1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 40 * 41 * 42 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 43 * All rights reserved. 44 * 45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 46 * 47 * Permission to use, copy, modify and distribute this software and 48 * its documentation is hereby granted, provided that both the copyright 49 * notice and this permission notice appear in all copies of the 50 * software, derivative works or modified versions, and any portions 51 * thereof, and that both notices appear in supporting documentation. 52 * 53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 56 * 57 * Carnegie Mellon requests users of this software to return to 58 * 59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 60 * School of Computer Science 61 * Carnegie Mellon University 62 * Pittsburgh PA 15213-3890 63 * 64 * any improvements or extensions that they make and grant Carnegie the 65 * rights to redistribute these changes. 66 * 67 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 68 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 69 */ 70 71 /* 72 * Page fault handling module. 73 */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/kernel.h> 78 #include <sys/proc.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vmmeter.h> 82 #include <sys/vkernel.h> 83 #include <sys/lock.h> 84 #include <sys/sysctl.h> 85 86 #include <cpu/lwbuf.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/vm_extern.h> 99 100 #include <sys/thread2.h> 101 #include <vm/vm_page2.h> 102 103 struct faultstate { 104 vm_page_t m; 105 vm_object_t object; 106 vm_pindex_t pindex; 107 vm_prot_t prot; 108 vm_page_t first_m; 109 vm_object_t first_object; 110 vm_prot_t first_prot; 111 vm_map_t map; 112 vm_map_entry_t entry; 113 int lookup_still_valid; 114 int hardfault; 115 int fault_flags; 116 int map_generation; 117 int shared; 118 boolean_t wired; 119 struct vnode *vp; 120 }; 121 122 static int debug_cluster = 0; 123 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 124 int vm_shared_fault = 1; 125 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0, 126 "Allow shared token on vm_object"); 127 static long vm_shared_hit = 0; 128 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0, 129 "Successful shared faults"); 130 static long vm_shared_miss = 0; 131 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0, 132 "Unsuccessful shared faults"); 133 134 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int); 135 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, 136 vpte_t, int, int); 137 #if 0 138 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 139 #endif 140 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry); 141 static void vm_prefault(pmap_t pmap, vm_offset_t addra, 142 vm_map_entry_t entry, int prot, int fault_flags); 143 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra, 144 vm_map_entry_t entry, int prot, int fault_flags); 145 146 static __inline void 147 release_page(struct faultstate *fs) 148 { 149 vm_page_deactivate(fs->m); 150 vm_page_wakeup(fs->m); 151 fs->m = NULL; 152 } 153 154 /* 155 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse 156 * requires relocking and then checking the timestamp. 157 * 158 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do 159 * not have to update fs->map_generation here. 160 * 161 * NOTE: This function can fail due to a deadlock against the caller's 162 * holding of a vm_page BUSY. 163 */ 164 static __inline int 165 relock_map(struct faultstate *fs) 166 { 167 int error; 168 169 if (fs->lookup_still_valid == FALSE && fs->map) { 170 error = vm_map_lock_read_to(fs->map); 171 if (error == 0) 172 fs->lookup_still_valid = TRUE; 173 } else { 174 error = 0; 175 } 176 return error; 177 } 178 179 static __inline void 180 unlock_map(struct faultstate *fs) 181 { 182 if (fs->lookup_still_valid && fs->map) { 183 vm_map_lookup_done(fs->map, fs->entry, 0); 184 fs->lookup_still_valid = FALSE; 185 } 186 } 187 188 /* 189 * Clean up after a successful call to vm_fault_object() so another call 190 * to vm_fault_object() can be made. 191 */ 192 static void 193 _cleanup_successful_fault(struct faultstate *fs, int relock) 194 { 195 if (fs->object != fs->first_object) { 196 vm_page_free(fs->first_m); 197 vm_object_pip_wakeup(fs->object); 198 fs->first_m = NULL; 199 } 200 fs->object = fs->first_object; 201 if (relock && fs->lookup_still_valid == FALSE) { 202 if (fs->map) 203 vm_map_lock_read(fs->map); 204 fs->lookup_still_valid = TRUE; 205 } 206 } 207 208 static void 209 _unlock_things(struct faultstate *fs, int dealloc) 210 { 211 _cleanup_successful_fault(fs, 0); 212 if (dealloc) { 213 /*vm_object_deallocate(fs->first_object);*/ 214 /*fs->first_object = NULL; drop used later on */ 215 } 216 unlock_map(fs); 217 if (fs->vp != NULL) { 218 vput(fs->vp); 219 fs->vp = NULL; 220 } 221 } 222 223 #define unlock_things(fs) _unlock_things(fs, 0) 224 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 225 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 226 227 /* 228 * TRYPAGER 229 * 230 * Determine if the pager for the current object *might* contain the page. 231 * 232 * We only need to try the pager if this is not a default object (default 233 * objects are zero-fill and have no real pager), and if we are not taking 234 * a wiring fault or if the FS entry is wired. 235 */ 236 #define TRYPAGER(fs) \ 237 (fs->object->type != OBJT_DEFAULT && \ 238 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 239 240 /* 241 * vm_fault: 242 * 243 * Handle a page fault occuring at the given address, requiring the given 244 * permissions, in the map specified. If successful, the page is inserted 245 * into the associated physical map. 246 * 247 * NOTE: The given address should be truncated to the proper page address. 248 * 249 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 250 * a standard error specifying why the fault is fatal is returned. 251 * 252 * The map in question must be referenced, and remains so. 253 * The caller may hold no locks. 254 * No other requirements. 255 */ 256 int 257 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 258 { 259 int result; 260 vm_pindex_t first_pindex; 261 struct faultstate fs; 262 struct lwp *lp; 263 int growstack; 264 int retry = 0; 265 266 vm_page_pcpu_cache(); 267 fs.hardfault = 0; 268 fs.fault_flags = fault_flags; 269 fs.vp = NULL; 270 growstack = 1; 271 272 if ((lp = curthread->td_lwp) != NULL) 273 lp->lwp_flags |= LWP_PAGING; 274 275 lwkt_gettoken(&map->token); 276 277 RetryFault: 278 /* 279 * Find the vm_map_entry representing the backing store and resolve 280 * the top level object and page index. This may have the side 281 * effect of executing a copy-on-write on the map entry and/or 282 * creating a shadow object, but will not COW any actual VM pages. 283 * 284 * On success fs.map is left read-locked and various other fields 285 * are initialized but not otherwise referenced or locked. 286 * 287 * NOTE! vm_map_lookup will try to upgrade the fault_type to 288 * VM_FAULT_WRITE if the map entry is a virtual page table and also 289 * writable, so we can set the 'A'accessed bit in the virtual page 290 * table entry. 291 */ 292 fs.map = map; 293 result = vm_map_lookup(&fs.map, vaddr, fault_type, 294 &fs.entry, &fs.first_object, 295 &first_pindex, &fs.first_prot, &fs.wired); 296 297 /* 298 * If the lookup failed or the map protections are incompatible, 299 * the fault generally fails. However, if the caller is trying 300 * to do a user wiring we have more work to do. 301 */ 302 if (result != KERN_SUCCESS) { 303 if (result != KERN_PROTECTION_FAILURE || 304 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 305 { 306 if (result == KERN_INVALID_ADDRESS && growstack && 307 map != &kernel_map && curproc != NULL) { 308 result = vm_map_growstack(curproc, vaddr); 309 if (result == KERN_SUCCESS) { 310 growstack = 0; 311 ++retry; 312 goto RetryFault; 313 } 314 result = KERN_FAILURE; 315 } 316 goto done; 317 } 318 319 /* 320 * If we are user-wiring a r/w segment, and it is COW, then 321 * we need to do the COW operation. Note that we don't 322 * currently COW RO sections now, because it is NOT desirable 323 * to COW .text. We simply keep .text from ever being COW'ed 324 * and take the heat that one cannot debug wired .text sections. 325 */ 326 result = vm_map_lookup(&fs.map, vaddr, 327 VM_PROT_READ|VM_PROT_WRITE| 328 VM_PROT_OVERRIDE_WRITE, 329 &fs.entry, &fs.first_object, 330 &first_pindex, &fs.first_prot, 331 &fs.wired); 332 if (result != KERN_SUCCESS) { 333 result = KERN_FAILURE; 334 goto done; 335 } 336 337 /* 338 * If we don't COW now, on a user wire, the user will never 339 * be able to write to the mapping. If we don't make this 340 * restriction, the bookkeeping would be nearly impossible. 341 * 342 * XXX We have a shared lock, this will have a MP race but 343 * I don't see how it can hurt anything. 344 */ 345 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 346 fs.entry->max_protection &= ~VM_PROT_WRITE; 347 } 348 349 /* 350 * fs.map is read-locked 351 * 352 * Misc checks. Save the map generation number to detect races. 353 */ 354 fs.map_generation = fs.map->timestamp; 355 fs.lookup_still_valid = TRUE; 356 fs.first_m = NULL; 357 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 358 fs.shared = 0; 359 fs.vp = NULL; 360 361 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) { 362 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 363 panic("vm_fault: fault on nofault entry, addr: %p", 364 (void *)vaddr); 365 } 366 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) && 367 vaddr >= fs.entry->start && 368 vaddr < fs.entry->start + PAGE_SIZE) { 369 panic("vm_fault: fault on stack guard, addr: %p", 370 (void *)vaddr); 371 } 372 } 373 374 /* 375 * A system map entry may return a NULL object. No object means 376 * no pager means an unrecoverable kernel fault. 377 */ 378 if (fs.first_object == NULL) { 379 panic("vm_fault: unrecoverable fault at %p in entry %p", 380 (void *)vaddr, fs.entry); 381 } 382 383 /* 384 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT 385 * is set. 386 */ 387 if ((curthread->td_flags & TDF_NOFAULT) && 388 (retry || 389 fs.first_object->type == OBJT_VNODE || 390 fs.first_object->backing_object)) { 391 result = KERN_FAILURE; 392 unlock_things(&fs); 393 goto done2; 394 } 395 396 /* 397 * Attempt to shortcut the fault if the lookup returns a 398 * terminal object and the page is present. This allows us 399 * to obtain a shared token on the object instead of an exclusive 400 * token, which theoretically should allow concurrent faults. 401 * 402 * We cannot acquire a shared token on kernel_map, at least not 403 * on i386, because the i386 pmap code uses the kernel_object for 404 * its page table page management, resulting in a shared->exclusive 405 * sequence which will deadlock. This will not happen normally 406 * anyway, except on well cached pageable kmem (like pipe buffers), 407 * so it should not impact performance. 408 */ 409 if (vm_shared_fault && 410 fs.first_object->backing_object == NULL && 411 fs.entry->maptype == VM_MAPTYPE_NORMAL && 412 fs.map != &kernel_map) { 413 int error; 414 vm_object_hold_shared(fs.first_object); 415 /*fs.vp = vnode_pager_lock(fs.first_object);*/ 416 fs.m = vm_page_lookup_busy_try(fs.first_object, 417 first_pindex, 418 TRUE, &error); 419 if (error == 0 && fs.m) { 420 /* 421 * Activate the page and figure out if we can 422 * short-cut a quick mapping. 423 * 424 * WARNING! We cannot call swap_pager_unswapped() 425 * with a shared token! Note that we 426 * have to test fs.first_prot here. 427 */ 428 vm_page_activate(fs.m); 429 if (fs.m->valid == VM_PAGE_BITS_ALL && 430 ((fs.m->flags & PG_SWAPPED) == 0 || 431 (fs.first_prot & VM_PROT_WRITE) == 0 || 432 (fs.fault_flags & VM_FAULT_DIRTY) == 0)) { 433 fs.lookup_still_valid = TRUE; 434 fs.first_m = NULL; 435 fs.object = fs.first_object; 436 fs.prot = fs.first_prot; 437 if (fs.wired) 438 fault_type = fs.first_prot; 439 if (fs.prot & VM_PROT_WRITE) { 440 vm_object_set_writeable_dirty( 441 fs.m->object); 442 vm_set_nosync(fs.m, fs.entry); 443 if (fs.fault_flags & VM_FAULT_DIRTY) { 444 vm_page_dirty(fs.m); 445 /*XXX*/ 446 swap_pager_unswapped(fs.m); 447 } 448 } 449 result = KERN_SUCCESS; 450 fault_flags |= VM_FAULT_BURST_QUICK; 451 fault_flags &= ~VM_FAULT_BURST; 452 ++vm_shared_hit; 453 goto quick; 454 } 455 vm_page_wakeup(fs.m); 456 fs.m = NULL; 457 } 458 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/ 459 } 460 ++vm_shared_miss; 461 462 /* 463 * Bump the paging-in-progress count to prevent size changes (e.g. 464 * truncation operations) during I/O. This must be done after 465 * obtaining the vnode lock in order to avoid possible deadlocks. 466 */ 467 vm_object_hold(fs.first_object); 468 if (fs.vp == NULL) 469 fs.vp = vnode_pager_lock(fs.first_object); 470 471 #if 0 472 fs.lookup_still_valid = TRUE; 473 fs.first_m = NULL; 474 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 475 fs.shared = 0; 476 #endif 477 478 /* 479 * If the entry is wired we cannot change the page protection. 480 */ 481 if (fs.wired) 482 fault_type = fs.first_prot; 483 484 /* 485 * The page we want is at (first_object, first_pindex), but if the 486 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 487 * page table to figure out the actual pindex. 488 * 489 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 490 * ONLY 491 */ 492 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 493 result = vm_fault_vpagetable(&fs, &first_pindex, 494 fs.entry->aux.master_pde, 495 fault_type, 1); 496 if (result == KERN_TRY_AGAIN) { 497 vm_object_drop(fs.first_object); 498 ++retry; 499 goto RetryFault; 500 } 501 if (result != KERN_SUCCESS) 502 goto done; 503 } 504 505 /* 506 * Now we have the actual (object, pindex), fault in the page. If 507 * vm_fault_object() fails it will unlock and deallocate the FS 508 * data. If it succeeds everything remains locked and fs->object 509 * will have an additional PIP count if it is not equal to 510 * fs->first_object 511 * 512 * vm_fault_object will set fs->prot for the pmap operation. It is 513 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 514 * page can be safely written. However, it will force a read-only 515 * mapping for a read fault if the memory is managed by a virtual 516 * page table. 517 * 518 * If the fault code uses the shared object lock shortcut 519 * we must not try to burst (we can't allocate VM pages). 520 */ 521 result = vm_fault_object(&fs, first_pindex, fault_type, 1); 522 if (fs.shared) 523 fault_flags &= ~VM_FAULT_BURST; 524 525 if (result == KERN_TRY_AGAIN) { 526 vm_object_drop(fs.first_object); 527 ++retry; 528 goto RetryFault; 529 } 530 if (result != KERN_SUCCESS) 531 goto done; 532 533 quick: 534 /* 535 * On success vm_fault_object() does not unlock or deallocate, and fs.m 536 * will contain a busied page. 537 * 538 * Enter the page into the pmap and do pmap-related adjustments. 539 */ 540 vm_page_flag_set(fs.m, PG_REFERENCED); 541 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry); 542 mycpu->gd_cnt.v_vm_faults++; 543 if (curthread->td_lwp) 544 ++curthread->td_lwp->lwp_ru.ru_minflt; 545 546 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */ 547 KKASSERT(fs.m->flags & PG_BUSY); 548 549 /* 550 * If the page is not wired down, then put it where the pageout daemon 551 * can find it. 552 */ 553 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 554 if (fs.wired) 555 vm_page_wire(fs.m); 556 else 557 vm_page_unwire(fs.m, 1); 558 } else { 559 vm_page_activate(fs.m); 560 } 561 vm_page_wakeup(fs.m); 562 563 /* 564 * Burst in a few more pages if possible. The fs.map should still 565 * be locked. To avoid interlocking against a vnode->getblk 566 * operation we had to be sure to unbusy our primary vm_page above 567 * first. 568 */ 569 if (fault_flags & VM_FAULT_BURST) { 570 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 571 && fs.wired == 0) { 572 vm_prefault(fs.map->pmap, vaddr, 573 fs.entry, fs.prot, fault_flags); 574 } 575 } 576 if (fault_flags & VM_FAULT_BURST_QUICK) { 577 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 578 && fs.wired == 0) { 579 vm_prefault_quick(fs.map->pmap, vaddr, 580 fs.entry, fs.prot, fault_flags); 581 } 582 } 583 584 /* 585 * Unlock everything, and return 586 */ 587 unlock_things(&fs); 588 589 if (curthread->td_lwp) { 590 if (fs.hardfault) { 591 curthread->td_lwp->lwp_ru.ru_majflt++; 592 } else { 593 curthread->td_lwp->lwp_ru.ru_minflt++; 594 } 595 } 596 597 /*vm_object_deallocate(fs.first_object);*/ 598 /*fs.m = NULL; */ 599 /*fs.first_object = NULL; must still drop later */ 600 601 result = KERN_SUCCESS; 602 done: 603 if (fs.first_object) 604 vm_object_drop(fs.first_object); 605 done2: 606 lwkt_reltoken(&map->token); 607 if (lp) 608 lp->lwp_flags &= ~LWP_PAGING; 609 return (result); 610 } 611 612 /* 613 * Fault in the specified virtual address in the current process map, 614 * returning a held VM page or NULL. See vm_fault_page() for more 615 * information. 616 * 617 * No requirements. 618 */ 619 vm_page_t 620 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 621 { 622 struct lwp *lp = curthread->td_lwp; 623 vm_page_t m; 624 625 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 626 fault_type, VM_FAULT_NORMAL, errorp); 627 return(m); 628 } 629 630 /* 631 * Fault in the specified virtual address in the specified map, doing all 632 * necessary manipulation of the object store and all necessary I/O. Return 633 * a held VM page or NULL, and set *errorp. The related pmap is not 634 * updated. 635 * 636 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 637 * and marked PG_REFERENCED as well. 638 * 639 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 640 * error will be returned. 641 * 642 * No requirements. 643 */ 644 vm_page_t 645 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 646 int fault_flags, int *errorp) 647 { 648 vm_pindex_t first_pindex; 649 struct faultstate fs; 650 int result; 651 int retry = 0; 652 vm_prot_t orig_fault_type = fault_type; 653 654 fs.hardfault = 0; 655 fs.fault_flags = fault_flags; 656 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 657 658 /* 659 * Dive the pmap (concurrency possible). If we find the 660 * appropriate page we can terminate early and quickly. 661 */ 662 fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type); 663 if (fs.m) { 664 *errorp = 0; 665 return(fs.m); 666 } 667 668 /* 669 * Otherwise take a concurrency hit and do a formal page 670 * fault. 671 */ 672 lwkt_gettoken(&map->token); 673 674 RetryFault: 675 /* 676 * Find the vm_map_entry representing the backing store and resolve 677 * the top level object and page index. This may have the side 678 * effect of executing a copy-on-write on the map entry and/or 679 * creating a shadow object, but will not COW any actual VM pages. 680 * 681 * On success fs.map is left read-locked and various other fields 682 * are initialized but not otherwise referenced or locked. 683 * 684 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 685 * if the map entry is a virtual page table and also writable, 686 * so we can set the 'A'accessed bit in the virtual page table entry. 687 */ 688 fs.map = map; 689 result = vm_map_lookup(&fs.map, vaddr, fault_type, 690 &fs.entry, &fs.first_object, 691 &first_pindex, &fs.first_prot, &fs.wired); 692 693 if (result != KERN_SUCCESS) { 694 *errorp = result; 695 fs.m = NULL; 696 goto done; 697 } 698 699 /* 700 * fs.map is read-locked 701 * 702 * Misc checks. Save the map generation number to detect races. 703 */ 704 fs.map_generation = fs.map->timestamp; 705 fs.lookup_still_valid = TRUE; 706 fs.first_m = NULL; 707 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 708 fs.shared = 0; 709 fs.vp = NULL; 710 711 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 712 panic("vm_fault: fault on nofault entry, addr: %lx", 713 (u_long)vaddr); 714 } 715 716 /* 717 * A system map entry may return a NULL object. No object means 718 * no pager means an unrecoverable kernel fault. 719 */ 720 if (fs.first_object == NULL) { 721 panic("vm_fault: unrecoverable fault at %p in entry %p", 722 (void *)vaddr, fs.entry); 723 } 724 725 /* 726 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT 727 * is set. 728 */ 729 if ((curthread->td_flags & TDF_NOFAULT) && 730 (retry || 731 fs.first_object->type == OBJT_VNODE || 732 fs.first_object->backing_object)) { 733 *errorp = KERN_FAILURE; 734 unlock_things(&fs); 735 goto done2; 736 } 737 738 /* 739 * Make a reference to this object to prevent its disposal while we 740 * are messing with it. Once we have the reference, the map is free 741 * to be diddled. Since objects reference their shadows (and copies), 742 * they will stay around as well. 743 * 744 * The reference should also prevent an unexpected collapse of the 745 * parent that might move pages from the current object into the 746 * parent unexpectedly, resulting in corruption. 747 * 748 * Bump the paging-in-progress count to prevent size changes (e.g. 749 * truncation operations) during I/O. This must be done after 750 * obtaining the vnode lock in order to avoid possible deadlocks. 751 */ 752 vm_object_hold(fs.first_object); 753 fs.vp = vnode_pager_lock(fs.first_object); 754 755 #if 0 756 fs.lookup_still_valid = TRUE; 757 fs.first_m = NULL; 758 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 759 fs.shared = 0; 760 #endif 761 762 /* 763 * If the entry is wired we cannot change the page protection. 764 */ 765 if (fs.wired) 766 fault_type = fs.first_prot; 767 768 /* 769 * The page we want is at (first_object, first_pindex), but if the 770 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 771 * page table to figure out the actual pindex. 772 * 773 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 774 * ONLY 775 */ 776 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 777 result = vm_fault_vpagetable(&fs, &first_pindex, 778 fs.entry->aux.master_pde, 779 fault_type, 1); 780 if (result == KERN_TRY_AGAIN) { 781 vm_object_drop(fs.first_object); 782 ++retry; 783 goto RetryFault; 784 } 785 if (result != KERN_SUCCESS) { 786 *errorp = result; 787 fs.m = NULL; 788 goto done; 789 } 790 } 791 792 /* 793 * Now we have the actual (object, pindex), fault in the page. If 794 * vm_fault_object() fails it will unlock and deallocate the FS 795 * data. If it succeeds everything remains locked and fs->object 796 * will have an additinal PIP count if it is not equal to 797 * fs->first_object 798 */ 799 fs.m = NULL; 800 result = vm_fault_object(&fs, first_pindex, fault_type, 1); 801 802 if (result == KERN_TRY_AGAIN) { 803 vm_object_drop(fs.first_object); 804 ++retry; 805 goto RetryFault; 806 } 807 if (result != KERN_SUCCESS) { 808 *errorp = result; 809 fs.m = NULL; 810 goto done; 811 } 812 813 if ((orig_fault_type & VM_PROT_WRITE) && 814 (fs.prot & VM_PROT_WRITE) == 0) { 815 *errorp = KERN_PROTECTION_FAILURE; 816 unlock_and_deallocate(&fs); 817 fs.m = NULL; 818 goto done; 819 } 820 821 /* 822 * DO NOT UPDATE THE PMAP!!! This function may be called for 823 * a pmap unrelated to the current process pmap, in which case 824 * the current cpu core will not be listed in the pmap's pm_active 825 * mask. Thus invalidation interlocks will fail to work properly. 826 * 827 * (for example, 'ps' uses procfs to read program arguments from 828 * each process's stack). 829 * 830 * In addition to the above this function will be called to acquire 831 * a page that might already be faulted in, re-faulting it 832 * continuously is a waste of time. 833 * 834 * XXX could this have been the cause of our random seg-fault 835 * issues? procfs accesses user stacks. 836 */ 837 vm_page_flag_set(fs.m, PG_REFERENCED); 838 #if 0 839 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL); 840 mycpu->gd_cnt.v_vm_faults++; 841 if (curthread->td_lwp) 842 ++curthread->td_lwp->lwp_ru.ru_minflt; 843 #endif 844 845 /* 846 * On success vm_fault_object() does not unlock or deallocate, and fs.m 847 * will contain a busied page. So we must unlock here after having 848 * messed with the pmap. 849 */ 850 unlock_things(&fs); 851 852 /* 853 * Return a held page. We are not doing any pmap manipulation so do 854 * not set PG_MAPPED. However, adjust the page flags according to 855 * the fault type because the caller may not use a managed pmapping 856 * (so we don't want to lose the fact that the page will be dirtied 857 * if a write fault was specified). 858 */ 859 vm_page_hold(fs.m); 860 vm_page_activate(fs.m); 861 if (fault_type & VM_PROT_WRITE) 862 vm_page_dirty(fs.m); 863 864 if (curthread->td_lwp) { 865 if (fs.hardfault) { 866 curthread->td_lwp->lwp_ru.ru_majflt++; 867 } else { 868 curthread->td_lwp->lwp_ru.ru_minflt++; 869 } 870 } 871 872 /* 873 * Unlock everything, and return the held page. 874 */ 875 vm_page_wakeup(fs.m); 876 /*vm_object_deallocate(fs.first_object);*/ 877 /*fs.first_object = NULL; */ 878 *errorp = 0; 879 880 done: 881 if (fs.first_object) 882 vm_object_drop(fs.first_object); 883 done2: 884 lwkt_reltoken(&map->token); 885 return(fs.m); 886 } 887 888 /* 889 * Fault in the specified (object,offset), dirty the returned page as 890 * needed. If the requested fault_type cannot be done NULL and an 891 * error is returned. 892 * 893 * A held (but not busied) page is returned. 894 * 895 * No requirements. 896 */ 897 vm_page_t 898 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 899 vm_prot_t fault_type, int fault_flags, 900 int shared, int *errorp) 901 { 902 int result; 903 vm_pindex_t first_pindex; 904 struct faultstate fs; 905 struct vm_map_entry entry; 906 907 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 908 bzero(&entry, sizeof(entry)); 909 entry.object.vm_object = object; 910 entry.maptype = VM_MAPTYPE_NORMAL; 911 entry.protection = entry.max_protection = fault_type; 912 913 fs.hardfault = 0; 914 fs.fault_flags = fault_flags; 915 fs.map = NULL; 916 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 917 918 RetryFault: 919 920 fs.first_object = object; 921 first_pindex = OFF_TO_IDX(offset); 922 fs.entry = &entry; 923 fs.first_prot = fault_type; 924 fs.wired = 0; 925 fs.shared = shared; 926 /*fs.map_generation = 0; unused */ 927 928 /* 929 * Make a reference to this object to prevent its disposal while we 930 * are messing with it. Once we have the reference, the map is free 931 * to be diddled. Since objects reference their shadows (and copies), 932 * they will stay around as well. 933 * 934 * The reference should also prevent an unexpected collapse of the 935 * parent that might move pages from the current object into the 936 * parent unexpectedly, resulting in corruption. 937 * 938 * Bump the paging-in-progress count to prevent size changes (e.g. 939 * truncation operations) during I/O. This must be done after 940 * obtaining the vnode lock in order to avoid possible deadlocks. 941 */ 942 fs.vp = vnode_pager_lock(fs.first_object); 943 944 fs.lookup_still_valid = TRUE; 945 fs.first_m = NULL; 946 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 947 948 #if 0 949 /* XXX future - ability to operate on VM object using vpagetable */ 950 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 951 result = vm_fault_vpagetable(&fs, &first_pindex, 952 fs.entry->aux.master_pde, 953 fault_type, 0); 954 if (result == KERN_TRY_AGAIN) 955 goto RetryFault; 956 if (result != KERN_SUCCESS) { 957 *errorp = result; 958 return (NULL); 959 } 960 } 961 #endif 962 963 /* 964 * Now we have the actual (object, pindex), fault in the page. If 965 * vm_fault_object() fails it will unlock and deallocate the FS 966 * data. If it succeeds everything remains locked and fs->object 967 * will have an additinal PIP count if it is not equal to 968 * fs->first_object 969 */ 970 result = vm_fault_object(&fs, first_pindex, fault_type, 0); 971 972 if (result == KERN_TRY_AGAIN) 973 goto RetryFault; 974 if (result != KERN_SUCCESS) { 975 *errorp = result; 976 return(NULL); 977 } 978 979 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 980 *errorp = KERN_PROTECTION_FAILURE; 981 unlock_and_deallocate(&fs); 982 return(NULL); 983 } 984 985 /* 986 * On success vm_fault_object() does not unlock or deallocate, so we 987 * do it here. Note that the returned fs.m will be busied. 988 */ 989 unlock_things(&fs); 990 991 /* 992 * Return a held page. We are not doing any pmap manipulation so do 993 * not set PG_MAPPED. However, adjust the page flags according to 994 * the fault type because the caller may not use a managed pmapping 995 * (so we don't want to lose the fact that the page will be dirtied 996 * if a write fault was specified). 997 */ 998 vm_page_hold(fs.m); 999 vm_page_activate(fs.m); 1000 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY)) 1001 vm_page_dirty(fs.m); 1002 if (fault_flags & VM_FAULT_UNSWAP) 1003 swap_pager_unswapped(fs.m); 1004 1005 /* 1006 * Indicate that the page was accessed. 1007 */ 1008 vm_page_flag_set(fs.m, PG_REFERENCED); 1009 1010 if (curthread->td_lwp) { 1011 if (fs.hardfault) { 1012 curthread->td_lwp->lwp_ru.ru_majflt++; 1013 } else { 1014 curthread->td_lwp->lwp_ru.ru_minflt++; 1015 } 1016 } 1017 1018 /* 1019 * Unlock everything, and return the held page. 1020 */ 1021 vm_page_wakeup(fs.m); 1022 /*vm_object_deallocate(fs.first_object);*/ 1023 /*fs.first_object = NULL; */ 1024 1025 *errorp = 0; 1026 return(fs.m); 1027 } 1028 1029 /* 1030 * Translate the virtual page number (first_pindex) that is relative 1031 * to the address space into a logical page number that is relative to the 1032 * backing object. Use the virtual page table pointed to by (vpte). 1033 * 1034 * This implements an N-level page table. Any level can terminate the 1035 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 1036 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 1037 */ 1038 static 1039 int 1040 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 1041 vpte_t vpte, int fault_type, int allow_nofault) 1042 { 1043 struct lwbuf *lwb; 1044 struct lwbuf lwb_cache; 1045 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 1046 int result = KERN_SUCCESS; 1047 vpte_t *ptep; 1048 1049 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object)); 1050 for (;;) { 1051 /* 1052 * We cannot proceed if the vpte is not valid, not readable 1053 * for a read fault, or not writable for a write fault. 1054 */ 1055 if ((vpte & VPTE_V) == 0) { 1056 unlock_and_deallocate(fs); 1057 return (KERN_FAILURE); 1058 } 1059 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) { 1060 unlock_and_deallocate(fs); 1061 return (KERN_FAILURE); 1062 } 1063 if ((vpte & VPTE_PS) || vshift == 0) 1064 break; 1065 KKASSERT(vshift >= VPTE_PAGE_BITS); 1066 1067 /* 1068 * Get the page table page. Nominally we only read the page 1069 * table, but since we are actively setting VPTE_M and VPTE_A, 1070 * tell vm_fault_object() that we are writing it. 1071 * 1072 * There is currently no real need to optimize this. 1073 */ 1074 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 1075 VM_PROT_READ|VM_PROT_WRITE, 1076 allow_nofault); 1077 if (result != KERN_SUCCESS) 1078 return (result); 1079 1080 /* 1081 * Process the returned fs.m and look up the page table 1082 * entry in the page table page. 1083 */ 1084 vshift -= VPTE_PAGE_BITS; 1085 lwb = lwbuf_alloc(fs->m, &lwb_cache); 1086 ptep = ((vpte_t *)lwbuf_kva(lwb) + 1087 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 1088 vpte = *ptep; 1089 1090 /* 1091 * Page table write-back. If the vpte is valid for the 1092 * requested operation, do a write-back to the page table. 1093 * 1094 * XXX VPTE_M is not set properly for page directory pages. 1095 * It doesn't get set in the page directory if the page table 1096 * is modified during a read access. 1097 */ 1098 vm_page_activate(fs->m); 1099 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 1100 (vpte & VPTE_RW)) { 1101 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 1102 atomic_set_long(ptep, VPTE_M | VPTE_A); 1103 vm_page_dirty(fs->m); 1104 } 1105 } 1106 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) { 1107 if ((vpte & VPTE_A) == 0) { 1108 atomic_set_long(ptep, VPTE_A); 1109 vm_page_dirty(fs->m); 1110 } 1111 } 1112 lwbuf_free(lwb); 1113 vm_page_flag_set(fs->m, PG_REFERENCED); 1114 vm_page_wakeup(fs->m); 1115 fs->m = NULL; 1116 cleanup_successful_fault(fs); 1117 } 1118 /* 1119 * Combine remaining address bits with the vpte. 1120 */ 1121 /* JG how many bits from each? */ 1122 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 1123 (*pindex & ((1L << vshift) - 1)); 1124 return (KERN_SUCCESS); 1125 } 1126 1127 1128 /* 1129 * This is the core of the vm_fault code. 1130 * 1131 * Do all operations required to fault-in (fs.first_object, pindex). Run 1132 * through the shadow chain as necessary and do required COW or virtual 1133 * copy operations. The caller has already fully resolved the vm_map_entry 1134 * and, if appropriate, has created a copy-on-write layer. All we need to 1135 * do is iterate the object chain. 1136 * 1137 * On failure (fs) is unlocked and deallocated and the caller may return or 1138 * retry depending on the failure code. On success (fs) is NOT unlocked or 1139 * deallocated, fs.m will contained a resolved, busied page, and fs.object 1140 * will have an additional PIP count if it is not equal to fs.first_object. 1141 * 1142 * fs->first_object must be held on call. 1143 */ 1144 static 1145 int 1146 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex, 1147 vm_prot_t fault_type, int allow_nofault) 1148 { 1149 vm_object_t next_object; 1150 vm_pindex_t pindex; 1151 int error; 1152 1153 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object)); 1154 fs->prot = fs->first_prot; 1155 fs->object = fs->first_object; 1156 pindex = first_pindex; 1157 1158 vm_object_chain_acquire(fs->first_object); 1159 vm_object_pip_add(fs->first_object, 1); 1160 1161 /* 1162 * If a read fault occurs we try to make the page writable if 1163 * possible. There are three cases where we cannot make the 1164 * page mapping writable: 1165 * 1166 * (1) The mapping is read-only or the VM object is read-only, 1167 * fs->prot above will simply not have VM_PROT_WRITE set. 1168 * 1169 * (2) If the mapping is a virtual page table we need to be able 1170 * to detect writes so we can set VPTE_M in the virtual page 1171 * table. 1172 * 1173 * (3) If the VM page is read-only or copy-on-write, upgrading would 1174 * just result in an unnecessary COW fault. 1175 * 1176 * VM_PROT_VPAGED is set if faulting via a virtual page table and 1177 * causes adjustments to the 'M'odify bit to also turn off write 1178 * access to force a re-fault. 1179 */ 1180 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 1181 if ((fault_type & VM_PROT_WRITE) == 0) 1182 fs->prot &= ~VM_PROT_WRITE; 1183 } 1184 1185 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace && 1186 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) { 1187 if ((fault_type & VM_PROT_WRITE) == 0) 1188 fs->prot &= ~VM_PROT_WRITE; 1189 } 1190 1191 /* vm_object_hold(fs->object); implied b/c object == first_object */ 1192 1193 for (;;) { 1194 /* 1195 * The entire backing chain from first_object to object 1196 * inclusive is chainlocked. 1197 * 1198 * If the object is dead, we stop here 1199 * 1200 * vm_shared_fault (fs->shared != 0) case: nothing special. 1201 */ 1202 if (fs->object->flags & OBJ_DEAD) { 1203 vm_object_pip_wakeup(fs->first_object); 1204 vm_object_chain_release_all(fs->first_object, 1205 fs->object); 1206 if (fs->object != fs->first_object) 1207 vm_object_drop(fs->object); 1208 unlock_and_deallocate(fs); 1209 return (KERN_PROTECTION_FAILURE); 1210 } 1211 1212 /* 1213 * See if the page is resident. Wait/Retry if the page is 1214 * busy (lots of stuff may have changed so we can't continue 1215 * in that case). 1216 * 1217 * We can theoretically allow the soft-busy case on a read 1218 * fault if the page is marked valid, but since such 1219 * pages are typically already pmap'd, putting that 1220 * special case in might be more effort then it is 1221 * worth. We cannot under any circumstances mess 1222 * around with a vm_page_t->busy page except, perhaps, 1223 * to pmap it. 1224 * 1225 * vm_shared_fault (fs->shared != 0) case: 1226 * error nothing special 1227 * fs->m relock excl if I/O needed 1228 * NULL relock excl 1229 */ 1230 fs->m = vm_page_lookup_busy_try(fs->object, pindex, 1231 TRUE, &error); 1232 if (error) { 1233 vm_object_pip_wakeup(fs->first_object); 1234 vm_object_chain_release_all(fs->first_object, 1235 fs->object); 1236 if (fs->object != fs->first_object) 1237 vm_object_drop(fs->object); 1238 unlock_things(fs); 1239 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 1240 mycpu->gd_cnt.v_intrans++; 1241 /*vm_object_deallocate(fs->first_object);*/ 1242 /*fs->first_object = NULL;*/ 1243 fs->m = NULL; 1244 return (KERN_TRY_AGAIN); 1245 } 1246 if (fs->m) { 1247 /* 1248 * The page is busied for us. 1249 * 1250 * If reactivating a page from PQ_CACHE we may have 1251 * to rate-limit. 1252 */ 1253 int queue = fs->m->queue; 1254 vm_page_unqueue_nowakeup(fs->m); 1255 1256 if ((queue - fs->m->pc) == PQ_CACHE && 1257 vm_page_count_severe()) { 1258 vm_page_activate(fs->m); 1259 vm_page_wakeup(fs->m); 1260 fs->m = NULL; 1261 vm_object_pip_wakeup(fs->first_object); 1262 vm_object_chain_release_all(fs->first_object, 1263 fs->object); 1264 if (fs->object != fs->first_object) 1265 vm_object_drop(fs->object); 1266 unlock_and_deallocate(fs); 1267 if (allow_nofault == 0 || 1268 (curthread->td_flags & TDF_NOFAULT) == 0) { 1269 vm_wait_pfault(); 1270 } 1271 return (KERN_TRY_AGAIN); 1272 } 1273 1274 /* 1275 * If it still isn't completely valid (readable), 1276 * or if a read-ahead-mark is set on the VM page, 1277 * jump to readrest, else we found the page and 1278 * can return. 1279 * 1280 * We can release the spl once we have marked the 1281 * page busy. 1282 */ 1283 if (fs->m->object != &kernel_object) { 1284 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1285 VM_PAGE_BITS_ALL) { 1286 if (fs->shared) { 1287 vm_object_drop(fs->object); 1288 vm_object_hold(fs->object); 1289 fs->shared = 0; 1290 } 1291 goto readrest; 1292 } 1293 if (fs->m->flags & PG_RAM) { 1294 if (debug_cluster) 1295 kprintf("R"); 1296 vm_page_flag_clear(fs->m, PG_RAM); 1297 if (fs->shared) { 1298 vm_object_drop(fs->object); 1299 vm_object_hold(fs->object); 1300 fs->shared = 0; 1301 } 1302 goto readrest; 1303 } 1304 } 1305 break; /* break to PAGE HAS BEEN FOUND */ 1306 } 1307 1308 if (fs->shared) { 1309 vm_object_drop(fs->object); 1310 vm_object_hold(fs->object); 1311 fs->shared = 0; 1312 } 1313 1314 /* 1315 * Page is not resident, If this is the search termination 1316 * or the pager might contain the page, allocate a new page. 1317 */ 1318 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1319 /* 1320 * If the page is beyond the object size we fail 1321 */ 1322 if (pindex >= fs->object->size) { 1323 vm_object_pip_wakeup(fs->first_object); 1324 vm_object_chain_release_all(fs->first_object, 1325 fs->object); 1326 if (fs->object != fs->first_object) 1327 vm_object_drop(fs->object); 1328 unlock_and_deallocate(fs); 1329 return (KERN_PROTECTION_FAILURE); 1330 } 1331 1332 /* 1333 * Allocate a new page for this object/offset pair. 1334 * 1335 * It is possible for the allocation to race, so 1336 * handle the case. 1337 */ 1338 fs->m = NULL; 1339 if (!vm_page_count_severe()) { 1340 fs->m = vm_page_alloc(fs->object, pindex, 1341 ((fs->vp || fs->object->backing_object) ? 1342 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL : 1343 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1344 VM_ALLOC_USE_GD | VM_ALLOC_ZERO)); 1345 } 1346 if (fs->m == NULL) { 1347 vm_object_pip_wakeup(fs->first_object); 1348 vm_object_chain_release_all(fs->first_object, 1349 fs->object); 1350 if (fs->object != fs->first_object) 1351 vm_object_drop(fs->object); 1352 unlock_and_deallocate(fs); 1353 if (allow_nofault == 0 || 1354 (curthread->td_flags & TDF_NOFAULT) == 0) { 1355 vm_wait_pfault(); 1356 } 1357 return (KERN_TRY_AGAIN); 1358 } 1359 1360 /* 1361 * Fall through to readrest. We have a new page which 1362 * will have to be paged (since m->valid will be 0). 1363 */ 1364 } 1365 1366 readrest: 1367 /* 1368 * We have found an invalid or partially valid page, a 1369 * page with a read-ahead mark which might be partially or 1370 * fully valid (and maybe dirty too), or we have allocated 1371 * a new page. 1372 * 1373 * Attempt to fault-in the page if there is a chance that the 1374 * pager has it, and potentially fault in additional pages 1375 * at the same time. 1376 * 1377 * If TRYPAGER is true then fs.m will be non-NULL and busied 1378 * for us. 1379 */ 1380 if (TRYPAGER(fs)) { 1381 int rv; 1382 int seqaccess; 1383 u_char behavior = vm_map_entry_behavior(fs->entry); 1384 1385 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1386 seqaccess = 0; 1387 else 1388 seqaccess = -1; 1389 1390 #if 0 1391 /* 1392 * If sequential access is detected then attempt 1393 * to deactivate/cache pages behind the scan to 1394 * prevent resource hogging. 1395 * 1396 * Use of PG_RAM to detect sequential access 1397 * also simulates multi-zone sequential access 1398 * detection for free. 1399 * 1400 * NOTE: Partially valid dirty pages cannot be 1401 * deactivated without causing NFS picemeal 1402 * writes to barf. 1403 */ 1404 if ((fs->first_object->type != OBJT_DEVICE) && 1405 (fs->first_object->type != OBJT_MGTDEVICE) && 1406 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1407 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1408 (fs->m->flags & PG_RAM))) 1409 ) { 1410 vm_pindex_t scan_pindex; 1411 int scan_count = 16; 1412 1413 if (first_pindex < 16) { 1414 scan_pindex = 0; 1415 scan_count = 0; 1416 } else { 1417 scan_pindex = first_pindex - 16; 1418 if (scan_pindex < 16) 1419 scan_count = scan_pindex; 1420 else 1421 scan_count = 16; 1422 } 1423 1424 while (scan_count) { 1425 vm_page_t mt; 1426 1427 mt = vm_page_lookup(fs->first_object, 1428 scan_pindex); 1429 if (mt == NULL) 1430 break; 1431 if (vm_page_busy_try(mt, TRUE)) 1432 goto skip; 1433 1434 if (mt->valid != VM_PAGE_BITS_ALL) { 1435 vm_page_wakeup(mt); 1436 break; 1437 } 1438 if ((mt->flags & 1439 (PG_FICTITIOUS | PG_UNMANAGED | 1440 PG_NEED_COMMIT)) || 1441 mt->hold_count || 1442 mt->wire_count) { 1443 vm_page_wakeup(mt); 1444 goto skip; 1445 } 1446 if (mt->dirty == 0) 1447 vm_page_test_dirty(mt); 1448 if (mt->dirty) { 1449 vm_page_protect(mt, 1450 VM_PROT_NONE); 1451 vm_page_deactivate(mt); 1452 vm_page_wakeup(mt); 1453 } else { 1454 vm_page_cache(mt); 1455 } 1456 skip: 1457 --scan_count; 1458 --scan_pindex; 1459 } 1460 1461 seqaccess = 1; 1462 } 1463 #endif 1464 1465 /* 1466 * Avoid deadlocking against the map when doing I/O. 1467 * fs.object and the page is PG_BUSY'd. 1468 * 1469 * NOTE: Once unlocked, fs->entry can become stale 1470 * so this will NULL it out. 1471 * 1472 * NOTE: fs->entry is invalid until we relock the 1473 * map and verify that the timestamp has not 1474 * changed. 1475 */ 1476 unlock_map(fs); 1477 1478 /* 1479 * Acquire the page data. We still hold a ref on 1480 * fs.object and the page has been PG_BUSY's. 1481 * 1482 * The pager may replace the page (for example, in 1483 * order to enter a fictitious page into the 1484 * object). If it does so it is responsible for 1485 * cleaning up the passed page and properly setting 1486 * the new page PG_BUSY. 1487 * 1488 * If we got here through a PG_RAM read-ahead 1489 * mark the page may be partially dirty and thus 1490 * not freeable. Don't bother checking to see 1491 * if the pager has the page because we can't free 1492 * it anyway. We have to depend on the get_page 1493 * operation filling in any gaps whether there is 1494 * backing store or not. 1495 */ 1496 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1497 1498 if (rv == VM_PAGER_OK) { 1499 /* 1500 * Relookup in case pager changed page. Pager 1501 * is responsible for disposition of old page 1502 * if moved. 1503 * 1504 * XXX other code segments do relookups too. 1505 * It's a bad abstraction that needs to be 1506 * fixed/removed. 1507 */ 1508 fs->m = vm_page_lookup(fs->object, pindex); 1509 if (fs->m == NULL) { 1510 vm_object_pip_wakeup(fs->first_object); 1511 vm_object_chain_release_all( 1512 fs->first_object, fs->object); 1513 if (fs->object != fs->first_object) 1514 vm_object_drop(fs->object); 1515 unlock_and_deallocate(fs); 1516 return (KERN_TRY_AGAIN); 1517 } 1518 1519 ++fs->hardfault; 1520 break; /* break to PAGE HAS BEEN FOUND */ 1521 } 1522 1523 /* 1524 * Remove the bogus page (which does not exist at this 1525 * object/offset); before doing so, we must get back 1526 * our object lock to preserve our invariant. 1527 * 1528 * Also wake up any other process that may want to bring 1529 * in this page. 1530 * 1531 * If this is the top-level object, we must leave the 1532 * busy page to prevent another process from rushing 1533 * past us, and inserting the page in that object at 1534 * the same time that we are. 1535 */ 1536 if (rv == VM_PAGER_ERROR) { 1537 if (curproc) { 1538 kprintf("vm_fault: pager read error, " 1539 "pid %d (%s)\n", 1540 curproc->p_pid, 1541 curproc->p_comm); 1542 } else { 1543 kprintf("vm_fault: pager read error, " 1544 "thread %p (%s)\n", 1545 curthread, 1546 curproc->p_comm); 1547 } 1548 } 1549 1550 /* 1551 * Data outside the range of the pager or an I/O error 1552 * 1553 * The page may have been wired during the pagein, 1554 * e.g. by the buffer cache, and cannot simply be 1555 * freed. Call vnode_pager_freepage() to deal with it. 1556 */ 1557 /* 1558 * XXX - the check for kernel_map is a kludge to work 1559 * around having the machine panic on a kernel space 1560 * fault w/ I/O error. 1561 */ 1562 if (((fs->map != &kernel_map) && 1563 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1564 vnode_pager_freepage(fs->m); 1565 fs->m = NULL; 1566 vm_object_pip_wakeup(fs->first_object); 1567 vm_object_chain_release_all(fs->first_object, 1568 fs->object); 1569 if (fs->object != fs->first_object) 1570 vm_object_drop(fs->object); 1571 unlock_and_deallocate(fs); 1572 if (rv == VM_PAGER_ERROR) 1573 return (KERN_FAILURE); 1574 else 1575 return (KERN_PROTECTION_FAILURE); 1576 /* NOT REACHED */ 1577 } 1578 if (fs->object != fs->first_object) { 1579 vnode_pager_freepage(fs->m); 1580 fs->m = NULL; 1581 /* 1582 * XXX - we cannot just fall out at this 1583 * point, m has been freed and is invalid! 1584 */ 1585 } 1586 } 1587 1588 /* 1589 * We get here if the object has a default pager (or unwiring) 1590 * or the pager doesn't have the page. 1591 */ 1592 if (fs->object == fs->first_object) 1593 fs->first_m = fs->m; 1594 1595 /* 1596 * Move on to the next object. The chain lock should prevent 1597 * the backing_object from getting ripped out from under us. 1598 * 1599 * vm_shared_fault case: 1600 * 1601 * If the next object is the last object and 1602 * vnode-backed (thus possibly shared), we can try a 1603 * shared object lock. There is no 'chain' for this 1604 * last object if vnode-backed (otherwise we would 1605 * need an exclusive lock). 1606 * 1607 * fs->shared mode is very fragile and only works 1608 * under certain specific conditions, and is only 1609 * handled for those conditions in our loop. Essentially 1610 * it is designed only to be able to 'dip into' the 1611 * vnode's object and extract an already-cached page. 1612 */ 1613 fs->shared = 0; 1614 if ((next_object = fs->object->backing_object) != NULL) { 1615 fs->shared = vm_object_hold_maybe_shared(next_object); 1616 vm_object_chain_acquire(next_object); 1617 KKASSERT(next_object == fs->object->backing_object); 1618 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1619 } 1620 1621 if (next_object == NULL) { 1622 /* 1623 * If there's no object left, fill the page in the top 1624 * object with zeros. 1625 */ 1626 if (fs->object != fs->first_object) { 1627 if (fs->first_object->backing_object != 1628 fs->object) { 1629 vm_object_hold(fs->first_object->backing_object); 1630 } 1631 vm_object_chain_release_all( 1632 fs->first_object->backing_object, 1633 fs->object); 1634 if (fs->first_object->backing_object != 1635 fs->object) { 1636 vm_object_drop(fs->first_object->backing_object); 1637 } 1638 vm_object_pip_wakeup(fs->object); 1639 vm_object_drop(fs->object); 1640 fs->object = fs->first_object; 1641 pindex = first_pindex; 1642 fs->m = fs->first_m; 1643 } 1644 fs->first_m = NULL; 1645 1646 /* 1647 * Zero the page if necessary and mark it valid. 1648 */ 1649 if ((fs->m->flags & PG_ZERO) == 0) { 1650 vm_page_zero_fill(fs->m); 1651 } else { 1652 #ifdef PMAP_DEBUG 1653 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m)); 1654 #endif 1655 vm_page_flag_clear(fs->m, PG_ZERO); 1656 mycpu->gd_cnt.v_ozfod++; 1657 } 1658 mycpu->gd_cnt.v_zfod++; 1659 fs->m->valid = VM_PAGE_BITS_ALL; 1660 break; /* break to PAGE HAS BEEN FOUND */ 1661 } 1662 if (fs->object != fs->first_object) { 1663 vm_object_pip_wakeup(fs->object); 1664 vm_object_lock_swap(); 1665 vm_object_drop(fs->object); 1666 } 1667 KASSERT(fs->object != next_object, 1668 ("object loop %p", next_object)); 1669 fs->object = next_object; 1670 vm_object_pip_add(fs->object, 1); 1671 } 1672 1673 /* 1674 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1675 * is held.] 1676 * 1677 * object still held. 1678 * 1679 * If the page is being written, but isn't already owned by the 1680 * top-level object, we have to copy it into a new page owned by the 1681 * top-level object. 1682 */ 1683 KASSERT((fs->m->flags & PG_BUSY) != 0, 1684 ("vm_fault: not busy after main loop")); 1685 1686 if (fs->object != fs->first_object) { 1687 /* 1688 * We only really need to copy if we want to write it. 1689 */ 1690 if (fault_type & VM_PROT_WRITE) { 1691 /* 1692 * This allows pages to be virtually copied from a 1693 * backing_object into the first_object, where the 1694 * backing object has no other refs to it, and cannot 1695 * gain any more refs. Instead of a bcopy, we just 1696 * move the page from the backing object to the 1697 * first object. Note that we must mark the page 1698 * dirty in the first object so that it will go out 1699 * to swap when needed. 1700 */ 1701 if ( 1702 /* 1703 * Map, if present, has not changed 1704 */ 1705 (fs->map == NULL || 1706 fs->map_generation == fs->map->timestamp) && 1707 /* 1708 * Only one shadow object 1709 */ 1710 (fs->object->shadow_count == 1) && 1711 /* 1712 * No COW refs, except us 1713 */ 1714 (fs->object->ref_count == 1) && 1715 /* 1716 * No one else can look this object up 1717 */ 1718 (fs->object->handle == NULL) && 1719 /* 1720 * No other ways to look the object up 1721 */ 1722 ((fs->object->type == OBJT_DEFAULT) || 1723 (fs->object->type == OBJT_SWAP)) && 1724 /* 1725 * We don't chase down the shadow chain 1726 */ 1727 (fs->object == fs->first_object->backing_object) && 1728 1729 /* 1730 * grab the lock if we need to 1731 */ 1732 (fs->lookup_still_valid || 1733 fs->map == NULL || 1734 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1735 ) { 1736 /* 1737 * (first_m) and (m) are both busied. We have 1738 * move (m) into (first_m)'s object/pindex 1739 * in an atomic fashion, then free (first_m). 1740 * 1741 * first_object is held so second remove 1742 * followed by the rename should wind 1743 * up being atomic. vm_page_free() might 1744 * block so we don't do it until after the 1745 * rename. 1746 */ 1747 fs->lookup_still_valid = 1; 1748 vm_page_protect(fs->first_m, VM_PROT_NONE); 1749 vm_page_remove(fs->first_m); 1750 vm_page_rename(fs->m, fs->first_object, 1751 first_pindex); 1752 vm_page_free(fs->first_m); 1753 fs->first_m = fs->m; 1754 fs->m = NULL; 1755 mycpu->gd_cnt.v_cow_optim++; 1756 } else { 1757 /* 1758 * Oh, well, lets copy it. 1759 * 1760 * Why are we unmapping the original page 1761 * here? Well, in short, not all accessors 1762 * of user memory go through the pmap. The 1763 * procfs code doesn't have access user memory 1764 * via a local pmap, so vm_fault_page*() 1765 * can't call pmap_enter(). And the umtx*() 1766 * code may modify the COW'd page via a DMAP 1767 * or kernel mapping and not via the pmap, 1768 * leaving the original page still mapped 1769 * read-only into the pmap. 1770 * 1771 * So we have to remove the page from at 1772 * least the current pmap if it is in it. 1773 * Just remove it from all pmaps. 1774 */ 1775 vm_page_copy(fs->m, fs->first_m); 1776 vm_page_protect(fs->m, VM_PROT_NONE); 1777 vm_page_event(fs->m, VMEVENT_COW); 1778 } 1779 1780 if (fs->m) { 1781 /* 1782 * We no longer need the old page or object. 1783 */ 1784 release_page(fs); 1785 } 1786 1787 /* 1788 * We intend to revert to first_object, undo the 1789 * chain lock through to that. 1790 */ 1791 if (fs->first_object->backing_object != fs->object) 1792 vm_object_hold(fs->first_object->backing_object); 1793 vm_object_chain_release_all( 1794 fs->first_object->backing_object, 1795 fs->object); 1796 if (fs->first_object->backing_object != fs->object) 1797 vm_object_drop(fs->first_object->backing_object); 1798 1799 /* 1800 * fs->object != fs->first_object due to above 1801 * conditional 1802 */ 1803 vm_object_pip_wakeup(fs->object); 1804 vm_object_drop(fs->object); 1805 1806 /* 1807 * Only use the new page below... 1808 */ 1809 1810 mycpu->gd_cnt.v_cow_faults++; 1811 fs->m = fs->first_m; 1812 fs->object = fs->first_object; 1813 pindex = first_pindex; 1814 } else { 1815 /* 1816 * If it wasn't a write fault avoid having to copy 1817 * the page by mapping it read-only. 1818 */ 1819 fs->prot &= ~VM_PROT_WRITE; 1820 } 1821 } 1822 1823 /* 1824 * Relock the map if necessary, then check the generation count. 1825 * relock_map() will update fs->timestamp to account for the 1826 * relocking if necessary. 1827 * 1828 * If the count has changed after relocking then all sorts of 1829 * crap may have happened and we have to retry. 1830 * 1831 * NOTE: The relock_map() can fail due to a deadlock against 1832 * the vm_page we are holding BUSY. 1833 */ 1834 if (fs->lookup_still_valid == FALSE && fs->map) { 1835 if (relock_map(fs) || 1836 fs->map->timestamp != fs->map_generation) { 1837 release_page(fs); 1838 vm_object_pip_wakeup(fs->first_object); 1839 vm_object_chain_release_all(fs->first_object, 1840 fs->object); 1841 if (fs->object != fs->first_object) 1842 vm_object_drop(fs->object); 1843 unlock_and_deallocate(fs); 1844 return (KERN_TRY_AGAIN); 1845 } 1846 } 1847 1848 /* 1849 * If the fault is a write, we know that this page is being 1850 * written NOW so dirty it explicitly to save on pmap_is_modified() 1851 * calls later. 1852 * 1853 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1854 * if the page is already dirty to prevent data written with 1855 * the expectation of being synced from not being synced. 1856 * Likewise if this entry does not request NOSYNC then make 1857 * sure the page isn't marked NOSYNC. Applications sharing 1858 * data should use the same flags to avoid ping ponging. 1859 * 1860 * Also tell the backing pager, if any, that it should remove 1861 * any swap backing since the page is now dirty. 1862 */ 1863 vm_page_activate(fs->m); 1864 if (fs->prot & VM_PROT_WRITE) { 1865 vm_object_set_writeable_dirty(fs->m->object); 1866 vm_set_nosync(fs->m, fs->entry); 1867 if (fs->fault_flags & VM_FAULT_DIRTY) { 1868 vm_page_dirty(fs->m); 1869 swap_pager_unswapped(fs->m); 1870 } 1871 } 1872 1873 vm_object_pip_wakeup(fs->first_object); 1874 vm_object_chain_release_all(fs->first_object, fs->object); 1875 if (fs->object != fs->first_object) 1876 vm_object_drop(fs->object); 1877 1878 /* 1879 * Page had better still be busy. We are still locked up and 1880 * fs->object will have another PIP reference if it is not equal 1881 * to fs->first_object. 1882 */ 1883 KASSERT(fs->m->flags & PG_BUSY, 1884 ("vm_fault: page %p not busy!", fs->m)); 1885 1886 /* 1887 * Sanity check: page must be completely valid or it is not fit to 1888 * map into user space. vm_pager_get_pages() ensures this. 1889 */ 1890 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1891 vm_page_zero_invalid(fs->m, TRUE); 1892 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1893 } 1894 vm_page_flag_clear(fs->m, PG_ZERO); 1895 1896 return (KERN_SUCCESS); 1897 } 1898 1899 /* 1900 * Hold each of the physical pages that are mapped by the specified range of 1901 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1902 * and allow the specified types of access, "prot". If all of the implied 1903 * pages are successfully held, then the number of held pages is returned 1904 * together with pointers to those pages in the array "ma". However, if any 1905 * of the pages cannot be held, -1 is returned. 1906 */ 1907 int 1908 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1909 vm_prot_t prot, vm_page_t *ma, int max_count) 1910 { 1911 vm_offset_t start, end; 1912 int i, npages, error; 1913 1914 start = trunc_page(addr); 1915 end = round_page(addr + len); 1916 1917 npages = howmany(end - start, PAGE_SIZE); 1918 1919 if (npages > max_count) 1920 return -1; 1921 1922 for (i = 0; i < npages; i++) { 1923 // XXX error handling 1924 ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE), 1925 prot, 1926 &error); 1927 } 1928 1929 return npages; 1930 } 1931 1932 /* 1933 * Wire down a range of virtual addresses in a map. The entry in question 1934 * should be marked in-transition and the map must be locked. We must 1935 * release the map temporarily while faulting-in the page to avoid a 1936 * deadlock. Note that the entry may be clipped while we are blocked but 1937 * will never be freed. 1938 * 1939 * No requirements. 1940 */ 1941 int 1942 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1943 { 1944 boolean_t fictitious; 1945 vm_offset_t start; 1946 vm_offset_t end; 1947 vm_offset_t va; 1948 vm_paddr_t pa; 1949 vm_page_t m; 1950 pmap_t pmap; 1951 int rv; 1952 1953 lwkt_gettoken(&map->token); 1954 1955 pmap = vm_map_pmap(map); 1956 start = entry->start; 1957 end = entry->end; 1958 fictitious = entry->object.vm_object && 1959 ((entry->object.vm_object->type == OBJT_DEVICE) || 1960 (entry->object.vm_object->type == OBJT_MGTDEVICE)); 1961 if (entry->eflags & MAP_ENTRY_KSTACK) 1962 start += PAGE_SIZE; 1963 map->timestamp++; 1964 vm_map_unlock(map); 1965 1966 /* 1967 * We simulate a fault to get the page and enter it in the physical 1968 * map. 1969 */ 1970 for (va = start; va < end; va += PAGE_SIZE) { 1971 if (user_wire) { 1972 rv = vm_fault(map, va, VM_PROT_READ, 1973 VM_FAULT_USER_WIRE); 1974 } else { 1975 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1976 VM_FAULT_CHANGE_WIRING); 1977 } 1978 if (rv) { 1979 while (va > start) { 1980 va -= PAGE_SIZE; 1981 if ((pa = pmap_extract(pmap, va)) == 0) 1982 continue; 1983 pmap_change_wiring(pmap, va, FALSE, entry); 1984 if (!fictitious) { 1985 m = PHYS_TO_VM_PAGE(pa); 1986 vm_page_busy_wait(m, FALSE, "vmwrpg"); 1987 vm_page_unwire(m, 1); 1988 vm_page_wakeup(m); 1989 } 1990 } 1991 goto done; 1992 } 1993 } 1994 rv = KERN_SUCCESS; 1995 done: 1996 vm_map_lock(map); 1997 lwkt_reltoken(&map->token); 1998 return (rv); 1999 } 2000 2001 /* 2002 * Unwire a range of virtual addresses in a map. The map should be 2003 * locked. 2004 */ 2005 void 2006 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 2007 { 2008 boolean_t fictitious; 2009 vm_offset_t start; 2010 vm_offset_t end; 2011 vm_offset_t va; 2012 vm_paddr_t pa; 2013 vm_page_t m; 2014 pmap_t pmap; 2015 2016 lwkt_gettoken(&map->token); 2017 2018 pmap = vm_map_pmap(map); 2019 start = entry->start; 2020 end = entry->end; 2021 fictitious = entry->object.vm_object && 2022 ((entry->object.vm_object->type == OBJT_DEVICE) || 2023 (entry->object.vm_object->type == OBJT_MGTDEVICE)); 2024 if (entry->eflags & MAP_ENTRY_KSTACK) 2025 start += PAGE_SIZE; 2026 2027 /* 2028 * Since the pages are wired down, we must be able to get their 2029 * mappings from the physical map system. 2030 */ 2031 for (va = start; va < end; va += PAGE_SIZE) { 2032 pa = pmap_extract(pmap, va); 2033 if (pa != 0) { 2034 pmap_change_wiring(pmap, va, FALSE, entry); 2035 if (!fictitious) { 2036 m = PHYS_TO_VM_PAGE(pa); 2037 vm_page_busy_wait(m, FALSE, "vmwupg"); 2038 vm_page_unwire(m, 1); 2039 vm_page_wakeup(m); 2040 } 2041 } 2042 } 2043 lwkt_reltoken(&map->token); 2044 } 2045 2046 /* 2047 * Copy all of the pages from a wired-down map entry to another. 2048 * 2049 * The source and destination maps must be locked for write. 2050 * The source and destination maps token must be held 2051 * The source map entry must be wired down (or be a sharing map 2052 * entry corresponding to a main map entry that is wired down). 2053 * 2054 * No other requirements. 2055 * 2056 * XXX do segment optimization 2057 */ 2058 void 2059 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 2060 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 2061 { 2062 vm_object_t dst_object; 2063 vm_object_t src_object; 2064 vm_ooffset_t dst_offset; 2065 vm_ooffset_t src_offset; 2066 vm_prot_t prot; 2067 vm_offset_t vaddr; 2068 vm_page_t dst_m; 2069 vm_page_t src_m; 2070 2071 src_object = src_entry->object.vm_object; 2072 src_offset = src_entry->offset; 2073 2074 /* 2075 * Create the top-level object for the destination entry. (Doesn't 2076 * actually shadow anything - we copy the pages directly.) 2077 */ 2078 vm_map_entry_allocate_object(dst_entry); 2079 dst_object = dst_entry->object.vm_object; 2080 2081 prot = dst_entry->max_protection; 2082 2083 /* 2084 * Loop through all of the pages in the entry's range, copying each 2085 * one from the source object (it should be there) to the destination 2086 * object. 2087 */ 2088 vm_object_hold(src_object); 2089 vm_object_hold(dst_object); 2090 for (vaddr = dst_entry->start, dst_offset = 0; 2091 vaddr < dst_entry->end; 2092 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 2093 2094 /* 2095 * Allocate a page in the destination object 2096 */ 2097 do { 2098 dst_m = vm_page_alloc(dst_object, 2099 OFF_TO_IDX(dst_offset), 2100 VM_ALLOC_NORMAL); 2101 if (dst_m == NULL) { 2102 vm_wait(0); 2103 } 2104 } while (dst_m == NULL); 2105 2106 /* 2107 * Find the page in the source object, and copy it in. 2108 * (Because the source is wired down, the page will be in 2109 * memory.) 2110 */ 2111 src_m = vm_page_lookup(src_object, 2112 OFF_TO_IDX(dst_offset + src_offset)); 2113 if (src_m == NULL) 2114 panic("vm_fault_copy_wired: page missing"); 2115 2116 vm_page_copy(src_m, dst_m); 2117 vm_page_event(src_m, VMEVENT_COW); 2118 2119 /* 2120 * Enter it in the pmap... 2121 */ 2122 2123 vm_page_flag_clear(dst_m, PG_ZERO); 2124 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry); 2125 2126 /* 2127 * Mark it no longer busy, and put it on the active list. 2128 */ 2129 vm_page_activate(dst_m); 2130 vm_page_wakeup(dst_m); 2131 } 2132 vm_object_drop(dst_object); 2133 vm_object_drop(src_object); 2134 } 2135 2136 #if 0 2137 2138 /* 2139 * This routine checks around the requested page for other pages that 2140 * might be able to be faulted in. This routine brackets the viable 2141 * pages for the pages to be paged in. 2142 * 2143 * Inputs: 2144 * m, rbehind, rahead 2145 * 2146 * Outputs: 2147 * marray (array of vm_page_t), reqpage (index of requested page) 2148 * 2149 * Return value: 2150 * number of pages in marray 2151 */ 2152 static int 2153 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 2154 vm_page_t *marray, int *reqpage) 2155 { 2156 int i,j; 2157 vm_object_t object; 2158 vm_pindex_t pindex, startpindex, endpindex, tpindex; 2159 vm_page_t rtm; 2160 int cbehind, cahead; 2161 2162 object = m->object; 2163 pindex = m->pindex; 2164 2165 /* 2166 * we don't fault-ahead for device pager 2167 */ 2168 if ((object->type == OBJT_DEVICE) || 2169 (object->type == OBJT_MGTDEVICE)) { 2170 *reqpage = 0; 2171 marray[0] = m; 2172 return 1; 2173 } 2174 2175 /* 2176 * if the requested page is not available, then give up now 2177 */ 2178 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 2179 *reqpage = 0; /* not used by caller, fix compiler warn */ 2180 return 0; 2181 } 2182 2183 if ((cbehind == 0) && (cahead == 0)) { 2184 *reqpage = 0; 2185 marray[0] = m; 2186 return 1; 2187 } 2188 2189 if (rahead > cahead) { 2190 rahead = cahead; 2191 } 2192 2193 if (rbehind > cbehind) { 2194 rbehind = cbehind; 2195 } 2196 2197 /* 2198 * Do not do any readahead if we have insufficient free memory. 2199 * 2200 * XXX code was broken disabled before and has instability 2201 * with this conditonal fixed, so shortcut for now. 2202 */ 2203 if (burst_fault == 0 || vm_page_count_severe()) { 2204 marray[0] = m; 2205 *reqpage = 0; 2206 return 1; 2207 } 2208 2209 /* 2210 * scan backward for the read behind pages -- in memory 2211 * 2212 * Assume that if the page is not found an interrupt will not 2213 * create it. Theoretically interrupts can only remove (busy) 2214 * pages, not create new associations. 2215 */ 2216 if (pindex > 0) { 2217 if (rbehind > pindex) { 2218 rbehind = pindex; 2219 startpindex = 0; 2220 } else { 2221 startpindex = pindex - rbehind; 2222 } 2223 2224 vm_object_hold(object); 2225 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 2226 if (vm_page_lookup(object, tpindex - 1)) 2227 break; 2228 } 2229 2230 i = 0; 2231 while (tpindex < pindex) { 2232 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM | 2233 VM_ALLOC_NULL_OK); 2234 if (rtm == NULL) { 2235 for (j = 0; j < i; j++) { 2236 vm_page_free(marray[j]); 2237 } 2238 vm_object_drop(object); 2239 marray[0] = m; 2240 *reqpage = 0; 2241 return 1; 2242 } 2243 marray[i] = rtm; 2244 ++i; 2245 ++tpindex; 2246 } 2247 vm_object_drop(object); 2248 } else { 2249 i = 0; 2250 } 2251 2252 /* 2253 * Assign requested page 2254 */ 2255 marray[i] = m; 2256 *reqpage = i; 2257 ++i; 2258 2259 /* 2260 * Scan forwards for read-ahead pages 2261 */ 2262 tpindex = pindex + 1; 2263 endpindex = tpindex + rahead; 2264 if (endpindex > object->size) 2265 endpindex = object->size; 2266 2267 vm_object_hold(object); 2268 while (tpindex < endpindex) { 2269 if (vm_page_lookup(object, tpindex)) 2270 break; 2271 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM | 2272 VM_ALLOC_NULL_OK); 2273 if (rtm == NULL) 2274 break; 2275 marray[i] = rtm; 2276 ++i; 2277 ++tpindex; 2278 } 2279 vm_object_drop(object); 2280 2281 return (i); 2282 } 2283 2284 #endif 2285 2286 /* 2287 * vm_prefault() provides a quick way of clustering pagefaults into a 2288 * processes address space. It is a "cousin" of pmap_object_init_pt, 2289 * except it runs at page fault time instead of mmap time. 2290 * 2291 * vm.fast_fault Enables pre-faulting zero-fill pages 2292 * 2293 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to 2294 * prefault. Scan stops in either direction when 2295 * a page is found to already exist. 2296 * 2297 * This code used to be per-platform pmap_prefault(). It is now 2298 * machine-independent and enhanced to also pre-fault zero-fill pages 2299 * (see vm.fast_fault) as well as make them writable, which greatly 2300 * reduces the number of page faults programs incur. 2301 * 2302 * Application performance when pre-faulting zero-fill pages is heavily 2303 * dependent on the application. Very tiny applications like /bin/echo 2304 * lose a little performance while applications of any appreciable size 2305 * gain performance. Prefaulting multiple pages also reduces SMP 2306 * congestion and can improve SMP performance significantly. 2307 * 2308 * NOTE! prot may allow writing but this only applies to the top level 2309 * object. If we wind up mapping a page extracted from a backing 2310 * object we have to make sure it is read-only. 2311 * 2312 * NOTE! The caller has already handled any COW operations on the 2313 * vm_map_entry via the normal fault code. Do NOT call this 2314 * shortcut unless the normal fault code has run on this entry. 2315 * 2316 * The related map must be locked. 2317 * No other requirements. 2318 */ 2319 static int vm_prefault_pages = 8; 2320 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0, 2321 "Maximum number of pages to pre-fault"); 2322 static int vm_fast_fault = 1; 2323 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 2324 "Burst fault zero-fill regions"); 2325 2326 /* 2327 * Set PG_NOSYNC if the map entry indicates so, but only if the page 2328 * is not already dirty by other means. This will prevent passive 2329 * filesystem syncing as well as 'sync' from writing out the page. 2330 */ 2331 static void 2332 vm_set_nosync(vm_page_t m, vm_map_entry_t entry) 2333 { 2334 if (entry->eflags & MAP_ENTRY_NOSYNC) { 2335 if (m->dirty == 0) 2336 vm_page_flag_set(m, PG_NOSYNC); 2337 } else { 2338 vm_page_flag_clear(m, PG_NOSYNC); 2339 } 2340 } 2341 2342 static void 2343 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot, 2344 int fault_flags) 2345 { 2346 struct lwp *lp; 2347 vm_page_t m; 2348 vm_offset_t addr; 2349 vm_pindex_t index; 2350 vm_pindex_t pindex; 2351 vm_object_t object; 2352 int pprot; 2353 int i; 2354 int noneg; 2355 int nopos; 2356 int maxpages; 2357 2358 /* 2359 * Get stable max count value, disabled if set to 0 2360 */ 2361 maxpages = vm_prefault_pages; 2362 cpu_ccfence(); 2363 if (maxpages <= 0) 2364 return; 2365 2366 /* 2367 * We do not currently prefault mappings that use virtual page 2368 * tables. We do not prefault foreign pmaps. 2369 */ 2370 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2371 return; 2372 lp = curthread->td_lwp; 2373 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2374 return; 2375 2376 /* 2377 * Limit pre-fault count to 1024 pages. 2378 */ 2379 if (maxpages > 1024) 2380 maxpages = 1024; 2381 2382 object = entry->object.vm_object; 2383 KKASSERT(object != NULL); 2384 KKASSERT(object == entry->object.vm_object); 2385 vm_object_hold(object); 2386 vm_object_chain_acquire(object); 2387 2388 noneg = 0; 2389 nopos = 0; 2390 for (i = 0; i < maxpages; ++i) { 2391 vm_object_t lobject; 2392 vm_object_t nobject; 2393 int allocated = 0; 2394 int error; 2395 2396 /* 2397 * This can eat a lot of time on a heavily contended 2398 * machine so yield on the tick if needed. 2399 */ 2400 if ((i & 7) == 7) 2401 lwkt_yield(); 2402 2403 /* 2404 * Calculate the page to pre-fault, stopping the scan in 2405 * each direction separately if the limit is reached. 2406 */ 2407 if (i & 1) { 2408 if (noneg) 2409 continue; 2410 addr = addra - ((i + 1) >> 1) * PAGE_SIZE; 2411 } else { 2412 if (nopos) 2413 continue; 2414 addr = addra + ((i + 2) >> 1) * PAGE_SIZE; 2415 } 2416 if (addr < entry->start) { 2417 noneg = 1; 2418 if (noneg && nopos) 2419 break; 2420 continue; 2421 } 2422 if (addr >= entry->end) { 2423 nopos = 1; 2424 if (noneg && nopos) 2425 break; 2426 continue; 2427 } 2428 2429 /* 2430 * Skip pages already mapped, and stop scanning in that 2431 * direction. When the scan terminates in both directions 2432 * we are done. 2433 */ 2434 if (pmap_prefault_ok(pmap, addr) == 0) { 2435 if (i & 1) 2436 noneg = 1; 2437 else 2438 nopos = 1; 2439 if (noneg && nopos) 2440 break; 2441 continue; 2442 } 2443 2444 /* 2445 * Follow the VM object chain to obtain the page to be mapped 2446 * into the pmap. 2447 * 2448 * If we reach the terminal object without finding a page 2449 * and we determine it would be advantageous, then allocate 2450 * a zero-fill page for the base object. The base object 2451 * is guaranteed to be OBJT_DEFAULT for this case. 2452 * 2453 * In order to not have to check the pager via *haspage*() 2454 * we stop if any non-default object is encountered. e.g. 2455 * a vnode or swap object would stop the loop. 2456 */ 2457 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2458 lobject = object; 2459 pindex = index; 2460 pprot = prot; 2461 2462 KKASSERT(lobject == entry->object.vm_object); 2463 /*vm_object_hold(lobject); implied */ 2464 2465 while ((m = vm_page_lookup_busy_try(lobject, pindex, 2466 TRUE, &error)) == NULL) { 2467 if (lobject->type != OBJT_DEFAULT) 2468 break; 2469 if (lobject->backing_object == NULL) { 2470 if (vm_fast_fault == 0) 2471 break; 2472 if ((prot & VM_PROT_WRITE) == 0 || 2473 vm_page_count_min(0)) { 2474 break; 2475 } 2476 2477 /* 2478 * NOTE: Allocated from base object 2479 */ 2480 m = vm_page_alloc(object, index, 2481 VM_ALLOC_NORMAL | 2482 VM_ALLOC_ZERO | 2483 VM_ALLOC_USE_GD | 2484 VM_ALLOC_NULL_OK); 2485 if (m == NULL) 2486 break; 2487 allocated = 1; 2488 pprot = prot; 2489 /* lobject = object .. not needed */ 2490 break; 2491 } 2492 if (lobject->backing_object_offset & PAGE_MASK) 2493 break; 2494 nobject = lobject->backing_object; 2495 vm_object_hold(nobject); 2496 KKASSERT(nobject == lobject->backing_object); 2497 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2498 if (lobject != object) { 2499 vm_object_lock_swap(); 2500 vm_object_drop(lobject); 2501 } 2502 lobject = nobject; 2503 pprot &= ~VM_PROT_WRITE; 2504 vm_object_chain_acquire(lobject); 2505 } 2506 2507 /* 2508 * NOTE: A non-NULL (m) will be associated with lobject if 2509 * it was found there, otherwise it is probably a 2510 * zero-fill page associated with the base object. 2511 * 2512 * Give-up if no page is available. 2513 */ 2514 if (m == NULL) { 2515 if (lobject != object) { 2516 if (object->backing_object != lobject) 2517 vm_object_hold(object->backing_object); 2518 vm_object_chain_release_all( 2519 object->backing_object, lobject); 2520 if (object->backing_object != lobject) 2521 vm_object_drop(object->backing_object); 2522 vm_object_drop(lobject); 2523 } 2524 break; 2525 } 2526 2527 /* 2528 * The object must be marked dirty if we are mapping a 2529 * writable page. m->object is either lobject or object, 2530 * both of which are still held. Do this before we 2531 * potentially drop the object. 2532 */ 2533 if (pprot & VM_PROT_WRITE) 2534 vm_object_set_writeable_dirty(m->object); 2535 2536 /* 2537 * Do not conditionalize on PG_RAM. If pages are present in 2538 * the VM system we assume optimal caching. If caching is 2539 * not optimal the I/O gravy train will be restarted when we 2540 * hit an unavailable page. We do not want to try to restart 2541 * the gravy train now because we really don't know how much 2542 * of the object has been cached. The cost for restarting 2543 * the gravy train should be low (since accesses will likely 2544 * be I/O bound anyway). 2545 */ 2546 if (lobject != object) { 2547 if (object->backing_object != lobject) 2548 vm_object_hold(object->backing_object); 2549 vm_object_chain_release_all(object->backing_object, 2550 lobject); 2551 if (object->backing_object != lobject) 2552 vm_object_drop(object->backing_object); 2553 vm_object_drop(lobject); 2554 } 2555 2556 /* 2557 * Enter the page into the pmap if appropriate. If we had 2558 * allocated the page we have to place it on a queue. If not 2559 * we just have to make sure it isn't on the cache queue 2560 * (pages on the cache queue are not allowed to be mapped). 2561 */ 2562 if (allocated) { 2563 /* 2564 * Page must be zerod. 2565 */ 2566 if ((m->flags & PG_ZERO) == 0) { 2567 vm_page_zero_fill(m); 2568 } else { 2569 #ifdef PMAP_DEBUG 2570 pmap_page_assertzero( 2571 VM_PAGE_TO_PHYS(m)); 2572 #endif 2573 vm_page_flag_clear(m, PG_ZERO); 2574 mycpu->gd_cnt.v_ozfod++; 2575 } 2576 mycpu->gd_cnt.v_zfod++; 2577 m->valid = VM_PAGE_BITS_ALL; 2578 2579 /* 2580 * Handle dirty page case 2581 */ 2582 if (pprot & VM_PROT_WRITE) 2583 vm_set_nosync(m, entry); 2584 pmap_enter(pmap, addr, m, pprot, 0, entry); 2585 mycpu->gd_cnt.v_vm_faults++; 2586 if (curthread->td_lwp) 2587 ++curthread->td_lwp->lwp_ru.ru_minflt; 2588 vm_page_deactivate(m); 2589 if (pprot & VM_PROT_WRITE) { 2590 /*vm_object_set_writeable_dirty(m->object);*/ 2591 vm_set_nosync(m, entry); 2592 if (fault_flags & VM_FAULT_DIRTY) { 2593 vm_page_dirty(m); 2594 /*XXX*/ 2595 swap_pager_unswapped(m); 2596 } 2597 } 2598 vm_page_wakeup(m); 2599 } else if (error) { 2600 /* couldn't busy page, no wakeup */ 2601 } else if ( 2602 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2603 (m->flags & PG_FICTITIOUS) == 0) { 2604 /* 2605 * A fully valid page not undergoing soft I/O can 2606 * be immediately entered into the pmap. 2607 */ 2608 if ((m->queue - m->pc) == PQ_CACHE) 2609 vm_page_deactivate(m); 2610 if (pprot & VM_PROT_WRITE) { 2611 /*vm_object_set_writeable_dirty(m->object);*/ 2612 vm_set_nosync(m, entry); 2613 if (fault_flags & VM_FAULT_DIRTY) { 2614 vm_page_dirty(m); 2615 /*XXX*/ 2616 swap_pager_unswapped(m); 2617 } 2618 } 2619 if (pprot & VM_PROT_WRITE) 2620 vm_set_nosync(m, entry); 2621 pmap_enter(pmap, addr, m, pprot, 0, entry); 2622 mycpu->gd_cnt.v_vm_faults++; 2623 if (curthread->td_lwp) 2624 ++curthread->td_lwp->lwp_ru.ru_minflt; 2625 vm_page_wakeup(m); 2626 } else { 2627 vm_page_wakeup(m); 2628 } 2629 } 2630 vm_object_chain_release(object); 2631 vm_object_drop(object); 2632 } 2633 2634 static void 2635 vm_prefault_quick(pmap_t pmap, vm_offset_t addra, 2636 vm_map_entry_t entry, int prot, int fault_flags) 2637 { 2638 struct lwp *lp; 2639 vm_page_t m; 2640 vm_offset_t addr; 2641 vm_pindex_t pindex; 2642 vm_object_t object; 2643 int i; 2644 int noneg; 2645 int nopos; 2646 int maxpages; 2647 2648 /* 2649 * Get stable max count value, disabled if set to 0 2650 */ 2651 maxpages = vm_prefault_pages; 2652 cpu_ccfence(); 2653 if (maxpages <= 0) 2654 return; 2655 2656 /* 2657 * We do not currently prefault mappings that use virtual page 2658 * tables. We do not prefault foreign pmaps. 2659 */ 2660 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2661 return; 2662 lp = curthread->td_lwp; 2663 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2664 return; 2665 2666 /* 2667 * Limit pre-fault count to 1024 pages. 2668 */ 2669 if (maxpages > 1024) 2670 maxpages = 1024; 2671 2672 object = entry->object.vm_object; 2673 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2674 KKASSERT(object->backing_object == NULL); 2675 2676 noneg = 0; 2677 nopos = 0; 2678 for (i = 0; i < maxpages; ++i) { 2679 int error; 2680 2681 /* 2682 * Calculate the page to pre-fault, stopping the scan in 2683 * each direction separately if the limit is reached. 2684 */ 2685 if (i & 1) { 2686 if (noneg) 2687 continue; 2688 addr = addra - ((i + 1) >> 1) * PAGE_SIZE; 2689 } else { 2690 if (nopos) 2691 continue; 2692 addr = addra + ((i + 2) >> 1) * PAGE_SIZE; 2693 } 2694 if (addr < entry->start) { 2695 noneg = 1; 2696 if (noneg && nopos) 2697 break; 2698 continue; 2699 } 2700 if (addr >= entry->end) { 2701 nopos = 1; 2702 if (noneg && nopos) 2703 break; 2704 continue; 2705 } 2706 2707 /* 2708 * Skip pages already mapped, and stop scanning in that 2709 * direction. When the scan terminates in both directions 2710 * we are done. 2711 */ 2712 if (pmap_prefault_ok(pmap, addr) == 0) { 2713 if (i & 1) 2714 noneg = 1; 2715 else 2716 nopos = 1; 2717 if (noneg && nopos) 2718 break; 2719 continue; 2720 } 2721 2722 /* 2723 * Follow the VM object chain to obtain the page to be mapped 2724 * into the pmap. This version of the prefault code only 2725 * works with terminal objects. 2726 * 2727 * WARNING! We cannot call swap_pager_unswapped() with a 2728 * shared token. 2729 */ 2730 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2731 2732 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2733 if (m == NULL || error) 2734 continue; 2735 2736 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2737 (m->flags & PG_FICTITIOUS) == 0 && 2738 ((m->flags & PG_SWAPPED) == 0 || 2739 (prot & VM_PROT_WRITE) == 0 || 2740 (fault_flags & VM_FAULT_DIRTY) == 0)) { 2741 /* 2742 * A fully valid page not undergoing soft I/O can 2743 * be immediately entered into the pmap. 2744 */ 2745 if ((m->queue - m->pc) == PQ_CACHE) 2746 vm_page_deactivate(m); 2747 if (prot & VM_PROT_WRITE) { 2748 vm_object_set_writeable_dirty(m->object); 2749 vm_set_nosync(m, entry); 2750 if (fault_flags & VM_FAULT_DIRTY) { 2751 vm_page_dirty(m); 2752 /*XXX*/ 2753 swap_pager_unswapped(m); 2754 } 2755 } 2756 pmap_enter(pmap, addr, m, prot, 0, entry); 2757 mycpu->gd_cnt.v_vm_faults++; 2758 if (curthread->td_lwp) 2759 ++curthread->td_lwp->lwp_ru.ru_minflt; 2760 } 2761 vm_page_wakeup(m); 2762 } 2763 } 2764