xref: /dflybsd-src/sys/vm/vm_fault.c (revision e90a7c45c3303ed54c0fde732b2ba32dc80ffd9b)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 			int prot);
141 
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148 	vm_page_deactivate(fs->m);
149 	vm_page_wakeup(fs->m);
150 	fs->m = NULL;
151 }
152 
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159 	if (fs->lookup_still_valid && fs->map) {
160 		vm_map_lookup_done(fs->map, fs->entry, 0);
161 		fs->lookup_still_valid = FALSE;
162 	}
163 }
164 
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174 	if (fs->object != fs->first_object) {
175 		vm_page_free(fs->first_m);
176 		vm_object_pip_wakeup(fs->object);
177 		fs->first_m = NULL;
178 	}
179 	fs->object = fs->first_object;
180 	if (relock && fs->lookup_still_valid == FALSE) {
181 		if (fs->map)
182 			vm_map_lock_read(fs->map);
183 		fs->lookup_still_valid = TRUE;
184 	}
185 }
186 
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193 	vm_object_pip_wakeup(fs->first_object);
194 	_cleanup_successful_fault(fs, 0);
195 	if (dealloc) {
196 		vm_object_deallocate(fs->first_object);
197 		fs->first_object = NULL;
198 	}
199 	unlock_map(fs);
200 	if (fs->vp != NULL) {
201 		vput(fs->vp);
202 		fs->vp = NULL;
203 	}
204 }
205 
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209 
210 /*
211  * TRYPAGER
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)	\
220 		(fs->object->type != OBJT_DEFAULT && \
221 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222 
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242 	int result;
243 	vm_pindex_t first_pindex;
244 	struct faultstate fs;
245 	int growstack;
246 
247 	mycpu->gd_cnt.v_vm_faults++;
248 
249 	fs.didlimit = 0;
250 	fs.hardfault = 0;
251 	fs.fault_flags = fault_flags;
252 	growstack = 1;
253 
254 RetryFault:
255 	/*
256 	 * Find the vm_map_entry representing the backing store and resolve
257 	 * the top level object and page index.  This may have the side
258 	 * effect of executing a copy-on-write on the map entry and/or
259 	 * creating a shadow object, but will not COW any actual VM pages.
260 	 *
261 	 * On success fs.map is left read-locked and various other fields
262 	 * are initialized but not otherwise referenced or locked.
263 	 *
264 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 	 * writable, so we can set the 'A'accessed bit in the virtual page
267 	 * table entry.
268 	 */
269 	fs.map = map;
270 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 			       &fs.entry, &fs.first_object,
272 			       &first_pindex, &fs.first_prot, &fs.wired);
273 
274 	/*
275 	 * If the lookup failed or the map protections are incompatible,
276 	 * the fault generally fails.  However, if the caller is trying
277 	 * to do a user wiring we have more work to do.
278 	 */
279 	if (result != KERN_SUCCESS) {
280 		if (result != KERN_PROTECTION_FAILURE ||
281 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282 		{
283 			if (result == KERN_INVALID_ADDRESS && growstack &&
284 			    map != &kernel_map && curproc != NULL) {
285 				result = vm_map_growstack(curproc, vaddr);
286 				if (result != KERN_SUCCESS)
287 					return (KERN_FAILURE);
288 				growstack = 0;
289 				goto RetryFault;
290 			}
291 			return (result);
292 		}
293 
294 		/*
295    		 * If we are user-wiring a r/w segment, and it is COW, then
296    		 * we need to do the COW operation.  Note that we don't
297 		 * currently COW RO sections now, because it is NOT desirable
298    		 * to COW .text.  We simply keep .text from ever being COW'ed
299    		 * and take the heat that one cannot debug wired .text sections.
300    		 */
301 		result = vm_map_lookup(&fs.map, vaddr,
302 				       VM_PROT_READ|VM_PROT_WRITE|
303 				        VM_PROT_OVERRIDE_WRITE,
304 				       &fs.entry, &fs.first_object,
305 				       &first_pindex, &fs.first_prot,
306 				       &fs.wired);
307 		if (result != KERN_SUCCESS)
308 			return result;
309 
310 		/*
311 		 * If we don't COW now, on a user wire, the user will never
312 		 * be able to write to the mapping.  If we don't make this
313 		 * restriction, the bookkeeping would be nearly impossible.
314 		 */
315 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 			fs.entry->max_protection &= ~VM_PROT_WRITE;
317 	}
318 
319 	/*
320 	 * fs.map is read-locked
321 	 *
322 	 * Misc checks.  Save the map generation number to detect races.
323 	 */
324 	fs.map_generation = fs.map->timestamp;
325 
326 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328 			panic("vm_fault: fault on nofault entry, addr: %p",
329 			      (void *)vaddr);
330 		}
331 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332 		    vaddr >= fs.entry->start &&
333 		    vaddr < fs.entry->start + PAGE_SIZE) {
334 			panic("vm_fault: fault on stack guard, addr: %p",
335 			      (void *)vaddr);
336 		}
337 	}
338 
339 	/*
340 	 * A system map entry may return a NULL object.  No object means
341 	 * no pager means an unrecoverable kernel fault.
342 	 */
343 	if (fs.first_object == NULL) {
344 		panic("vm_fault: unrecoverable fault at %p in entry %p",
345 			(void *)vaddr, fs.entry);
346 	}
347 
348 	/*
349 	 * Make a reference to this object to prevent its disposal while we
350 	 * are messing with it.  Once we have the reference, the map is free
351 	 * to be diddled.  Since objects reference their shadows (and copies),
352 	 * they will stay around as well.
353 	 *
354 	 * Bump the paging-in-progress count to prevent size changes (e.g.
355 	 * truncation operations) during I/O.  This must be done after
356 	 * obtaining the vnode lock in order to avoid possible deadlocks.
357 	 *
358 	 * The vm_token is needed to manipulate the vm_object
359 	 */
360 	lwkt_gettoken(&vm_token);
361 	vm_object_reference(fs.first_object);
362 	fs.vp = vnode_pager_lock(fs.first_object);
363 	vm_object_pip_add(fs.first_object, 1);
364 	lwkt_reltoken(&vm_token);
365 
366 	fs.lookup_still_valid = TRUE;
367 	fs.first_m = NULL;
368 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
369 
370 	/*
371 	 * If the entry is wired we cannot change the page protection.
372 	 */
373 	if (fs.wired)
374 		fault_type = fs.first_prot;
375 
376 	/*
377 	 * The page we want is at (first_object, first_pindex), but if the
378 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
379 	 * page table to figure out the actual pindex.
380 	 *
381 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
382 	 * ONLY
383 	 */
384 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
385 		result = vm_fault_vpagetable(&fs, &first_pindex,
386 					     fs.entry->aux.master_pde,
387 					     fault_type);
388 		if (result == KERN_TRY_AGAIN)
389 			goto RetryFault;
390 		if (result != KERN_SUCCESS)
391 			return (result);
392 	}
393 
394 	/*
395 	 * Now we have the actual (object, pindex), fault in the page.  If
396 	 * vm_fault_object() fails it will unlock and deallocate the FS
397 	 * data.   If it succeeds everything remains locked and fs->object
398 	 * will have an additional PIP count if it is not equal to
399 	 * fs->first_object
400 	 *
401 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
402 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
403 	 * page can be safely written.  However, it will force a read-only
404 	 * mapping for a read fault if the memory is managed by a virtual
405 	 * page table.
406 	 */
407 	/* BEFORE */
408 	result = vm_fault_object(&fs, first_pindex, fault_type);
409 
410 	if (result == KERN_TRY_AGAIN) {
411 		/*lwkt_reltoken(&vm_token);*/
412 		goto RetryFault;
413 	}
414 	if (result != KERN_SUCCESS) {
415 		/*lwkt_reltoken(&vm_token);*/
416 		return (result);
417 	}
418 
419 	/*
420 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
421 	 * will contain a busied page.
422 	 *
423 	 * Enter the page into the pmap and do pmap-related adjustments.
424 	 */
425 	vm_page_flag_set(fs.m, PG_REFERENCED);
426 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
427 
428 	/*
429 	 * Burst in a few more pages if possible.  The fs.map should still
430 	 * be locked.
431 	 */
432 	if (fault_flags & VM_FAULT_BURST) {
433 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
434 		    fs.wired == 0) {
435 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
436 		}
437 	}
438 	lwkt_gettoken(&vm_token);
439 	unlock_things(&fs);
440 
441 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
442 	KKASSERT(fs.m->flags & PG_BUSY);
443 
444 	/*
445 	 * If the page is not wired down, then put it where the pageout daemon
446 	 * can find it.
447 	 *
448 	 * We do not really need to get vm_token here but since all the
449 	 * vm_*() calls have to doing it here improves efficiency.
450 	 */
451 	/*lwkt_gettoken(&vm_token);*/
452 
453 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
454 		lwkt_reltoken(&vm_token); /* before wire activate does not */
455 		if (fs.wired)
456 			vm_page_wire(fs.m);
457 		else
458 			vm_page_unwire(fs.m, 1);
459 	} else {
460 		vm_page_activate(fs.m);
461 		lwkt_reltoken(&vm_token); /* before wire activate does not */
462 	}
463 	/*lwkt_reltoken(&vm_token); after wire/activate works */
464 
465 	if (curthread->td_lwp) {
466 		if (fs.hardfault) {
467 			curthread->td_lwp->lwp_ru.ru_majflt++;
468 		} else {
469 			curthread->td_lwp->lwp_ru.ru_minflt++;
470 		}
471 	}
472 
473 	/*
474 	 * Unlock everything, and return
475 	 */
476 	vm_page_wakeup(fs.m);
477 	vm_object_deallocate(fs.first_object);
478 	/*fs.m = NULL; */
479 	/*fs.first_object = NULL; */
480 	/*lwkt_reltoken(&vm_token);*/
481 
482 	return (KERN_SUCCESS);
483 }
484 
485 /*
486  * Fault in the specified virtual address in the current process map,
487  * returning a held VM page or NULL.  See vm_fault_page() for more
488  * information.
489  *
490  * No requirements.
491  */
492 vm_page_t
493 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
494 {
495 	struct lwp *lp = curthread->td_lwp;
496 	vm_page_t m;
497 
498 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
499 			  fault_type, VM_FAULT_NORMAL, errorp);
500 	return(m);
501 }
502 
503 /*
504  * Fault in the specified virtual address in the specified map, doing all
505  * necessary manipulation of the object store and all necessary I/O.  Return
506  * a held VM page or NULL, and set *errorp.  The related pmap is not
507  * updated.
508  *
509  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
510  * and marked PG_REFERENCED as well.
511  *
512  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
513  * error will be returned.
514  *
515  * No requirements.
516  */
517 vm_page_t
518 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
519 	      int fault_flags, int *errorp)
520 {
521 	vm_pindex_t first_pindex;
522 	struct faultstate fs;
523 	int result;
524 	vm_prot_t orig_fault_type = fault_type;
525 
526 	mycpu->gd_cnt.v_vm_faults++;
527 
528 	fs.didlimit = 0;
529 	fs.hardfault = 0;
530 	fs.fault_flags = fault_flags;
531 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
532 
533 RetryFault:
534 	/*
535 	 * Find the vm_map_entry representing the backing store and resolve
536 	 * the top level object and page index.  This may have the side
537 	 * effect of executing a copy-on-write on the map entry and/or
538 	 * creating a shadow object, but will not COW any actual VM pages.
539 	 *
540 	 * On success fs.map is left read-locked and various other fields
541 	 * are initialized but not otherwise referenced or locked.
542 	 *
543 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
544 	 * if the map entry is a virtual page table and also writable,
545 	 * so we can set the 'A'accessed bit in the virtual page table entry.
546 	 */
547 	fs.map = map;
548 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
549 			       &fs.entry, &fs.first_object,
550 			       &first_pindex, &fs.first_prot, &fs.wired);
551 
552 	if (result != KERN_SUCCESS) {
553 		*errorp = result;
554 		return (NULL);
555 	}
556 
557 	/*
558 	 * fs.map is read-locked
559 	 *
560 	 * Misc checks.  Save the map generation number to detect races.
561 	 */
562 	fs.map_generation = fs.map->timestamp;
563 
564 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
565 		panic("vm_fault: fault on nofault entry, addr: %lx",
566 		    (u_long)vaddr);
567 	}
568 
569 	/*
570 	 * A system map entry may return a NULL object.  No object means
571 	 * no pager means an unrecoverable kernel fault.
572 	 */
573 	if (fs.first_object == NULL) {
574 		panic("vm_fault: unrecoverable fault at %p in entry %p",
575 			(void *)vaddr, fs.entry);
576 	}
577 
578 	/*
579 	 * Make a reference to this object to prevent its disposal while we
580 	 * are messing with it.  Once we have the reference, the map is free
581 	 * to be diddled.  Since objects reference their shadows (and copies),
582 	 * they will stay around as well.
583 	 *
584 	 * Bump the paging-in-progress count to prevent size changes (e.g.
585 	 * truncation operations) during I/O.  This must be done after
586 	 * obtaining the vnode lock in order to avoid possible deadlocks.
587 	 *
588 	 * The vm_token is needed to manipulate the vm_object
589 	 */
590 	lwkt_gettoken(&vm_token);
591 	vm_object_reference(fs.first_object);
592 	fs.vp = vnode_pager_lock(fs.first_object);
593 	vm_object_pip_add(fs.first_object, 1);
594 	lwkt_reltoken(&vm_token);
595 
596 	fs.lookup_still_valid = TRUE;
597 	fs.first_m = NULL;
598 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
599 
600 	/*
601 	 * If the entry is wired we cannot change the page protection.
602 	 */
603 	if (fs.wired)
604 		fault_type = fs.first_prot;
605 
606 	/*
607 	 * The page we want is at (first_object, first_pindex), but if the
608 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
609 	 * page table to figure out the actual pindex.
610 	 *
611 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
612 	 * ONLY
613 	 */
614 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
615 		result = vm_fault_vpagetable(&fs, &first_pindex,
616 					     fs.entry->aux.master_pde,
617 					     fault_type);
618 		if (result == KERN_TRY_AGAIN)
619 			goto RetryFault;
620 		if (result != KERN_SUCCESS) {
621 			*errorp = result;
622 			return (NULL);
623 		}
624 	}
625 
626 	/*
627 	 * Now we have the actual (object, pindex), fault in the page.  If
628 	 * vm_fault_object() fails it will unlock and deallocate the FS
629 	 * data.   If it succeeds everything remains locked and fs->object
630 	 * will have an additinal PIP count if it is not equal to
631 	 * fs->first_object
632 	 */
633 	result = vm_fault_object(&fs, first_pindex, fault_type);
634 
635 	if (result == KERN_TRY_AGAIN)
636 		goto RetryFault;
637 	if (result != KERN_SUCCESS) {
638 		*errorp = result;
639 		return(NULL);
640 	}
641 
642 	if ((orig_fault_type & VM_PROT_WRITE) &&
643 	    (fs.prot & VM_PROT_WRITE) == 0) {
644 		*errorp = KERN_PROTECTION_FAILURE;
645 		unlock_and_deallocate(&fs);
646 		return(NULL);
647 	}
648 
649 	/*
650 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
651 	 * will contain a busied page.
652 	 */
653 	unlock_things(&fs);
654 
655 	/*
656 	 * Return a held page.  We are not doing any pmap manipulation so do
657 	 * not set PG_MAPPED.  However, adjust the page flags according to
658 	 * the fault type because the caller may not use a managed pmapping
659 	 * (so we don't want to lose the fact that the page will be dirtied
660 	 * if a write fault was specified).
661 	 */
662 	lwkt_gettoken(&vm_token);
663 	vm_page_hold(fs.m);
664 	if (fault_type & VM_PROT_WRITE)
665 		vm_page_dirty(fs.m);
666 
667 	/*
668 	 * Update the pmap.  We really only have to do this if a COW
669 	 * occured to replace the read-only page with the new page.  For
670 	 * now just do it unconditionally. XXX
671 	 */
672 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
673 	vm_page_flag_set(fs.m, PG_REFERENCED);
674 
675 	/*
676 	 * Unbusy the page by activating it.  It remains held and will not
677 	 * be reclaimed.
678 	 */
679 	vm_page_activate(fs.m);
680 
681 	if (curthread->td_lwp) {
682 		if (fs.hardfault) {
683 			curthread->td_lwp->lwp_ru.ru_majflt++;
684 		} else {
685 			curthread->td_lwp->lwp_ru.ru_minflt++;
686 		}
687 	}
688 
689 	/*
690 	 * Unlock everything, and return the held page.
691 	 */
692 	vm_page_wakeup(fs.m);
693 	vm_object_deallocate(fs.first_object);
694 	/*fs.first_object = NULL; */
695 	lwkt_reltoken(&vm_token);
696 
697 	*errorp = 0;
698 	return(fs.m);
699 }
700 
701 /*
702  * Fault in the specified (object,offset), dirty the returned page as
703  * needed.  If the requested fault_type cannot be done NULL and an
704  * error is returned.
705  *
706  * A held (but not busied) page is returned.
707  *
708  * No requirements.
709  */
710 vm_page_t
711 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
712 		     vm_prot_t fault_type, int fault_flags, int *errorp)
713 {
714 	int result;
715 	vm_pindex_t first_pindex;
716 	struct faultstate fs;
717 	struct vm_map_entry entry;
718 
719 	bzero(&entry, sizeof(entry));
720 	entry.object.vm_object = object;
721 	entry.maptype = VM_MAPTYPE_NORMAL;
722 	entry.protection = entry.max_protection = fault_type;
723 
724 	fs.didlimit = 0;
725 	fs.hardfault = 0;
726 	fs.fault_flags = fault_flags;
727 	fs.map = NULL;
728 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
729 
730 RetryFault:
731 
732 	fs.first_object = object;
733 	first_pindex = OFF_TO_IDX(offset);
734 	fs.entry = &entry;
735 	fs.first_prot = fault_type;
736 	fs.wired = 0;
737 	/*fs.map_generation = 0; unused */
738 
739 	/*
740 	 * Make a reference to this object to prevent its disposal while we
741 	 * are messing with it.  Once we have the reference, the map is free
742 	 * to be diddled.  Since objects reference their shadows (and copies),
743 	 * they will stay around as well.
744 	 *
745 	 * Bump the paging-in-progress count to prevent size changes (e.g.
746 	 * truncation operations) during I/O.  This must be done after
747 	 * obtaining the vnode lock in order to avoid possible deadlocks.
748 	 */
749 	lwkt_gettoken(&vm_token);
750 	vm_object_reference(fs.first_object);
751 	fs.vp = vnode_pager_lock(fs.first_object);
752 	vm_object_pip_add(fs.first_object, 1);
753 	lwkt_reltoken(&vm_token);
754 
755 	fs.lookup_still_valid = TRUE;
756 	fs.first_m = NULL;
757 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
758 
759 #if 0
760 	/* XXX future - ability to operate on VM object using vpagetable */
761 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
762 		result = vm_fault_vpagetable(&fs, &first_pindex,
763 					     fs.entry->aux.master_pde,
764 					     fault_type);
765 		if (result == KERN_TRY_AGAIN)
766 			goto RetryFault;
767 		if (result != KERN_SUCCESS) {
768 			*errorp = result;
769 			return (NULL);
770 		}
771 	}
772 #endif
773 
774 	/*
775 	 * Now we have the actual (object, pindex), fault in the page.  If
776 	 * vm_fault_object() fails it will unlock and deallocate the FS
777 	 * data.   If it succeeds everything remains locked and fs->object
778 	 * will have an additinal PIP count if it is not equal to
779 	 * fs->first_object
780 	 */
781 	result = vm_fault_object(&fs, first_pindex, fault_type);
782 
783 	if (result == KERN_TRY_AGAIN)
784 		goto RetryFault;
785 	if (result != KERN_SUCCESS) {
786 		*errorp = result;
787 		return(NULL);
788 	}
789 
790 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
791 		*errorp = KERN_PROTECTION_FAILURE;
792 		unlock_and_deallocate(&fs);
793 		return(NULL);
794 	}
795 
796 	/*
797 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
798 	 * will contain a busied page.
799 	 */
800 	unlock_things(&fs);
801 
802 	/*
803 	 * Return a held page.  We are not doing any pmap manipulation so do
804 	 * not set PG_MAPPED.  However, adjust the page flags according to
805 	 * the fault type because the caller may not use a managed pmapping
806 	 * (so we don't want to lose the fact that the page will be dirtied
807 	 * if a write fault was specified).
808 	 */
809 	lwkt_gettoken(&vm_token);
810 	vm_page_hold(fs.m);
811 	if (fault_type & VM_PROT_WRITE)
812 		vm_page_dirty(fs.m);
813 
814 	if (fault_flags & VM_FAULT_DIRTY)
815 		vm_page_dirty(fs.m);
816 	if (fault_flags & VM_FAULT_UNSWAP)
817 		swap_pager_unswapped(fs.m);
818 
819 	/*
820 	 * Indicate that the page was accessed.
821 	 */
822 	vm_page_flag_set(fs.m, PG_REFERENCED);
823 
824 	/*
825 	 * Unbusy the page by activating it.  It remains held and will not
826 	 * be reclaimed.
827 	 */
828 	vm_page_activate(fs.m);
829 
830 	if (curthread->td_lwp) {
831 		if (fs.hardfault) {
832 			mycpu->gd_cnt.v_vm_faults++;
833 			curthread->td_lwp->lwp_ru.ru_majflt++;
834 		} else {
835 			curthread->td_lwp->lwp_ru.ru_minflt++;
836 		}
837 	}
838 
839 	/*
840 	 * Unlock everything, and return the held page.
841 	 */
842 	vm_page_wakeup(fs.m);
843 	vm_object_deallocate(fs.first_object);
844 	/*fs.first_object = NULL; */
845 	lwkt_reltoken(&vm_token);
846 
847 	*errorp = 0;
848 	return(fs.m);
849 }
850 
851 /*
852  * Translate the virtual page number (first_pindex) that is relative
853  * to the address space into a logical page number that is relative to the
854  * backing object.  Use the virtual page table pointed to by (vpte).
855  *
856  * This implements an N-level page table.  Any level can terminate the
857  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
858  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
859  *
860  * No requirements (vm_token need not be held).
861  */
862 static
863 int
864 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
865 		    vpte_t vpte, int fault_type)
866 {
867 	struct lwbuf *lwb;
868 	struct lwbuf lwb_cache;
869 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
870 	int result = KERN_SUCCESS;
871 	vpte_t *ptep;
872 
873 	for (;;) {
874 		/*
875 		 * We cannot proceed if the vpte is not valid, not readable
876 		 * for a read fault, or not writable for a write fault.
877 		 */
878 		if ((vpte & VPTE_V) == 0) {
879 			unlock_and_deallocate(fs);
880 			return (KERN_FAILURE);
881 		}
882 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
883 			unlock_and_deallocate(fs);
884 			return (KERN_FAILURE);
885 		}
886 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
887 			unlock_and_deallocate(fs);
888 			return (KERN_FAILURE);
889 		}
890 		if ((vpte & VPTE_PS) || vshift == 0)
891 			break;
892 		KKASSERT(vshift >= VPTE_PAGE_BITS);
893 
894 		/*
895 		 * Get the page table page.  Nominally we only read the page
896 		 * table, but since we are actively setting VPTE_M and VPTE_A,
897 		 * tell vm_fault_object() that we are writing it.
898 		 *
899 		 * There is currently no real need to optimize this.
900 		 */
901 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
902 					 VM_PROT_READ|VM_PROT_WRITE);
903 		if (result != KERN_SUCCESS)
904 			return (result);
905 
906 		/*
907 		 * Process the returned fs.m and look up the page table
908 		 * entry in the page table page.
909 		 */
910 		vshift -= VPTE_PAGE_BITS;
911 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
912 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
913 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
914 		vpte = *ptep;
915 
916 		/*
917 		 * Page table write-back.  If the vpte is valid for the
918 		 * requested operation, do a write-back to the page table.
919 		 *
920 		 * XXX VPTE_M is not set properly for page directory pages.
921 		 * It doesn't get set in the page directory if the page table
922 		 * is modified during a read access.
923 		 */
924 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
925 		    (vpte & VPTE_W)) {
926 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
927 				atomic_set_long(ptep, VPTE_M | VPTE_A);
928 				vm_page_dirty(fs->m);
929 			}
930 		}
931 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
932 		    (vpte & VPTE_R)) {
933 			if ((vpte & VPTE_A) == 0) {
934 				atomic_set_long(ptep, VPTE_A);
935 				vm_page_dirty(fs->m);
936 			}
937 		}
938 		lwbuf_free(lwb);
939 		vm_page_flag_set(fs->m, PG_REFERENCED);
940 		vm_page_activate(fs->m);
941 		vm_page_wakeup(fs->m);
942 		fs->m = NULL;
943 		cleanup_successful_fault(fs);
944 	}
945 	/*
946 	 * Combine remaining address bits with the vpte.
947 	 */
948 	/* JG how many bits from each? */
949 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
950 		  (*pindex & ((1L << vshift) - 1));
951 	return (KERN_SUCCESS);
952 }
953 
954 
955 /*
956  * This is the core of the vm_fault code.
957  *
958  * Do all operations required to fault-in (fs.first_object, pindex).  Run
959  * through the shadow chain as necessary and do required COW or virtual
960  * copy operations.  The caller has already fully resolved the vm_map_entry
961  * and, if appropriate, has created a copy-on-write layer.  All we need to
962  * do is iterate the object chain.
963  *
964  * On failure (fs) is unlocked and deallocated and the caller may return or
965  * retry depending on the failure code.  On success (fs) is NOT unlocked or
966  * deallocated, fs.m will contained a resolved, busied page, and fs.object
967  * will have an additional PIP count if it is not equal to fs.first_object.
968  *
969  * No requirements.
970  */
971 static
972 int
973 vm_fault_object(struct faultstate *fs,
974 		vm_pindex_t first_pindex, vm_prot_t fault_type)
975 {
976 	vm_object_t next_object;
977 	vm_pindex_t pindex;
978 
979 	fs->prot = fs->first_prot;
980 	fs->object = fs->first_object;
981 	pindex = first_pindex;
982 
983 	/*
984 	 * If a read fault occurs we try to make the page writable if
985 	 * possible.  There are three cases where we cannot make the
986 	 * page mapping writable:
987 	 *
988 	 * (1) The mapping is read-only or the VM object is read-only,
989 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
990 	 *
991 	 * (2) If the mapping is a virtual page table we need to be able
992 	 *     to detect writes so we can set VPTE_M in the virtual page
993 	 *     table.
994 	 *
995 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
996 	 *     just result in an unnecessary COW fault.
997 	 *
998 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
999 	 * causes adjustments to the 'M'odify bit to also turn off write
1000 	 * access to force a re-fault.
1001 	 */
1002 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1003 		if ((fault_type & VM_PROT_WRITE) == 0)
1004 			fs->prot &= ~VM_PROT_WRITE;
1005 	}
1006 
1007 	lwkt_gettoken(&vm_token);
1008 
1009 	for (;;) {
1010 		/*
1011 		 * If the object is dead, we stop here
1012 		 */
1013 		if (fs->object->flags & OBJ_DEAD) {
1014 			unlock_and_deallocate(fs);
1015 			lwkt_reltoken(&vm_token);
1016 			return (KERN_PROTECTION_FAILURE);
1017 		}
1018 
1019 		/*
1020 		 * See if the page is resident.
1021 		 */
1022 		fs->m = vm_page_lookup(fs->object, pindex);
1023 		if (fs->m != NULL) {
1024 			int queue;
1025 			/*
1026 			 * Wait/Retry if the page is busy.  We have to do this
1027 			 * if the page is busy via either PG_BUSY or
1028 			 * vm_page_t->busy because the vm_pager may be using
1029 			 * vm_page_t->busy for pageouts ( and even pageins if
1030 			 * it is the vnode pager ), and we could end up trying
1031 			 * to pagein and pageout the same page simultaneously.
1032 			 *
1033 			 * We can theoretically allow the busy case on a read
1034 			 * fault if the page is marked valid, but since such
1035 			 * pages are typically already pmap'd, putting that
1036 			 * special case in might be more effort then it is
1037 			 * worth.  We cannot under any circumstances mess
1038 			 * around with a vm_page_t->busy page except, perhaps,
1039 			 * to pmap it.
1040 			 */
1041 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1042 				unlock_things(fs);
1043 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1044 				mycpu->gd_cnt.v_intrans++;
1045 				vm_object_deallocate(fs->first_object);
1046 				fs->first_object = NULL;
1047 				lwkt_reltoken(&vm_token);
1048 				return (KERN_TRY_AGAIN);
1049 			}
1050 
1051 			/*
1052 			 * If reactivating a page from PQ_CACHE we may have
1053 			 * to rate-limit.
1054 			 */
1055 			queue = fs->m->queue;
1056 			vm_page_unqueue_nowakeup(fs->m);
1057 
1058 			if ((queue - fs->m->pc) == PQ_CACHE &&
1059 			    vm_page_count_severe()) {
1060 				vm_page_activate(fs->m);
1061 				unlock_and_deallocate(fs);
1062 				vm_waitpfault();
1063 				lwkt_reltoken(&vm_token);
1064 				return (KERN_TRY_AGAIN);
1065 			}
1066 
1067 			/*
1068 			 * Mark page busy for other processes, and the
1069 			 * pagedaemon.  If it still isn't completely valid
1070 			 * (readable), or if a read-ahead-mark is set on
1071 			 * the VM page, jump to readrest, else we found the
1072 			 * page and can return.
1073 			 *
1074 			 * We can release the spl once we have marked the
1075 			 * page busy.
1076 			 */
1077 			vm_page_busy(fs->m);
1078 
1079 			if (fs->m->object != &kernel_object) {
1080 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1081 				    VM_PAGE_BITS_ALL) {
1082 					goto readrest;
1083 				}
1084 				if (fs->m->flags & PG_RAM) {
1085 					if (debug_cluster)
1086 						kprintf("R");
1087 					vm_page_flag_clear(fs->m, PG_RAM);
1088 					goto readrest;
1089 				}
1090 			}
1091 			break; /* break to PAGE HAS BEEN FOUND */
1092 		}
1093 
1094 		/*
1095 		 * Page is not resident, If this is the search termination
1096 		 * or the pager might contain the page, allocate a new page.
1097 		 */
1098 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1099 			/*
1100 			 * If the page is beyond the object size we fail
1101 			 */
1102 			if (pindex >= fs->object->size) {
1103 				lwkt_reltoken(&vm_token);
1104 				unlock_and_deallocate(fs);
1105 				return (KERN_PROTECTION_FAILURE);
1106 			}
1107 
1108 			/*
1109 			 * Ratelimit.
1110 			 */
1111 			if (fs->didlimit == 0 && curproc != NULL) {
1112 				int limticks;
1113 
1114 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1115 				if (limticks) {
1116 					lwkt_reltoken(&vm_token);
1117 					unlock_and_deallocate(fs);
1118 					tsleep(curproc, 0, "vmrate", limticks);
1119 					fs->didlimit = 1;
1120 					return (KERN_TRY_AGAIN);
1121 				}
1122 			}
1123 
1124 			/*
1125 			 * Allocate a new page for this object/offset pair.
1126 			 */
1127 			fs->m = NULL;
1128 			if (!vm_page_count_severe()) {
1129 				fs->m = vm_page_alloc(fs->object, pindex,
1130 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1131 			}
1132 			if (fs->m == NULL) {
1133 				lwkt_reltoken(&vm_token);
1134 				unlock_and_deallocate(fs);
1135 				vm_waitpfault();
1136 				return (KERN_TRY_AGAIN);
1137 			}
1138 		}
1139 
1140 readrest:
1141 		/*
1142 		 * We have found an invalid or partially valid page, a
1143 		 * page with a read-ahead mark which might be partially or
1144 		 * fully valid (and maybe dirty too), or we have allocated
1145 		 * a new page.
1146 		 *
1147 		 * Attempt to fault-in the page if there is a chance that the
1148 		 * pager has it, and potentially fault in additional pages
1149 		 * at the same time.
1150 		 *
1151 		 * We are NOT in splvm here and if TRYPAGER is true then
1152 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1153 		 */
1154 		if (TRYPAGER(fs)) {
1155 			int rv;
1156 			int seqaccess;
1157 			u_char behavior = vm_map_entry_behavior(fs->entry);
1158 
1159 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1160 				seqaccess = 0;
1161 			else
1162 				seqaccess = -1;
1163 
1164 			/*
1165 			 * If sequential access is detected then attempt
1166 			 * to deactivate/cache pages behind the scan to
1167 			 * prevent resource hogging.
1168 			 *
1169 			 * Use of PG_RAM to detect sequential access
1170 			 * also simulates multi-zone sequential access
1171 			 * detection for free.
1172 			 *
1173 			 * NOTE: Partially valid dirty pages cannot be
1174 			 *	 deactivated without causing NFS picemeal
1175 			 *	 writes to barf.
1176 			 */
1177 			if ((fs->first_object->type != OBJT_DEVICE) &&
1178 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1179                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1180 				 (fs->m->flags & PG_RAM)))
1181 			) {
1182 				vm_pindex_t scan_pindex;
1183 				int scan_count = 16;
1184 
1185 				if (first_pindex < 16) {
1186 					scan_pindex = 0;
1187 					scan_count = 0;
1188 				} else {
1189 					scan_pindex = first_pindex - 16;
1190 					if (scan_pindex < 16)
1191 						scan_count = scan_pindex;
1192 					else
1193 						scan_count = 16;
1194 				}
1195 
1196 				while (scan_count) {
1197 					vm_page_t mt;
1198 
1199 					mt = vm_page_lookup(fs->first_object,
1200 							    scan_pindex);
1201 					if (mt == NULL ||
1202 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1203 						break;
1204 					}
1205 					if (mt->busy ||
1206 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1207 					    mt->hold_count ||
1208 					    mt->wire_count)  {
1209 						goto skip;
1210 					}
1211 					vm_page_busy(mt);
1212 					if (mt->dirty == 0)
1213 						vm_page_test_dirty(mt);
1214 					if (mt->dirty) {
1215 						vm_page_protect(mt,
1216 								VM_PROT_NONE);
1217 						vm_page_deactivate(mt);
1218 						vm_page_wakeup(mt);
1219 					} else {
1220 						vm_page_cache(mt);
1221 					}
1222 skip:
1223 					--scan_count;
1224 					--scan_pindex;
1225 				}
1226 
1227 				seqaccess = 1;
1228 			}
1229 
1230 			/*
1231 			 * Avoid deadlocking against the map when doing I/O.
1232 			 * fs.object and the page is PG_BUSY'd.
1233 			 */
1234 			unlock_map(fs);
1235 
1236 			/*
1237 			 * Acquire the page data.  We still hold a ref on
1238 			 * fs.object and the page has been PG_BUSY's.
1239 			 *
1240 			 * The pager may replace the page (for example, in
1241 			 * order to enter a fictitious page into the
1242 			 * object).  If it does so it is responsible for
1243 			 * cleaning up the passed page and properly setting
1244 			 * the new page PG_BUSY.
1245 			 *
1246 			 * If we got here through a PG_RAM read-ahead
1247 			 * mark the page may be partially dirty and thus
1248 			 * not freeable.  Don't bother checking to see
1249 			 * if the pager has the page because we can't free
1250 			 * it anyway.  We have to depend on the get_page
1251 			 * operation filling in any gaps whether there is
1252 			 * backing store or not.
1253 			 */
1254 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1255 
1256 			if (rv == VM_PAGER_OK) {
1257 				/*
1258 				 * Relookup in case pager changed page. Pager
1259 				 * is responsible for disposition of old page
1260 				 * if moved.
1261 				 *
1262 				 * XXX other code segments do relookups too.
1263 				 * It's a bad abstraction that needs to be
1264 				 * fixed/removed.
1265 				 */
1266 				fs->m = vm_page_lookup(fs->object, pindex);
1267 				if (fs->m == NULL) {
1268 					lwkt_reltoken(&vm_token);
1269 					unlock_and_deallocate(fs);
1270 					return (KERN_TRY_AGAIN);
1271 				}
1272 
1273 				++fs->hardfault;
1274 				break; /* break to PAGE HAS BEEN FOUND */
1275 			}
1276 
1277 			/*
1278 			 * Remove the bogus page (which does not exist at this
1279 			 * object/offset); before doing so, we must get back
1280 			 * our object lock to preserve our invariant.
1281 			 *
1282 			 * Also wake up any other process that may want to bring
1283 			 * in this page.
1284 			 *
1285 			 * If this is the top-level object, we must leave the
1286 			 * busy page to prevent another process from rushing
1287 			 * past us, and inserting the page in that object at
1288 			 * the same time that we are.
1289 			 */
1290 			if (rv == VM_PAGER_ERROR) {
1291 				if (curproc)
1292 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1293 				else
1294 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1295 			}
1296 
1297 			/*
1298 			 * Data outside the range of the pager or an I/O error
1299 			 *
1300 			 * The page may have been wired during the pagein,
1301 			 * e.g. by the buffer cache, and cannot simply be
1302 			 * freed.  Call vnode_pager_freepage() to deal with it.
1303 			 */
1304 			/*
1305 			 * XXX - the check for kernel_map is a kludge to work
1306 			 * around having the machine panic on a kernel space
1307 			 * fault w/ I/O error.
1308 			 */
1309 			if (((fs->map != &kernel_map) &&
1310 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1311 				vnode_pager_freepage(fs->m);
1312 				lwkt_reltoken(&vm_token);
1313 				fs->m = NULL;
1314 				unlock_and_deallocate(fs);
1315 				if (rv == VM_PAGER_ERROR)
1316 					return (KERN_FAILURE);
1317 				else
1318 					return (KERN_PROTECTION_FAILURE);
1319 				/* NOT REACHED */
1320 			}
1321 			if (fs->object != fs->first_object) {
1322 				vnode_pager_freepage(fs->m);
1323 				fs->m = NULL;
1324 				/*
1325 				 * XXX - we cannot just fall out at this
1326 				 * point, m has been freed and is invalid!
1327 				 */
1328 			}
1329 		}
1330 
1331 		/*
1332 		 * We get here if the object has a default pager (or unwiring)
1333 		 * or the pager doesn't have the page.
1334 		 */
1335 		if (fs->object == fs->first_object)
1336 			fs->first_m = fs->m;
1337 
1338 		/*
1339 		 * Move on to the next object.  Lock the next object before
1340 		 * unlocking the current one.
1341 		 */
1342 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1343 		next_object = fs->object->backing_object;
1344 		if (next_object == NULL) {
1345 			/*
1346 			 * If there's no object left, fill the page in the top
1347 			 * object with zeros.
1348 			 */
1349 			if (fs->object != fs->first_object) {
1350 				vm_object_pip_wakeup(fs->object);
1351 
1352 				fs->object = fs->first_object;
1353 				pindex = first_pindex;
1354 				fs->m = fs->first_m;
1355 			}
1356 			fs->first_m = NULL;
1357 
1358 			/*
1359 			 * Zero the page if necessary and mark it valid.
1360 			 */
1361 			if ((fs->m->flags & PG_ZERO) == 0) {
1362 				vm_page_zero_fill(fs->m);
1363 			} else {
1364 #ifdef PMAP_DEBUG
1365 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1366 #endif
1367 				vm_page_flag_clear(fs->m, PG_ZERO);
1368 				mycpu->gd_cnt.v_ozfod++;
1369 			}
1370 			mycpu->gd_cnt.v_zfod++;
1371 			fs->m->valid = VM_PAGE_BITS_ALL;
1372 			break;	/* break to PAGE HAS BEEN FOUND */
1373 		}
1374 		if (fs->object != fs->first_object) {
1375 			vm_object_pip_wakeup(fs->object);
1376 		}
1377 		KASSERT(fs->object != next_object,
1378 			("object loop %p", next_object));
1379 		fs->object = next_object;
1380 		vm_object_pip_add(fs->object, 1);
1381 	}
1382 
1383 	/*
1384 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1385 	 * is held.]
1386 	 *
1387 	 * vm_token is still held
1388 	 *
1389 	 * If the page is being written, but isn't already owned by the
1390 	 * top-level object, we have to copy it into a new page owned by the
1391 	 * top-level object.
1392 	 */
1393 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1394 		("vm_fault: not busy after main loop"));
1395 
1396 	if (fs->object != fs->first_object) {
1397 		/*
1398 		 * We only really need to copy if we want to write it.
1399 		 */
1400 		if (fault_type & VM_PROT_WRITE) {
1401 			/*
1402 			 * This allows pages to be virtually copied from a
1403 			 * backing_object into the first_object, where the
1404 			 * backing object has no other refs to it, and cannot
1405 			 * gain any more refs.  Instead of a bcopy, we just
1406 			 * move the page from the backing object to the
1407 			 * first object.  Note that we must mark the page
1408 			 * dirty in the first object so that it will go out
1409 			 * to swap when needed.
1410 			 */
1411 			if (
1412 				/*
1413 				 * Map, if present, has not changed
1414 				 */
1415 				(fs->map == NULL ||
1416 				fs->map_generation == fs->map->timestamp) &&
1417 				/*
1418 				 * Only one shadow object
1419 				 */
1420 				(fs->object->shadow_count == 1) &&
1421 				/*
1422 				 * No COW refs, except us
1423 				 */
1424 				(fs->object->ref_count == 1) &&
1425 				/*
1426 				 * No one else can look this object up
1427 				 */
1428 				(fs->object->handle == NULL) &&
1429 				/*
1430 				 * No other ways to look the object up
1431 				 */
1432 				((fs->object->type == OBJT_DEFAULT) ||
1433 				 (fs->object->type == OBJT_SWAP)) &&
1434 				/*
1435 				 * We don't chase down the shadow chain
1436 				 */
1437 				(fs->object == fs->first_object->backing_object) &&
1438 
1439 				/*
1440 				 * grab the lock if we need to
1441 				 */
1442 				(fs->lookup_still_valid ||
1443 				 fs->map == NULL ||
1444 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1445 			    ) {
1446 
1447 				fs->lookup_still_valid = 1;
1448 				/*
1449 				 * get rid of the unnecessary page
1450 				 */
1451 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1452 				vm_page_free(fs->first_m);
1453 				fs->first_m = NULL;
1454 
1455 				/*
1456 				 * grab the page and put it into the
1457 				 * process'es object.  The page is
1458 				 * automatically made dirty.
1459 				 */
1460 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1461 				fs->first_m = fs->m;
1462 				vm_page_busy(fs->first_m);
1463 				fs->m = NULL;
1464 				mycpu->gd_cnt.v_cow_optim++;
1465 			} else {
1466 				/*
1467 				 * Oh, well, lets copy it.
1468 				 */
1469 				vm_page_copy(fs->m, fs->first_m);
1470 				vm_page_event(fs->m, VMEVENT_COW);
1471 			}
1472 
1473 			if (fs->m) {
1474 				/*
1475 				 * We no longer need the old page or object.
1476 				 */
1477 				release_page(fs);
1478 			}
1479 
1480 			/*
1481 			 * fs->object != fs->first_object due to above
1482 			 * conditional
1483 			 */
1484 			vm_object_pip_wakeup(fs->object);
1485 
1486 			/*
1487 			 * Only use the new page below...
1488 			 */
1489 
1490 			mycpu->gd_cnt.v_cow_faults++;
1491 			fs->m = fs->first_m;
1492 			fs->object = fs->first_object;
1493 			pindex = first_pindex;
1494 		} else {
1495 			/*
1496 			 * If it wasn't a write fault avoid having to copy
1497 			 * the page by mapping it read-only.
1498 			 */
1499 			fs->prot &= ~VM_PROT_WRITE;
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * We may have had to unlock a map to do I/O.  If we did then
1505 	 * lookup_still_valid will be FALSE.  If the map generation count
1506 	 * also changed then all sorts of things could have happened while
1507 	 * we were doing the I/O and we need to retry.
1508 	 */
1509 
1510 	if (!fs->lookup_still_valid &&
1511 	    fs->map != NULL &&
1512 	    (fs->map->timestamp != fs->map_generation)) {
1513 		release_page(fs);
1514 		lwkt_reltoken(&vm_token);
1515 		unlock_and_deallocate(fs);
1516 		return (KERN_TRY_AGAIN);
1517 	}
1518 
1519 	/*
1520 	 * If the fault is a write, we know that this page is being
1521 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1522 	 * calls later.
1523 	 *
1524 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1525 	 * if the page is already dirty to prevent data written with
1526 	 * the expectation of being synced from not being synced.
1527 	 * Likewise if this entry does not request NOSYNC then make
1528 	 * sure the page isn't marked NOSYNC.  Applications sharing
1529 	 * data should use the same flags to avoid ping ponging.
1530 	 *
1531 	 * Also tell the backing pager, if any, that it should remove
1532 	 * any swap backing since the page is now dirty.
1533 	 */
1534 	if (fs->prot & VM_PROT_WRITE) {
1535 		vm_object_set_writeable_dirty(fs->m->object);
1536 		vm_set_nosync(fs->m, fs->entry);
1537 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1538 			vm_page_dirty(fs->m);
1539 			swap_pager_unswapped(fs->m);
1540 		}
1541 	}
1542 
1543 	lwkt_reltoken(&vm_token);
1544 
1545 	/*
1546 	 * Page had better still be busy.  We are still locked up and
1547 	 * fs->object will have another PIP reference if it is not equal
1548 	 * to fs->first_object.
1549 	 */
1550 	KASSERT(fs->m->flags & PG_BUSY,
1551 		("vm_fault: page %p not busy!", fs->m));
1552 
1553 	/*
1554 	 * Sanity check: page must be completely valid or it is not fit to
1555 	 * map into user space.  vm_pager_get_pages() ensures this.
1556 	 */
1557 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1558 		vm_page_zero_invalid(fs->m, TRUE);
1559 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1560 	}
1561 	vm_page_flag_clear(fs->m, PG_ZERO);
1562 
1563 	return (KERN_SUCCESS);
1564 }
1565 
1566 /*
1567  * Wire down a range of virtual addresses in a map.  The entry in question
1568  * should be marked in-transition and the map must be locked.  We must
1569  * release the map temporarily while faulting-in the page to avoid a
1570  * deadlock.  Note that the entry may be clipped while we are blocked but
1571  * will never be freed.
1572  *
1573  * No requirements.
1574  */
1575 int
1576 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1577 {
1578 	boolean_t fictitious;
1579 	vm_offset_t start;
1580 	vm_offset_t end;
1581 	vm_offset_t va;
1582 	vm_paddr_t pa;
1583 	pmap_t pmap;
1584 	int rv;
1585 
1586 	pmap = vm_map_pmap(map);
1587 	start = entry->start;
1588 	end = entry->end;
1589 	fictitious = entry->object.vm_object &&
1590 			(entry->object.vm_object->type == OBJT_DEVICE);
1591 	if (entry->eflags & MAP_ENTRY_KSTACK)
1592 		start += PAGE_SIZE;
1593 	lwkt_gettoken(&vm_token);
1594 	vm_map_unlock(map);
1595 	map->timestamp++;
1596 
1597 	/*
1598 	 * We simulate a fault to get the page and enter it in the physical
1599 	 * map.
1600 	 */
1601 	for (va = start; va < end; va += PAGE_SIZE) {
1602 		if (user_wire) {
1603 			rv = vm_fault(map, va, VM_PROT_READ,
1604 					VM_FAULT_USER_WIRE);
1605 		} else {
1606 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1607 					VM_FAULT_CHANGE_WIRING);
1608 		}
1609 		if (rv) {
1610 			while (va > start) {
1611 				va -= PAGE_SIZE;
1612 				if ((pa = pmap_extract(pmap, va)) == 0)
1613 					continue;
1614 				pmap_change_wiring(pmap, va, FALSE);
1615 				if (!fictitious)
1616 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1617 			}
1618 			vm_map_lock(map);
1619 			lwkt_reltoken(&vm_token);
1620 			return (rv);
1621 		}
1622 	}
1623 	vm_map_lock(map);
1624 	lwkt_reltoken(&vm_token);
1625 	return (KERN_SUCCESS);
1626 }
1627 
1628 /*
1629  * Unwire a range of virtual addresses in a map.  The map should be
1630  * locked.
1631  */
1632 void
1633 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1634 {
1635 	boolean_t fictitious;
1636 	vm_offset_t start;
1637 	vm_offset_t end;
1638 	vm_offset_t va;
1639 	vm_paddr_t pa;
1640 	pmap_t pmap;
1641 
1642 	pmap = vm_map_pmap(map);
1643 	start = entry->start;
1644 	end = entry->end;
1645 	fictitious = entry->object.vm_object &&
1646 			(entry->object.vm_object->type == OBJT_DEVICE);
1647 	if (entry->eflags & MAP_ENTRY_KSTACK)
1648 		start += PAGE_SIZE;
1649 
1650 	/*
1651 	 * Since the pages are wired down, we must be able to get their
1652 	 * mappings from the physical map system.
1653 	 */
1654 	lwkt_gettoken(&vm_token);
1655 	for (va = start; va < end; va += PAGE_SIZE) {
1656 		pa = pmap_extract(pmap, va);
1657 		if (pa != 0) {
1658 			pmap_change_wiring(pmap, va, FALSE);
1659 			if (!fictitious)
1660 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1661 		}
1662 	}
1663 	lwkt_reltoken(&vm_token);
1664 }
1665 
1666 /*
1667  * Reduce the rate at which memory is allocated to a process based
1668  * on the perceived load on the VM system. As the load increases
1669  * the allocation burst rate goes down and the delay increases.
1670  *
1671  * Rate limiting does not apply when faulting active or inactive
1672  * pages.  When faulting 'cache' pages, rate limiting only applies
1673  * if the system currently has a severe page deficit.
1674  *
1675  * XXX vm_pagesupply should be increased when a page is freed.
1676  *
1677  * We sleep up to 1/10 of a second.
1678  */
1679 static int
1680 vm_fault_ratelimit(struct vmspace *vmspace)
1681 {
1682 	if (vm_load_enable == 0)
1683 		return(0);
1684 	if (vmspace->vm_pagesupply > 0) {
1685 		--vmspace->vm_pagesupply;	/* SMP race ok */
1686 		return(0);
1687 	}
1688 #ifdef INVARIANTS
1689 	if (vm_load_debug) {
1690 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1691 			vm_load,
1692 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1693 			curproc->p_pid, curproc->p_comm);
1694 	}
1695 #endif
1696 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1697 	return(vm_load * hz / 10000);
1698 }
1699 
1700 /*
1701  * Copy all of the pages from a wired-down map entry to another.
1702  *
1703  * The source and destination maps must be locked for write.
1704  * The source map entry must be wired down (or be a sharing map
1705  * entry corresponding to a main map entry that is wired down).
1706  *
1707  * No other requirements.
1708  */
1709 void
1710 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1711 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1712 {
1713 	vm_object_t dst_object;
1714 	vm_object_t src_object;
1715 	vm_ooffset_t dst_offset;
1716 	vm_ooffset_t src_offset;
1717 	vm_prot_t prot;
1718 	vm_offset_t vaddr;
1719 	vm_page_t dst_m;
1720 	vm_page_t src_m;
1721 
1722 #ifdef	lint
1723 	src_map++;
1724 #endif	/* lint */
1725 
1726 	src_object = src_entry->object.vm_object;
1727 	src_offset = src_entry->offset;
1728 
1729 	/*
1730 	 * Create the top-level object for the destination entry. (Doesn't
1731 	 * actually shadow anything - we copy the pages directly.)
1732 	 */
1733 	vm_map_entry_allocate_object(dst_entry);
1734 	dst_object = dst_entry->object.vm_object;
1735 
1736 	prot = dst_entry->max_protection;
1737 
1738 	/*
1739 	 * Loop through all of the pages in the entry's range, copying each
1740 	 * one from the source object (it should be there) to the destination
1741 	 * object.
1742 	 */
1743 	for (vaddr = dst_entry->start, dst_offset = 0;
1744 	    vaddr < dst_entry->end;
1745 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1746 
1747 		/*
1748 		 * Allocate a page in the destination object
1749 		 */
1750 		do {
1751 			dst_m = vm_page_alloc(dst_object,
1752 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1753 			if (dst_m == NULL) {
1754 				vm_wait(0);
1755 			}
1756 		} while (dst_m == NULL);
1757 
1758 		/*
1759 		 * Find the page in the source object, and copy it in.
1760 		 * (Because the source is wired down, the page will be in
1761 		 * memory.)
1762 		 */
1763 		src_m = vm_page_lookup(src_object,
1764 				       OFF_TO_IDX(dst_offset + src_offset));
1765 		if (src_m == NULL)
1766 			panic("vm_fault_copy_wired: page missing");
1767 
1768 		vm_page_copy(src_m, dst_m);
1769 		vm_page_event(src_m, VMEVENT_COW);
1770 
1771 		/*
1772 		 * Enter it in the pmap...
1773 		 */
1774 
1775 		vm_page_flag_clear(dst_m, PG_ZERO);
1776 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1777 
1778 		/*
1779 		 * Mark it no longer busy, and put it on the active list.
1780 		 */
1781 		vm_page_activate(dst_m);
1782 		vm_page_wakeup(dst_m);
1783 	}
1784 }
1785 
1786 #if 0
1787 
1788 /*
1789  * This routine checks around the requested page for other pages that
1790  * might be able to be faulted in.  This routine brackets the viable
1791  * pages for the pages to be paged in.
1792  *
1793  * Inputs:
1794  *	m, rbehind, rahead
1795  *
1796  * Outputs:
1797  *  marray (array of vm_page_t), reqpage (index of requested page)
1798  *
1799  * Return value:
1800  *  number of pages in marray
1801  */
1802 static int
1803 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1804 			  vm_page_t *marray, int *reqpage)
1805 {
1806 	int i,j;
1807 	vm_object_t object;
1808 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1809 	vm_page_t rtm;
1810 	int cbehind, cahead;
1811 
1812 	object = m->object;
1813 	pindex = m->pindex;
1814 
1815 	/*
1816 	 * we don't fault-ahead for device pager
1817 	 */
1818 	if (object->type == OBJT_DEVICE) {
1819 		*reqpage = 0;
1820 		marray[0] = m;
1821 		return 1;
1822 	}
1823 
1824 	/*
1825 	 * if the requested page is not available, then give up now
1826 	 */
1827 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1828 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1829 		return 0;
1830 	}
1831 
1832 	if ((cbehind == 0) && (cahead == 0)) {
1833 		*reqpage = 0;
1834 		marray[0] = m;
1835 		return 1;
1836 	}
1837 
1838 	if (rahead > cahead) {
1839 		rahead = cahead;
1840 	}
1841 
1842 	if (rbehind > cbehind) {
1843 		rbehind = cbehind;
1844 	}
1845 
1846 	/*
1847 	 * Do not do any readahead if we have insufficient free memory.
1848 	 *
1849 	 * XXX code was broken disabled before and has instability
1850 	 * with this conditonal fixed, so shortcut for now.
1851 	 */
1852 	if (burst_fault == 0 || vm_page_count_severe()) {
1853 		marray[0] = m;
1854 		*reqpage = 0;
1855 		return 1;
1856 	}
1857 
1858 	/*
1859 	 * scan backward for the read behind pages -- in memory
1860 	 *
1861 	 * Assume that if the page is not found an interrupt will not
1862 	 * create it.  Theoretically interrupts can only remove (busy)
1863 	 * pages, not create new associations.
1864 	 */
1865 	if (pindex > 0) {
1866 		if (rbehind > pindex) {
1867 			rbehind = pindex;
1868 			startpindex = 0;
1869 		} else {
1870 			startpindex = pindex - rbehind;
1871 		}
1872 
1873 		lwkt_gettoken(&vm_token);
1874 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1875 			if (vm_page_lookup(object, tpindex - 1))
1876 				break;
1877 		}
1878 
1879 		i = 0;
1880 		while (tpindex < pindex) {
1881 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1882 			if (rtm == NULL) {
1883 				lwkt_reltoken(&vm_token);
1884 				for (j = 0; j < i; j++) {
1885 					vm_page_free(marray[j]);
1886 				}
1887 				marray[0] = m;
1888 				*reqpage = 0;
1889 				return 1;
1890 			}
1891 			marray[i] = rtm;
1892 			++i;
1893 			++tpindex;
1894 		}
1895 		lwkt_reltoken(&vm_token);
1896 	} else {
1897 		i = 0;
1898 	}
1899 
1900 	/*
1901 	 * Assign requested page
1902 	 */
1903 	marray[i] = m;
1904 	*reqpage = i;
1905 	++i;
1906 
1907 	/*
1908 	 * Scan forwards for read-ahead pages
1909 	 */
1910 	tpindex = pindex + 1;
1911 	endpindex = tpindex + rahead;
1912 	if (endpindex > object->size)
1913 		endpindex = object->size;
1914 
1915 	lwkt_gettoken(&vm_token);
1916 	while (tpindex < endpindex) {
1917 		if (vm_page_lookup(object, tpindex))
1918 			break;
1919 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1920 		if (rtm == NULL)
1921 			break;
1922 		marray[i] = rtm;
1923 		++i;
1924 		++tpindex;
1925 	}
1926 	lwkt_reltoken(&vm_token);
1927 
1928 	return (i);
1929 }
1930 
1931 #endif
1932 
1933 /*
1934  * vm_prefault() provides a quick way of clustering pagefaults into a
1935  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1936  * except it runs at page fault time instead of mmap time.
1937  *
1938  * This code used to be per-platform pmap_prefault().  It is now
1939  * machine-independent and enhanced to also pre-fault zero-fill pages
1940  * (see vm.fast_fault) as well as make them writable, which greatly
1941  * reduces the number of page faults programs incur.
1942  *
1943  * Application performance when pre-faulting zero-fill pages is heavily
1944  * dependent on the application.  Very tiny applications like /bin/echo
1945  * lose a little performance while applications of any appreciable size
1946  * gain performance.  Prefaulting multiple pages also reduces SMP
1947  * congestion and can improve SMP performance significantly.
1948  *
1949  * NOTE!  prot may allow writing but this only applies to the top level
1950  *	  object.  If we wind up mapping a page extracted from a backing
1951  *	  object we have to make sure it is read-only.
1952  *
1953  * NOTE!  The caller has already handled any COW operations on the
1954  *	  vm_map_entry via the normal fault code.  Do NOT call this
1955  *	  shortcut unless the normal fault code has run on this entry.
1956  *
1957  * No other requirements.
1958  */
1959 #define PFBAK 4
1960 #define PFFOR 4
1961 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1962 
1963 static int vm_prefault_pageorder[] = {
1964 	-PAGE_SIZE, PAGE_SIZE,
1965 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1966 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1967 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1968 };
1969 
1970 /*
1971  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1972  * is not already dirty by other means.  This will prevent passive
1973  * filesystem syncing as well as 'sync' from writing out the page.
1974  */
1975 static void
1976 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1977 {
1978 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
1979 		if (m->dirty == 0)
1980 			vm_page_flag_set(m, PG_NOSYNC);
1981 	} else {
1982 		vm_page_flag_clear(m, PG_NOSYNC);
1983 	}
1984 }
1985 
1986 static void
1987 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1988 {
1989 	struct lwp *lp;
1990 	vm_page_t m;
1991 	vm_offset_t starta;
1992 	vm_offset_t addr;
1993 	vm_pindex_t index;
1994 	vm_pindex_t pindex;
1995 	vm_object_t object;
1996 	int pprot;
1997 	int i;
1998 
1999 	/*
2000 	 * We do not currently prefault mappings that use virtual page
2001 	 * tables.  We do not prefault foreign pmaps.
2002 	 */
2003 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2004 		return;
2005 	lp = curthread->td_lwp;
2006 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2007 		return;
2008 
2009 	object = entry->object.vm_object;
2010 
2011 	starta = addra - PFBAK * PAGE_SIZE;
2012 	if (starta < entry->start)
2013 		starta = entry->start;
2014 	else if (starta > addra)
2015 		starta = 0;
2016 
2017 	lwkt_gettoken(&vm_token);
2018 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2019 		vm_object_t lobject;
2020 		int allocated = 0;
2021 
2022 		addr = addra + vm_prefault_pageorder[i];
2023 		if (addr > addra + (PFFOR * PAGE_SIZE))
2024 			addr = 0;
2025 
2026 		if (addr < starta || addr >= entry->end)
2027 			continue;
2028 
2029 		if (pmap_prefault_ok(pmap, addr) == 0)
2030 			continue;
2031 
2032 		/*
2033 		 * Follow the VM object chain to obtain the page to be mapped
2034 		 * into the pmap.
2035 		 *
2036 		 * If we reach the terminal object without finding a page
2037 		 * and we determine it would be advantageous, then allocate
2038 		 * a zero-fill page for the base object.  The base object
2039 		 * is guaranteed to be OBJT_DEFAULT for this case.
2040 		 *
2041 		 * In order to not have to check the pager via *haspage*()
2042 		 * we stop if any non-default object is encountered.  e.g.
2043 		 * a vnode or swap object would stop the loop.
2044 		 */
2045 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2046 		lobject = object;
2047 		pindex = index;
2048 		pprot = prot;
2049 
2050 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2051 			if (lobject->type != OBJT_DEFAULT)
2052 				break;
2053 			if (lobject->backing_object == NULL) {
2054 				if (vm_fast_fault == 0)
2055 					break;
2056 				if (vm_prefault_pageorder[i] < 0 ||
2057 				    (prot & VM_PROT_WRITE) == 0 ||
2058 				    vm_page_count_min(0)) {
2059 					break;
2060 				}
2061 				/* note: allocate from base object */
2062 				m = vm_page_alloc(object, index,
2063 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2064 
2065 				if ((m->flags & PG_ZERO) == 0) {
2066 					vm_page_zero_fill(m);
2067 				} else {
2068 #ifdef PMAP_DEBUG
2069 					pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
2070 #endif
2071 					vm_page_flag_clear(m, PG_ZERO);
2072 					mycpu->gd_cnt.v_ozfod++;
2073 				}
2074 				mycpu->gd_cnt.v_zfod++;
2075 				m->valid = VM_PAGE_BITS_ALL;
2076 				allocated = 1;
2077 				pprot = prot;
2078 				/* lobject = object .. not needed */
2079 				break;
2080 			}
2081 			if (lobject->backing_object_offset & PAGE_MASK)
2082 				break;
2083 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2084 			lobject = lobject->backing_object;
2085 			pprot &= ~VM_PROT_WRITE;
2086 		}
2087 		/*
2088 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2089 		 *	 bother assigning lobject = object).
2090 		 *
2091 		 * Give-up if the page is not available.
2092 		 */
2093 		if (m == NULL)
2094 			break;
2095 
2096 		/*
2097 		 * Do not conditionalize on PG_RAM.  If pages are present in
2098 		 * the VM system we assume optimal caching.  If caching is
2099 		 * not optimal the I/O gravy train will be restarted when we
2100 		 * hit an unavailable page.  We do not want to try to restart
2101 		 * the gravy train now because we really don't know how much
2102 		 * of the object has been cached.  The cost for restarting
2103 		 * the gravy train should be low (since accesses will likely
2104 		 * be I/O bound anyway).
2105 		 *
2106 		 * The object must be marked dirty if we are mapping a
2107 		 * writable page.
2108 		 */
2109 		if (pprot & VM_PROT_WRITE)
2110 			vm_object_set_writeable_dirty(m->object);
2111 
2112 		/*
2113 		 * Enter the page into the pmap if appropriate.  If we had
2114 		 * allocated the page we have to place it on a queue.  If not
2115 		 * we just have to make sure it isn't on the cache queue
2116 		 * (pages on the cache queue are not allowed to be mapped).
2117 		 */
2118 		if (allocated) {
2119 			if (pprot & VM_PROT_WRITE)
2120 				vm_set_nosync(m, entry);
2121 			pmap_enter(pmap, addr, m, pprot, 0);
2122 			vm_page_deactivate(m);
2123 			vm_page_wakeup(m);
2124 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2125 		    (m->busy == 0) &&
2126 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2127 
2128 			vm_page_busy(m);
2129 			if ((m->queue - m->pc) == PQ_CACHE) {
2130 				vm_page_deactivate(m);
2131 			}
2132 			if (pprot & VM_PROT_WRITE)
2133 				vm_set_nosync(m, entry);
2134 			pmap_enter(pmap, addr, m, pprot, 0);
2135 			vm_page_wakeup(m);
2136 		}
2137 	}
2138 	lwkt_reltoken(&vm_token);
2139 }
2140