456 /* 2457 * If a hole opens up prior to the current first_free then 2458 * adjust first_free. As with map->hint, map->first_free 2459 * cannot be left set to anything we might delete. 2460 */ 2461 if (entry == &map->header) { 2462 map->first_free = &map->header; 2463 } else if (map->first_free->start >= start) { 2464 map->first_free = entry->prev; 2465 } 2466 2467 /* 2468 * Step through all entries in this region 2469 */ 2470 2471 while ((entry != &map->header) && (entry->start < end)) { 2472 vm_map_entry_t next; 2473 vm_offset_t s, e; 2474 vm_pindex_t offidxstart, offidxend, count; 2475 2476 /* 2477 * If we hit an in-transition entry we have to sleep and 2478 * retry. It's easier (and not really slower) to just retry 2479 * since this case occurs so rarely and the hint is already 2480 * pointing at the right place. We have to reset the 2481 * start offset so as not to accidently delete an entry 2482 * another process just created in vacated space. 2483 */ 2484 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2485 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2486 start = entry->start; 2487 ++mycpu->gd_cnt.v_intrans_coll; 2488 ++mycpu->gd_cnt.v_intrans_wait; 2489 vm_map_transition_wait(map); 2490 goto again; 2491 } 2492 vm_map_clip_end(map, entry, end, countp); 2493 2494 s = entry->start; 2495 e = entry->end; 2496 next = entry->next; 2497 2498 offidxstart = OFF_TO_IDX(entry->offset); 2499 count = OFF_TO_IDX(e - s); 2500 object = entry->object.vm_object; 2501 2502 /* 2503 * Unwire before removing addresses from the pmap; otherwise, 2504 * unwiring will put the entries back in the pmap. 2505 */ 2506 if (entry->wired_count != 0) 2507 vm_map_entry_unwire(map, entry); 2508 2509 offidxend = offidxstart + count; 2510 2511 if ((object == kernel_object) || (object == kmem_object)) { 2512 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2513 } else { 2514 pmap_remove(map->pmap, s, e); 2515 if (object != NULL && 2516 object->ref_count != 1 && 2517 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2518 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2519 vm_object_collapse(object); 2520 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2521 if (object->type == OBJT_SWAP) { 2522 swap_pager_freespace(object, offidxstart, count); 2523 } 2524 if (offidxend >= object->size && 2525 offidxstart < object->size) { 2526 object->size = offidxstart; 2527 } 2528 } 2529 } 2530 2531 /* 2532 * Delete the entry (which may delete the object) only after 2533 * removing all pmap entries pointing to its pages. 2534 * (Otherwise, its page frames may be reallocated, and any 2535 * modify bits will be set in the wrong object!) 2536 */ 2537 vm_map_entry_delete(map, entry, countp); 2538 entry = next; 2539 } 2540 return (KERN_SUCCESS); 2541 } 2542 2543 /* 2544 * vm_map_remove: 2545 * 2546 * Remove the given address range from the target map. 2547 * This is the exported form of vm_map_delete. 2548 */ 2549 int 2550 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2551 { 2552 int result; 2553 int count; 2554 2555 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2556 vm_map_lock(map); 2557 VM_MAP_RANGE_CHECK(map, start, end); 2558 result = vm_map_delete(map, start, end, &count); 2559 vm_map_unlock(map); 2560 vm_map_entry_release(count); 2561 2562 return (result); 2563 } 2564 2565 /* 2566 * vm_map_check_protection: 2567 * 2568 * Assert that the target map allows the specified 2569 * privilege on the entire address region given. 2570 * The entire region must be allocated. 2571 */ 2572 boolean_t 2573 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2574 vm_prot_t protection) 2575 { 2576 vm_map_entry_t entry; 2577 vm_map_entry_t tmp_entry; 2578 2579 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2580 return (FALSE); 2581 } 2582 entry = tmp_entry; 2583 2584 while (start < end) { 2585 if (entry == &map->header) { 2586 return (FALSE); 2587 } 2588 /* 2589 * No holes allowed! 2590 */ 2591 2592 if (start < entry->start) { 2593 return (FALSE); 2594 } 2595 /* 2596 * Check protection associated with entry. 2597 */ 2598 2599 if ((entry->protection & protection) != protection) { 2600 return (FALSE); 2601 } 2602 /* go to next entry */ 2603 2604 start = entry->end; 2605 entry = entry->next; 2606 } 2607 return (TRUE); 2608 } 2609 2610 /* 2611 * Split the pages in a map entry into a new object. This affords 2612 * easier removal of unused pages, and keeps object inheritance from 2613 * being a negative impact on memory usage. 2614 */ 2615 static void 2616 vm_map_split(vm_map_entry_t entry) 2617 { 2618 vm_page_t m; 2619 vm_object_t orig_object, new_object, source; 2620 vm_offset_t s, e; 2621 vm_pindex_t offidxstart, offidxend, idx; 2622 vm_size_t size; 2623 vm_ooffset_t offset; 2624 2625 orig_object = entry->object.vm_object; 2626 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 2627 return; 2628 if (orig_object->ref_count <= 1) 2629 return; 2630 2631 offset = entry->offset; 2632 s = entry->start; 2633 e = entry->end; 2634 2635 offidxstart = OFF_TO_IDX(offset); 2636 offidxend = offidxstart + OFF_TO_IDX(e - s); 2637 size = offidxend - offidxstart; 2638 2639 new_object = vm_pager_allocate(orig_object->type, NULL, 2640 IDX_TO_OFF(size), VM_PROT_ALL, 0); 2641 if (new_object == NULL) 2642 return; 2643 2644 source = orig_object->backing_object; 2645 if (source != NULL) { 2646 vm_object_reference(source); /* Referenced by new_object */ 2647 LIST_INSERT_HEAD(&source->shadow_head, 2648 new_object, shadow_list); 2649 vm_object_clear_flag(source, OBJ_ONEMAPPING); 2650 new_object->backing_object_offset = 2651 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 2652 new_object->backing_object = source; 2653 source->shadow_count++; 2654 source->generation++; 2655 } 2656 2657 for (idx = 0; idx < size; idx++) { 2658 vm_page_t m; 2659 2660 /* 2661 * A critical section is required to avoid a race between 2662 * the lookup and an interrupt/unbusy/free and our busy 2663 * check. 2664 */ 2665 crit_enter(); 2666 retry: 2667 m = vm_page_lookup(orig_object, offidxstart + idx); 2668 if (m == NULL) { 2669 crit_exit(); 2670 continue; 2671 } 2672 2673 /* 2674 * We must wait for pending I/O to complete before we can 2675 * rename the page. 2676 * 2677 * We do not have to VM_PROT_NONE the page as mappings should 2678 * not be changed by this operation. 2679 */ 2680 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2681 goto retry; 2682 vm_page_busy(m); 2683 vm_page_rename(m, new_object, idx); 2684 /* page automatically made dirty by rename and cache handled */ 2685 vm_page_busy(m); 2686 crit_exit(); 2687 } 2688 2689 if (orig_object->type == OBJT_SWAP) { 2690 vm_object_pip_add(orig_object, 1); 2691 /* 2692 * copy orig_object pages into new_object 2693 * and destroy unneeded pages in 2694 * shadow object. 2695 */ 2696 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2697 vm_object_pip_wakeup(orig_object); 2698 } 2699 2700 /* 2701 * Wakeup the pages we played with. No spl protection is needed 2702 * for a simple wakeup. 2703 */ 2704 for (idx = 0; idx < size; idx++) { 2705 m = vm_page_lookup(new_object, idx); 2706 if (m) 2707 vm_page_wakeup(m); 2708 } 2709 2710 entry->object.vm_object = new_object; 2711 entry->offset = 0LL; 2712 vm_object_deallocate(orig_object); 2713 } 2714 2715 /* 2716 * vm_map_copy_entry: 2717 * 2718 * Copies the contents of the source entry to the destination 2719 * entry. The entries *must* be aligned properly. 2720 */ 2721 static void 2722 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 2723 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 2724 { 2725 vm_object_t src_object; 2726 2727 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP) 2728 return; 2729 if (src_entry->maptype == VM_MAPTYPE_SUBMAP) 2730 return; 2731 2732 if (src_entry->wired_count == 0) { 2733 /* 2734 * If the source entry is marked needs_copy, it is already 2735 * write-protected. 2736 */ 2737 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2738 pmap_protect(src_map->pmap, 2739 src_entry->start, 2740 src_entry->end, 2741 src_entry->protection & ~VM_PROT_WRITE); 2742 } 2743 2744 /* 2745 * Make a copy of the object. 2746 */ 2747 if ((src_object = src_entry->object.vm_object) != NULL) { 2748 if ((src_object->handle == NULL) && 2749 (src_object->type == OBJT_DEFAULT || 2750 src_object->type == OBJT_SWAP)) { 2751 vm_object_collapse(src_object); 2752 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2753 vm_map_split(src_entry); 2754 src_object = src_entry->object.vm_object; 2755 } 2756 } 2757 2758 vm_object_reference(src_object); 2759 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2760 dst_entry->object.vm_object = src_object; 2761 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2762 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2763 dst_entry->offset = src_entry->offset; 2764 } else { 2765 dst_entry->object.vm_object = NULL; 2766 dst_entry->offset = 0; 2767 } 2768 2769 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2770 dst_entry->end - dst_entry->start, src_entry->start); 2771 } else { 2772 /* 2773 * Of course, wired down pages can't be set copy-on-write. 2774 * Cause wired pages to be copied into the new map by 2775 * simulating faults (the new pages are pageable) 2776 */ 2777 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2778 } 2779 } 2780 2781 /* 2782 * vmspace_fork: 2783 * Create a new process vmspace structure and vm_map 2784 * based on those of an existing process. The new map 2785 * is based on the old map, according to the inheritance 2786 * values on the regions in that map. 2787 * 2788 * The source map must not be locked. 2789 */ 2790 struct vmspace * 2791 vmspace_fork(struct vmspace *vm1) 2792 { 2793 struct vmspace *vm2; 2794 vm_map_t old_map = &vm1->vm_map; 2795 vm_map_t new_map; 2796 vm_map_entry_t old_entry; 2797 vm_map_entry_t new_entry; 2798 vm_object_t object; 2799 int count; 2800 2801 vm_map_lock(old_map); 2802 old_map->infork = 1; 2803 2804 /* 2805 * XXX Note: upcalls are not copied. 2806 */ 2807 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2808 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2809 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 2810 new_map = &vm2->vm_map; /* XXX */ 2811 new_map->timestamp = 1; 2812 2813 count = 0; 2814 old_entry = old_map->header.next; 2815 while (old_entry != &old_map->header) { 2816 ++count; 2817 old_entry = old_entry->next; 2818 } 2819 2820 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 2821 2822 old_entry = old_map->header.next; 2823 while (old_entry != &old_map->header) { 2824 if (old_entry->maptype == VM_MAPTYPE_SUBMAP) 2825 panic("vm_map_fork: encountered a submap"); 2826 2827 switch (old_entry->inheritance) { 2828 case VM_INHERIT_NONE: 2829 break; 2830 2831 case VM_INHERIT_SHARE: 2832 /* 2833 * Clone the entry, creating the shared object if 2834 * necessary. 2835 */ 2836 object = old_entry->object.vm_object; 2837 if (object == NULL) { 2838 vm_map_entry_allocate_object(old_entry); 2839 object = old_entry->object.vm_object; 2840 } 2841 2842 /* 2843 * Add the reference before calling vm_map_entry_shadow 2844 * to insure that a shadow object is created. 2845 */ 2846 vm_object_reference(object); 2847 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2848 vm_map_entry_shadow(old_entry); 2849 /* Transfer the second reference too. */ 2850 vm_object_reference( 2851 old_entry->object.vm_object); 2852 vm_object_deallocate(object); 2853 object = old_entry->object.vm_object; 2854 } 2855 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2856 2857 /* 2858 * Clone the entry, referencing the shared object. 2859 */ 2860 new_entry = vm_map_entry_create(new_map, &count); 2861 *new_entry = *old_entry; 2862 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2863 new_entry->wired_count = 0; 2864 2865 /* 2866 * Insert the entry into the new map -- we know we're 2867 * inserting at the end of the new map. 2868 */ 2869 2870 vm_map_entry_link(new_map, new_map->header.prev, 2871 new_entry); 2872 2873 /* 2874 * Update the physical map 2875 */ 2876 2877 pmap_copy(new_map->pmap, old_map->pmap, 2878 new_entry->start, 2879 (old_entry->end - old_entry->start), 2880 old_entry->start); 2881 break; 2882 2883 case VM_INHERIT_COPY: 2884 /* 2885 * Clone the entry and link into the map. 2886 */ 2887 new_entry = vm_map_entry_create(new_map, &count); 2888 *new_entry = *old_entry; 2889 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2890 new_entry->wired_count = 0; 2891 new_entry->object.vm_object = NULL; 2892 vm_map_entry_link(new_map, new_map->header.prev, 2893 new_entry); 2894 vm_map_copy_entry(old_map, new_map, old_entry, 2895 new_entry); 2896 break; 2897 } 2898 old_entry = old_entry->next; 2899 } 2900 2901 new_map->size = old_map->size; 2902 old_map->infork = 0; 2903 vm_map_unlock(old_map); 2904 vm_map_entry_release(count); 2905 2906 return (vm2); 2907 } 2908 2909 int 2910 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2911 vm_prot_t prot, vm_prot_t max, int cow) 2912 { 2913 vm_map_entry_t prev_entry; 2914 vm_map_entry_t new_stack_entry; 2915 vm_size_t init_ssize; 2916 int rv; 2917 int count; 2918 2919 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2920 return (KERN_NO_SPACE); 2921 2922 if (max_ssize < sgrowsiz) 2923 init_ssize = max_ssize; 2924 else 2925 init_ssize = sgrowsiz; 2926 2927 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2928 vm_map_lock(map); 2929 2930 /* If addr is already mapped, no go */ 2931 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2932 vm_map_unlock(map); 2933 vm_map_entry_release(count); 2934 return (KERN_NO_SPACE); 2935 } 2936 2937 /* If we would blow our VMEM resource limit, no go */ 2938 if (map->size + init_ssize > 2939 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2940 vm_map_unlock(map); 2941 vm_map_entry_release(count); 2942 return (KERN_NO_SPACE); 2943 } 2944 2945 /* If we can't accomodate max_ssize in the current mapping, 2946 * no go. However, we need to be aware that subsequent user 2947 * mappings might map into the space we have reserved for 2948 * stack, and currently this space is not protected. 2949 * 2950 * Hopefully we will at least detect this condition 2951 * when we try to grow the stack. 2952 */ 2953 if ((prev_entry->next != &map->header) && 2954 (prev_entry->next->start < addrbos + max_ssize)) { 2955 vm_map_unlock(map); 2956 vm_map_entry_release(count); 2957 return (KERN_NO_SPACE); 2958 } 2959 2960 /* We initially map a stack of only init_ssize. We will 2961 * grow as needed later. Since this is to be a grow 2962 * down stack, we map at the top of the range. 2963 * 2964 * Note: we would normally expect prot and max to be 2965 * VM_PROT_ALL, and cow to be 0. Possibly we should 2966 * eliminate these as input parameters, and just 2967 * pass these values here in the insert call. 2968 */ 2969 rv = vm_map_insert(map, &count, 2970 NULL, 0, addrbos + max_ssize - init_ssize, 2971 addrbos + max_ssize, 2972 VM_MAPTYPE_NORMAL, 2973 prot, max, 2974 cow); 2975 2976 /* Now set the avail_ssize amount */ 2977 if (rv == KERN_SUCCESS) { 2978 if (prev_entry != &map->header) 2979 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 2980 new_stack_entry = prev_entry->next; 2981 if (new_stack_entry->end != addrbos + max_ssize || 2982 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2983 panic ("Bad entry start/end for new stack entry"); 2984 else 2985 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 2986 } 2987 2988 vm_map_unlock(map); 2989 vm_map_entry_release(count); 2990 return (rv); 2991 } 2992 2993 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2994 * desired address is already mapped, or if we successfully grow 2995 * the stack. Also returns KERN_SUCCESS if addr is outside the 2996 * stack range (this is strange, but preserves compatibility with 2997 * the grow function in vm_machdep.c). 2998 */ 2999 int 3000 vm_map_growstack (struct proc *p, vm_offset_t addr) 3001 { 3002 vm_map_entry_t prev_entry; 3003 vm_map_entry_t stack_entry; 3004 vm_map_entry_t new_stack_entry; 3005 struct vmspace *vm = p->p_vmspace; 3006 vm_map_t map = &vm->vm_map; 3007 vm_offset_t end; 3008 int grow_amount; 3009 int rv = KERN_SUCCESS; 3010 int is_procstack; 3011 int use_read_lock = 1; 3012 int count; 3013 3014 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3015 Retry: 3016 if (use_read_lock) 3017 vm_map_lock_read(map); 3018 else 3019 vm_map_lock(map); 3020 3021 /* If addr is already in the entry range, no need to grow.*/ 3022 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3023 goto done; 3024 3025 if ((stack_entry = prev_entry->next) == &map->header) 3026 goto done; 3027 if (prev_entry == &map->header) 3028 end = stack_entry->start - stack_entry->aux.avail_ssize; 3029 else 3030 end = prev_entry->end; 3031 3032 /* This next test mimics the old grow function in vm_machdep.c. 3033 * It really doesn't quite make sense, but we do it anyway 3034 * for compatibility. 3035 * 3036 * If not growable stack, return success. This signals the 3037 * caller to proceed as he would normally with normal vm. 3038 */ 3039 if (stack_entry->aux.avail_ssize < 1 || 3040 addr >= stack_entry->start || 3041 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3042 goto done; 3043 } 3044 3045 /* Find the minimum grow amount */ 3046 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3047 if (grow_amount > stack_entry->aux.avail_ssize) { 3048 rv = KERN_NO_SPACE; 3049 goto done; 3050 } 3051 3052 /* If there is no longer enough space between the entries 3053 * nogo, and adjust the available space. Note: this 3054 * should only happen if the user has mapped into the 3055 * stack area after the stack was created, and is 3056 * probably an error. 3057 * 3058 * This also effectively destroys any guard page the user 3059 * might have intended by limiting the stack size. 3060 */ 3061 if (grow_amount > stack_entry->start - end) { 3062 if (use_read_lock && vm_map_lock_upgrade(map)) { 3063 use_read_lock = 0; 3064 goto Retry; 3065 } 3066 use_read_lock = 0; 3067 stack_entry->aux.avail_ssize = stack_entry->start - end; 3068 rv = KERN_NO_SPACE; 3069 goto done; 3070 } 3071 3072 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3073 3074 /* If this is the main process stack, see if we're over the 3075 * stack limit. 3076 */ 3077 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3078 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3079 rv = KERN_NO_SPACE; 3080 goto done; 3081 } 3082 3083 /* Round up the grow amount modulo SGROWSIZ */ 3084 grow_amount = roundup (grow_amount, sgrowsiz); 3085 if (grow_amount > stack_entry->aux.avail_ssize) { 3086 grow_amount = stack_entry->aux.avail_ssize; 3087 } 3088 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3089 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3090 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3091 ctob(vm->vm_ssize); 3092 } 3093 3094 /* If we would blow our VMEM resource limit, no go */ 3095 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3096 rv = KERN_NO_SPACE; 3097 goto done; 3098 } 3099 3100 if (use_read_lock && vm_map_lock_upgrade(map)) { 3101 use_read_lock = 0; 3102 goto Retry; 3103 } 3104 use_read_lock = 0; 3105 3106 /* Get the preliminary new entry start value */ 3107 addr = stack_entry->start - grow_amount; 3108 3109 /* If this puts us into the previous entry, cut back our growth 3110 * to the available space. Also, see the note above. 3111 */ 3112 if (addr < end) { 3113 stack_entry->aux.avail_ssize = stack_entry->start - end; 3114 addr = end; 3115 } 3116 3117 rv = vm_map_insert(map, &count, 3118 NULL, 0, addr, stack_entry->start, 3119 VM_MAPTYPE_NORMAL, 3120 VM_PROT_ALL, VM_PROT_ALL, 3121 0); 3122 3123 /* Adjust the available stack space by the amount we grew. */ 3124 if (rv == KERN_SUCCESS) { 3125 if (prev_entry != &map->header) 3126 vm_map_clip_end(map, prev_entry, addr, &count); 3127 new_stack_entry = prev_entry->next; 3128 if (new_stack_entry->end != stack_entry->start || 3129 new_stack_entry->start != addr) 3130 panic ("Bad stack grow start/end in new stack entry"); 3131 else { 3132 new_stack_entry->aux.avail_ssize = 3133 stack_entry->aux.avail_ssize - 3134 (new_stack_entry->end - new_stack_entry->start); 3135 if (is_procstack) 3136 vm->vm_ssize += btoc(new_stack_entry->end - 3137 new_stack_entry->start); 3138 } 3139 } 3140 3141 done: 3142 if (use_read_lock) 3143 vm_map_unlock_read(map); 3144 else 3145 vm_map_unlock(map); 3146 vm_map_entry_release(count); 3147 return (rv); 3148 } 3149 3150 /* 3151 * Unshare the specified VM space for exec. If other processes are 3152 * mapped to it, then create a new one. The new vmspace is null. 3153 */ 3154 3155 void 3156 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3157 { 3158 struct vmspace *oldvmspace = p->p_vmspace; 3159 struct vmspace *newvmspace; 3160 vm_map_t map = &p->p_vmspace->vm_map; 3161 3162 /* 3163 * If we are execing a resident vmspace we fork it, otherwise 3164 * we create a new vmspace. Note that exitingcnt and upcalls 3165 * are not copied to the new vmspace. 3166 */ 3167 if (vmcopy) { 3168 newvmspace = vmspace_fork(vmcopy); 3169 } else { 3170 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3171 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3172 (caddr_t)&oldvmspace->vm_endcopy - 3173 (caddr_t)&oldvmspace->vm_startcopy); 3174 } 3175 3176 /* 3177 * This code is written like this for prototype purposes. The 3178 * goal is to avoid running down the vmspace here, but let the 3179 * other process's that are still using the vmspace to finally 3180 * run it down. Even though there is little or no chance of blocking 3181 * here, it is a good idea to keep this form for future mods. 3182 */ 3183 p->p_vmspace = newvmspace; 3184 pmap_pinit2(vmspace_pmap(newvmspace)); 3185 if (p == curproc) 3186 pmap_activate(p); 3187 vmspace_free(oldvmspace); 3188 } 3189 3190 /* 3191 * Unshare the specified VM space for forcing COW. This 3192 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3193 * 3194 * The exitingcnt test is not strictly necessary but has been 3195 * included for code sanity (to make the code a bit more deterministic). 3196 */ 3197 3198 void 3199 vmspace_unshare(struct proc *p) 3200 { 3201 struct vmspace *oldvmspace = p->p_vmspace; 3202 struct vmspace *newvmspace; 3203 3204 if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0) 3205 return; 3206 newvmspace = vmspace_fork(oldvmspace); 3207 p->p_vmspace = newvmspace; 3208 pmap_pinit2(vmspace_pmap(newvmspace)); 3209 if (p == curproc) 3210 pmap_activate(p); 3211 vmspace_free(oldvmspace); 3212 } 3213 3214 /* 3215 * vm_map_lookup: 3216 * 3217 * Finds the VM object, offset, and 3218 * protection for a given virtual address in the 3219 * specified map, assuming a page fault of the 3220 * type specified. 3221 * 3222 * Leaves the map in question locked for read; return 3223 * values are guaranteed until a vm_map_lookup_done 3224 * call is performed. Note that the map argument 3225 * is in/out; the returned map must be used in 3226 * the call to vm_map_lookup_done. 3227 * 3228 * A handle (out_entry) is returned for use in 3229 * vm_map_lookup_done, to make that fast. 3230 * 3231 * If a lookup is requested with "write protection" 3232 * specified, the map may be changed to perform virtual 3233 * copying operations, although the data referenced will 3234 * remain the same. 3235 */ 3236 int 3237 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3238 vm_offset_t vaddr, 3239 vm_prot_t fault_typea, 3240 vm_map_entry_t *out_entry, /* OUT */ 3241 vm_object_t *object, /* OUT */ 3242 vm_pindex_t *pindex, /* OUT */ 3243 vm_prot_t *out_prot, /* OUT */ 3244 boolean_t *wired) /* OUT */ 3245 { 3246 vm_map_entry_t entry; 3247 vm_map_t map = *var_map; 3248 vm_prot_t prot; 3249 vm_prot_t fault_type = fault_typea; 3250 int use_read_lock = 1; 3251 int rv = KERN_SUCCESS; 3252 3253 RetryLookup: 3254 if (use_read_lock) 3255 vm_map_lock_read(map); 3256 else 3257 vm_map_lock(map); 3258 3259 /* 3260 * If the map has an interesting hint, try it before calling full 3261 * blown lookup routine. 3262 */ 3263 entry = map->hint; 3264 *out_entry = entry; 3265 3266 if ((entry == &map->header) || 3267 (vaddr < entry->start) || (vaddr >= entry->end)) { 3268 vm_map_entry_t tmp_entry; 3269 3270 /* 3271 * Entry was either not a valid hint, or the vaddr was not 3272 * contained in the entry, so do a full lookup. 3273 */ 3274 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 3275 rv = KERN_INVALID_ADDRESS; 3276 goto done; 3277 } 3278 3279 entry = tmp_entry; 3280 *out_entry = entry; 3281 } 3282 3283 /* 3284 * Handle submaps. 3285 */ 3286 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3287 vm_map_t old_map = map; 3288 3289 *var_map = map = entry->object.sub_map; 3290 if (use_read_lock) 3291 vm_map_unlock_read(old_map); 3292 else 3293 vm_map_unlock(old_map); 3294 use_read_lock = 1; 3295 goto RetryLookup; 3296 } 3297 3298 /* 3299 * Check whether this task is allowed to have this page. 3300 * Note the special case for MAP_ENTRY_COW 3301 * pages with an override. This is to implement a forced 3302 * COW for debuggers. 3303 */ 3304 3305 if (fault_type & VM_PROT_OVERRIDE_WRITE) 3306 prot = entry->max_protection; 3307 else 3308 prot = entry->protection; 3309 3310 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3311 if ((fault_type & prot) != fault_type) { 3312 rv = KERN_PROTECTION_FAILURE; 3313 goto done; 3314 } 3315 3316 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3317 (entry->eflags & MAP_ENTRY_COW) && 3318 (fault_type & VM_PROT_WRITE) && 3319 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 3320 rv = KERN_PROTECTION_FAILURE; 3321 goto done; 3322 } 3323 3324 /* 3325 * If this page is not pageable, we have to get it for all possible 3326 * accesses. 3327 */ 3328 *wired = (entry->wired_count != 0); 3329 if (*wired) 3330 prot = fault_type = entry->protection; 3331 3332 /* 3333 * Virtual page tables may need to update the accessed (A) bit 3334 * in a page table entry. Upgrade the fault to a write fault for 3335 * that case if the map will support it. If the map does not support 3336 * it the page table entry simply will not be updated. 3337 */ 3338 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 3339 if (prot & VM_PROT_WRITE) 3340 fault_type |= VM_PROT_WRITE; 3341 } 3342 3343 /* 3344 * If the entry was copy-on-write, we either ... 3345 */ 3346 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3347 /* 3348 * If we want to write the page, we may as well handle that 3349 * now since we've got the map locked. 3350 * 3351 * If we don't need to write the page, we just demote the 3352 * permissions allowed. 3353 */ 3354 3355 if (fault_type & VM_PROT_WRITE) { 3356 /* 3357 * Make a new object, and place it in the object 3358 * chain. Note that no new references have appeared 3359 * -- one just moved from the map to the new 3360 * object. 3361 */ 3362 3363 if (use_read_lock && vm_map_lock_upgrade(map)) { 3364 use_read_lock = 0; 3365 goto RetryLookup; 3366 } 3367 use_read_lock = 0; 3368 3369 vm_map_entry_shadow(entry); 3370 } else { 3371 /* 3372 * We're attempting to read a copy-on-write page -- 3373 * don't allow writes. 3374 */ 3375 3376 prot &= ~VM_PROT_WRITE; 3377 } 3378 } 3379 3380 /* 3381 * Create an object if necessary. 3382 */ 3383 if (entry->object.vm_object == NULL && 3384 !map->system_map) { 3385 if (use_read_lock && vm_map_lock_upgrade(map)) { 3386 use_read_lock = 0; 3387 goto RetryLookup; 3388 } 3389 use_read_lock = 0; 3390 vm_map_entry_allocate_object(entry); 3391 } 3392 3393 /* 3394 * Return the object/offset from this entry. If the entry was 3395 * copy-on-write or empty, it has been fixed up. 3396 */ 3397 3398 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3399 *object = entry->object.vm_object; 3400 3401 /* 3402 * Return whether this is the only map sharing this data. On 3403 * success we return with a read lock held on the map. On failure 3404 * we return with the map unlocked. 3405 */ 3406 *out_prot = prot; 3407 done: 3408 if (rv == KERN_SUCCESS) { 3409 if (use_read_lock == 0) 3410 vm_map_lock_downgrade(map); 3411 } else if (use_read_lock) { 3412 vm_map_unlock_read(map); 3413 } else { 3414 vm_map_unlock(map); 3415 } 3416 return (rv); 3417 } 3418 3419 /* 3420 * vm_map_lookup_done: 3421 * 3422 * Releases locks acquired by a vm_map_lookup 3423 * (according to the handle returned by that lookup). 3424 */ 3425 3426 void 3427 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 3428 { 3429 /* 3430 * Unlock the main-level map 3431 */ 3432 vm_map_unlock_read(map); 3433 if (count) 3434 vm_map_entry_release(count); 3435 } 3436 3437 #include "opt_ddb.h" 3438 #ifdef DDB 3439 #include <sys/kernel.h> 3440 3441 #include <ddb/ddb.h> 3442 3443 /* 3444 * vm_map_print: [ debug ] 3445 */ 3446 DB_SHOW_COMMAND(map, vm_map_print) 3447 { 3448 static int nlines; 3449 /* XXX convert args. */ 3450 vm_map_t map = (vm_map_t)addr; 3451 boolean_t full = have_addr; 3452 3453 vm_map_entry_t entry; 3454 3455 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3456 (void *)map, 3457 (void *)map->pmap, map->nentries, map->timestamp); 3458 nlines++; 3459 3460 if (!full && db_indent) 3461 return; 3462 3463 db_indent += 2; 3464 for (entry = map->header.next; entry != &map->header; 3465 entry = entry->next) { 3466 db_iprintf("map entry %p: start=%p, end=%p\n", 3467 (void *)entry, (void *)entry->start, (void *)entry->end); 3468 nlines++; 3469 { 3470 static char *inheritance_name[4] = 3471 {"share", "copy", "none", "donate_copy"}; 3472 3473 db_iprintf(" prot=%x/%x/%s", 3474 entry->protection, 3475 entry->max_protection, 3476 inheritance_name[(int)(unsigned char)entry->inheritance]); 3477 if (entry->wired_count != 0) 3478 db_printf(", wired"); 3479 } 3480 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 3481 /* XXX no %qd in kernel. Truncate entry->offset. */ 3482 db_printf(", share=%p, offset=0x%lx\n", 3483 (void *)entry->object.sub_map, 3484 (long)entry->offset); 3485 nlines++; 3486 if ((entry->prev == &map->header) || 3487 (entry->prev->object.sub_map != 3488 entry->object.sub_map)) { 3489 db_indent += 2; 3490 vm_map_print((db_expr_t)(intptr_t) 3491 entry->object.sub_map, 3492 full, 0, (char *)0); 3493 db_indent -= 2; 3494 } 3495 } else { 3496 /* XXX no %qd in kernel. Truncate entry->offset. */ 3497 db_printf(", object=%p, offset=0x%lx", 3498 (void *)entry->object.vm_object, 3499 (long)entry->offset); 3500 if (entry->eflags & MAP_ENTRY_COW) 3501 db_printf(", copy (%s)", 3502 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3503 db_printf("\n"); 3504 nlines++; 3505 3506 if ((entry->prev == &map->header) || 3507 (entry->prev->object.vm_object != 3508 entry->object.vm_object)) { 3509 db_indent += 2; 3510 vm_object_print((db_expr_t)(intptr_t) 3511 entry->object.vm_object, 3512 full, 0, (char *)0); 3513 nlines += 4; 3514 db_indent -= 2; 3515 } 3516 } 3517 } 3518 db_indent -= 2; 3519 if (db_indent == 0) 3520 nlines = 0; 3521 } 3522 3523 3524 DB_SHOW_COMMAND(procvm, procvm) 3525 { 3526 struct proc *p; 3527 3528 if (have_addr) { 3529 p = (struct proc *) addr; 3530 } else { 3531 p = curproc; 3532 } 3533 3534 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3535 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3536 (void *)vmspace_pmap(p->p_vmspace)); 3537 3538 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3539 } 3540 3541 #endif /* DDB */ 3542