xref: /dflybsd-src/sys/vm/vm_fault.c (revision f00eae149c338528630cd778fd4de222713daa11)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int hardfault;
119 	int fault_flags;
120 	int map_generation;
121 	int shared;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int debug_cluster = 0;
127 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
128 int vm_shared_fault = 1;
129 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
130 	   "Allow shared token on vm_object");
131 static long vm_shared_hit = 0;
132 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
133 	   "Successful shared faults");
134 static long vm_shared_miss = 0;
135 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
136 	   "Unsuccessful shared faults");
137 
138 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
139 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
140 #if 0
141 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
142 #endif
143 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
144 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
145 			vm_map_entry_t entry, int prot, int fault_flags);
146 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
147 			vm_map_entry_t entry, int prot, int fault_flags);
148 
149 static __inline void
150 release_page(struct faultstate *fs)
151 {
152 	vm_page_deactivate(fs->m);
153 	vm_page_wakeup(fs->m);
154 	fs->m = NULL;
155 }
156 
157 /*
158  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
159  *	 requires relocking and then checking the timestamp.
160  *
161  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
162  *	 not have to update fs->map_generation here.
163  *
164  * NOTE: This function can fail due to a deadlock against the caller's
165  *	 holding of a vm_page BUSY.
166  */
167 static __inline int
168 relock_map(struct faultstate *fs)
169 {
170 	int error;
171 
172 	if (fs->lookup_still_valid == FALSE && fs->map) {
173 		error = vm_map_lock_read_to(fs->map);
174 		if (error == 0)
175 			fs->lookup_still_valid = TRUE;
176 	} else {
177 		error = 0;
178 	}
179 	return error;
180 }
181 
182 static __inline void
183 unlock_map(struct faultstate *fs)
184 {
185 	if (fs->lookup_still_valid && fs->map) {
186 		vm_map_lookup_done(fs->map, fs->entry, 0);
187 		fs->lookup_still_valid = FALSE;
188 	}
189 }
190 
191 /*
192  * Clean up after a successful call to vm_fault_object() so another call
193  * to vm_fault_object() can be made.
194  */
195 static void
196 _cleanup_successful_fault(struct faultstate *fs, int relock)
197 {
198 	if (fs->object != fs->first_object) {
199 		vm_page_free(fs->first_m);
200 		vm_object_pip_wakeup(fs->object);
201 		fs->first_m = NULL;
202 	}
203 	fs->object = fs->first_object;
204 	if (relock && fs->lookup_still_valid == FALSE) {
205 		if (fs->map)
206 			vm_map_lock_read(fs->map);
207 		fs->lookup_still_valid = TRUE;
208 	}
209 }
210 
211 static void
212 _unlock_things(struct faultstate *fs, int dealloc)
213 {
214 	_cleanup_successful_fault(fs, 0);
215 	if (dealloc) {
216 		/*vm_object_deallocate(fs->first_object);*/
217 		/*fs->first_object = NULL; drop used later on */
218 	}
219 	unlock_map(fs);
220 	if (fs->vp != NULL) {
221 		vput(fs->vp);
222 		fs->vp = NULL;
223 	}
224 }
225 
226 #define unlock_things(fs) _unlock_things(fs, 0)
227 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
228 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
229 
230 /*
231  * TRYPAGER
232  *
233  * Determine if the pager for the current object *might* contain the page.
234  *
235  * We only need to try the pager if this is not a default object (default
236  * objects are zero-fill and have no real pager), and if we are not taking
237  * a wiring fault or if the FS entry is wired.
238  */
239 #define TRYPAGER(fs)	\
240 		(fs->object->type != OBJT_DEFAULT && \
241 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
242 
243 /*
244  * vm_fault:
245  *
246  * Handle a page fault occuring at the given address, requiring the given
247  * permissions, in the map specified.  If successful, the page is inserted
248  * into the associated physical map.
249  *
250  * NOTE: The given address should be truncated to the proper page address.
251  *
252  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
253  * a standard error specifying why the fault is fatal is returned.
254  *
255  * The map in question must be referenced, and remains so.
256  * The caller may hold no locks.
257  * No other requirements.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
261 {
262 	int result;
263 	vm_pindex_t first_pindex;
264 	struct faultstate fs;
265 	struct lwp *lp;
266 	int growstack;
267 
268 	vm_page_pcpu_cache();
269 	fs.hardfault = 0;
270 	fs.fault_flags = fault_flags;
271 	fs.vp = NULL;
272 	growstack = 1;
273 
274 	if ((lp = curthread->td_lwp) != NULL)
275 		lp->lwp_flags |= LWP_PAGING;
276 
277 	lwkt_gettoken(&map->token);
278 
279 RetryFault:
280 	/*
281 	 * Find the vm_map_entry representing the backing store and resolve
282 	 * the top level object and page index.  This may have the side
283 	 * effect of executing a copy-on-write on the map entry and/or
284 	 * creating a shadow object, but will not COW any actual VM pages.
285 	 *
286 	 * On success fs.map is left read-locked and various other fields
287 	 * are initialized but not otherwise referenced or locked.
288 	 *
289 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
290 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
291 	 * writable, so we can set the 'A'accessed bit in the virtual page
292 	 * table entry.
293 	 */
294 	fs.map = map;
295 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
296 			       &fs.entry, &fs.first_object,
297 			       &first_pindex, &fs.first_prot, &fs.wired);
298 
299 	/*
300 	 * If the lookup failed or the map protections are incompatible,
301 	 * the fault generally fails.  However, if the caller is trying
302 	 * to do a user wiring we have more work to do.
303 	 */
304 	if (result != KERN_SUCCESS) {
305 		if (result != KERN_PROTECTION_FAILURE ||
306 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
307 		{
308 			if (result == KERN_INVALID_ADDRESS && growstack &&
309 			    map != &kernel_map && curproc != NULL) {
310 				result = vm_map_growstack(curproc, vaddr);
311 				if (result == KERN_SUCCESS) {
312 					growstack = 0;
313 					goto RetryFault;
314 				}
315 				result = KERN_FAILURE;
316 			}
317 			goto done;
318 		}
319 
320 		/*
321    		 * If we are user-wiring a r/w segment, and it is COW, then
322    		 * we need to do the COW operation.  Note that we don't
323 		 * currently COW RO sections now, because it is NOT desirable
324    		 * to COW .text.  We simply keep .text from ever being COW'ed
325    		 * and take the heat that one cannot debug wired .text sections.
326    		 */
327 		result = vm_map_lookup(&fs.map, vaddr,
328 				       VM_PROT_READ|VM_PROT_WRITE|
329 				        VM_PROT_OVERRIDE_WRITE,
330 				       &fs.entry, &fs.first_object,
331 				       &first_pindex, &fs.first_prot,
332 				       &fs.wired);
333 		if (result != KERN_SUCCESS) {
334 			result = KERN_FAILURE;
335 			goto done;
336 		}
337 
338 		/*
339 		 * If we don't COW now, on a user wire, the user will never
340 		 * be able to write to the mapping.  If we don't make this
341 		 * restriction, the bookkeeping would be nearly impossible.
342 		 *
343 		 * XXX We have a shared lock, this will have a MP race but
344 		 * I don't see how it can hurt anything.
345 		 */
346 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
347 			fs.entry->max_protection &= ~VM_PROT_WRITE;
348 	}
349 
350 	/*
351 	 * fs.map is read-locked
352 	 *
353 	 * Misc checks.  Save the map generation number to detect races.
354 	 */
355 	fs.map_generation = fs.map->timestamp;
356 
357 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
358 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
359 			panic("vm_fault: fault on nofault entry, addr: %p",
360 			      (void *)vaddr);
361 		}
362 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
363 		    vaddr >= fs.entry->start &&
364 		    vaddr < fs.entry->start + PAGE_SIZE) {
365 			panic("vm_fault: fault on stack guard, addr: %p",
366 			      (void *)vaddr);
367 		}
368 	}
369 
370 	/*
371 	 * A system map entry may return a NULL object.  No object means
372 	 * no pager means an unrecoverable kernel fault.
373 	 */
374 	if (fs.first_object == NULL) {
375 		panic("vm_fault: unrecoverable fault at %p in entry %p",
376 			(void *)vaddr, fs.entry);
377 	}
378 
379 	/*
380 	 * Attempt to shortcut the fault if the lookup returns a
381 	 * terminal object and the page is present.  This allows us
382 	 * to obtain a shared token on the object instead of an exclusive
383 	 * token, which theoretically should allow concurrent faults.
384 	 *
385 	 * We cannot acquire a shared token on kernel_map, at least not
386 	 * on i386, because the i386 pmap code uses the kernel_object for
387 	 * its page table page management, resulting in a shared->exclusive
388 	 * sequence which will deadlock.  This will not happen normally
389 	 * anyway, except on well cached pageable kmem (like pipe buffers),
390 	 * so it should not impact performance.
391 	 */
392 	if (vm_shared_fault &&
393 	    fs.first_object->backing_object == NULL &&
394 	    fs.entry->maptype == VM_MAPTYPE_NORMAL &&
395 	    fs.map != &kernel_map) {
396 		int error;
397 		vm_object_hold_shared(fs.first_object);
398 		/*fs.vp = vnode_pager_lock(fs.first_object);*/
399 		fs.m = vm_page_lookup_busy_try(fs.first_object,
400 						first_pindex,
401 						TRUE, &error);
402 		if (error == 0 && fs.m) {
403 			/*
404 			 * Activate the page and figure out if we can
405 			 * short-cut a quick mapping.
406 			 *
407 			 * WARNING!  We cannot call swap_pager_unswapped()
408 			 *	     with a shared token!  Note that we
409 			 *	     have to test fs.first_prot here.
410 			 */
411 			vm_page_activate(fs.m);
412 			if (fs.m->valid == VM_PAGE_BITS_ALL &&
413 			    ((fs.m->flags & PG_SWAPPED) == 0 ||
414 			     (fs.first_prot & VM_PROT_WRITE) == 0 ||
415 			     (fs.fault_flags & VM_FAULT_DIRTY) == 0)) {
416 				fs.lookup_still_valid = TRUE;
417 				fs.first_m = NULL;
418 				fs.object = fs.first_object;
419 				fs.prot = fs.first_prot;
420 				if (fs.wired)
421 					fault_type = fs.first_prot;
422 				if (fs.prot & VM_PROT_WRITE) {
423 					vm_object_set_writeable_dirty(
424 							fs.m->object);
425 					vm_set_nosync(fs.m, fs.entry);
426 					if (fs.fault_flags & VM_FAULT_DIRTY) {
427 						vm_page_dirty(fs.m);
428 						/*XXX*/
429 						swap_pager_unswapped(fs.m);
430 					}
431 				}
432 				result = KERN_SUCCESS;
433 				fault_flags |= VM_FAULT_BURST_QUICK;
434 				fault_flags &= ~VM_FAULT_BURST;
435 				++vm_shared_hit;
436 				goto quick;
437 			}
438 			vm_page_wakeup(fs.m);
439 			fs.m = NULL;
440 		}
441 		vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/
442 	}
443 	++vm_shared_miss;
444 
445 	/*
446 	 * Bump the paging-in-progress count to prevent size changes (e.g.
447 	 * truncation operations) during I/O.  This must be done after
448 	 * obtaining the vnode lock in order to avoid possible deadlocks.
449 	 */
450 	vm_object_hold(fs.first_object);
451 	if (fs.vp == NULL)
452 		fs.vp = vnode_pager_lock(fs.first_object);
453 
454 	fs.lookup_still_valid = TRUE;
455 	fs.first_m = NULL;
456 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
457 	fs.shared = 0;
458 
459 	/*
460 	 * If the entry is wired we cannot change the page protection.
461 	 */
462 	if (fs.wired)
463 		fault_type = fs.first_prot;
464 
465 	/*
466 	 * The page we want is at (first_object, first_pindex), but if the
467 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
468 	 * page table to figure out the actual pindex.
469 	 *
470 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
471 	 * ONLY
472 	 */
473 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
474 		result = vm_fault_vpagetable(&fs, &first_pindex,
475 					     fs.entry->aux.master_pde,
476 					     fault_type);
477 		if (result == KERN_TRY_AGAIN) {
478 			vm_object_drop(fs.first_object);
479 			goto RetryFault;
480 		}
481 		if (result != KERN_SUCCESS)
482 			goto done;
483 	}
484 
485 	/*
486 	 * Now we have the actual (object, pindex), fault in the page.  If
487 	 * vm_fault_object() fails it will unlock and deallocate the FS
488 	 * data.   If it succeeds everything remains locked and fs->object
489 	 * will have an additional PIP count if it is not equal to
490 	 * fs->first_object
491 	 *
492 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
493 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
494 	 * page can be safely written.  However, it will force a read-only
495 	 * mapping for a read fault if the memory is managed by a virtual
496 	 * page table.
497 	 *
498 	 * If the fault code uses the shared object lock shortcut
499 	 * we must not try to burst (we can't allocate VM pages).
500 	 */
501 	result = vm_fault_object(&fs, first_pindex, fault_type);
502 	if (fs.shared)
503 		fault_flags &= ~VM_FAULT_BURST;
504 
505 	if (result == KERN_TRY_AGAIN) {
506 		vm_object_drop(fs.first_object);
507 		goto RetryFault;
508 	}
509 	if (result != KERN_SUCCESS)
510 		goto done;
511 
512 quick:
513 	/*
514 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
515 	 * will contain a busied page.
516 	 *
517 	 * Enter the page into the pmap and do pmap-related adjustments.
518 	 */
519 	vm_page_flag_set(fs.m, PG_REFERENCED);
520 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry);
521 	mycpu->gd_cnt.v_vm_faults++;
522 	if (curthread->td_lwp)
523 		++curthread->td_lwp->lwp_ru.ru_minflt;
524 
525 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
526 	KKASSERT(fs.m->flags & PG_BUSY);
527 
528 	/*
529 	 * If the page is not wired down, then put it where the pageout daemon
530 	 * can find it.
531 	 */
532 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
533 		if (fs.wired)
534 			vm_page_wire(fs.m);
535 		else
536 			vm_page_unwire(fs.m, 1);
537 	} else {
538 		vm_page_activate(fs.m);
539 	}
540 	vm_page_wakeup(fs.m);
541 
542 	/*
543 	 * Burst in a few more pages if possible.  The fs.map should still
544 	 * be locked.  To avoid interlocking against a vnode->getblk
545 	 * operation we had to be sure to unbusy our primary vm_page above
546 	 * first.
547 	 */
548 	if (fault_flags & VM_FAULT_BURST) {
549 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
550 		    && fs.wired == 0) {
551 			vm_prefault(fs.map->pmap, vaddr,
552 				    fs.entry, fs.prot, fault_flags);
553 		}
554 	}
555 	if (fault_flags & VM_FAULT_BURST_QUICK) {
556 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
557 		    && fs.wired == 0) {
558 			vm_prefault_quick(fs.map->pmap, vaddr,
559 					  fs.entry, fs.prot, fault_flags);
560 		}
561 	}
562 
563 	/*
564 	 * Unlock everything, and return
565 	 */
566 	unlock_things(&fs);
567 
568 	if (curthread->td_lwp) {
569 		if (fs.hardfault) {
570 			curthread->td_lwp->lwp_ru.ru_majflt++;
571 		} else {
572 			curthread->td_lwp->lwp_ru.ru_minflt++;
573 		}
574 	}
575 
576 	/*vm_object_deallocate(fs.first_object);*/
577 	/*fs.m = NULL; */
578 	/*fs.first_object = NULL; must still drop later */
579 
580 	result = KERN_SUCCESS;
581 done:
582 	if (fs.first_object)
583 		vm_object_drop(fs.first_object);
584 	lwkt_reltoken(&map->token);
585 	if (lp)
586 		lp->lwp_flags &= ~LWP_PAGING;
587 	return (result);
588 }
589 
590 /*
591  * Fault in the specified virtual address in the current process map,
592  * returning a held VM page or NULL.  See vm_fault_page() for more
593  * information.
594  *
595  * No requirements.
596  */
597 vm_page_t
598 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
599 {
600 	struct lwp *lp = curthread->td_lwp;
601 	vm_page_t m;
602 
603 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
604 			  fault_type, VM_FAULT_NORMAL, errorp);
605 	return(m);
606 }
607 
608 /*
609  * Fault in the specified virtual address in the specified map, doing all
610  * necessary manipulation of the object store and all necessary I/O.  Return
611  * a held VM page or NULL, and set *errorp.  The related pmap is not
612  * updated.
613  *
614  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
615  * and marked PG_REFERENCED as well.
616  *
617  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
618  * error will be returned.
619  *
620  * No requirements.
621  */
622 vm_page_t
623 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
624 	      int fault_flags, int *errorp)
625 {
626 	vm_pindex_t first_pindex;
627 	struct faultstate fs;
628 	int result;
629 	vm_prot_t orig_fault_type = fault_type;
630 
631 	fs.hardfault = 0;
632 	fs.fault_flags = fault_flags;
633 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
634 
635 	lwkt_gettoken(&map->token);
636 
637 RetryFault:
638 	/*
639 	 * Find the vm_map_entry representing the backing store and resolve
640 	 * the top level object and page index.  This may have the side
641 	 * effect of executing a copy-on-write on the map entry and/or
642 	 * creating a shadow object, but will not COW any actual VM pages.
643 	 *
644 	 * On success fs.map is left read-locked and various other fields
645 	 * are initialized but not otherwise referenced or locked.
646 	 *
647 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
648 	 * if the map entry is a virtual page table and also writable,
649 	 * so we can set the 'A'accessed bit in the virtual page table entry.
650 	 */
651 	fs.map = map;
652 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
653 			       &fs.entry, &fs.first_object,
654 			       &first_pindex, &fs.first_prot, &fs.wired);
655 
656 	if (result != KERN_SUCCESS) {
657 		*errorp = result;
658 		fs.m = NULL;
659 		goto done;
660 	}
661 
662 	/*
663 	 * fs.map is read-locked
664 	 *
665 	 * Misc checks.  Save the map generation number to detect races.
666 	 */
667 	fs.map_generation = fs.map->timestamp;
668 
669 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
670 		panic("vm_fault: fault on nofault entry, addr: %lx",
671 		    (u_long)vaddr);
672 	}
673 
674 	/*
675 	 * A system map entry may return a NULL object.  No object means
676 	 * no pager means an unrecoverable kernel fault.
677 	 */
678 	if (fs.first_object == NULL) {
679 		panic("vm_fault: unrecoverable fault at %p in entry %p",
680 			(void *)vaddr, fs.entry);
681 	}
682 
683 	/*
684 	 * Make a reference to this object to prevent its disposal while we
685 	 * are messing with it.  Once we have the reference, the map is free
686 	 * to be diddled.  Since objects reference their shadows (and copies),
687 	 * they will stay around as well.
688 	 *
689 	 * The reference should also prevent an unexpected collapse of the
690 	 * parent that might move pages from the current object into the
691 	 * parent unexpectedly, resulting in corruption.
692 	 *
693 	 * Bump the paging-in-progress count to prevent size changes (e.g.
694 	 * truncation operations) during I/O.  This must be done after
695 	 * obtaining the vnode lock in order to avoid possible deadlocks.
696 	 */
697 	vm_object_hold(fs.first_object);
698 	fs.vp = vnode_pager_lock(fs.first_object);
699 
700 	fs.lookup_still_valid = TRUE;
701 	fs.first_m = NULL;
702 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
703 	fs.shared = 0;
704 
705 	/*
706 	 * If the entry is wired we cannot change the page protection.
707 	 */
708 	if (fs.wired)
709 		fault_type = fs.first_prot;
710 
711 	/*
712 	 * The page we want is at (first_object, first_pindex), but if the
713 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
714 	 * page table to figure out the actual pindex.
715 	 *
716 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
717 	 * ONLY
718 	 */
719 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
720 		result = vm_fault_vpagetable(&fs, &first_pindex,
721 					     fs.entry->aux.master_pde,
722 					     fault_type);
723 		if (result == KERN_TRY_AGAIN) {
724 			vm_object_drop(fs.first_object);
725 			goto RetryFault;
726 		}
727 		if (result != KERN_SUCCESS) {
728 			*errorp = result;
729 			fs.m = NULL;
730 			goto done;
731 		}
732 	}
733 
734 	/*
735 	 * Now we have the actual (object, pindex), fault in the page.  If
736 	 * vm_fault_object() fails it will unlock and deallocate the FS
737 	 * data.   If it succeeds everything remains locked and fs->object
738 	 * will have an additinal PIP count if it is not equal to
739 	 * fs->first_object
740 	 */
741 	fs.m = NULL;
742 	result = vm_fault_object(&fs, first_pindex, fault_type);
743 
744 	if (result == KERN_TRY_AGAIN) {
745 		vm_object_drop(fs.first_object);
746 		goto RetryFault;
747 	}
748 	if (result != KERN_SUCCESS) {
749 		*errorp = result;
750 		fs.m = NULL;
751 		goto done;
752 	}
753 
754 	if ((orig_fault_type & VM_PROT_WRITE) &&
755 	    (fs.prot & VM_PROT_WRITE) == 0) {
756 		*errorp = KERN_PROTECTION_FAILURE;
757 		unlock_and_deallocate(&fs);
758 		fs.m = NULL;
759 		goto done;
760 	}
761 
762 	/*
763 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
764 	 * a pmap unrelated to the current process pmap, in which case
765 	 * the current cpu core will not be listed in the pmap's pm_active
766 	 * mask.  Thus invalidation interlocks will fail to work properly.
767 	 *
768 	 * (for example, 'ps' uses procfs to read program arguments from
769 	 * each process's stack).
770 	 *
771 	 * In addition to the above this function will be called to acquire
772 	 * a page that might already be faulted in, re-faulting it
773 	 * continuously is a waste of time.
774 	 *
775 	 * XXX could this have been the cause of our random seg-fault
776 	 *     issues?  procfs accesses user stacks.
777 	 */
778 	vm_page_flag_set(fs.m, PG_REFERENCED);
779 #if 0
780 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
781 	mycpu->gd_cnt.v_vm_faults++;
782 	if (curthread->td_lwp)
783 		++curthread->td_lwp->lwp_ru.ru_minflt;
784 #endif
785 
786 	/*
787 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
788 	 * will contain a busied page.  So we must unlock here after having
789 	 * messed with the pmap.
790 	 */
791 	unlock_things(&fs);
792 
793 	/*
794 	 * Return a held page.  We are not doing any pmap manipulation so do
795 	 * not set PG_MAPPED.  However, adjust the page flags according to
796 	 * the fault type because the caller may not use a managed pmapping
797 	 * (so we don't want to lose the fact that the page will be dirtied
798 	 * if a write fault was specified).
799 	 */
800 	vm_page_hold(fs.m);
801 	vm_page_activate(fs.m);
802 	if (fault_type & VM_PROT_WRITE)
803 		vm_page_dirty(fs.m);
804 
805 	if (curthread->td_lwp) {
806 		if (fs.hardfault) {
807 			curthread->td_lwp->lwp_ru.ru_majflt++;
808 		} else {
809 			curthread->td_lwp->lwp_ru.ru_minflt++;
810 		}
811 	}
812 
813 	/*
814 	 * Unlock everything, and return the held page.
815 	 */
816 	vm_page_wakeup(fs.m);
817 	/*vm_object_deallocate(fs.first_object);*/
818 	/*fs.first_object = NULL; */
819 	*errorp = 0;
820 
821 done:
822 	if (fs.first_object)
823 		vm_object_drop(fs.first_object);
824 	lwkt_reltoken(&map->token);
825 	return(fs.m);
826 }
827 
828 /*
829  * Fault in the specified (object,offset), dirty the returned page as
830  * needed.  If the requested fault_type cannot be done NULL and an
831  * error is returned.
832  *
833  * A held (but not busied) page is returned.
834  *
835  * No requirements.
836  */
837 vm_page_t
838 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
839 		     vm_prot_t fault_type, int fault_flags,
840 		     int shared, int *errorp)
841 {
842 	int result;
843 	vm_pindex_t first_pindex;
844 	struct faultstate fs;
845 	struct vm_map_entry entry;
846 
847 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
848 	bzero(&entry, sizeof(entry));
849 	entry.object.vm_object = object;
850 	entry.maptype = VM_MAPTYPE_NORMAL;
851 	entry.protection = entry.max_protection = fault_type;
852 
853 	fs.hardfault = 0;
854 	fs.fault_flags = fault_flags;
855 	fs.map = NULL;
856 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
857 
858 RetryFault:
859 
860 	fs.first_object = object;
861 	first_pindex = OFF_TO_IDX(offset);
862 	fs.entry = &entry;
863 	fs.first_prot = fault_type;
864 	fs.wired = 0;
865 	fs.shared = shared;
866 	/*fs.map_generation = 0; unused */
867 
868 	/*
869 	 * Make a reference to this object to prevent its disposal while we
870 	 * are messing with it.  Once we have the reference, the map is free
871 	 * to be diddled.  Since objects reference their shadows (and copies),
872 	 * they will stay around as well.
873 	 *
874 	 * The reference should also prevent an unexpected collapse of the
875 	 * parent that might move pages from the current object into the
876 	 * parent unexpectedly, resulting in corruption.
877 	 *
878 	 * Bump the paging-in-progress count to prevent size changes (e.g.
879 	 * truncation operations) during I/O.  This must be done after
880 	 * obtaining the vnode lock in order to avoid possible deadlocks.
881 	 */
882 	fs.vp = vnode_pager_lock(fs.first_object);
883 
884 	fs.lookup_still_valid = TRUE;
885 	fs.first_m = NULL;
886 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
887 
888 #if 0
889 	/* XXX future - ability to operate on VM object using vpagetable */
890 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
891 		result = vm_fault_vpagetable(&fs, &first_pindex,
892 					     fs.entry->aux.master_pde,
893 					     fault_type);
894 		if (result == KERN_TRY_AGAIN)
895 			goto RetryFault;
896 		if (result != KERN_SUCCESS) {
897 			*errorp = result;
898 			return (NULL);
899 		}
900 	}
901 #endif
902 
903 	/*
904 	 * Now we have the actual (object, pindex), fault in the page.  If
905 	 * vm_fault_object() fails it will unlock and deallocate the FS
906 	 * data.   If it succeeds everything remains locked and fs->object
907 	 * will have an additinal PIP count if it is not equal to
908 	 * fs->first_object
909 	 */
910 	result = vm_fault_object(&fs, first_pindex, fault_type);
911 
912 	if (result == KERN_TRY_AGAIN)
913 		goto RetryFault;
914 	if (result != KERN_SUCCESS) {
915 		*errorp = result;
916 		return(NULL);
917 	}
918 
919 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
920 		*errorp = KERN_PROTECTION_FAILURE;
921 		unlock_and_deallocate(&fs);
922 		return(NULL);
923 	}
924 
925 	/*
926 	 * On success vm_fault_object() does not unlock or deallocate, so we
927 	 * do it here.  Note that the returned fs.m will be busied.
928 	 */
929 	unlock_things(&fs);
930 
931 	/*
932 	 * Return a held page.  We are not doing any pmap manipulation so do
933 	 * not set PG_MAPPED.  However, adjust the page flags according to
934 	 * the fault type because the caller may not use a managed pmapping
935 	 * (so we don't want to lose the fact that the page will be dirtied
936 	 * if a write fault was specified).
937 	 */
938 	vm_page_hold(fs.m);
939 	vm_page_activate(fs.m);
940 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
941 		vm_page_dirty(fs.m);
942 	if (fault_flags & VM_FAULT_UNSWAP)
943 		swap_pager_unswapped(fs.m);
944 
945 	/*
946 	 * Indicate that the page was accessed.
947 	 */
948 	vm_page_flag_set(fs.m, PG_REFERENCED);
949 
950 	if (curthread->td_lwp) {
951 		if (fs.hardfault) {
952 			curthread->td_lwp->lwp_ru.ru_majflt++;
953 		} else {
954 			curthread->td_lwp->lwp_ru.ru_minflt++;
955 		}
956 	}
957 
958 	/*
959 	 * Unlock everything, and return the held page.
960 	 */
961 	vm_page_wakeup(fs.m);
962 	/*vm_object_deallocate(fs.first_object);*/
963 	/*fs.first_object = NULL; */
964 
965 	*errorp = 0;
966 	return(fs.m);
967 }
968 
969 /*
970  * Translate the virtual page number (first_pindex) that is relative
971  * to the address space into a logical page number that is relative to the
972  * backing object.  Use the virtual page table pointed to by (vpte).
973  *
974  * This implements an N-level page table.  Any level can terminate the
975  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
976  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
977  */
978 static
979 int
980 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
981 		    vpte_t vpte, int fault_type)
982 {
983 	struct lwbuf *lwb;
984 	struct lwbuf lwb_cache;
985 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
986 	int result = KERN_SUCCESS;
987 	vpte_t *ptep;
988 
989 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
990 	for (;;) {
991 		/*
992 		 * We cannot proceed if the vpte is not valid, not readable
993 		 * for a read fault, or not writable for a write fault.
994 		 */
995 		if ((vpte & VPTE_V) == 0) {
996 			unlock_and_deallocate(fs);
997 			return (KERN_FAILURE);
998 		}
999 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
1000 			unlock_and_deallocate(fs);
1001 			return (KERN_FAILURE);
1002 		}
1003 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
1004 			unlock_and_deallocate(fs);
1005 			return (KERN_FAILURE);
1006 		}
1007 		if ((vpte & VPTE_PS) || vshift == 0)
1008 			break;
1009 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1010 
1011 		/*
1012 		 * Get the page table page.  Nominally we only read the page
1013 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1014 		 * tell vm_fault_object() that we are writing it.
1015 		 *
1016 		 * There is currently no real need to optimize this.
1017 		 */
1018 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1019 					 VM_PROT_READ|VM_PROT_WRITE);
1020 		if (result != KERN_SUCCESS)
1021 			return (result);
1022 
1023 		/*
1024 		 * Process the returned fs.m and look up the page table
1025 		 * entry in the page table page.
1026 		 */
1027 		vshift -= VPTE_PAGE_BITS;
1028 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1029 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1030 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1031 		vpte = *ptep;
1032 
1033 		/*
1034 		 * Page table write-back.  If the vpte is valid for the
1035 		 * requested operation, do a write-back to the page table.
1036 		 *
1037 		 * XXX VPTE_M is not set properly for page directory pages.
1038 		 * It doesn't get set in the page directory if the page table
1039 		 * is modified during a read access.
1040 		 */
1041 		vm_page_activate(fs->m);
1042 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1043 		    (vpte & VPTE_W)) {
1044 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1045 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1046 				vm_page_dirty(fs->m);
1047 			}
1048 		}
1049 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
1050 		    (vpte & VPTE_R)) {
1051 			if ((vpte & VPTE_A) == 0) {
1052 				atomic_set_long(ptep, VPTE_A);
1053 				vm_page_dirty(fs->m);
1054 			}
1055 		}
1056 		lwbuf_free(lwb);
1057 		vm_page_flag_set(fs->m, PG_REFERENCED);
1058 		vm_page_wakeup(fs->m);
1059 		fs->m = NULL;
1060 		cleanup_successful_fault(fs);
1061 	}
1062 	/*
1063 	 * Combine remaining address bits with the vpte.
1064 	 */
1065 	/* JG how many bits from each? */
1066 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1067 		  (*pindex & ((1L << vshift) - 1));
1068 	return (KERN_SUCCESS);
1069 }
1070 
1071 
1072 /*
1073  * This is the core of the vm_fault code.
1074  *
1075  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1076  * through the shadow chain as necessary and do required COW or virtual
1077  * copy operations.  The caller has already fully resolved the vm_map_entry
1078  * and, if appropriate, has created a copy-on-write layer.  All we need to
1079  * do is iterate the object chain.
1080  *
1081  * On failure (fs) is unlocked and deallocated and the caller may return or
1082  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1083  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1084  * will have an additional PIP count if it is not equal to fs.first_object.
1085  *
1086  * fs->first_object must be held on call.
1087  */
1088 static
1089 int
1090 vm_fault_object(struct faultstate *fs,
1091 		vm_pindex_t first_pindex, vm_prot_t fault_type)
1092 {
1093 	vm_object_t next_object;
1094 	vm_pindex_t pindex;
1095 	int error;
1096 
1097 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1098 	fs->prot = fs->first_prot;
1099 	fs->object = fs->first_object;
1100 	pindex = first_pindex;
1101 
1102 	vm_object_chain_acquire(fs->first_object);
1103 	vm_object_pip_add(fs->first_object, 1);
1104 
1105 	/*
1106 	 * If a read fault occurs we try to make the page writable if
1107 	 * possible.  There are three cases where we cannot make the
1108 	 * page mapping writable:
1109 	 *
1110 	 * (1) The mapping is read-only or the VM object is read-only,
1111 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1112 	 *
1113 	 * (2) If the mapping is a virtual page table we need to be able
1114 	 *     to detect writes so we can set VPTE_M in the virtual page
1115 	 *     table.
1116 	 *
1117 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1118 	 *     just result in an unnecessary COW fault.
1119 	 *
1120 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1121 	 * causes adjustments to the 'M'odify bit to also turn off write
1122 	 * access to force a re-fault.
1123 	 */
1124 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1125 		if ((fault_type & VM_PROT_WRITE) == 0)
1126 			fs->prot &= ~VM_PROT_WRITE;
1127 	}
1128 
1129 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1130 
1131 	for (;;) {
1132 		/*
1133 		 * The entire backing chain from first_object to object
1134 		 * inclusive is chainlocked.
1135 		 *
1136 		 * If the object is dead, we stop here
1137 		 *
1138 		 * vm_shared_fault (fs->shared != 0) case: nothing special.
1139 		 */
1140 		if (fs->object->flags & OBJ_DEAD) {
1141 			vm_object_pip_wakeup(fs->first_object);
1142 			vm_object_chain_release_all(fs->first_object,
1143 						    fs->object);
1144 			if (fs->object != fs->first_object)
1145 				vm_object_drop(fs->object);
1146 			unlock_and_deallocate(fs);
1147 			return (KERN_PROTECTION_FAILURE);
1148 		}
1149 
1150 		/*
1151 		 * See if the page is resident.  Wait/Retry if the page is
1152 		 * busy (lots of stuff may have changed so we can't continue
1153 		 * in that case).
1154 		 *
1155 		 * We can theoretically allow the soft-busy case on a read
1156 		 * fault if the page is marked valid, but since such
1157 		 * pages are typically already pmap'd, putting that
1158 		 * special case in might be more effort then it is
1159 		 * worth.  We cannot under any circumstances mess
1160 		 * around with a vm_page_t->busy page except, perhaps,
1161 		 * to pmap it.
1162 		 *
1163 		 * vm_shared_fault (fs->shared != 0) case:
1164 		 *	error		nothing special
1165 		 *	fs->m		relock excl if I/O needed
1166 		 *	NULL		relock excl
1167 		 */
1168 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1169 						TRUE, &error);
1170 		if (error) {
1171 			vm_object_pip_wakeup(fs->first_object);
1172 			vm_object_chain_release_all(fs->first_object,
1173 						    fs->object);
1174 			if (fs->object != fs->first_object)
1175 				vm_object_drop(fs->object);
1176 			unlock_things(fs);
1177 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1178 			mycpu->gd_cnt.v_intrans++;
1179 			/*vm_object_deallocate(fs->first_object);*/
1180 			/*fs->first_object = NULL;*/
1181 			fs->m = NULL;
1182 			return (KERN_TRY_AGAIN);
1183 		}
1184 		if (fs->m) {
1185 			/*
1186 			 * The page is busied for us.
1187 			 *
1188 			 * If reactivating a page from PQ_CACHE we may have
1189 			 * to rate-limit.
1190 			 */
1191 			int queue = fs->m->queue;
1192 			vm_page_unqueue_nowakeup(fs->m);
1193 
1194 			if ((queue - fs->m->pc) == PQ_CACHE &&
1195 			    vm_page_count_severe()) {
1196 				vm_page_activate(fs->m);
1197 				vm_page_wakeup(fs->m);
1198 				fs->m = NULL;
1199 				vm_object_pip_wakeup(fs->first_object);
1200 				vm_object_chain_release_all(fs->first_object,
1201 							    fs->object);
1202 				if (fs->object != fs->first_object)
1203 					vm_object_drop(fs->object);
1204 				unlock_and_deallocate(fs);
1205 				vm_wait_pfault();
1206 				return (KERN_TRY_AGAIN);
1207 			}
1208 
1209 			/*
1210 			 * If it still isn't completely valid (readable),
1211 			 * or if a read-ahead-mark is set on the VM page,
1212 			 * jump to readrest, else we found the page and
1213 			 * can return.
1214 			 *
1215 			 * We can release the spl once we have marked the
1216 			 * page busy.
1217 			 */
1218 			if (fs->m->object != &kernel_object) {
1219 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1220 				    VM_PAGE_BITS_ALL) {
1221 					if (fs->shared) {
1222 						vm_object_drop(fs->object);
1223 						vm_object_hold(fs->object);
1224 						fs->shared = 0;
1225 					}
1226 					goto readrest;
1227 				}
1228 				if (fs->m->flags & PG_RAM) {
1229 					if (debug_cluster)
1230 						kprintf("R");
1231 					vm_page_flag_clear(fs->m, PG_RAM);
1232 					if (fs->shared) {
1233 						vm_object_drop(fs->object);
1234 						vm_object_hold(fs->object);
1235 						fs->shared = 0;
1236 					}
1237 					goto readrest;
1238 				}
1239 			}
1240 			break; /* break to PAGE HAS BEEN FOUND */
1241 		}
1242 
1243 		if (fs->shared) {
1244 			vm_object_drop(fs->object);
1245 			vm_object_hold(fs->object);
1246 			fs->shared = 0;
1247 		}
1248 
1249 		/*
1250 		 * Page is not resident, If this is the search termination
1251 		 * or the pager might contain the page, allocate a new page.
1252 		 */
1253 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1254 			/*
1255 			 * If the page is beyond the object size we fail
1256 			 */
1257 			if (pindex >= fs->object->size) {
1258 				vm_object_pip_wakeup(fs->first_object);
1259 				vm_object_chain_release_all(fs->first_object,
1260 							    fs->object);
1261 				if (fs->object != fs->first_object)
1262 					vm_object_drop(fs->object);
1263 				unlock_and_deallocate(fs);
1264 				return (KERN_PROTECTION_FAILURE);
1265 			}
1266 
1267 			/*
1268 			 * Allocate a new page for this object/offset pair.
1269 			 *
1270 			 * It is possible for the allocation to race, so
1271 			 * handle the case.
1272 			 */
1273 			fs->m = NULL;
1274 			if (!vm_page_count_severe()) {
1275 				fs->m = vm_page_alloc(fs->object, pindex,
1276 				    ((fs->vp || fs->object->backing_object) ?
1277 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1278 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1279 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1280 			}
1281 			if (fs->m == NULL) {
1282 				vm_object_pip_wakeup(fs->first_object);
1283 				vm_object_chain_release_all(fs->first_object,
1284 							    fs->object);
1285 				if (fs->object != fs->first_object)
1286 					vm_object_drop(fs->object);
1287 				unlock_and_deallocate(fs);
1288 				vm_wait_pfault();
1289 				return (KERN_TRY_AGAIN);
1290 			}
1291 
1292 			/*
1293 			 * Fall through to readrest.  We have a new page which
1294 			 * will have to be paged (since m->valid will be 0).
1295 			 */
1296 		}
1297 
1298 readrest:
1299 		/*
1300 		 * We have found an invalid or partially valid page, a
1301 		 * page with a read-ahead mark which might be partially or
1302 		 * fully valid (and maybe dirty too), or we have allocated
1303 		 * a new page.
1304 		 *
1305 		 * Attempt to fault-in the page if there is a chance that the
1306 		 * pager has it, and potentially fault in additional pages
1307 		 * at the same time.
1308 		 *
1309 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1310 		 * for us.
1311 		 */
1312 		if (TRYPAGER(fs)) {
1313 			int rv;
1314 			int seqaccess;
1315 			u_char behavior = vm_map_entry_behavior(fs->entry);
1316 
1317 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1318 				seqaccess = 0;
1319 			else
1320 				seqaccess = -1;
1321 
1322 #if 0
1323 			/*
1324 			 * If sequential access is detected then attempt
1325 			 * to deactivate/cache pages behind the scan to
1326 			 * prevent resource hogging.
1327 			 *
1328 			 * Use of PG_RAM to detect sequential access
1329 			 * also simulates multi-zone sequential access
1330 			 * detection for free.
1331 			 *
1332 			 * NOTE: Partially valid dirty pages cannot be
1333 			 *	 deactivated without causing NFS picemeal
1334 			 *	 writes to barf.
1335 			 */
1336 			if ((fs->first_object->type != OBJT_DEVICE) &&
1337 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1338                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1339 				 (fs->m->flags & PG_RAM)))
1340 			) {
1341 				vm_pindex_t scan_pindex;
1342 				int scan_count = 16;
1343 
1344 				if (first_pindex < 16) {
1345 					scan_pindex = 0;
1346 					scan_count = 0;
1347 				} else {
1348 					scan_pindex = first_pindex - 16;
1349 					if (scan_pindex < 16)
1350 						scan_count = scan_pindex;
1351 					else
1352 						scan_count = 16;
1353 				}
1354 
1355 				while (scan_count) {
1356 					vm_page_t mt;
1357 
1358 					mt = vm_page_lookup(fs->first_object,
1359 							    scan_pindex);
1360 					if (mt == NULL)
1361 						break;
1362 					if (vm_page_busy_try(mt, TRUE))
1363 						goto skip;
1364 
1365 					if (mt->valid != VM_PAGE_BITS_ALL) {
1366 						vm_page_wakeup(mt);
1367 						break;
1368 					}
1369 					if ((mt->flags &
1370 					     (PG_FICTITIOUS | PG_UNMANAGED |
1371 					      PG_NEED_COMMIT)) ||
1372 					    mt->hold_count ||
1373 					    mt->wire_count)  {
1374 						vm_page_wakeup(mt);
1375 						goto skip;
1376 					}
1377 					if (mt->dirty == 0)
1378 						vm_page_test_dirty(mt);
1379 					if (mt->dirty) {
1380 						vm_page_protect(mt,
1381 								VM_PROT_NONE);
1382 						vm_page_deactivate(mt);
1383 						vm_page_wakeup(mt);
1384 					} else {
1385 						vm_page_cache(mt);
1386 					}
1387 skip:
1388 					--scan_count;
1389 					--scan_pindex;
1390 				}
1391 
1392 				seqaccess = 1;
1393 			}
1394 #endif
1395 
1396 			/*
1397 			 * Avoid deadlocking against the map when doing I/O.
1398 			 * fs.object and the page is PG_BUSY'd.
1399 			 *
1400 			 * NOTE: Once unlocked, fs->entry can become stale
1401 			 *	 so this will NULL it out.
1402 			 *
1403 			 * NOTE: fs->entry is invalid until we relock the
1404 			 *	 map and verify that the timestamp has not
1405 			 *	 changed.
1406 			 */
1407 			unlock_map(fs);
1408 
1409 			/*
1410 			 * Acquire the page data.  We still hold a ref on
1411 			 * fs.object and the page has been PG_BUSY's.
1412 			 *
1413 			 * The pager may replace the page (for example, in
1414 			 * order to enter a fictitious page into the
1415 			 * object).  If it does so it is responsible for
1416 			 * cleaning up the passed page and properly setting
1417 			 * the new page PG_BUSY.
1418 			 *
1419 			 * If we got here through a PG_RAM read-ahead
1420 			 * mark the page may be partially dirty and thus
1421 			 * not freeable.  Don't bother checking to see
1422 			 * if the pager has the page because we can't free
1423 			 * it anyway.  We have to depend on the get_page
1424 			 * operation filling in any gaps whether there is
1425 			 * backing store or not.
1426 			 */
1427 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1428 
1429 			if (rv == VM_PAGER_OK) {
1430 				/*
1431 				 * Relookup in case pager changed page. Pager
1432 				 * is responsible for disposition of old page
1433 				 * if moved.
1434 				 *
1435 				 * XXX other code segments do relookups too.
1436 				 * It's a bad abstraction that needs to be
1437 				 * fixed/removed.
1438 				 */
1439 				fs->m = vm_page_lookup(fs->object, pindex);
1440 				if (fs->m == NULL) {
1441 					vm_object_pip_wakeup(fs->first_object);
1442 					vm_object_chain_release_all(
1443 						fs->first_object, fs->object);
1444 					if (fs->object != fs->first_object)
1445 						vm_object_drop(fs->object);
1446 					unlock_and_deallocate(fs);
1447 					return (KERN_TRY_AGAIN);
1448 				}
1449 
1450 				++fs->hardfault;
1451 				break; /* break to PAGE HAS BEEN FOUND */
1452 			}
1453 
1454 			/*
1455 			 * Remove the bogus page (which does not exist at this
1456 			 * object/offset); before doing so, we must get back
1457 			 * our object lock to preserve our invariant.
1458 			 *
1459 			 * Also wake up any other process that may want to bring
1460 			 * in this page.
1461 			 *
1462 			 * If this is the top-level object, we must leave the
1463 			 * busy page to prevent another process from rushing
1464 			 * past us, and inserting the page in that object at
1465 			 * the same time that we are.
1466 			 */
1467 			if (rv == VM_PAGER_ERROR) {
1468 				if (curproc) {
1469 					kprintf("vm_fault: pager read error, "
1470 						"pid %d (%s)\n",
1471 						curproc->p_pid,
1472 						curproc->p_comm);
1473 				} else {
1474 					kprintf("vm_fault: pager read error, "
1475 						"thread %p (%s)\n",
1476 						curthread,
1477 						curproc->p_comm);
1478 				}
1479 			}
1480 
1481 			/*
1482 			 * Data outside the range of the pager or an I/O error
1483 			 *
1484 			 * The page may have been wired during the pagein,
1485 			 * e.g. by the buffer cache, and cannot simply be
1486 			 * freed.  Call vnode_pager_freepage() to deal with it.
1487 			 */
1488 			/*
1489 			 * XXX - the check for kernel_map is a kludge to work
1490 			 * around having the machine panic on a kernel space
1491 			 * fault w/ I/O error.
1492 			 */
1493 			if (((fs->map != &kernel_map) &&
1494 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1495 				vnode_pager_freepage(fs->m);
1496 				fs->m = NULL;
1497 				vm_object_pip_wakeup(fs->first_object);
1498 				vm_object_chain_release_all(fs->first_object,
1499 							    fs->object);
1500 				if (fs->object != fs->first_object)
1501 					vm_object_drop(fs->object);
1502 				unlock_and_deallocate(fs);
1503 				if (rv == VM_PAGER_ERROR)
1504 					return (KERN_FAILURE);
1505 				else
1506 					return (KERN_PROTECTION_FAILURE);
1507 				/* NOT REACHED */
1508 			}
1509 			if (fs->object != fs->first_object) {
1510 				vnode_pager_freepage(fs->m);
1511 				fs->m = NULL;
1512 				/*
1513 				 * XXX - we cannot just fall out at this
1514 				 * point, m has been freed and is invalid!
1515 				 */
1516 			}
1517 		}
1518 
1519 		/*
1520 		 * We get here if the object has a default pager (or unwiring)
1521 		 * or the pager doesn't have the page.
1522 		 */
1523 		if (fs->object == fs->first_object)
1524 			fs->first_m = fs->m;
1525 
1526 		/*
1527 		 * Move on to the next object.  The chain lock should prevent
1528 		 * the backing_object from getting ripped out from under us.
1529 		 *
1530 		 * vm_shared_fault case:
1531 		 *
1532 		 *	If the next object is the last object and
1533 		 *	vnode-backed (thus possibly shared), we can try a
1534 		 *	shared object lock.  There is no 'chain' for this
1535 		 *	last object if vnode-backed (otherwise we would
1536 		 *	need an exclusive lock).
1537 		 *
1538 		 *	fs->shared mode is very fragile and only works
1539 		 *	under certain specific conditions, and is only
1540 		 *	handled for those conditions in our loop.  Essentially
1541 		 *	it is designed only to be able to 'dip into' the
1542 		 *	vnode's object and extract an already-cached page.
1543 		 */
1544 		fs->shared = 0;
1545 		if ((next_object = fs->object->backing_object) != NULL) {
1546 			fs->shared = vm_object_hold_maybe_shared(next_object);
1547 			vm_object_chain_acquire(next_object);
1548 			KKASSERT(next_object == fs->object->backing_object);
1549 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1550 		}
1551 
1552 		if (next_object == NULL) {
1553 			/*
1554 			 * If there's no object left, fill the page in the top
1555 			 * object with zeros.
1556 			 */
1557 			if (fs->object != fs->first_object) {
1558 				if (fs->first_object->backing_object !=
1559 				    fs->object) {
1560 					vm_object_hold(fs->first_object->backing_object);
1561 				}
1562 				vm_object_chain_release_all(
1563 					fs->first_object->backing_object,
1564 					fs->object);
1565 				if (fs->first_object->backing_object !=
1566 				    fs->object) {
1567 					vm_object_drop(fs->first_object->backing_object);
1568 				}
1569 				vm_object_pip_wakeup(fs->object);
1570 				vm_object_drop(fs->object);
1571 				fs->object = fs->first_object;
1572 				pindex = first_pindex;
1573 				fs->m = fs->first_m;
1574 			}
1575 			fs->first_m = NULL;
1576 
1577 			/*
1578 			 * Zero the page if necessary and mark it valid.
1579 			 */
1580 			if ((fs->m->flags & PG_ZERO) == 0) {
1581 				vm_page_zero_fill(fs->m);
1582 			} else {
1583 #ifdef PMAP_DEBUG
1584 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1585 #endif
1586 				vm_page_flag_clear(fs->m, PG_ZERO);
1587 				mycpu->gd_cnt.v_ozfod++;
1588 			}
1589 			mycpu->gd_cnt.v_zfod++;
1590 			fs->m->valid = VM_PAGE_BITS_ALL;
1591 			break;	/* break to PAGE HAS BEEN FOUND */
1592 		}
1593 		if (fs->object != fs->first_object) {
1594 			vm_object_pip_wakeup(fs->object);
1595 			vm_object_lock_swap();
1596 			vm_object_drop(fs->object);
1597 		}
1598 		KASSERT(fs->object != next_object,
1599 			("object loop %p", next_object));
1600 		fs->object = next_object;
1601 		vm_object_pip_add(fs->object, 1);
1602 	}
1603 
1604 	/*
1605 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1606 	 * is held.]
1607 	 *
1608 	 * object still held.
1609 	 *
1610 	 * If the page is being written, but isn't already owned by the
1611 	 * top-level object, we have to copy it into a new page owned by the
1612 	 * top-level object.
1613 	 */
1614 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1615 		("vm_fault: not busy after main loop"));
1616 
1617 	if (fs->object != fs->first_object) {
1618 		/*
1619 		 * We only really need to copy if we want to write it.
1620 		 */
1621 		if (fault_type & VM_PROT_WRITE) {
1622 			/*
1623 			 * This allows pages to be virtually copied from a
1624 			 * backing_object into the first_object, where the
1625 			 * backing object has no other refs to it, and cannot
1626 			 * gain any more refs.  Instead of a bcopy, we just
1627 			 * move the page from the backing object to the
1628 			 * first object.  Note that we must mark the page
1629 			 * dirty in the first object so that it will go out
1630 			 * to swap when needed.
1631 			 */
1632 			if (
1633 				/*
1634 				 * Map, if present, has not changed
1635 				 */
1636 				(fs->map == NULL ||
1637 				fs->map_generation == fs->map->timestamp) &&
1638 				/*
1639 				 * Only one shadow object
1640 				 */
1641 				(fs->object->shadow_count == 1) &&
1642 				/*
1643 				 * No COW refs, except us
1644 				 */
1645 				(fs->object->ref_count == 1) &&
1646 				/*
1647 				 * No one else can look this object up
1648 				 */
1649 				(fs->object->handle == NULL) &&
1650 				/*
1651 				 * No other ways to look the object up
1652 				 */
1653 				((fs->object->type == OBJT_DEFAULT) ||
1654 				 (fs->object->type == OBJT_SWAP)) &&
1655 				/*
1656 				 * We don't chase down the shadow chain
1657 				 */
1658 				(fs->object == fs->first_object->backing_object) &&
1659 
1660 				/*
1661 				 * grab the lock if we need to
1662 				 */
1663 				(fs->lookup_still_valid ||
1664 				 fs->map == NULL ||
1665 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1666 			    ) {
1667 				/*
1668 				 * (first_m) and (m) are both busied.  We have
1669 				 * move (m) into (first_m)'s object/pindex
1670 				 * in an atomic fashion, then free (first_m).
1671 				 *
1672 				 * first_object is held so second remove
1673 				 * followed by the rename should wind
1674 				 * up being atomic.  vm_page_free() might
1675 				 * block so we don't do it until after the
1676 				 * rename.
1677 				 */
1678 				fs->lookup_still_valid = 1;
1679 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1680 				vm_page_remove(fs->first_m);
1681 				vm_page_rename(fs->m, fs->first_object,
1682 					       first_pindex);
1683 				vm_page_free(fs->first_m);
1684 				fs->first_m = fs->m;
1685 				fs->m = NULL;
1686 				mycpu->gd_cnt.v_cow_optim++;
1687 			} else {
1688 				/*
1689 				 * Oh, well, lets copy it.
1690 				 *
1691 				 * Why are we unmapping the original page
1692 				 * here?  Well, in short, not all accessors
1693 				 * of user memory go through the pmap.  The
1694 				 * procfs code doesn't have access user memory
1695 				 * via a local pmap, so vm_fault_page*()
1696 				 * can't call pmap_enter().  And the umtx*()
1697 				 * code may modify the COW'd page via a DMAP
1698 				 * or kernel mapping and not via the pmap,
1699 				 * leaving the original page still mapped
1700 				 * read-only into the pmap.
1701 				 *
1702 				 * So we have to remove the page from at
1703 				 * least the current pmap if it is in it.
1704 				 * Just remove it from all pmaps.
1705 				 */
1706 				vm_page_copy(fs->m, fs->first_m);
1707 				vm_page_protect(fs->m, VM_PROT_NONE);
1708 				vm_page_event(fs->m, VMEVENT_COW);
1709 			}
1710 
1711 			if (fs->m) {
1712 				/*
1713 				 * We no longer need the old page or object.
1714 				 */
1715 				release_page(fs);
1716 			}
1717 
1718 			/*
1719 			 * We intend to revert to first_object, undo the
1720 			 * chain lock through to that.
1721 			 */
1722 			if (fs->first_object->backing_object != fs->object)
1723 				vm_object_hold(fs->first_object->backing_object);
1724 			vm_object_chain_release_all(
1725 					fs->first_object->backing_object,
1726 					fs->object);
1727 			if (fs->first_object->backing_object != fs->object)
1728 				vm_object_drop(fs->first_object->backing_object);
1729 
1730 			/*
1731 			 * fs->object != fs->first_object due to above
1732 			 * conditional
1733 			 */
1734 			vm_object_pip_wakeup(fs->object);
1735 			vm_object_drop(fs->object);
1736 
1737 			/*
1738 			 * Only use the new page below...
1739 			 */
1740 
1741 			mycpu->gd_cnt.v_cow_faults++;
1742 			fs->m = fs->first_m;
1743 			fs->object = fs->first_object;
1744 			pindex = first_pindex;
1745 		} else {
1746 			/*
1747 			 * If it wasn't a write fault avoid having to copy
1748 			 * the page by mapping it read-only.
1749 			 */
1750 			fs->prot &= ~VM_PROT_WRITE;
1751 		}
1752 	}
1753 
1754 	/*
1755 	 * Relock the map if necessary, then check the generation count.
1756 	 * relock_map() will update fs->timestamp to account for the
1757 	 * relocking if necessary.
1758 	 *
1759 	 * If the count has changed after relocking then all sorts of
1760 	 * crap may have happened and we have to retry.
1761 	 *
1762 	 * NOTE: The relock_map() can fail due to a deadlock against
1763 	 *	 the vm_page we are holding BUSY.
1764 	 */
1765 	if (fs->lookup_still_valid == FALSE && fs->map) {
1766 		if (relock_map(fs) ||
1767 		    fs->map->timestamp != fs->map_generation) {
1768 			release_page(fs);
1769 			vm_object_pip_wakeup(fs->first_object);
1770 			vm_object_chain_release_all(fs->first_object,
1771 						    fs->object);
1772 			if (fs->object != fs->first_object)
1773 				vm_object_drop(fs->object);
1774 			unlock_and_deallocate(fs);
1775 			return (KERN_TRY_AGAIN);
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * If the fault is a write, we know that this page is being
1781 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1782 	 * calls later.
1783 	 *
1784 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1785 	 * if the page is already dirty to prevent data written with
1786 	 * the expectation of being synced from not being synced.
1787 	 * Likewise if this entry does not request NOSYNC then make
1788 	 * sure the page isn't marked NOSYNC.  Applications sharing
1789 	 * data should use the same flags to avoid ping ponging.
1790 	 *
1791 	 * Also tell the backing pager, if any, that it should remove
1792 	 * any swap backing since the page is now dirty.
1793 	 */
1794 	vm_page_activate(fs->m);
1795 	if (fs->prot & VM_PROT_WRITE) {
1796 		vm_object_set_writeable_dirty(fs->m->object);
1797 		vm_set_nosync(fs->m, fs->entry);
1798 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1799 			vm_page_dirty(fs->m);
1800 			swap_pager_unswapped(fs->m);
1801 		}
1802 	}
1803 
1804 	vm_object_pip_wakeup(fs->first_object);
1805 	vm_object_chain_release_all(fs->first_object, fs->object);
1806 	if (fs->object != fs->first_object)
1807 		vm_object_drop(fs->object);
1808 
1809 	/*
1810 	 * Page had better still be busy.  We are still locked up and
1811 	 * fs->object will have another PIP reference if it is not equal
1812 	 * to fs->first_object.
1813 	 */
1814 	KASSERT(fs->m->flags & PG_BUSY,
1815 		("vm_fault: page %p not busy!", fs->m));
1816 
1817 	/*
1818 	 * Sanity check: page must be completely valid or it is not fit to
1819 	 * map into user space.  vm_pager_get_pages() ensures this.
1820 	 */
1821 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1822 		vm_page_zero_invalid(fs->m, TRUE);
1823 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1824 	}
1825 	vm_page_flag_clear(fs->m, PG_ZERO);
1826 
1827 	return (KERN_SUCCESS);
1828 }
1829 
1830 /*
1831  * Wire down a range of virtual addresses in a map.  The entry in question
1832  * should be marked in-transition and the map must be locked.  We must
1833  * release the map temporarily while faulting-in the page to avoid a
1834  * deadlock.  Note that the entry may be clipped while we are blocked but
1835  * will never be freed.
1836  *
1837  * No requirements.
1838  */
1839 int
1840 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1841 {
1842 	boolean_t fictitious;
1843 	vm_offset_t start;
1844 	vm_offset_t end;
1845 	vm_offset_t va;
1846 	vm_paddr_t pa;
1847 	vm_page_t m;
1848 	pmap_t pmap;
1849 	int rv;
1850 
1851 	lwkt_gettoken(&map->token);
1852 
1853 	pmap = vm_map_pmap(map);
1854 	start = entry->start;
1855 	end = entry->end;
1856 	fictitious = entry->object.vm_object &&
1857 			(entry->object.vm_object->type == OBJT_DEVICE);
1858 	if (entry->eflags & MAP_ENTRY_KSTACK)
1859 		start += PAGE_SIZE;
1860 	map->timestamp++;
1861 	vm_map_unlock(map);
1862 
1863 	/*
1864 	 * We simulate a fault to get the page and enter it in the physical
1865 	 * map.
1866 	 */
1867 	for (va = start; va < end; va += PAGE_SIZE) {
1868 		if (user_wire) {
1869 			rv = vm_fault(map, va, VM_PROT_READ,
1870 					VM_FAULT_USER_WIRE);
1871 		} else {
1872 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1873 					VM_FAULT_CHANGE_WIRING);
1874 		}
1875 		if (rv) {
1876 			while (va > start) {
1877 				va -= PAGE_SIZE;
1878 				if ((pa = pmap_extract(pmap, va)) == 0)
1879 					continue;
1880 				pmap_change_wiring(pmap, va, FALSE, entry);
1881 				if (!fictitious) {
1882 					m = PHYS_TO_VM_PAGE(pa);
1883 					vm_page_busy_wait(m, FALSE, "vmwrpg");
1884 					vm_page_unwire(m, 1);
1885 					vm_page_wakeup(m);
1886 				}
1887 			}
1888 			goto done;
1889 		}
1890 	}
1891 	rv = KERN_SUCCESS;
1892 done:
1893 	vm_map_lock(map);
1894 	lwkt_reltoken(&map->token);
1895 	return (rv);
1896 }
1897 
1898 /*
1899  * Unwire a range of virtual addresses in a map.  The map should be
1900  * locked.
1901  */
1902 void
1903 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1904 {
1905 	boolean_t fictitious;
1906 	vm_offset_t start;
1907 	vm_offset_t end;
1908 	vm_offset_t va;
1909 	vm_paddr_t pa;
1910 	vm_page_t m;
1911 	pmap_t pmap;
1912 
1913 	lwkt_gettoken(&map->token);
1914 
1915 	pmap = vm_map_pmap(map);
1916 	start = entry->start;
1917 	end = entry->end;
1918 	fictitious = entry->object.vm_object &&
1919 			(entry->object.vm_object->type == OBJT_DEVICE);
1920 	if (entry->eflags & MAP_ENTRY_KSTACK)
1921 		start += PAGE_SIZE;
1922 
1923 	/*
1924 	 * Since the pages are wired down, we must be able to get their
1925 	 * mappings from the physical map system.
1926 	 */
1927 	for (va = start; va < end; va += PAGE_SIZE) {
1928 		pa = pmap_extract(pmap, va);
1929 		if (pa != 0) {
1930 			pmap_change_wiring(pmap, va, FALSE, entry);
1931 			if (!fictitious) {
1932 				m = PHYS_TO_VM_PAGE(pa);
1933 				vm_page_busy_wait(m, FALSE, "vmwupg");
1934 				vm_page_unwire(m, 1);
1935 				vm_page_wakeup(m);
1936 			}
1937 		}
1938 	}
1939 	lwkt_reltoken(&map->token);
1940 }
1941 
1942 /*
1943  * Copy all of the pages from a wired-down map entry to another.
1944  *
1945  * The source and destination maps must be locked for write.
1946  * The source and destination maps token must be held
1947  * The source map entry must be wired down (or be a sharing map
1948  * entry corresponding to a main map entry that is wired down).
1949  *
1950  * No other requirements.
1951  *
1952  * XXX do segment optimization
1953  */
1954 void
1955 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1956 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1957 {
1958 	vm_object_t dst_object;
1959 	vm_object_t src_object;
1960 	vm_ooffset_t dst_offset;
1961 	vm_ooffset_t src_offset;
1962 	vm_prot_t prot;
1963 	vm_offset_t vaddr;
1964 	vm_page_t dst_m;
1965 	vm_page_t src_m;
1966 
1967 	src_object = src_entry->object.vm_object;
1968 	src_offset = src_entry->offset;
1969 
1970 	/*
1971 	 * Create the top-level object for the destination entry. (Doesn't
1972 	 * actually shadow anything - we copy the pages directly.)
1973 	 */
1974 	vm_map_entry_allocate_object(dst_entry);
1975 	dst_object = dst_entry->object.vm_object;
1976 
1977 	prot = dst_entry->max_protection;
1978 
1979 	/*
1980 	 * Loop through all of the pages in the entry's range, copying each
1981 	 * one from the source object (it should be there) to the destination
1982 	 * object.
1983 	 */
1984 	vm_object_hold(src_object);
1985 	vm_object_hold(dst_object);
1986 	for (vaddr = dst_entry->start, dst_offset = 0;
1987 	    vaddr < dst_entry->end;
1988 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1989 
1990 		/*
1991 		 * Allocate a page in the destination object
1992 		 */
1993 		do {
1994 			dst_m = vm_page_alloc(dst_object,
1995 					      OFF_TO_IDX(dst_offset),
1996 					      VM_ALLOC_NORMAL);
1997 			if (dst_m == NULL) {
1998 				vm_wait(0);
1999 			}
2000 		} while (dst_m == NULL);
2001 
2002 		/*
2003 		 * Find the page in the source object, and copy it in.
2004 		 * (Because the source is wired down, the page will be in
2005 		 * memory.)
2006 		 */
2007 		src_m = vm_page_lookup(src_object,
2008 				       OFF_TO_IDX(dst_offset + src_offset));
2009 		if (src_m == NULL)
2010 			panic("vm_fault_copy_wired: page missing");
2011 
2012 		vm_page_copy(src_m, dst_m);
2013 		vm_page_event(src_m, VMEVENT_COW);
2014 
2015 		/*
2016 		 * Enter it in the pmap...
2017 		 */
2018 
2019 		vm_page_flag_clear(dst_m, PG_ZERO);
2020 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2021 
2022 		/*
2023 		 * Mark it no longer busy, and put it on the active list.
2024 		 */
2025 		vm_page_activate(dst_m);
2026 		vm_page_wakeup(dst_m);
2027 	}
2028 	vm_object_drop(dst_object);
2029 	vm_object_drop(src_object);
2030 }
2031 
2032 #if 0
2033 
2034 /*
2035  * This routine checks around the requested page for other pages that
2036  * might be able to be faulted in.  This routine brackets the viable
2037  * pages for the pages to be paged in.
2038  *
2039  * Inputs:
2040  *	m, rbehind, rahead
2041  *
2042  * Outputs:
2043  *  marray (array of vm_page_t), reqpage (index of requested page)
2044  *
2045  * Return value:
2046  *  number of pages in marray
2047  */
2048 static int
2049 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2050 			  vm_page_t *marray, int *reqpage)
2051 {
2052 	int i,j;
2053 	vm_object_t object;
2054 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2055 	vm_page_t rtm;
2056 	int cbehind, cahead;
2057 
2058 	object = m->object;
2059 	pindex = m->pindex;
2060 
2061 	/*
2062 	 * we don't fault-ahead for device pager
2063 	 */
2064 	if (object->type == OBJT_DEVICE) {
2065 		*reqpage = 0;
2066 		marray[0] = m;
2067 		return 1;
2068 	}
2069 
2070 	/*
2071 	 * if the requested page is not available, then give up now
2072 	 */
2073 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2074 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2075 		return 0;
2076 	}
2077 
2078 	if ((cbehind == 0) && (cahead == 0)) {
2079 		*reqpage = 0;
2080 		marray[0] = m;
2081 		return 1;
2082 	}
2083 
2084 	if (rahead > cahead) {
2085 		rahead = cahead;
2086 	}
2087 
2088 	if (rbehind > cbehind) {
2089 		rbehind = cbehind;
2090 	}
2091 
2092 	/*
2093 	 * Do not do any readahead if we have insufficient free memory.
2094 	 *
2095 	 * XXX code was broken disabled before and has instability
2096 	 * with this conditonal fixed, so shortcut for now.
2097 	 */
2098 	if (burst_fault == 0 || vm_page_count_severe()) {
2099 		marray[0] = m;
2100 		*reqpage = 0;
2101 		return 1;
2102 	}
2103 
2104 	/*
2105 	 * scan backward for the read behind pages -- in memory
2106 	 *
2107 	 * Assume that if the page is not found an interrupt will not
2108 	 * create it.  Theoretically interrupts can only remove (busy)
2109 	 * pages, not create new associations.
2110 	 */
2111 	if (pindex > 0) {
2112 		if (rbehind > pindex) {
2113 			rbehind = pindex;
2114 			startpindex = 0;
2115 		} else {
2116 			startpindex = pindex - rbehind;
2117 		}
2118 
2119 		vm_object_hold(object);
2120 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2121 			if (vm_page_lookup(object, tpindex - 1))
2122 				break;
2123 		}
2124 
2125 		i = 0;
2126 		while (tpindex < pindex) {
2127 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2128 							     VM_ALLOC_NULL_OK);
2129 			if (rtm == NULL) {
2130 				for (j = 0; j < i; j++) {
2131 					vm_page_free(marray[j]);
2132 				}
2133 				vm_object_drop(object);
2134 				marray[0] = m;
2135 				*reqpage = 0;
2136 				return 1;
2137 			}
2138 			marray[i] = rtm;
2139 			++i;
2140 			++tpindex;
2141 		}
2142 		vm_object_drop(object);
2143 	} else {
2144 		i = 0;
2145 	}
2146 
2147 	/*
2148 	 * Assign requested page
2149 	 */
2150 	marray[i] = m;
2151 	*reqpage = i;
2152 	++i;
2153 
2154 	/*
2155 	 * Scan forwards for read-ahead pages
2156 	 */
2157 	tpindex = pindex + 1;
2158 	endpindex = tpindex + rahead;
2159 	if (endpindex > object->size)
2160 		endpindex = object->size;
2161 
2162 	vm_object_hold(object);
2163 	while (tpindex < endpindex) {
2164 		if (vm_page_lookup(object, tpindex))
2165 			break;
2166 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2167 						     VM_ALLOC_NULL_OK);
2168 		if (rtm == NULL)
2169 			break;
2170 		marray[i] = rtm;
2171 		++i;
2172 		++tpindex;
2173 	}
2174 	vm_object_drop(object);
2175 
2176 	return (i);
2177 }
2178 
2179 #endif
2180 
2181 /*
2182  * vm_prefault() provides a quick way of clustering pagefaults into a
2183  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2184  * except it runs at page fault time instead of mmap time.
2185  *
2186  * vm.fast_fault	Enables pre-faulting zero-fill pages
2187  *
2188  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2189  *			prefault.  Scan stops in either direction when
2190  *			a page is found to already exist.
2191  *
2192  * This code used to be per-platform pmap_prefault().  It is now
2193  * machine-independent and enhanced to also pre-fault zero-fill pages
2194  * (see vm.fast_fault) as well as make them writable, which greatly
2195  * reduces the number of page faults programs incur.
2196  *
2197  * Application performance when pre-faulting zero-fill pages is heavily
2198  * dependent on the application.  Very tiny applications like /bin/echo
2199  * lose a little performance while applications of any appreciable size
2200  * gain performance.  Prefaulting multiple pages also reduces SMP
2201  * congestion and can improve SMP performance significantly.
2202  *
2203  * NOTE!  prot may allow writing but this only applies to the top level
2204  *	  object.  If we wind up mapping a page extracted from a backing
2205  *	  object we have to make sure it is read-only.
2206  *
2207  * NOTE!  The caller has already handled any COW operations on the
2208  *	  vm_map_entry via the normal fault code.  Do NOT call this
2209  *	  shortcut unless the normal fault code has run on this entry.
2210  *
2211  * The related map must be locked.
2212  * No other requirements.
2213  */
2214 static int vm_prefault_pages = 8;
2215 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2216 	   "Maximum number of pages to pre-fault");
2217 static int vm_fast_fault = 1;
2218 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2219 	   "Burst fault zero-fill regions");
2220 
2221 /*
2222  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2223  * is not already dirty by other means.  This will prevent passive
2224  * filesystem syncing as well as 'sync' from writing out the page.
2225  */
2226 static void
2227 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2228 {
2229 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2230 		if (m->dirty == 0)
2231 			vm_page_flag_set(m, PG_NOSYNC);
2232 	} else {
2233 		vm_page_flag_clear(m, PG_NOSYNC);
2234 	}
2235 }
2236 
2237 static void
2238 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2239 	    int fault_flags)
2240 {
2241 	struct lwp *lp;
2242 	vm_page_t m;
2243 	vm_offset_t addr;
2244 	vm_pindex_t index;
2245 	vm_pindex_t pindex;
2246 	vm_object_t object;
2247 	int pprot;
2248 	int i;
2249 	int noneg;
2250 	int nopos;
2251 	int maxpages;
2252 
2253 	/*
2254 	 * Get stable max count value, disabled if set to 0
2255 	 */
2256 	maxpages = vm_prefault_pages;
2257 	cpu_ccfence();
2258 	if (maxpages <= 0)
2259 		return;
2260 
2261 	/*
2262 	 * We do not currently prefault mappings that use virtual page
2263 	 * tables.  We do not prefault foreign pmaps.
2264 	 */
2265 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2266 		return;
2267 	lp = curthread->td_lwp;
2268 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2269 		return;
2270 
2271 	/*
2272 	 * Limit pre-fault count to 1024 pages.
2273 	 */
2274 	if (maxpages > 1024)
2275 		maxpages = 1024;
2276 
2277 	object = entry->object.vm_object;
2278 	KKASSERT(object != NULL);
2279 	KKASSERT(object == entry->object.vm_object);
2280 	vm_object_hold(object);
2281 	vm_object_chain_acquire(object);
2282 
2283 	noneg = 0;
2284 	nopos = 0;
2285 	for (i = 0; i < maxpages; ++i) {
2286 		vm_object_t lobject;
2287 		vm_object_t nobject;
2288 		int allocated = 0;
2289 		int error;
2290 
2291 		/*
2292 		 * This can eat a lot of time on a heavily contended
2293 		 * machine so yield on the tick if needed.
2294 		 */
2295 		if ((i & 7) == 7)
2296 			lwkt_yield();
2297 
2298 		/*
2299 		 * Calculate the page to pre-fault, stopping the scan in
2300 		 * each direction separately if the limit is reached.
2301 		 */
2302 		if (i & 1) {
2303 			if (noneg)
2304 				continue;
2305 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2306 		} else {
2307 			if (nopos)
2308 				continue;
2309 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2310 		}
2311 		if (addr < entry->start) {
2312 			noneg = 1;
2313 			if (noneg && nopos)
2314 				break;
2315 			continue;
2316 		}
2317 		if (addr >= entry->end) {
2318 			nopos = 1;
2319 			if (noneg && nopos)
2320 				break;
2321 			continue;
2322 		}
2323 
2324 		/*
2325 		 * Skip pages already mapped, and stop scanning in that
2326 		 * direction.  When the scan terminates in both directions
2327 		 * we are done.
2328 		 */
2329 		if (pmap_prefault_ok(pmap, addr) == 0) {
2330 			if (i & 1)
2331 				noneg = 1;
2332 			else
2333 				nopos = 1;
2334 			if (noneg && nopos)
2335 				break;
2336 			continue;
2337 		}
2338 
2339 		/*
2340 		 * Follow the VM object chain to obtain the page to be mapped
2341 		 * into the pmap.
2342 		 *
2343 		 * If we reach the terminal object without finding a page
2344 		 * and we determine it would be advantageous, then allocate
2345 		 * a zero-fill page for the base object.  The base object
2346 		 * is guaranteed to be OBJT_DEFAULT for this case.
2347 		 *
2348 		 * In order to not have to check the pager via *haspage*()
2349 		 * we stop if any non-default object is encountered.  e.g.
2350 		 * a vnode or swap object would stop the loop.
2351 		 */
2352 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2353 		lobject = object;
2354 		pindex = index;
2355 		pprot = prot;
2356 
2357 		KKASSERT(lobject == entry->object.vm_object);
2358 		/*vm_object_hold(lobject); implied */
2359 
2360 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2361 						    TRUE, &error)) == NULL) {
2362 			if (lobject->type != OBJT_DEFAULT)
2363 				break;
2364 			if (lobject->backing_object == NULL) {
2365 				if (vm_fast_fault == 0)
2366 					break;
2367 				if ((prot & VM_PROT_WRITE) == 0 ||
2368 				    vm_page_count_min(0)) {
2369 					break;
2370 				}
2371 
2372 				/*
2373 				 * NOTE: Allocated from base object
2374 				 */
2375 				m = vm_page_alloc(object, index,
2376 						  VM_ALLOC_NORMAL |
2377 						  VM_ALLOC_ZERO |
2378 						  VM_ALLOC_USE_GD |
2379 						  VM_ALLOC_NULL_OK);
2380 				if (m == NULL)
2381 					break;
2382 				allocated = 1;
2383 				pprot = prot;
2384 				/* lobject = object .. not needed */
2385 				break;
2386 			}
2387 			if (lobject->backing_object_offset & PAGE_MASK)
2388 				break;
2389 			nobject = lobject->backing_object;
2390 			vm_object_hold(nobject);
2391 			KKASSERT(nobject == lobject->backing_object);
2392 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2393 			if (lobject != object) {
2394 				vm_object_lock_swap();
2395 				vm_object_drop(lobject);
2396 			}
2397 			lobject = nobject;
2398 			pprot &= ~VM_PROT_WRITE;
2399 			vm_object_chain_acquire(lobject);
2400 		}
2401 
2402 		/*
2403 		 * NOTE: A non-NULL (m) will be associated with lobject if
2404 		 *	 it was found there, otherwise it is probably a
2405 		 *	 zero-fill page associated with the base object.
2406 		 *
2407 		 * Give-up if no page is available.
2408 		 */
2409 		if (m == NULL) {
2410 			if (lobject != object) {
2411 				if (object->backing_object != lobject)
2412 					vm_object_hold(object->backing_object);
2413 				vm_object_chain_release_all(
2414 					object->backing_object, lobject);
2415 				if (object->backing_object != lobject)
2416 					vm_object_drop(object->backing_object);
2417 				vm_object_drop(lobject);
2418 			}
2419 			break;
2420 		}
2421 
2422 		/*
2423 		 * The object must be marked dirty if we are mapping a
2424 		 * writable page.  m->object is either lobject or object,
2425 		 * both of which are still held.  Do this before we
2426 		 * potentially drop the object.
2427 		 */
2428 		if (pprot & VM_PROT_WRITE)
2429 			vm_object_set_writeable_dirty(m->object);
2430 
2431 		/*
2432 		 * Do not conditionalize on PG_RAM.  If pages are present in
2433 		 * the VM system we assume optimal caching.  If caching is
2434 		 * not optimal the I/O gravy train will be restarted when we
2435 		 * hit an unavailable page.  We do not want to try to restart
2436 		 * the gravy train now because we really don't know how much
2437 		 * of the object has been cached.  The cost for restarting
2438 		 * the gravy train should be low (since accesses will likely
2439 		 * be I/O bound anyway).
2440 		 */
2441 		if (lobject != object) {
2442 			if (object->backing_object != lobject)
2443 				vm_object_hold(object->backing_object);
2444 			vm_object_chain_release_all(object->backing_object,
2445 						    lobject);
2446 			if (object->backing_object != lobject)
2447 				vm_object_drop(object->backing_object);
2448 			vm_object_drop(lobject);
2449 		}
2450 
2451 		/*
2452 		 * Enter the page into the pmap if appropriate.  If we had
2453 		 * allocated the page we have to place it on a queue.  If not
2454 		 * we just have to make sure it isn't on the cache queue
2455 		 * (pages on the cache queue are not allowed to be mapped).
2456 		 */
2457 		if (allocated) {
2458 			/*
2459 			 * Page must be zerod.
2460 			 */
2461 			if ((m->flags & PG_ZERO) == 0) {
2462 				vm_page_zero_fill(m);
2463 			} else {
2464 #ifdef PMAP_DEBUG
2465 				pmap_page_assertzero(
2466 						VM_PAGE_TO_PHYS(m));
2467 #endif
2468 				vm_page_flag_clear(m, PG_ZERO);
2469 				mycpu->gd_cnt.v_ozfod++;
2470 			}
2471 			mycpu->gd_cnt.v_zfod++;
2472 			m->valid = VM_PAGE_BITS_ALL;
2473 
2474 			/*
2475 			 * Handle dirty page case
2476 			 */
2477 			if (pprot & VM_PROT_WRITE)
2478 				vm_set_nosync(m, entry);
2479 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2480 			mycpu->gd_cnt.v_vm_faults++;
2481 			if (curthread->td_lwp)
2482 				++curthread->td_lwp->lwp_ru.ru_minflt;
2483 			vm_page_deactivate(m);
2484 			if (pprot & VM_PROT_WRITE) {
2485 				/*vm_object_set_writeable_dirty(m->object);*/
2486 				vm_set_nosync(m, entry);
2487 				if (fault_flags & VM_FAULT_DIRTY) {
2488 					vm_page_dirty(m);
2489 					/*XXX*/
2490 					swap_pager_unswapped(m);
2491 				}
2492 			}
2493 			vm_page_wakeup(m);
2494 		} else if (error) {
2495 			/* couldn't busy page, no wakeup */
2496 		} else if (
2497 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2498 		    (m->flags & PG_FICTITIOUS) == 0) {
2499 			/*
2500 			 * A fully valid page not undergoing soft I/O can
2501 			 * be immediately entered into the pmap.
2502 			 */
2503 			if ((m->queue - m->pc) == PQ_CACHE)
2504 				vm_page_deactivate(m);
2505 			if (pprot & VM_PROT_WRITE) {
2506 				/*vm_object_set_writeable_dirty(m->object);*/
2507 				vm_set_nosync(m, entry);
2508 				if (fault_flags & VM_FAULT_DIRTY) {
2509 					vm_page_dirty(m);
2510 					/*XXX*/
2511 					swap_pager_unswapped(m);
2512 				}
2513 			}
2514 			if (pprot & VM_PROT_WRITE)
2515 				vm_set_nosync(m, entry);
2516 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2517 			mycpu->gd_cnt.v_vm_faults++;
2518 			if (curthread->td_lwp)
2519 				++curthread->td_lwp->lwp_ru.ru_minflt;
2520 			vm_page_wakeup(m);
2521 		} else {
2522 			vm_page_wakeup(m);
2523 		}
2524 	}
2525 	vm_object_chain_release(object);
2526 	vm_object_drop(object);
2527 }
2528 
2529 static void
2530 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2531 		  vm_map_entry_t entry, int prot, int fault_flags)
2532 {
2533 	struct lwp *lp;
2534 	vm_page_t m;
2535 	vm_offset_t addr;
2536 	vm_pindex_t pindex;
2537 	vm_object_t object;
2538 	int i;
2539 	int noneg;
2540 	int nopos;
2541 	int maxpages;
2542 
2543 	/*
2544 	 * Get stable max count value, disabled if set to 0
2545 	 */
2546 	maxpages = vm_prefault_pages;
2547 	cpu_ccfence();
2548 	if (maxpages <= 0)
2549 		return;
2550 
2551 	/*
2552 	 * We do not currently prefault mappings that use virtual page
2553 	 * tables.  We do not prefault foreign pmaps.
2554 	 */
2555 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2556 		return;
2557 	lp = curthread->td_lwp;
2558 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2559 		return;
2560 
2561 	/*
2562 	 * Limit pre-fault count to 1024 pages.
2563 	 */
2564 	if (maxpages > 1024)
2565 		maxpages = 1024;
2566 
2567 	object = entry->object.vm_object;
2568 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2569 	KKASSERT(object->backing_object == NULL);
2570 
2571 	noneg = 0;
2572 	nopos = 0;
2573 	for (i = 0; i < maxpages; ++i) {
2574 		int error;
2575 
2576 		/*
2577 		 * Calculate the page to pre-fault, stopping the scan in
2578 		 * each direction separately if the limit is reached.
2579 		 */
2580 		if (i & 1) {
2581 			if (noneg)
2582 				continue;
2583 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2584 		} else {
2585 			if (nopos)
2586 				continue;
2587 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2588 		}
2589 		if (addr < entry->start) {
2590 			noneg = 1;
2591 			if (noneg && nopos)
2592 				break;
2593 			continue;
2594 		}
2595 		if (addr >= entry->end) {
2596 			nopos = 1;
2597 			if (noneg && nopos)
2598 				break;
2599 			continue;
2600 		}
2601 
2602 		/*
2603 		 * Skip pages already mapped, and stop scanning in that
2604 		 * direction.  When the scan terminates in both directions
2605 		 * we are done.
2606 		 */
2607 		if (pmap_prefault_ok(pmap, addr) == 0) {
2608 			if (i & 1)
2609 				noneg = 1;
2610 			else
2611 				nopos = 1;
2612 			if (noneg && nopos)
2613 				break;
2614 			continue;
2615 		}
2616 
2617 		/*
2618 		 * Follow the VM object chain to obtain the page to be mapped
2619 		 * into the pmap.  This version of the prefault code only
2620 		 * works with terminal objects.
2621 		 *
2622 		 * WARNING!  We cannot call swap_pager_unswapped() with a
2623 		 *	     shared token.
2624 		 */
2625 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2626 
2627 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2628 		if (m == NULL || error)
2629 			continue;
2630 
2631 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2632 		    (m->flags & PG_FICTITIOUS) == 0 &&
2633 		    ((m->flags & PG_SWAPPED) == 0 ||
2634 		     (prot & VM_PROT_WRITE) == 0 ||
2635 		     (fault_flags & VM_FAULT_DIRTY) == 0)) {
2636 			/*
2637 			 * A fully valid page not undergoing soft I/O can
2638 			 * be immediately entered into the pmap.
2639 			 */
2640 			if ((m->queue - m->pc) == PQ_CACHE)
2641 				vm_page_deactivate(m);
2642 			if (prot & VM_PROT_WRITE) {
2643 				vm_object_set_writeable_dirty(m->object);
2644 				vm_set_nosync(m, entry);
2645 				if (fault_flags & VM_FAULT_DIRTY) {
2646 					vm_page_dirty(m);
2647 					/*XXX*/
2648 					swap_pager_unswapped(m);
2649 				}
2650 			}
2651 			pmap_enter(pmap, addr, m, prot, 0, entry);
2652 			mycpu->gd_cnt.v_vm_faults++;
2653 			if (curthread->td_lwp)
2654 				++curthread->td_lwp->lwp_ru.ru_minflt;
2655 		}
2656 		vm_page_wakeup(m);
2657 	}
2658 }
2659