xref: /dflybsd-src/sys/vm/vm_fault.c (revision e7302aa08274de307cd2c3345fc64c56dbe56e21)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
71  */
72 
73 /*
74  *	Page fault handling module.
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/lock.h>
86 #include <sys/sysctl.h>
87 
88 #include <cpu/lwbuf.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101 
102 #include <sys/thread2.h>
103 #include <vm/vm_page2.h>
104 
105 struct faultstate {
106 	vm_page_t m;
107 	vm_object_t object;
108 	vm_pindex_t pindex;
109 	vm_prot_t prot;
110 	vm_page_t first_m;
111 	vm_object_t first_object;
112 	vm_prot_t first_prot;
113 	vm_map_t map;
114 	vm_map_entry_t entry;
115 	int lookup_still_valid;
116 	int didlimit;
117 	int hardfault;
118 	int fault_flags;
119 	int map_generation;
120 	boolean_t wired;
121 	struct vnode *vp;
122 };
123 
124 static int vm_fast_fault = 1;
125 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, "");
126 static int debug_cluster = 0;
127 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
128 
129 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
130 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
131 #if 0
132 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
133 #endif
134 static int vm_fault_ratelimit(struct vmspace *);
135 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
136 			int prot);
137 
138 static __inline void
139 release_page(struct faultstate *fs)
140 {
141 	vm_page_deactivate(fs->m);
142 	vm_page_wakeup(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static __inline void
147 unlock_map(struct faultstate *fs)
148 {
149 	if (fs->lookup_still_valid && fs->map) {
150 		vm_map_lookup_done(fs->map, fs->entry, 0);
151 		fs->lookup_still_valid = FALSE;
152 	}
153 }
154 
155 /*
156  * Clean up after a successful call to vm_fault_object() so another call
157  * to vm_fault_object() can be made.
158  */
159 static void
160 _cleanup_successful_fault(struct faultstate *fs, int relock)
161 {
162 	if (fs->object != fs->first_object) {
163 		vm_page_free(fs->first_m);
164 		vm_object_pip_wakeup(fs->object);
165 		fs->first_m = NULL;
166 	}
167 	fs->object = fs->first_object;
168 	if (relock && fs->lookup_still_valid == FALSE) {
169 		if (fs->map)
170 			vm_map_lock_read(fs->map);
171 		fs->lookup_still_valid = TRUE;
172 	}
173 }
174 
175 static void
176 _unlock_things(struct faultstate *fs, int dealloc)
177 {
178 	vm_object_pip_wakeup(fs->first_object);
179 	_cleanup_successful_fault(fs, 0);
180 	if (dealloc) {
181 		vm_object_deallocate(fs->first_object);
182 		fs->first_object = NULL;
183 	}
184 	unlock_map(fs);
185 	if (fs->vp != NULL) {
186 		vput(fs->vp);
187 		fs->vp = NULL;
188 	}
189 }
190 
191 #define unlock_things(fs) _unlock_things(fs, 0)
192 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
193 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
194 
195 /*
196  * TRYPAGER
197  *
198  * Determine if the pager for the current object *might* contain the page.
199  *
200  * We only need to try the pager if this is not a default object (default
201  * objects are zero-fill and have no real pager), and if we are not taking
202  * a wiring fault or if the FS entry is wired.
203  */
204 #define TRYPAGER(fs)	\
205 		(fs->object->type != OBJT_DEFAULT && \
206 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
207 
208 /*
209  * vm_fault:
210  *
211  * Handle a page fault occuring at the given address, requiring the given
212  * permissions, in the map specified.  If successful, the page is inserted
213  * into the associated physical map.
214  *
215  * NOTE: The given address should be truncated to the proper page address.
216  *
217  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
218  * a standard error specifying why the fault is fatal is returned.
219  *
220  * The map in question must be referenced, and remains so.
221  * The caller may hold no locks.
222  */
223 int
224 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
225 {
226 	int result;
227 	vm_pindex_t first_pindex;
228 	struct faultstate fs;
229 	int growstack;
230 
231 	mycpu->gd_cnt.v_vm_faults++;
232 
233 	fs.didlimit = 0;
234 	fs.hardfault = 0;
235 	fs.fault_flags = fault_flags;
236 	growstack = 1;
237 
238 RetryFault:
239 	/*
240 	 * Find the vm_map_entry representing the backing store and resolve
241 	 * the top level object and page index.  This may have the side
242 	 * effect of executing a copy-on-write on the map entry and/or
243 	 * creating a shadow object, but will not COW any actual VM pages.
244 	 *
245 	 * On success fs.map is left read-locked and various other fields
246 	 * are initialized but not otherwise referenced or locked.
247 	 *
248 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
249 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
250 	 * writable, so we can set the 'A'accessed bit in the virtual page
251 	 * table entry.
252 	 */
253 	fs.map = map;
254 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
255 			       &fs.entry, &fs.first_object,
256 			       &first_pindex, &fs.first_prot, &fs.wired);
257 
258 	/*
259 	 * If the lookup failed or the map protections are incompatible,
260 	 * the fault generally fails.  However, if the caller is trying
261 	 * to do a user wiring we have more work to do.
262 	 */
263 	if (result != KERN_SUCCESS) {
264 		if (result != KERN_PROTECTION_FAILURE ||
265 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
266 		{
267 			if (result == KERN_INVALID_ADDRESS && growstack &&
268 			    map != &kernel_map && curproc != NULL) {
269 				result = vm_map_growstack(curproc, vaddr);
270 				if (result != KERN_SUCCESS)
271 					return (KERN_FAILURE);
272 				growstack = 0;
273 				goto RetryFault;
274 			}
275 			return (result);
276 		}
277 
278 		/*
279    		 * If we are user-wiring a r/w segment, and it is COW, then
280    		 * we need to do the COW operation.  Note that we don't
281 		 * currently COW RO sections now, because it is NOT desirable
282    		 * to COW .text.  We simply keep .text from ever being COW'ed
283    		 * and take the heat that one cannot debug wired .text sections.
284    		 */
285 		result = vm_map_lookup(&fs.map, vaddr,
286 				       VM_PROT_READ|VM_PROT_WRITE|
287 				        VM_PROT_OVERRIDE_WRITE,
288 				       &fs.entry, &fs.first_object,
289 				       &first_pindex, &fs.first_prot,
290 				       &fs.wired);
291 		if (result != KERN_SUCCESS)
292 			return result;
293 
294 		/*
295 		 * If we don't COW now, on a user wire, the user will never
296 		 * be able to write to the mapping.  If we don't make this
297 		 * restriction, the bookkeeping would be nearly impossible.
298 		 */
299 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
300 			fs.entry->max_protection &= ~VM_PROT_WRITE;
301 	}
302 
303 	/*
304 	 * fs.map is read-locked
305 	 *
306 	 * Misc checks.  Save the map generation number to detect races.
307 	 */
308 	fs.map_generation = fs.map->timestamp;
309 
310 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
311 		panic("vm_fault: fault on nofault entry, addr: %lx",
312 		    (u_long)vaddr);
313 	}
314 
315 	/*
316 	 * A system map entry may return a NULL object.  No object means
317 	 * no pager means an unrecoverable kernel fault.
318 	 */
319 	if (fs.first_object == NULL) {
320 		panic("vm_fault: unrecoverable fault at %p in entry %p",
321 			(void *)vaddr, fs.entry);
322 	}
323 
324 	/*
325 	 * Make a reference to this object to prevent its disposal while we
326 	 * are messing with it.  Once we have the reference, the map is free
327 	 * to be diddled.  Since objects reference their shadows (and copies),
328 	 * they will stay around as well.
329 	 *
330 	 * Bump the paging-in-progress count to prevent size changes (e.g.
331 	 * truncation operations) during I/O.  This must be done after
332 	 * obtaining the vnode lock in order to avoid possible deadlocks.
333 	 */
334 	vm_object_reference(fs.first_object);
335 	fs.vp = vnode_pager_lock(fs.first_object);
336 	vm_object_pip_add(fs.first_object, 1);
337 
338 	fs.lookup_still_valid = TRUE;
339 	fs.first_m = NULL;
340 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
341 
342 	/*
343 	 * If the entry is wired we cannot change the page protection.
344 	 */
345 	if (fs.wired)
346 		fault_type = fs.first_prot;
347 
348 	/*
349 	 * The page we want is at (first_object, first_pindex), but if the
350 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
351 	 * page table to figure out the actual pindex.
352 	 *
353 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
354 	 * ONLY
355 	 */
356 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
357 		result = vm_fault_vpagetable(&fs, &first_pindex,
358 					     fs.entry->aux.master_pde,
359 					     fault_type);
360 		if (result == KERN_TRY_AGAIN)
361 			goto RetryFault;
362 		if (result != KERN_SUCCESS)
363 			return (result);
364 	}
365 
366 	/*
367 	 * Now we have the actual (object, pindex), fault in the page.  If
368 	 * vm_fault_object() fails it will unlock and deallocate the FS
369 	 * data.   If it succeeds everything remains locked and fs->object
370 	 * will have an additinal PIP count if it is not equal to
371 	 * fs->first_object
372 	 *
373 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
374 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
375 	 * page can be safely written.  However, it will force a read-only
376 	 * mapping for a read fault if the memory is managed by a virtual
377 	 * page table.
378 	 */
379 	result = vm_fault_object(&fs, first_pindex, fault_type);
380 
381 	if (result == KERN_TRY_AGAIN)
382 		goto RetryFault;
383 	if (result != KERN_SUCCESS)
384 		return (result);
385 
386 	/*
387 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
388 	 * will contain a busied page.
389 	 *
390 	 * Enter the page into the pmap and do pmap-related adjustments.
391 	 */
392 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
393 
394 	/*
395 	 * Burst in a few more pages if possible.  The fs.map should still
396 	 * be locked.
397 	 */
398 	if (fault_flags & VM_FAULT_BURST) {
399 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
400 		    fs.wired == 0) {
401 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
402 		}
403 	}
404 	unlock_things(&fs);
405 
406 	vm_page_flag_clear(fs.m, PG_ZERO);
407 	vm_page_flag_set(fs.m, PG_REFERENCED);
408 
409 	/*
410 	 * If the page is not wired down, then put it where the pageout daemon
411 	 * can find it.
412 	 */
413 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
414 		if (fs.wired)
415 			vm_page_wire(fs.m);
416 		else
417 			vm_page_unwire(fs.m, 1);
418 	} else {
419 		vm_page_activate(fs.m);
420 	}
421 
422 	if (curthread->td_lwp) {
423 		if (fs.hardfault) {
424 			curthread->td_lwp->lwp_ru.ru_majflt++;
425 		} else {
426 			curthread->td_lwp->lwp_ru.ru_minflt++;
427 		}
428 	}
429 
430 	/*
431 	 * Unlock everything, and return
432 	 */
433 	vm_page_wakeup(fs.m);
434 	vm_object_deallocate(fs.first_object);
435 
436 	return (KERN_SUCCESS);
437 }
438 
439 /*
440  * Fault in the specified virtual address in the current process map,
441  * returning a held VM page or NULL.  See vm_fault_page() for more
442  * information.
443  */
444 vm_page_t
445 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
446 {
447 	struct lwp *lp = curthread->td_lwp;
448 	vm_page_t m;
449 
450 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
451 			  fault_type, VM_FAULT_NORMAL, errorp);
452 	return(m);
453 }
454 
455 /*
456  * Fault in the specified virtual address in the specified map, doing all
457  * necessary manipulation of the object store and all necessary I/O.  Return
458  * a held VM page or NULL, and set *errorp.  The related pmap is not
459  * updated.
460  *
461  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
462  * and marked PG_REFERENCED as well.
463  *
464  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
465  * error will be returned.
466  */
467 vm_page_t
468 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
469 	      int fault_flags, int *errorp)
470 {
471 	vm_pindex_t first_pindex;
472 	struct faultstate fs;
473 	int result;
474 	vm_prot_t orig_fault_type = fault_type;
475 
476 	mycpu->gd_cnt.v_vm_faults++;
477 
478 	fs.didlimit = 0;
479 	fs.hardfault = 0;
480 	fs.fault_flags = fault_flags;
481 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
482 
483 RetryFault:
484 	/*
485 	 * Find the vm_map_entry representing the backing store and resolve
486 	 * the top level object and page index.  This may have the side
487 	 * effect of executing a copy-on-write on the map entry and/or
488 	 * creating a shadow object, but will not COW any actual VM pages.
489 	 *
490 	 * On success fs.map is left read-locked and various other fields
491 	 * are initialized but not otherwise referenced or locked.
492 	 *
493 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
494 	 * if the map entry is a virtual page table and also writable,
495 	 * so we can set the 'A'accessed bit in the virtual page table entry.
496 	 */
497 	fs.map = map;
498 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
499 			       &fs.entry, &fs.first_object,
500 			       &first_pindex, &fs.first_prot, &fs.wired);
501 
502 	if (result != KERN_SUCCESS) {
503 		*errorp = result;
504 		return (NULL);
505 	}
506 
507 	/*
508 	 * fs.map is read-locked
509 	 *
510 	 * Misc checks.  Save the map generation number to detect races.
511 	 */
512 	fs.map_generation = fs.map->timestamp;
513 
514 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
515 		panic("vm_fault: fault on nofault entry, addr: %lx",
516 		    (u_long)vaddr);
517 	}
518 
519 	/*
520 	 * A system map entry may return a NULL object.  No object means
521 	 * no pager means an unrecoverable kernel fault.
522 	 */
523 	if (fs.first_object == NULL) {
524 		panic("vm_fault: unrecoverable fault at %p in entry %p",
525 			(void *)vaddr, fs.entry);
526 	}
527 
528 	/*
529 	 * Make a reference to this object to prevent its disposal while we
530 	 * are messing with it.  Once we have the reference, the map is free
531 	 * to be diddled.  Since objects reference their shadows (and copies),
532 	 * they will stay around as well.
533 	 *
534 	 * Bump the paging-in-progress count to prevent size changes (e.g.
535 	 * truncation operations) during I/O.  This must be done after
536 	 * obtaining the vnode lock in order to avoid possible deadlocks.
537 	 */
538 	vm_object_reference(fs.first_object);
539 	fs.vp = vnode_pager_lock(fs.first_object);
540 	vm_object_pip_add(fs.first_object, 1);
541 
542 	fs.lookup_still_valid = TRUE;
543 	fs.first_m = NULL;
544 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
545 
546 	/*
547 	 * If the entry is wired we cannot change the page protection.
548 	 */
549 	if (fs.wired)
550 		fault_type = fs.first_prot;
551 
552 	/*
553 	 * The page we want is at (first_object, first_pindex), but if the
554 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
555 	 * page table to figure out the actual pindex.
556 	 *
557 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
558 	 * ONLY
559 	 */
560 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
561 		result = vm_fault_vpagetable(&fs, &first_pindex,
562 					     fs.entry->aux.master_pde,
563 					     fault_type);
564 		if (result == KERN_TRY_AGAIN)
565 			goto RetryFault;
566 		if (result != KERN_SUCCESS) {
567 			*errorp = result;
568 			return (NULL);
569 		}
570 	}
571 
572 	/*
573 	 * Now we have the actual (object, pindex), fault in the page.  If
574 	 * vm_fault_object() fails it will unlock and deallocate the FS
575 	 * data.   If it succeeds everything remains locked and fs->object
576 	 * will have an additinal PIP count if it is not equal to
577 	 * fs->first_object
578 	 */
579 	result = vm_fault_object(&fs, first_pindex, fault_type);
580 
581 	if (result == KERN_TRY_AGAIN)
582 		goto RetryFault;
583 	if (result != KERN_SUCCESS) {
584 		*errorp = result;
585 		return(NULL);
586 	}
587 
588 	if ((orig_fault_type & VM_PROT_WRITE) &&
589 	    (fs.prot & VM_PROT_WRITE) == 0) {
590 		*errorp = KERN_PROTECTION_FAILURE;
591 		unlock_and_deallocate(&fs);
592 		return(NULL);
593 	}
594 
595 	/*
596 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
597 	 * will contain a busied page.
598 	 */
599 	unlock_things(&fs);
600 
601 	/*
602 	 * Return a held page.  We are not doing any pmap manipulation so do
603 	 * not set PG_MAPPED.  However, adjust the page flags according to
604 	 * the fault type because the caller may not use a managed pmapping
605 	 * (so we don't want to lose the fact that the page will be dirtied
606 	 * if a write fault was specified).
607 	 */
608 	vm_page_hold(fs.m);
609 	vm_page_flag_clear(fs.m, PG_ZERO);
610 	if (fault_type & VM_PROT_WRITE)
611 		vm_page_dirty(fs.m);
612 
613 	/*
614 	 * Update the pmap.  We really only have to do this if a COW
615 	 * occured to replace the read-only page with the new page.  For
616 	 * now just do it unconditionally. XXX
617 	 */
618 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
619 	vm_page_flag_set(fs.m, PG_REFERENCED);
620 
621 	/*
622 	 * Unbusy the page by activating it.  It remains held and will not
623 	 * be reclaimed.
624 	 */
625 	vm_page_activate(fs.m);
626 
627 	if (curthread->td_lwp) {
628 		if (fs.hardfault) {
629 			curthread->td_lwp->lwp_ru.ru_majflt++;
630 		} else {
631 			curthread->td_lwp->lwp_ru.ru_minflt++;
632 		}
633 	}
634 
635 	/*
636 	 * Unlock everything, and return the held page.
637 	 */
638 	vm_page_wakeup(fs.m);
639 	vm_object_deallocate(fs.first_object);
640 
641 	*errorp = 0;
642 	return(fs.m);
643 }
644 
645 /*
646  * Fault in the specified (object,offset), dirty the returned page as
647  * needed.  If the requested fault_type cannot be done NULL and an
648  * error is returned.
649  */
650 vm_page_t
651 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
652 		     vm_prot_t fault_type, int fault_flags, int *errorp)
653 {
654 	int result;
655 	vm_pindex_t first_pindex;
656 	struct faultstate fs;
657 	struct vm_map_entry entry;
658 
659 	bzero(&entry, sizeof(entry));
660 	entry.object.vm_object = object;
661 	entry.maptype = VM_MAPTYPE_NORMAL;
662 	entry.protection = entry.max_protection = fault_type;
663 
664 	fs.didlimit = 0;
665 	fs.hardfault = 0;
666 	fs.fault_flags = fault_flags;
667 	fs.map = NULL;
668 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
669 
670 RetryFault:
671 
672 	fs.first_object = object;
673 	first_pindex = OFF_TO_IDX(offset);
674 	fs.entry = &entry;
675 	fs.first_prot = fault_type;
676 	fs.wired = 0;
677 	/*fs.map_generation = 0; unused */
678 
679 	/*
680 	 * Make a reference to this object to prevent its disposal while we
681 	 * are messing with it.  Once we have the reference, the map is free
682 	 * to be diddled.  Since objects reference their shadows (and copies),
683 	 * they will stay around as well.
684 	 *
685 	 * Bump the paging-in-progress count to prevent size changes (e.g.
686 	 * truncation operations) during I/O.  This must be done after
687 	 * obtaining the vnode lock in order to avoid possible deadlocks.
688 	 */
689 	vm_object_reference(fs.first_object);
690 	fs.vp = vnode_pager_lock(fs.first_object);
691 	vm_object_pip_add(fs.first_object, 1);
692 
693 	fs.lookup_still_valid = TRUE;
694 	fs.first_m = NULL;
695 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
696 
697 #if 0
698 	/* XXX future - ability to operate on VM object using vpagetable */
699 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
700 		result = vm_fault_vpagetable(&fs, &first_pindex,
701 					     fs.entry->aux.master_pde,
702 					     fault_type);
703 		if (result == KERN_TRY_AGAIN)
704 			goto RetryFault;
705 		if (result != KERN_SUCCESS) {
706 			*errorp = result;
707 			return (NULL);
708 		}
709 	}
710 #endif
711 
712 	/*
713 	 * Now we have the actual (object, pindex), fault in the page.  If
714 	 * vm_fault_object() fails it will unlock and deallocate the FS
715 	 * data.   If it succeeds everything remains locked and fs->object
716 	 * will have an additinal PIP count if it is not equal to
717 	 * fs->first_object
718 	 */
719 	result = vm_fault_object(&fs, first_pindex, fault_type);
720 
721 	if (result == KERN_TRY_AGAIN)
722 		goto RetryFault;
723 	if (result != KERN_SUCCESS) {
724 		*errorp = result;
725 		return(NULL);
726 	}
727 
728 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
729 		*errorp = KERN_PROTECTION_FAILURE;
730 		unlock_and_deallocate(&fs);
731 		return(NULL);
732 	}
733 
734 	/*
735 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
736 	 * will contain a busied page.
737 	 */
738 	unlock_things(&fs);
739 
740 	/*
741 	 * Return a held page.  We are not doing any pmap manipulation so do
742 	 * not set PG_MAPPED.  However, adjust the page flags according to
743 	 * the fault type because the caller may not use a managed pmapping
744 	 * (so we don't want to lose the fact that the page will be dirtied
745 	 * if a write fault was specified).
746 	 */
747 	vm_page_hold(fs.m);
748 	vm_page_flag_clear(fs.m, PG_ZERO);
749 	if (fault_type & VM_PROT_WRITE)
750 		vm_page_dirty(fs.m);
751 
752 	/*
753 	 * Indicate that the page was accessed.
754 	 */
755 	vm_page_flag_set(fs.m, PG_REFERENCED);
756 
757 	/*
758 	 * Unbusy the page by activating it.  It remains held and will not
759 	 * be reclaimed.
760 	 */
761 	vm_page_activate(fs.m);
762 
763 	if (curthread->td_lwp) {
764 		if (fs.hardfault) {
765 			mycpu->gd_cnt.v_vm_faults++;
766 			curthread->td_lwp->lwp_ru.ru_majflt++;
767 		} else {
768 			curthread->td_lwp->lwp_ru.ru_minflt++;
769 		}
770 	}
771 
772 	/*
773 	 * Unlock everything, and return the held page.
774 	 */
775 	vm_page_wakeup(fs.m);
776 	vm_object_deallocate(fs.first_object);
777 
778 	*errorp = 0;
779 	return(fs.m);
780 }
781 
782 /*
783  * Translate the virtual page number (first_pindex) that is relative
784  * to the address space into a logical page number that is relative to the
785  * backing object.  Use the virtual page table pointed to by (vpte).
786  *
787  * This implements an N-level page table.  Any level can terminate the
788  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
789  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
790  */
791 static
792 int
793 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
794 		    vpte_t vpte, int fault_type)
795 {
796 	struct lwbuf *lwb;
797 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
798 	int result = KERN_SUCCESS;
799 	vpte_t *ptep;
800 
801 	for (;;) {
802 		/*
803 		 * We cannot proceed if the vpte is not valid, not readable
804 		 * for a read fault, or not writable for a write fault.
805 		 */
806 		if ((vpte & VPTE_V) == 0) {
807 			unlock_and_deallocate(fs);
808 			return (KERN_FAILURE);
809 		}
810 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
811 			unlock_and_deallocate(fs);
812 			return (KERN_FAILURE);
813 		}
814 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
815 			unlock_and_deallocate(fs);
816 			return (KERN_FAILURE);
817 		}
818 		if ((vpte & VPTE_PS) || vshift == 0)
819 			break;
820 		KKASSERT(vshift >= VPTE_PAGE_BITS);
821 
822 		/*
823 		 * Get the page table page.  Nominally we only read the page
824 		 * table, but since we are actively setting VPTE_M and VPTE_A,
825 		 * tell vm_fault_object() that we are writing it.
826 		 *
827 		 * There is currently no real need to optimize this.
828 		 */
829 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
830 					 VM_PROT_READ|VM_PROT_WRITE);
831 		if (result != KERN_SUCCESS)
832 			return (result);
833 
834 		/*
835 		 * Process the returned fs.m and look up the page table
836 		 * entry in the page table page.
837 		 */
838 		vshift -= VPTE_PAGE_BITS;
839 		lwb = lwbuf_alloc(fs->m);
840 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
841 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
842 		vpte = *ptep;
843 
844 		/*
845 		 * Page table write-back.  If the vpte is valid for the
846 		 * requested operation, do a write-back to the page table.
847 		 *
848 		 * XXX VPTE_M is not set properly for page directory pages.
849 		 * It doesn't get set in the page directory if the page table
850 		 * is modified during a read access.
851 		 */
852 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
853 		    (vpte & VPTE_W)) {
854 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
855 				atomic_set_long(ptep, VPTE_M | VPTE_A);
856 				vm_page_dirty(fs->m);
857 			}
858 		}
859 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
860 		    (vpte & VPTE_R)) {
861 			if ((vpte & VPTE_A) == 0) {
862 				atomic_set_long(ptep, VPTE_A);
863 				vm_page_dirty(fs->m);
864 			}
865 		}
866 		lwbuf_free(lwb);
867 		vm_page_flag_set(fs->m, PG_REFERENCED);
868 		vm_page_activate(fs->m);
869 		vm_page_wakeup(fs->m);
870 		cleanup_successful_fault(fs);
871 	}
872 	/*
873 	 * Combine remaining address bits with the vpte.
874 	 */
875 	/* JG how many bits from each? */
876 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
877 		  (*pindex & ((1L << vshift) - 1));
878 	return (KERN_SUCCESS);
879 }
880 
881 
882 /*
883  * Do all operations required to fault-in (fs.first_object, pindex).  Run
884  * through the shadow chain as necessary and do required COW or virtual
885  * copy operations.  The caller has already fully resolved the vm_map_entry
886  * and, if appropriate, has created a copy-on-write layer.  All we need to
887  * do is iterate the object chain.
888  *
889  * On failure (fs) is unlocked and deallocated and the caller may return or
890  * retry depending on the failure code.  On success (fs) is NOT unlocked or
891  * deallocated, fs.m will contained a resolved, busied page, and fs.object
892  * will have an additional PIP count if it is not equal to fs.first_object.
893  */
894 static
895 int
896 vm_fault_object(struct faultstate *fs,
897 		vm_pindex_t first_pindex, vm_prot_t fault_type)
898 {
899 	vm_object_t next_object;
900 	vm_pindex_t pindex;
901 
902 	fs->prot = fs->first_prot;
903 	fs->object = fs->first_object;
904 	pindex = first_pindex;
905 
906 	/*
907 	 * If a read fault occurs we try to make the page writable if
908 	 * possible.  There are three cases where we cannot make the
909 	 * page mapping writable:
910 	 *
911 	 * (1) The mapping is read-only or the VM object is read-only,
912 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
913 	 *
914 	 * (2) If the mapping is a virtual page table we need to be able
915 	 *     to detect writes so we can set VPTE_M in the virtual page
916 	 *     table.
917 	 *
918 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
919 	 *     just result in an unnecessary COW fault.
920 	 *
921 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
922 	 * causes adjustments to the 'M'odify bit to also turn off write
923 	 * access to force a re-fault.
924 	 */
925 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
926 		if ((fault_type & VM_PROT_WRITE) == 0)
927 			fs->prot &= ~VM_PROT_WRITE;
928 	}
929 
930 	for (;;) {
931 		/*
932 		 * If the object is dead, we stop here
933 		 */
934 		if (fs->object->flags & OBJ_DEAD) {
935 			unlock_and_deallocate(fs);
936 			return (KERN_PROTECTION_FAILURE);
937 		}
938 
939 		/*
940 		 * See if page is resident.  spl protection is required
941 		 * to avoid an interrupt unbusy/free race against our
942 		 * lookup.  We must hold the protection through a page
943 		 * allocation or busy.
944 		 */
945 		crit_enter();
946 		fs->m = vm_page_lookup(fs->object, pindex);
947 		if (fs->m != NULL) {
948 			int queue;
949 			/*
950 			 * Wait/Retry if the page is busy.  We have to do this
951 			 * if the page is busy via either PG_BUSY or
952 			 * vm_page_t->busy because the vm_pager may be using
953 			 * vm_page_t->busy for pageouts ( and even pageins if
954 			 * it is the vnode pager ), and we could end up trying
955 			 * to pagein and pageout the same page simultaneously.
956 			 *
957 			 * We can theoretically allow the busy case on a read
958 			 * fault if the page is marked valid, but since such
959 			 * pages are typically already pmap'd, putting that
960 			 * special case in might be more effort then it is
961 			 * worth.  We cannot under any circumstances mess
962 			 * around with a vm_page_t->busy page except, perhaps,
963 			 * to pmap it.
964 			 */
965 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
966 				unlock_things(fs);
967 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
968 				mycpu->gd_cnt.v_intrans++;
969 				vm_object_deallocate(fs->first_object);
970 				fs->first_object = NULL;
971 				crit_exit();
972 				return (KERN_TRY_AGAIN);
973 			}
974 
975 			/*
976 			 * If reactivating a page from PQ_CACHE we may have
977 			 * to rate-limit.
978 			 */
979 			queue = fs->m->queue;
980 			vm_page_unqueue_nowakeup(fs->m);
981 
982 			if ((queue - fs->m->pc) == PQ_CACHE &&
983 			    vm_page_count_severe()) {
984 				vm_page_activate(fs->m);
985 				unlock_and_deallocate(fs);
986 				vm_waitpfault();
987 				crit_exit();
988 				return (KERN_TRY_AGAIN);
989 			}
990 
991 			/*
992 			 * Mark page busy for other processes, and the
993 			 * pagedaemon.  If it still isn't completely valid
994 			 * (readable), or if a read-ahead-mark is set on
995 			 * the VM page, jump to readrest, else we found the
996 			 * page and can return.
997 			 *
998 			 * We can release the spl once we have marked the
999 			 * page busy.
1000 			 */
1001 			vm_page_busy(fs->m);
1002 			crit_exit();
1003 
1004 			if (fs->m->object != &kernel_object) {
1005 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1006 				    VM_PAGE_BITS_ALL) {
1007 					goto readrest;
1008 				}
1009 				if (fs->m->flags & PG_RAM) {
1010 					if (debug_cluster)
1011 						kprintf("R");
1012 					vm_page_flag_clear(fs->m, PG_RAM);
1013 					goto readrest;
1014 				}
1015 			}
1016 			break; /* break to PAGE HAS BEEN FOUND */
1017 		}
1018 
1019 		/*
1020 		 * Page is not resident, If this is the search termination
1021 		 * or the pager might contain the page, allocate a new page.
1022 		 *
1023 		 * NOTE: We are still in a critical section.
1024 		 */
1025 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1026 			/*
1027 			 * If the page is beyond the object size we fail
1028 			 */
1029 			if (pindex >= fs->object->size) {
1030 				crit_exit();
1031 				unlock_and_deallocate(fs);
1032 				return (KERN_PROTECTION_FAILURE);
1033 			}
1034 
1035 			/*
1036 			 * Ratelimit.
1037 			 */
1038 			if (fs->didlimit == 0 && curproc != NULL) {
1039 				int limticks;
1040 
1041 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1042 				if (limticks) {
1043 					crit_exit();
1044 					unlock_and_deallocate(fs);
1045 					tsleep(curproc, 0, "vmrate", limticks);
1046 					fs->didlimit = 1;
1047 					return (KERN_TRY_AGAIN);
1048 				}
1049 			}
1050 
1051 			/*
1052 			 * Allocate a new page for this object/offset pair.
1053 			 */
1054 			fs->m = NULL;
1055 			if (!vm_page_count_severe()) {
1056 				fs->m = vm_page_alloc(fs->object, pindex,
1057 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1058 			}
1059 			if (fs->m == NULL) {
1060 				crit_exit();
1061 				unlock_and_deallocate(fs);
1062 				vm_waitpfault();
1063 				return (KERN_TRY_AGAIN);
1064 			}
1065 		}
1066 		crit_exit();
1067 
1068 readrest:
1069 		/*
1070 		 * We have found an invalid or partially valid page, a
1071 		 * page with a read-ahead mark which might be partially or
1072 		 * fully valid (and maybe dirty too), or we have allocated
1073 		 * a new page.
1074 		 *
1075 		 * Attempt to fault-in the page if there is a chance that the
1076 		 * pager has it, and potentially fault in additional pages
1077 		 * at the same time.
1078 		 *
1079 		 * We are NOT in splvm here and if TRYPAGER is true then
1080 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1081 		 */
1082 		if (TRYPAGER(fs)) {
1083 			int rv;
1084 			int seqaccess;
1085 			u_char behavior = vm_map_entry_behavior(fs->entry);
1086 
1087 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1088 				seqaccess = 0;
1089 			else
1090 				seqaccess = -1;
1091 
1092 			/*
1093 			 * If sequential access is detected then attempt
1094 			 * to deactivate/cache pages behind the scan to
1095 			 * prevent resource hogging.
1096 			 *
1097 			 * Use of PG_RAM to detect sequential access
1098 			 * also simulates multi-zone sequential access
1099 			 * detection for free.
1100 			 *
1101 			 * NOTE: Partially valid dirty pages cannot be
1102 			 *	 deactivated without causing NFS picemeal
1103 			 *	 writes to barf.
1104 			 */
1105 			if ((fs->first_object->type != OBJT_DEVICE) &&
1106 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1107                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1108 				 (fs->m->flags & PG_RAM)))
1109 			) {
1110 				vm_pindex_t scan_pindex;
1111 				int scan_count = 16;
1112 
1113 				if (first_pindex < 16) {
1114 					scan_pindex = 0;
1115 					scan_count = 0;
1116 				} else {
1117 					scan_pindex = first_pindex - 16;
1118 					if (scan_pindex < 16)
1119 						scan_count = scan_pindex;
1120 					else
1121 						scan_count = 16;
1122 				}
1123 
1124 				crit_enter();
1125 				while (scan_count) {
1126 					vm_page_t mt;
1127 
1128 					mt = vm_page_lookup(fs->first_object,
1129 							    scan_pindex);
1130 					if (mt == NULL ||
1131 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1132 						break;
1133 					}
1134 					if (mt->busy ||
1135 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1136 					    mt->hold_count ||
1137 					    mt->wire_count)  {
1138 						goto skip;
1139 					}
1140 					if (mt->dirty == 0)
1141 						vm_page_test_dirty(mt);
1142 					if (mt->dirty) {
1143 						vm_page_busy(mt);
1144 						vm_page_protect(mt,
1145 								VM_PROT_NONE);
1146 						vm_page_deactivate(mt);
1147 						vm_page_wakeup(mt);
1148 					} else {
1149 						vm_page_cache(mt);
1150 					}
1151 skip:
1152 					--scan_count;
1153 					--scan_pindex;
1154 				}
1155 				crit_exit();
1156 
1157 				seqaccess = 1;
1158 			}
1159 
1160 			/*
1161 			 * Avoid deadlocking against the map when doing I/O.
1162 			 * fs.object and the page is PG_BUSY'd.
1163 			 */
1164 			unlock_map(fs);
1165 
1166 			/*
1167 			 * Acquire the page data.  We still hold a ref on
1168 			 * fs.object and the page has been PG_BUSY's.
1169 			 *
1170 			 * The pager may replace the page (for example, in
1171 			 * order to enter a fictitious page into the
1172 			 * object).  If it does so it is responsible for
1173 			 * cleaning up the passed page and properly setting
1174 			 * the new page PG_BUSY.
1175 			 *
1176 			 * If we got here through a PG_RAM read-ahead
1177 			 * mark the page may be partially dirty and thus
1178 			 * not freeable.  Don't bother checking to see
1179 			 * if the pager has the page because we can't free
1180 			 * it anyway.  We have to depend on the get_page
1181 			 * operation filling in any gaps whether there is
1182 			 * backing store or not.
1183 			 */
1184 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1185 
1186 			if (rv == VM_PAGER_OK) {
1187 				/*
1188 				 * Relookup in case pager changed page. Pager
1189 				 * is responsible for disposition of old page
1190 				 * if moved.
1191 				 *
1192 				 * XXX other code segments do relookups too.
1193 				 * It's a bad abstraction that needs to be
1194 				 * fixed/removed.
1195 				 */
1196 				fs->m = vm_page_lookup(fs->object, pindex);
1197 				if (fs->m == NULL) {
1198 					unlock_and_deallocate(fs);
1199 					return (KERN_TRY_AGAIN);
1200 				}
1201 
1202 				++fs->hardfault;
1203 				break; /* break to PAGE HAS BEEN FOUND */
1204 			}
1205 
1206 			/*
1207 			 * Remove the bogus page (which does not exist at this
1208 			 * object/offset); before doing so, we must get back
1209 			 * our object lock to preserve our invariant.
1210 			 *
1211 			 * Also wake up any other process that may want to bring
1212 			 * in this page.
1213 			 *
1214 			 * If this is the top-level object, we must leave the
1215 			 * busy page to prevent another process from rushing
1216 			 * past us, and inserting the page in that object at
1217 			 * the same time that we are.
1218 			 */
1219 			if (rv == VM_PAGER_ERROR) {
1220 				if (curproc)
1221 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1222 				else
1223 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1224 			}
1225 
1226 			/*
1227 			 * Data outside the range of the pager or an I/O error
1228 			 *
1229 			 * The page may have been wired during the pagein,
1230 			 * e.g. by the buffer cache, and cannot simply be
1231 			 * freed.  Call vnode_pager_freepage() to deal with it.
1232 			 */
1233 			/*
1234 			 * XXX - the check for kernel_map is a kludge to work
1235 			 * around having the machine panic on a kernel space
1236 			 * fault w/ I/O error.
1237 			 */
1238 			if (((fs->map != &kernel_map) &&
1239 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1240 				vnode_pager_freepage(fs->m);
1241 				fs->m = NULL;
1242 				unlock_and_deallocate(fs);
1243 				if (rv == VM_PAGER_ERROR)
1244 					return (KERN_FAILURE);
1245 				else
1246 					return (KERN_PROTECTION_FAILURE);
1247 				/* NOT REACHED */
1248 			}
1249 			if (fs->object != fs->first_object) {
1250 				vnode_pager_freepage(fs->m);
1251 				fs->m = NULL;
1252 				/*
1253 				 * XXX - we cannot just fall out at this
1254 				 * point, m has been freed and is invalid!
1255 				 */
1256 			}
1257 		}
1258 
1259 		/*
1260 		 * We get here if the object has a default pager (or unwiring)
1261 		 * or the pager doesn't have the page.
1262 		 */
1263 		if (fs->object == fs->first_object)
1264 			fs->first_m = fs->m;
1265 
1266 		/*
1267 		 * Move on to the next object.  Lock the next object before
1268 		 * unlocking the current one.
1269 		 */
1270 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1271 		next_object = fs->object->backing_object;
1272 		if (next_object == NULL) {
1273 			/*
1274 			 * If there's no object left, fill the page in the top
1275 			 * object with zeros.
1276 			 */
1277 			if (fs->object != fs->first_object) {
1278 				vm_object_pip_wakeup(fs->object);
1279 
1280 				fs->object = fs->first_object;
1281 				pindex = first_pindex;
1282 				fs->m = fs->first_m;
1283 			}
1284 			fs->first_m = NULL;
1285 
1286 			/*
1287 			 * Zero the page if necessary and mark it valid.
1288 			 */
1289 			if ((fs->m->flags & PG_ZERO) == 0) {
1290 				vm_page_zero_fill(fs->m);
1291 			} else {
1292 				mycpu->gd_cnt.v_ozfod++;
1293 			}
1294 			mycpu->gd_cnt.v_zfod++;
1295 			fs->m->valid = VM_PAGE_BITS_ALL;
1296 			break;	/* break to PAGE HAS BEEN FOUND */
1297 		} else {
1298 			if (fs->object != fs->first_object) {
1299 				vm_object_pip_wakeup(fs->object);
1300 			}
1301 			KASSERT(fs->object != next_object, ("object loop %p", next_object));
1302 			fs->object = next_object;
1303 			vm_object_pip_add(fs->object, 1);
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1309 	 * is held.]
1310 	 *
1311 	 * If the page is being written, but isn't already owned by the
1312 	 * top-level object, we have to copy it into a new page owned by the
1313 	 * top-level object.
1314 	 */
1315 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1316 		("vm_fault: not busy after main loop"));
1317 
1318 	if (fs->object != fs->first_object) {
1319 		/*
1320 		 * We only really need to copy if we want to write it.
1321 		 */
1322 		if (fault_type & VM_PROT_WRITE) {
1323 			/*
1324 			 * This allows pages to be virtually copied from a
1325 			 * backing_object into the first_object, where the
1326 			 * backing object has no other refs to it, and cannot
1327 			 * gain any more refs.  Instead of a bcopy, we just
1328 			 * move the page from the backing object to the
1329 			 * first object.  Note that we must mark the page
1330 			 * dirty in the first object so that it will go out
1331 			 * to swap when needed.
1332 			 */
1333 			if (
1334 				/*
1335 				 * Map, if present, has not changed
1336 				 */
1337 				(fs->map == NULL ||
1338 				fs->map_generation == fs->map->timestamp) &&
1339 				/*
1340 				 * Only one shadow object
1341 				 */
1342 				(fs->object->shadow_count == 1) &&
1343 				/*
1344 				 * No COW refs, except us
1345 				 */
1346 				(fs->object->ref_count == 1) &&
1347 				/*
1348 				 * No one else can look this object up
1349 				 */
1350 				(fs->object->handle == NULL) &&
1351 				/*
1352 				 * No other ways to look the object up
1353 				 */
1354 				((fs->object->type == OBJT_DEFAULT) ||
1355 				 (fs->object->type == OBJT_SWAP)) &&
1356 				/*
1357 				 * We don't chase down the shadow chain
1358 				 */
1359 				(fs->object == fs->first_object->backing_object) &&
1360 
1361 				/*
1362 				 * grab the lock if we need to
1363 				 */
1364 				(fs->lookup_still_valid ||
1365 				 fs->map == NULL ||
1366 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1367 			    ) {
1368 
1369 				fs->lookup_still_valid = 1;
1370 				/*
1371 				 * get rid of the unnecessary page
1372 				 */
1373 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1374 				vm_page_free(fs->first_m);
1375 				fs->first_m = NULL;
1376 
1377 				/*
1378 				 * grab the page and put it into the
1379 				 * process'es object.  The page is
1380 				 * automatically made dirty.
1381 				 */
1382 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1383 				fs->first_m = fs->m;
1384 				vm_page_busy(fs->first_m);
1385 				fs->m = NULL;
1386 				mycpu->gd_cnt.v_cow_optim++;
1387 			} else {
1388 				/*
1389 				 * Oh, well, lets copy it.
1390 				 */
1391 				vm_page_copy(fs->m, fs->first_m);
1392 				vm_page_event(fs->m, VMEVENT_COW);
1393 			}
1394 
1395 			if (fs->m) {
1396 				/*
1397 				 * We no longer need the old page or object.
1398 				 */
1399 				release_page(fs);
1400 			}
1401 
1402 			/*
1403 			 * fs->object != fs->first_object due to above
1404 			 * conditional
1405 			 */
1406 			vm_object_pip_wakeup(fs->object);
1407 
1408 			/*
1409 			 * Only use the new page below...
1410 			 */
1411 
1412 			mycpu->gd_cnt.v_cow_faults++;
1413 			fs->m = fs->first_m;
1414 			fs->object = fs->first_object;
1415 			pindex = first_pindex;
1416 		} else {
1417 			/*
1418 			 * If it wasn't a write fault avoid having to copy
1419 			 * the page by mapping it read-only.
1420 			 */
1421 			fs->prot &= ~VM_PROT_WRITE;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * We may have had to unlock a map to do I/O.  If we did then
1427 	 * lookup_still_valid will be FALSE.  If the map generation count
1428 	 * also changed then all sorts of things could have happened while
1429 	 * we were doing the I/O and we need to retry.
1430 	 */
1431 
1432 	if (!fs->lookup_still_valid &&
1433 	    fs->map != NULL &&
1434 	    (fs->map->timestamp != fs->map_generation)) {
1435 		release_page(fs);
1436 		unlock_and_deallocate(fs);
1437 		return (KERN_TRY_AGAIN);
1438 	}
1439 
1440 	/*
1441 	 * If the fault is a write, we know that this page is being
1442 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1443 	 * calls later.
1444 	 *
1445 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1446 	 * if the page is already dirty to prevent data written with
1447 	 * the expectation of being synced from not being synced.
1448 	 * Likewise if this entry does not request NOSYNC then make
1449 	 * sure the page isn't marked NOSYNC.  Applications sharing
1450 	 * data should use the same flags to avoid ping ponging.
1451 	 *
1452 	 * Also tell the backing pager, if any, that it should remove
1453 	 * any swap backing since the page is now dirty.
1454 	 */
1455 	if (fs->prot & VM_PROT_WRITE) {
1456 		vm_object_set_writeable_dirty(fs->m->object);
1457 		if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1458 			if (fs->m->dirty == 0)
1459 				vm_page_flag_set(fs->m, PG_NOSYNC);
1460 		} else {
1461 			vm_page_flag_clear(fs->m, PG_NOSYNC);
1462 		}
1463 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1464 			crit_enter();
1465 			vm_page_dirty(fs->m);
1466 			swap_pager_unswapped(fs->m);
1467 			crit_exit();
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * Page had better still be busy.  We are still locked up and
1473 	 * fs->object will have another PIP reference if it is not equal
1474 	 * to fs->first_object.
1475 	 */
1476 	KASSERT(fs->m->flags & PG_BUSY,
1477 		("vm_fault: page %p not busy!", fs->m));
1478 
1479 	/*
1480 	 * Sanity check: page must be completely valid or it is not fit to
1481 	 * map into user space.  vm_pager_get_pages() ensures this.
1482 	 */
1483 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1484 		vm_page_zero_invalid(fs->m, TRUE);
1485 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1486 	}
1487 
1488 	return (KERN_SUCCESS);
1489 }
1490 
1491 /*
1492  * Wire down a range of virtual addresses in a map.  The entry in question
1493  * should be marked in-transition and the map must be locked.  We must
1494  * release the map temporarily while faulting-in the page to avoid a
1495  * deadlock.  Note that the entry may be clipped while we are blocked but
1496  * will never be freed.
1497  */
1498 int
1499 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1500 {
1501 	boolean_t fictitious;
1502 	vm_offset_t start;
1503 	vm_offset_t end;
1504 	vm_offset_t va;
1505 	vm_paddr_t pa;
1506 	pmap_t pmap;
1507 	int rv;
1508 
1509 	pmap = vm_map_pmap(map);
1510 	start = entry->start;
1511 	end = entry->end;
1512 	fictitious = entry->object.vm_object &&
1513 			(entry->object.vm_object->type == OBJT_DEVICE);
1514 
1515 	vm_map_unlock(map);
1516 	map->timestamp++;
1517 
1518 	/*
1519 	 * We simulate a fault to get the page and enter it in the physical
1520 	 * map.
1521 	 */
1522 	for (va = start; va < end; va += PAGE_SIZE) {
1523 		if (user_wire) {
1524 			rv = vm_fault(map, va, VM_PROT_READ,
1525 					VM_FAULT_USER_WIRE);
1526 		} else {
1527 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1528 					VM_FAULT_CHANGE_WIRING);
1529 		}
1530 		if (rv) {
1531 			while (va > start) {
1532 				va -= PAGE_SIZE;
1533 				if ((pa = pmap_extract(pmap, va)) == 0)
1534 					continue;
1535 				pmap_change_wiring(pmap, va, FALSE);
1536 				if (!fictitious)
1537 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1538 			}
1539 			vm_map_lock(map);
1540 			return (rv);
1541 		}
1542 	}
1543 	vm_map_lock(map);
1544 	return (KERN_SUCCESS);
1545 }
1546 
1547 /*
1548  * Unwire a range of virtual addresses in a map.  The map should be
1549  * locked.
1550  */
1551 void
1552 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1553 {
1554 	boolean_t fictitious;
1555 	vm_offset_t start;
1556 	vm_offset_t end;
1557 	vm_offset_t va;
1558 	vm_paddr_t pa;
1559 	pmap_t pmap;
1560 
1561 	pmap = vm_map_pmap(map);
1562 	start = entry->start;
1563 	end = entry->end;
1564 	fictitious = entry->object.vm_object &&
1565 			(entry->object.vm_object->type == OBJT_DEVICE);
1566 
1567 	/*
1568 	 * Since the pages are wired down, we must be able to get their
1569 	 * mappings from the physical map system.
1570 	 */
1571 	for (va = start; va < end; va += PAGE_SIZE) {
1572 		pa = pmap_extract(pmap, va);
1573 		if (pa != 0) {
1574 			pmap_change_wiring(pmap, va, FALSE);
1575 			if (!fictitious)
1576 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1577 		}
1578 	}
1579 }
1580 
1581 /*
1582  * Reduce the rate at which memory is allocated to a process based
1583  * on the perceived load on the VM system. As the load increases
1584  * the allocation burst rate goes down and the delay increases.
1585  *
1586  * Rate limiting does not apply when faulting active or inactive
1587  * pages.  When faulting 'cache' pages, rate limiting only applies
1588  * if the system currently has a severe page deficit.
1589  *
1590  * XXX vm_pagesupply should be increased when a page is freed.
1591  *
1592  * We sleep up to 1/10 of a second.
1593  */
1594 static int
1595 vm_fault_ratelimit(struct vmspace *vmspace)
1596 {
1597 	if (vm_load_enable == 0)
1598 		return(0);
1599 	if (vmspace->vm_pagesupply > 0) {
1600 		--vmspace->vm_pagesupply;
1601 		return(0);
1602 	}
1603 #ifdef INVARIANTS
1604 	if (vm_load_debug) {
1605 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1606 			vm_load,
1607 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1608 			curproc->p_pid, curproc->p_comm);
1609 	}
1610 #endif
1611 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1612 	return(vm_load * hz / 10000);
1613 }
1614 
1615 /*
1616  *	Routine:
1617  *		vm_fault_copy_entry
1618  *	Function:
1619  *		Copy all of the pages from a wired-down map entry to another.
1620  *
1621  *	In/out conditions:
1622  *		The source and destination maps must be locked for write.
1623  *		The source map entry must be wired down (or be a sharing map
1624  *		entry corresponding to a main map entry that is wired down).
1625  */
1626 
1627 void
1628 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1629     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1630 {
1631 	vm_object_t dst_object;
1632 	vm_object_t src_object;
1633 	vm_ooffset_t dst_offset;
1634 	vm_ooffset_t src_offset;
1635 	vm_prot_t prot;
1636 	vm_offset_t vaddr;
1637 	vm_page_t dst_m;
1638 	vm_page_t src_m;
1639 
1640 #ifdef	lint
1641 	src_map++;
1642 #endif	/* lint */
1643 
1644 	src_object = src_entry->object.vm_object;
1645 	src_offset = src_entry->offset;
1646 
1647 	/*
1648 	 * Create the top-level object for the destination entry. (Doesn't
1649 	 * actually shadow anything - we copy the pages directly.)
1650 	 */
1651 	vm_map_entry_allocate_object(dst_entry);
1652 	dst_object = dst_entry->object.vm_object;
1653 
1654 	prot = dst_entry->max_protection;
1655 
1656 	/*
1657 	 * Loop through all of the pages in the entry's range, copying each
1658 	 * one from the source object (it should be there) to the destination
1659 	 * object.
1660 	 */
1661 	for (vaddr = dst_entry->start, dst_offset = 0;
1662 	    vaddr < dst_entry->end;
1663 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1664 
1665 		/*
1666 		 * Allocate a page in the destination object
1667 		 */
1668 		do {
1669 			dst_m = vm_page_alloc(dst_object,
1670 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1671 			if (dst_m == NULL) {
1672 				vm_wait(0);
1673 			}
1674 		} while (dst_m == NULL);
1675 
1676 		/*
1677 		 * Find the page in the source object, and copy it in.
1678 		 * (Because the source is wired down, the page will be in
1679 		 * memory.)
1680 		 */
1681 		src_m = vm_page_lookup(src_object,
1682 			OFF_TO_IDX(dst_offset + src_offset));
1683 		if (src_m == NULL)
1684 			panic("vm_fault_copy_wired: page missing");
1685 
1686 		vm_page_copy(src_m, dst_m);
1687 		vm_page_event(src_m, VMEVENT_COW);
1688 
1689 		/*
1690 		 * Enter it in the pmap...
1691 		 */
1692 
1693 		vm_page_flag_clear(dst_m, PG_ZERO);
1694 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1695 
1696 		/*
1697 		 * Mark it no longer busy, and put it on the active list.
1698 		 */
1699 		vm_page_activate(dst_m);
1700 		vm_page_wakeup(dst_m);
1701 	}
1702 }
1703 
1704 #if 0
1705 
1706 /*
1707  * This routine checks around the requested page for other pages that
1708  * might be able to be faulted in.  This routine brackets the viable
1709  * pages for the pages to be paged in.
1710  *
1711  * Inputs:
1712  *	m, rbehind, rahead
1713  *
1714  * Outputs:
1715  *  marray (array of vm_page_t), reqpage (index of requested page)
1716  *
1717  * Return value:
1718  *  number of pages in marray
1719  */
1720 static int
1721 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1722 			  vm_page_t *marray, int *reqpage)
1723 {
1724 	int i,j;
1725 	vm_object_t object;
1726 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1727 	vm_page_t rtm;
1728 	int cbehind, cahead;
1729 
1730 	object = m->object;
1731 	pindex = m->pindex;
1732 
1733 	/*
1734 	 * we don't fault-ahead for device pager
1735 	 */
1736 	if (object->type == OBJT_DEVICE) {
1737 		*reqpage = 0;
1738 		marray[0] = m;
1739 		return 1;
1740 	}
1741 
1742 	/*
1743 	 * if the requested page is not available, then give up now
1744 	 */
1745 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1746 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1747 		return 0;
1748 	}
1749 
1750 	if ((cbehind == 0) && (cahead == 0)) {
1751 		*reqpage = 0;
1752 		marray[0] = m;
1753 		return 1;
1754 	}
1755 
1756 	if (rahead > cahead) {
1757 		rahead = cahead;
1758 	}
1759 
1760 	if (rbehind > cbehind) {
1761 		rbehind = cbehind;
1762 	}
1763 
1764 	/*
1765 	 * Do not do any readahead if we have insufficient free memory.
1766 	 *
1767 	 * XXX code was broken disabled before and has instability
1768 	 * with this conditonal fixed, so shortcut for now.
1769 	 */
1770 	if (burst_fault == 0 || vm_page_count_severe()) {
1771 		marray[0] = m;
1772 		*reqpage = 0;
1773 		return 1;
1774 	}
1775 
1776 	/*
1777 	 * scan backward for the read behind pages -- in memory
1778 	 *
1779 	 * Assume that if the page is not found an interrupt will not
1780 	 * create it.  Theoretically interrupts can only remove (busy)
1781 	 * pages, not create new associations.
1782 	 */
1783 	if (pindex > 0) {
1784 		if (rbehind > pindex) {
1785 			rbehind = pindex;
1786 			startpindex = 0;
1787 		} else {
1788 			startpindex = pindex - rbehind;
1789 		}
1790 
1791 		crit_enter();
1792 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1793 			if (vm_page_lookup(object, tpindex - 1))
1794 				break;
1795 		}
1796 
1797 		i = 0;
1798 		while (tpindex < pindex) {
1799 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1800 			if (rtm == NULL) {
1801 				crit_exit();
1802 				for (j = 0; j < i; j++) {
1803 					vm_page_free(marray[j]);
1804 				}
1805 				marray[0] = m;
1806 				*reqpage = 0;
1807 				return 1;
1808 			}
1809 			marray[i] = rtm;
1810 			++i;
1811 			++tpindex;
1812 		}
1813 		crit_exit();
1814 	} else {
1815 		i = 0;
1816 	}
1817 
1818 	/*
1819 	 * Assign requested page
1820 	 */
1821 	marray[i] = m;
1822 	*reqpage = i;
1823 	++i;
1824 
1825 	/*
1826 	 * Scan forwards for read-ahead pages
1827 	 */
1828 	tpindex = pindex + 1;
1829 	endpindex = tpindex + rahead;
1830 	if (endpindex > object->size)
1831 		endpindex = object->size;
1832 
1833 	crit_enter();
1834 	while (tpindex < endpindex) {
1835 		if (vm_page_lookup(object, tpindex))
1836 			break;
1837 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1838 		if (rtm == NULL)
1839 			break;
1840 		marray[i] = rtm;
1841 		++i;
1842 		++tpindex;
1843 	}
1844 	crit_exit();
1845 
1846 	return (i);
1847 }
1848 
1849 #endif
1850 
1851 /*
1852  * vm_prefault() provides a quick way of clustering pagefaults into a
1853  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1854  * except it runs at page fault time instead of mmap time.
1855  *
1856  * This code used to be per-platform pmap_prefault().  It is now
1857  * machine-independent and enhanced to also pre-fault zero-fill pages
1858  * (see vm.fast_fault) as well as make them writable, which greatly
1859  * reduces the number of page faults programs incur.
1860  *
1861  * Application performance when pre-faulting zero-fill pages is heavily
1862  * dependent on the application.  Very tiny applications like /bin/echo
1863  * lose a little performance while applications of any appreciable size
1864  * gain performance.  Prefaulting multiple pages also reduces SMP
1865  * congestion and can improve SMP performance significantly.
1866  *
1867  * NOTE!  prot may allow writing but this only applies to the top level
1868  *	  object.  If we wind up mapping a page extracted from a backing
1869  *	  object we have to make sure it is read-only.
1870  *
1871  * NOTE!  The caller has already handled any COW operations on the
1872  *	  vm_map_entry via the normal fault code.  Do NOT call this
1873  *	  shortcut unless the normal fault code has run on this entry.
1874  */
1875 #define PFBAK 4
1876 #define PFFOR 4
1877 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1878 
1879 static int vm_prefault_pageorder[] = {
1880 	-PAGE_SIZE, PAGE_SIZE,
1881 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1882 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1883 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1884 };
1885 
1886 static void
1887 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1888 {
1889 	struct lwp *lp;
1890 	vm_page_t m;
1891 	vm_offset_t starta;
1892 	vm_offset_t addr;
1893 	vm_pindex_t index;
1894 	vm_pindex_t pindex;
1895 	vm_object_t object;
1896 	int pprot;
1897 	int i;
1898 
1899 	/*
1900 	 * We do not currently prefault mappings that use virtual page
1901 	 * tables.  We do not prefault foreign pmaps.
1902 	 */
1903 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1904 		return;
1905 	lp = curthread->td_lwp;
1906 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1907 		return;
1908 
1909 	object = entry->object.vm_object;
1910 
1911 	starta = addra - PFBAK * PAGE_SIZE;
1912 	if (starta < entry->start)
1913 		starta = entry->start;
1914 	else if (starta > addra)
1915 		starta = 0;
1916 
1917 	/*
1918 	 * critical section protection is required to maintain the
1919 	 * page/object association, interrupts can free pages and remove
1920 	 * them from their objects.
1921 	 */
1922 	crit_enter();
1923 	for (i = 0; i < PAGEORDER_SIZE; i++) {
1924 		vm_object_t lobject;
1925 		int allocated = 0;
1926 
1927 		addr = addra + vm_prefault_pageorder[i];
1928 		if (addr > addra + (PFFOR * PAGE_SIZE))
1929 			addr = 0;
1930 
1931 		if (addr < starta || addr >= entry->end)
1932 			continue;
1933 
1934 		if (pmap_prefault_ok(pmap, addr) == 0)
1935 			continue;
1936 
1937 		/*
1938 		 * Follow the VM object chain to obtain the page to be mapped
1939 		 * into the pmap.
1940 		 *
1941 		 * If we reach the terminal object without finding a page
1942 		 * and we determine it would be advantageous, then allocate
1943 		 * a zero-fill page for the base object.  The base object
1944 		 * is guaranteed to be OBJT_DEFAULT for this case.
1945 		 *
1946 		 * In order to not have to check the pager via *haspage*()
1947 		 * we stop if any non-default object is encountered.  e.g.
1948 		 * a vnode or swap object would stop the loop.
1949 		 */
1950 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1951 		lobject = object;
1952 		pindex = index;
1953 		pprot = prot;
1954 
1955 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
1956 			if (lobject->type != OBJT_DEFAULT)
1957 				break;
1958 			if (lobject->backing_object == NULL) {
1959 				if (vm_fast_fault == 0)
1960 					break;
1961 				if (vm_prefault_pageorder[i] < 0 ||
1962 				    (prot & VM_PROT_WRITE) == 0 ||
1963 				    vm_page_count_min(0)) {
1964 					break;
1965 				}
1966 				/* note: allocate from base object */
1967 				m = vm_page_alloc(object, index,
1968 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1969 
1970 				if ((m->flags & PG_ZERO) == 0) {
1971 					vm_page_zero_fill(m);
1972 				} else {
1973 					vm_page_flag_clear(m, PG_ZERO);
1974 					mycpu->gd_cnt.v_ozfod++;
1975 				}
1976 				mycpu->gd_cnt.v_zfod++;
1977 				m->valid = VM_PAGE_BITS_ALL;
1978 				allocated = 1;
1979 				pprot = prot;
1980 				/* lobject = object .. not needed */
1981 				break;
1982 			}
1983 			if (lobject->backing_object_offset & PAGE_MASK)
1984 				break;
1985 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1986 			lobject = lobject->backing_object;
1987 			pprot &= ~VM_PROT_WRITE;
1988 		}
1989 		/*
1990 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
1991 		 *	 bother assigning lobject = object).
1992 		 *
1993 		 * Give-up if the page is not available.
1994 		 */
1995 		if (m == NULL)
1996 			break;
1997 
1998 		/*
1999 		 * Do not conditionalize on PG_RAM.  If pages are present in
2000 		 * the VM system we assume optimal caching.  If caching is
2001 		 * not optimal the I/O gravy train will be restarted when we
2002 		 * hit an unavailable page.  We do not want to try to restart
2003 		 * the gravy train now because we really don't know how much
2004 		 * of the object has been cached.  The cost for restarting
2005 		 * the gravy train should be low (since accesses will likely
2006 		 * be I/O bound anyway).
2007 		 *
2008 		 * The object must be marked dirty if we are mapping a
2009 		 * writable page.
2010 		 */
2011 		if (pprot & VM_PROT_WRITE)
2012 			vm_object_set_writeable_dirty(m->object);
2013 
2014 		/*
2015 		 * Enter the page into the pmap if appropriate.  If we had
2016 		 * allocated the page we have to place it on a queue.  If not
2017 		 * we just have to make sure it isn't on the cache queue
2018 		 * (pages on the cache queue are not allowed to be mapped).
2019 		 */
2020 		if (allocated) {
2021 			pmap_enter(pmap, addr, m, pprot, 0);
2022 			vm_page_deactivate(m);
2023 			vm_page_wakeup(m);
2024 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2025 		    (m->busy == 0) &&
2026 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2027 
2028 			if ((m->queue - m->pc) == PQ_CACHE) {
2029 				vm_page_deactivate(m);
2030 			}
2031 			vm_page_busy(m);
2032 			pmap_enter(pmap, addr, m, pprot, 0);
2033 			vm_page_wakeup(m);
2034 		}
2035 	}
2036 	crit_exit();
2037 }
2038