xref: /dflybsd-src/sys/vm/vm_map.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.51 2006/10/21 04:28:22 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 #include <sys/tree.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 #define VMEPERCPU	2
138 
139 static struct vm_zone mapentzone_store, mapzone_store;
140 static vm_zone_t mapentzone, mapzone, vmspace_zone;
141 static struct vm_object mapentobj, mapobj;
142 
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145 static struct vm_map map_init[MAX_KMAP];
146 
147 static void vm_map_entry_shadow(vm_map_entry_t entry);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 		vm_map_entry_t);
156 static void vm_map_split (vm_map_entry_t);
157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
158 
159 void
160 vm_map_startup(void)
161 {
162 	mapzone = &mapzone_store;
163 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
164 		map_init, MAX_KMAP);
165 	mapentzone = &mapentzone_store;
166 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
167 		map_entry_init, MAX_MAPENT);
168 }
169 
170 /*
171  * Red black tree functions
172  */
173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
175 
176 /* a->start is address, and the only field has to be initialized */
177 static int
178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
179 {
180 	if (a->start < b->start)
181 		return(-1);
182 	else if (a->start > b->start)
183 		return(1);
184 	return(0);
185 }
186 
187 /*
188  * Allocate a vmspace structure, including a vm_map and pmap,
189  * and initialize those structures.  The refcnt is set to 1.
190  * The remaining fields must be initialized by the caller.
191  */
192 struct vmspace *
193 vmspace_alloc(vm_offset_t min, vm_offset_t max)
194 {
195 	struct vmspace *vm;
196 
197 	vm = zalloc(vmspace_zone);
198 	bzero(&vm->vm_startcopy,
199 		(char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
200 	vm_map_init(&vm->vm_map, min, max);
201 	pmap_pinit(vmspace_pmap(vm));
202 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
203 	vm->vm_refcnt = 1;
204 	vm->vm_shm = NULL;
205 	vm->vm_exitingcnt = 0;
206 	return (vm);
207 }
208 
209 void
210 vm_init2(void)
211 {
212 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
213 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
214 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
215 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
216 	pmap_init2();
217 	vm_object_init2();
218 }
219 
220 static __inline void
221 vmspace_dofree(struct vmspace *vm)
222 {
223 	int count;
224 
225 	/*
226 	 * Make sure any SysV shm is freed, it might not have in
227 	 * exit1()
228 	 */
229 	shmexit(vm);
230 
231 	KKASSERT(vm->vm_upcalls == NULL);
232 
233 	/*
234 	 * Lock the map, to wait out all other references to it.
235 	 * Delete all of the mappings and pages they hold, then call
236 	 * the pmap module to reclaim anything left.
237 	 */
238 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
239 	vm_map_lock(&vm->vm_map);
240 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
241 		vm->vm_map.max_offset, &count);
242 	vm_map_unlock(&vm->vm_map);
243 	vm_map_entry_release(count);
244 
245 	pmap_release(vmspace_pmap(vm));
246 	zfree(vmspace_zone, vm);
247 }
248 
249 void
250 vmspace_free(struct vmspace *vm)
251 {
252 	if (vm->vm_refcnt == 0)
253 		panic("vmspace_free: attempt to free already freed vmspace");
254 
255 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
256 		vmspace_dofree(vm);
257 }
258 
259 void
260 vmspace_exitfree(struct proc *p)
261 {
262 	struct vmspace *vm;
263 
264 	vm = p->p_vmspace;
265 	p->p_vmspace = NULL;
266 
267 	/*
268 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
269 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
270 	 * exitingcnt may increment above 0 and drop back down to zero
271 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
272 	 * may also increment above 0 and drop back down to zero several
273 	 * times while vm_exitingcnt is held non-zero.
274 	 *
275 	 * The last wait on the exiting child's vmspace will clean up
276 	 * the remainder of the vmspace.
277 	 */
278 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
279 		vmspace_dofree(vm);
280 }
281 
282 /*
283  * vmspace_swap_count() - count the approximate swap useage in pages for a
284  *			  vmspace.
285  *
286  *	Swap useage is determined by taking the proportional swap used by
287  *	VM objects backing the VM map.  To make up for fractional losses,
288  *	if the VM object has any swap use at all the associated map entries
289  *	count for at least 1 swap page.
290  */
291 int
292 vmspace_swap_count(struct vmspace *vmspace)
293 {
294 	vm_map_t map = &vmspace->vm_map;
295 	vm_map_entry_t cur;
296 	vm_object_t object;
297 	int count = 0;
298 	int n;
299 
300 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
301 		switch(cur->maptype) {
302 		case VM_MAPTYPE_NORMAL:
303 		case VM_MAPTYPE_VPAGETABLE:
304 			if ((object = cur->object.vm_object) == NULL)
305 				break;
306 			if (object->type != OBJT_SWAP)
307 				break;
308 			n = (cur->end - cur->start) / PAGE_SIZE;
309 			if (object->un_pager.swp.swp_bcount) {
310 				count += object->un_pager.swp.swp_bcount *
311 				    SWAP_META_PAGES * n / object->size + 1;
312 			}
313 			break;
314 		default:
315 			break;
316 		}
317 	}
318 	return(count);
319 }
320 
321 
322 /*
323  *	vm_map_create:
324  *
325  *	Creates and returns a new empty VM map with
326  *	the given physical map structure, and having
327  *	the given lower and upper address bounds.
328  */
329 vm_map_t
330 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
331 {
332 	vm_map_t result;
333 
334 	result = zalloc(mapzone);
335 	vm_map_init(result, min, max);
336 	result->pmap = pmap;
337 	return (result);
338 }
339 
340 /*
341  * Initialize an existing vm_map structure
342  * such as that in the vmspace structure.
343  * The pmap is set elsewhere.
344  */
345 void
346 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
347 {
348 	map->header.next = map->header.prev = &map->header;
349 	RB_INIT(&map->rb_root);
350 	map->nentries = 0;
351 	map->size = 0;
352 	map->system_map = 0;
353 	map->infork = 0;
354 	map->min_offset = min;
355 	map->max_offset = max;
356 	map->first_free = &map->header;
357 	map->hint = &map->header;
358 	map->timestamp = 0;
359 	lockinit(&map->lock, "thrd_sleep", 0, 0);
360 }
361 
362 /*
363  * Shadow the vm_map_entry's object.  This typically needs to be done when
364  * a write fault is taken on an entry which had previously been cloned by
365  * fork().  The shared object (which might be NULL) must become private so
366  * we add a shadow layer above it.
367  *
368  * Object allocation for anonymous mappings is defered as long as possible.
369  * When creating a shadow, however, the underlying object must be instantiated
370  * so it can be shared.
371  *
372  * If the map segment is governed by a virtual page table then it is
373  * possible to address offsets beyond the mapped area.  Just allocate
374  * a maximally sized object for this case.
375  */
376 static
377 void
378 vm_map_entry_shadow(vm_map_entry_t entry)
379 {
380 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
381 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
382 				 0x7FFFFFFF);	/* XXX */
383 	} else {
384 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
385 				 atop(entry->end - entry->start));
386 	}
387 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
388 }
389 
390 /*
391  * Allocate an object for a vm_map_entry.
392  *
393  * Object allocation for anonymous mappings is defered as long as possible.
394  * This function is called when we can defer no longer, generally when a map
395  * entry might be split or forked or takes a page fault.
396  *
397  * If the map segment is governed by a virtual page table then it is
398  * possible to address offsets beyond the mapped area.  Just allocate
399  * a maximally sized object for this case.
400  */
401 void
402 vm_map_entry_allocate_object(vm_map_entry_t entry)
403 {
404 	vm_object_t obj;
405 
406 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
407 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
408 	} else {
409 		obj = vm_object_allocate(OBJT_DEFAULT,
410 					 atop(entry->end - entry->start));
411 	}
412 	entry->object.vm_object = obj;
413 	entry->offset = 0;
414 }
415 
416 /*
417  *      vm_map_entry_reserve_cpu_init:
418  *
419  *	Set an initial negative count so the first attempt to reserve
420  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
421  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
422  *	map a new page for vm_map_entry structures.  SMP systems are
423  *	particularly sensitive.
424  *
425  *	This routine is called in early boot so we cannot just call
426  *	vm_map_entry_reserve().
427  *
428  *	May be called for a gd other then mycpu, but may only be called
429  *	during early boot.
430  */
431 void
432 vm_map_entry_reserve_cpu_init(globaldata_t gd)
433 {
434 	vm_map_entry_t entry;
435 	int i;
436 
437 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
438 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
439 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
440 		entry->next = gd->gd_vme_base;
441 		gd->gd_vme_base = entry;
442 	}
443 }
444 
445 /*
446  *	vm_map_entry_reserve:
447  *
448  *	Reserves vm_map_entry structures so code later on can manipulate
449  *	map_entry structures within a locked map without blocking trying
450  *	to allocate a new vm_map_entry.
451  */
452 int
453 vm_map_entry_reserve(int count)
454 {
455 	struct globaldata *gd = mycpu;
456 	vm_map_entry_t entry;
457 
458 	crit_enter();
459 
460 	/*
461 	 * Make sure we have enough structures in gd_vme_base to handle
462 	 * the reservation request.
463 	 */
464 	while (gd->gd_vme_avail < count) {
465 		entry = zalloc(mapentzone);
466 		entry->next = gd->gd_vme_base;
467 		gd->gd_vme_base = entry;
468 		++gd->gd_vme_avail;
469 	}
470 	gd->gd_vme_avail -= count;
471 	crit_exit();
472 	return(count);
473 }
474 
475 /*
476  *	vm_map_entry_release:
477  *
478  *	Releases previously reserved vm_map_entry structures that were not
479  *	used.  If we have too much junk in our per-cpu cache clean some of
480  *	it out.
481  */
482 void
483 vm_map_entry_release(int count)
484 {
485 	struct globaldata *gd = mycpu;
486 	vm_map_entry_t entry;
487 
488 	crit_enter();
489 	gd->gd_vme_avail += count;
490 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
491 		entry = gd->gd_vme_base;
492 		KKASSERT(entry != NULL);
493 		gd->gd_vme_base = entry->next;
494 		--gd->gd_vme_avail;
495 		crit_exit();
496 		zfree(mapentzone, entry);
497 		crit_enter();
498 	}
499 	crit_exit();
500 }
501 
502 /*
503  *	vm_map_entry_kreserve:
504  *
505  *	Reserve map entry structures for use in kernel_map itself.  These
506  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
507  *	was inited.  This function is used by zalloc() to avoid a recursion
508  *	when zalloc() itself needs to allocate additional kernel memory.
509  *
510  *	This function works like the normal reserve but does not load the
511  *	vm_map_entry cache (because that would result in an infinite
512  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
513  *
514  *	Any caller of this function must be sure to renormalize after
515  *	potentially eating entries to ensure that the reserve supply
516  *	remains intact.
517  */
518 int
519 vm_map_entry_kreserve(int count)
520 {
521 	struct globaldata *gd = mycpu;
522 
523 	crit_enter();
524 	gd->gd_vme_avail -= count;
525 	crit_exit();
526 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
527 	return(count);
528 }
529 
530 /*
531  *	vm_map_entry_krelease:
532  *
533  *	Release previously reserved map entries for kernel_map.  We do not
534  *	attempt to clean up like the normal release function as this would
535  *	cause an unnecessary (but probably not fatal) deep procedure call.
536  */
537 void
538 vm_map_entry_krelease(int count)
539 {
540 	struct globaldata *gd = mycpu;
541 
542 	crit_enter();
543 	gd->gd_vme_avail += count;
544 	crit_exit();
545 }
546 
547 /*
548  *	vm_map_entry_create:	[ internal use only ]
549  *
550  *	Allocates a VM map entry for insertion.  No entry fields are filled
551  *	in.
552  *
553  *	This routine may be called from an interrupt thread but not a FAST
554  *	interrupt.  This routine may recurse the map lock.
555  */
556 static vm_map_entry_t
557 vm_map_entry_create(vm_map_t map, int *countp)
558 {
559 	struct globaldata *gd = mycpu;
560 	vm_map_entry_t entry;
561 
562 	KKASSERT(*countp > 0);
563 	--*countp;
564 	crit_enter();
565 	entry = gd->gd_vme_base;
566 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
567 	gd->gd_vme_base = entry->next;
568 	crit_exit();
569 	return(entry);
570 }
571 
572 /*
573  *	vm_map_entry_dispose:	[ internal use only ]
574  *
575  *	Dispose of a vm_map_entry that is no longer being referenced.  This
576  *	function may be called from an interrupt.
577  */
578 static void
579 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
580 {
581 	struct globaldata *gd = mycpu;
582 
583 	KKASSERT(map->hint != entry);
584 	KKASSERT(map->first_free != entry);
585 
586 	++*countp;
587 	crit_enter();
588 	entry->next = gd->gd_vme_base;
589 	gd->gd_vme_base = entry;
590 	crit_exit();
591 }
592 
593 
594 /*
595  *	vm_map_entry_{un,}link:
596  *
597  *	Insert/remove entries from maps.
598  */
599 static __inline void
600 vm_map_entry_link(vm_map_t map,
601 		  vm_map_entry_t after_where,
602 		  vm_map_entry_t entry)
603 {
604 	map->nentries++;
605 	entry->prev = after_where;
606 	entry->next = after_where->next;
607 	entry->next->prev = entry;
608 	after_where->next = entry;
609 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
610 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
611 }
612 
613 static __inline void
614 vm_map_entry_unlink(vm_map_t map,
615 		    vm_map_entry_t entry)
616 {
617 	vm_map_entry_t prev;
618 	vm_map_entry_t next;
619 
620 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
621 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
622 	prev = entry->prev;
623 	next = entry->next;
624 	next->prev = prev;
625 	prev->next = next;
626 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
627 	map->nentries--;
628 }
629 
630 /*
631  *	vm_map_lookup_entry:	[ internal use only ]
632  *
633  *	Finds the map entry containing (or
634  *	immediately preceding) the specified address
635  *	in the given map; the entry is returned
636  *	in the "entry" parameter.  The boolean
637  *	result indicates whether the address is
638  *	actually contained in the map.
639  */
640 boolean_t
641 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
642     vm_map_entry_t *entry /* OUT */)
643 {
644 	vm_map_entry_t tmp;
645 	vm_map_entry_t last;
646 
647 #if 0
648 	/*
649 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
650 	 * the hint code with the red-black lookup meets with system crashes
651 	 * and lockups.  We do not yet know why.
652 	 *
653 	 * It is possible that the problem is related to the setting
654 	 * of the hint during map_entry deletion, in the code specified
655 	 * at the GGG comment later on in this file.
656 	 */
657 	/*
658 	 * Quickly check the cached hint, there's a good chance of a match.
659 	 */
660 	if (map->hint != &map->header) {
661 		tmp = map->hint;
662 		if (address >= tmp->start && address < tmp->end) {
663 			*entry = tmp;
664 			return(TRUE);
665 		}
666 	}
667 #endif
668 
669 	/*
670 	 * Locate the record from the top of the tree.  'last' tracks the
671 	 * closest prior record and is returned if no match is found, which
672 	 * in binary tree terms means tracking the most recent right-branch
673 	 * taken.  If there is no prior record, &map->header is returned.
674 	 */
675 	last = &map->header;
676 	tmp = RB_ROOT(&map->rb_root);
677 
678 	while (tmp) {
679 		if (address >= tmp->start) {
680 			if (address < tmp->end) {
681 				*entry = tmp;
682 				map->hint = tmp;
683 				return(TRUE);
684 			}
685 			last = tmp;
686 			tmp = RB_RIGHT(tmp, rb_entry);
687 		} else {
688 			tmp = RB_LEFT(tmp, rb_entry);
689 		}
690 	}
691 	*entry = last;
692 	return (FALSE);
693 }
694 
695 /*
696  *	vm_map_insert:
697  *
698  *	Inserts the given whole VM object into the target
699  *	map at the specified address range.  The object's
700  *	size should match that of the address range.
701  *
702  *	Requires that the map be locked, and leaves it so.  Requires that
703  *	sufficient vm_map_entry structures have been reserved and tracks
704  *	the use via countp.
705  *
706  *	If object is non-NULL, ref count must be bumped by caller
707  *	prior to making call to account for the new entry.
708  */
709 int
710 vm_map_insert(vm_map_t map, int *countp,
711 	      vm_object_t object, vm_ooffset_t offset,
712 	      vm_offset_t start, vm_offset_t end,
713 	      vm_maptype_t maptype,
714 	      vm_prot_t prot, vm_prot_t max,
715 	      int cow)
716 {
717 	vm_map_entry_t new_entry;
718 	vm_map_entry_t prev_entry;
719 	vm_map_entry_t temp_entry;
720 	vm_eflags_t protoeflags;
721 
722 	/*
723 	 * Check that the start and end points are not bogus.
724 	 */
725 
726 	if ((start < map->min_offset) || (end > map->max_offset) ||
727 	    (start >= end))
728 		return (KERN_INVALID_ADDRESS);
729 
730 	/*
731 	 * Find the entry prior to the proposed starting address; if it's part
732 	 * of an existing entry, this range is bogus.
733 	 */
734 
735 	if (vm_map_lookup_entry(map, start, &temp_entry))
736 		return (KERN_NO_SPACE);
737 
738 	prev_entry = temp_entry;
739 
740 	/*
741 	 * Assert that the next entry doesn't overlap the end point.
742 	 */
743 
744 	if ((prev_entry->next != &map->header) &&
745 	    (prev_entry->next->start < end))
746 		return (KERN_NO_SPACE);
747 
748 	protoeflags = 0;
749 
750 	if (cow & MAP_COPY_ON_WRITE)
751 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
752 
753 	if (cow & MAP_NOFAULT) {
754 		protoeflags |= MAP_ENTRY_NOFAULT;
755 
756 		KASSERT(object == NULL,
757 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
758 	}
759 	if (cow & MAP_DISABLE_SYNCER)
760 		protoeflags |= MAP_ENTRY_NOSYNC;
761 	if (cow & MAP_DISABLE_COREDUMP)
762 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
763 
764 	if (object) {
765 		/*
766 		 * When object is non-NULL, it could be shared with another
767 		 * process.  We have to set or clear OBJ_ONEMAPPING
768 		 * appropriately.
769 		 */
770 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
771 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
772 		}
773 	}
774 	else if ((prev_entry != &map->header) &&
775 		 (prev_entry->eflags == protoeflags) &&
776 		 (prev_entry->end == start) &&
777 		 (prev_entry->wired_count == 0) &&
778 		 prev_entry->maptype == maptype &&
779 		 ((prev_entry->object.vm_object == NULL) ||
780 		  vm_object_coalesce(prev_entry->object.vm_object,
781 				     OFF_TO_IDX(prev_entry->offset),
782 				     (vm_size_t)(prev_entry->end - prev_entry->start),
783 				     (vm_size_t)(end - prev_entry->end)))) {
784 		/*
785 		 * We were able to extend the object.  Determine if we
786 		 * can extend the previous map entry to include the
787 		 * new range as well.
788 		 */
789 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
790 		    (prev_entry->protection == prot) &&
791 		    (prev_entry->max_protection == max)) {
792 			map->size += (end - prev_entry->end);
793 			prev_entry->end = end;
794 			vm_map_simplify_entry(map, prev_entry, countp);
795 			return (KERN_SUCCESS);
796 		}
797 
798 		/*
799 		 * If we can extend the object but cannot extend the
800 		 * map entry, we have to create a new map entry.  We
801 		 * must bump the ref count on the extended object to
802 		 * account for it.  object may be NULL.
803 		 */
804 		object = prev_entry->object.vm_object;
805 		offset = prev_entry->offset +
806 			(prev_entry->end - prev_entry->start);
807 		vm_object_reference(object);
808 	}
809 
810 	/*
811 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
812 	 * in things like the buffer map where we manage kva but do not manage
813 	 * backing objects.
814 	 */
815 
816 	/*
817 	 * Create a new entry
818 	 */
819 
820 	new_entry = vm_map_entry_create(map, countp);
821 	new_entry->start = start;
822 	new_entry->end = end;
823 
824 	new_entry->maptype = maptype;
825 	new_entry->eflags = protoeflags;
826 	new_entry->object.vm_object = object;
827 	new_entry->offset = offset;
828 	new_entry->aux.master_pde = 0;
829 
830 	new_entry->inheritance = VM_INHERIT_DEFAULT;
831 	new_entry->protection = prot;
832 	new_entry->max_protection = max;
833 	new_entry->wired_count = 0;
834 
835 	/*
836 	 * Insert the new entry into the list
837 	 */
838 
839 	vm_map_entry_link(map, prev_entry, new_entry);
840 	map->size += new_entry->end - new_entry->start;
841 
842 	/*
843 	 * Update the free space hint
844 	 */
845 	if ((map->first_free == prev_entry) &&
846 	    (prev_entry->end >= new_entry->start)) {
847 		map->first_free = new_entry;
848 	}
849 
850 #if 0
851 	/*
852 	 * Temporarily removed to avoid MAP_STACK panic, due to
853 	 * MAP_STACK being a huge hack.  Will be added back in
854 	 * when MAP_STACK (and the user stack mapping) is fixed.
855 	 */
856 	/*
857 	 * It may be possible to simplify the entry
858 	 */
859 	vm_map_simplify_entry(map, new_entry, countp);
860 #endif
861 
862 	/*
863 	 * Try to pre-populate the page table.  Mappings governed by virtual
864 	 * page tables cannot be prepopulated without a lot of work, so
865 	 * don't try.
866 	 */
867 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
868 	    maptype != VM_MAPTYPE_VPAGETABLE) {
869 		pmap_object_init_pt(map->pmap, start, prot,
870 				    object, OFF_TO_IDX(offset), end - start,
871 				    cow & MAP_PREFAULT_PARTIAL);
872 	}
873 
874 	return (KERN_SUCCESS);
875 }
876 
877 /*
878  * Find sufficient space for `length' bytes in the given map, starting at
879  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
880  *
881  * This function will returned an arbitrarily aligned pointer.  If no
882  * particular alignment is required you should pass align as 1.  Note that
883  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
884  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
885  * argument.
886  *
887  * 'align' should be a power of 2 but is not required to be.
888  */
889 int
890 vm_map_findspace(
891 	vm_map_t map,
892 	vm_offset_t start,
893 	vm_size_t length,
894 	vm_offset_t align,
895 	vm_offset_t *addr)
896 {
897 	vm_map_entry_t entry, next;
898 	vm_offset_t end;
899 	vm_offset_t align_mask;
900 
901 	if (start < map->min_offset)
902 		start = map->min_offset;
903 	if (start > map->max_offset)
904 		return (1);
905 
906 	/*
907 	 * If the alignment is not a power of 2 we will have to use
908 	 * a mod/division, set align_mask to a special value.
909 	 */
910 	if ((align | (align - 1)) + 1 != (align << 1))
911 		align_mask = (vm_offset_t)-1;
912 	else
913 		align_mask = align - 1;
914 
915 retry:
916 	/*
917 	 * Look for the first possible address; if there's already something
918 	 * at this address, we have to start after it.
919 	 */
920 	if (start == map->min_offset) {
921 		if ((entry = map->first_free) != &map->header)
922 			start = entry->end;
923 	} else {
924 		vm_map_entry_t tmp;
925 
926 		if (vm_map_lookup_entry(map, start, &tmp))
927 			start = tmp->end;
928 		entry = tmp;
929 	}
930 
931 	/*
932 	 * Look through the rest of the map, trying to fit a new region in the
933 	 * gap between existing regions, or after the very last region.
934 	 */
935 	for (;; start = (entry = next)->end) {
936 		/*
937 		 * Adjust the proposed start by the requested alignment,
938 		 * be sure that we didn't wrap the address.
939 		 */
940 		if (align_mask == (vm_offset_t)-1)
941 			end = ((start + align - 1) / align) * align;
942 		else
943 			end = (start + align_mask) & ~align_mask;
944 		if (end < start)
945 			return (1);
946 		start = end;
947 		/*
948 		 * Find the end of the proposed new region.  Be sure we didn't
949 		 * go beyond the end of the map, or wrap around the address.
950 		 * Then check to see if this is the last entry or if the
951 		 * proposed end fits in the gap between this and the next
952 		 * entry.
953 		 */
954 		end = start + length;
955 		if (end > map->max_offset || end < start)
956 			return (1);
957 		next = entry->next;
958 		if (next == &map->header || next->start >= end)
959 			break;
960 	}
961 	map->hint = entry;
962 	if (map == kernel_map) {
963 		vm_offset_t ksize;
964 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
965 			pmap_growkernel(ksize);
966 			goto retry;
967 		}
968 	}
969 	*addr = start;
970 	return (0);
971 }
972 
973 /*
974  *	vm_map_find finds an unallocated region in the target address
975  *	map with the given length.  The search is defined to be
976  *	first-fit from the specified address; the region found is
977  *	returned in the same parameter.
978  *
979  *	If object is non-NULL, ref count must be bumped by caller
980  *	prior to making call to account for the new entry.
981  */
982 int
983 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
984 	    vm_offset_t *addr,	vm_size_t length,
985 	    boolean_t find_space,
986 	    vm_maptype_t maptype,
987 	    vm_prot_t prot, vm_prot_t max,
988 	    int cow)
989 {
990 	vm_offset_t start;
991 	int result;
992 	int count;
993 
994 	start = *addr;
995 
996 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
997 	vm_map_lock(map);
998 	if (find_space) {
999 		if (vm_map_findspace(map, start, length, 1, addr)) {
1000 			vm_map_unlock(map);
1001 			vm_map_entry_release(count);
1002 			return (KERN_NO_SPACE);
1003 		}
1004 		start = *addr;
1005 	}
1006 	result = vm_map_insert(map, &count, object, offset,
1007 			       start, start + length,
1008 			       maptype,
1009 			       prot, max,
1010 			       cow);
1011 	vm_map_unlock(map);
1012 	vm_map_entry_release(count);
1013 
1014 	return (result);
1015 }
1016 
1017 /*
1018  *	vm_map_simplify_entry:
1019  *
1020  *	Simplify the given map entry by merging with either neighbor.  This
1021  *	routine also has the ability to merge with both neighbors.
1022  *
1023  *	The map must be locked.
1024  *
1025  *	This routine guarentees that the passed entry remains valid (though
1026  *	possibly extended).  When merging, this routine may delete one or
1027  *	both neighbors.  No action is taken on entries which have their
1028  *	in-transition flag set.
1029  */
1030 void
1031 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1032 {
1033 	vm_map_entry_t next, prev;
1034 	vm_size_t prevsize, esize;
1035 
1036 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1037 		++mycpu->gd_cnt.v_intrans_coll;
1038 		return;
1039 	}
1040 
1041 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1042 		return;
1043 
1044 	prev = entry->prev;
1045 	if (prev != &map->header) {
1046 		prevsize = prev->end - prev->start;
1047 		if ( (prev->end == entry->start) &&
1048 		     (prev->maptype == entry->maptype) &&
1049 		     (prev->object.vm_object == entry->object.vm_object) &&
1050 		     (!prev->object.vm_object ||
1051 			(prev->offset + prevsize == entry->offset)) &&
1052 		     (prev->eflags == entry->eflags) &&
1053 		     (prev->protection == entry->protection) &&
1054 		     (prev->max_protection == entry->max_protection) &&
1055 		     (prev->inheritance == entry->inheritance) &&
1056 		     (prev->wired_count == entry->wired_count)) {
1057 			if (map->first_free == prev)
1058 				map->first_free = entry;
1059 			if (map->hint == prev)
1060 				map->hint = entry;
1061 			vm_map_entry_unlink(map, prev);
1062 			entry->start = prev->start;
1063 			entry->offset = prev->offset;
1064 			if (prev->object.vm_object)
1065 				vm_object_deallocate(prev->object.vm_object);
1066 			vm_map_entry_dispose(map, prev, countp);
1067 		}
1068 	}
1069 
1070 	next = entry->next;
1071 	if (next != &map->header) {
1072 		esize = entry->end - entry->start;
1073 		if ((entry->end == next->start) &&
1074 		    (next->maptype == entry->maptype) &&
1075 		    (next->object.vm_object == entry->object.vm_object) &&
1076 		     (!entry->object.vm_object ||
1077 			(entry->offset + esize == next->offset)) &&
1078 		    (next->eflags == entry->eflags) &&
1079 		    (next->protection == entry->protection) &&
1080 		    (next->max_protection == entry->max_protection) &&
1081 		    (next->inheritance == entry->inheritance) &&
1082 		    (next->wired_count == entry->wired_count)) {
1083 			if (map->first_free == next)
1084 				map->first_free = entry;
1085 			if (map->hint == next)
1086 				map->hint = entry;
1087 			vm_map_entry_unlink(map, next);
1088 			entry->end = next->end;
1089 			if (next->object.vm_object)
1090 				vm_object_deallocate(next->object.vm_object);
1091 			vm_map_entry_dispose(map, next, countp);
1092 	        }
1093 	}
1094 }
1095 /*
1096  *	vm_map_clip_start:	[ internal use only ]
1097  *
1098  *	Asserts that the given entry begins at or after
1099  *	the specified address; if necessary,
1100  *	it splits the entry into two.
1101  */
1102 #define vm_map_clip_start(map, entry, startaddr, countp) \
1103 { \
1104 	if (startaddr > entry->start) \
1105 		_vm_map_clip_start(map, entry, startaddr, countp); \
1106 }
1107 
1108 /*
1109  *	This routine is called only when it is known that
1110  *	the entry must be split.
1111  */
1112 static void
1113 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1114 {
1115 	vm_map_entry_t new_entry;
1116 
1117 	/*
1118 	 * Split off the front portion -- note that we must insert the new
1119 	 * entry BEFORE this one, so that this entry has the specified
1120 	 * starting address.
1121 	 */
1122 
1123 	vm_map_simplify_entry(map, entry, countp);
1124 
1125 	/*
1126 	 * If there is no object backing this entry, we might as well create
1127 	 * one now.  If we defer it, an object can get created after the map
1128 	 * is clipped, and individual objects will be created for the split-up
1129 	 * map.  This is a bit of a hack, but is also about the best place to
1130 	 * put this improvement.
1131 	 */
1132 	if (entry->object.vm_object == NULL && !map->system_map) {
1133 		vm_map_entry_allocate_object(entry);
1134 	}
1135 
1136 	new_entry = vm_map_entry_create(map, countp);
1137 	*new_entry = *entry;
1138 
1139 	new_entry->end = start;
1140 	entry->offset += (start - entry->start);
1141 	entry->start = start;
1142 
1143 	vm_map_entry_link(map, entry->prev, new_entry);
1144 
1145 	switch(entry->maptype) {
1146 	case VM_MAPTYPE_NORMAL:
1147 	case VM_MAPTYPE_VPAGETABLE:
1148 		vm_object_reference(new_entry->object.vm_object);
1149 		break;
1150 	default:
1151 		break;
1152 	}
1153 }
1154 
1155 /*
1156  *	vm_map_clip_end:	[ internal use only ]
1157  *
1158  *	Asserts that the given entry ends at or before
1159  *	the specified address; if necessary,
1160  *	it splits the entry into two.
1161  */
1162 
1163 #define vm_map_clip_end(map, entry, endaddr, countp) \
1164 { \
1165 	if (endaddr < entry->end) \
1166 		_vm_map_clip_end(map, entry, endaddr, countp); \
1167 }
1168 
1169 /*
1170  *	This routine is called only when it is known that
1171  *	the entry must be split.
1172  */
1173 static void
1174 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1175 {
1176 	vm_map_entry_t new_entry;
1177 
1178 	/*
1179 	 * If there is no object backing this entry, we might as well create
1180 	 * one now.  If we defer it, an object can get created after the map
1181 	 * is clipped, and individual objects will be created for the split-up
1182 	 * map.  This is a bit of a hack, but is also about the best place to
1183 	 * put this improvement.
1184 	 */
1185 
1186 	if (entry->object.vm_object == NULL && !map->system_map) {
1187 		vm_map_entry_allocate_object(entry);
1188 	}
1189 
1190 	/*
1191 	 * Create a new entry and insert it AFTER the specified entry
1192 	 */
1193 
1194 	new_entry = vm_map_entry_create(map, countp);
1195 	*new_entry = *entry;
1196 
1197 	new_entry->start = entry->end = end;
1198 	new_entry->offset += (end - entry->start);
1199 
1200 	vm_map_entry_link(map, entry, new_entry);
1201 
1202 	switch(entry->maptype) {
1203 	case VM_MAPTYPE_NORMAL:
1204 	case VM_MAPTYPE_VPAGETABLE:
1205 		vm_object_reference(new_entry->object.vm_object);
1206 		break;
1207 	default:
1208 		break;
1209 	}
1210 }
1211 
1212 /*
1213  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1214  *
1215  *	Asserts that the starting and ending region
1216  *	addresses fall within the valid range of the map.
1217  */
1218 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1219 		{					\
1220 		if (start < vm_map_min(map))		\
1221 			start = vm_map_min(map);	\
1222 		if (end > vm_map_max(map))		\
1223 			end = vm_map_max(map);		\
1224 		if (start > end)			\
1225 			start = end;			\
1226 		}
1227 
1228 /*
1229  *	vm_map_transition_wait:	[ kernel use only ]
1230  *
1231  *	Used to block when an in-transition collison occurs.  The map
1232  *	is unlocked for the sleep and relocked before the return.
1233  */
1234 static
1235 void
1236 vm_map_transition_wait(vm_map_t map)
1237 {
1238 	vm_map_unlock(map);
1239 	tsleep(map, 0, "vment", 0);
1240 	vm_map_lock(map);
1241 }
1242 
1243 /*
1244  * CLIP_CHECK_BACK
1245  * CLIP_CHECK_FWD
1246  *
1247  *	When we do blocking operations with the map lock held it is
1248  *	possible that a clip might have occured on our in-transit entry,
1249  *	requiring an adjustment to the entry in our loop.  These macros
1250  *	help the pageable and clip_range code deal with the case.  The
1251  *	conditional costs virtually nothing if no clipping has occured.
1252  */
1253 
1254 #define CLIP_CHECK_BACK(entry, save_start)		\
1255     do {						\
1256 	    while (entry->start != save_start) {	\
1257 		    entry = entry->prev;		\
1258 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1259 	    }						\
1260     } while(0)
1261 
1262 #define CLIP_CHECK_FWD(entry, save_end)			\
1263     do {						\
1264 	    while (entry->end != save_end) {		\
1265 		    entry = entry->next;		\
1266 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1267 	    }						\
1268     } while(0)
1269 
1270 
1271 /*
1272  *	vm_map_clip_range:	[ kernel use only ]
1273  *
1274  *	Clip the specified range and return the base entry.  The
1275  *	range may cover several entries starting at the returned base
1276  *	and the first and last entry in the covering sequence will be
1277  *	properly clipped to the requested start and end address.
1278  *
1279  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1280  *	flag.
1281  *
1282  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1283  *	covered by the requested range.
1284  *
1285  *	The map must be exclusively locked on entry and will remain locked
1286  *	on return. If no range exists or the range contains holes and you
1287  *	specified that no holes were allowed, NULL will be returned.  This
1288  *	routine may temporarily unlock the map in order avoid a deadlock when
1289  *	sleeping.
1290  */
1291 static
1292 vm_map_entry_t
1293 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1294 	int *countp, int flags)
1295 {
1296 	vm_map_entry_t start_entry;
1297 	vm_map_entry_t entry;
1298 
1299 	/*
1300 	 * Locate the entry and effect initial clipping.  The in-transition
1301 	 * case does not occur very often so do not try to optimize it.
1302 	 */
1303 again:
1304 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1305 		return (NULL);
1306 	entry = start_entry;
1307 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1308 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1309 		++mycpu->gd_cnt.v_intrans_coll;
1310 		++mycpu->gd_cnt.v_intrans_wait;
1311 		vm_map_transition_wait(map);
1312 		/*
1313 		 * entry and/or start_entry may have been clipped while
1314 		 * we slept, or may have gone away entirely.  We have
1315 		 * to restart from the lookup.
1316 		 */
1317 		goto again;
1318 	}
1319 	/*
1320 	 * Since we hold an exclusive map lock we do not have to restart
1321 	 * after clipping, even though clipping may block in zalloc.
1322 	 */
1323 	vm_map_clip_start(map, entry, start, countp);
1324 	vm_map_clip_end(map, entry, end, countp);
1325 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1326 
1327 	/*
1328 	 * Scan entries covered by the range.  When working on the next
1329 	 * entry a restart need only re-loop on the current entry which
1330 	 * we have already locked, since 'next' may have changed.  Also,
1331 	 * even though entry is safe, it may have been clipped so we
1332 	 * have to iterate forwards through the clip after sleeping.
1333 	 */
1334 	while (entry->next != &map->header && entry->next->start < end) {
1335 		vm_map_entry_t next = entry->next;
1336 
1337 		if (flags & MAP_CLIP_NO_HOLES) {
1338 			if (next->start > entry->end) {
1339 				vm_map_unclip_range(map, start_entry,
1340 					start, entry->end, countp, flags);
1341 				return(NULL);
1342 			}
1343 		}
1344 
1345 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1346 			vm_offset_t save_end = entry->end;
1347 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1348 			++mycpu->gd_cnt.v_intrans_coll;
1349 			++mycpu->gd_cnt.v_intrans_wait;
1350 			vm_map_transition_wait(map);
1351 
1352 			/*
1353 			 * clips might have occured while we blocked.
1354 			 */
1355 			CLIP_CHECK_FWD(entry, save_end);
1356 			CLIP_CHECK_BACK(start_entry, start);
1357 			continue;
1358 		}
1359 		/*
1360 		 * No restart necessary even though clip_end may block, we
1361 		 * are holding the map lock.
1362 		 */
1363 		vm_map_clip_end(map, next, end, countp);
1364 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1365 		entry = next;
1366 	}
1367 	if (flags & MAP_CLIP_NO_HOLES) {
1368 		if (entry->end != end) {
1369 			vm_map_unclip_range(map, start_entry,
1370 				start, entry->end, countp, flags);
1371 			return(NULL);
1372 		}
1373 	}
1374 	return(start_entry);
1375 }
1376 
1377 /*
1378  *	vm_map_unclip_range:	[ kernel use only ]
1379  *
1380  *	Undo the effect of vm_map_clip_range().  You should pass the same
1381  *	flags and the same range that you passed to vm_map_clip_range().
1382  *	This code will clear the in-transition flag on the entries and
1383  *	wake up anyone waiting.  This code will also simplify the sequence
1384  *	and attempt to merge it with entries before and after the sequence.
1385  *
1386  *	The map must be locked on entry and will remain locked on return.
1387  *
1388  *	Note that you should also pass the start_entry returned by
1389  *	vm_map_clip_range().  However, if you block between the two calls
1390  *	with the map unlocked please be aware that the start_entry may
1391  *	have been clipped and you may need to scan it backwards to find
1392  *	the entry corresponding with the original start address.  You are
1393  *	responsible for this, vm_map_unclip_range() expects the correct
1394  *	start_entry to be passed to it and will KASSERT otherwise.
1395  */
1396 static
1397 void
1398 vm_map_unclip_range(
1399 	vm_map_t map,
1400 	vm_map_entry_t start_entry,
1401 	vm_offset_t start,
1402 	vm_offset_t end,
1403 	int *countp,
1404 	int flags)
1405 {
1406 	vm_map_entry_t entry;
1407 
1408 	entry = start_entry;
1409 
1410 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1411 	while (entry != &map->header && entry->start < end) {
1412 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1413 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1414 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1415 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1416 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1417 			wakeup(map);
1418 		}
1419 		entry = entry->next;
1420 	}
1421 
1422 	/*
1423 	 * Simplification does not block so there is no restart case.
1424 	 */
1425 	entry = start_entry;
1426 	while (entry != &map->header && entry->start < end) {
1427 		vm_map_simplify_entry(map, entry, countp);
1428 		entry = entry->next;
1429 	}
1430 }
1431 
1432 /*
1433  *	vm_map_submap:		[ kernel use only ]
1434  *
1435  *	Mark the given range as handled by a subordinate map.
1436  *
1437  *	This range must have been created with vm_map_find,
1438  *	and no other operations may have been performed on this
1439  *	range prior to calling vm_map_submap.
1440  *
1441  *	Only a limited number of operations can be performed
1442  *	within this rage after calling vm_map_submap:
1443  *		vm_fault
1444  *	[Don't try vm_map_copy!]
1445  *
1446  *	To remove a submapping, one must first remove the
1447  *	range from the superior map, and then destroy the
1448  *	submap (if desired).  [Better yet, don't try it.]
1449  */
1450 int
1451 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1452 {
1453 	vm_map_entry_t entry;
1454 	int result = KERN_INVALID_ARGUMENT;
1455 	int count;
1456 
1457 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1458 	vm_map_lock(map);
1459 
1460 	VM_MAP_RANGE_CHECK(map, start, end);
1461 
1462 	if (vm_map_lookup_entry(map, start, &entry)) {
1463 		vm_map_clip_start(map, entry, start, &count);
1464 	} else {
1465 		entry = entry->next;
1466 	}
1467 
1468 	vm_map_clip_end(map, entry, end, &count);
1469 
1470 	if ((entry->start == start) && (entry->end == end) &&
1471 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1472 	    (entry->object.vm_object == NULL)) {
1473 		entry->object.sub_map = submap;
1474 		entry->maptype = VM_MAPTYPE_SUBMAP;
1475 		result = KERN_SUCCESS;
1476 	}
1477 	vm_map_unlock(map);
1478 	vm_map_entry_release(count);
1479 
1480 	return (result);
1481 }
1482 
1483 /*
1484  * vm_map_protect:
1485  *
1486  * Sets the protection of the specified address region in the target map.
1487  * If "set_max" is specified, the maximum protection is to be set;
1488  * otherwise, only the current protection is affected.
1489  *
1490  * The protection is not applicable to submaps, but is applicable to normal
1491  * maps and maps governed by virtual page tables.  For example, when operating
1492  * on a virtual page table our protection basically controls how COW occurs
1493  * on the backing object, whereas the virtual page table abstraction itself
1494  * is an abstraction for userland.
1495  */
1496 int
1497 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1498 	       vm_prot_t new_prot, boolean_t set_max)
1499 {
1500 	vm_map_entry_t current;
1501 	vm_map_entry_t entry;
1502 	int count;
1503 
1504 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1505 	vm_map_lock(map);
1506 
1507 	VM_MAP_RANGE_CHECK(map, start, end);
1508 
1509 	if (vm_map_lookup_entry(map, start, &entry)) {
1510 		vm_map_clip_start(map, entry, start, &count);
1511 	} else {
1512 		entry = entry->next;
1513 	}
1514 
1515 	/*
1516 	 * Make a first pass to check for protection violations.
1517 	 */
1518 	current = entry;
1519 	while ((current != &map->header) && (current->start < end)) {
1520 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1521 			vm_map_unlock(map);
1522 			vm_map_entry_release(count);
1523 			return (KERN_INVALID_ARGUMENT);
1524 		}
1525 		if ((new_prot & current->max_protection) != new_prot) {
1526 			vm_map_unlock(map);
1527 			vm_map_entry_release(count);
1528 			return (KERN_PROTECTION_FAILURE);
1529 		}
1530 		current = current->next;
1531 	}
1532 
1533 	/*
1534 	 * Go back and fix up protections. [Note that clipping is not
1535 	 * necessary the second time.]
1536 	 */
1537 	current = entry;
1538 
1539 	while ((current != &map->header) && (current->start < end)) {
1540 		vm_prot_t old_prot;
1541 
1542 		vm_map_clip_end(map, current, end, &count);
1543 
1544 		old_prot = current->protection;
1545 		if (set_max) {
1546 			current->protection =
1547 			    (current->max_protection = new_prot) &
1548 			    old_prot;
1549 		} else {
1550 			current->protection = new_prot;
1551 		}
1552 
1553 		/*
1554 		 * Update physical map if necessary. Worry about copy-on-write
1555 		 * here -- CHECK THIS XXX
1556 		 */
1557 
1558 		if (current->protection != old_prot) {
1559 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1560 							VM_PROT_ALL)
1561 
1562 			pmap_protect(map->pmap, current->start,
1563 			    current->end,
1564 			    current->protection & MASK(current));
1565 #undef	MASK
1566 		}
1567 
1568 		vm_map_simplify_entry(map, current, &count);
1569 
1570 		current = current->next;
1571 	}
1572 
1573 	vm_map_unlock(map);
1574 	vm_map_entry_release(count);
1575 	return (KERN_SUCCESS);
1576 }
1577 
1578 /*
1579  *	vm_map_madvise:
1580  *
1581  * 	This routine traverses a processes map handling the madvise
1582  *	system call.  Advisories are classified as either those effecting
1583  *	the vm_map_entry structure, or those effecting the underlying
1584  *	objects.
1585  *
1586  *	The <value> argument is used for extended madvise calls.
1587  */
1588 int
1589 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1590 	       int behav, off_t value)
1591 {
1592 	vm_map_entry_t current, entry;
1593 	int modify_map = 0;
1594 	int error = 0;
1595 	int count;
1596 
1597 	/*
1598 	 * Some madvise calls directly modify the vm_map_entry, in which case
1599 	 * we need to use an exclusive lock on the map and we need to perform
1600 	 * various clipping operations.  Otherwise we only need a read-lock
1601 	 * on the map.
1602 	 */
1603 
1604 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1605 
1606 	switch(behav) {
1607 	case MADV_NORMAL:
1608 	case MADV_SEQUENTIAL:
1609 	case MADV_RANDOM:
1610 	case MADV_NOSYNC:
1611 	case MADV_AUTOSYNC:
1612 	case MADV_NOCORE:
1613 	case MADV_CORE:
1614 	case MADV_SETMAP:
1615 	case MADV_INVAL:
1616 		modify_map = 1;
1617 		vm_map_lock(map);
1618 		break;
1619 	case MADV_WILLNEED:
1620 	case MADV_DONTNEED:
1621 	case MADV_FREE:
1622 		vm_map_lock_read(map);
1623 		break;
1624 	default:
1625 		vm_map_entry_release(count);
1626 		return (EINVAL);
1627 	}
1628 
1629 	/*
1630 	 * Locate starting entry and clip if necessary.
1631 	 */
1632 
1633 	VM_MAP_RANGE_CHECK(map, start, end);
1634 
1635 	if (vm_map_lookup_entry(map, start, &entry)) {
1636 		if (modify_map)
1637 			vm_map_clip_start(map, entry, start, &count);
1638 	} else {
1639 		entry = entry->next;
1640 	}
1641 
1642 	if (modify_map) {
1643 		/*
1644 		 * madvise behaviors that are implemented in the vm_map_entry.
1645 		 *
1646 		 * We clip the vm_map_entry so that behavioral changes are
1647 		 * limited to the specified address range.
1648 		 */
1649 		for (current = entry;
1650 		     (current != &map->header) && (current->start < end);
1651 		     current = current->next
1652 		) {
1653 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1654 				continue;
1655 
1656 			vm_map_clip_end(map, current, end, &count);
1657 
1658 			switch (behav) {
1659 			case MADV_NORMAL:
1660 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1661 				break;
1662 			case MADV_SEQUENTIAL:
1663 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1664 				break;
1665 			case MADV_RANDOM:
1666 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1667 				break;
1668 			case MADV_NOSYNC:
1669 				current->eflags |= MAP_ENTRY_NOSYNC;
1670 				break;
1671 			case MADV_AUTOSYNC:
1672 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1673 				break;
1674 			case MADV_NOCORE:
1675 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1676 				break;
1677 			case MADV_CORE:
1678 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1679 				break;
1680 			case MADV_INVAL:
1681 				/*
1682 				 * Invalidate the related pmap entries, used
1683 				 * to flush portions of the real kernel's
1684 				 * pmap when the caller has removed or
1685 				 * modified existing mappings in a virtual
1686 				 * page table.
1687 				 */
1688 				pmap_remove(map->pmap,
1689 					    current->start, current->end);
1690 				break;
1691 			case MADV_SETMAP:
1692 				/*
1693 				 * Set the page directory page for a map
1694 				 * governed by a virtual page table.  Mark
1695 				 * the entry as being governed by a virtual
1696 				 * page table if it is not.
1697 				 *
1698 				 * XXX the page directory page is stored
1699 				 * in the avail_ssize field if the map_entry.
1700 				 *
1701 				 * XXX the map simplification code does not
1702 				 * compare this field so weird things may
1703 				 * happen if you do not apply this function
1704 				 * to the entire mapping governed by the
1705 				 * virtual page table.
1706 				 */
1707 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1708 					error = EINVAL;
1709 					break;
1710 				}
1711 				current->aux.master_pde = value;
1712 				pmap_remove(map->pmap,
1713 					    current->start, current->end);
1714 				break;
1715 			default:
1716 				error = EINVAL;
1717 				break;
1718 			}
1719 			vm_map_simplify_entry(map, current, &count);
1720 		}
1721 		vm_map_unlock(map);
1722 	} else {
1723 		vm_pindex_t pindex;
1724 		int count;
1725 
1726 		/*
1727 		 * madvise behaviors that are implemented in the underlying
1728 		 * vm_object.
1729 		 *
1730 		 * Since we don't clip the vm_map_entry, we have to clip
1731 		 * the vm_object pindex and count.
1732 		 *
1733 		 * NOTE!  We currently do not support these functions on
1734 		 * virtual page tables.
1735 		 */
1736 		for (current = entry;
1737 		     (current != &map->header) && (current->start < end);
1738 		     current = current->next
1739 		) {
1740 			vm_offset_t useStart;
1741 
1742 			if (current->maptype != VM_MAPTYPE_NORMAL)
1743 				continue;
1744 
1745 			pindex = OFF_TO_IDX(current->offset);
1746 			count = atop(current->end - current->start);
1747 			useStart = current->start;
1748 
1749 			if (current->start < start) {
1750 				pindex += atop(start - current->start);
1751 				count -= atop(start - current->start);
1752 				useStart = start;
1753 			}
1754 			if (current->end > end)
1755 				count -= atop(current->end - end);
1756 
1757 			if (count <= 0)
1758 				continue;
1759 
1760 			vm_object_madvise(current->object.vm_object,
1761 					  pindex, count, behav);
1762 
1763 			/*
1764 			 * Try to populate the page table.  Mappings governed
1765 			 * by virtual page tables cannot be pre-populated
1766 			 * without a lot of work so don't try.
1767 			 */
1768 			if (behav == MADV_WILLNEED &&
1769 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1770 				pmap_object_init_pt(
1771 				    map->pmap,
1772 				    useStart,
1773 				    current->protection,
1774 				    current->object.vm_object,
1775 				    pindex,
1776 				    (count << PAGE_SHIFT),
1777 				    MAP_PREFAULT_MADVISE
1778 				);
1779 			}
1780 		}
1781 		vm_map_unlock_read(map);
1782 	}
1783 	vm_map_entry_release(count);
1784 	return(error);
1785 }
1786 
1787 
1788 /*
1789  *	vm_map_inherit:
1790  *
1791  *	Sets the inheritance of the specified address
1792  *	range in the target map.  Inheritance
1793  *	affects how the map will be shared with
1794  *	child maps at the time of vm_map_fork.
1795  */
1796 int
1797 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1798 	       vm_inherit_t new_inheritance)
1799 {
1800 	vm_map_entry_t entry;
1801 	vm_map_entry_t temp_entry;
1802 	int count;
1803 
1804 	switch (new_inheritance) {
1805 	case VM_INHERIT_NONE:
1806 	case VM_INHERIT_COPY:
1807 	case VM_INHERIT_SHARE:
1808 		break;
1809 	default:
1810 		return (KERN_INVALID_ARGUMENT);
1811 	}
1812 
1813 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1814 	vm_map_lock(map);
1815 
1816 	VM_MAP_RANGE_CHECK(map, start, end);
1817 
1818 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1819 		entry = temp_entry;
1820 		vm_map_clip_start(map, entry, start, &count);
1821 	} else
1822 		entry = temp_entry->next;
1823 
1824 	while ((entry != &map->header) && (entry->start < end)) {
1825 		vm_map_clip_end(map, entry, end, &count);
1826 
1827 		entry->inheritance = new_inheritance;
1828 
1829 		vm_map_simplify_entry(map, entry, &count);
1830 
1831 		entry = entry->next;
1832 	}
1833 	vm_map_unlock(map);
1834 	vm_map_entry_release(count);
1835 	return (KERN_SUCCESS);
1836 }
1837 
1838 /*
1839  * Implement the semantics of mlock
1840  */
1841 int
1842 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1843     boolean_t new_pageable)
1844 {
1845 	vm_map_entry_t entry;
1846 	vm_map_entry_t start_entry;
1847 	vm_offset_t end;
1848 	int rv = KERN_SUCCESS;
1849 	int count;
1850 
1851 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1852 	vm_map_lock(map);
1853 	VM_MAP_RANGE_CHECK(map, start, real_end);
1854 	end = real_end;
1855 
1856 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1857 	if (start_entry == NULL) {
1858 		vm_map_unlock(map);
1859 		vm_map_entry_release(count);
1860 		return (KERN_INVALID_ADDRESS);
1861 	}
1862 
1863 	if (new_pageable == 0) {
1864 		entry = start_entry;
1865 		while ((entry != &map->header) && (entry->start < end)) {
1866 			vm_offset_t save_start;
1867 			vm_offset_t save_end;
1868 
1869 			/*
1870 			 * Already user wired or hard wired (trivial cases)
1871 			 */
1872 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1873 				entry = entry->next;
1874 				continue;
1875 			}
1876 			if (entry->wired_count != 0) {
1877 				entry->wired_count++;
1878 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1879 				entry = entry->next;
1880 				continue;
1881 			}
1882 
1883 			/*
1884 			 * A new wiring requires instantiation of appropriate
1885 			 * management structures and the faulting in of the
1886 			 * page.
1887 			 */
1888 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1889 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1890 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1891 					vm_map_entry_shadow(entry);
1892 				} else if (entry->object.vm_object == NULL &&
1893 					   !map->system_map) {
1894 					vm_map_entry_allocate_object(entry);
1895 				}
1896 			}
1897 			entry->wired_count++;
1898 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1899 
1900 			/*
1901 			 * Now fault in the area.  Note that vm_fault_wire()
1902 			 * may release the map lock temporarily, it will be
1903 			 * relocked on return.  The in-transition
1904 			 * flag protects the entries.
1905 			 */
1906 			save_start = entry->start;
1907 			save_end = entry->end;
1908 			rv = vm_fault_wire(map, entry, TRUE);
1909 			if (rv) {
1910 				CLIP_CHECK_BACK(entry, save_start);
1911 				for (;;) {
1912 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1913 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1914 					entry->wired_count = 0;
1915 					if (entry->end == save_end)
1916 						break;
1917 					entry = entry->next;
1918 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1919 				}
1920 				end = save_start;	/* unwire the rest */
1921 				break;
1922 			}
1923 			/*
1924 			 * note that even though the entry might have been
1925 			 * clipped, the USER_WIRED flag we set prevents
1926 			 * duplication so we do not have to do a
1927 			 * clip check.
1928 			 */
1929 			entry = entry->next;
1930 		}
1931 
1932 		/*
1933 		 * If we failed fall through to the unwiring section to
1934 		 * unwire what we had wired so far.  'end' has already
1935 		 * been adjusted.
1936 		 */
1937 		if (rv)
1938 			new_pageable = 1;
1939 
1940 		/*
1941 		 * start_entry might have been clipped if we unlocked the
1942 		 * map and blocked.  No matter how clipped it has gotten
1943 		 * there should be a fragment that is on our start boundary.
1944 		 */
1945 		CLIP_CHECK_BACK(start_entry, start);
1946 	}
1947 
1948 	/*
1949 	 * Deal with the unwiring case.
1950 	 */
1951 	if (new_pageable) {
1952 		/*
1953 		 * This is the unwiring case.  We must first ensure that the
1954 		 * range to be unwired is really wired down.  We know there
1955 		 * are no holes.
1956 		 */
1957 		entry = start_entry;
1958 		while ((entry != &map->header) && (entry->start < end)) {
1959 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1960 				rv = KERN_INVALID_ARGUMENT;
1961 				goto done;
1962 			}
1963 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1964 			entry = entry->next;
1965 		}
1966 
1967 		/*
1968 		 * Now decrement the wiring count for each region. If a region
1969 		 * becomes completely unwired, unwire its physical pages and
1970 		 * mappings.
1971 		 */
1972 		/*
1973 		 * The map entries are processed in a loop, checking to
1974 		 * make sure the entry is wired and asserting it has a wired
1975 		 * count. However, another loop was inserted more-or-less in
1976 		 * the middle of the unwiring path. This loop picks up the
1977 		 * "entry" loop variable from the first loop without first
1978 		 * setting it to start_entry. Naturally, the secound loop
1979 		 * is never entered and the pages backing the entries are
1980 		 * never unwired. This can lead to a leak of wired pages.
1981 		 */
1982 		entry = start_entry;
1983 		while ((entry != &map->header) && (entry->start < end)) {
1984 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1985 				("expected USER_WIRED on entry %p", entry));
1986 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1987 			entry->wired_count--;
1988 			if (entry->wired_count == 0)
1989 				vm_fault_unwire(map, entry);
1990 			entry = entry->next;
1991 		}
1992 	}
1993 done:
1994 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1995 		MAP_CLIP_NO_HOLES);
1996 	map->timestamp++;
1997 	vm_map_unlock(map);
1998 	vm_map_entry_release(count);
1999 	return (rv);
2000 }
2001 
2002 /*
2003  *	vm_map_wire:
2004  *
2005  *	Sets the pageability of the specified address
2006  *	range in the target map.  Regions specified
2007  *	as not pageable require locked-down physical
2008  *	memory and physical page maps.
2009  *
2010  *	The map must not be locked, but a reference
2011  *	must remain to the map throughout the call.
2012  *
2013  *	This function may be called via the zalloc path and must properly
2014  *	reserve map entries for kernel_map.
2015  */
2016 int
2017 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2018 {
2019 	vm_map_entry_t entry;
2020 	vm_map_entry_t start_entry;
2021 	vm_offset_t end;
2022 	int rv = KERN_SUCCESS;
2023 	int count;
2024 
2025 	if (kmflags & KM_KRESERVE)
2026 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2027 	else
2028 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2029 	vm_map_lock(map);
2030 	VM_MAP_RANGE_CHECK(map, start, real_end);
2031 	end = real_end;
2032 
2033 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2034 	if (start_entry == NULL) {
2035 		vm_map_unlock(map);
2036 		rv = KERN_INVALID_ADDRESS;
2037 		goto failure;
2038 	}
2039 	if ((kmflags & KM_PAGEABLE) == 0) {
2040 		/*
2041 		 * Wiring.
2042 		 *
2043 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2044 		 * objects that need to be created. Then we clip each map
2045 		 * entry to the region to be wired and increment its wiring
2046 		 * count.  We create objects before clipping the map entries
2047 		 * to avoid object proliferation.
2048 		 *
2049 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2050 		 * fault in the pages for any newly wired area (wired_count is
2051 		 * 1).
2052 		 *
2053 		 * Downgrading to a read lock for vm_fault_wire avoids a
2054 		 * possible deadlock with another process that may have faulted
2055 		 * on one of the pages to be wired (it would mark the page busy,
2056 		 * blocking us, then in turn block on the map lock that we
2057 		 * hold).  Because of problems in the recursive lock package,
2058 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2059 		 * any actions that require the write lock must be done
2060 		 * beforehand.  Because we keep the read lock on the map, the
2061 		 * copy-on-write status of the entries we modify here cannot
2062 		 * change.
2063 		 */
2064 
2065 		entry = start_entry;
2066 		while ((entry != &map->header) && (entry->start < end)) {
2067 			/*
2068 			 * Trivial case if the entry is already wired
2069 			 */
2070 			if (entry->wired_count) {
2071 				entry->wired_count++;
2072 				entry = entry->next;
2073 				continue;
2074 			}
2075 
2076 			/*
2077 			 * The entry is being newly wired, we have to setup
2078 			 * appropriate management structures.  A shadow
2079 			 * object is required for a copy-on-write region,
2080 			 * or a normal object for a zero-fill region.  We
2081 			 * do not have to do this for entries that point to sub
2082 			 * maps because we won't hold the lock on the sub map.
2083 			 */
2084 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2085 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2086 				if (copyflag &&
2087 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2088 					vm_map_entry_shadow(entry);
2089 				} else if (entry->object.vm_object == NULL &&
2090 					   !map->system_map) {
2091 					vm_map_entry_allocate_object(entry);
2092 				}
2093 			}
2094 
2095 			entry->wired_count++;
2096 			entry = entry->next;
2097 		}
2098 
2099 		/*
2100 		 * Pass 2.
2101 		 */
2102 
2103 		/*
2104 		 * HACK HACK HACK HACK
2105 		 *
2106 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2107 		 * protects us from most changes but note that
2108 		 * clipping may still occur.  To prevent clipping from
2109 		 * occuring after the unlock, except for when we are
2110 		 * blocking in vm_fault_wire, we must run in a critical
2111 		 * section, otherwise our accesses to entry->start and
2112 		 * entry->end could be corrupted.  We have to enter the
2113 		 * critical section prior to unlocking so start_entry does
2114 		 * not change out from under us at the very beginning of the
2115 		 * loop.
2116 		 *
2117 		 * HACK HACK HACK HACK
2118 		 */
2119 
2120 		crit_enter();
2121 
2122 		entry = start_entry;
2123 		while (entry != &map->header && entry->start < end) {
2124 			/*
2125 			 * If vm_fault_wire fails for any page we need to undo
2126 			 * what has been done.  We decrement the wiring count
2127 			 * for those pages which have not yet been wired (now)
2128 			 * and unwire those that have (later).
2129 			 */
2130 			vm_offset_t save_start = entry->start;
2131 			vm_offset_t save_end = entry->end;
2132 
2133 			if (entry->wired_count == 1)
2134 				rv = vm_fault_wire(map, entry, FALSE);
2135 			if (rv) {
2136 				CLIP_CHECK_BACK(entry, save_start);
2137 				for (;;) {
2138 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2139 					entry->wired_count = 0;
2140 					if (entry->end == save_end)
2141 						break;
2142 					entry = entry->next;
2143 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2144 				}
2145 				end = save_start;
2146 				break;
2147 			}
2148 			CLIP_CHECK_FWD(entry, save_end);
2149 			entry = entry->next;
2150 		}
2151 		crit_exit();
2152 
2153 		/*
2154 		 * If a failure occured undo everything by falling through
2155 		 * to the unwiring code.  'end' has already been adjusted
2156 		 * appropriately.
2157 		 */
2158 		if (rv)
2159 			kmflags |= KM_PAGEABLE;
2160 
2161 		/*
2162 		 * start_entry is still IN_TRANSITION but may have been
2163 		 * clipped since vm_fault_wire() unlocks and relocks the
2164 		 * map.  No matter how clipped it has gotten there should
2165 		 * be a fragment that is on our start boundary.
2166 		 */
2167 		CLIP_CHECK_BACK(start_entry, start);
2168 	}
2169 
2170 	if (kmflags & KM_PAGEABLE) {
2171 		/*
2172 		 * This is the unwiring case.  We must first ensure that the
2173 		 * range to be unwired is really wired down.  We know there
2174 		 * are no holes.
2175 		 */
2176 		entry = start_entry;
2177 		while ((entry != &map->header) && (entry->start < end)) {
2178 			if (entry->wired_count == 0) {
2179 				rv = KERN_INVALID_ARGUMENT;
2180 				goto done;
2181 			}
2182 			entry = entry->next;
2183 		}
2184 
2185 		/*
2186 		 * Now decrement the wiring count for each region. If a region
2187 		 * becomes completely unwired, unwire its physical pages and
2188 		 * mappings.
2189 		 */
2190 		entry = start_entry;
2191 		while ((entry != &map->header) && (entry->start < end)) {
2192 			entry->wired_count--;
2193 			if (entry->wired_count == 0)
2194 				vm_fault_unwire(map, entry);
2195 			entry = entry->next;
2196 		}
2197 	}
2198 done:
2199 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2200 		MAP_CLIP_NO_HOLES);
2201 	map->timestamp++;
2202 	vm_map_unlock(map);
2203 failure:
2204 	if (kmflags & KM_KRESERVE)
2205 		vm_map_entry_krelease(count);
2206 	else
2207 		vm_map_entry_release(count);
2208 	return (rv);
2209 }
2210 
2211 /*
2212  * vm_map_set_wired_quick()
2213  *
2214  *	Mark a newly allocated address range as wired but do not fault in
2215  *	the pages.  The caller is expected to load the pages into the object.
2216  *
2217  *	The map must be locked on entry and will remain locked on return.
2218  */
2219 void
2220 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2221 {
2222 	vm_map_entry_t scan;
2223 	vm_map_entry_t entry;
2224 
2225 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2226 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2227 	    KKASSERT(entry->wired_count == 0);
2228 	    entry->wired_count = 1;
2229 	}
2230 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2231 }
2232 
2233 /*
2234  * vm_map_clean
2235  *
2236  * Push any dirty cached pages in the address range to their pager.
2237  * If syncio is TRUE, dirty pages are written synchronously.
2238  * If invalidate is TRUE, any cached pages are freed as well.
2239  *
2240  * Returns an error if any part of the specified range is not mapped.
2241  */
2242 int
2243 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2244     boolean_t invalidate)
2245 {
2246 	vm_map_entry_t current;
2247 	vm_map_entry_t entry;
2248 	vm_size_t size;
2249 	vm_object_t object;
2250 	vm_ooffset_t offset;
2251 
2252 	vm_map_lock_read(map);
2253 	VM_MAP_RANGE_CHECK(map, start, end);
2254 	if (!vm_map_lookup_entry(map, start, &entry)) {
2255 		vm_map_unlock_read(map);
2256 		return (KERN_INVALID_ADDRESS);
2257 	}
2258 	/*
2259 	 * Make a first pass to check for holes.
2260 	 */
2261 	for (current = entry; current->start < end; current = current->next) {
2262 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2263 			vm_map_unlock_read(map);
2264 			return (KERN_INVALID_ARGUMENT);
2265 		}
2266 		if (end > current->end &&
2267 		    (current->next == &map->header ||
2268 			current->end != current->next->start)) {
2269 			vm_map_unlock_read(map);
2270 			return (KERN_INVALID_ADDRESS);
2271 		}
2272 	}
2273 
2274 	if (invalidate)
2275 		pmap_remove(vm_map_pmap(map), start, end);
2276 	/*
2277 	 * Make a second pass, cleaning/uncaching pages from the indicated
2278 	 * objects as we go.
2279 	 */
2280 	for (current = entry; current->start < end; current = current->next) {
2281 		offset = current->offset + (start - current->start);
2282 		size = (end <= current->end ? end : current->end) - start;
2283 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2284 			vm_map_t smap;
2285 			vm_map_entry_t tentry;
2286 			vm_size_t tsize;
2287 
2288 			smap = current->object.sub_map;
2289 			vm_map_lock_read(smap);
2290 			vm_map_lookup_entry(smap, offset, &tentry);
2291 			tsize = tentry->end - offset;
2292 			if (tsize < size)
2293 				size = tsize;
2294 			object = tentry->object.vm_object;
2295 			offset = tentry->offset + (offset - tentry->start);
2296 			vm_map_unlock_read(smap);
2297 		} else {
2298 			object = current->object.vm_object;
2299 		}
2300 		/*
2301 		 * Note that there is absolutely no sense in writing out
2302 		 * anonymous objects, so we track down the vnode object
2303 		 * to write out.
2304 		 * We invalidate (remove) all pages from the address space
2305 		 * anyway, for semantic correctness.
2306 		 *
2307 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2308 		 * may start out with a NULL object.
2309 		 */
2310 		while (object && object->backing_object) {
2311 			offset += object->backing_object_offset;
2312 			object = object->backing_object;
2313 			if (object->size < OFF_TO_IDX( offset + size))
2314 				size = IDX_TO_OFF(object->size) - offset;
2315 		}
2316 		if (object && (object->type == OBJT_VNODE) &&
2317 		    (current->protection & VM_PROT_WRITE)) {
2318 			/*
2319 			 * Flush pages if writing is allowed, invalidate them
2320 			 * if invalidation requested.  Pages undergoing I/O
2321 			 * will be ignored by vm_object_page_remove().
2322 			 *
2323 			 * We cannot lock the vnode and then wait for paging
2324 			 * to complete without deadlocking against vm_fault.
2325 			 * Instead we simply call vm_object_page_remove() and
2326 			 * allow it to block internally on a page-by-page
2327 			 * basis when it encounters pages undergoing async
2328 			 * I/O.
2329 			 */
2330 			int flags;
2331 
2332 			vm_object_reference(object);
2333 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2334 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2335 			flags |= invalidate ? OBJPC_INVAL : 0;
2336 
2337 			/*
2338 			 * When operating on a virtual page table just
2339 			 * flush the whole object.  XXX we probably ought
2340 			 * to
2341 			 */
2342 			switch(current->maptype) {
2343 			case VM_MAPTYPE_NORMAL:
2344 				vm_object_page_clean(object,
2345 				    OFF_TO_IDX(offset),
2346 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2347 				    flags);
2348 				break;
2349 			case VM_MAPTYPE_VPAGETABLE:
2350 				vm_object_page_clean(object, 0, 0, flags);
2351 				break;
2352 			}
2353 			vn_unlock(((struct vnode *)object->handle));
2354 			vm_object_deallocate(object);
2355 		}
2356 		if (object && invalidate &&
2357 		   ((object->type == OBJT_VNODE) ||
2358 		    (object->type == OBJT_DEVICE))) {
2359 			int clean_only =
2360 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2361 			vm_object_reference(object);
2362 			switch(current->maptype) {
2363 			case VM_MAPTYPE_NORMAL:
2364 				vm_object_page_remove(object,
2365 				    OFF_TO_IDX(offset),
2366 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2367 				    clean_only);
2368 				break;
2369 			case VM_MAPTYPE_VPAGETABLE:
2370 				vm_object_page_remove(object, 0, 0, clean_only);
2371 				break;
2372 			}
2373 			vm_object_deallocate(object);
2374 		}
2375 		start += size;
2376 	}
2377 
2378 	vm_map_unlock_read(map);
2379 	return (KERN_SUCCESS);
2380 }
2381 
2382 /*
2383  *	vm_map_entry_unwire:	[ internal use only ]
2384  *
2385  *	Make the region specified by this entry pageable.
2386  *
2387  *	The map in question should be locked.
2388  *	[This is the reason for this routine's existence.]
2389  */
2390 static void
2391 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2392 {
2393 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2394 	entry->wired_count = 0;
2395 	vm_fault_unwire(map, entry);
2396 }
2397 
2398 /*
2399  *	vm_map_entry_delete:	[ internal use only ]
2400  *
2401  *	Deallocate the given entry from the target map.
2402  */
2403 static void
2404 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2405 {
2406 	vm_map_entry_unlink(map, entry);
2407 	map->size -= entry->end - entry->start;
2408 
2409 	switch(entry->maptype) {
2410 	case VM_MAPTYPE_NORMAL:
2411 	case VM_MAPTYPE_VPAGETABLE:
2412 		vm_object_deallocate(entry->object.vm_object);
2413 		break;
2414 	default:
2415 		break;
2416 	}
2417 
2418 	vm_map_entry_dispose(map, entry, countp);
2419 }
2420 
2421 /*
2422  *	vm_map_delete:	[ internal use only ]
2423  *
2424  *	Deallocates the given address range from the target
2425  *	map.
2426  */
2427 int
2428 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2429 {
2430 	vm_object_t object;
2431 	vm_map_entry_t entry;
2432 	vm_map_entry_t first_entry;
2433 
2434 again:
2435 	/*
2436 	 * Find the start of the region, and clip it.  Set entry to point
2437 	 * at the first record containing the requested address or, if no
2438 	 * such record exists, the next record with a greater address.  The
2439 	 * loop will run from this point until a record beyond the termination
2440 	 * address is encountered.
2441 	 *
2442 	 * map->hint must be adjusted to not point to anything we delete,
2443 	 * so set it to the entry prior to the one being deleted.
2444 	 *
2445 	 * GGG see other GGG comment.
2446 	 */
2447 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2448 		entry = first_entry;
2449 		vm_map_clip_start(map, entry, start, countp);
2450 		map->hint = entry->prev;	/* possible problem XXX */
2451 	} else {
2452 		map->hint = first_entry;	/* possible problem XXX */
2453 		entry = first_entry->next;
2454 	}
2455 
2456 	/*
2457 	 * If a hole opens up prior to the current first_free then
2458 	 * adjust first_free.  As with map->hint, map->first_free
2459 	 * cannot be left set to anything we might delete.
2460 	 */
2461 	if (entry == &map->header) {
2462 		map->first_free = &map->header;
2463 	} else if (map->first_free->start >= start) {
2464 		map->first_free = entry->prev;
2465 	}
2466 
2467 	/*
2468 	 * Step through all entries in this region
2469 	 */
2470 
2471 	while ((entry != &map->header) && (entry->start < end)) {
2472 		vm_map_entry_t next;
2473 		vm_offset_t s, e;
2474 		vm_pindex_t offidxstart, offidxend, count;
2475 
2476 		/*
2477 		 * If we hit an in-transition entry we have to sleep and
2478 		 * retry.  It's easier (and not really slower) to just retry
2479 		 * since this case occurs so rarely and the hint is already
2480 		 * pointing at the right place.  We have to reset the
2481 		 * start offset so as not to accidently delete an entry
2482 		 * another process just created in vacated space.
2483 		 */
2484 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2485 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2486 			start = entry->start;
2487 			++mycpu->gd_cnt.v_intrans_coll;
2488 			++mycpu->gd_cnt.v_intrans_wait;
2489 			vm_map_transition_wait(map);
2490 			goto again;
2491 		}
2492 		vm_map_clip_end(map, entry, end, countp);
2493 
2494 		s = entry->start;
2495 		e = entry->end;
2496 		next = entry->next;
2497 
2498 		offidxstart = OFF_TO_IDX(entry->offset);
2499 		count = OFF_TO_IDX(e - s);
2500 		object = entry->object.vm_object;
2501 
2502 		/*
2503 		 * Unwire before removing addresses from the pmap; otherwise,
2504 		 * unwiring will put the entries back in the pmap.
2505 		 */
2506 		if (entry->wired_count != 0)
2507 			vm_map_entry_unwire(map, entry);
2508 
2509 		offidxend = offidxstart + count;
2510 
2511 		if ((object == kernel_object) || (object == kmem_object)) {
2512 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2513 		} else {
2514 			pmap_remove(map->pmap, s, e);
2515 			if (object != NULL &&
2516 			    object->ref_count != 1 &&
2517 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2518 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2519 				vm_object_collapse(object);
2520 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2521 				if (object->type == OBJT_SWAP) {
2522 					swap_pager_freespace(object, offidxstart, count);
2523 				}
2524 				if (offidxend >= object->size &&
2525 				    offidxstart < object->size) {
2526 					object->size = offidxstart;
2527 				}
2528 			}
2529 		}
2530 
2531 		/*
2532 		 * Delete the entry (which may delete the object) only after
2533 		 * removing all pmap entries pointing to its pages.
2534 		 * (Otherwise, its page frames may be reallocated, and any
2535 		 * modify bits will be set in the wrong object!)
2536 		 */
2537 		vm_map_entry_delete(map, entry, countp);
2538 		entry = next;
2539 	}
2540 	return (KERN_SUCCESS);
2541 }
2542 
2543 /*
2544  *	vm_map_remove:
2545  *
2546  *	Remove the given address range from the target map.
2547  *	This is the exported form of vm_map_delete.
2548  */
2549 int
2550 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2551 {
2552 	int result;
2553 	int count;
2554 
2555 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2556 	vm_map_lock(map);
2557 	VM_MAP_RANGE_CHECK(map, start, end);
2558 	result = vm_map_delete(map, start, end, &count);
2559 	vm_map_unlock(map);
2560 	vm_map_entry_release(count);
2561 
2562 	return (result);
2563 }
2564 
2565 /*
2566  *	vm_map_check_protection:
2567  *
2568  *	Assert that the target map allows the specified
2569  *	privilege on the entire address region given.
2570  *	The entire region must be allocated.
2571  */
2572 boolean_t
2573 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2574 			vm_prot_t protection)
2575 {
2576 	vm_map_entry_t entry;
2577 	vm_map_entry_t tmp_entry;
2578 
2579 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2580 		return (FALSE);
2581 	}
2582 	entry = tmp_entry;
2583 
2584 	while (start < end) {
2585 		if (entry == &map->header) {
2586 			return (FALSE);
2587 		}
2588 		/*
2589 		 * No holes allowed!
2590 		 */
2591 
2592 		if (start < entry->start) {
2593 			return (FALSE);
2594 		}
2595 		/*
2596 		 * Check protection associated with entry.
2597 		 */
2598 
2599 		if ((entry->protection & protection) != protection) {
2600 			return (FALSE);
2601 		}
2602 		/* go to next entry */
2603 
2604 		start = entry->end;
2605 		entry = entry->next;
2606 	}
2607 	return (TRUE);
2608 }
2609 
2610 /*
2611  * Split the pages in a map entry into a new object.  This affords
2612  * easier removal of unused pages, and keeps object inheritance from
2613  * being a negative impact on memory usage.
2614  */
2615 static void
2616 vm_map_split(vm_map_entry_t entry)
2617 {
2618 	vm_page_t m;
2619 	vm_object_t orig_object, new_object, source;
2620 	vm_offset_t s, e;
2621 	vm_pindex_t offidxstart, offidxend, idx;
2622 	vm_size_t size;
2623 	vm_ooffset_t offset;
2624 
2625 	orig_object = entry->object.vm_object;
2626 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2627 		return;
2628 	if (orig_object->ref_count <= 1)
2629 		return;
2630 
2631 	offset = entry->offset;
2632 	s = entry->start;
2633 	e = entry->end;
2634 
2635 	offidxstart = OFF_TO_IDX(offset);
2636 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2637 	size = offidxend - offidxstart;
2638 
2639 	new_object = vm_pager_allocate(orig_object->type, NULL,
2640 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2641 	if (new_object == NULL)
2642 		return;
2643 
2644 	source = orig_object->backing_object;
2645 	if (source != NULL) {
2646 		vm_object_reference(source);	/* Referenced by new_object */
2647 		LIST_INSERT_HEAD(&source->shadow_head,
2648 				  new_object, shadow_list);
2649 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2650 		new_object->backing_object_offset =
2651 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2652 		new_object->backing_object = source;
2653 		source->shadow_count++;
2654 		source->generation++;
2655 	}
2656 
2657 	for (idx = 0; idx < size; idx++) {
2658 		vm_page_t m;
2659 
2660 		/*
2661 		 * A critical section is required to avoid a race between
2662 		 * the lookup and an interrupt/unbusy/free and our busy
2663 		 * check.
2664 		 */
2665 		crit_enter();
2666 	retry:
2667 		m = vm_page_lookup(orig_object, offidxstart + idx);
2668 		if (m == NULL) {
2669 			crit_exit();
2670 			continue;
2671 		}
2672 
2673 		/*
2674 		 * We must wait for pending I/O to complete before we can
2675 		 * rename the page.
2676 		 *
2677 		 * We do not have to VM_PROT_NONE the page as mappings should
2678 		 * not be changed by this operation.
2679 		 */
2680 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2681 			goto retry;
2682 		vm_page_busy(m);
2683 		vm_page_rename(m, new_object, idx);
2684 		/* page automatically made dirty by rename and cache handled */
2685 		vm_page_busy(m);
2686 		crit_exit();
2687 	}
2688 
2689 	if (orig_object->type == OBJT_SWAP) {
2690 		vm_object_pip_add(orig_object, 1);
2691 		/*
2692 		 * copy orig_object pages into new_object
2693 		 * and destroy unneeded pages in
2694 		 * shadow object.
2695 		 */
2696 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2697 		vm_object_pip_wakeup(orig_object);
2698 	}
2699 
2700 	/*
2701 	 * Wakeup the pages we played with.  No spl protection is needed
2702 	 * for a simple wakeup.
2703 	 */
2704 	for (idx = 0; idx < size; idx++) {
2705 		m = vm_page_lookup(new_object, idx);
2706 		if (m)
2707 			vm_page_wakeup(m);
2708 	}
2709 
2710 	entry->object.vm_object = new_object;
2711 	entry->offset = 0LL;
2712 	vm_object_deallocate(orig_object);
2713 }
2714 
2715 /*
2716  *	vm_map_copy_entry:
2717  *
2718  *	Copies the contents of the source entry to the destination
2719  *	entry.  The entries *must* be aligned properly.
2720  */
2721 static void
2722 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2723 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2724 {
2725 	vm_object_t src_object;
2726 
2727 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2728 		return;
2729 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2730 		return;
2731 
2732 	if (src_entry->wired_count == 0) {
2733 		/*
2734 		 * If the source entry is marked needs_copy, it is already
2735 		 * write-protected.
2736 		 */
2737 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2738 			pmap_protect(src_map->pmap,
2739 			    src_entry->start,
2740 			    src_entry->end,
2741 			    src_entry->protection & ~VM_PROT_WRITE);
2742 		}
2743 
2744 		/*
2745 		 * Make a copy of the object.
2746 		 */
2747 		if ((src_object = src_entry->object.vm_object) != NULL) {
2748 			if ((src_object->handle == NULL) &&
2749 				(src_object->type == OBJT_DEFAULT ||
2750 				 src_object->type == OBJT_SWAP)) {
2751 				vm_object_collapse(src_object);
2752 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2753 					vm_map_split(src_entry);
2754 					src_object = src_entry->object.vm_object;
2755 				}
2756 			}
2757 
2758 			vm_object_reference(src_object);
2759 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2760 			dst_entry->object.vm_object = src_object;
2761 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2762 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2763 			dst_entry->offset = src_entry->offset;
2764 		} else {
2765 			dst_entry->object.vm_object = NULL;
2766 			dst_entry->offset = 0;
2767 		}
2768 
2769 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2770 		    dst_entry->end - dst_entry->start, src_entry->start);
2771 	} else {
2772 		/*
2773 		 * Of course, wired down pages can't be set copy-on-write.
2774 		 * Cause wired pages to be copied into the new map by
2775 		 * simulating faults (the new pages are pageable)
2776 		 */
2777 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2778 	}
2779 }
2780 
2781 /*
2782  * vmspace_fork:
2783  * Create a new process vmspace structure and vm_map
2784  * based on those of an existing process.  The new map
2785  * is based on the old map, according to the inheritance
2786  * values on the regions in that map.
2787  *
2788  * The source map must not be locked.
2789  */
2790 struct vmspace *
2791 vmspace_fork(struct vmspace *vm1)
2792 {
2793 	struct vmspace *vm2;
2794 	vm_map_t old_map = &vm1->vm_map;
2795 	vm_map_t new_map;
2796 	vm_map_entry_t old_entry;
2797 	vm_map_entry_t new_entry;
2798 	vm_object_t object;
2799 	int count;
2800 
2801 	vm_map_lock(old_map);
2802 	old_map->infork = 1;
2803 
2804 	/*
2805 	 * XXX Note: upcalls are not copied.
2806 	 */
2807 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2808 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2809 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2810 	new_map = &vm2->vm_map;	/* XXX */
2811 	new_map->timestamp = 1;
2812 
2813 	count = 0;
2814 	old_entry = old_map->header.next;
2815 	while (old_entry != &old_map->header) {
2816 		++count;
2817 		old_entry = old_entry->next;
2818 	}
2819 
2820 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2821 
2822 	old_entry = old_map->header.next;
2823 	while (old_entry != &old_map->header) {
2824 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2825 			panic("vm_map_fork: encountered a submap");
2826 
2827 		switch (old_entry->inheritance) {
2828 		case VM_INHERIT_NONE:
2829 			break;
2830 
2831 		case VM_INHERIT_SHARE:
2832 			/*
2833 			 * Clone the entry, creating the shared object if
2834 			 * necessary.
2835 			 */
2836 			object = old_entry->object.vm_object;
2837 			if (object == NULL) {
2838 				vm_map_entry_allocate_object(old_entry);
2839 				object = old_entry->object.vm_object;
2840 			}
2841 
2842 			/*
2843 			 * Add the reference before calling vm_map_entry_shadow
2844 			 * to insure that a shadow object is created.
2845 			 */
2846 			vm_object_reference(object);
2847 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2848 				vm_map_entry_shadow(old_entry);
2849 				/* Transfer the second reference too. */
2850 				vm_object_reference(
2851 				    old_entry->object.vm_object);
2852 				vm_object_deallocate(object);
2853 				object = old_entry->object.vm_object;
2854 			}
2855 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2856 
2857 			/*
2858 			 * Clone the entry, referencing the shared object.
2859 			 */
2860 			new_entry = vm_map_entry_create(new_map, &count);
2861 			*new_entry = *old_entry;
2862 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2863 			new_entry->wired_count = 0;
2864 
2865 			/*
2866 			 * Insert the entry into the new map -- we know we're
2867 			 * inserting at the end of the new map.
2868 			 */
2869 
2870 			vm_map_entry_link(new_map, new_map->header.prev,
2871 			    new_entry);
2872 
2873 			/*
2874 			 * Update the physical map
2875 			 */
2876 
2877 			pmap_copy(new_map->pmap, old_map->pmap,
2878 			    new_entry->start,
2879 			    (old_entry->end - old_entry->start),
2880 			    old_entry->start);
2881 			break;
2882 
2883 		case VM_INHERIT_COPY:
2884 			/*
2885 			 * Clone the entry and link into the map.
2886 			 */
2887 			new_entry = vm_map_entry_create(new_map, &count);
2888 			*new_entry = *old_entry;
2889 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2890 			new_entry->wired_count = 0;
2891 			new_entry->object.vm_object = NULL;
2892 			vm_map_entry_link(new_map, new_map->header.prev,
2893 			    new_entry);
2894 			vm_map_copy_entry(old_map, new_map, old_entry,
2895 			    new_entry);
2896 			break;
2897 		}
2898 		old_entry = old_entry->next;
2899 	}
2900 
2901 	new_map->size = old_map->size;
2902 	old_map->infork = 0;
2903 	vm_map_unlock(old_map);
2904 	vm_map_entry_release(count);
2905 
2906 	return (vm2);
2907 }
2908 
2909 int
2910 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2911 	      vm_prot_t prot, vm_prot_t max, int cow)
2912 {
2913 	vm_map_entry_t prev_entry;
2914 	vm_map_entry_t new_stack_entry;
2915 	vm_size_t      init_ssize;
2916 	int            rv;
2917 	int		count;
2918 
2919 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2920 		return (KERN_NO_SPACE);
2921 
2922 	if (max_ssize < sgrowsiz)
2923 		init_ssize = max_ssize;
2924 	else
2925 		init_ssize = sgrowsiz;
2926 
2927 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2928 	vm_map_lock(map);
2929 
2930 	/* If addr is already mapped, no go */
2931 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2932 		vm_map_unlock(map);
2933 		vm_map_entry_release(count);
2934 		return (KERN_NO_SPACE);
2935 	}
2936 
2937 	/* If we would blow our VMEM resource limit, no go */
2938 	if (map->size + init_ssize >
2939 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2940 		vm_map_unlock(map);
2941 		vm_map_entry_release(count);
2942 		return (KERN_NO_SPACE);
2943 	}
2944 
2945 	/* If we can't accomodate max_ssize in the current mapping,
2946 	 * no go.  However, we need to be aware that subsequent user
2947 	 * mappings might map into the space we have reserved for
2948 	 * stack, and currently this space is not protected.
2949 	 *
2950 	 * Hopefully we will at least detect this condition
2951 	 * when we try to grow the stack.
2952 	 */
2953 	if ((prev_entry->next != &map->header) &&
2954 	    (prev_entry->next->start < addrbos + max_ssize)) {
2955 		vm_map_unlock(map);
2956 		vm_map_entry_release(count);
2957 		return (KERN_NO_SPACE);
2958 	}
2959 
2960 	/* We initially map a stack of only init_ssize.  We will
2961 	 * grow as needed later.  Since this is to be a grow
2962 	 * down stack, we map at the top of the range.
2963 	 *
2964 	 * Note: we would normally expect prot and max to be
2965 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2966 	 * eliminate these as input parameters, and just
2967 	 * pass these values here in the insert call.
2968 	 */
2969 	rv = vm_map_insert(map, &count,
2970 			   NULL, 0, addrbos + max_ssize - init_ssize,
2971 	                   addrbos + max_ssize,
2972 			   VM_MAPTYPE_NORMAL,
2973 			   prot, max,
2974 			   cow);
2975 
2976 	/* Now set the avail_ssize amount */
2977 	if (rv == KERN_SUCCESS) {
2978 		if (prev_entry != &map->header)
2979 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2980 		new_stack_entry = prev_entry->next;
2981 		if (new_stack_entry->end   != addrbos + max_ssize ||
2982 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2983 			panic ("Bad entry start/end for new stack entry");
2984 		else
2985 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
2986 	}
2987 
2988 	vm_map_unlock(map);
2989 	vm_map_entry_release(count);
2990 	return (rv);
2991 }
2992 
2993 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2994  * desired address is already mapped, or if we successfully grow
2995  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2996  * stack range (this is strange, but preserves compatibility with
2997  * the grow function in vm_machdep.c).
2998  */
2999 int
3000 vm_map_growstack (struct proc *p, vm_offset_t addr)
3001 {
3002 	vm_map_entry_t prev_entry;
3003 	vm_map_entry_t stack_entry;
3004 	vm_map_entry_t new_stack_entry;
3005 	struct vmspace *vm = p->p_vmspace;
3006 	vm_map_t map = &vm->vm_map;
3007 	vm_offset_t    end;
3008 	int grow_amount;
3009 	int rv = KERN_SUCCESS;
3010 	int is_procstack;
3011 	int use_read_lock = 1;
3012 	int count;
3013 
3014 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3015 Retry:
3016 	if (use_read_lock)
3017 		vm_map_lock_read(map);
3018 	else
3019 		vm_map_lock(map);
3020 
3021 	/* If addr is already in the entry range, no need to grow.*/
3022 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3023 		goto done;
3024 
3025 	if ((stack_entry = prev_entry->next) == &map->header)
3026 		goto done;
3027 	if (prev_entry == &map->header)
3028 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3029 	else
3030 		end = prev_entry->end;
3031 
3032 	/* This next test mimics the old grow function in vm_machdep.c.
3033 	 * It really doesn't quite make sense, but we do it anyway
3034 	 * for compatibility.
3035 	 *
3036 	 * If not growable stack, return success.  This signals the
3037 	 * caller to proceed as he would normally with normal vm.
3038 	 */
3039 	if (stack_entry->aux.avail_ssize < 1 ||
3040 	    addr >= stack_entry->start ||
3041 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3042 		goto done;
3043 	}
3044 
3045 	/* Find the minimum grow amount */
3046 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3047 	if (grow_amount > stack_entry->aux.avail_ssize) {
3048 		rv = KERN_NO_SPACE;
3049 		goto done;
3050 	}
3051 
3052 	/* If there is no longer enough space between the entries
3053 	 * nogo, and adjust the available space.  Note: this
3054 	 * should only happen if the user has mapped into the
3055 	 * stack area after the stack was created, and is
3056 	 * probably an error.
3057 	 *
3058 	 * This also effectively destroys any guard page the user
3059 	 * might have intended by limiting the stack size.
3060 	 */
3061 	if (grow_amount > stack_entry->start - end) {
3062 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3063 			use_read_lock = 0;
3064 			goto Retry;
3065 		}
3066 		use_read_lock = 0;
3067 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3068 		rv = KERN_NO_SPACE;
3069 		goto done;
3070 	}
3071 
3072 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3073 
3074 	/* If this is the main process stack, see if we're over the
3075 	 * stack limit.
3076 	 */
3077 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3078 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3079 		rv = KERN_NO_SPACE;
3080 		goto done;
3081 	}
3082 
3083 	/* Round up the grow amount modulo SGROWSIZ */
3084 	grow_amount = roundup (grow_amount, sgrowsiz);
3085 	if (grow_amount > stack_entry->aux.avail_ssize) {
3086 		grow_amount = stack_entry->aux.avail_ssize;
3087 	}
3088 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3089 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3090 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3091 		              ctob(vm->vm_ssize);
3092 	}
3093 
3094 	/* If we would blow our VMEM resource limit, no go */
3095 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3096 		rv = KERN_NO_SPACE;
3097 		goto done;
3098 	}
3099 
3100 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3101 		use_read_lock = 0;
3102 		goto Retry;
3103 	}
3104 	use_read_lock = 0;
3105 
3106 	/* Get the preliminary new entry start value */
3107 	addr = stack_entry->start - grow_amount;
3108 
3109 	/* If this puts us into the previous entry, cut back our growth
3110 	 * to the available space.  Also, see the note above.
3111 	 */
3112 	if (addr < end) {
3113 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3114 		addr = end;
3115 	}
3116 
3117 	rv = vm_map_insert(map, &count,
3118 			   NULL, 0, addr, stack_entry->start,
3119 			   VM_MAPTYPE_NORMAL,
3120 			   VM_PROT_ALL, VM_PROT_ALL,
3121 			   0);
3122 
3123 	/* Adjust the available stack space by the amount we grew. */
3124 	if (rv == KERN_SUCCESS) {
3125 		if (prev_entry != &map->header)
3126 			vm_map_clip_end(map, prev_entry, addr, &count);
3127 		new_stack_entry = prev_entry->next;
3128 		if (new_stack_entry->end   != stack_entry->start  ||
3129 		    new_stack_entry->start != addr)
3130 			panic ("Bad stack grow start/end in new stack entry");
3131 		else {
3132 			new_stack_entry->aux.avail_ssize =
3133 				stack_entry->aux.avail_ssize -
3134 				(new_stack_entry->end - new_stack_entry->start);
3135 			if (is_procstack)
3136 				vm->vm_ssize += btoc(new_stack_entry->end -
3137 						     new_stack_entry->start);
3138 		}
3139 	}
3140 
3141 done:
3142 	if (use_read_lock)
3143 		vm_map_unlock_read(map);
3144 	else
3145 		vm_map_unlock(map);
3146 	vm_map_entry_release(count);
3147 	return (rv);
3148 }
3149 
3150 /*
3151  * Unshare the specified VM space for exec.  If other processes are
3152  * mapped to it, then create a new one.  The new vmspace is null.
3153  */
3154 
3155 void
3156 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3157 {
3158 	struct vmspace *oldvmspace = p->p_vmspace;
3159 	struct vmspace *newvmspace;
3160 	vm_map_t map = &p->p_vmspace->vm_map;
3161 
3162 	/*
3163 	 * If we are execing a resident vmspace we fork it, otherwise
3164 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3165 	 * are not copied to the new vmspace.
3166 	 */
3167 	if (vmcopy)  {
3168 	    newvmspace = vmspace_fork(vmcopy);
3169 	} else {
3170 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3171 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3172 		(caddr_t)&oldvmspace->vm_endcopy -
3173 		    (caddr_t)&oldvmspace->vm_startcopy);
3174 	}
3175 
3176 	/*
3177 	 * This code is written like this for prototype purposes.  The
3178 	 * goal is to avoid running down the vmspace here, but let the
3179 	 * other process's that are still using the vmspace to finally
3180 	 * run it down.  Even though there is little or no chance of blocking
3181 	 * here, it is a good idea to keep this form for future mods.
3182 	 */
3183 	p->p_vmspace = newvmspace;
3184 	pmap_pinit2(vmspace_pmap(newvmspace));
3185 	if (p == curproc)
3186 		pmap_activate(p);
3187 	vmspace_free(oldvmspace);
3188 }
3189 
3190 /*
3191  * Unshare the specified VM space for forcing COW.  This
3192  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3193  *
3194  * The exitingcnt test is not strictly necessary but has been
3195  * included for code sanity (to make the code a bit more deterministic).
3196  */
3197 
3198 void
3199 vmspace_unshare(struct proc *p)
3200 {
3201 	struct vmspace *oldvmspace = p->p_vmspace;
3202 	struct vmspace *newvmspace;
3203 
3204 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3205 		return;
3206 	newvmspace = vmspace_fork(oldvmspace);
3207 	p->p_vmspace = newvmspace;
3208 	pmap_pinit2(vmspace_pmap(newvmspace));
3209 	if (p == curproc)
3210 		pmap_activate(p);
3211 	vmspace_free(oldvmspace);
3212 }
3213 
3214 /*
3215  *	vm_map_lookup:
3216  *
3217  *	Finds the VM object, offset, and
3218  *	protection for a given virtual address in the
3219  *	specified map, assuming a page fault of the
3220  *	type specified.
3221  *
3222  *	Leaves the map in question locked for read; return
3223  *	values are guaranteed until a vm_map_lookup_done
3224  *	call is performed.  Note that the map argument
3225  *	is in/out; the returned map must be used in
3226  *	the call to vm_map_lookup_done.
3227  *
3228  *	A handle (out_entry) is returned for use in
3229  *	vm_map_lookup_done, to make that fast.
3230  *
3231  *	If a lookup is requested with "write protection"
3232  *	specified, the map may be changed to perform virtual
3233  *	copying operations, although the data referenced will
3234  *	remain the same.
3235  */
3236 int
3237 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3238 	      vm_offset_t vaddr,
3239 	      vm_prot_t fault_typea,
3240 	      vm_map_entry_t *out_entry,	/* OUT */
3241 	      vm_object_t *object,		/* OUT */
3242 	      vm_pindex_t *pindex,		/* OUT */
3243 	      vm_prot_t *out_prot,		/* OUT */
3244 	      boolean_t *wired)			/* OUT */
3245 {
3246 	vm_map_entry_t entry;
3247 	vm_map_t map = *var_map;
3248 	vm_prot_t prot;
3249 	vm_prot_t fault_type = fault_typea;
3250 	int use_read_lock = 1;
3251 	int rv = KERN_SUCCESS;
3252 
3253 RetryLookup:
3254 	if (use_read_lock)
3255 		vm_map_lock_read(map);
3256 	else
3257 		vm_map_lock(map);
3258 
3259 	/*
3260 	 * If the map has an interesting hint, try it before calling full
3261 	 * blown lookup routine.
3262 	 */
3263 	entry = map->hint;
3264 	*out_entry = entry;
3265 
3266 	if ((entry == &map->header) ||
3267 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3268 		vm_map_entry_t tmp_entry;
3269 
3270 		/*
3271 		 * Entry was either not a valid hint, or the vaddr was not
3272 		 * contained in the entry, so do a full lookup.
3273 		 */
3274 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3275 			rv = KERN_INVALID_ADDRESS;
3276 			goto done;
3277 		}
3278 
3279 		entry = tmp_entry;
3280 		*out_entry = entry;
3281 	}
3282 
3283 	/*
3284 	 * Handle submaps.
3285 	 */
3286 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3287 		vm_map_t old_map = map;
3288 
3289 		*var_map = map = entry->object.sub_map;
3290 		if (use_read_lock)
3291 			vm_map_unlock_read(old_map);
3292 		else
3293 			vm_map_unlock(old_map);
3294 		use_read_lock = 1;
3295 		goto RetryLookup;
3296 	}
3297 
3298 	/*
3299 	 * Check whether this task is allowed to have this page.
3300 	 * Note the special case for MAP_ENTRY_COW
3301 	 * pages with an override.  This is to implement a forced
3302 	 * COW for debuggers.
3303 	 */
3304 
3305 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3306 		prot = entry->max_protection;
3307 	else
3308 		prot = entry->protection;
3309 
3310 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3311 	if ((fault_type & prot) != fault_type) {
3312 		rv = KERN_PROTECTION_FAILURE;
3313 		goto done;
3314 	}
3315 
3316 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3317 	    (entry->eflags & MAP_ENTRY_COW) &&
3318 	    (fault_type & VM_PROT_WRITE) &&
3319 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3320 		rv = KERN_PROTECTION_FAILURE;
3321 		goto done;
3322 	}
3323 
3324 	/*
3325 	 * If this page is not pageable, we have to get it for all possible
3326 	 * accesses.
3327 	 */
3328 	*wired = (entry->wired_count != 0);
3329 	if (*wired)
3330 		prot = fault_type = entry->protection;
3331 
3332 	/*
3333 	 * Virtual page tables may need to update the accessed (A) bit
3334 	 * in a page table entry.  Upgrade the fault to a write fault for
3335 	 * that case if the map will support it.  If the map does not support
3336 	 * it the page table entry simply will not be updated.
3337 	 */
3338 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3339 		if (prot & VM_PROT_WRITE)
3340 			fault_type |= VM_PROT_WRITE;
3341 	}
3342 
3343 	/*
3344 	 * If the entry was copy-on-write, we either ...
3345 	 */
3346 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3347 		/*
3348 		 * If we want to write the page, we may as well handle that
3349 		 * now since we've got the map locked.
3350 		 *
3351 		 * If we don't need to write the page, we just demote the
3352 		 * permissions allowed.
3353 		 */
3354 
3355 		if (fault_type & VM_PROT_WRITE) {
3356 			/*
3357 			 * Make a new object, and place it in the object
3358 			 * chain.  Note that no new references have appeared
3359 			 * -- one just moved from the map to the new
3360 			 * object.
3361 			 */
3362 
3363 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3364 				use_read_lock = 0;
3365 				goto RetryLookup;
3366 			}
3367 			use_read_lock = 0;
3368 
3369 			vm_map_entry_shadow(entry);
3370 		} else {
3371 			/*
3372 			 * We're attempting to read a copy-on-write page --
3373 			 * don't allow writes.
3374 			 */
3375 
3376 			prot &= ~VM_PROT_WRITE;
3377 		}
3378 	}
3379 
3380 	/*
3381 	 * Create an object if necessary.
3382 	 */
3383 	if (entry->object.vm_object == NULL &&
3384 	    !map->system_map) {
3385 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3386 			use_read_lock = 0;
3387 			goto RetryLookup;
3388 		}
3389 		use_read_lock = 0;
3390 		vm_map_entry_allocate_object(entry);
3391 	}
3392 
3393 	/*
3394 	 * Return the object/offset from this entry.  If the entry was
3395 	 * copy-on-write or empty, it has been fixed up.
3396 	 */
3397 
3398 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3399 	*object = entry->object.vm_object;
3400 
3401 	/*
3402 	 * Return whether this is the only map sharing this data.  On
3403 	 * success we return with a read lock held on the map.  On failure
3404 	 * we return with the map unlocked.
3405 	 */
3406 	*out_prot = prot;
3407 done:
3408 	if (rv == KERN_SUCCESS) {
3409 		if (use_read_lock == 0)
3410 			vm_map_lock_downgrade(map);
3411 	} else if (use_read_lock) {
3412 		vm_map_unlock_read(map);
3413 	} else {
3414 		vm_map_unlock(map);
3415 	}
3416 	return (rv);
3417 }
3418 
3419 /*
3420  *	vm_map_lookup_done:
3421  *
3422  *	Releases locks acquired by a vm_map_lookup
3423  *	(according to the handle returned by that lookup).
3424  */
3425 
3426 void
3427 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3428 {
3429 	/*
3430 	 * Unlock the main-level map
3431 	 */
3432 	vm_map_unlock_read(map);
3433 	if (count)
3434 		vm_map_entry_release(count);
3435 }
3436 
3437 #include "opt_ddb.h"
3438 #ifdef DDB
3439 #include <sys/kernel.h>
3440 
3441 #include <ddb/ddb.h>
3442 
3443 /*
3444  *	vm_map_print:	[ debug ]
3445  */
3446 DB_SHOW_COMMAND(map, vm_map_print)
3447 {
3448 	static int nlines;
3449 	/* XXX convert args. */
3450 	vm_map_t map = (vm_map_t)addr;
3451 	boolean_t full = have_addr;
3452 
3453 	vm_map_entry_t entry;
3454 
3455 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3456 	    (void *)map,
3457 	    (void *)map->pmap, map->nentries, map->timestamp);
3458 	nlines++;
3459 
3460 	if (!full && db_indent)
3461 		return;
3462 
3463 	db_indent += 2;
3464 	for (entry = map->header.next; entry != &map->header;
3465 	    entry = entry->next) {
3466 		db_iprintf("map entry %p: start=%p, end=%p\n",
3467 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3468 		nlines++;
3469 		{
3470 			static char *inheritance_name[4] =
3471 			{"share", "copy", "none", "donate_copy"};
3472 
3473 			db_iprintf(" prot=%x/%x/%s",
3474 			    entry->protection,
3475 			    entry->max_protection,
3476 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3477 			if (entry->wired_count != 0)
3478 				db_printf(", wired");
3479 		}
3480 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3481 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3482 			db_printf(", share=%p, offset=0x%lx\n",
3483 			    (void *)entry->object.sub_map,
3484 			    (long)entry->offset);
3485 			nlines++;
3486 			if ((entry->prev == &map->header) ||
3487 			    (entry->prev->object.sub_map !=
3488 				entry->object.sub_map)) {
3489 				db_indent += 2;
3490 				vm_map_print((db_expr_t)(intptr_t)
3491 					     entry->object.sub_map,
3492 					     full, 0, (char *)0);
3493 				db_indent -= 2;
3494 			}
3495 		} else {
3496 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3497 			db_printf(", object=%p, offset=0x%lx",
3498 			    (void *)entry->object.vm_object,
3499 			    (long)entry->offset);
3500 			if (entry->eflags & MAP_ENTRY_COW)
3501 				db_printf(", copy (%s)",
3502 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3503 			db_printf("\n");
3504 			nlines++;
3505 
3506 			if ((entry->prev == &map->header) ||
3507 			    (entry->prev->object.vm_object !=
3508 				entry->object.vm_object)) {
3509 				db_indent += 2;
3510 				vm_object_print((db_expr_t)(intptr_t)
3511 						entry->object.vm_object,
3512 						full, 0, (char *)0);
3513 				nlines += 4;
3514 				db_indent -= 2;
3515 			}
3516 		}
3517 	}
3518 	db_indent -= 2;
3519 	if (db_indent == 0)
3520 		nlines = 0;
3521 }
3522 
3523 
3524 DB_SHOW_COMMAND(procvm, procvm)
3525 {
3526 	struct proc *p;
3527 
3528 	if (have_addr) {
3529 		p = (struct proc *) addr;
3530 	} else {
3531 		p = curproc;
3532 	}
3533 
3534 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3535 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3536 	    (void *)vmspace_pmap(p->p_vmspace));
3537 
3538 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3539 }
3540 
3541 #endif /* DDB */
3542