1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 * 69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 71 */ 72 73 /* 74 * Page fault handling module. 75 */ 76 77 #include <sys/param.h> 78 #include <sys/systm.h> 79 #include <sys/kernel.h> 80 #include <sys/proc.h> 81 #include <sys/vnode.h> 82 #include <sys/resourcevar.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vkernel.h> 85 #include <sys/lock.h> 86 #include <sys/sysctl.h> 87 88 #include <cpu/lwbuf.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/pmap.h> 93 #include <vm/vm_map.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_pageout.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_pager.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/vm_extern.h> 101 102 #include <sys/thread2.h> 103 #include <vm/vm_page2.h> 104 105 struct faultstate { 106 vm_page_t m; 107 vm_object_t object; 108 vm_pindex_t pindex; 109 vm_prot_t prot; 110 vm_page_t first_m; 111 vm_object_t first_object; 112 vm_prot_t first_prot; 113 vm_map_t map; 114 vm_map_entry_t entry; 115 int lookup_still_valid; 116 int didlimit; 117 int hardfault; 118 int fault_flags; 119 int map_generation; 120 boolean_t wired; 121 struct vnode *vp; 122 }; 123 124 static int vm_fast_fault = 1; 125 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, ""); 126 static int debug_cluster = 0; 127 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 128 129 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t); 130 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int); 131 #if 0 132 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 133 #endif 134 static int vm_fault_ratelimit(struct vmspace *); 135 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, 136 int prot); 137 138 static __inline void 139 release_page(struct faultstate *fs) 140 { 141 vm_page_deactivate(fs->m); 142 vm_page_wakeup(fs->m); 143 fs->m = NULL; 144 } 145 146 static __inline void 147 unlock_map(struct faultstate *fs) 148 { 149 if (fs->lookup_still_valid && fs->map) { 150 vm_map_lookup_done(fs->map, fs->entry, 0); 151 fs->lookup_still_valid = FALSE; 152 } 153 } 154 155 /* 156 * Clean up after a successful call to vm_fault_object() so another call 157 * to vm_fault_object() can be made. 158 */ 159 static void 160 _cleanup_successful_fault(struct faultstate *fs, int relock) 161 { 162 if (fs->object != fs->first_object) { 163 vm_page_free(fs->first_m); 164 vm_object_pip_wakeup(fs->object); 165 fs->first_m = NULL; 166 } 167 fs->object = fs->first_object; 168 if (relock && fs->lookup_still_valid == FALSE) { 169 if (fs->map) 170 vm_map_lock_read(fs->map); 171 fs->lookup_still_valid = TRUE; 172 } 173 } 174 175 static void 176 _unlock_things(struct faultstate *fs, int dealloc) 177 { 178 vm_object_pip_wakeup(fs->first_object); 179 _cleanup_successful_fault(fs, 0); 180 if (dealloc) { 181 vm_object_deallocate(fs->first_object); 182 fs->first_object = NULL; 183 } 184 unlock_map(fs); 185 if (fs->vp != NULL) { 186 vput(fs->vp); 187 fs->vp = NULL; 188 } 189 } 190 191 #define unlock_things(fs) _unlock_things(fs, 0) 192 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 193 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 194 195 /* 196 * TRYPAGER 197 * 198 * Determine if the pager for the current object *might* contain the page. 199 * 200 * We only need to try the pager if this is not a default object (default 201 * objects are zero-fill and have no real pager), and if we are not taking 202 * a wiring fault or if the FS entry is wired. 203 */ 204 #define TRYPAGER(fs) \ 205 (fs->object->type != OBJT_DEFAULT && \ 206 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 207 208 /* 209 * vm_fault: 210 * 211 * Handle a page fault occuring at the given address, requiring the given 212 * permissions, in the map specified. If successful, the page is inserted 213 * into the associated physical map. 214 * 215 * NOTE: The given address should be truncated to the proper page address. 216 * 217 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 218 * a standard error specifying why the fault is fatal is returned. 219 * 220 * The map in question must be referenced, and remains so. 221 * The caller may hold no locks. 222 */ 223 int 224 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 225 { 226 int result; 227 vm_pindex_t first_pindex; 228 struct faultstate fs; 229 int growstack; 230 231 mycpu->gd_cnt.v_vm_faults++; 232 233 fs.didlimit = 0; 234 fs.hardfault = 0; 235 fs.fault_flags = fault_flags; 236 growstack = 1; 237 238 RetryFault: 239 /* 240 * Find the vm_map_entry representing the backing store and resolve 241 * the top level object and page index. This may have the side 242 * effect of executing a copy-on-write on the map entry and/or 243 * creating a shadow object, but will not COW any actual VM pages. 244 * 245 * On success fs.map is left read-locked and various other fields 246 * are initialized but not otherwise referenced or locked. 247 * 248 * NOTE! vm_map_lookup will try to upgrade the fault_type to 249 * VM_FAULT_WRITE if the map entry is a virtual page table and also 250 * writable, so we can set the 'A'accessed bit in the virtual page 251 * table entry. 252 */ 253 fs.map = map; 254 result = vm_map_lookup(&fs.map, vaddr, fault_type, 255 &fs.entry, &fs.first_object, 256 &first_pindex, &fs.first_prot, &fs.wired); 257 258 /* 259 * If the lookup failed or the map protections are incompatible, 260 * the fault generally fails. However, if the caller is trying 261 * to do a user wiring we have more work to do. 262 */ 263 if (result != KERN_SUCCESS) { 264 if (result != KERN_PROTECTION_FAILURE || 265 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 266 { 267 if (result == KERN_INVALID_ADDRESS && growstack && 268 map != &kernel_map && curproc != NULL) { 269 result = vm_map_growstack(curproc, vaddr); 270 if (result != KERN_SUCCESS) 271 return (KERN_FAILURE); 272 growstack = 0; 273 goto RetryFault; 274 } 275 return (result); 276 } 277 278 /* 279 * If we are user-wiring a r/w segment, and it is COW, then 280 * we need to do the COW operation. Note that we don't 281 * currently COW RO sections now, because it is NOT desirable 282 * to COW .text. We simply keep .text from ever being COW'ed 283 * and take the heat that one cannot debug wired .text sections. 284 */ 285 result = vm_map_lookup(&fs.map, vaddr, 286 VM_PROT_READ|VM_PROT_WRITE| 287 VM_PROT_OVERRIDE_WRITE, 288 &fs.entry, &fs.first_object, 289 &first_pindex, &fs.first_prot, 290 &fs.wired); 291 if (result != KERN_SUCCESS) 292 return result; 293 294 /* 295 * If we don't COW now, on a user wire, the user will never 296 * be able to write to the mapping. If we don't make this 297 * restriction, the bookkeeping would be nearly impossible. 298 */ 299 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 300 fs.entry->max_protection &= ~VM_PROT_WRITE; 301 } 302 303 /* 304 * fs.map is read-locked 305 * 306 * Misc checks. Save the map generation number to detect races. 307 */ 308 fs.map_generation = fs.map->timestamp; 309 310 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 311 panic("vm_fault: fault on nofault entry, addr: %lx", 312 (u_long)vaddr); 313 } 314 315 /* 316 * A system map entry may return a NULL object. No object means 317 * no pager means an unrecoverable kernel fault. 318 */ 319 if (fs.first_object == NULL) { 320 panic("vm_fault: unrecoverable fault at %p in entry %p", 321 (void *)vaddr, fs.entry); 322 } 323 324 /* 325 * Make a reference to this object to prevent its disposal while we 326 * are messing with it. Once we have the reference, the map is free 327 * to be diddled. Since objects reference their shadows (and copies), 328 * they will stay around as well. 329 * 330 * Bump the paging-in-progress count to prevent size changes (e.g. 331 * truncation operations) during I/O. This must be done after 332 * obtaining the vnode lock in order to avoid possible deadlocks. 333 */ 334 vm_object_reference(fs.first_object); 335 fs.vp = vnode_pager_lock(fs.first_object); 336 vm_object_pip_add(fs.first_object, 1); 337 338 fs.lookup_still_valid = TRUE; 339 fs.first_m = NULL; 340 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 341 342 /* 343 * If the entry is wired we cannot change the page protection. 344 */ 345 if (fs.wired) 346 fault_type = fs.first_prot; 347 348 /* 349 * The page we want is at (first_object, first_pindex), but if the 350 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 351 * page table to figure out the actual pindex. 352 * 353 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 354 * ONLY 355 */ 356 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 357 result = vm_fault_vpagetable(&fs, &first_pindex, 358 fs.entry->aux.master_pde, 359 fault_type); 360 if (result == KERN_TRY_AGAIN) 361 goto RetryFault; 362 if (result != KERN_SUCCESS) 363 return (result); 364 } 365 366 /* 367 * Now we have the actual (object, pindex), fault in the page. If 368 * vm_fault_object() fails it will unlock and deallocate the FS 369 * data. If it succeeds everything remains locked and fs->object 370 * will have an additinal PIP count if it is not equal to 371 * fs->first_object 372 * 373 * vm_fault_object will set fs->prot for the pmap operation. It is 374 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 375 * page can be safely written. However, it will force a read-only 376 * mapping for a read fault if the memory is managed by a virtual 377 * page table. 378 */ 379 result = vm_fault_object(&fs, first_pindex, fault_type); 380 381 if (result == KERN_TRY_AGAIN) 382 goto RetryFault; 383 if (result != KERN_SUCCESS) 384 return (result); 385 386 /* 387 * On success vm_fault_object() does not unlock or deallocate, and fs.m 388 * will contain a busied page. 389 * 390 * Enter the page into the pmap and do pmap-related adjustments. 391 */ 392 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 393 394 /* 395 * Burst in a few more pages if possible. The fs.map should still 396 * be locked. 397 */ 398 if (fault_flags & VM_FAULT_BURST) { 399 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 && 400 fs.wired == 0) { 401 vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot); 402 } 403 } 404 unlock_things(&fs); 405 406 vm_page_flag_clear(fs.m, PG_ZERO); 407 vm_page_flag_set(fs.m, PG_REFERENCED); 408 409 /* 410 * If the page is not wired down, then put it where the pageout daemon 411 * can find it. 412 */ 413 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 414 if (fs.wired) 415 vm_page_wire(fs.m); 416 else 417 vm_page_unwire(fs.m, 1); 418 } else { 419 vm_page_activate(fs.m); 420 } 421 422 if (curthread->td_lwp) { 423 if (fs.hardfault) { 424 curthread->td_lwp->lwp_ru.ru_majflt++; 425 } else { 426 curthread->td_lwp->lwp_ru.ru_minflt++; 427 } 428 } 429 430 /* 431 * Unlock everything, and return 432 */ 433 vm_page_wakeup(fs.m); 434 vm_object_deallocate(fs.first_object); 435 436 return (KERN_SUCCESS); 437 } 438 439 /* 440 * Fault in the specified virtual address in the current process map, 441 * returning a held VM page or NULL. See vm_fault_page() for more 442 * information. 443 */ 444 vm_page_t 445 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 446 { 447 struct lwp *lp = curthread->td_lwp; 448 vm_page_t m; 449 450 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 451 fault_type, VM_FAULT_NORMAL, errorp); 452 return(m); 453 } 454 455 /* 456 * Fault in the specified virtual address in the specified map, doing all 457 * necessary manipulation of the object store and all necessary I/O. Return 458 * a held VM page or NULL, and set *errorp. The related pmap is not 459 * updated. 460 * 461 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 462 * and marked PG_REFERENCED as well. 463 * 464 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 465 * error will be returned. 466 */ 467 vm_page_t 468 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 469 int fault_flags, int *errorp) 470 { 471 vm_pindex_t first_pindex; 472 struct faultstate fs; 473 int result; 474 vm_prot_t orig_fault_type = fault_type; 475 476 mycpu->gd_cnt.v_vm_faults++; 477 478 fs.didlimit = 0; 479 fs.hardfault = 0; 480 fs.fault_flags = fault_flags; 481 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 482 483 RetryFault: 484 /* 485 * Find the vm_map_entry representing the backing store and resolve 486 * the top level object and page index. This may have the side 487 * effect of executing a copy-on-write on the map entry and/or 488 * creating a shadow object, but will not COW any actual VM pages. 489 * 490 * On success fs.map is left read-locked and various other fields 491 * are initialized but not otherwise referenced or locked. 492 * 493 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 494 * if the map entry is a virtual page table and also writable, 495 * so we can set the 'A'accessed bit in the virtual page table entry. 496 */ 497 fs.map = map; 498 result = vm_map_lookup(&fs.map, vaddr, fault_type, 499 &fs.entry, &fs.first_object, 500 &first_pindex, &fs.first_prot, &fs.wired); 501 502 if (result != KERN_SUCCESS) { 503 *errorp = result; 504 return (NULL); 505 } 506 507 /* 508 * fs.map is read-locked 509 * 510 * Misc checks. Save the map generation number to detect races. 511 */ 512 fs.map_generation = fs.map->timestamp; 513 514 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 515 panic("vm_fault: fault on nofault entry, addr: %lx", 516 (u_long)vaddr); 517 } 518 519 /* 520 * A system map entry may return a NULL object. No object means 521 * no pager means an unrecoverable kernel fault. 522 */ 523 if (fs.first_object == NULL) { 524 panic("vm_fault: unrecoverable fault at %p in entry %p", 525 (void *)vaddr, fs.entry); 526 } 527 528 /* 529 * Make a reference to this object to prevent its disposal while we 530 * are messing with it. Once we have the reference, the map is free 531 * to be diddled. Since objects reference their shadows (and copies), 532 * they will stay around as well. 533 * 534 * Bump the paging-in-progress count to prevent size changes (e.g. 535 * truncation operations) during I/O. This must be done after 536 * obtaining the vnode lock in order to avoid possible deadlocks. 537 */ 538 vm_object_reference(fs.first_object); 539 fs.vp = vnode_pager_lock(fs.first_object); 540 vm_object_pip_add(fs.first_object, 1); 541 542 fs.lookup_still_valid = TRUE; 543 fs.first_m = NULL; 544 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 545 546 /* 547 * If the entry is wired we cannot change the page protection. 548 */ 549 if (fs.wired) 550 fault_type = fs.first_prot; 551 552 /* 553 * The page we want is at (first_object, first_pindex), but if the 554 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 555 * page table to figure out the actual pindex. 556 * 557 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 558 * ONLY 559 */ 560 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 561 result = vm_fault_vpagetable(&fs, &first_pindex, 562 fs.entry->aux.master_pde, 563 fault_type); 564 if (result == KERN_TRY_AGAIN) 565 goto RetryFault; 566 if (result != KERN_SUCCESS) { 567 *errorp = result; 568 return (NULL); 569 } 570 } 571 572 /* 573 * Now we have the actual (object, pindex), fault in the page. If 574 * vm_fault_object() fails it will unlock and deallocate the FS 575 * data. If it succeeds everything remains locked and fs->object 576 * will have an additinal PIP count if it is not equal to 577 * fs->first_object 578 */ 579 result = vm_fault_object(&fs, first_pindex, fault_type); 580 581 if (result == KERN_TRY_AGAIN) 582 goto RetryFault; 583 if (result != KERN_SUCCESS) { 584 *errorp = result; 585 return(NULL); 586 } 587 588 if ((orig_fault_type & VM_PROT_WRITE) && 589 (fs.prot & VM_PROT_WRITE) == 0) { 590 *errorp = KERN_PROTECTION_FAILURE; 591 unlock_and_deallocate(&fs); 592 return(NULL); 593 } 594 595 /* 596 * On success vm_fault_object() does not unlock or deallocate, and fs.m 597 * will contain a busied page. 598 */ 599 unlock_things(&fs); 600 601 /* 602 * Return a held page. We are not doing any pmap manipulation so do 603 * not set PG_MAPPED. However, adjust the page flags according to 604 * the fault type because the caller may not use a managed pmapping 605 * (so we don't want to lose the fact that the page will be dirtied 606 * if a write fault was specified). 607 */ 608 vm_page_hold(fs.m); 609 vm_page_flag_clear(fs.m, PG_ZERO); 610 if (fault_type & VM_PROT_WRITE) 611 vm_page_dirty(fs.m); 612 613 /* 614 * Update the pmap. We really only have to do this if a COW 615 * occured to replace the read-only page with the new page. For 616 * now just do it unconditionally. XXX 617 */ 618 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 619 vm_page_flag_set(fs.m, PG_REFERENCED); 620 621 /* 622 * Unbusy the page by activating it. It remains held and will not 623 * be reclaimed. 624 */ 625 vm_page_activate(fs.m); 626 627 if (curthread->td_lwp) { 628 if (fs.hardfault) { 629 curthread->td_lwp->lwp_ru.ru_majflt++; 630 } else { 631 curthread->td_lwp->lwp_ru.ru_minflt++; 632 } 633 } 634 635 /* 636 * Unlock everything, and return the held page. 637 */ 638 vm_page_wakeup(fs.m); 639 vm_object_deallocate(fs.first_object); 640 641 *errorp = 0; 642 return(fs.m); 643 } 644 645 /* 646 * Fault in the specified (object,offset), dirty the returned page as 647 * needed. If the requested fault_type cannot be done NULL and an 648 * error is returned. 649 */ 650 vm_page_t 651 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 652 vm_prot_t fault_type, int fault_flags, int *errorp) 653 { 654 int result; 655 vm_pindex_t first_pindex; 656 struct faultstate fs; 657 struct vm_map_entry entry; 658 659 bzero(&entry, sizeof(entry)); 660 entry.object.vm_object = object; 661 entry.maptype = VM_MAPTYPE_NORMAL; 662 entry.protection = entry.max_protection = fault_type; 663 664 fs.didlimit = 0; 665 fs.hardfault = 0; 666 fs.fault_flags = fault_flags; 667 fs.map = NULL; 668 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 669 670 RetryFault: 671 672 fs.first_object = object; 673 first_pindex = OFF_TO_IDX(offset); 674 fs.entry = &entry; 675 fs.first_prot = fault_type; 676 fs.wired = 0; 677 /*fs.map_generation = 0; unused */ 678 679 /* 680 * Make a reference to this object to prevent its disposal while we 681 * are messing with it. Once we have the reference, the map is free 682 * to be diddled. Since objects reference their shadows (and copies), 683 * they will stay around as well. 684 * 685 * Bump the paging-in-progress count to prevent size changes (e.g. 686 * truncation operations) during I/O. This must be done after 687 * obtaining the vnode lock in order to avoid possible deadlocks. 688 */ 689 vm_object_reference(fs.first_object); 690 fs.vp = vnode_pager_lock(fs.first_object); 691 vm_object_pip_add(fs.first_object, 1); 692 693 fs.lookup_still_valid = TRUE; 694 fs.first_m = NULL; 695 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 696 697 #if 0 698 /* XXX future - ability to operate on VM object using vpagetable */ 699 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 700 result = vm_fault_vpagetable(&fs, &first_pindex, 701 fs.entry->aux.master_pde, 702 fault_type); 703 if (result == KERN_TRY_AGAIN) 704 goto RetryFault; 705 if (result != KERN_SUCCESS) { 706 *errorp = result; 707 return (NULL); 708 } 709 } 710 #endif 711 712 /* 713 * Now we have the actual (object, pindex), fault in the page. If 714 * vm_fault_object() fails it will unlock and deallocate the FS 715 * data. If it succeeds everything remains locked and fs->object 716 * will have an additinal PIP count if it is not equal to 717 * fs->first_object 718 */ 719 result = vm_fault_object(&fs, first_pindex, fault_type); 720 721 if (result == KERN_TRY_AGAIN) 722 goto RetryFault; 723 if (result != KERN_SUCCESS) { 724 *errorp = result; 725 return(NULL); 726 } 727 728 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 729 *errorp = KERN_PROTECTION_FAILURE; 730 unlock_and_deallocate(&fs); 731 return(NULL); 732 } 733 734 /* 735 * On success vm_fault_object() does not unlock or deallocate, and fs.m 736 * will contain a busied page. 737 */ 738 unlock_things(&fs); 739 740 /* 741 * Return a held page. We are not doing any pmap manipulation so do 742 * not set PG_MAPPED. However, adjust the page flags according to 743 * the fault type because the caller may not use a managed pmapping 744 * (so we don't want to lose the fact that the page will be dirtied 745 * if a write fault was specified). 746 */ 747 vm_page_hold(fs.m); 748 vm_page_flag_clear(fs.m, PG_ZERO); 749 if (fault_type & VM_PROT_WRITE) 750 vm_page_dirty(fs.m); 751 752 /* 753 * Indicate that the page was accessed. 754 */ 755 vm_page_flag_set(fs.m, PG_REFERENCED); 756 757 /* 758 * Unbusy the page by activating it. It remains held and will not 759 * be reclaimed. 760 */ 761 vm_page_activate(fs.m); 762 763 if (curthread->td_lwp) { 764 if (fs.hardfault) { 765 mycpu->gd_cnt.v_vm_faults++; 766 curthread->td_lwp->lwp_ru.ru_majflt++; 767 } else { 768 curthread->td_lwp->lwp_ru.ru_minflt++; 769 } 770 } 771 772 /* 773 * Unlock everything, and return the held page. 774 */ 775 vm_page_wakeup(fs.m); 776 vm_object_deallocate(fs.first_object); 777 778 *errorp = 0; 779 return(fs.m); 780 } 781 782 /* 783 * Translate the virtual page number (first_pindex) that is relative 784 * to the address space into a logical page number that is relative to the 785 * backing object. Use the virtual page table pointed to by (vpte). 786 * 787 * This implements an N-level page table. Any level can terminate the 788 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 789 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 790 */ 791 static 792 int 793 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 794 vpte_t vpte, int fault_type) 795 { 796 struct lwbuf *lwb; 797 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 798 int result = KERN_SUCCESS; 799 vpte_t *ptep; 800 801 for (;;) { 802 /* 803 * We cannot proceed if the vpte is not valid, not readable 804 * for a read fault, or not writable for a write fault. 805 */ 806 if ((vpte & VPTE_V) == 0) { 807 unlock_and_deallocate(fs); 808 return (KERN_FAILURE); 809 } 810 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) { 811 unlock_and_deallocate(fs); 812 return (KERN_FAILURE); 813 } 814 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) { 815 unlock_and_deallocate(fs); 816 return (KERN_FAILURE); 817 } 818 if ((vpte & VPTE_PS) || vshift == 0) 819 break; 820 KKASSERT(vshift >= VPTE_PAGE_BITS); 821 822 /* 823 * Get the page table page. Nominally we only read the page 824 * table, but since we are actively setting VPTE_M and VPTE_A, 825 * tell vm_fault_object() that we are writing it. 826 * 827 * There is currently no real need to optimize this. 828 */ 829 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 830 VM_PROT_READ|VM_PROT_WRITE); 831 if (result != KERN_SUCCESS) 832 return (result); 833 834 /* 835 * Process the returned fs.m and look up the page table 836 * entry in the page table page. 837 */ 838 vshift -= VPTE_PAGE_BITS; 839 lwb = lwbuf_alloc(fs->m); 840 ptep = ((vpte_t *)lwbuf_kva(lwb) + 841 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 842 vpte = *ptep; 843 844 /* 845 * Page table write-back. If the vpte is valid for the 846 * requested operation, do a write-back to the page table. 847 * 848 * XXX VPTE_M is not set properly for page directory pages. 849 * It doesn't get set in the page directory if the page table 850 * is modified during a read access. 851 */ 852 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 853 (vpte & VPTE_W)) { 854 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 855 atomic_set_long(ptep, VPTE_M | VPTE_A); 856 vm_page_dirty(fs->m); 857 } 858 } 859 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) && 860 (vpte & VPTE_R)) { 861 if ((vpte & VPTE_A) == 0) { 862 atomic_set_long(ptep, VPTE_A); 863 vm_page_dirty(fs->m); 864 } 865 } 866 lwbuf_free(lwb); 867 vm_page_flag_set(fs->m, PG_REFERENCED); 868 vm_page_activate(fs->m); 869 vm_page_wakeup(fs->m); 870 cleanup_successful_fault(fs); 871 } 872 /* 873 * Combine remaining address bits with the vpte. 874 */ 875 /* JG how many bits from each? */ 876 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 877 (*pindex & ((1L << vshift) - 1)); 878 return (KERN_SUCCESS); 879 } 880 881 882 /* 883 * Do all operations required to fault-in (fs.first_object, pindex). Run 884 * through the shadow chain as necessary and do required COW or virtual 885 * copy operations. The caller has already fully resolved the vm_map_entry 886 * and, if appropriate, has created a copy-on-write layer. All we need to 887 * do is iterate the object chain. 888 * 889 * On failure (fs) is unlocked and deallocated and the caller may return or 890 * retry depending on the failure code. On success (fs) is NOT unlocked or 891 * deallocated, fs.m will contained a resolved, busied page, and fs.object 892 * will have an additional PIP count if it is not equal to fs.first_object. 893 */ 894 static 895 int 896 vm_fault_object(struct faultstate *fs, 897 vm_pindex_t first_pindex, vm_prot_t fault_type) 898 { 899 vm_object_t next_object; 900 vm_pindex_t pindex; 901 902 fs->prot = fs->first_prot; 903 fs->object = fs->first_object; 904 pindex = first_pindex; 905 906 /* 907 * If a read fault occurs we try to make the page writable if 908 * possible. There are three cases where we cannot make the 909 * page mapping writable: 910 * 911 * (1) The mapping is read-only or the VM object is read-only, 912 * fs->prot above will simply not have VM_PROT_WRITE set. 913 * 914 * (2) If the mapping is a virtual page table we need to be able 915 * to detect writes so we can set VPTE_M in the virtual page 916 * table. 917 * 918 * (3) If the VM page is read-only or copy-on-write, upgrading would 919 * just result in an unnecessary COW fault. 920 * 921 * VM_PROT_VPAGED is set if faulting via a virtual page table and 922 * causes adjustments to the 'M'odify bit to also turn off write 923 * access to force a re-fault. 924 */ 925 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 926 if ((fault_type & VM_PROT_WRITE) == 0) 927 fs->prot &= ~VM_PROT_WRITE; 928 } 929 930 for (;;) { 931 /* 932 * If the object is dead, we stop here 933 */ 934 if (fs->object->flags & OBJ_DEAD) { 935 unlock_and_deallocate(fs); 936 return (KERN_PROTECTION_FAILURE); 937 } 938 939 /* 940 * See if page is resident. spl protection is required 941 * to avoid an interrupt unbusy/free race against our 942 * lookup. We must hold the protection through a page 943 * allocation or busy. 944 */ 945 crit_enter(); 946 fs->m = vm_page_lookup(fs->object, pindex); 947 if (fs->m != NULL) { 948 int queue; 949 /* 950 * Wait/Retry if the page is busy. We have to do this 951 * if the page is busy via either PG_BUSY or 952 * vm_page_t->busy because the vm_pager may be using 953 * vm_page_t->busy for pageouts ( and even pageins if 954 * it is the vnode pager ), and we could end up trying 955 * to pagein and pageout the same page simultaneously. 956 * 957 * We can theoretically allow the busy case on a read 958 * fault if the page is marked valid, but since such 959 * pages are typically already pmap'd, putting that 960 * special case in might be more effort then it is 961 * worth. We cannot under any circumstances mess 962 * around with a vm_page_t->busy page except, perhaps, 963 * to pmap it. 964 */ 965 if ((fs->m->flags & PG_BUSY) || fs->m->busy) { 966 unlock_things(fs); 967 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 968 mycpu->gd_cnt.v_intrans++; 969 vm_object_deallocate(fs->first_object); 970 fs->first_object = NULL; 971 crit_exit(); 972 return (KERN_TRY_AGAIN); 973 } 974 975 /* 976 * If reactivating a page from PQ_CACHE we may have 977 * to rate-limit. 978 */ 979 queue = fs->m->queue; 980 vm_page_unqueue_nowakeup(fs->m); 981 982 if ((queue - fs->m->pc) == PQ_CACHE && 983 vm_page_count_severe()) { 984 vm_page_activate(fs->m); 985 unlock_and_deallocate(fs); 986 vm_waitpfault(); 987 crit_exit(); 988 return (KERN_TRY_AGAIN); 989 } 990 991 /* 992 * Mark page busy for other processes, and the 993 * pagedaemon. If it still isn't completely valid 994 * (readable), or if a read-ahead-mark is set on 995 * the VM page, jump to readrest, else we found the 996 * page and can return. 997 * 998 * We can release the spl once we have marked the 999 * page busy. 1000 */ 1001 vm_page_busy(fs->m); 1002 crit_exit(); 1003 1004 if (fs->m->object != &kernel_object) { 1005 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1006 VM_PAGE_BITS_ALL) { 1007 goto readrest; 1008 } 1009 if (fs->m->flags & PG_RAM) { 1010 if (debug_cluster) 1011 kprintf("R"); 1012 vm_page_flag_clear(fs->m, PG_RAM); 1013 goto readrest; 1014 } 1015 } 1016 break; /* break to PAGE HAS BEEN FOUND */ 1017 } 1018 1019 /* 1020 * Page is not resident, If this is the search termination 1021 * or the pager might contain the page, allocate a new page. 1022 * 1023 * NOTE: We are still in a critical section. 1024 */ 1025 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1026 /* 1027 * If the page is beyond the object size we fail 1028 */ 1029 if (pindex >= fs->object->size) { 1030 crit_exit(); 1031 unlock_and_deallocate(fs); 1032 return (KERN_PROTECTION_FAILURE); 1033 } 1034 1035 /* 1036 * Ratelimit. 1037 */ 1038 if (fs->didlimit == 0 && curproc != NULL) { 1039 int limticks; 1040 1041 limticks = vm_fault_ratelimit(curproc->p_vmspace); 1042 if (limticks) { 1043 crit_exit(); 1044 unlock_and_deallocate(fs); 1045 tsleep(curproc, 0, "vmrate", limticks); 1046 fs->didlimit = 1; 1047 return (KERN_TRY_AGAIN); 1048 } 1049 } 1050 1051 /* 1052 * Allocate a new page for this object/offset pair. 1053 */ 1054 fs->m = NULL; 1055 if (!vm_page_count_severe()) { 1056 fs->m = vm_page_alloc(fs->object, pindex, 1057 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 1058 } 1059 if (fs->m == NULL) { 1060 crit_exit(); 1061 unlock_and_deallocate(fs); 1062 vm_waitpfault(); 1063 return (KERN_TRY_AGAIN); 1064 } 1065 } 1066 crit_exit(); 1067 1068 readrest: 1069 /* 1070 * We have found an invalid or partially valid page, a 1071 * page with a read-ahead mark which might be partially or 1072 * fully valid (and maybe dirty too), or we have allocated 1073 * a new page. 1074 * 1075 * Attempt to fault-in the page if there is a chance that the 1076 * pager has it, and potentially fault in additional pages 1077 * at the same time. 1078 * 1079 * We are NOT in splvm here and if TRYPAGER is true then 1080 * fs.m will be non-NULL and will be PG_BUSY for us. 1081 */ 1082 if (TRYPAGER(fs)) { 1083 int rv; 1084 int seqaccess; 1085 u_char behavior = vm_map_entry_behavior(fs->entry); 1086 1087 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1088 seqaccess = 0; 1089 else 1090 seqaccess = -1; 1091 1092 /* 1093 * If sequential access is detected then attempt 1094 * to deactivate/cache pages behind the scan to 1095 * prevent resource hogging. 1096 * 1097 * Use of PG_RAM to detect sequential access 1098 * also simulates multi-zone sequential access 1099 * detection for free. 1100 * 1101 * NOTE: Partially valid dirty pages cannot be 1102 * deactivated without causing NFS picemeal 1103 * writes to barf. 1104 */ 1105 if ((fs->first_object->type != OBJT_DEVICE) && 1106 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1107 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1108 (fs->m->flags & PG_RAM))) 1109 ) { 1110 vm_pindex_t scan_pindex; 1111 int scan_count = 16; 1112 1113 if (first_pindex < 16) { 1114 scan_pindex = 0; 1115 scan_count = 0; 1116 } else { 1117 scan_pindex = first_pindex - 16; 1118 if (scan_pindex < 16) 1119 scan_count = scan_pindex; 1120 else 1121 scan_count = 16; 1122 } 1123 1124 crit_enter(); 1125 while (scan_count) { 1126 vm_page_t mt; 1127 1128 mt = vm_page_lookup(fs->first_object, 1129 scan_pindex); 1130 if (mt == NULL || 1131 (mt->valid != VM_PAGE_BITS_ALL)) { 1132 break; 1133 } 1134 if (mt->busy || 1135 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) || 1136 mt->hold_count || 1137 mt->wire_count) { 1138 goto skip; 1139 } 1140 if (mt->dirty == 0) 1141 vm_page_test_dirty(mt); 1142 if (mt->dirty) { 1143 vm_page_busy(mt); 1144 vm_page_protect(mt, 1145 VM_PROT_NONE); 1146 vm_page_deactivate(mt); 1147 vm_page_wakeup(mt); 1148 } else { 1149 vm_page_cache(mt); 1150 } 1151 skip: 1152 --scan_count; 1153 --scan_pindex; 1154 } 1155 crit_exit(); 1156 1157 seqaccess = 1; 1158 } 1159 1160 /* 1161 * Avoid deadlocking against the map when doing I/O. 1162 * fs.object and the page is PG_BUSY'd. 1163 */ 1164 unlock_map(fs); 1165 1166 /* 1167 * Acquire the page data. We still hold a ref on 1168 * fs.object and the page has been PG_BUSY's. 1169 * 1170 * The pager may replace the page (for example, in 1171 * order to enter a fictitious page into the 1172 * object). If it does so it is responsible for 1173 * cleaning up the passed page and properly setting 1174 * the new page PG_BUSY. 1175 * 1176 * If we got here through a PG_RAM read-ahead 1177 * mark the page may be partially dirty and thus 1178 * not freeable. Don't bother checking to see 1179 * if the pager has the page because we can't free 1180 * it anyway. We have to depend on the get_page 1181 * operation filling in any gaps whether there is 1182 * backing store or not. 1183 */ 1184 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1185 1186 if (rv == VM_PAGER_OK) { 1187 /* 1188 * Relookup in case pager changed page. Pager 1189 * is responsible for disposition of old page 1190 * if moved. 1191 * 1192 * XXX other code segments do relookups too. 1193 * It's a bad abstraction that needs to be 1194 * fixed/removed. 1195 */ 1196 fs->m = vm_page_lookup(fs->object, pindex); 1197 if (fs->m == NULL) { 1198 unlock_and_deallocate(fs); 1199 return (KERN_TRY_AGAIN); 1200 } 1201 1202 ++fs->hardfault; 1203 break; /* break to PAGE HAS BEEN FOUND */ 1204 } 1205 1206 /* 1207 * Remove the bogus page (which does not exist at this 1208 * object/offset); before doing so, we must get back 1209 * our object lock to preserve our invariant. 1210 * 1211 * Also wake up any other process that may want to bring 1212 * in this page. 1213 * 1214 * If this is the top-level object, we must leave the 1215 * busy page to prevent another process from rushing 1216 * past us, and inserting the page in that object at 1217 * the same time that we are. 1218 */ 1219 if (rv == VM_PAGER_ERROR) { 1220 if (curproc) 1221 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm); 1222 else 1223 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm); 1224 } 1225 1226 /* 1227 * Data outside the range of the pager or an I/O error 1228 * 1229 * The page may have been wired during the pagein, 1230 * e.g. by the buffer cache, and cannot simply be 1231 * freed. Call vnode_pager_freepage() to deal with it. 1232 */ 1233 /* 1234 * XXX - the check for kernel_map is a kludge to work 1235 * around having the machine panic on a kernel space 1236 * fault w/ I/O error. 1237 */ 1238 if (((fs->map != &kernel_map) && 1239 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1240 vnode_pager_freepage(fs->m); 1241 fs->m = NULL; 1242 unlock_and_deallocate(fs); 1243 if (rv == VM_PAGER_ERROR) 1244 return (KERN_FAILURE); 1245 else 1246 return (KERN_PROTECTION_FAILURE); 1247 /* NOT REACHED */ 1248 } 1249 if (fs->object != fs->first_object) { 1250 vnode_pager_freepage(fs->m); 1251 fs->m = NULL; 1252 /* 1253 * XXX - we cannot just fall out at this 1254 * point, m has been freed and is invalid! 1255 */ 1256 } 1257 } 1258 1259 /* 1260 * We get here if the object has a default pager (or unwiring) 1261 * or the pager doesn't have the page. 1262 */ 1263 if (fs->object == fs->first_object) 1264 fs->first_m = fs->m; 1265 1266 /* 1267 * Move on to the next object. Lock the next object before 1268 * unlocking the current one. 1269 */ 1270 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1271 next_object = fs->object->backing_object; 1272 if (next_object == NULL) { 1273 /* 1274 * If there's no object left, fill the page in the top 1275 * object with zeros. 1276 */ 1277 if (fs->object != fs->first_object) { 1278 vm_object_pip_wakeup(fs->object); 1279 1280 fs->object = fs->first_object; 1281 pindex = first_pindex; 1282 fs->m = fs->first_m; 1283 } 1284 fs->first_m = NULL; 1285 1286 /* 1287 * Zero the page if necessary and mark it valid. 1288 */ 1289 if ((fs->m->flags & PG_ZERO) == 0) { 1290 vm_page_zero_fill(fs->m); 1291 } else { 1292 mycpu->gd_cnt.v_ozfod++; 1293 } 1294 mycpu->gd_cnt.v_zfod++; 1295 fs->m->valid = VM_PAGE_BITS_ALL; 1296 break; /* break to PAGE HAS BEEN FOUND */ 1297 } else { 1298 if (fs->object != fs->first_object) { 1299 vm_object_pip_wakeup(fs->object); 1300 } 1301 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1302 fs->object = next_object; 1303 vm_object_pip_add(fs->object, 1); 1304 } 1305 } 1306 1307 /* 1308 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1309 * is held.] 1310 * 1311 * If the page is being written, but isn't already owned by the 1312 * top-level object, we have to copy it into a new page owned by the 1313 * top-level object. 1314 */ 1315 KASSERT((fs->m->flags & PG_BUSY) != 0, 1316 ("vm_fault: not busy after main loop")); 1317 1318 if (fs->object != fs->first_object) { 1319 /* 1320 * We only really need to copy if we want to write it. 1321 */ 1322 if (fault_type & VM_PROT_WRITE) { 1323 /* 1324 * This allows pages to be virtually copied from a 1325 * backing_object into the first_object, where the 1326 * backing object has no other refs to it, and cannot 1327 * gain any more refs. Instead of a bcopy, we just 1328 * move the page from the backing object to the 1329 * first object. Note that we must mark the page 1330 * dirty in the first object so that it will go out 1331 * to swap when needed. 1332 */ 1333 if ( 1334 /* 1335 * Map, if present, has not changed 1336 */ 1337 (fs->map == NULL || 1338 fs->map_generation == fs->map->timestamp) && 1339 /* 1340 * Only one shadow object 1341 */ 1342 (fs->object->shadow_count == 1) && 1343 /* 1344 * No COW refs, except us 1345 */ 1346 (fs->object->ref_count == 1) && 1347 /* 1348 * No one else can look this object up 1349 */ 1350 (fs->object->handle == NULL) && 1351 /* 1352 * No other ways to look the object up 1353 */ 1354 ((fs->object->type == OBJT_DEFAULT) || 1355 (fs->object->type == OBJT_SWAP)) && 1356 /* 1357 * We don't chase down the shadow chain 1358 */ 1359 (fs->object == fs->first_object->backing_object) && 1360 1361 /* 1362 * grab the lock if we need to 1363 */ 1364 (fs->lookup_still_valid || 1365 fs->map == NULL || 1366 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1367 ) { 1368 1369 fs->lookup_still_valid = 1; 1370 /* 1371 * get rid of the unnecessary page 1372 */ 1373 vm_page_protect(fs->first_m, VM_PROT_NONE); 1374 vm_page_free(fs->first_m); 1375 fs->first_m = NULL; 1376 1377 /* 1378 * grab the page and put it into the 1379 * process'es object. The page is 1380 * automatically made dirty. 1381 */ 1382 vm_page_rename(fs->m, fs->first_object, first_pindex); 1383 fs->first_m = fs->m; 1384 vm_page_busy(fs->first_m); 1385 fs->m = NULL; 1386 mycpu->gd_cnt.v_cow_optim++; 1387 } else { 1388 /* 1389 * Oh, well, lets copy it. 1390 */ 1391 vm_page_copy(fs->m, fs->first_m); 1392 vm_page_event(fs->m, VMEVENT_COW); 1393 } 1394 1395 if (fs->m) { 1396 /* 1397 * We no longer need the old page or object. 1398 */ 1399 release_page(fs); 1400 } 1401 1402 /* 1403 * fs->object != fs->first_object due to above 1404 * conditional 1405 */ 1406 vm_object_pip_wakeup(fs->object); 1407 1408 /* 1409 * Only use the new page below... 1410 */ 1411 1412 mycpu->gd_cnt.v_cow_faults++; 1413 fs->m = fs->first_m; 1414 fs->object = fs->first_object; 1415 pindex = first_pindex; 1416 } else { 1417 /* 1418 * If it wasn't a write fault avoid having to copy 1419 * the page by mapping it read-only. 1420 */ 1421 fs->prot &= ~VM_PROT_WRITE; 1422 } 1423 } 1424 1425 /* 1426 * We may have had to unlock a map to do I/O. If we did then 1427 * lookup_still_valid will be FALSE. If the map generation count 1428 * also changed then all sorts of things could have happened while 1429 * we were doing the I/O and we need to retry. 1430 */ 1431 1432 if (!fs->lookup_still_valid && 1433 fs->map != NULL && 1434 (fs->map->timestamp != fs->map_generation)) { 1435 release_page(fs); 1436 unlock_and_deallocate(fs); 1437 return (KERN_TRY_AGAIN); 1438 } 1439 1440 /* 1441 * If the fault is a write, we know that this page is being 1442 * written NOW so dirty it explicitly to save on pmap_is_modified() 1443 * calls later. 1444 * 1445 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1446 * if the page is already dirty to prevent data written with 1447 * the expectation of being synced from not being synced. 1448 * Likewise if this entry does not request NOSYNC then make 1449 * sure the page isn't marked NOSYNC. Applications sharing 1450 * data should use the same flags to avoid ping ponging. 1451 * 1452 * Also tell the backing pager, if any, that it should remove 1453 * any swap backing since the page is now dirty. 1454 */ 1455 if (fs->prot & VM_PROT_WRITE) { 1456 vm_object_set_writeable_dirty(fs->m->object); 1457 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) { 1458 if (fs->m->dirty == 0) 1459 vm_page_flag_set(fs->m, PG_NOSYNC); 1460 } else { 1461 vm_page_flag_clear(fs->m, PG_NOSYNC); 1462 } 1463 if (fs->fault_flags & VM_FAULT_DIRTY) { 1464 crit_enter(); 1465 vm_page_dirty(fs->m); 1466 swap_pager_unswapped(fs->m); 1467 crit_exit(); 1468 } 1469 } 1470 1471 /* 1472 * Page had better still be busy. We are still locked up and 1473 * fs->object will have another PIP reference if it is not equal 1474 * to fs->first_object. 1475 */ 1476 KASSERT(fs->m->flags & PG_BUSY, 1477 ("vm_fault: page %p not busy!", fs->m)); 1478 1479 /* 1480 * Sanity check: page must be completely valid or it is not fit to 1481 * map into user space. vm_pager_get_pages() ensures this. 1482 */ 1483 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1484 vm_page_zero_invalid(fs->m, TRUE); 1485 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1486 } 1487 1488 return (KERN_SUCCESS); 1489 } 1490 1491 /* 1492 * Wire down a range of virtual addresses in a map. The entry in question 1493 * should be marked in-transition and the map must be locked. We must 1494 * release the map temporarily while faulting-in the page to avoid a 1495 * deadlock. Note that the entry may be clipped while we are blocked but 1496 * will never be freed. 1497 */ 1498 int 1499 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1500 { 1501 boolean_t fictitious; 1502 vm_offset_t start; 1503 vm_offset_t end; 1504 vm_offset_t va; 1505 vm_paddr_t pa; 1506 pmap_t pmap; 1507 int rv; 1508 1509 pmap = vm_map_pmap(map); 1510 start = entry->start; 1511 end = entry->end; 1512 fictitious = entry->object.vm_object && 1513 (entry->object.vm_object->type == OBJT_DEVICE); 1514 1515 vm_map_unlock(map); 1516 map->timestamp++; 1517 1518 /* 1519 * We simulate a fault to get the page and enter it in the physical 1520 * map. 1521 */ 1522 for (va = start; va < end; va += PAGE_SIZE) { 1523 if (user_wire) { 1524 rv = vm_fault(map, va, VM_PROT_READ, 1525 VM_FAULT_USER_WIRE); 1526 } else { 1527 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1528 VM_FAULT_CHANGE_WIRING); 1529 } 1530 if (rv) { 1531 while (va > start) { 1532 va -= PAGE_SIZE; 1533 if ((pa = pmap_extract(pmap, va)) == 0) 1534 continue; 1535 pmap_change_wiring(pmap, va, FALSE); 1536 if (!fictitious) 1537 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1538 } 1539 vm_map_lock(map); 1540 return (rv); 1541 } 1542 } 1543 vm_map_lock(map); 1544 return (KERN_SUCCESS); 1545 } 1546 1547 /* 1548 * Unwire a range of virtual addresses in a map. The map should be 1549 * locked. 1550 */ 1551 void 1552 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 1553 { 1554 boolean_t fictitious; 1555 vm_offset_t start; 1556 vm_offset_t end; 1557 vm_offset_t va; 1558 vm_paddr_t pa; 1559 pmap_t pmap; 1560 1561 pmap = vm_map_pmap(map); 1562 start = entry->start; 1563 end = entry->end; 1564 fictitious = entry->object.vm_object && 1565 (entry->object.vm_object->type == OBJT_DEVICE); 1566 1567 /* 1568 * Since the pages are wired down, we must be able to get their 1569 * mappings from the physical map system. 1570 */ 1571 for (va = start; va < end; va += PAGE_SIZE) { 1572 pa = pmap_extract(pmap, va); 1573 if (pa != 0) { 1574 pmap_change_wiring(pmap, va, FALSE); 1575 if (!fictitious) 1576 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1577 } 1578 } 1579 } 1580 1581 /* 1582 * Reduce the rate at which memory is allocated to a process based 1583 * on the perceived load on the VM system. As the load increases 1584 * the allocation burst rate goes down and the delay increases. 1585 * 1586 * Rate limiting does not apply when faulting active or inactive 1587 * pages. When faulting 'cache' pages, rate limiting only applies 1588 * if the system currently has a severe page deficit. 1589 * 1590 * XXX vm_pagesupply should be increased when a page is freed. 1591 * 1592 * We sleep up to 1/10 of a second. 1593 */ 1594 static int 1595 vm_fault_ratelimit(struct vmspace *vmspace) 1596 { 1597 if (vm_load_enable == 0) 1598 return(0); 1599 if (vmspace->vm_pagesupply > 0) { 1600 --vmspace->vm_pagesupply; 1601 return(0); 1602 } 1603 #ifdef INVARIANTS 1604 if (vm_load_debug) { 1605 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n", 1606 vm_load, 1607 (1000 - vm_load ) / 10, vm_load * hz / 10000, 1608 curproc->p_pid, curproc->p_comm); 1609 } 1610 #endif 1611 vmspace->vm_pagesupply = (1000 - vm_load) / 10; 1612 return(vm_load * hz / 10000); 1613 } 1614 1615 /* 1616 * Routine: 1617 * vm_fault_copy_entry 1618 * Function: 1619 * Copy all of the pages from a wired-down map entry to another. 1620 * 1621 * In/out conditions: 1622 * The source and destination maps must be locked for write. 1623 * The source map entry must be wired down (or be a sharing map 1624 * entry corresponding to a main map entry that is wired down). 1625 */ 1626 1627 void 1628 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1629 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 1630 { 1631 vm_object_t dst_object; 1632 vm_object_t src_object; 1633 vm_ooffset_t dst_offset; 1634 vm_ooffset_t src_offset; 1635 vm_prot_t prot; 1636 vm_offset_t vaddr; 1637 vm_page_t dst_m; 1638 vm_page_t src_m; 1639 1640 #ifdef lint 1641 src_map++; 1642 #endif /* lint */ 1643 1644 src_object = src_entry->object.vm_object; 1645 src_offset = src_entry->offset; 1646 1647 /* 1648 * Create the top-level object for the destination entry. (Doesn't 1649 * actually shadow anything - we copy the pages directly.) 1650 */ 1651 vm_map_entry_allocate_object(dst_entry); 1652 dst_object = dst_entry->object.vm_object; 1653 1654 prot = dst_entry->max_protection; 1655 1656 /* 1657 * Loop through all of the pages in the entry's range, copying each 1658 * one from the source object (it should be there) to the destination 1659 * object. 1660 */ 1661 for (vaddr = dst_entry->start, dst_offset = 0; 1662 vaddr < dst_entry->end; 1663 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1664 1665 /* 1666 * Allocate a page in the destination object 1667 */ 1668 do { 1669 dst_m = vm_page_alloc(dst_object, 1670 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 1671 if (dst_m == NULL) { 1672 vm_wait(0); 1673 } 1674 } while (dst_m == NULL); 1675 1676 /* 1677 * Find the page in the source object, and copy it in. 1678 * (Because the source is wired down, the page will be in 1679 * memory.) 1680 */ 1681 src_m = vm_page_lookup(src_object, 1682 OFF_TO_IDX(dst_offset + src_offset)); 1683 if (src_m == NULL) 1684 panic("vm_fault_copy_wired: page missing"); 1685 1686 vm_page_copy(src_m, dst_m); 1687 vm_page_event(src_m, VMEVENT_COW); 1688 1689 /* 1690 * Enter it in the pmap... 1691 */ 1692 1693 vm_page_flag_clear(dst_m, PG_ZERO); 1694 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1695 1696 /* 1697 * Mark it no longer busy, and put it on the active list. 1698 */ 1699 vm_page_activate(dst_m); 1700 vm_page_wakeup(dst_m); 1701 } 1702 } 1703 1704 #if 0 1705 1706 /* 1707 * This routine checks around the requested page for other pages that 1708 * might be able to be faulted in. This routine brackets the viable 1709 * pages for the pages to be paged in. 1710 * 1711 * Inputs: 1712 * m, rbehind, rahead 1713 * 1714 * Outputs: 1715 * marray (array of vm_page_t), reqpage (index of requested page) 1716 * 1717 * Return value: 1718 * number of pages in marray 1719 */ 1720 static int 1721 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 1722 vm_page_t *marray, int *reqpage) 1723 { 1724 int i,j; 1725 vm_object_t object; 1726 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1727 vm_page_t rtm; 1728 int cbehind, cahead; 1729 1730 object = m->object; 1731 pindex = m->pindex; 1732 1733 /* 1734 * we don't fault-ahead for device pager 1735 */ 1736 if (object->type == OBJT_DEVICE) { 1737 *reqpage = 0; 1738 marray[0] = m; 1739 return 1; 1740 } 1741 1742 /* 1743 * if the requested page is not available, then give up now 1744 */ 1745 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1746 *reqpage = 0; /* not used by caller, fix compiler warn */ 1747 return 0; 1748 } 1749 1750 if ((cbehind == 0) && (cahead == 0)) { 1751 *reqpage = 0; 1752 marray[0] = m; 1753 return 1; 1754 } 1755 1756 if (rahead > cahead) { 1757 rahead = cahead; 1758 } 1759 1760 if (rbehind > cbehind) { 1761 rbehind = cbehind; 1762 } 1763 1764 /* 1765 * Do not do any readahead if we have insufficient free memory. 1766 * 1767 * XXX code was broken disabled before and has instability 1768 * with this conditonal fixed, so shortcut for now. 1769 */ 1770 if (burst_fault == 0 || vm_page_count_severe()) { 1771 marray[0] = m; 1772 *reqpage = 0; 1773 return 1; 1774 } 1775 1776 /* 1777 * scan backward for the read behind pages -- in memory 1778 * 1779 * Assume that if the page is not found an interrupt will not 1780 * create it. Theoretically interrupts can only remove (busy) 1781 * pages, not create new associations. 1782 */ 1783 if (pindex > 0) { 1784 if (rbehind > pindex) { 1785 rbehind = pindex; 1786 startpindex = 0; 1787 } else { 1788 startpindex = pindex - rbehind; 1789 } 1790 1791 crit_enter(); 1792 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 1793 if (vm_page_lookup(object, tpindex - 1)) 1794 break; 1795 } 1796 1797 i = 0; 1798 while (tpindex < pindex) { 1799 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1800 if (rtm == NULL) { 1801 crit_exit(); 1802 for (j = 0; j < i; j++) { 1803 vm_page_free(marray[j]); 1804 } 1805 marray[0] = m; 1806 *reqpage = 0; 1807 return 1; 1808 } 1809 marray[i] = rtm; 1810 ++i; 1811 ++tpindex; 1812 } 1813 crit_exit(); 1814 } else { 1815 i = 0; 1816 } 1817 1818 /* 1819 * Assign requested page 1820 */ 1821 marray[i] = m; 1822 *reqpage = i; 1823 ++i; 1824 1825 /* 1826 * Scan forwards for read-ahead pages 1827 */ 1828 tpindex = pindex + 1; 1829 endpindex = tpindex + rahead; 1830 if (endpindex > object->size) 1831 endpindex = object->size; 1832 1833 crit_enter(); 1834 while (tpindex < endpindex) { 1835 if (vm_page_lookup(object, tpindex)) 1836 break; 1837 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1838 if (rtm == NULL) 1839 break; 1840 marray[i] = rtm; 1841 ++i; 1842 ++tpindex; 1843 } 1844 crit_exit(); 1845 1846 return (i); 1847 } 1848 1849 #endif 1850 1851 /* 1852 * vm_prefault() provides a quick way of clustering pagefaults into a 1853 * processes address space. It is a "cousin" of pmap_object_init_pt, 1854 * except it runs at page fault time instead of mmap time. 1855 * 1856 * This code used to be per-platform pmap_prefault(). It is now 1857 * machine-independent and enhanced to also pre-fault zero-fill pages 1858 * (see vm.fast_fault) as well as make them writable, which greatly 1859 * reduces the number of page faults programs incur. 1860 * 1861 * Application performance when pre-faulting zero-fill pages is heavily 1862 * dependent on the application. Very tiny applications like /bin/echo 1863 * lose a little performance while applications of any appreciable size 1864 * gain performance. Prefaulting multiple pages also reduces SMP 1865 * congestion and can improve SMP performance significantly. 1866 * 1867 * NOTE! prot may allow writing but this only applies to the top level 1868 * object. If we wind up mapping a page extracted from a backing 1869 * object we have to make sure it is read-only. 1870 * 1871 * NOTE! The caller has already handled any COW operations on the 1872 * vm_map_entry via the normal fault code. Do NOT call this 1873 * shortcut unless the normal fault code has run on this entry. 1874 */ 1875 #define PFBAK 4 1876 #define PFFOR 4 1877 #define PAGEORDER_SIZE (PFBAK+PFFOR) 1878 1879 static int vm_prefault_pageorder[] = { 1880 -PAGE_SIZE, PAGE_SIZE, 1881 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 1882 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 1883 -4 * PAGE_SIZE, 4 * PAGE_SIZE 1884 }; 1885 1886 static void 1887 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot) 1888 { 1889 struct lwp *lp; 1890 vm_page_t m; 1891 vm_offset_t starta; 1892 vm_offset_t addr; 1893 vm_pindex_t index; 1894 vm_pindex_t pindex; 1895 vm_object_t object; 1896 int pprot; 1897 int i; 1898 1899 /* 1900 * We do not currently prefault mappings that use virtual page 1901 * tables. We do not prefault foreign pmaps. 1902 */ 1903 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 1904 return; 1905 lp = curthread->td_lwp; 1906 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 1907 return; 1908 1909 object = entry->object.vm_object; 1910 1911 starta = addra - PFBAK * PAGE_SIZE; 1912 if (starta < entry->start) 1913 starta = entry->start; 1914 else if (starta > addra) 1915 starta = 0; 1916 1917 /* 1918 * critical section protection is required to maintain the 1919 * page/object association, interrupts can free pages and remove 1920 * them from their objects. 1921 */ 1922 crit_enter(); 1923 for (i = 0; i < PAGEORDER_SIZE; i++) { 1924 vm_object_t lobject; 1925 int allocated = 0; 1926 1927 addr = addra + vm_prefault_pageorder[i]; 1928 if (addr > addra + (PFFOR * PAGE_SIZE)) 1929 addr = 0; 1930 1931 if (addr < starta || addr >= entry->end) 1932 continue; 1933 1934 if (pmap_prefault_ok(pmap, addr) == 0) 1935 continue; 1936 1937 /* 1938 * Follow the VM object chain to obtain the page to be mapped 1939 * into the pmap. 1940 * 1941 * If we reach the terminal object without finding a page 1942 * and we determine it would be advantageous, then allocate 1943 * a zero-fill page for the base object. The base object 1944 * is guaranteed to be OBJT_DEFAULT for this case. 1945 * 1946 * In order to not have to check the pager via *haspage*() 1947 * we stop if any non-default object is encountered. e.g. 1948 * a vnode or swap object would stop the loop. 1949 */ 1950 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1951 lobject = object; 1952 pindex = index; 1953 pprot = prot; 1954 1955 while ((m = vm_page_lookup(lobject, pindex)) == NULL) { 1956 if (lobject->type != OBJT_DEFAULT) 1957 break; 1958 if (lobject->backing_object == NULL) { 1959 if (vm_fast_fault == 0) 1960 break; 1961 if (vm_prefault_pageorder[i] < 0 || 1962 (prot & VM_PROT_WRITE) == 0 || 1963 vm_page_count_min(0)) { 1964 break; 1965 } 1966 /* note: allocate from base object */ 1967 m = vm_page_alloc(object, index, 1968 VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 1969 1970 if ((m->flags & PG_ZERO) == 0) { 1971 vm_page_zero_fill(m); 1972 } else { 1973 vm_page_flag_clear(m, PG_ZERO); 1974 mycpu->gd_cnt.v_ozfod++; 1975 } 1976 mycpu->gd_cnt.v_zfod++; 1977 m->valid = VM_PAGE_BITS_ALL; 1978 allocated = 1; 1979 pprot = prot; 1980 /* lobject = object .. not needed */ 1981 break; 1982 } 1983 if (lobject->backing_object_offset & PAGE_MASK) 1984 break; 1985 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1986 lobject = lobject->backing_object; 1987 pprot &= ~VM_PROT_WRITE; 1988 } 1989 /* 1990 * NOTE: lobject now invalid (if we did a zero-fill we didn't 1991 * bother assigning lobject = object). 1992 * 1993 * Give-up if the page is not available. 1994 */ 1995 if (m == NULL) 1996 break; 1997 1998 /* 1999 * Do not conditionalize on PG_RAM. If pages are present in 2000 * the VM system we assume optimal caching. If caching is 2001 * not optimal the I/O gravy train will be restarted when we 2002 * hit an unavailable page. We do not want to try to restart 2003 * the gravy train now because we really don't know how much 2004 * of the object has been cached. The cost for restarting 2005 * the gravy train should be low (since accesses will likely 2006 * be I/O bound anyway). 2007 * 2008 * The object must be marked dirty if we are mapping a 2009 * writable page. 2010 */ 2011 if (pprot & VM_PROT_WRITE) 2012 vm_object_set_writeable_dirty(m->object); 2013 2014 /* 2015 * Enter the page into the pmap if appropriate. If we had 2016 * allocated the page we have to place it on a queue. If not 2017 * we just have to make sure it isn't on the cache queue 2018 * (pages on the cache queue are not allowed to be mapped). 2019 */ 2020 if (allocated) { 2021 pmap_enter(pmap, addr, m, pprot, 0); 2022 vm_page_deactivate(m); 2023 vm_page_wakeup(m); 2024 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2025 (m->busy == 0) && 2026 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) { 2027 2028 if ((m->queue - m->pc) == PQ_CACHE) { 2029 vm_page_deactivate(m); 2030 } 2031 vm_page_busy(m); 2032 pmap_enter(pmap, addr, m, pprot, 0); 2033 vm_page_wakeup(m); 2034 } 2035 } 2036 crit_exit(); 2037 } 2038