xref: /dflybsd-src/sys/vm/vm_glue.c (revision 6d49aa6ffaff1e5a2ff3abe70c453cc8b47adb73)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
63  * $DragonFly: src/sys/vm/vm_glue.c,v 1.53 2007/02/26 21:41:08 corecode Exp $
64  */
65 
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/resourcevar.h>
72 #include <sys/buf.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sysctl.h>
76 
77 #include <sys/kernel.h>
78 #include <sys/unistd.h>
79 
80 #include <machine/limits.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 #include <sys/user.h>
93 #include <vm/vm_page2.h>
94 #include <sys/thread2.h>
95 
96 /*
97  * System initialization
98  *
99  * Note: proc0 from proc.h
100  */
101 
102 static void vm_init_limits (void *);
103 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
104 
105 /*
106  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
107  *
108  * Note: run scheduling should be divorced from the vm system.
109  */
110 static void scheduler (void *);
111 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
112 
113 #ifdef INVARIANTS
114 
115 static int swap_debug = 0;
116 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
117 	CTLFLAG_RW, &swap_debug, 0, "");
118 
119 #endif
120 
121 static int scheduler_notify;
122 
123 static void swapout (struct proc *);
124 
125 int
126 kernacc(c_caddr_t addr, int len, int rw)
127 {
128 	boolean_t rv;
129 	vm_offset_t saddr, eaddr;
130 	vm_prot_t prot;
131 
132 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
133 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
134 
135 	/*
136 	 * The globaldata space is not part of the kernel_map proper,
137 	 * check access separately.
138 	 */
139 	if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
140 		return (TRUE);
141 
142 	/*
143 	 * Nominal kernel memory access - check access via kernel_map.
144 	 */
145 	if ((vm_offset_t)addr + len > kernel_map.max_offset ||
146 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
147 		return (FALSE);
148 	}
149 	prot = rw;
150 	saddr = trunc_page((vm_offset_t)addr);
151 	eaddr = round_page((vm_offset_t)addr + len);
152 	vm_map_lock_read(&kernel_map);
153 	rv = vm_map_check_protection(&kernel_map, saddr, eaddr, prot);
154 	vm_map_unlock_read(&kernel_map);
155 	return (rv == TRUE);
156 }
157 
158 int
159 useracc(c_caddr_t addr, int len, int rw)
160 {
161 	boolean_t rv;
162 	vm_prot_t prot;
163 	vm_map_t map;
164 	vm_map_entry_t save_hint;
165 
166 	KASSERT((rw & (~VM_PROT_ALL)) == 0,
167 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168 	prot = rw;
169 	/*
170 	 * XXX - check separately to disallow access to user area and user
171 	 * page tables - they are in the map.
172 	 *
173 	 * XXX - VM_MAX_USER_ADDRESS is an end address, not a max.  It was once
174 	 * only used (as an end address) in trap.c.  Use it as an end address
175 	 * here too.  This bogusness has spread.  I just fixed where it was
176 	 * used as a max in vm_mmap.c.
177 	 */
178 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAX_USER_ADDRESS
179 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
180 		return (FALSE);
181 	}
182 	map = &curproc->p_vmspace->vm_map;
183 	vm_map_lock_read(map);
184 	/*
185 	 * We save the map hint, and restore it.  Useracc appears to distort
186 	 * the map hint unnecessarily.
187 	 */
188 	save_hint = map->hint;
189 	rv = vm_map_check_protection(map,
190 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
191 	map->hint = save_hint;
192 	vm_map_unlock_read(map);
193 
194 	return (rv == TRUE);
195 }
196 
197 void
198 vslock(caddr_t addr, u_int len)
199 {
200 	if (len) {
201 		vm_map_wire(&curproc->p_vmspace->vm_map,
202 			    trunc_page((vm_offset_t)addr),
203 			    round_page((vm_offset_t)addr + len), 0);
204 	}
205 }
206 
207 void
208 vsunlock(caddr_t addr, u_int len)
209 {
210 	if (len) {
211 		vm_map_wire(&curproc->p_vmspace->vm_map,
212 			    trunc_page((vm_offset_t)addr),
213 			    round_page((vm_offset_t)addr + len),
214 			    KM_PAGEABLE);
215 	}
216 }
217 
218 /*
219  * Implement fork's actions on an address space.
220  * Here we arrange for the address space to be copied or referenced,
221  * allocate a user struct (pcb and kernel stack), then call the
222  * machine-dependent layer to fill those in and make the new process
223  * ready to run.  The new process is set up so that it returns directly
224  * to user mode to avoid stack copying and relocation problems.
225  */
226 void
227 vm_fork(struct proc *p1, struct proc *p2, int flags)
228 {
229 	if ((flags & RFPROC) == 0) {
230 		/*
231 		 * Divorce the memory, if it is shared, essentially
232 		 * this changes shared memory amongst threads, into
233 		 * COW locally.
234 		 */
235 		if ((flags & RFMEM) == 0) {
236 			if (p1->p_vmspace->vm_refcnt > 1) {
237 				vmspace_unshare(p1);
238 			}
239 		}
240 		cpu_fork(ONLY_LWP_IN_PROC(p1), NULL, flags);
241 		return;
242 	}
243 
244 	if (flags & RFMEM) {
245 		p2->p_vmspace = p1->p_vmspace;
246 		p1->p_vmspace->vm_refcnt++;
247 	}
248 
249 	while (vm_page_count_severe()) {
250 		vm_wait();
251 	}
252 
253 	if ((flags & RFMEM) == 0) {
254 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
255 
256 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
257 
258 		if (p1->p_vmspace->vm_shm)
259 			shmfork(p1, p2);
260 	}
261 
262 	pmap_init_proc(p2);
263 }
264 
265 /*
266  * Called after process has been wait(2)'ed apon and is being reaped.
267  * The idea is to reclaim resources that we could not reclaim while
268  * the process was still executing.
269  */
270 void
271 vm_waitproc(struct proc *p)
272 {
273 	cpu_proc_wait(p);
274 	vmspace_exitfree(p);	/* and clean-out the vmspace */
275 }
276 
277 /*
278  * Set default limits for VM system.
279  * Called for proc 0, and then inherited by all others.
280  *
281  * XXX should probably act directly on proc0.
282  */
283 static void
284 vm_init_limits(void *udata)
285 {
286 	struct proc *p = udata;
287 	int rss_limit;
288 
289 	/*
290 	 * Set up the initial limits on process VM. Set the maximum resident
291 	 * set size to be half of (reasonably) available memory.  Since this
292 	 * is a soft limit, it comes into effect only when the system is out
293 	 * of memory - half of main memory helps to favor smaller processes,
294 	 * and reduces thrashing of the object cache.
295 	 */
296 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
297 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
298 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
299 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
300 	/* limit the limit to no less than 2MB */
301 	rss_limit = max(vmstats.v_free_count, 512);
302 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
303 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
304 }
305 
306 /*
307  * Faultin the specified process.  Note that the process can be in any
308  * state.  Just clear P_SWAPPEDOUT and call wakeup in case the process is
309  * sleeping.
310  */
311 void
312 faultin(struct proc *p)
313 {
314 	if (p->p_flag & P_SWAPPEDOUT) {
315 		/*
316 		 * The process is waiting in the kernel to return to user
317 		 * mode but cannot until P_SWAPPEDOUT gets cleared.
318 		 */
319 		crit_enter();
320 		p->p_flag &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
321 #ifdef INVARIANTS
322 		if (swap_debug)
323 			kprintf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
324 #endif
325 		wakeup(p);
326 
327 		crit_exit();
328 	}
329 }
330 
331 /*
332  * Kernel initialization eventually falls through to this function,
333  * which is process 0.
334  *
335  * This swapin algorithm attempts to swap-in processes only if there
336  * is enough space for them.  Of course, if a process waits for a long
337  * time, it will be swapped in anyway.
338  */
339 
340 struct scheduler_info {
341 	struct proc *pp;
342 	int ppri;
343 };
344 
345 static int scheduler_callback(struct proc *p, void *data);
346 
347 static void
348 scheduler(void *dummy)
349 {
350 	struct scheduler_info info;
351 	struct proc *p;
352 
353 	KKASSERT(!IN_CRITICAL_SECT(curthread));
354 loop:
355 	scheduler_notify = 0;
356 	/*
357 	 * Don't try to swap anything in if we are low on memory.
358 	 */
359 	if (vm_page_count_min()) {
360 		vm_wait();
361 		goto loop;
362 	}
363 
364 	/*
365 	 * Look for a good candidate to wake up
366 	 */
367 	info.pp = NULL;
368 	info.ppri = INT_MIN;
369 	allproc_scan(scheduler_callback, &info);
370 
371 	/*
372 	 * Nothing to do, back to sleep for at least 1/10 of a second.  If
373 	 * we are woken up, immediately process the next request.  If
374 	 * multiple requests have built up the first is processed
375 	 * immediately and the rest are staggered.
376 	 */
377 	if ((p = info.pp) == NULL) {
378 		tsleep(&proc0, 0, "nowork", hz / 10);
379 		if (scheduler_notify == 0)
380 			tsleep(&scheduler_notify, 0, "nowork", 0);
381 		goto loop;
382 	}
383 
384 	/*
385 	 * Fault the selected process in, then wait for a short period of
386 	 * time and loop up.
387 	 *
388 	 * XXX we need a heuristic to get a measure of system stress and
389 	 * then adjust our stagger wakeup delay accordingly.
390 	 */
391 	faultin(p);
392 	p->p_swtime = 0;
393 	PRELE(p);
394 	tsleep(&proc0, 0, "swapin", hz / 10);
395 	goto loop;
396 }
397 
398 static int
399 scheduler_callback(struct proc *p, void *data)
400 {
401 	struct scheduler_info *info = data;
402 	struct lwp *lp;
403 	segsz_t pgs;
404 	int pri;
405 
406 	if (p->p_flag & P_SWAPWAIT) {
407 		pri = 0;
408 		FOREACH_LWP_IN_PROC(lp, p) {
409 			/* XXX lwp might need a different metric */
410 			pri += lp->lwp_slptime;
411 		}
412 		pri += p->p_swtime - p->p_nice * 8;
413 
414 		/*
415 		 * The more pages paged out while we were swapped,
416 		 * the more work we have to do to get up and running
417 		 * again and the lower our wakeup priority.
418 		 *
419 		 * Each second of sleep time is worth ~1MB
420 		 */
421 		pgs = vmspace_resident_count(p->p_vmspace);
422 		if (pgs < p->p_vmspace->vm_swrss) {
423 			pri -= (p->p_vmspace->vm_swrss - pgs) /
424 				(1024 * 1024 / PAGE_SIZE);
425 		}
426 
427 		/*
428 		 * If this process is higher priority and there is
429 		 * enough space, then select this process instead of
430 		 * the previous selection.
431 		 */
432 		if (pri > info->ppri) {
433 			if (info->pp)
434 				PRELE(info->pp);
435 			PHOLD(p);
436 			info->pp = p;
437 			info->ppri = pri;
438 		}
439 	}
440 	return(0);
441 }
442 
443 void
444 swapin_request(void)
445 {
446 	if (scheduler_notify == 0) {
447 		scheduler_notify = 1;
448 		wakeup(&scheduler_notify);
449 	}
450 }
451 
452 #ifndef NO_SWAPPING
453 
454 #define	swappable(p) \
455 	(((p)->p_lock == 0) && \
456 	((p)->p_flag & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
457 
458 
459 /*
460  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
461  */
462 static int swap_idle_threshold1 = 15;
463 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
464 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
465 
466 /*
467  * Swap_idle_threshold2 is the time that a process can be idle before
468  * it will be swapped out, if idle swapping is enabled.  Default is
469  * one minute.
470  */
471 static int swap_idle_threshold2 = 60;
472 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
473 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
474 
475 /*
476  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
477  * procs and mark them as being swapped out.  This will cause the kernel
478  * to prefer to pageout those proc's pages first and the procs in question
479  * will not return to user mode until the swapper tells them they can.
480  *
481  * If any procs have been sleeping/stopped for at least maxslp seconds,
482  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
483  * if any, otherwise the longest-resident process.
484  */
485 
486 static int swapout_procs_callback(struct proc *p, void *data);
487 
488 void
489 swapout_procs(int action)
490 {
491 	allproc_scan(swapout_procs_callback, &action);
492 }
493 
494 static int
495 swapout_procs_callback(struct proc *p, void *data)
496 {
497 	struct vmspace *vm;
498 	struct lwp *lp;
499 	int action = *(int *)data;
500 	int minslp = -1;
501 
502 	if (!swappable(p))
503 		return(0);
504 
505 	vm = p->p_vmspace;
506 
507 	/*
508 	 * We only consider active processes.
509 	 */
510 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
511 		return(0);
512 
513 	FOREACH_LWP_IN_PROC(lp, p) {
514 		/*
515 		 * do not swap out a realtime process
516 		 */
517 		if (RTP_PRIO_IS_REALTIME(lp->lwp_rtprio.type))
518 			return(0);
519 
520 		/*
521 		 * Guarentee swap_idle_threshold time in memory
522 		 */
523 		if (lp->lwp_slptime < swap_idle_threshold1)
524 			return(0);
525 
526 		/*
527 		 * If the system is under memory stress, or if we
528 		 * are swapping idle processes >= swap_idle_threshold2,
529 		 * then swap the process out.
530 		 */
531 		if (((action & VM_SWAP_NORMAL) == 0) &&
532 		    (((action & VM_SWAP_IDLE) == 0) ||
533 		     (lp->lwp_slptime < swap_idle_threshold2))) {
534 			return(0);
535 		}
536 
537 		if (minslp == -1 || lp->lwp_slptime < minslp)
538 			minslp = lp->lwp_slptime;
539 	}
540 
541 	++vm->vm_refcnt;
542 
543 	/*
544 	 * If the process has been asleep for awhile, swap
545 	 * it out.
546 	 */
547 	if ((action & VM_SWAP_NORMAL) ||
548 	    ((action & VM_SWAP_IDLE) &&
549 	     (minslp > swap_idle_threshold2))) {
550 		swapout(p);
551 	}
552 
553 	/*
554 	 * cleanup our reference
555 	 */
556 	vmspace_free(vm);
557 
558 	return(0);
559 }
560 
561 static void
562 swapout(struct proc *p)
563 {
564 #ifdef INVARIANTS
565 	if (swap_debug)
566 		kprintf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
567 #endif
568 	++p->p_ru.ru_nswap;
569 	/*
570 	 * remember the process resident count
571 	 */
572 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
573 	p->p_flag |= P_SWAPPEDOUT;
574 	p->p_swtime = 0;
575 }
576 
577 #endif /* !NO_SWAPPING */
578 
579