xref: /dflybsd-src/sys/vm/vm_map.c (revision 0eb2eccd5a86ef7dd7492d2651de55c3589f23d7)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory mapping module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99 
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 #include <sys/random.h>
103 #include <sys/sysctl.h>
104 
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static void vmspace_terminate(struct vmspace *vm);
123 static void vmspace_lock(struct vmspace *vm);
124 static void vmspace_unlock(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.nom_cache =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
140 		.lock = (sysref_lock_func_t)vmspace_lock,
141 		.unlock = (sysref_lock_func_t)vmspace_unlock
142 	}
143 };
144 
145 /*
146  * per-cpu page table cross mappings are initialized in early boot
147  * and might require a considerable number of vm_map_entry structures.
148  */
149 #define VMEPERCPU	(MAXCPU+1)
150 
151 static struct vm_zone mapentzone_store, mapzone_store;
152 static vm_zone_t mapentzone, mapzone;
153 static struct vm_object mapentobj, mapobj;
154 
155 static struct vm_map_entry map_entry_init[MAX_MAPENT];
156 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
157 static struct vm_map map_init[MAX_KMAP];
158 
159 static int randomize_mmap;
160 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
161     "Randomize mmap offsets");
162 
163 static void vm_map_entry_shadow(vm_map_entry_t entry);
164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171 		vm_map_entry_t);
172 static void vm_map_split (vm_map_entry_t);
173 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
174 
175 /*
176  * Initialize the vm_map module.  Must be called before any other vm_map
177  * routines.
178  *
179  * Map and entry structures are allocated from the general purpose
180  * memory pool with some exceptions:
181  *
182  *	- The kernel map is allocated statically.
183  *	- Initial kernel map entries are allocated out of a static pool.
184  *
185  *	These restrictions are necessary since malloc() uses the
186  *	maps and requires map entries.
187  *
188  * Called from the low level boot code only.
189  */
190 void
191 vm_map_startup(void)
192 {
193 	mapzone = &mapzone_store;
194 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
195 		map_init, MAX_KMAP);
196 	mapentzone = &mapentzone_store;
197 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
198 		map_entry_init, MAX_MAPENT);
199 }
200 
201 /*
202  * Called prior to any vmspace allocations.
203  *
204  * Called from the low level boot code only.
205  */
206 void
207 vm_init2(void)
208 {
209 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 	pmap_init2();
213 	vm_object_init2();
214 }
215 
216 
217 /*
218  * Red black tree functions
219  *
220  * The caller must hold the related map lock.
221  */
222 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
223 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
224 
225 /* a->start is address, and the only field has to be initialized */
226 static int
227 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
228 {
229 	if (a->start < b->start)
230 		return(-1);
231 	else if (a->start > b->start)
232 		return(1);
233 	return(0);
234 }
235 
236 /*
237  * Allocate a vmspace structure, including a vm_map and pmap.
238  * Initialize numerous fields.  While the initial allocation is zerod,
239  * subsequence reuse from the objcache leaves elements of the structure
240  * intact (particularly the pmap), so portions must be zerod.
241  *
242  * The structure is not considered activated until we call sysref_activate().
243  *
244  * No requirements.
245  */
246 struct vmspace *
247 vmspace_alloc(vm_offset_t min, vm_offset_t max)
248 {
249 	struct vmspace *vm;
250 
251 	lwkt_gettoken(&vmspace_token);
252 	vm = sysref_alloc(&vmspace_sysref_class);
253 	bzero(&vm->vm_startcopy,
254 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
255 	vm_map_init(&vm->vm_map, min, max, NULL);
256 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
257 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
258 	vm->vm_shm = NULL;
259 	vm->vm_exitingcnt = 0;
260 	cpu_vmspace_alloc(vm);
261 	sysref_activate(&vm->vm_sysref);
262 	lwkt_reltoken(&vmspace_token);
263 
264 	return (vm);
265 }
266 
267 /*
268  * dtor function - Some elements of the pmap are retained in the
269  * free-cached vmspaces to improve performance.  We have to clean them up
270  * here before returning the vmspace to the memory pool.
271  *
272  * No requirements.
273  */
274 static void
275 vmspace_dtor(void *obj, void *private)
276 {
277 	struct vmspace *vm = obj;
278 
279 	pmap_puninit(vmspace_pmap(vm));
280 }
281 
282 /*
283  * Called in two cases:
284  *
285  * (1) When the last sysref is dropped, but exitingcnt might still be
286  *     non-zero.
287  *
288  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
289  *     exitingcnt becomes zero
290  *
291  * sysref will not scrap the object until we call sysref_put() once more
292  * after the last ref has been dropped.
293  *
294  * Interlocked by the sysref API.
295  */
296 static void
297 vmspace_terminate(struct vmspace *vm)
298 {
299 	int count;
300 
301 	/*
302 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
303 	 * yet, but we can scrap user memory.
304 	 */
305 	lwkt_gettoken(&vmspace_token);
306 	if (vm->vm_exitingcnt) {
307 		shmexit(vm);
308 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
309 				  VM_MAX_USER_ADDRESS);
310 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
311 			      VM_MAX_USER_ADDRESS);
312 		lwkt_reltoken(&vmspace_token);
313 		return;
314 	}
315 	cpu_vmspace_free(vm);
316 
317 	/*
318 	 * Make sure any SysV shm is freed, it might not have in
319 	 * exit1()
320 	 */
321 	shmexit(vm);
322 
323 	KKASSERT(vm->vm_upcalls == NULL);
324 
325 	/*
326 	 * Lock the map, to wait out all other references to it.
327 	 * Delete all of the mappings and pages they hold, then call
328 	 * the pmap module to reclaim anything left.
329 	 */
330 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
331 	vm_map_lock(&vm->vm_map);
332 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
333 		vm->vm_map.max_offset, &count);
334 	vm_map_unlock(&vm->vm_map);
335 	vm_map_entry_release(count);
336 
337 	pmap_release(vmspace_pmap(vm));
338 	sysref_put(&vm->vm_sysref);
339 	lwkt_reltoken(&vmspace_token);
340 }
341 
342 /*
343  * vmspaces are not currently locked.
344  */
345 static void
346 vmspace_lock(struct vmspace *vm __unused)
347 {
348 }
349 
350 static void
351 vmspace_unlock(struct vmspace *vm __unused)
352 {
353 }
354 
355 /*
356  * This is called during exit indicating that the vmspace is no
357  * longer in used by an exiting process, but the process has not yet
358  * been cleaned up.
359  *
360  * No requirements.
361  */
362 void
363 vmspace_exitbump(struct vmspace *vm)
364 {
365 	lwkt_gettoken(&vmspace_token);
366 	++vm->vm_exitingcnt;
367 	lwkt_reltoken(&vmspace_token);
368 }
369 
370 /*
371  * This is called in the wait*() handling code.  The vmspace can be terminated
372  * after the last wait is finished using it.
373  *
374  * No requirements.
375  */
376 void
377 vmspace_exitfree(struct proc *p)
378 {
379 	struct vmspace *vm;
380 
381 	lwkt_gettoken(&vmspace_token);
382 	vm = p->p_vmspace;
383 	p->p_vmspace = NULL;
384 
385 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
386 		vmspace_terminate(vm);
387 	lwkt_reltoken(&vmspace_token);
388 }
389 
390 /*
391  * Swap useage is determined by taking the proportional swap used by
392  * VM objects backing the VM map.  To make up for fractional losses,
393  * if the VM object has any swap use at all the associated map entries
394  * count for at least 1 swap page.
395  *
396  * No requirements.
397  */
398 int
399 vmspace_swap_count(struct vmspace *vmspace)
400 {
401 	vm_map_t map = &vmspace->vm_map;
402 	vm_map_entry_t cur;
403 	vm_object_t object;
404 	int count = 0;
405 	int n;
406 
407 	lwkt_gettoken(&vmspace_token);
408 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
409 		switch(cur->maptype) {
410 		case VM_MAPTYPE_NORMAL:
411 		case VM_MAPTYPE_VPAGETABLE:
412 			if ((object = cur->object.vm_object) == NULL)
413 				break;
414 			if (object->swblock_count) {
415 				n = (cur->end - cur->start) / PAGE_SIZE;
416 				count += object->swblock_count *
417 				    SWAP_META_PAGES * n / object->size + 1;
418 			}
419 			break;
420 		default:
421 			break;
422 		}
423 	}
424 	lwkt_reltoken(&vmspace_token);
425 	return(count);
426 }
427 
428 /*
429  * Calculate the approximate number of anonymous pages in use by
430  * this vmspace.  To make up for fractional losses, we count each
431  * VM object as having at least 1 anonymous page.
432  *
433  * No requirements.
434  */
435 int
436 vmspace_anonymous_count(struct vmspace *vmspace)
437 {
438 	vm_map_t map = &vmspace->vm_map;
439 	vm_map_entry_t cur;
440 	vm_object_t object;
441 	int count = 0;
442 
443 	lwkt_gettoken(&vmspace_token);
444 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
445 		switch(cur->maptype) {
446 		case VM_MAPTYPE_NORMAL:
447 		case VM_MAPTYPE_VPAGETABLE:
448 			if ((object = cur->object.vm_object) == NULL)
449 				break;
450 			if (object->type != OBJT_DEFAULT &&
451 			    object->type != OBJT_SWAP) {
452 				break;
453 			}
454 			count += object->resident_page_count;
455 			break;
456 		default:
457 			break;
458 		}
459 	}
460 	lwkt_reltoken(&vmspace_token);
461 	return(count);
462 }
463 
464 /*
465  * Creates and returns a new empty VM map with the given physical map
466  * structure, and having the given lower and upper address bounds.
467  *
468  * No requirements.
469  */
470 vm_map_t
471 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
472 {
473 	if (result == NULL)
474 		result = zalloc(mapzone);
475 	vm_map_init(result, min, max, pmap);
476 	return (result);
477 }
478 
479 /*
480  * Initialize an existing vm_map structure such as that in the vmspace
481  * structure.  The pmap is initialized elsewhere.
482  *
483  * No requirements.
484  */
485 void
486 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
487 {
488 	map->header.next = map->header.prev = &map->header;
489 	RB_INIT(&map->rb_root);
490 	map->nentries = 0;
491 	map->size = 0;
492 	map->system_map = 0;
493 	map->min_offset = min;
494 	map->max_offset = max;
495 	map->pmap = pmap;
496 	map->first_free = &map->header;
497 	map->hint = &map->header;
498 	map->timestamp = 0;
499 	map->flags = 0;
500 	lockinit(&map->lock, "thrd_sleep", 0, 0);
501 	TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
502 }
503 
504 /*
505  * Shadow the vm_map_entry's object.  This typically needs to be done when
506  * a write fault is taken on an entry which had previously been cloned by
507  * fork().  The shared object (which might be NULL) must become private so
508  * we add a shadow layer above it.
509  *
510  * Object allocation for anonymous mappings is defered as long as possible.
511  * When creating a shadow, however, the underlying object must be instantiated
512  * so it can be shared.
513  *
514  * If the map segment is governed by a virtual page table then it is
515  * possible to address offsets beyond the mapped area.  Just allocate
516  * a maximally sized object for this case.
517  *
518  * The vm_map must be exclusively locked.
519  * No other requirements.
520  */
521 static
522 void
523 vm_map_entry_shadow(vm_map_entry_t entry)
524 {
525 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
526 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
527 				 0x7FFFFFFF);	/* XXX */
528 	} else {
529 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
530 				 atop(entry->end - entry->start));
531 	}
532 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
533 }
534 
535 /*
536  * Allocate an object for a vm_map_entry.
537  *
538  * Object allocation for anonymous mappings is defered as long as possible.
539  * This function is called when we can defer no longer, generally when a map
540  * entry might be split or forked or takes a page fault.
541  *
542  * If the map segment is governed by a virtual page table then it is
543  * possible to address offsets beyond the mapped area.  Just allocate
544  * a maximally sized object for this case.
545  *
546  * The vm_map must be exclusively locked.
547  * No other requirements.
548  */
549 void
550 vm_map_entry_allocate_object(vm_map_entry_t entry)
551 {
552 	vm_object_t obj;
553 
554 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
555 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
556 	} else {
557 		obj = vm_object_allocate(OBJT_DEFAULT,
558 					 atop(entry->end - entry->start));
559 	}
560 	entry->object.vm_object = obj;
561 	entry->offset = 0;
562 }
563 
564 /*
565  * Set an initial negative count so the first attempt to reserve
566  * space preloads a bunch of vm_map_entry's for this cpu.  Also
567  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
568  * map a new page for vm_map_entry structures.  SMP systems are
569  * particularly sensitive.
570  *
571  * This routine is called in early boot so we cannot just call
572  * vm_map_entry_reserve().
573  *
574  * Called from the low level boot code only (for each cpu)
575  */
576 void
577 vm_map_entry_reserve_cpu_init(globaldata_t gd)
578 {
579 	vm_map_entry_t entry;
580 	int i;
581 
582 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
583 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
584 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
585 		entry->next = gd->gd_vme_base;
586 		gd->gd_vme_base = entry;
587 	}
588 }
589 
590 /*
591  * Reserves vm_map_entry structures so code later on can manipulate
592  * map_entry structures within a locked map without blocking trying
593  * to allocate a new vm_map_entry.
594  *
595  * No requirements.
596  */
597 int
598 vm_map_entry_reserve(int count)
599 {
600 	struct globaldata *gd = mycpu;
601 	vm_map_entry_t entry;
602 
603 	/*
604 	 * Make sure we have enough structures in gd_vme_base to handle
605 	 * the reservation request.
606 	 */
607 	crit_enter();
608 	while (gd->gd_vme_avail < count) {
609 		entry = zalloc(mapentzone);
610 		entry->next = gd->gd_vme_base;
611 		gd->gd_vme_base = entry;
612 		++gd->gd_vme_avail;
613 	}
614 	gd->gd_vme_avail -= count;
615 	crit_exit();
616 
617 	return(count);
618 }
619 
620 /*
621  * Releases previously reserved vm_map_entry structures that were not
622  * used.  If we have too much junk in our per-cpu cache clean some of
623  * it out.
624  *
625  * No requirements.
626  */
627 void
628 vm_map_entry_release(int count)
629 {
630 	struct globaldata *gd = mycpu;
631 	vm_map_entry_t entry;
632 
633 	crit_enter();
634 	gd->gd_vme_avail += count;
635 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
636 		entry = gd->gd_vme_base;
637 		KKASSERT(entry != NULL);
638 		gd->gd_vme_base = entry->next;
639 		--gd->gd_vme_avail;
640 		crit_exit();
641 		zfree(mapentzone, entry);
642 		crit_enter();
643 	}
644 	crit_exit();
645 }
646 
647 /*
648  * Reserve map entry structures for use in kernel_map itself.  These
649  * entries have *ALREADY* been reserved on a per-cpu basis when the map
650  * was inited.  This function is used by zalloc() to avoid a recursion
651  * when zalloc() itself needs to allocate additional kernel memory.
652  *
653  * This function works like the normal reserve but does not load the
654  * vm_map_entry cache (because that would result in an infinite
655  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
656  *
657  * Any caller of this function must be sure to renormalize after
658  * potentially eating entries to ensure that the reserve supply
659  * remains intact.
660  *
661  * No requirements.
662  */
663 int
664 vm_map_entry_kreserve(int count)
665 {
666 	struct globaldata *gd = mycpu;
667 
668 	crit_enter();
669 	gd->gd_vme_avail -= count;
670 	crit_exit();
671 	KASSERT(gd->gd_vme_base != NULL,
672 		("no reserved entries left, gd_vme_avail = %d\n",
673 		gd->gd_vme_avail));
674 	return(count);
675 }
676 
677 /*
678  * Release previously reserved map entries for kernel_map.  We do not
679  * attempt to clean up like the normal release function as this would
680  * cause an unnecessary (but probably not fatal) deep procedure call.
681  *
682  * No requirements.
683  */
684 void
685 vm_map_entry_krelease(int count)
686 {
687 	struct globaldata *gd = mycpu;
688 
689 	crit_enter();
690 	gd->gd_vme_avail += count;
691 	crit_exit();
692 }
693 
694 /*
695  * Allocates a VM map entry for insertion.  No entry fields are filled in.
696  *
697  * The entries should have previously been reserved.  The reservation count
698  * is tracked in (*countp).
699  *
700  * No requirements.
701  */
702 static vm_map_entry_t
703 vm_map_entry_create(vm_map_t map, int *countp)
704 {
705 	struct globaldata *gd = mycpu;
706 	vm_map_entry_t entry;
707 
708 	KKASSERT(*countp > 0);
709 	--*countp;
710 	crit_enter();
711 	entry = gd->gd_vme_base;
712 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
713 	gd->gd_vme_base = entry->next;
714 	crit_exit();
715 
716 	return(entry);
717 }
718 
719 /*
720  * Dispose of a vm_map_entry that is no longer being referenced.
721  *
722  * No requirements.
723  */
724 static void
725 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
726 {
727 	struct globaldata *gd = mycpu;
728 
729 	KKASSERT(map->hint != entry);
730 	KKASSERT(map->first_free != entry);
731 
732 	++*countp;
733 	crit_enter();
734 	entry->next = gd->gd_vme_base;
735 	gd->gd_vme_base = entry;
736 	crit_exit();
737 }
738 
739 
740 /*
741  * Insert/remove entries from maps.
742  *
743  * The related map must be exclusively locked.
744  * No other requirements.
745  *
746  * NOTE! We currently acquire the vmspace_token only to avoid races
747  *	 against the pageout daemon's calls to vmspace_*_count(), which
748  *	 are unable to safely lock the vm_map without potentially
749  *	 deadlocking.
750  */
751 static __inline void
752 vm_map_entry_link(vm_map_t map,
753 		  vm_map_entry_t after_where,
754 		  vm_map_entry_t entry)
755 {
756 	ASSERT_VM_MAP_LOCKED(map);
757 
758 	lwkt_gettoken(&vmspace_token);
759 	map->nentries++;
760 	entry->prev = after_where;
761 	entry->next = after_where->next;
762 	entry->next->prev = entry;
763 	after_where->next = entry;
764 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
765 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
766 	lwkt_reltoken(&vmspace_token);
767 }
768 
769 static __inline void
770 vm_map_entry_unlink(vm_map_t map,
771 		    vm_map_entry_t entry)
772 {
773 	vm_map_entry_t prev;
774 	vm_map_entry_t next;
775 
776 	ASSERT_VM_MAP_LOCKED(map);
777 
778 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
779 		panic("vm_map_entry_unlink: attempt to mess with "
780 		      "locked entry! %p", entry);
781 	}
782 	lwkt_gettoken(&vmspace_token);
783 	prev = entry->prev;
784 	next = entry->next;
785 	next->prev = prev;
786 	prev->next = next;
787 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
788 	map->nentries--;
789 	lwkt_reltoken(&vmspace_token);
790 }
791 
792 /*
793  * Finds the map entry containing (or immediately preceding) the specified
794  * address in the given map.  The entry is returned in (*entry).
795  *
796  * The boolean result indicates whether the address is actually contained
797  * in the map.
798  *
799  * The related map must be locked.
800  * No other requirements.
801  */
802 boolean_t
803 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
804 {
805 	vm_map_entry_t tmp;
806 	vm_map_entry_t last;
807 
808 	ASSERT_VM_MAP_LOCKED(map);
809 #if 0
810 	/*
811 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
812 	 * the hint code with the red-black lookup meets with system crashes
813 	 * and lockups.  We do not yet know why.
814 	 *
815 	 * It is possible that the problem is related to the setting
816 	 * of the hint during map_entry deletion, in the code specified
817 	 * at the GGG comment later on in this file.
818 	 */
819 	/*
820 	 * Quickly check the cached hint, there's a good chance of a match.
821 	 */
822 	if (map->hint != &map->header) {
823 		tmp = map->hint;
824 		if (address >= tmp->start && address < tmp->end) {
825 			*entry = tmp;
826 			return(TRUE);
827 		}
828 	}
829 #endif
830 
831 	/*
832 	 * Locate the record from the top of the tree.  'last' tracks the
833 	 * closest prior record and is returned if no match is found, which
834 	 * in binary tree terms means tracking the most recent right-branch
835 	 * taken.  If there is no prior record, &map->header is returned.
836 	 */
837 	last = &map->header;
838 	tmp = RB_ROOT(&map->rb_root);
839 
840 	while (tmp) {
841 		if (address >= tmp->start) {
842 			if (address < tmp->end) {
843 				*entry = tmp;
844 				map->hint = tmp;
845 				return(TRUE);
846 			}
847 			last = tmp;
848 			tmp = RB_RIGHT(tmp, rb_entry);
849 		} else {
850 			tmp = RB_LEFT(tmp, rb_entry);
851 		}
852 	}
853 	*entry = last;
854 	return (FALSE);
855 }
856 
857 /*
858  * Inserts the given whole VM object into the target map at the specified
859  * address range.  The object's size should match that of the address range.
860  *
861  * The map must be exclusively locked.
862  * The caller must have reserved sufficient vm_map_entry structures.
863  *
864  * If object is non-NULL, ref count must be bumped by caller
865  * prior to making call to account for the new entry.
866  */
867 int
868 vm_map_insert(vm_map_t map, int *countp,
869 	      vm_object_t object, vm_ooffset_t offset,
870 	      vm_offset_t start, vm_offset_t end,
871 	      vm_maptype_t maptype,
872 	      vm_prot_t prot, vm_prot_t max,
873 	      int cow)
874 {
875 	vm_map_entry_t new_entry;
876 	vm_map_entry_t prev_entry;
877 	vm_map_entry_t temp_entry;
878 	vm_eflags_t protoeflags;
879 
880 	ASSERT_VM_MAP_LOCKED(map);
881 
882 	/*
883 	 * Check that the start and end points are not bogus.
884 	 */
885 	if ((start < map->min_offset) || (end > map->max_offset) ||
886 	    (start >= end))
887 		return (KERN_INVALID_ADDRESS);
888 
889 	/*
890 	 * Find the entry prior to the proposed starting address; if it's part
891 	 * of an existing entry, this range is bogus.
892 	 */
893 	if (vm_map_lookup_entry(map, start, &temp_entry))
894 		return (KERN_NO_SPACE);
895 
896 	prev_entry = temp_entry;
897 
898 	/*
899 	 * Assert that the next entry doesn't overlap the end point.
900 	 */
901 
902 	if ((prev_entry->next != &map->header) &&
903 	    (prev_entry->next->start < end))
904 		return (KERN_NO_SPACE);
905 
906 	protoeflags = 0;
907 
908 	if (cow & MAP_COPY_ON_WRITE)
909 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
910 
911 	if (cow & MAP_NOFAULT) {
912 		protoeflags |= MAP_ENTRY_NOFAULT;
913 
914 		KASSERT(object == NULL,
915 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
916 	}
917 	if (cow & MAP_DISABLE_SYNCER)
918 		protoeflags |= MAP_ENTRY_NOSYNC;
919 	if (cow & MAP_DISABLE_COREDUMP)
920 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
921 	if (cow & MAP_IS_STACK)
922 		protoeflags |= MAP_ENTRY_STACK;
923 	if (cow & MAP_IS_KSTACK)
924 		protoeflags |= MAP_ENTRY_KSTACK;
925 
926 	lwkt_gettoken(&vm_token);
927 	lwkt_gettoken(&vmobj_token);
928 
929 	if (object) {
930 		/*
931 		 * When object is non-NULL, it could be shared with another
932 		 * process.  We have to set or clear OBJ_ONEMAPPING
933 		 * appropriately.
934 		 */
935 
936 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
937 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
938 		}
939 	}
940 	else if ((prev_entry != &map->header) &&
941 		 (prev_entry->eflags == protoeflags) &&
942 		 (prev_entry->end == start) &&
943 		 (prev_entry->wired_count == 0) &&
944 		 prev_entry->maptype == maptype &&
945 		 ((prev_entry->object.vm_object == NULL) ||
946 		  vm_object_coalesce(prev_entry->object.vm_object,
947 				     OFF_TO_IDX(prev_entry->offset),
948 				     (vm_size_t)(prev_entry->end - prev_entry->start),
949 				     (vm_size_t)(end - prev_entry->end)))) {
950 		/*
951 		 * We were able to extend the object.  Determine if we
952 		 * can extend the previous map entry to include the
953 		 * new range as well.
954 		 */
955 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
956 		    (prev_entry->protection == prot) &&
957 		    (prev_entry->max_protection == max)) {
958 			lwkt_reltoken(&vmobj_token);
959 			lwkt_reltoken(&vm_token);
960 			map->size += (end - prev_entry->end);
961 			prev_entry->end = end;
962 			vm_map_simplify_entry(map, prev_entry, countp);
963 			return (KERN_SUCCESS);
964 		}
965 
966 		/*
967 		 * If we can extend the object but cannot extend the
968 		 * map entry, we have to create a new map entry.  We
969 		 * must bump the ref count on the extended object to
970 		 * account for it.  object may be NULL.
971 		 */
972 		object = prev_entry->object.vm_object;
973 		offset = prev_entry->offset +
974 			(prev_entry->end - prev_entry->start);
975 		vm_object_reference_locked(object);
976 	}
977 
978 	lwkt_reltoken(&vmobj_token);
979 	lwkt_reltoken(&vm_token);
980 
981 	/*
982 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
983 	 * in things like the buffer map where we manage kva but do not manage
984 	 * backing objects.
985 	 */
986 
987 	/*
988 	 * Create a new entry
989 	 */
990 
991 	new_entry = vm_map_entry_create(map, countp);
992 	new_entry->start = start;
993 	new_entry->end = end;
994 
995 	new_entry->maptype = maptype;
996 	new_entry->eflags = protoeflags;
997 	new_entry->object.vm_object = object;
998 	new_entry->offset = offset;
999 	new_entry->aux.master_pde = 0;
1000 
1001 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1002 	new_entry->protection = prot;
1003 	new_entry->max_protection = max;
1004 	new_entry->wired_count = 0;
1005 
1006 	/*
1007 	 * Insert the new entry into the list
1008 	 */
1009 
1010 	vm_map_entry_link(map, prev_entry, new_entry);
1011 	map->size += new_entry->end - new_entry->start;
1012 
1013 	/*
1014 	 * Update the free space hint.  Entries cannot overlap.
1015 	 * An exact comparison is needed to avoid matching
1016 	 * against the map->header.
1017 	 */
1018 	if ((map->first_free == prev_entry) &&
1019 	    (prev_entry->end == new_entry->start)) {
1020 		map->first_free = new_entry;
1021 	}
1022 
1023 #if 0
1024 	/*
1025 	 * Temporarily removed to avoid MAP_STACK panic, due to
1026 	 * MAP_STACK being a huge hack.  Will be added back in
1027 	 * when MAP_STACK (and the user stack mapping) is fixed.
1028 	 */
1029 	/*
1030 	 * It may be possible to simplify the entry
1031 	 */
1032 	vm_map_simplify_entry(map, new_entry, countp);
1033 #endif
1034 
1035 	/*
1036 	 * Try to pre-populate the page table.  Mappings governed by virtual
1037 	 * page tables cannot be prepopulated without a lot of work, so
1038 	 * don't try.
1039 	 */
1040 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1041 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1042 		pmap_object_init_pt(map->pmap, start, prot,
1043 				    object, OFF_TO_IDX(offset), end - start,
1044 				    cow & MAP_PREFAULT_PARTIAL);
1045 	}
1046 
1047 	return (KERN_SUCCESS);
1048 }
1049 
1050 /*
1051  * Find sufficient space for `length' bytes in the given map, starting at
1052  * `start'.  Returns 0 on success, 1 on no space.
1053  *
1054  * This function will returned an arbitrarily aligned pointer.  If no
1055  * particular alignment is required you should pass align as 1.  Note that
1056  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1057  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1058  * argument.
1059  *
1060  * 'align' should be a power of 2 but is not required to be.
1061  *
1062  * The map must be exclusively locked.
1063  * No other requirements.
1064  */
1065 int
1066 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1067 		 vm_size_t align, int flags, vm_offset_t *addr)
1068 {
1069 	vm_map_entry_t entry, next;
1070 	vm_offset_t end;
1071 	vm_offset_t align_mask;
1072 
1073 	if (start < map->min_offset)
1074 		start = map->min_offset;
1075 	if (start > map->max_offset)
1076 		return (1);
1077 
1078 	/*
1079 	 * If the alignment is not a power of 2 we will have to use
1080 	 * a mod/division, set align_mask to a special value.
1081 	 */
1082 	if ((align | (align - 1)) + 1 != (align << 1))
1083 		align_mask = (vm_offset_t)-1;
1084 	else
1085 		align_mask = align - 1;
1086 
1087 	/*
1088 	 * Look for the first possible address; if there's already something
1089 	 * at this address, we have to start after it.
1090 	 */
1091 	if (start == map->min_offset) {
1092 		if ((entry = map->first_free) != &map->header)
1093 			start = entry->end;
1094 	} else {
1095 		vm_map_entry_t tmp;
1096 
1097 		if (vm_map_lookup_entry(map, start, &tmp))
1098 			start = tmp->end;
1099 		entry = tmp;
1100 	}
1101 
1102 	/*
1103 	 * Look through the rest of the map, trying to fit a new region in the
1104 	 * gap between existing regions, or after the very last region.
1105 	 */
1106 	for (;; start = (entry = next)->end) {
1107 		/*
1108 		 * Adjust the proposed start by the requested alignment,
1109 		 * be sure that we didn't wrap the address.
1110 		 */
1111 		if (align_mask == (vm_offset_t)-1)
1112 			end = ((start + align - 1) / align) * align;
1113 		else
1114 			end = (start + align_mask) & ~align_mask;
1115 		if (end < start)
1116 			return (1);
1117 		start = end;
1118 		/*
1119 		 * Find the end of the proposed new region.  Be sure we didn't
1120 		 * go beyond the end of the map, or wrap around the address.
1121 		 * Then check to see if this is the last entry or if the
1122 		 * proposed end fits in the gap between this and the next
1123 		 * entry.
1124 		 */
1125 		end = start + length;
1126 		if (end > map->max_offset || end < start)
1127 			return (1);
1128 		next = entry->next;
1129 
1130 		/*
1131 		 * If the next entry's start address is beyond the desired
1132 		 * end address we may have found a good entry.
1133 		 *
1134 		 * If the next entry is a stack mapping we do not map into
1135 		 * the stack's reserved space.
1136 		 *
1137 		 * XXX continue to allow mapping into the stack's reserved
1138 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1139 		 * mapping, for backwards compatibility.  But the caller
1140 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1141 		 * want to do that.
1142 		 */
1143 		if (next == &map->header)
1144 			break;
1145 		if (next->start >= end) {
1146 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1147 				break;
1148 			if (flags & MAP_STACK)
1149 				break;
1150 			if (next->start - next->aux.avail_ssize >= end)
1151 				break;
1152 		}
1153 	}
1154 	map->hint = entry;
1155 
1156 	/*
1157 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1158 	 * if it fails.  The kernel_map is locked and nothing can steal
1159 	 * our address space if pmap_growkernel() blocks.
1160 	 *
1161 	 * NOTE: This may be unconditionally called for kldload areas on
1162 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1163 	 *	 fill 128G worth of page tables!).  Therefore we must not
1164 	 *	 retry.
1165 	 */
1166 	if (map == &kernel_map) {
1167 		vm_offset_t kstop;
1168 
1169 		kstop = round_page(start + length);
1170 		if (kstop > kernel_vm_end)
1171 			pmap_growkernel(start, kstop);
1172 	}
1173 	*addr = start;
1174 	return (0);
1175 }
1176 
1177 /*
1178  * vm_map_find finds an unallocated region in the target address map with
1179  * the given length.  The search is defined to be first-fit from the
1180  * specified address; the region found is returned in the same parameter.
1181  *
1182  * If object is non-NULL, ref count must be bumped by caller
1183  * prior to making call to account for the new entry.
1184  *
1185  * No requirements.  This function will lock the map temporarily.
1186  */
1187 int
1188 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1189 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1190 	    boolean_t fitit,
1191 	    vm_maptype_t maptype,
1192 	    vm_prot_t prot, vm_prot_t max,
1193 	    int cow)
1194 {
1195 	vm_offset_t start;
1196 	int result;
1197 	int count;
1198 
1199 	start = *addr;
1200 
1201 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1202 	vm_map_lock(map);
1203 	if (fitit) {
1204 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1205 			vm_map_unlock(map);
1206 			vm_map_entry_release(count);
1207 			return (KERN_NO_SPACE);
1208 		}
1209 		start = *addr;
1210 	}
1211 	result = vm_map_insert(map, &count, object, offset,
1212 			       start, start + length,
1213 			       maptype,
1214 			       prot, max,
1215 			       cow);
1216 	vm_map_unlock(map);
1217 	vm_map_entry_release(count);
1218 
1219 	return (result);
1220 }
1221 
1222 /*
1223  * Simplify the given map entry by merging with either neighbor.  This
1224  * routine also has the ability to merge with both neighbors.
1225  *
1226  * This routine guarentees that the passed entry remains valid (though
1227  * possibly extended).  When merging, this routine may delete one or
1228  * both neighbors.  No action is taken on entries which have their
1229  * in-transition flag set.
1230  *
1231  * The map must be exclusively locked.
1232  */
1233 void
1234 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1235 {
1236 	vm_map_entry_t next, prev;
1237 	vm_size_t prevsize, esize;
1238 
1239 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1240 		++mycpu->gd_cnt.v_intrans_coll;
1241 		return;
1242 	}
1243 
1244 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1245 		return;
1246 
1247 	prev = entry->prev;
1248 	if (prev != &map->header) {
1249 		prevsize = prev->end - prev->start;
1250 		if ( (prev->end == entry->start) &&
1251 		     (prev->maptype == entry->maptype) &&
1252 		     (prev->object.vm_object == entry->object.vm_object) &&
1253 		     (!prev->object.vm_object ||
1254 			(prev->offset + prevsize == entry->offset)) &&
1255 		     (prev->eflags == entry->eflags) &&
1256 		     (prev->protection == entry->protection) &&
1257 		     (prev->max_protection == entry->max_protection) &&
1258 		     (prev->inheritance == entry->inheritance) &&
1259 		     (prev->wired_count == entry->wired_count)) {
1260 			if (map->first_free == prev)
1261 				map->first_free = entry;
1262 			if (map->hint == prev)
1263 				map->hint = entry;
1264 			vm_map_entry_unlink(map, prev);
1265 			entry->start = prev->start;
1266 			entry->offset = prev->offset;
1267 			if (prev->object.vm_object)
1268 				vm_object_deallocate(prev->object.vm_object);
1269 			vm_map_entry_dispose(map, prev, countp);
1270 		}
1271 	}
1272 
1273 	next = entry->next;
1274 	if (next != &map->header) {
1275 		esize = entry->end - entry->start;
1276 		if ((entry->end == next->start) &&
1277 		    (next->maptype == entry->maptype) &&
1278 		    (next->object.vm_object == entry->object.vm_object) &&
1279 		     (!entry->object.vm_object ||
1280 			(entry->offset + esize == next->offset)) &&
1281 		    (next->eflags == entry->eflags) &&
1282 		    (next->protection == entry->protection) &&
1283 		    (next->max_protection == entry->max_protection) &&
1284 		    (next->inheritance == entry->inheritance) &&
1285 		    (next->wired_count == entry->wired_count)) {
1286 			if (map->first_free == next)
1287 				map->first_free = entry;
1288 			if (map->hint == next)
1289 				map->hint = entry;
1290 			vm_map_entry_unlink(map, next);
1291 			entry->end = next->end;
1292 			if (next->object.vm_object)
1293 				vm_object_deallocate(next->object.vm_object);
1294 			vm_map_entry_dispose(map, next, countp);
1295 	        }
1296 	}
1297 }
1298 
1299 /*
1300  * Asserts that the given entry begins at or after the specified address.
1301  * If necessary, it splits the entry into two.
1302  */
1303 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1304 {									\
1305 	if (startaddr > entry->start)					\
1306 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1307 }
1308 
1309 /*
1310  * This routine is called only when it is known that the entry must be split.
1311  *
1312  * The map must be exclusively locked.
1313  */
1314 static void
1315 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1316 		   int *countp)
1317 {
1318 	vm_map_entry_t new_entry;
1319 
1320 	/*
1321 	 * Split off the front portion -- note that we must insert the new
1322 	 * entry BEFORE this one, so that this entry has the specified
1323 	 * starting address.
1324 	 */
1325 
1326 	vm_map_simplify_entry(map, entry, countp);
1327 
1328 	/*
1329 	 * If there is no object backing this entry, we might as well create
1330 	 * one now.  If we defer it, an object can get created after the map
1331 	 * is clipped, and individual objects will be created for the split-up
1332 	 * map.  This is a bit of a hack, but is also about the best place to
1333 	 * put this improvement.
1334 	 */
1335 	if (entry->object.vm_object == NULL && !map->system_map) {
1336 		vm_map_entry_allocate_object(entry);
1337 	}
1338 
1339 	new_entry = vm_map_entry_create(map, countp);
1340 	*new_entry = *entry;
1341 
1342 	new_entry->end = start;
1343 	entry->offset += (start - entry->start);
1344 	entry->start = start;
1345 
1346 	vm_map_entry_link(map, entry->prev, new_entry);
1347 
1348 	switch(entry->maptype) {
1349 	case VM_MAPTYPE_NORMAL:
1350 	case VM_MAPTYPE_VPAGETABLE:
1351 		vm_object_reference(new_entry->object.vm_object);
1352 		break;
1353 	default:
1354 		break;
1355 	}
1356 }
1357 
1358 /*
1359  * Asserts that the given entry ends at or before the specified address.
1360  * If necessary, it splits the entry into two.
1361  *
1362  * The map must be exclusively locked.
1363  */
1364 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1365 {								\
1366 	if (endaddr < entry->end)				\
1367 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1368 }
1369 
1370 /*
1371  * This routine is called only when it is known that the entry must be split.
1372  *
1373  * The map must be exclusively locked.
1374  */
1375 static void
1376 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1377 		 int *countp)
1378 {
1379 	vm_map_entry_t new_entry;
1380 
1381 	/*
1382 	 * If there is no object backing this entry, we might as well create
1383 	 * one now.  If we defer it, an object can get created after the map
1384 	 * is clipped, and individual objects will be created for the split-up
1385 	 * map.  This is a bit of a hack, but is also about the best place to
1386 	 * put this improvement.
1387 	 */
1388 
1389 	if (entry->object.vm_object == NULL && !map->system_map) {
1390 		vm_map_entry_allocate_object(entry);
1391 	}
1392 
1393 	/*
1394 	 * Create a new entry and insert it AFTER the specified entry
1395 	 */
1396 
1397 	new_entry = vm_map_entry_create(map, countp);
1398 	*new_entry = *entry;
1399 
1400 	new_entry->start = entry->end = end;
1401 	new_entry->offset += (end - entry->start);
1402 
1403 	vm_map_entry_link(map, entry, new_entry);
1404 
1405 	switch(entry->maptype) {
1406 	case VM_MAPTYPE_NORMAL:
1407 	case VM_MAPTYPE_VPAGETABLE:
1408 		vm_object_reference(new_entry->object.vm_object);
1409 		break;
1410 	default:
1411 		break;
1412 	}
1413 }
1414 
1415 /*
1416  * Asserts that the starting and ending region addresses fall within the
1417  * valid range for the map.
1418  */
1419 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1420 {						\
1421 	if (start < vm_map_min(map))		\
1422 		start = vm_map_min(map);	\
1423 	if (end > vm_map_max(map))		\
1424 		end = vm_map_max(map);		\
1425 	if (start > end)			\
1426 		start = end;			\
1427 }
1428 
1429 /*
1430  * Used to block when an in-transition collison occurs.  The map
1431  * is unlocked for the sleep and relocked before the return.
1432  */
1433 void
1434 vm_map_transition_wait(vm_map_t map)
1435 {
1436 	tsleep_interlock(map, 0);
1437 	vm_map_unlock(map);
1438 	tsleep(map, PINTERLOCKED, "vment", 0);
1439 	vm_map_lock(map);
1440 }
1441 
1442 /*
1443  * When we do blocking operations with the map lock held it is
1444  * possible that a clip might have occured on our in-transit entry,
1445  * requiring an adjustment to the entry in our loop.  These macros
1446  * help the pageable and clip_range code deal with the case.  The
1447  * conditional costs virtually nothing if no clipping has occured.
1448  */
1449 
1450 #define CLIP_CHECK_BACK(entry, save_start)		\
1451     do {						\
1452 	    while (entry->start != save_start) {	\
1453 		    entry = entry->prev;		\
1454 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1455 	    }						\
1456     } while(0)
1457 
1458 #define CLIP_CHECK_FWD(entry, save_end)			\
1459     do {						\
1460 	    while (entry->end != save_end) {		\
1461 		    entry = entry->next;		\
1462 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1463 	    }						\
1464     } while(0)
1465 
1466 
1467 /*
1468  * Clip the specified range and return the base entry.  The
1469  * range may cover several entries starting at the returned base
1470  * and the first and last entry in the covering sequence will be
1471  * properly clipped to the requested start and end address.
1472  *
1473  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1474  * flag.
1475  *
1476  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1477  * covered by the requested range.
1478  *
1479  * The map must be exclusively locked on entry and will remain locked
1480  * on return. If no range exists or the range contains holes and you
1481  * specified that no holes were allowed, NULL will be returned.  This
1482  * routine may temporarily unlock the map in order avoid a deadlock when
1483  * sleeping.
1484  */
1485 static
1486 vm_map_entry_t
1487 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1488 		  int *countp, int flags)
1489 {
1490 	vm_map_entry_t start_entry;
1491 	vm_map_entry_t entry;
1492 
1493 	/*
1494 	 * Locate the entry and effect initial clipping.  The in-transition
1495 	 * case does not occur very often so do not try to optimize it.
1496 	 */
1497 again:
1498 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1499 		return (NULL);
1500 	entry = start_entry;
1501 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1502 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1503 		++mycpu->gd_cnt.v_intrans_coll;
1504 		++mycpu->gd_cnt.v_intrans_wait;
1505 		vm_map_transition_wait(map);
1506 		/*
1507 		 * entry and/or start_entry may have been clipped while
1508 		 * we slept, or may have gone away entirely.  We have
1509 		 * to restart from the lookup.
1510 		 */
1511 		goto again;
1512 	}
1513 
1514 	/*
1515 	 * Since we hold an exclusive map lock we do not have to restart
1516 	 * after clipping, even though clipping may block in zalloc.
1517 	 */
1518 	vm_map_clip_start(map, entry, start, countp);
1519 	vm_map_clip_end(map, entry, end, countp);
1520 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1521 
1522 	/*
1523 	 * Scan entries covered by the range.  When working on the next
1524 	 * entry a restart need only re-loop on the current entry which
1525 	 * we have already locked, since 'next' may have changed.  Also,
1526 	 * even though entry is safe, it may have been clipped so we
1527 	 * have to iterate forwards through the clip after sleeping.
1528 	 */
1529 	while (entry->next != &map->header && entry->next->start < end) {
1530 		vm_map_entry_t next = entry->next;
1531 
1532 		if (flags & MAP_CLIP_NO_HOLES) {
1533 			if (next->start > entry->end) {
1534 				vm_map_unclip_range(map, start_entry,
1535 					start, entry->end, countp, flags);
1536 				return(NULL);
1537 			}
1538 		}
1539 
1540 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1541 			vm_offset_t save_end = entry->end;
1542 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1543 			++mycpu->gd_cnt.v_intrans_coll;
1544 			++mycpu->gd_cnt.v_intrans_wait;
1545 			vm_map_transition_wait(map);
1546 
1547 			/*
1548 			 * clips might have occured while we blocked.
1549 			 */
1550 			CLIP_CHECK_FWD(entry, save_end);
1551 			CLIP_CHECK_BACK(start_entry, start);
1552 			continue;
1553 		}
1554 		/*
1555 		 * No restart necessary even though clip_end may block, we
1556 		 * are holding the map lock.
1557 		 */
1558 		vm_map_clip_end(map, next, end, countp);
1559 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1560 		entry = next;
1561 	}
1562 	if (flags & MAP_CLIP_NO_HOLES) {
1563 		if (entry->end != end) {
1564 			vm_map_unclip_range(map, start_entry,
1565 				start, entry->end, countp, flags);
1566 			return(NULL);
1567 		}
1568 	}
1569 	return(start_entry);
1570 }
1571 
1572 /*
1573  * Undo the effect of vm_map_clip_range().  You should pass the same
1574  * flags and the same range that you passed to vm_map_clip_range().
1575  * This code will clear the in-transition flag on the entries and
1576  * wake up anyone waiting.  This code will also simplify the sequence
1577  * and attempt to merge it with entries before and after the sequence.
1578  *
1579  * The map must be locked on entry and will remain locked on return.
1580  *
1581  * Note that you should also pass the start_entry returned by
1582  * vm_map_clip_range().  However, if you block between the two calls
1583  * with the map unlocked please be aware that the start_entry may
1584  * have been clipped and you may need to scan it backwards to find
1585  * the entry corresponding with the original start address.  You are
1586  * responsible for this, vm_map_unclip_range() expects the correct
1587  * start_entry to be passed to it and will KASSERT otherwise.
1588  */
1589 static
1590 void
1591 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1592 		    vm_offset_t start, vm_offset_t end,
1593 		    int *countp, int flags)
1594 {
1595 	vm_map_entry_t entry;
1596 
1597 	entry = start_entry;
1598 
1599 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1600 	while (entry != &map->header && entry->start < end) {
1601 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1602 			("in-transition flag not set during unclip on: %p",
1603 			entry));
1604 		KASSERT(entry->end <= end,
1605 			("unclip_range: tail wasn't clipped"));
1606 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1607 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1608 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1609 			wakeup(map);
1610 		}
1611 		entry = entry->next;
1612 	}
1613 
1614 	/*
1615 	 * Simplification does not block so there is no restart case.
1616 	 */
1617 	entry = start_entry;
1618 	while (entry != &map->header && entry->start < end) {
1619 		vm_map_simplify_entry(map, entry, countp);
1620 		entry = entry->next;
1621 	}
1622 }
1623 
1624 /*
1625  * Mark the given range as handled by a subordinate map.
1626  *
1627  * This range must have been created with vm_map_find(), and no other
1628  * operations may have been performed on this range prior to calling
1629  * vm_map_submap().
1630  *
1631  * Submappings cannot be removed.
1632  *
1633  * No requirements.
1634  */
1635 int
1636 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1637 {
1638 	vm_map_entry_t entry;
1639 	int result = KERN_INVALID_ARGUMENT;
1640 	int count;
1641 
1642 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1643 	vm_map_lock(map);
1644 
1645 	VM_MAP_RANGE_CHECK(map, start, end);
1646 
1647 	if (vm_map_lookup_entry(map, start, &entry)) {
1648 		vm_map_clip_start(map, entry, start, &count);
1649 	} else {
1650 		entry = entry->next;
1651 	}
1652 
1653 	vm_map_clip_end(map, entry, end, &count);
1654 
1655 	if ((entry->start == start) && (entry->end == end) &&
1656 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1657 	    (entry->object.vm_object == NULL)) {
1658 		entry->object.sub_map = submap;
1659 		entry->maptype = VM_MAPTYPE_SUBMAP;
1660 		result = KERN_SUCCESS;
1661 	}
1662 	vm_map_unlock(map);
1663 	vm_map_entry_release(count);
1664 
1665 	return (result);
1666 }
1667 
1668 /*
1669  * Sets the protection of the specified address region in the target map.
1670  * If "set_max" is specified, the maximum protection is to be set;
1671  * otherwise, only the current protection is affected.
1672  *
1673  * The protection is not applicable to submaps, but is applicable to normal
1674  * maps and maps governed by virtual page tables.  For example, when operating
1675  * on a virtual page table our protection basically controls how COW occurs
1676  * on the backing object, whereas the virtual page table abstraction itself
1677  * is an abstraction for userland.
1678  *
1679  * No requirements.
1680  */
1681 int
1682 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1683 	       vm_prot_t new_prot, boolean_t set_max)
1684 {
1685 	vm_map_entry_t current;
1686 	vm_map_entry_t entry;
1687 	int count;
1688 
1689 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1690 	vm_map_lock(map);
1691 
1692 	VM_MAP_RANGE_CHECK(map, start, end);
1693 
1694 	if (vm_map_lookup_entry(map, start, &entry)) {
1695 		vm_map_clip_start(map, entry, start, &count);
1696 	} else {
1697 		entry = entry->next;
1698 	}
1699 
1700 	/*
1701 	 * Make a first pass to check for protection violations.
1702 	 */
1703 	current = entry;
1704 	while ((current != &map->header) && (current->start < end)) {
1705 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1706 			vm_map_unlock(map);
1707 			vm_map_entry_release(count);
1708 			return (KERN_INVALID_ARGUMENT);
1709 		}
1710 		if ((new_prot & current->max_protection) != new_prot) {
1711 			vm_map_unlock(map);
1712 			vm_map_entry_release(count);
1713 			return (KERN_PROTECTION_FAILURE);
1714 		}
1715 		current = current->next;
1716 	}
1717 
1718 	/*
1719 	 * Go back and fix up protections. [Note that clipping is not
1720 	 * necessary the second time.]
1721 	 */
1722 	current = entry;
1723 
1724 	while ((current != &map->header) && (current->start < end)) {
1725 		vm_prot_t old_prot;
1726 
1727 		vm_map_clip_end(map, current, end, &count);
1728 
1729 		old_prot = current->protection;
1730 		if (set_max) {
1731 			current->protection =
1732 			    (current->max_protection = new_prot) &
1733 			    old_prot;
1734 		} else {
1735 			current->protection = new_prot;
1736 		}
1737 
1738 		/*
1739 		 * Update physical map if necessary. Worry about copy-on-write
1740 		 * here -- CHECK THIS XXX
1741 		 */
1742 
1743 		if (current->protection != old_prot) {
1744 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1745 							VM_PROT_ALL)
1746 
1747 			pmap_protect(map->pmap, current->start,
1748 			    current->end,
1749 			    current->protection & MASK(current));
1750 #undef	MASK
1751 		}
1752 
1753 		vm_map_simplify_entry(map, current, &count);
1754 
1755 		current = current->next;
1756 	}
1757 
1758 	vm_map_unlock(map);
1759 	vm_map_entry_release(count);
1760 	return (KERN_SUCCESS);
1761 }
1762 
1763 /*
1764  * This routine traverses a processes map handling the madvise
1765  * system call.  Advisories are classified as either those effecting
1766  * the vm_map_entry structure, or those effecting the underlying
1767  * objects.
1768  *
1769  * The <value> argument is used for extended madvise calls.
1770  *
1771  * No requirements.
1772  */
1773 int
1774 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1775 	       int behav, off_t value)
1776 {
1777 	vm_map_entry_t current, entry;
1778 	int modify_map = 0;
1779 	int error = 0;
1780 	int count;
1781 
1782 	/*
1783 	 * Some madvise calls directly modify the vm_map_entry, in which case
1784 	 * we need to use an exclusive lock on the map and we need to perform
1785 	 * various clipping operations.  Otherwise we only need a read-lock
1786 	 * on the map.
1787 	 */
1788 
1789 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1790 
1791 	switch(behav) {
1792 	case MADV_NORMAL:
1793 	case MADV_SEQUENTIAL:
1794 	case MADV_RANDOM:
1795 	case MADV_NOSYNC:
1796 	case MADV_AUTOSYNC:
1797 	case MADV_NOCORE:
1798 	case MADV_CORE:
1799 	case MADV_SETMAP:
1800 	case MADV_INVAL:
1801 		modify_map = 1;
1802 		vm_map_lock(map);
1803 		break;
1804 	case MADV_WILLNEED:
1805 	case MADV_DONTNEED:
1806 	case MADV_FREE:
1807 		vm_map_lock_read(map);
1808 		break;
1809 	default:
1810 		vm_map_entry_release(count);
1811 		return (EINVAL);
1812 	}
1813 
1814 	/*
1815 	 * Locate starting entry and clip if necessary.
1816 	 */
1817 
1818 	VM_MAP_RANGE_CHECK(map, start, end);
1819 
1820 	if (vm_map_lookup_entry(map, start, &entry)) {
1821 		if (modify_map)
1822 			vm_map_clip_start(map, entry, start, &count);
1823 	} else {
1824 		entry = entry->next;
1825 	}
1826 
1827 	if (modify_map) {
1828 		/*
1829 		 * madvise behaviors that are implemented in the vm_map_entry.
1830 		 *
1831 		 * We clip the vm_map_entry so that behavioral changes are
1832 		 * limited to the specified address range.
1833 		 */
1834 		for (current = entry;
1835 		     (current != &map->header) && (current->start < end);
1836 		     current = current->next
1837 		) {
1838 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1839 				continue;
1840 
1841 			vm_map_clip_end(map, current, end, &count);
1842 
1843 			switch (behav) {
1844 			case MADV_NORMAL:
1845 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1846 				break;
1847 			case MADV_SEQUENTIAL:
1848 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1849 				break;
1850 			case MADV_RANDOM:
1851 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1852 				break;
1853 			case MADV_NOSYNC:
1854 				current->eflags |= MAP_ENTRY_NOSYNC;
1855 				break;
1856 			case MADV_AUTOSYNC:
1857 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1858 				break;
1859 			case MADV_NOCORE:
1860 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1861 				break;
1862 			case MADV_CORE:
1863 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1864 				break;
1865 			case MADV_INVAL:
1866 				/*
1867 				 * Invalidate the related pmap entries, used
1868 				 * to flush portions of the real kernel's
1869 				 * pmap when the caller has removed or
1870 				 * modified existing mappings in a virtual
1871 				 * page table.
1872 				 */
1873 				pmap_remove(map->pmap,
1874 					    current->start, current->end);
1875 				break;
1876 			case MADV_SETMAP:
1877 				/*
1878 				 * Set the page directory page for a map
1879 				 * governed by a virtual page table.  Mark
1880 				 * the entry as being governed by a virtual
1881 				 * page table if it is not.
1882 				 *
1883 				 * XXX the page directory page is stored
1884 				 * in the avail_ssize field if the map_entry.
1885 				 *
1886 				 * XXX the map simplification code does not
1887 				 * compare this field so weird things may
1888 				 * happen if you do not apply this function
1889 				 * to the entire mapping governed by the
1890 				 * virtual page table.
1891 				 */
1892 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1893 					error = EINVAL;
1894 					break;
1895 				}
1896 				current->aux.master_pde = value;
1897 				pmap_remove(map->pmap,
1898 					    current->start, current->end);
1899 				break;
1900 			default:
1901 				error = EINVAL;
1902 				break;
1903 			}
1904 			vm_map_simplify_entry(map, current, &count);
1905 		}
1906 		vm_map_unlock(map);
1907 	} else {
1908 		vm_pindex_t pindex;
1909 		int count;
1910 
1911 		/*
1912 		 * madvise behaviors that are implemented in the underlying
1913 		 * vm_object.
1914 		 *
1915 		 * Since we don't clip the vm_map_entry, we have to clip
1916 		 * the vm_object pindex and count.
1917 		 *
1918 		 * NOTE!  We currently do not support these functions on
1919 		 * virtual page tables.
1920 		 */
1921 		for (current = entry;
1922 		     (current != &map->header) && (current->start < end);
1923 		     current = current->next
1924 		) {
1925 			vm_offset_t useStart;
1926 
1927 			if (current->maptype != VM_MAPTYPE_NORMAL)
1928 				continue;
1929 
1930 			pindex = OFF_TO_IDX(current->offset);
1931 			count = atop(current->end - current->start);
1932 			useStart = current->start;
1933 
1934 			if (current->start < start) {
1935 				pindex += atop(start - current->start);
1936 				count -= atop(start - current->start);
1937 				useStart = start;
1938 			}
1939 			if (current->end > end)
1940 				count -= atop(current->end - end);
1941 
1942 			if (count <= 0)
1943 				continue;
1944 
1945 			vm_object_madvise(current->object.vm_object,
1946 					  pindex, count, behav);
1947 
1948 			/*
1949 			 * Try to populate the page table.  Mappings governed
1950 			 * by virtual page tables cannot be pre-populated
1951 			 * without a lot of work so don't try.
1952 			 */
1953 			if (behav == MADV_WILLNEED &&
1954 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1955 				pmap_object_init_pt(
1956 				    map->pmap,
1957 				    useStart,
1958 				    current->protection,
1959 				    current->object.vm_object,
1960 				    pindex,
1961 				    (count << PAGE_SHIFT),
1962 				    MAP_PREFAULT_MADVISE
1963 				);
1964 			}
1965 		}
1966 		vm_map_unlock_read(map);
1967 	}
1968 	vm_map_entry_release(count);
1969 	return(error);
1970 }
1971 
1972 
1973 /*
1974  * Sets the inheritance of the specified address range in the target map.
1975  * Inheritance affects how the map will be shared with child maps at the
1976  * time of vm_map_fork.
1977  */
1978 int
1979 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1980 	       vm_inherit_t new_inheritance)
1981 {
1982 	vm_map_entry_t entry;
1983 	vm_map_entry_t temp_entry;
1984 	int count;
1985 
1986 	switch (new_inheritance) {
1987 	case VM_INHERIT_NONE:
1988 	case VM_INHERIT_COPY:
1989 	case VM_INHERIT_SHARE:
1990 		break;
1991 	default:
1992 		return (KERN_INVALID_ARGUMENT);
1993 	}
1994 
1995 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1996 	vm_map_lock(map);
1997 
1998 	VM_MAP_RANGE_CHECK(map, start, end);
1999 
2000 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2001 		entry = temp_entry;
2002 		vm_map_clip_start(map, entry, start, &count);
2003 	} else
2004 		entry = temp_entry->next;
2005 
2006 	while ((entry != &map->header) && (entry->start < end)) {
2007 		vm_map_clip_end(map, entry, end, &count);
2008 
2009 		entry->inheritance = new_inheritance;
2010 
2011 		vm_map_simplify_entry(map, entry, &count);
2012 
2013 		entry = entry->next;
2014 	}
2015 	vm_map_unlock(map);
2016 	vm_map_entry_release(count);
2017 	return (KERN_SUCCESS);
2018 }
2019 
2020 /*
2021  * Implement the semantics of mlock
2022  */
2023 int
2024 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2025 	      boolean_t new_pageable)
2026 {
2027 	vm_map_entry_t entry;
2028 	vm_map_entry_t start_entry;
2029 	vm_offset_t end;
2030 	int rv = KERN_SUCCESS;
2031 	int count;
2032 
2033 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2034 	vm_map_lock(map);
2035 	VM_MAP_RANGE_CHECK(map, start, real_end);
2036 	end = real_end;
2037 
2038 	start_entry = vm_map_clip_range(map, start, end, &count,
2039 					MAP_CLIP_NO_HOLES);
2040 	if (start_entry == NULL) {
2041 		vm_map_unlock(map);
2042 		vm_map_entry_release(count);
2043 		return (KERN_INVALID_ADDRESS);
2044 	}
2045 
2046 	if (new_pageable == 0) {
2047 		entry = start_entry;
2048 		while ((entry != &map->header) && (entry->start < end)) {
2049 			vm_offset_t save_start;
2050 			vm_offset_t save_end;
2051 
2052 			/*
2053 			 * Already user wired or hard wired (trivial cases)
2054 			 */
2055 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2056 				entry = entry->next;
2057 				continue;
2058 			}
2059 			if (entry->wired_count != 0) {
2060 				entry->wired_count++;
2061 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2062 				entry = entry->next;
2063 				continue;
2064 			}
2065 
2066 			/*
2067 			 * A new wiring requires instantiation of appropriate
2068 			 * management structures and the faulting in of the
2069 			 * page.
2070 			 */
2071 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2072 				int copyflag = entry->eflags &
2073 					       MAP_ENTRY_NEEDS_COPY;
2074 				if (copyflag && ((entry->protection &
2075 						  VM_PROT_WRITE) != 0)) {
2076 					vm_map_entry_shadow(entry);
2077 				} else if (entry->object.vm_object == NULL &&
2078 					   !map->system_map) {
2079 					vm_map_entry_allocate_object(entry);
2080 				}
2081 			}
2082 			entry->wired_count++;
2083 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2084 
2085 			/*
2086 			 * Now fault in the area.  Note that vm_fault_wire()
2087 			 * may release the map lock temporarily, it will be
2088 			 * relocked on return.  The in-transition
2089 			 * flag protects the entries.
2090 			 */
2091 			save_start = entry->start;
2092 			save_end = entry->end;
2093 			rv = vm_fault_wire(map, entry, TRUE);
2094 			if (rv) {
2095 				CLIP_CHECK_BACK(entry, save_start);
2096 				for (;;) {
2097 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2098 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2099 					entry->wired_count = 0;
2100 					if (entry->end == save_end)
2101 						break;
2102 					entry = entry->next;
2103 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2104 				}
2105 				end = save_start;	/* unwire the rest */
2106 				break;
2107 			}
2108 			/*
2109 			 * note that even though the entry might have been
2110 			 * clipped, the USER_WIRED flag we set prevents
2111 			 * duplication so we do not have to do a
2112 			 * clip check.
2113 			 */
2114 			entry = entry->next;
2115 		}
2116 
2117 		/*
2118 		 * If we failed fall through to the unwiring section to
2119 		 * unwire what we had wired so far.  'end' has already
2120 		 * been adjusted.
2121 		 */
2122 		if (rv)
2123 			new_pageable = 1;
2124 
2125 		/*
2126 		 * start_entry might have been clipped if we unlocked the
2127 		 * map and blocked.  No matter how clipped it has gotten
2128 		 * there should be a fragment that is on our start boundary.
2129 		 */
2130 		CLIP_CHECK_BACK(start_entry, start);
2131 	}
2132 
2133 	/*
2134 	 * Deal with the unwiring case.
2135 	 */
2136 	if (new_pageable) {
2137 		/*
2138 		 * This is the unwiring case.  We must first ensure that the
2139 		 * range to be unwired is really wired down.  We know there
2140 		 * are no holes.
2141 		 */
2142 		entry = start_entry;
2143 		while ((entry != &map->header) && (entry->start < end)) {
2144 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2145 				rv = KERN_INVALID_ARGUMENT;
2146 				goto done;
2147 			}
2148 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2149 			entry = entry->next;
2150 		}
2151 
2152 		/*
2153 		 * Now decrement the wiring count for each region. If a region
2154 		 * becomes completely unwired, unwire its physical pages and
2155 		 * mappings.
2156 		 */
2157 		/*
2158 		 * The map entries are processed in a loop, checking to
2159 		 * make sure the entry is wired and asserting it has a wired
2160 		 * count. However, another loop was inserted more-or-less in
2161 		 * the middle of the unwiring path. This loop picks up the
2162 		 * "entry" loop variable from the first loop without first
2163 		 * setting it to start_entry. Naturally, the secound loop
2164 		 * is never entered and the pages backing the entries are
2165 		 * never unwired. This can lead to a leak of wired pages.
2166 		 */
2167 		entry = start_entry;
2168 		while ((entry != &map->header) && (entry->start < end)) {
2169 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2170 				("expected USER_WIRED on entry %p", entry));
2171 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2172 			entry->wired_count--;
2173 			if (entry->wired_count == 0)
2174 				vm_fault_unwire(map, entry);
2175 			entry = entry->next;
2176 		}
2177 	}
2178 done:
2179 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2180 		MAP_CLIP_NO_HOLES);
2181 	map->timestamp++;
2182 	vm_map_unlock(map);
2183 	vm_map_entry_release(count);
2184 	return (rv);
2185 }
2186 
2187 /*
2188  * Sets the pageability of the specified address range in the target map.
2189  * Regions specified as not pageable require locked-down physical
2190  * memory and physical page maps.
2191  *
2192  * The map must not be locked, but a reference must remain to the map
2193  * throughout the call.
2194  *
2195  * This function may be called via the zalloc path and must properly
2196  * reserve map entries for kernel_map.
2197  *
2198  * No requirements.
2199  */
2200 int
2201 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2202 {
2203 	vm_map_entry_t entry;
2204 	vm_map_entry_t start_entry;
2205 	vm_offset_t end;
2206 	int rv = KERN_SUCCESS;
2207 	int count;
2208 
2209 	if (kmflags & KM_KRESERVE)
2210 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2211 	else
2212 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2213 	vm_map_lock(map);
2214 	VM_MAP_RANGE_CHECK(map, start, real_end);
2215 	end = real_end;
2216 
2217 	start_entry = vm_map_clip_range(map, start, end, &count,
2218 					MAP_CLIP_NO_HOLES);
2219 	if (start_entry == NULL) {
2220 		vm_map_unlock(map);
2221 		rv = KERN_INVALID_ADDRESS;
2222 		goto failure;
2223 	}
2224 	if ((kmflags & KM_PAGEABLE) == 0) {
2225 		/*
2226 		 * Wiring.
2227 		 *
2228 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2229 		 * objects that need to be created. Then we clip each map
2230 		 * entry to the region to be wired and increment its wiring
2231 		 * count.  We create objects before clipping the map entries
2232 		 * to avoid object proliferation.
2233 		 *
2234 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2235 		 * fault in the pages for any newly wired area (wired_count is
2236 		 * 1).
2237 		 *
2238 		 * Downgrading to a read lock for vm_fault_wire avoids a
2239 		 * possible deadlock with another process that may have faulted
2240 		 * on one of the pages to be wired (it would mark the page busy,
2241 		 * blocking us, then in turn block on the map lock that we
2242 		 * hold).  Because of problems in the recursive lock package,
2243 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2244 		 * any actions that require the write lock must be done
2245 		 * beforehand.  Because we keep the read lock on the map, the
2246 		 * copy-on-write status of the entries we modify here cannot
2247 		 * change.
2248 		 */
2249 		entry = start_entry;
2250 		while ((entry != &map->header) && (entry->start < end)) {
2251 			/*
2252 			 * Trivial case if the entry is already wired
2253 			 */
2254 			if (entry->wired_count) {
2255 				entry->wired_count++;
2256 				entry = entry->next;
2257 				continue;
2258 			}
2259 
2260 			/*
2261 			 * The entry is being newly wired, we have to setup
2262 			 * appropriate management structures.  A shadow
2263 			 * object is required for a copy-on-write region,
2264 			 * or a normal object for a zero-fill region.  We
2265 			 * do not have to do this for entries that point to sub
2266 			 * maps because we won't hold the lock on the sub map.
2267 			 */
2268 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2269 				int copyflag = entry->eflags &
2270 					       MAP_ENTRY_NEEDS_COPY;
2271 				if (copyflag && ((entry->protection &
2272 						  VM_PROT_WRITE) != 0)) {
2273 					vm_map_entry_shadow(entry);
2274 				} else if (entry->object.vm_object == NULL &&
2275 					   !map->system_map) {
2276 					vm_map_entry_allocate_object(entry);
2277 				}
2278 			}
2279 
2280 			entry->wired_count++;
2281 			entry = entry->next;
2282 		}
2283 
2284 		/*
2285 		 * Pass 2.
2286 		 */
2287 
2288 		/*
2289 		 * HACK HACK HACK HACK
2290 		 *
2291 		 * vm_fault_wire() temporarily unlocks the map to avoid
2292 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2293 		 * call should protect us from changes while the map is
2294 		 * unlocked.  T
2295 		 *
2296 		 * NOTE: Previously this comment stated that clipping might
2297 		 *	 still occur while the entry is unlocked, but from
2298 		 *	 what I can tell it actually cannot.
2299 		 *
2300 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2301 		 *	 are still needed but we keep them in anyway.
2302 		 *
2303 		 * HACK HACK HACK HACK
2304 		 */
2305 
2306 		entry = start_entry;
2307 		while (entry != &map->header && entry->start < end) {
2308 			/*
2309 			 * If vm_fault_wire fails for any page we need to undo
2310 			 * what has been done.  We decrement the wiring count
2311 			 * for those pages which have not yet been wired (now)
2312 			 * and unwire those that have (later).
2313 			 */
2314 			vm_offset_t save_start = entry->start;
2315 			vm_offset_t save_end = entry->end;
2316 
2317 			if (entry->wired_count == 1)
2318 				rv = vm_fault_wire(map, entry, FALSE);
2319 			if (rv) {
2320 				CLIP_CHECK_BACK(entry, save_start);
2321 				for (;;) {
2322 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2323 					entry->wired_count = 0;
2324 					if (entry->end == save_end)
2325 						break;
2326 					entry = entry->next;
2327 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2328 				}
2329 				end = save_start;
2330 				break;
2331 			}
2332 			CLIP_CHECK_FWD(entry, save_end);
2333 			entry = entry->next;
2334 		}
2335 
2336 		/*
2337 		 * If a failure occured undo everything by falling through
2338 		 * to the unwiring code.  'end' has already been adjusted
2339 		 * appropriately.
2340 		 */
2341 		if (rv)
2342 			kmflags |= KM_PAGEABLE;
2343 
2344 		/*
2345 		 * start_entry is still IN_TRANSITION but may have been
2346 		 * clipped since vm_fault_wire() unlocks and relocks the
2347 		 * map.  No matter how clipped it has gotten there should
2348 		 * be a fragment that is on our start boundary.
2349 		 */
2350 		CLIP_CHECK_BACK(start_entry, start);
2351 	}
2352 
2353 	if (kmflags & KM_PAGEABLE) {
2354 		/*
2355 		 * This is the unwiring case.  We must first ensure that the
2356 		 * range to be unwired is really wired down.  We know there
2357 		 * are no holes.
2358 		 */
2359 		entry = start_entry;
2360 		while ((entry != &map->header) && (entry->start < end)) {
2361 			if (entry->wired_count == 0) {
2362 				rv = KERN_INVALID_ARGUMENT;
2363 				goto done;
2364 			}
2365 			entry = entry->next;
2366 		}
2367 
2368 		/*
2369 		 * Now decrement the wiring count for each region. If a region
2370 		 * becomes completely unwired, unwire its physical pages and
2371 		 * mappings.
2372 		 */
2373 		entry = start_entry;
2374 		while ((entry != &map->header) && (entry->start < end)) {
2375 			entry->wired_count--;
2376 			if (entry->wired_count == 0)
2377 				vm_fault_unwire(map, entry);
2378 			entry = entry->next;
2379 		}
2380 	}
2381 done:
2382 	vm_map_unclip_range(map, start_entry, start, real_end,
2383 			    &count, MAP_CLIP_NO_HOLES);
2384 	map->timestamp++;
2385 	vm_map_unlock(map);
2386 failure:
2387 	if (kmflags & KM_KRESERVE)
2388 		vm_map_entry_krelease(count);
2389 	else
2390 		vm_map_entry_release(count);
2391 	return (rv);
2392 }
2393 
2394 /*
2395  * Mark a newly allocated address range as wired but do not fault in
2396  * the pages.  The caller is expected to load the pages into the object.
2397  *
2398  * The map must be locked on entry and will remain locked on return.
2399  * No other requirements.
2400  */
2401 void
2402 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2403 		       int *countp)
2404 {
2405 	vm_map_entry_t scan;
2406 	vm_map_entry_t entry;
2407 
2408 	entry = vm_map_clip_range(map, addr, addr + size,
2409 				  countp, MAP_CLIP_NO_HOLES);
2410 	for (scan = entry;
2411 	     scan != &map->header && scan->start < addr + size;
2412 	     scan = scan->next) {
2413 	    KKASSERT(entry->wired_count == 0);
2414 	    entry->wired_count = 1;
2415 	}
2416 	vm_map_unclip_range(map, entry, addr, addr + size,
2417 			    countp, MAP_CLIP_NO_HOLES);
2418 }
2419 
2420 /*
2421  * Push any dirty cached pages in the address range to their pager.
2422  * If syncio is TRUE, dirty pages are written synchronously.
2423  * If invalidate is TRUE, any cached pages are freed as well.
2424  *
2425  * This routine is called by sys_msync()
2426  *
2427  * Returns an error if any part of the specified range is not mapped.
2428  *
2429  * No requirements.
2430  */
2431 int
2432 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2433 	     boolean_t syncio, boolean_t invalidate)
2434 {
2435 	vm_map_entry_t current;
2436 	vm_map_entry_t entry;
2437 	vm_size_t size;
2438 	vm_object_t object;
2439 	vm_ooffset_t offset;
2440 
2441 	vm_map_lock_read(map);
2442 	VM_MAP_RANGE_CHECK(map, start, end);
2443 	if (!vm_map_lookup_entry(map, start, &entry)) {
2444 		vm_map_unlock_read(map);
2445 		return (KERN_INVALID_ADDRESS);
2446 	}
2447 	/*
2448 	 * Make a first pass to check for holes.
2449 	 */
2450 	for (current = entry; current->start < end; current = current->next) {
2451 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2452 			vm_map_unlock_read(map);
2453 			return (KERN_INVALID_ARGUMENT);
2454 		}
2455 		if (end > current->end &&
2456 		    (current->next == &map->header ||
2457 			current->end != current->next->start)) {
2458 			vm_map_unlock_read(map);
2459 			return (KERN_INVALID_ADDRESS);
2460 		}
2461 	}
2462 
2463 	if (invalidate)
2464 		pmap_remove(vm_map_pmap(map), start, end);
2465 
2466 	/*
2467 	 * Make a second pass, cleaning/uncaching pages from the indicated
2468 	 * objects as we go.
2469 	 *
2470 	 * Hold vm_token to avoid blocking in vm_object_reference()
2471 	 */
2472 	lwkt_gettoken(&vm_token);
2473 	lwkt_gettoken(&vmobj_token);
2474 
2475 	for (current = entry; current->start < end; current = current->next) {
2476 		offset = current->offset + (start - current->start);
2477 		size = (end <= current->end ? end : current->end) - start;
2478 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2479 			vm_map_t smap;
2480 			vm_map_entry_t tentry;
2481 			vm_size_t tsize;
2482 
2483 			smap = current->object.sub_map;
2484 			vm_map_lock_read(smap);
2485 			vm_map_lookup_entry(smap, offset, &tentry);
2486 			tsize = tentry->end - offset;
2487 			if (tsize < size)
2488 				size = tsize;
2489 			object = tentry->object.vm_object;
2490 			offset = tentry->offset + (offset - tentry->start);
2491 			vm_map_unlock_read(smap);
2492 		} else {
2493 			object = current->object.vm_object;
2494 		}
2495 		/*
2496 		 * Note that there is absolutely no sense in writing out
2497 		 * anonymous objects, so we track down the vnode object
2498 		 * to write out.
2499 		 * We invalidate (remove) all pages from the address space
2500 		 * anyway, for semantic correctness.
2501 		 *
2502 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2503 		 * may start out with a NULL object.
2504 		 */
2505 		while (object && object->backing_object) {
2506 			offset += object->backing_object_offset;
2507 			object = object->backing_object;
2508 			if (object->size < OFF_TO_IDX( offset + size))
2509 				size = IDX_TO_OFF(object->size) - offset;
2510 		}
2511 		if (object && (object->type == OBJT_VNODE) &&
2512 		    (current->protection & VM_PROT_WRITE) &&
2513 		    (object->flags & OBJ_NOMSYNC) == 0) {
2514 			/*
2515 			 * Flush pages if writing is allowed, invalidate them
2516 			 * if invalidation requested.  Pages undergoing I/O
2517 			 * will be ignored by vm_object_page_remove().
2518 			 *
2519 			 * We cannot lock the vnode and then wait for paging
2520 			 * to complete without deadlocking against vm_fault.
2521 			 * Instead we simply call vm_object_page_remove() and
2522 			 * allow it to block internally on a page-by-page
2523 			 * basis when it encounters pages undergoing async
2524 			 * I/O.
2525 			 */
2526 			int flags;
2527 
2528 			vm_object_reference_locked(object);
2529 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2530 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2531 			flags |= invalidate ? OBJPC_INVAL : 0;
2532 
2533 			/*
2534 			 * When operating on a virtual page table just
2535 			 * flush the whole object.  XXX we probably ought
2536 			 * to
2537 			 */
2538 			switch(current->maptype) {
2539 			case VM_MAPTYPE_NORMAL:
2540 				vm_object_page_clean(object,
2541 				    OFF_TO_IDX(offset),
2542 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2543 				    flags);
2544 				break;
2545 			case VM_MAPTYPE_VPAGETABLE:
2546 				vm_object_page_clean(object, 0, 0, flags);
2547 				break;
2548 			}
2549 			vn_unlock(((struct vnode *)object->handle));
2550 			vm_object_deallocate_locked(object);
2551 		}
2552 		if (object && invalidate &&
2553 		   ((object->type == OBJT_VNODE) ||
2554 		    (object->type == OBJT_DEVICE))) {
2555 			int clean_only =
2556 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2557 			vm_object_reference_locked(object);
2558 			switch(current->maptype) {
2559 			case VM_MAPTYPE_NORMAL:
2560 				vm_object_page_remove(object,
2561 				    OFF_TO_IDX(offset),
2562 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2563 				    clean_only);
2564 				break;
2565 			case VM_MAPTYPE_VPAGETABLE:
2566 				vm_object_page_remove(object, 0, 0, clean_only);
2567 				break;
2568 			}
2569 			vm_object_deallocate_locked(object);
2570 		}
2571 		start += size;
2572 	}
2573 
2574 	lwkt_reltoken(&vmobj_token);
2575 	lwkt_reltoken(&vm_token);
2576 	vm_map_unlock_read(map);
2577 
2578 	return (KERN_SUCCESS);
2579 }
2580 
2581 /*
2582  * Make the region specified by this entry pageable.
2583  *
2584  * The vm_map must be exclusively locked.
2585  */
2586 static void
2587 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2588 {
2589 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2590 	entry->wired_count = 0;
2591 	vm_fault_unwire(map, entry);
2592 }
2593 
2594 /*
2595  * Deallocate the given entry from the target map.
2596  *
2597  * The vm_map must be exclusively locked.
2598  */
2599 static void
2600 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2601 {
2602 	vm_map_entry_unlink(map, entry);
2603 	map->size -= entry->end - entry->start;
2604 
2605 	switch(entry->maptype) {
2606 	case VM_MAPTYPE_NORMAL:
2607 	case VM_MAPTYPE_VPAGETABLE:
2608 		vm_object_deallocate(entry->object.vm_object);
2609 		break;
2610 	default:
2611 		break;
2612 	}
2613 
2614 	vm_map_entry_dispose(map, entry, countp);
2615 }
2616 
2617 /*
2618  * Deallocates the given address range from the target map.
2619  *
2620  * The vm_map must be exclusively locked.
2621  */
2622 int
2623 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2624 {
2625 	vm_object_t object;
2626 	vm_map_entry_t entry;
2627 	vm_map_entry_t first_entry;
2628 
2629 	ASSERT_VM_MAP_LOCKED(map);
2630 again:
2631 	/*
2632 	 * Find the start of the region, and clip it.  Set entry to point
2633 	 * at the first record containing the requested address or, if no
2634 	 * such record exists, the next record with a greater address.  The
2635 	 * loop will run from this point until a record beyond the termination
2636 	 * address is encountered.
2637 	 *
2638 	 * map->hint must be adjusted to not point to anything we delete,
2639 	 * so set it to the entry prior to the one being deleted.
2640 	 *
2641 	 * GGG see other GGG comment.
2642 	 */
2643 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2644 		entry = first_entry;
2645 		vm_map_clip_start(map, entry, start, countp);
2646 		map->hint = entry->prev;	/* possible problem XXX */
2647 	} else {
2648 		map->hint = first_entry;	/* possible problem XXX */
2649 		entry = first_entry->next;
2650 	}
2651 
2652 	/*
2653 	 * If a hole opens up prior to the current first_free then
2654 	 * adjust first_free.  As with map->hint, map->first_free
2655 	 * cannot be left set to anything we might delete.
2656 	 */
2657 	if (entry == &map->header) {
2658 		map->first_free = &map->header;
2659 	} else if (map->first_free->start >= start) {
2660 		map->first_free = entry->prev;
2661 	}
2662 
2663 	/*
2664 	 * Step through all entries in this region
2665 	 */
2666 	while ((entry != &map->header) && (entry->start < end)) {
2667 		vm_map_entry_t next;
2668 		vm_offset_t s, e;
2669 		vm_pindex_t offidxstart, offidxend, count;
2670 
2671 		/*
2672 		 * If we hit an in-transition entry we have to sleep and
2673 		 * retry.  It's easier (and not really slower) to just retry
2674 		 * since this case occurs so rarely and the hint is already
2675 		 * pointing at the right place.  We have to reset the
2676 		 * start offset so as not to accidently delete an entry
2677 		 * another process just created in vacated space.
2678 		 */
2679 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2680 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2681 			start = entry->start;
2682 			++mycpu->gd_cnt.v_intrans_coll;
2683 			++mycpu->gd_cnt.v_intrans_wait;
2684 			vm_map_transition_wait(map);
2685 			goto again;
2686 		}
2687 		vm_map_clip_end(map, entry, end, countp);
2688 
2689 		s = entry->start;
2690 		e = entry->end;
2691 		next = entry->next;
2692 
2693 		offidxstart = OFF_TO_IDX(entry->offset);
2694 		count = OFF_TO_IDX(e - s);
2695 		object = entry->object.vm_object;
2696 
2697 		/*
2698 		 * Unwire before removing addresses from the pmap; otherwise,
2699 		 * unwiring will put the entries back in the pmap.
2700 		 */
2701 		if (entry->wired_count != 0)
2702 			vm_map_entry_unwire(map, entry);
2703 
2704 		offidxend = offidxstart + count;
2705 
2706 		/*
2707 		 * Hold vm_token when manipulating vm_objects,
2708 		 *
2709 		 * Hold vmobj_token when potentially adding or removing
2710 		 * objects (collapse requires both).
2711 		 */
2712 		lwkt_gettoken(&vm_token);
2713 		lwkt_gettoken(&vmobj_token);
2714 
2715 		if (object == &kernel_object) {
2716 			vm_object_page_remove(object, offidxstart,
2717 					      offidxend, FALSE);
2718 		} else {
2719 			pmap_remove(map->pmap, s, e);
2720 
2721 			if (object != NULL &&
2722 			    object->ref_count != 1 &&
2723 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2724 			     OBJ_ONEMAPPING &&
2725 			    (object->type == OBJT_DEFAULT ||
2726 			     object->type == OBJT_SWAP)) {
2727 				vm_object_collapse(object);
2728 				vm_object_page_remove(object, offidxstart,
2729 						      offidxend, FALSE);
2730 				if (object->type == OBJT_SWAP) {
2731 					swap_pager_freespace(object,
2732 							     offidxstart,
2733 							     count);
2734 				}
2735 				if (offidxend >= object->size &&
2736 				    offidxstart < object->size) {
2737 					object->size = offidxstart;
2738 				}
2739 			}
2740 		}
2741 		lwkt_reltoken(&vmobj_token);
2742 		lwkt_reltoken(&vm_token);
2743 
2744 		/*
2745 		 * Delete the entry (which may delete the object) only after
2746 		 * removing all pmap entries pointing to its pages.
2747 		 * (Otherwise, its page frames may be reallocated, and any
2748 		 * modify bits will be set in the wrong object!)
2749 		 */
2750 		vm_map_entry_delete(map, entry, countp);
2751 		entry = next;
2752 	}
2753 	return (KERN_SUCCESS);
2754 }
2755 
2756 /*
2757  * Remove the given address range from the target map.
2758  * This is the exported form of vm_map_delete.
2759  *
2760  * No requirements.
2761  */
2762 int
2763 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2764 {
2765 	int result;
2766 	int count;
2767 
2768 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2769 	vm_map_lock(map);
2770 	VM_MAP_RANGE_CHECK(map, start, end);
2771 	result = vm_map_delete(map, start, end, &count);
2772 	vm_map_unlock(map);
2773 	vm_map_entry_release(count);
2774 
2775 	return (result);
2776 }
2777 
2778 /*
2779  * Assert that the target map allows the specified privilege on the
2780  * entire address region given.  The entire region must be allocated.
2781  *
2782  * The caller must specify whether the vm_map is already locked or not.
2783  */
2784 boolean_t
2785 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2786 			vm_prot_t protection, boolean_t have_lock)
2787 {
2788 	vm_map_entry_t entry;
2789 	vm_map_entry_t tmp_entry;
2790 	boolean_t result;
2791 
2792 	if (have_lock == FALSE)
2793 		vm_map_lock_read(map);
2794 
2795 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2796 		if (have_lock == FALSE)
2797 			vm_map_unlock_read(map);
2798 		return (FALSE);
2799 	}
2800 	entry = tmp_entry;
2801 
2802 	result = TRUE;
2803 	while (start < end) {
2804 		if (entry == &map->header) {
2805 			result = FALSE;
2806 			break;
2807 		}
2808 		/*
2809 		 * No holes allowed!
2810 		 */
2811 
2812 		if (start < entry->start) {
2813 			result = FALSE;
2814 			break;
2815 		}
2816 		/*
2817 		 * Check protection associated with entry.
2818 		 */
2819 
2820 		if ((entry->protection & protection) != protection) {
2821 			result = FALSE;
2822 			break;
2823 		}
2824 		/* go to next entry */
2825 
2826 		start = entry->end;
2827 		entry = entry->next;
2828 	}
2829 	if (have_lock == FALSE)
2830 		vm_map_unlock_read(map);
2831 	return (result);
2832 }
2833 
2834 /*
2835  * Split the pages in a map entry into a new object.  This affords
2836  * easier removal of unused pages, and keeps object inheritance from
2837  * being a negative impact on memory usage.
2838  *
2839  * The vm_map must be exclusively locked.
2840  * The orig_object should be held.
2841  */
2842 static void
2843 vm_map_split(vm_map_entry_t entry)
2844 {
2845 	vm_page_t m;
2846 	vm_object_t orig_object, new_object, source;
2847 	vm_offset_t s, e;
2848 	vm_pindex_t offidxstart, offidxend, idx;
2849 	vm_size_t size;
2850 	vm_ooffset_t offset;
2851 
2852 	orig_object = entry->object.vm_object;
2853 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2854 		return;
2855 	if (orig_object->ref_count <= 1)
2856 		return;
2857 
2858 	offset = entry->offset;
2859 	s = entry->start;
2860 	e = entry->end;
2861 
2862 	offidxstart = OFF_TO_IDX(offset);
2863 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2864 	size = offidxend - offidxstart;
2865 
2866 	switch(orig_object->type) {
2867 	case OBJT_DEFAULT:
2868 		new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2869 						 VM_PROT_ALL, 0);
2870 		break;
2871 	case OBJT_SWAP:
2872 		new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2873 					      VM_PROT_ALL, 0);
2874 		break;
2875 	default:
2876 		/* not reached */
2877 		new_object = NULL;
2878 		KKASSERT(0);
2879 	}
2880 	if (new_object == NULL)
2881 		return;
2882 
2883 	/*
2884 	 * vm_token required when manipulating vm_objects.
2885 	 */
2886 	lwkt_gettoken(&vm_token);
2887 	lwkt_gettoken(&vmobj_token);
2888 
2889 	vm_object_hold(new_object);
2890 
2891 	source = orig_object->backing_object;
2892 	if (source != NULL) {
2893 		vm_object_hold(source);
2894 		/* Referenced by new_object */
2895 		vm_object_reference_locked(source);
2896 		LIST_INSERT_HEAD(&source->shadow_head,
2897 				 new_object, shadow_list);
2898 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2899 		new_object->backing_object_offset =
2900 			orig_object->backing_object_offset +
2901 			IDX_TO_OFF(offidxstart);
2902 		new_object->backing_object = source;
2903 		source->shadow_count++;
2904 		source->generation++;
2905 		vm_object_drop(source);
2906 	}
2907 
2908 	for (idx = 0; idx < size; idx++) {
2909 		vm_page_t m;
2910 
2911 	retry:
2912 		m = vm_page_lookup(orig_object, offidxstart + idx);
2913 		if (m == NULL)
2914 			continue;
2915 
2916 		/*
2917 		 * We must wait for pending I/O to complete before we can
2918 		 * rename the page.
2919 		 *
2920 		 * We do not have to VM_PROT_NONE the page as mappings should
2921 		 * not be changed by this operation.
2922 		 */
2923 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2924 			goto retry;
2925 		vm_page_busy(m);
2926 		vm_page_rename(m, new_object, idx);
2927 		/* page automatically made dirty by rename and cache handled */
2928 		vm_page_busy(m);
2929 	}
2930 
2931 	if (orig_object->type == OBJT_SWAP) {
2932 		vm_object_pip_add(orig_object, 1);
2933 		/*
2934 		 * copy orig_object pages into new_object
2935 		 * and destroy unneeded pages in
2936 		 * shadow object.
2937 		 */
2938 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2939 		vm_object_pip_wakeup(orig_object);
2940 	}
2941 
2942 	/*
2943 	 * Wakeup the pages we played with.  No spl protection is needed
2944 	 * for a simple wakeup.
2945 	 */
2946 	for (idx = 0; idx < size; idx++) {
2947 		m = vm_page_lookup(new_object, idx);
2948 		if (m)
2949 			vm_page_wakeup(m);
2950 	}
2951 
2952 	entry->object.vm_object = new_object;
2953 	entry->offset = 0LL;
2954 	vm_object_deallocate_locked(orig_object);
2955 	vm_object_drop(new_object);
2956 	lwkt_reltoken(&vmobj_token);
2957 	lwkt_reltoken(&vm_token);
2958 }
2959 
2960 /*
2961  * Copies the contents of the source entry to the destination
2962  * entry.  The entries *must* be aligned properly.
2963  *
2964  * The vm_map must be exclusively locked.
2965  * vm_token must be held
2966  */
2967 static void
2968 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2969 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2970 {
2971 	vm_object_t src_object;
2972 
2973 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2974 		return;
2975 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2976 		return;
2977 
2978 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
2979 	lwkt_gettoken(&vmobj_token);		/* required for collapse */
2980 
2981 	if (src_entry->wired_count == 0) {
2982 		/*
2983 		 * If the source entry is marked needs_copy, it is already
2984 		 * write-protected.
2985 		 */
2986 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2987 			pmap_protect(src_map->pmap,
2988 			    src_entry->start,
2989 			    src_entry->end,
2990 			    src_entry->protection & ~VM_PROT_WRITE);
2991 		}
2992 
2993 		/*
2994 		 * Make a copy of the object.
2995 		 */
2996 		if ((src_object = src_entry->object.vm_object) != NULL) {
2997 			if ((src_object->handle == NULL) &&
2998 				(src_object->type == OBJT_DEFAULT ||
2999 				 src_object->type == OBJT_SWAP)) {
3000 				vm_object_collapse(src_object);
3001 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3002 					vm_map_split(src_entry);
3003 					src_object = src_entry->object.vm_object;
3004 				}
3005 			}
3006 
3007 			vm_object_reference_locked(src_object);
3008 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3009 			dst_entry->object.vm_object = src_object;
3010 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3011 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3012 			dst_entry->offset = src_entry->offset;
3013 		} else {
3014 			dst_entry->object.vm_object = NULL;
3015 			dst_entry->offset = 0;
3016 		}
3017 
3018 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3019 		    dst_entry->end - dst_entry->start, src_entry->start);
3020 	} else {
3021 		/*
3022 		 * Of course, wired down pages can't be set copy-on-write.
3023 		 * Cause wired pages to be copied into the new map by
3024 		 * simulating faults (the new pages are pageable)
3025 		 */
3026 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3027 	}
3028 	lwkt_reltoken(&vmobj_token);
3029 }
3030 
3031 /*
3032  * vmspace_fork:
3033  * Create a new process vmspace structure and vm_map
3034  * based on those of an existing process.  The new map
3035  * is based on the old map, according to the inheritance
3036  * values on the regions in that map.
3037  *
3038  * The source map must not be locked.
3039  * No requirements.
3040  */
3041 struct vmspace *
3042 vmspace_fork(struct vmspace *vm1)
3043 {
3044 	struct vmspace *vm2;
3045 	vm_map_t old_map = &vm1->vm_map;
3046 	vm_map_t new_map;
3047 	vm_map_entry_t old_entry;
3048 	vm_map_entry_t new_entry;
3049 	vm_object_t object;
3050 	int count;
3051 
3052 	lwkt_gettoken(&vm_token);
3053 	lwkt_gettoken(&vmspace_token);
3054 	lwkt_gettoken(&vmobj_token);
3055 	vm_map_lock(old_map);
3056 
3057 	/*
3058 	 * XXX Note: upcalls are not copied.
3059 	 */
3060 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3061 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3062 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3063 	new_map = &vm2->vm_map;	/* XXX */
3064 	new_map->timestamp = 1;
3065 
3066 	vm_map_lock(new_map);
3067 
3068 	count = 0;
3069 	old_entry = old_map->header.next;
3070 	while (old_entry != &old_map->header) {
3071 		++count;
3072 		old_entry = old_entry->next;
3073 	}
3074 
3075 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3076 
3077 	old_entry = old_map->header.next;
3078 	while (old_entry != &old_map->header) {
3079 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3080 			panic("vm_map_fork: encountered a submap");
3081 
3082 		switch (old_entry->inheritance) {
3083 		case VM_INHERIT_NONE:
3084 			break;
3085 		case VM_INHERIT_SHARE:
3086 			/*
3087 			 * Clone the entry, creating the shared object if
3088 			 * necessary.
3089 			 */
3090 			object = old_entry->object.vm_object;
3091 			if (object == NULL) {
3092 				vm_map_entry_allocate_object(old_entry);
3093 				object = old_entry->object.vm_object;
3094 			}
3095 
3096 			/*
3097 			 * Add the reference before calling vm_map_entry_shadow
3098 			 * to insure that a shadow object is created.
3099 			 */
3100 			vm_object_reference_locked(object);
3101 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3102 				vm_map_entry_shadow(old_entry);
3103 				/* Transfer the second reference too. */
3104 				vm_object_reference_locked(
3105 				    old_entry->object.vm_object);
3106 				vm_object_deallocate_locked(object);
3107 				object = old_entry->object.vm_object;
3108 			}
3109 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3110 
3111 			/*
3112 			 * Clone the entry, referencing the shared object.
3113 			 */
3114 			new_entry = vm_map_entry_create(new_map, &count);
3115 			*new_entry = *old_entry;
3116 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3117 			new_entry->wired_count = 0;
3118 
3119 			/*
3120 			 * Insert the entry into the new map -- we know we're
3121 			 * inserting at the end of the new map.
3122 			 */
3123 
3124 			vm_map_entry_link(new_map, new_map->header.prev,
3125 					  new_entry);
3126 
3127 			/*
3128 			 * Update the physical map
3129 			 */
3130 			pmap_copy(new_map->pmap, old_map->pmap,
3131 			    new_entry->start,
3132 			    (old_entry->end - old_entry->start),
3133 			    old_entry->start);
3134 			break;
3135 		case VM_INHERIT_COPY:
3136 			/*
3137 			 * Clone the entry and link into the map.
3138 			 */
3139 			new_entry = vm_map_entry_create(new_map, &count);
3140 			*new_entry = *old_entry;
3141 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3142 			new_entry->wired_count = 0;
3143 			new_entry->object.vm_object = NULL;
3144 			vm_map_entry_link(new_map, new_map->header.prev,
3145 					  new_entry);
3146 			vm_map_copy_entry(old_map, new_map, old_entry,
3147 					  new_entry);
3148 			break;
3149 		}
3150 		old_entry = old_entry->next;
3151 	}
3152 
3153 	new_map->size = old_map->size;
3154 	vm_map_unlock(old_map);
3155 	vm_map_unlock(new_map);
3156 	vm_map_entry_release(count);
3157 
3158 	lwkt_reltoken(&vmobj_token);
3159 	lwkt_reltoken(&vmspace_token);
3160 	lwkt_reltoken(&vm_token);
3161 
3162 	return (vm2);
3163 }
3164 
3165 /*
3166  * Create an auto-grow stack entry
3167  *
3168  * No requirements.
3169  */
3170 int
3171 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3172 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3173 {
3174 	vm_map_entry_t	prev_entry;
3175 	vm_map_entry_t	new_stack_entry;
3176 	vm_size_t	init_ssize;
3177 	int		rv;
3178 	int		count;
3179 	vm_offset_t	tmpaddr;
3180 
3181 	cow |= MAP_IS_STACK;
3182 
3183 	if (max_ssize < sgrowsiz)
3184 		init_ssize = max_ssize;
3185 	else
3186 		init_ssize = sgrowsiz;
3187 
3188 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3189 	vm_map_lock(map);
3190 
3191 	/*
3192 	 * Find space for the mapping
3193 	 */
3194 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3195 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3196 				     flags, &tmpaddr)) {
3197 			vm_map_unlock(map);
3198 			vm_map_entry_release(count);
3199 			return (KERN_NO_SPACE);
3200 		}
3201 		addrbos = tmpaddr;
3202 	}
3203 
3204 	/* If addr is already mapped, no go */
3205 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3206 		vm_map_unlock(map);
3207 		vm_map_entry_release(count);
3208 		return (KERN_NO_SPACE);
3209 	}
3210 
3211 #if 0
3212 	/* XXX already handled by kern_mmap() */
3213 	/* If we would blow our VMEM resource limit, no go */
3214 	if (map->size + init_ssize >
3215 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3216 		vm_map_unlock(map);
3217 		vm_map_entry_release(count);
3218 		return (KERN_NO_SPACE);
3219 	}
3220 #endif
3221 
3222 	/*
3223 	 * If we can't accomodate max_ssize in the current mapping,
3224 	 * no go.  However, we need to be aware that subsequent user
3225 	 * mappings might map into the space we have reserved for
3226 	 * stack, and currently this space is not protected.
3227 	 *
3228 	 * Hopefully we will at least detect this condition
3229 	 * when we try to grow the stack.
3230 	 */
3231 	if ((prev_entry->next != &map->header) &&
3232 	    (prev_entry->next->start < addrbos + max_ssize)) {
3233 		vm_map_unlock(map);
3234 		vm_map_entry_release(count);
3235 		return (KERN_NO_SPACE);
3236 	}
3237 
3238 	/*
3239 	 * We initially map a stack of only init_ssize.  We will
3240 	 * grow as needed later.  Since this is to be a grow
3241 	 * down stack, we map at the top of the range.
3242 	 *
3243 	 * Note: we would normally expect prot and max to be
3244 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3245 	 * eliminate these as input parameters, and just
3246 	 * pass these values here in the insert call.
3247 	 */
3248 	rv = vm_map_insert(map, &count,
3249 			   NULL, 0, addrbos + max_ssize - init_ssize,
3250 	                   addrbos + max_ssize,
3251 			   VM_MAPTYPE_NORMAL,
3252 			   prot, max,
3253 			   cow);
3254 
3255 	/* Now set the avail_ssize amount */
3256 	if (rv == KERN_SUCCESS) {
3257 		if (prev_entry != &map->header)
3258 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3259 		new_stack_entry = prev_entry->next;
3260 		if (new_stack_entry->end   != addrbos + max_ssize ||
3261 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3262 			panic ("Bad entry start/end for new stack entry");
3263 		else
3264 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3265 	}
3266 
3267 	vm_map_unlock(map);
3268 	vm_map_entry_release(count);
3269 	return (rv);
3270 }
3271 
3272 /*
3273  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3274  * desired address is already mapped, or if we successfully grow
3275  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3276  * stack range (this is strange, but preserves compatibility with
3277  * the grow function in vm_machdep.c).
3278  *
3279  * No requirements.
3280  */
3281 int
3282 vm_map_growstack (struct proc *p, vm_offset_t addr)
3283 {
3284 	vm_map_entry_t prev_entry;
3285 	vm_map_entry_t stack_entry;
3286 	vm_map_entry_t new_stack_entry;
3287 	struct vmspace *vm = p->p_vmspace;
3288 	vm_map_t map = &vm->vm_map;
3289 	vm_offset_t    end;
3290 	int grow_amount;
3291 	int rv = KERN_SUCCESS;
3292 	int is_procstack;
3293 	int use_read_lock = 1;
3294 	int count;
3295 
3296 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3297 Retry:
3298 	if (use_read_lock)
3299 		vm_map_lock_read(map);
3300 	else
3301 		vm_map_lock(map);
3302 
3303 	/* If addr is already in the entry range, no need to grow.*/
3304 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3305 		goto done;
3306 
3307 	if ((stack_entry = prev_entry->next) == &map->header)
3308 		goto done;
3309 	if (prev_entry == &map->header)
3310 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3311 	else
3312 		end = prev_entry->end;
3313 
3314 	/*
3315 	 * This next test mimics the old grow function in vm_machdep.c.
3316 	 * It really doesn't quite make sense, but we do it anyway
3317 	 * for compatibility.
3318 	 *
3319 	 * If not growable stack, return success.  This signals the
3320 	 * caller to proceed as he would normally with normal vm.
3321 	 */
3322 	if (stack_entry->aux.avail_ssize < 1 ||
3323 	    addr >= stack_entry->start ||
3324 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3325 		goto done;
3326 	}
3327 
3328 	/* Find the minimum grow amount */
3329 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3330 	if (grow_amount > stack_entry->aux.avail_ssize) {
3331 		rv = KERN_NO_SPACE;
3332 		goto done;
3333 	}
3334 
3335 	/*
3336 	 * If there is no longer enough space between the entries
3337 	 * nogo, and adjust the available space.  Note: this
3338 	 * should only happen if the user has mapped into the
3339 	 * stack area after the stack was created, and is
3340 	 * probably an error.
3341 	 *
3342 	 * This also effectively destroys any guard page the user
3343 	 * might have intended by limiting the stack size.
3344 	 */
3345 	if (grow_amount > stack_entry->start - end) {
3346 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3347 			use_read_lock = 0;
3348 			goto Retry;
3349 		}
3350 		use_read_lock = 0;
3351 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3352 		rv = KERN_NO_SPACE;
3353 		goto done;
3354 	}
3355 
3356 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3357 
3358 	/* If this is the main process stack, see if we're over the
3359 	 * stack limit.
3360 	 */
3361 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3362 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3363 		rv = KERN_NO_SPACE;
3364 		goto done;
3365 	}
3366 
3367 	/* Round up the grow amount modulo SGROWSIZ */
3368 	grow_amount = roundup (grow_amount, sgrowsiz);
3369 	if (grow_amount > stack_entry->aux.avail_ssize) {
3370 		grow_amount = stack_entry->aux.avail_ssize;
3371 	}
3372 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3373 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3374 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3375 		              ctob(vm->vm_ssize);
3376 	}
3377 
3378 	/* If we would blow our VMEM resource limit, no go */
3379 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3380 		rv = KERN_NO_SPACE;
3381 		goto done;
3382 	}
3383 
3384 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3385 		use_read_lock = 0;
3386 		goto Retry;
3387 	}
3388 	use_read_lock = 0;
3389 
3390 	/* Get the preliminary new entry start value */
3391 	addr = stack_entry->start - grow_amount;
3392 
3393 	/* If this puts us into the previous entry, cut back our growth
3394 	 * to the available space.  Also, see the note above.
3395 	 */
3396 	if (addr < end) {
3397 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3398 		addr = end;
3399 	}
3400 
3401 	rv = vm_map_insert(map, &count,
3402 			   NULL, 0, addr, stack_entry->start,
3403 			   VM_MAPTYPE_NORMAL,
3404 			   VM_PROT_ALL, VM_PROT_ALL,
3405 			   0);
3406 
3407 	/* Adjust the available stack space by the amount we grew. */
3408 	if (rv == KERN_SUCCESS) {
3409 		if (prev_entry != &map->header)
3410 			vm_map_clip_end(map, prev_entry, addr, &count);
3411 		new_stack_entry = prev_entry->next;
3412 		if (new_stack_entry->end   != stack_entry->start  ||
3413 		    new_stack_entry->start != addr)
3414 			panic ("Bad stack grow start/end in new stack entry");
3415 		else {
3416 			new_stack_entry->aux.avail_ssize =
3417 				stack_entry->aux.avail_ssize -
3418 				(new_stack_entry->end - new_stack_entry->start);
3419 			if (is_procstack)
3420 				vm->vm_ssize += btoc(new_stack_entry->end -
3421 						     new_stack_entry->start);
3422 		}
3423 
3424 		if (map->flags & MAP_WIREFUTURE)
3425 			vm_map_unwire(map, new_stack_entry->start,
3426 				      new_stack_entry->end, FALSE);
3427 	}
3428 
3429 done:
3430 	if (use_read_lock)
3431 		vm_map_unlock_read(map);
3432 	else
3433 		vm_map_unlock(map);
3434 	vm_map_entry_release(count);
3435 	return (rv);
3436 }
3437 
3438 /*
3439  * Unshare the specified VM space for exec.  If other processes are
3440  * mapped to it, then create a new one.  The new vmspace is null.
3441  *
3442  * No requirements.
3443  */
3444 void
3445 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3446 {
3447 	struct vmspace *oldvmspace = p->p_vmspace;
3448 	struct vmspace *newvmspace;
3449 	vm_map_t map = &p->p_vmspace->vm_map;
3450 
3451 	/*
3452 	 * If we are execing a resident vmspace we fork it, otherwise
3453 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3454 	 * are not copied to the new vmspace.
3455 	 */
3456 	lwkt_gettoken(&vmspace_token);
3457 	if (vmcopy)  {
3458 		newvmspace = vmspace_fork(vmcopy);
3459 	} else {
3460 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3461 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3462 		      (caddr_t)&oldvmspace->vm_endcopy -
3463 		       (caddr_t)&oldvmspace->vm_startcopy);
3464 	}
3465 
3466 	/*
3467 	 * Finish initializing the vmspace before assigning it
3468 	 * to the process.  The vmspace will become the current vmspace
3469 	 * if p == curproc.
3470 	 */
3471 	pmap_pinit2(vmspace_pmap(newvmspace));
3472 	pmap_replacevm(p, newvmspace, 0);
3473 	sysref_put(&oldvmspace->vm_sysref);
3474 	lwkt_reltoken(&vmspace_token);
3475 }
3476 
3477 /*
3478  * Unshare the specified VM space for forcing COW.  This
3479  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3480  *
3481  * The exitingcnt test is not strictly necessary but has been
3482  * included for code sanity (to make the code a bit more deterministic).
3483  */
3484 void
3485 vmspace_unshare(struct proc *p)
3486 {
3487 	struct vmspace *oldvmspace = p->p_vmspace;
3488 	struct vmspace *newvmspace;
3489 
3490 	lwkt_gettoken(&vmspace_token);
3491 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3492 		return;
3493 	newvmspace = vmspace_fork(oldvmspace);
3494 	pmap_pinit2(vmspace_pmap(newvmspace));
3495 	pmap_replacevm(p, newvmspace, 0);
3496 	sysref_put(&oldvmspace->vm_sysref);
3497 	lwkt_reltoken(&vmspace_token);
3498 }
3499 
3500 /*
3501  * vm_map_hint: return the beginning of the best area suitable for
3502  * creating a new mapping with "prot" protection.
3503  *
3504  * No requirements.
3505  */
3506 vm_offset_t
3507 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3508 {
3509 	struct vmspace *vms = p->p_vmspace;
3510 
3511 	if (!randomize_mmap) {
3512 		/*
3513 		 * Set a reasonable start point for the hint if it was
3514 		 * not specified or if it falls within the heap space.
3515 		 * Hinted mmap()s do not allocate out of the heap space.
3516 		 */
3517 		if (addr == 0 ||
3518 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3519 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3520 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3521 		}
3522 
3523 		return addr;
3524 	}
3525 
3526 	if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3527 		return addr;
3528 
3529 #ifdef notyet
3530 #ifdef __i386__
3531 	/*
3532 	 * If executable skip first two pages, otherwise start
3533 	 * after data + heap region.
3534 	 */
3535 	if ((prot & VM_PROT_EXECUTE) &&
3536 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3537 		addr = (PAGE_SIZE * 2) +
3538 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3539 		return (round_page(addr));
3540 	}
3541 #endif /* __i386__ */
3542 #endif /* notyet */
3543 
3544 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3545 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3546 
3547 	return (round_page(addr));
3548 }
3549 
3550 /*
3551  * Finds the VM object, offset, and protection for a given virtual address
3552  * in the specified map, assuming a page fault of the type specified.
3553  *
3554  * Leaves the map in question locked for read; return values are guaranteed
3555  * until a vm_map_lookup_done call is performed.  Note that the map argument
3556  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3557  *
3558  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3559  * that fast.
3560  *
3561  * If a lookup is requested with "write protection" specified, the map may
3562  * be changed to perform virtual copying operations, although the data
3563  * referenced will remain the same.
3564  *
3565  * No requirements.
3566  */
3567 int
3568 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3569 	      vm_offset_t vaddr,
3570 	      vm_prot_t fault_typea,
3571 	      vm_map_entry_t *out_entry,	/* OUT */
3572 	      vm_object_t *object,		/* OUT */
3573 	      vm_pindex_t *pindex,		/* OUT */
3574 	      vm_prot_t *out_prot,		/* OUT */
3575 	      boolean_t *wired)			/* OUT */
3576 {
3577 	vm_map_entry_t entry;
3578 	vm_map_t map = *var_map;
3579 	vm_prot_t prot;
3580 	vm_prot_t fault_type = fault_typea;
3581 	int use_read_lock = 1;
3582 	int rv = KERN_SUCCESS;
3583 
3584 RetryLookup:
3585 	if (use_read_lock)
3586 		vm_map_lock_read(map);
3587 	else
3588 		vm_map_lock(map);
3589 
3590 	/*
3591 	 * If the map has an interesting hint, try it before calling full
3592 	 * blown lookup routine.
3593 	 */
3594 	entry = map->hint;
3595 	*out_entry = entry;
3596 
3597 	if ((entry == &map->header) ||
3598 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3599 		vm_map_entry_t tmp_entry;
3600 
3601 		/*
3602 		 * Entry was either not a valid hint, or the vaddr was not
3603 		 * contained in the entry, so do a full lookup.
3604 		 */
3605 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3606 			rv = KERN_INVALID_ADDRESS;
3607 			goto done;
3608 		}
3609 
3610 		entry = tmp_entry;
3611 		*out_entry = entry;
3612 	}
3613 
3614 	/*
3615 	 * Handle submaps.
3616 	 */
3617 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3618 		vm_map_t old_map = map;
3619 
3620 		*var_map = map = entry->object.sub_map;
3621 		if (use_read_lock)
3622 			vm_map_unlock_read(old_map);
3623 		else
3624 			vm_map_unlock(old_map);
3625 		use_read_lock = 1;
3626 		goto RetryLookup;
3627 	}
3628 
3629 	/*
3630 	 * Check whether this task is allowed to have this page.
3631 	 * Note the special case for MAP_ENTRY_COW
3632 	 * pages with an override.  This is to implement a forced
3633 	 * COW for debuggers.
3634 	 */
3635 
3636 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3637 		prot = entry->max_protection;
3638 	else
3639 		prot = entry->protection;
3640 
3641 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3642 	if ((fault_type & prot) != fault_type) {
3643 		rv = KERN_PROTECTION_FAILURE;
3644 		goto done;
3645 	}
3646 
3647 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3648 	    (entry->eflags & MAP_ENTRY_COW) &&
3649 	    (fault_type & VM_PROT_WRITE) &&
3650 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3651 		rv = KERN_PROTECTION_FAILURE;
3652 		goto done;
3653 	}
3654 
3655 	/*
3656 	 * If this page is not pageable, we have to get it for all possible
3657 	 * accesses.
3658 	 */
3659 	*wired = (entry->wired_count != 0);
3660 	if (*wired)
3661 		prot = fault_type = entry->protection;
3662 
3663 	/*
3664 	 * Virtual page tables may need to update the accessed (A) bit
3665 	 * in a page table entry.  Upgrade the fault to a write fault for
3666 	 * that case if the map will support it.  If the map does not support
3667 	 * it the page table entry simply will not be updated.
3668 	 */
3669 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3670 		if (prot & VM_PROT_WRITE)
3671 			fault_type |= VM_PROT_WRITE;
3672 	}
3673 
3674 	/*
3675 	 * If the entry was copy-on-write, we either ...
3676 	 */
3677 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3678 		/*
3679 		 * If we want to write the page, we may as well handle that
3680 		 * now since we've got the map locked.
3681 		 *
3682 		 * If we don't need to write the page, we just demote the
3683 		 * permissions allowed.
3684 		 */
3685 
3686 		if (fault_type & VM_PROT_WRITE) {
3687 			/*
3688 			 * Make a new object, and place it in the object
3689 			 * chain.  Note that no new references have appeared
3690 			 * -- one just moved from the map to the new
3691 			 * object.
3692 			 */
3693 
3694 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3695 				use_read_lock = 0;
3696 				goto RetryLookup;
3697 			}
3698 			use_read_lock = 0;
3699 
3700 			vm_map_entry_shadow(entry);
3701 		} else {
3702 			/*
3703 			 * We're attempting to read a copy-on-write page --
3704 			 * don't allow writes.
3705 			 */
3706 
3707 			prot &= ~VM_PROT_WRITE;
3708 		}
3709 	}
3710 
3711 	/*
3712 	 * Create an object if necessary.
3713 	 */
3714 	if (entry->object.vm_object == NULL &&
3715 	    !map->system_map) {
3716 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3717 			use_read_lock = 0;
3718 			goto RetryLookup;
3719 		}
3720 		use_read_lock = 0;
3721 		vm_map_entry_allocate_object(entry);
3722 	}
3723 
3724 	/*
3725 	 * Return the object/offset from this entry.  If the entry was
3726 	 * copy-on-write or empty, it has been fixed up.
3727 	 */
3728 
3729 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3730 	*object = entry->object.vm_object;
3731 
3732 	/*
3733 	 * Return whether this is the only map sharing this data.  On
3734 	 * success we return with a read lock held on the map.  On failure
3735 	 * we return with the map unlocked.
3736 	 */
3737 	*out_prot = prot;
3738 done:
3739 	if (rv == KERN_SUCCESS) {
3740 		if (use_read_lock == 0)
3741 			vm_map_lock_downgrade(map);
3742 	} else if (use_read_lock) {
3743 		vm_map_unlock_read(map);
3744 	} else {
3745 		vm_map_unlock(map);
3746 	}
3747 	return (rv);
3748 }
3749 
3750 /*
3751  * Releases locks acquired by a vm_map_lookup()
3752  * (according to the handle returned by that lookup).
3753  *
3754  * No other requirements.
3755  */
3756 void
3757 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3758 {
3759 	/*
3760 	 * Unlock the main-level map
3761 	 */
3762 	vm_map_unlock_read(map);
3763 	if (count)
3764 		vm_map_entry_release(count);
3765 }
3766 
3767 #include "opt_ddb.h"
3768 #ifdef DDB
3769 #include <sys/kernel.h>
3770 
3771 #include <ddb/ddb.h>
3772 
3773 /*
3774  * Debugging only
3775  */
3776 DB_SHOW_COMMAND(map, vm_map_print)
3777 {
3778 	static int nlines;
3779 	/* XXX convert args. */
3780 	vm_map_t map = (vm_map_t)addr;
3781 	boolean_t full = have_addr;
3782 
3783 	vm_map_entry_t entry;
3784 
3785 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3786 	    (void *)map,
3787 	    (void *)map->pmap, map->nentries, map->timestamp);
3788 	nlines++;
3789 
3790 	if (!full && db_indent)
3791 		return;
3792 
3793 	db_indent += 2;
3794 	for (entry = map->header.next; entry != &map->header;
3795 	    entry = entry->next) {
3796 		db_iprintf("map entry %p: start=%p, end=%p\n",
3797 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3798 		nlines++;
3799 		{
3800 			static char *inheritance_name[4] =
3801 			{"share", "copy", "none", "donate_copy"};
3802 
3803 			db_iprintf(" prot=%x/%x/%s",
3804 			    entry->protection,
3805 			    entry->max_protection,
3806 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3807 			if (entry->wired_count != 0)
3808 				db_printf(", wired");
3809 		}
3810 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3811 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3812 			db_printf(", share=%p, offset=0x%lx\n",
3813 			    (void *)entry->object.sub_map,
3814 			    (long)entry->offset);
3815 			nlines++;
3816 			if ((entry->prev == &map->header) ||
3817 			    (entry->prev->object.sub_map !=
3818 				entry->object.sub_map)) {
3819 				db_indent += 2;
3820 				vm_map_print((db_expr_t)(intptr_t)
3821 					     entry->object.sub_map,
3822 					     full, 0, NULL);
3823 				db_indent -= 2;
3824 			}
3825 		} else {
3826 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3827 			db_printf(", object=%p, offset=0x%lx",
3828 			    (void *)entry->object.vm_object,
3829 			    (long)entry->offset);
3830 			if (entry->eflags & MAP_ENTRY_COW)
3831 				db_printf(", copy (%s)",
3832 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3833 			db_printf("\n");
3834 			nlines++;
3835 
3836 			if ((entry->prev == &map->header) ||
3837 			    (entry->prev->object.vm_object !=
3838 				entry->object.vm_object)) {
3839 				db_indent += 2;
3840 				vm_object_print((db_expr_t)(intptr_t)
3841 						entry->object.vm_object,
3842 						full, 0, NULL);
3843 				nlines += 4;
3844 				db_indent -= 2;
3845 			}
3846 		}
3847 	}
3848 	db_indent -= 2;
3849 	if (db_indent == 0)
3850 		nlines = 0;
3851 }
3852 
3853 /*
3854  * Debugging only
3855  */
3856 DB_SHOW_COMMAND(procvm, procvm)
3857 {
3858 	struct proc *p;
3859 
3860 	if (have_addr) {
3861 		p = (struct proc *) addr;
3862 	} else {
3863 		p = curproc;
3864 	}
3865 
3866 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3867 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3868 	    (void *)vmspace_pmap(p->p_vmspace));
3869 
3870 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3871 }
3872 
3873 #endif /* DDB */
3874