xref: /dflybsd-src/sys/vm/vm_fault.c (revision c4be1ed54eff4542e7a8605007f73b381092df37)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	boolean_t wired;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 	   "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161 	   "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164 	   "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167 	   "Unsuccessful shared faults");
168 
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171 			vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177 			vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179 			vm_map_entry_t entry, int prot, int fault_flags);
180 
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184 	vm_page_deactivate(fs->m);
185 	vm_page_wakeup(fs->m);
186 	fs->m = NULL;
187 }
188 
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *	 requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *	 not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *	 holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202 	int error;
203 
204 	if (fs->lookup_still_valid == FALSE && fs->map) {
205 		error = vm_map_lock_read_to(fs->map);
206 		if (error == 0)
207 			fs->lookup_still_valid = TRUE;
208 	} else {
209 		error = 0;
210 	}
211 	return error;
212 }
213 
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217 	if (fs->lookup_still_valid && fs->map) {
218 		vm_map_lookup_done(fs->map, fs->entry, 0);
219 		fs->lookup_still_valid = FALSE;
220 	}
221 }
222 
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230 	/*
231 	 * We allocated a junk page for a COW operation that did
232 	 * not occur, the page must be freed.
233 	 */
234 	if (fs->object != fs->first_object) {
235 		KKASSERT(fs->first_shared == 0);
236 		vm_page_free(fs->first_m);
237 		vm_object_pip_wakeup(fs->object);
238 		fs->first_m = NULL;
239 	}
240 
241 	/*
242 	 * Reset fs->object.
243 	 */
244 	fs->object = fs->first_object;
245 	if (relock && fs->lookup_still_valid == FALSE) {
246 		if (fs->map)
247 			vm_map_lock_read(fs->map);
248 		fs->lookup_still_valid = TRUE;
249 	}
250 }
251 
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255 	_cleanup_successful_fault(fs, 0);
256 	if (dealloc) {
257 		/*vm_object_deallocate(fs->first_object);*/
258 		/*fs->first_object = NULL; drop used later on */
259 	}
260 	unlock_map(fs);
261 	if (fs->vp != NULL) {
262 		vput(fs->vp);
263 		fs->vp = NULL;
264 	}
265 }
266 
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270 
271 /*
272  * TRYPAGER
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)	\
281 		(fs->object->type != OBJT_DEFAULT && \
282 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283 
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303 	int result;
304 	vm_pindex_t first_pindex;
305 	struct faultstate fs;
306 	struct lwp *lp;
307 	int growstack;
308 	int retry = 0;
309 	int inherit_prot;
310 
311 	inherit_prot = fault_type & VM_PROT_NOSYNC;
312 	vm_page_pcpu_cache();
313 	fs.hardfault = 0;
314 	fs.fault_flags = fault_flags;
315 	fs.vp = NULL;
316 	fs.shared = vm_shared_fault;
317 	fs.first_shared = vm_shared_fault;
318 	growstack = 1;
319 	if (vm_shared_fault)
320 		++vm_shared_count;
321 
322 	/*
323 	 * vm_map interactions
324 	 */
325 	if ((lp = curthread->td_lwp) != NULL)
326 		lp->lwp_flags |= LWP_PAGING;
327 	lwkt_gettoken(&map->token);
328 
329 RetryFault:
330 	/*
331 	 * Find the vm_map_entry representing the backing store and resolve
332 	 * the top level object and page index.  This may have the side
333 	 * effect of executing a copy-on-write on the map entry and/or
334 	 * creating a shadow object, but will not COW any actual VM pages.
335 	 *
336 	 * On success fs.map is left read-locked and various other fields
337 	 * are initialized but not otherwise referenced or locked.
338 	 *
339 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
340 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
341 	 * writable, so we can set the 'A'accessed bit in the virtual page
342 	 * table entry.
343 	 */
344 	fs.map = map;
345 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
346 			       &fs.entry, &fs.first_object,
347 			       &first_pindex, &fs.first_prot, &fs.wired);
348 
349 	/*
350 	 * If the lookup failed or the map protections are incompatible,
351 	 * the fault generally fails.  However, if the caller is trying
352 	 * to do a user wiring we have more work to do.
353 	 */
354 	if (result != KERN_SUCCESS) {
355 		if (result != KERN_PROTECTION_FAILURE ||
356 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
357 		{
358 			if (result == KERN_INVALID_ADDRESS && growstack &&
359 			    map != &kernel_map && curproc != NULL) {
360 				result = vm_map_growstack(curproc, vaddr);
361 				if (result == KERN_SUCCESS) {
362 					growstack = 0;
363 					++retry;
364 					goto RetryFault;
365 				}
366 				result = KERN_FAILURE;
367 			}
368 			goto done;
369 		}
370 
371 		/*
372    		 * If we are user-wiring a r/w segment, and it is COW, then
373    		 * we need to do the COW operation.  Note that we don't
374 		 * currently COW RO sections now, because it is NOT desirable
375    		 * to COW .text.  We simply keep .text from ever being COW'ed
376    		 * and take the heat that one cannot debug wired .text sections.
377    		 */
378 		result = vm_map_lookup(&fs.map, vaddr,
379 				       VM_PROT_READ|VM_PROT_WRITE|
380 				        VM_PROT_OVERRIDE_WRITE,
381 				       &fs.entry, &fs.first_object,
382 				       &first_pindex, &fs.first_prot,
383 				       &fs.wired);
384 		if (result != KERN_SUCCESS) {
385 			result = KERN_FAILURE;
386 			goto done;
387 		}
388 
389 		/*
390 		 * If we don't COW now, on a user wire, the user will never
391 		 * be able to write to the mapping.  If we don't make this
392 		 * restriction, the bookkeeping would be nearly impossible.
393 		 *
394 		 * XXX We have a shared lock, this will have a MP race but
395 		 * I don't see how it can hurt anything.
396 		 */
397 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
398 			fs.entry->max_protection &= ~VM_PROT_WRITE;
399 	}
400 
401 	/*
402 	 * fs.map is read-locked
403 	 *
404 	 * Misc checks.  Save the map generation number to detect races.
405 	 */
406 	fs.map_generation = fs.map->timestamp;
407 	fs.lookup_still_valid = TRUE;
408 	fs.first_m = NULL;
409 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
410 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
411 
412 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
413 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
414 			panic("vm_fault: fault on nofault entry, addr: %p",
415 			      (void *)vaddr);
416 		}
417 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
418 		    vaddr >= fs.entry->start &&
419 		    vaddr < fs.entry->start + PAGE_SIZE) {
420 			panic("vm_fault: fault on stack guard, addr: %p",
421 			      (void *)vaddr);
422 		}
423 	}
424 
425 	/*
426 	 * A user-kernel shared map has no VM object and bypasses
427 	 * everything.  We execute the uksmap function with a temporary
428 	 * fictitious vm_page.  The address is directly mapped with no
429 	 * management.
430 	 */
431 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
432 		struct vm_page fakem;
433 
434 		bzero(&fakem, sizeof(fakem));
435 		fakem.pindex = first_pindex;
436 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
437 		fakem.valid = VM_PAGE_BITS_ALL;
438 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
439 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
440 			result = KERN_FAILURE;
441 			unlock_things(&fs);
442 			goto done2;
443 		}
444 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
445 			   fs.wired, fs.entry);
446 		goto done_success;
447 	}
448 
449 	/*
450 	 * A system map entry may return a NULL object.  No object means
451 	 * no pager means an unrecoverable kernel fault.
452 	 */
453 	if (fs.first_object == NULL) {
454 		panic("vm_fault: unrecoverable fault at %p in entry %p",
455 			(void *)vaddr, fs.entry);
456 	}
457 
458 	/*
459 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
460 	 * is set.
461 	 */
462 	if ((curthread->td_flags & TDF_NOFAULT) &&
463 	    (retry ||
464 	     fs.first_object->type == OBJT_VNODE ||
465 	     fs.first_object->backing_object)) {
466 		result = KERN_FAILURE;
467 		unlock_things(&fs);
468 		goto done2;
469 	}
470 
471 	/*
472 	 * If the entry is wired we cannot change the page protection.
473 	 */
474 	if (fs.wired)
475 		fault_type = fs.first_prot;
476 
477 	/*
478 	 * We generally want to avoid unnecessary exclusive modes on backing
479 	 * and terminal objects because this can seriously interfere with
480 	 * heavily fork()'d processes (particularly /bin/sh scripts).
481 	 *
482 	 * However, we also want to avoid unnecessary retries due to needed
483 	 * shared->exclusive promotion for common faults.  Exclusive mode is
484 	 * always needed if any page insertion, rename, or free occurs in an
485 	 * object (and also indirectly if any I/O is done).
486 	 *
487 	 * The main issue here is going to be fs.first_shared.  If the
488 	 * first_object has a backing object which isn't shadowed and the
489 	 * process is single-threaded we might as well use an exclusive
490 	 * lock/chain right off the bat.
491 	 */
492 	if (fs.first_shared && fs.first_object->backing_object &&
493 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
494 	    curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
495 		fs.first_shared = 0;
496 	}
497 
498 	/*
499 	 * swap_pager_unswapped() needs an exclusive object
500 	 */
501 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
502 		fs.first_shared = 0;
503 	}
504 
505 	/*
506 	 * Obtain a top-level object lock, shared or exclusive depending
507 	 * on fs.first_shared.  If a shared lock winds up being insufficient
508 	 * we will retry with an exclusive lock.
509 	 *
510 	 * The vnode pager lock is always shared.
511 	 */
512 	if (fs.first_shared)
513 		vm_object_hold_shared(fs.first_object);
514 	else
515 		vm_object_hold(fs.first_object);
516 	if (fs.vp == NULL)
517 		fs.vp = vnode_pager_lock(fs.first_object);
518 
519 	/*
520 	 * The page we want is at (first_object, first_pindex), but if the
521 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
522 	 * page table to figure out the actual pindex.
523 	 *
524 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
525 	 * ONLY
526 	 */
527 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
528 		result = vm_fault_vpagetable(&fs, &first_pindex,
529 					     fs.entry->aux.master_pde,
530 					     fault_type, 1);
531 		if (result == KERN_TRY_AGAIN) {
532 			vm_object_drop(fs.first_object);
533 			++retry;
534 			goto RetryFault;
535 		}
536 		if (result != KERN_SUCCESS)
537 			goto done;
538 	}
539 
540 	/*
541 	 * Now we have the actual (object, pindex), fault in the page.  If
542 	 * vm_fault_object() fails it will unlock and deallocate the FS
543 	 * data.   If it succeeds everything remains locked and fs->object
544 	 * will have an additional PIP count if it is not equal to
545 	 * fs->first_object
546 	 *
547 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
548 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
549 	 * page can be safely written.  However, it will force a read-only
550 	 * mapping for a read fault if the memory is managed by a virtual
551 	 * page table.
552 	 *
553 	 * If the fault code uses the shared object lock shortcut
554 	 * we must not try to burst (we can't allocate VM pages).
555 	 */
556 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
557 
558 	if (debug_fault > 0) {
559 		--debug_fault;
560 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
561 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
562 			result, (intmax_t)vaddr, fault_type, fault_flags,
563 			fs.m, fs.prot, fs.wired, fs.entry);
564 	}
565 
566 	if (result == KERN_TRY_AGAIN) {
567 		vm_object_drop(fs.first_object);
568 		++retry;
569 		goto RetryFault;
570 	}
571 	if (result != KERN_SUCCESS)
572 		goto done;
573 
574 	/*
575 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
576 	 * will contain a busied page.
577 	 *
578 	 * Enter the page into the pmap and do pmap-related adjustments.
579 	 */
580 	KKASSERT(fs.lookup_still_valid == TRUE);
581 	vm_page_flag_set(fs.m, PG_REFERENCED);
582 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
583 		   fs.wired, fs.entry);
584 
585 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
586 	KKASSERT(fs.m->flags & PG_BUSY);
587 
588 	/*
589 	 * If the page is not wired down, then put it where the pageout daemon
590 	 * can find it.
591 	 */
592 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
593 		if (fs.wired)
594 			vm_page_wire(fs.m);
595 		else
596 			vm_page_unwire(fs.m, 1);
597 	} else {
598 		vm_page_activate(fs.m);
599 	}
600 	vm_page_wakeup(fs.m);
601 
602 	/*
603 	 * Burst in a few more pages if possible.  The fs.map should still
604 	 * be locked.  To avoid interlocking against a vnode->getblk
605 	 * operation we had to be sure to unbusy our primary vm_page above
606 	 * first.
607 	 *
608 	 * A normal burst can continue down backing store, only execute
609 	 * if we are holding an exclusive lock, otherwise the exclusive
610 	 * locks the burst code gets might cause excessive SMP collisions.
611 	 *
612 	 * A quick burst can be utilized when there is no backing object
613 	 * (i.e. a shared file mmap).
614 	 */
615 	if ((fault_flags & VM_FAULT_BURST) &&
616 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
617 	    fs.wired == 0) {
618 		if (fs.first_shared == 0 && fs.shared == 0) {
619 			vm_prefault(fs.map->pmap, vaddr,
620 				    fs.entry, fs.prot, fault_flags);
621 		} else {
622 			vm_prefault_quick(fs.map->pmap, vaddr,
623 					  fs.entry, fs.prot, fault_flags);
624 		}
625 	}
626 
627 done_success:
628 	mycpu->gd_cnt.v_vm_faults++;
629 	if (curthread->td_lwp)
630 		++curthread->td_lwp->lwp_ru.ru_minflt;
631 
632 	/*
633 	 * Unlock everything, and return
634 	 */
635 	unlock_things(&fs);
636 
637 	if (curthread->td_lwp) {
638 		if (fs.hardfault) {
639 			curthread->td_lwp->lwp_ru.ru_majflt++;
640 		} else {
641 			curthread->td_lwp->lwp_ru.ru_minflt++;
642 		}
643 	}
644 
645 	/*vm_object_deallocate(fs.first_object);*/
646 	/*fs.m = NULL; */
647 	/*fs.first_object = NULL; must still drop later */
648 
649 	result = KERN_SUCCESS;
650 done:
651 	if (fs.first_object)
652 		vm_object_drop(fs.first_object);
653 done2:
654 	lwkt_reltoken(&map->token);
655 	if (lp)
656 		lp->lwp_flags &= ~LWP_PAGING;
657 	if (vm_shared_fault && fs.shared == 0)
658 		++vm_shared_miss;
659 	return (result);
660 }
661 
662 /*
663  * Fault in the specified virtual address in the current process map,
664  * returning a held VM page or NULL.  See vm_fault_page() for more
665  * information.
666  *
667  * No requirements.
668  */
669 vm_page_t
670 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
671 {
672 	struct lwp *lp = curthread->td_lwp;
673 	vm_page_t m;
674 
675 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
676 			  fault_type, VM_FAULT_NORMAL, errorp);
677 	return(m);
678 }
679 
680 /*
681  * Fault in the specified virtual address in the specified map, doing all
682  * necessary manipulation of the object store and all necessary I/O.  Return
683  * a held VM page or NULL, and set *errorp.  The related pmap is not
684  * updated.
685  *
686  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
687  * and marked PG_REFERENCED as well.
688  *
689  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
690  * error will be returned.
691  *
692  * No requirements.
693  */
694 vm_page_t
695 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
696 	      int fault_flags, int *errorp)
697 {
698 	vm_pindex_t first_pindex;
699 	struct faultstate fs;
700 	int result;
701 	int retry = 0;
702 	vm_prot_t orig_fault_type = fault_type;
703 
704 	fs.hardfault = 0;
705 	fs.fault_flags = fault_flags;
706 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
707 
708 	/*
709 	 * Dive the pmap (concurrency possible).  If we find the
710 	 * appropriate page we can terminate early and quickly.
711 	 */
712 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
713 	if (fs.m) {
714 		*errorp = 0;
715 		return(fs.m);
716 	}
717 
718 	/*
719 	 * Otherwise take a concurrency hit and do a formal page
720 	 * fault.
721 	 */
722 	fs.shared = vm_shared_fault;
723 	fs.first_shared = vm_shared_fault;
724 	fs.vp = NULL;
725 	lwkt_gettoken(&map->token);
726 
727 	/*
728 	 * swap_pager_unswapped() needs an exclusive object
729 	 */
730 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
731 		fs.first_shared = 0;
732 	}
733 
734 RetryFault:
735 	/*
736 	 * Find the vm_map_entry representing the backing store and resolve
737 	 * the top level object and page index.  This may have the side
738 	 * effect of executing a copy-on-write on the map entry and/or
739 	 * creating a shadow object, but will not COW any actual VM pages.
740 	 *
741 	 * On success fs.map is left read-locked and various other fields
742 	 * are initialized but not otherwise referenced or locked.
743 	 *
744 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
745 	 * if the map entry is a virtual page table and also writable,
746 	 * so we can set the 'A'accessed bit in the virtual page table entry.
747 	 */
748 	fs.map = map;
749 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
750 			       &fs.entry, &fs.first_object,
751 			       &first_pindex, &fs.first_prot, &fs.wired);
752 
753 	if (result != KERN_SUCCESS) {
754 		*errorp = result;
755 		fs.m = NULL;
756 		goto done;
757 	}
758 
759 	/*
760 	 * fs.map is read-locked
761 	 *
762 	 * Misc checks.  Save the map generation number to detect races.
763 	 */
764 	fs.map_generation = fs.map->timestamp;
765 	fs.lookup_still_valid = TRUE;
766 	fs.first_m = NULL;
767 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
768 
769 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
770 		panic("vm_fault: fault on nofault entry, addr: %lx",
771 		    (u_long)vaddr);
772 	}
773 
774 	/*
775 	 * A system map entry may return a NULL object.  No object means
776 	 * no pager means an unrecoverable kernel fault.
777 	 */
778 	if (fs.first_object == NULL) {
779 		panic("vm_fault: unrecoverable fault at %p in entry %p",
780 			(void *)vaddr, fs.entry);
781 	}
782 
783 	/*
784 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
785 	 * is set.
786 	 */
787 	if ((curthread->td_flags & TDF_NOFAULT) &&
788 	    (retry ||
789 	     fs.first_object->type == OBJT_VNODE ||
790 	     fs.first_object->backing_object)) {
791 		*errorp = KERN_FAILURE;
792 		unlock_things(&fs);
793 		goto done2;
794 	}
795 
796 	/*
797 	 * If the entry is wired we cannot change the page protection.
798 	 */
799 	if (fs.wired)
800 		fault_type = fs.first_prot;
801 
802 	/*
803 	 * Make a reference to this object to prevent its disposal while we
804 	 * are messing with it.  Once we have the reference, the map is free
805 	 * to be diddled.  Since objects reference their shadows (and copies),
806 	 * they will stay around as well.
807 	 *
808 	 * The reference should also prevent an unexpected collapse of the
809 	 * parent that might move pages from the current object into the
810 	 * parent unexpectedly, resulting in corruption.
811 	 *
812 	 * Bump the paging-in-progress count to prevent size changes (e.g.
813 	 * truncation operations) during I/O.  This must be done after
814 	 * obtaining the vnode lock in order to avoid possible deadlocks.
815 	 */
816 	if (fs.first_shared)
817 		vm_object_hold_shared(fs.first_object);
818 	else
819 		vm_object_hold(fs.first_object);
820 	if (fs.vp == NULL)
821 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
822 
823 	/*
824 	 * The page we want is at (first_object, first_pindex), but if the
825 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
826 	 * page table to figure out the actual pindex.
827 	 *
828 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
829 	 * ONLY
830 	 */
831 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
832 		result = vm_fault_vpagetable(&fs, &first_pindex,
833 					     fs.entry->aux.master_pde,
834 					     fault_type, 1);
835 		if (result == KERN_TRY_AGAIN) {
836 			vm_object_drop(fs.first_object);
837 			++retry;
838 			goto RetryFault;
839 		}
840 		if (result != KERN_SUCCESS) {
841 			*errorp = result;
842 			fs.m = NULL;
843 			goto done;
844 		}
845 	}
846 
847 	/*
848 	 * Now we have the actual (object, pindex), fault in the page.  If
849 	 * vm_fault_object() fails it will unlock and deallocate the FS
850 	 * data.   If it succeeds everything remains locked and fs->object
851 	 * will have an additinal PIP count if it is not equal to
852 	 * fs->first_object
853 	 */
854 	fs.m = NULL;
855 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
856 
857 	if (result == KERN_TRY_AGAIN) {
858 		vm_object_drop(fs.first_object);
859 		++retry;
860 		goto RetryFault;
861 	}
862 	if (result != KERN_SUCCESS) {
863 		*errorp = result;
864 		fs.m = NULL;
865 		goto done;
866 	}
867 
868 	if ((orig_fault_type & VM_PROT_WRITE) &&
869 	    (fs.prot & VM_PROT_WRITE) == 0) {
870 		*errorp = KERN_PROTECTION_FAILURE;
871 		unlock_and_deallocate(&fs);
872 		fs.m = NULL;
873 		goto done;
874 	}
875 
876 	/*
877 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
878 	 * a pmap unrelated to the current process pmap, in which case
879 	 * the current cpu core will not be listed in the pmap's pm_active
880 	 * mask.  Thus invalidation interlocks will fail to work properly.
881 	 *
882 	 * (for example, 'ps' uses procfs to read program arguments from
883 	 * each process's stack).
884 	 *
885 	 * In addition to the above this function will be called to acquire
886 	 * a page that might already be faulted in, re-faulting it
887 	 * continuously is a waste of time.
888 	 *
889 	 * XXX could this have been the cause of our random seg-fault
890 	 *     issues?  procfs accesses user stacks.
891 	 */
892 	vm_page_flag_set(fs.m, PG_REFERENCED);
893 #if 0
894 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
895 	mycpu->gd_cnt.v_vm_faults++;
896 	if (curthread->td_lwp)
897 		++curthread->td_lwp->lwp_ru.ru_minflt;
898 #endif
899 
900 	/*
901 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
902 	 * will contain a busied page.  So we must unlock here after having
903 	 * messed with the pmap.
904 	 */
905 	unlock_things(&fs);
906 
907 	/*
908 	 * Return a held page.  We are not doing any pmap manipulation so do
909 	 * not set PG_MAPPED.  However, adjust the page flags according to
910 	 * the fault type because the caller may not use a managed pmapping
911 	 * (so we don't want to lose the fact that the page will be dirtied
912 	 * if a write fault was specified).
913 	 */
914 	vm_page_hold(fs.m);
915 	vm_page_activate(fs.m);
916 	if (fault_type & VM_PROT_WRITE)
917 		vm_page_dirty(fs.m);
918 
919 	if (curthread->td_lwp) {
920 		if (fs.hardfault) {
921 			curthread->td_lwp->lwp_ru.ru_majflt++;
922 		} else {
923 			curthread->td_lwp->lwp_ru.ru_minflt++;
924 		}
925 	}
926 
927 	/*
928 	 * Unlock everything, and return the held page.
929 	 */
930 	vm_page_wakeup(fs.m);
931 	/*vm_object_deallocate(fs.first_object);*/
932 	/*fs.first_object = NULL; */
933 	*errorp = 0;
934 
935 done:
936 	if (fs.first_object)
937 		vm_object_drop(fs.first_object);
938 done2:
939 	lwkt_reltoken(&map->token);
940 	return(fs.m);
941 }
942 
943 /*
944  * Fault in the specified (object,offset), dirty the returned page as
945  * needed.  If the requested fault_type cannot be done NULL and an
946  * error is returned.
947  *
948  * A held (but not busied) page is returned.
949  *
950  * The passed in object must be held as specified by the shared
951  * argument.
952  */
953 vm_page_t
954 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
955 		     vm_prot_t fault_type, int fault_flags,
956 		     int *sharedp, int *errorp)
957 {
958 	int result;
959 	vm_pindex_t first_pindex;
960 	struct faultstate fs;
961 	struct vm_map_entry entry;
962 
963 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
964 	bzero(&entry, sizeof(entry));
965 	entry.object.vm_object = object;
966 	entry.maptype = VM_MAPTYPE_NORMAL;
967 	entry.protection = entry.max_protection = fault_type;
968 
969 	fs.hardfault = 0;
970 	fs.fault_flags = fault_flags;
971 	fs.map = NULL;
972 	fs.shared = vm_shared_fault;
973 	fs.first_shared = *sharedp;
974 	fs.vp = NULL;
975 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
976 
977 	/*
978 	 * Might require swap block adjustments
979 	 */
980 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
981 		fs.first_shared = 0;
982 		vm_object_upgrade(object);
983 	}
984 
985 	/*
986 	 * Retry loop as needed (typically for shared->exclusive transitions)
987 	 */
988 RetryFault:
989 	*sharedp = fs.first_shared;
990 	first_pindex = OFF_TO_IDX(offset);
991 	fs.first_object = object;
992 	fs.entry = &entry;
993 	fs.first_prot = fault_type;
994 	fs.wired = 0;
995 	/*fs.map_generation = 0; unused */
996 
997 	/*
998 	 * Make a reference to this object to prevent its disposal while we
999 	 * are messing with it.  Once we have the reference, the map is free
1000 	 * to be diddled.  Since objects reference their shadows (and copies),
1001 	 * they will stay around as well.
1002 	 *
1003 	 * The reference should also prevent an unexpected collapse of the
1004 	 * parent that might move pages from the current object into the
1005 	 * parent unexpectedly, resulting in corruption.
1006 	 *
1007 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1008 	 * truncation operations) during I/O.  This must be done after
1009 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1010 	 */
1011 	if (fs.vp == NULL)
1012 		fs.vp = vnode_pager_lock(fs.first_object);
1013 
1014 	fs.lookup_still_valid = TRUE;
1015 	fs.first_m = NULL;
1016 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1017 
1018 #if 0
1019 	/* XXX future - ability to operate on VM object using vpagetable */
1020 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1021 		result = vm_fault_vpagetable(&fs, &first_pindex,
1022 					     fs.entry->aux.master_pde,
1023 					     fault_type, 0);
1024 		if (result == KERN_TRY_AGAIN) {
1025 			if (fs.first_shared == 0 && *sharedp)
1026 				vm_object_upgrade(object);
1027 			goto RetryFault;
1028 		}
1029 		if (result != KERN_SUCCESS) {
1030 			*errorp = result;
1031 			return (NULL);
1032 		}
1033 	}
1034 #endif
1035 
1036 	/*
1037 	 * Now we have the actual (object, pindex), fault in the page.  If
1038 	 * vm_fault_object() fails it will unlock and deallocate the FS
1039 	 * data.   If it succeeds everything remains locked and fs->object
1040 	 * will have an additinal PIP count if it is not equal to
1041 	 * fs->first_object
1042 	 *
1043 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1044 	 * We may have to upgrade its lock to handle the requested fault.
1045 	 */
1046 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1047 
1048 	if (result == KERN_TRY_AGAIN) {
1049 		if (fs.first_shared == 0 && *sharedp)
1050 			vm_object_upgrade(object);
1051 		goto RetryFault;
1052 	}
1053 	if (result != KERN_SUCCESS) {
1054 		*errorp = result;
1055 		return(NULL);
1056 	}
1057 
1058 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1059 		*errorp = KERN_PROTECTION_FAILURE;
1060 		unlock_and_deallocate(&fs);
1061 		return(NULL);
1062 	}
1063 
1064 	/*
1065 	 * On success vm_fault_object() does not unlock or deallocate, so we
1066 	 * do it here.  Note that the returned fs.m will be busied.
1067 	 */
1068 	unlock_things(&fs);
1069 
1070 	/*
1071 	 * Return a held page.  We are not doing any pmap manipulation so do
1072 	 * not set PG_MAPPED.  However, adjust the page flags according to
1073 	 * the fault type because the caller may not use a managed pmapping
1074 	 * (so we don't want to lose the fact that the page will be dirtied
1075 	 * if a write fault was specified).
1076 	 */
1077 	vm_page_hold(fs.m);
1078 	vm_page_activate(fs.m);
1079 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1080 		vm_page_dirty(fs.m);
1081 	if (fault_flags & VM_FAULT_UNSWAP)
1082 		swap_pager_unswapped(fs.m);
1083 
1084 	/*
1085 	 * Indicate that the page was accessed.
1086 	 */
1087 	vm_page_flag_set(fs.m, PG_REFERENCED);
1088 
1089 	if (curthread->td_lwp) {
1090 		if (fs.hardfault) {
1091 			curthread->td_lwp->lwp_ru.ru_majflt++;
1092 		} else {
1093 			curthread->td_lwp->lwp_ru.ru_minflt++;
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * Unlock everything, and return the held page.
1099 	 */
1100 	vm_page_wakeup(fs.m);
1101 	/*vm_object_deallocate(fs.first_object);*/
1102 	/*fs.first_object = NULL; */
1103 
1104 	*errorp = 0;
1105 	return(fs.m);
1106 }
1107 
1108 /*
1109  * Translate the virtual page number (first_pindex) that is relative
1110  * to the address space into a logical page number that is relative to the
1111  * backing object.  Use the virtual page table pointed to by (vpte).
1112  *
1113  * This implements an N-level page table.  Any level can terminate the
1114  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1115  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1116  */
1117 static
1118 int
1119 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1120 		    vpte_t vpte, int fault_type, int allow_nofault)
1121 {
1122 	struct lwbuf *lwb;
1123 	struct lwbuf lwb_cache;
1124 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1125 	int result = KERN_SUCCESS;
1126 	vpte_t *ptep;
1127 
1128 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1129 	for (;;) {
1130 		/*
1131 		 * We cannot proceed if the vpte is not valid, not readable
1132 		 * for a read fault, or not writable for a write fault.
1133 		 */
1134 		if ((vpte & VPTE_V) == 0) {
1135 			unlock_and_deallocate(fs);
1136 			return (KERN_FAILURE);
1137 		}
1138 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1139 			unlock_and_deallocate(fs);
1140 			return (KERN_FAILURE);
1141 		}
1142 		if ((vpte & VPTE_PS) || vshift == 0)
1143 			break;
1144 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1145 
1146 		/*
1147 		 * Get the page table page.  Nominally we only read the page
1148 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1149 		 * tell vm_fault_object() that we are writing it.
1150 		 *
1151 		 * There is currently no real need to optimize this.
1152 		 */
1153 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1154 					 VM_PROT_READ|VM_PROT_WRITE,
1155 					 allow_nofault);
1156 		if (result != KERN_SUCCESS)
1157 			return (result);
1158 
1159 		/*
1160 		 * Process the returned fs.m and look up the page table
1161 		 * entry in the page table page.
1162 		 */
1163 		vshift -= VPTE_PAGE_BITS;
1164 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1165 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1166 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1167 		vpte = *ptep;
1168 
1169 		/*
1170 		 * Page table write-back.  If the vpte is valid for the
1171 		 * requested operation, do a write-back to the page table.
1172 		 *
1173 		 * XXX VPTE_M is not set properly for page directory pages.
1174 		 * It doesn't get set in the page directory if the page table
1175 		 * is modified during a read access.
1176 		 */
1177 		vm_page_activate(fs->m);
1178 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1179 		    (vpte & VPTE_RW)) {
1180 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1181 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1182 				vm_page_dirty(fs->m);
1183 			}
1184 		}
1185 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1186 			if ((vpte & VPTE_A) == 0) {
1187 				atomic_set_long(ptep, VPTE_A);
1188 				vm_page_dirty(fs->m);
1189 			}
1190 		}
1191 		lwbuf_free(lwb);
1192 		vm_page_flag_set(fs->m, PG_REFERENCED);
1193 		vm_page_wakeup(fs->m);
1194 		fs->m = NULL;
1195 		cleanup_successful_fault(fs);
1196 	}
1197 	/*
1198 	 * Combine remaining address bits with the vpte.
1199 	 */
1200 	/* JG how many bits from each? */
1201 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1202 		  (*pindex & ((1L << vshift) - 1));
1203 	return (KERN_SUCCESS);
1204 }
1205 
1206 
1207 /*
1208  * This is the core of the vm_fault code.
1209  *
1210  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1211  * through the shadow chain as necessary and do required COW or virtual
1212  * copy operations.  The caller has already fully resolved the vm_map_entry
1213  * and, if appropriate, has created a copy-on-write layer.  All we need to
1214  * do is iterate the object chain.
1215  *
1216  * On failure (fs) is unlocked and deallocated and the caller may return or
1217  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1218  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1219  * will have an additional PIP count if it is not equal to fs.first_object.
1220  *
1221  * If locks based on fs->first_shared or fs->shared are insufficient,
1222  * clear the appropriate field(s) and return RETRY.  COWs require that
1223  * first_shared be 0, while page allocations (or frees) require that
1224  * shared be 0.  Renames require that both be 0.
1225  *
1226  * fs->first_object must be held on call.
1227  */
1228 static
1229 int
1230 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1231 		vm_prot_t fault_type, int allow_nofault)
1232 {
1233 	vm_object_t next_object;
1234 	vm_pindex_t pindex;
1235 	int error;
1236 
1237 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1238 	fs->prot = fs->first_prot;
1239 	fs->object = fs->first_object;
1240 	pindex = first_pindex;
1241 
1242 	vm_object_chain_acquire(fs->first_object, fs->shared);
1243 	vm_object_pip_add(fs->first_object, 1);
1244 
1245 	/*
1246 	 * If a read fault occurs we try to make the page writable if
1247 	 * possible.  There are three cases where we cannot make the
1248 	 * page mapping writable:
1249 	 *
1250 	 * (1) The mapping is read-only or the VM object is read-only,
1251 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1252 	 *
1253 	 * (2) If the mapping is a virtual page table we need to be able
1254 	 *     to detect writes so we can set VPTE_M in the virtual page
1255 	 *     table.
1256 	 *
1257 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1258 	 *     just result in an unnecessary COW fault.
1259 	 *
1260 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1261 	 * causes adjustments to the 'M'odify bit to also turn off write
1262 	 * access to force a re-fault.
1263 	 */
1264 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1265 		if ((fault_type & VM_PROT_WRITE) == 0)
1266 			fs->prot &= ~VM_PROT_WRITE;
1267 	}
1268 
1269 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1270 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1271 		if ((fault_type & VM_PROT_WRITE) == 0)
1272 			fs->prot &= ~VM_PROT_WRITE;
1273 	}
1274 
1275 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1276 
1277 	for (;;) {
1278 		/*
1279 		 * The entire backing chain from first_object to object
1280 		 * inclusive is chainlocked.
1281 		 *
1282 		 * If the object is dead, we stop here
1283 		 */
1284 		if (fs->object->flags & OBJ_DEAD) {
1285 			vm_object_pip_wakeup(fs->first_object);
1286 			vm_object_chain_release_all(fs->first_object,
1287 						    fs->object);
1288 			if (fs->object != fs->first_object)
1289 				vm_object_drop(fs->object);
1290 			unlock_and_deallocate(fs);
1291 			return (KERN_PROTECTION_FAILURE);
1292 		}
1293 
1294 		/*
1295 		 * See if the page is resident.  Wait/Retry if the page is
1296 		 * busy (lots of stuff may have changed so we can't continue
1297 		 * in that case).
1298 		 *
1299 		 * We can theoretically allow the soft-busy case on a read
1300 		 * fault if the page is marked valid, but since such
1301 		 * pages are typically already pmap'd, putting that
1302 		 * special case in might be more effort then it is
1303 		 * worth.  We cannot under any circumstances mess
1304 		 * around with a vm_page_t->busy page except, perhaps,
1305 		 * to pmap it.
1306 		 */
1307 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1308 						TRUE, &error);
1309 		if (error) {
1310 			vm_object_pip_wakeup(fs->first_object);
1311 			vm_object_chain_release_all(fs->first_object,
1312 						    fs->object);
1313 			if (fs->object != fs->first_object)
1314 				vm_object_drop(fs->object);
1315 			unlock_things(fs);
1316 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1317 			mycpu->gd_cnt.v_intrans++;
1318 			/*vm_object_deallocate(fs->first_object);*/
1319 			/*fs->first_object = NULL;*/
1320 			fs->m = NULL;
1321 			return (KERN_TRY_AGAIN);
1322 		}
1323 		if (fs->m) {
1324 			/*
1325 			 * The page is busied for us.
1326 			 *
1327 			 * If reactivating a page from PQ_CACHE we may have
1328 			 * to rate-limit.
1329 			 */
1330 			int queue = fs->m->queue;
1331 			vm_page_unqueue_nowakeup(fs->m);
1332 
1333 			if ((queue - fs->m->pc) == PQ_CACHE &&
1334 			    vm_page_count_severe()) {
1335 				vm_page_activate(fs->m);
1336 				vm_page_wakeup(fs->m);
1337 				fs->m = NULL;
1338 				vm_object_pip_wakeup(fs->first_object);
1339 				vm_object_chain_release_all(fs->first_object,
1340 							    fs->object);
1341 				if (fs->object != fs->first_object)
1342 					vm_object_drop(fs->object);
1343 				unlock_and_deallocate(fs);
1344 				if (allow_nofault == 0 ||
1345 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1346 					vm_wait_pfault();
1347 				}
1348 				return (KERN_TRY_AGAIN);
1349 			}
1350 
1351 			/*
1352 			 * If it still isn't completely valid (readable),
1353 			 * or if a read-ahead-mark is set on the VM page,
1354 			 * jump to readrest, else we found the page and
1355 			 * can return.
1356 			 *
1357 			 * We can release the spl once we have marked the
1358 			 * page busy.
1359 			 */
1360 			if (fs->m->object != &kernel_object) {
1361 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1362 				    VM_PAGE_BITS_ALL) {
1363 					goto readrest;
1364 				}
1365 				if (fs->m->flags & PG_RAM) {
1366 					if (debug_cluster)
1367 						kprintf("R");
1368 					vm_page_flag_clear(fs->m, PG_RAM);
1369 					goto readrest;
1370 				}
1371 			}
1372 			break; /* break to PAGE HAS BEEN FOUND */
1373 		}
1374 
1375 		/*
1376 		 * Page is not resident, If this is the search termination
1377 		 * or the pager might contain the page, allocate a new page.
1378 		 */
1379 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1380 			/*
1381 			 * Allocating, must be exclusive.
1382 			 */
1383 			if (fs->object == fs->first_object &&
1384 			    fs->first_shared) {
1385 				fs->first_shared = 0;
1386 				vm_object_pip_wakeup(fs->first_object);
1387 				vm_object_chain_release_all(fs->first_object,
1388 							    fs->object);
1389 				if (fs->object != fs->first_object)
1390 					vm_object_drop(fs->object);
1391 				unlock_and_deallocate(fs);
1392 				return (KERN_TRY_AGAIN);
1393 			}
1394 			if (fs->object != fs->first_object &&
1395 			    fs->shared) {
1396 				fs->first_shared = 0;
1397 				fs->shared = 0;
1398 				vm_object_pip_wakeup(fs->first_object);
1399 				vm_object_chain_release_all(fs->first_object,
1400 							    fs->object);
1401 				if (fs->object != fs->first_object)
1402 					vm_object_drop(fs->object);
1403 				unlock_and_deallocate(fs);
1404 				return (KERN_TRY_AGAIN);
1405 			}
1406 
1407 			/*
1408 			 * If the page is beyond the object size we fail
1409 			 */
1410 			if (pindex >= fs->object->size) {
1411 				vm_object_pip_wakeup(fs->first_object);
1412 				vm_object_chain_release_all(fs->first_object,
1413 							    fs->object);
1414 				if (fs->object != fs->first_object)
1415 					vm_object_drop(fs->object);
1416 				unlock_and_deallocate(fs);
1417 				return (KERN_PROTECTION_FAILURE);
1418 			}
1419 
1420 			/*
1421 			 * Allocate a new page for this object/offset pair.
1422 			 *
1423 			 * It is possible for the allocation to race, so
1424 			 * handle the case.
1425 			 */
1426 			fs->m = NULL;
1427 			if (!vm_page_count_severe()) {
1428 				fs->m = vm_page_alloc(fs->object, pindex,
1429 				    ((fs->vp || fs->object->backing_object) ?
1430 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1431 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1432 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1433 			}
1434 			if (fs->m == NULL) {
1435 				vm_object_pip_wakeup(fs->first_object);
1436 				vm_object_chain_release_all(fs->first_object,
1437 							    fs->object);
1438 				if (fs->object != fs->first_object)
1439 					vm_object_drop(fs->object);
1440 				unlock_and_deallocate(fs);
1441 				if (allow_nofault == 0 ||
1442 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1443 					vm_wait_pfault();
1444 				}
1445 				return (KERN_TRY_AGAIN);
1446 			}
1447 
1448 			/*
1449 			 * Fall through to readrest.  We have a new page which
1450 			 * will have to be paged (since m->valid will be 0).
1451 			 */
1452 		}
1453 
1454 readrest:
1455 		/*
1456 		 * We have found an invalid or partially valid page, a
1457 		 * page with a read-ahead mark which might be partially or
1458 		 * fully valid (and maybe dirty too), or we have allocated
1459 		 * a new page.
1460 		 *
1461 		 * Attempt to fault-in the page if there is a chance that the
1462 		 * pager has it, and potentially fault in additional pages
1463 		 * at the same time.
1464 		 *
1465 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1466 		 * for us.
1467 		 */
1468 		if (TRYPAGER(fs)) {
1469 			int rv;
1470 			int seqaccess;
1471 			u_char behavior = vm_map_entry_behavior(fs->entry);
1472 
1473 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1474 				seqaccess = 0;
1475 			else
1476 				seqaccess = -1;
1477 
1478 			/*
1479 			 * Doing I/O may synchronously insert additional
1480 			 * pages so we can't be shared at this point either.
1481 			 *
1482 			 * NOTE: We can't free fs->m here in the allocated
1483 			 *	 case (fs->object != fs->first_object) as
1484 			 *	 this would require an exclusively locked
1485 			 *	 VM object.
1486 			 */
1487 			if (fs->object == fs->first_object &&
1488 			    fs->first_shared) {
1489 				vm_page_deactivate(fs->m);
1490 				vm_page_wakeup(fs->m);
1491 				fs->m = NULL;
1492 				fs->first_shared = 0;
1493 				vm_object_pip_wakeup(fs->first_object);
1494 				vm_object_chain_release_all(fs->first_object,
1495 							    fs->object);
1496 				if (fs->object != fs->first_object)
1497 					vm_object_drop(fs->object);
1498 				unlock_and_deallocate(fs);
1499 				return (KERN_TRY_AGAIN);
1500 			}
1501 			if (fs->object != fs->first_object &&
1502 			    fs->shared) {
1503 				vm_page_deactivate(fs->m);
1504 				vm_page_wakeup(fs->m);
1505 				fs->m = NULL;
1506 				fs->first_shared = 0;
1507 				fs->shared = 0;
1508 				vm_object_pip_wakeup(fs->first_object);
1509 				vm_object_chain_release_all(fs->first_object,
1510 							    fs->object);
1511 				if (fs->object != fs->first_object)
1512 					vm_object_drop(fs->object);
1513 				unlock_and_deallocate(fs);
1514 				return (KERN_TRY_AGAIN);
1515 			}
1516 
1517 			/*
1518 			 * Avoid deadlocking against the map when doing I/O.
1519 			 * fs.object and the page is PG_BUSY'd.
1520 			 *
1521 			 * NOTE: Once unlocked, fs->entry can become stale
1522 			 *	 so this will NULL it out.
1523 			 *
1524 			 * NOTE: fs->entry is invalid until we relock the
1525 			 *	 map and verify that the timestamp has not
1526 			 *	 changed.
1527 			 */
1528 			unlock_map(fs);
1529 
1530 			/*
1531 			 * Acquire the page data.  We still hold a ref on
1532 			 * fs.object and the page has been PG_BUSY's.
1533 			 *
1534 			 * The pager may replace the page (for example, in
1535 			 * order to enter a fictitious page into the
1536 			 * object).  If it does so it is responsible for
1537 			 * cleaning up the passed page and properly setting
1538 			 * the new page PG_BUSY.
1539 			 *
1540 			 * If we got here through a PG_RAM read-ahead
1541 			 * mark the page may be partially dirty and thus
1542 			 * not freeable.  Don't bother checking to see
1543 			 * if the pager has the page because we can't free
1544 			 * it anyway.  We have to depend on the get_page
1545 			 * operation filling in any gaps whether there is
1546 			 * backing store or not.
1547 			 */
1548 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1549 
1550 			if (rv == VM_PAGER_OK) {
1551 				/*
1552 				 * Relookup in case pager changed page. Pager
1553 				 * is responsible for disposition of old page
1554 				 * if moved.
1555 				 *
1556 				 * XXX other code segments do relookups too.
1557 				 * It's a bad abstraction that needs to be
1558 				 * fixed/removed.
1559 				 */
1560 				fs->m = vm_page_lookup(fs->object, pindex);
1561 				if (fs->m == NULL) {
1562 					vm_object_pip_wakeup(fs->first_object);
1563 					vm_object_chain_release_all(
1564 						fs->first_object, fs->object);
1565 					if (fs->object != fs->first_object)
1566 						vm_object_drop(fs->object);
1567 					unlock_and_deallocate(fs);
1568 					return (KERN_TRY_AGAIN);
1569 				}
1570 				++fs->hardfault;
1571 				break; /* break to PAGE HAS BEEN FOUND */
1572 			}
1573 
1574 			/*
1575 			 * Remove the bogus page (which does not exist at this
1576 			 * object/offset); before doing so, we must get back
1577 			 * our object lock to preserve our invariant.
1578 			 *
1579 			 * Also wake up any other process that may want to bring
1580 			 * in this page.
1581 			 *
1582 			 * If this is the top-level object, we must leave the
1583 			 * busy page to prevent another process from rushing
1584 			 * past us, and inserting the page in that object at
1585 			 * the same time that we are.
1586 			 */
1587 			if (rv == VM_PAGER_ERROR) {
1588 				if (curproc) {
1589 					kprintf("vm_fault: pager read error, "
1590 						"pid %d (%s)\n",
1591 						curproc->p_pid,
1592 						curproc->p_comm);
1593 				} else {
1594 					kprintf("vm_fault: pager read error, "
1595 						"thread %p (%s)\n",
1596 						curthread,
1597 						curproc->p_comm);
1598 				}
1599 			}
1600 
1601 			/*
1602 			 * Data outside the range of the pager or an I/O error
1603 			 *
1604 			 * The page may have been wired during the pagein,
1605 			 * e.g. by the buffer cache, and cannot simply be
1606 			 * freed.  Call vnode_pager_freepage() to deal with it.
1607 			 *
1608 			 * Also note that we cannot free the page if we are
1609 			 * holding the related object shared. XXX not sure
1610 			 * what to do in that case.
1611 			 */
1612 			if (fs->object != fs->first_object) {
1613 				vnode_pager_freepage(fs->m);
1614 				fs->m = NULL;
1615 				/*
1616 				 * XXX - we cannot just fall out at this
1617 				 * point, m has been freed and is invalid!
1618 				 */
1619 			}
1620 			/*
1621 			 * XXX - the check for kernel_map is a kludge to work
1622 			 * around having the machine panic on a kernel space
1623 			 * fault w/ I/O error.
1624 			 */
1625 			if (((fs->map != &kernel_map) &&
1626 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1627 				if (fs->m) {
1628 					if (fs->first_shared) {
1629 						vm_page_deactivate(fs->m);
1630 						vm_page_wakeup(fs->m);
1631 					} else {
1632 						vnode_pager_freepage(fs->m);
1633 					}
1634 					fs->m = NULL;
1635 				}
1636 				vm_object_pip_wakeup(fs->first_object);
1637 				vm_object_chain_release_all(fs->first_object,
1638 							    fs->object);
1639 				if (fs->object != fs->first_object)
1640 					vm_object_drop(fs->object);
1641 				unlock_and_deallocate(fs);
1642 				if (rv == VM_PAGER_ERROR)
1643 					return (KERN_FAILURE);
1644 				else
1645 					return (KERN_PROTECTION_FAILURE);
1646 				/* NOT REACHED */
1647 			}
1648 		}
1649 
1650 		/*
1651 		 * We get here if the object has a default pager (or unwiring)
1652 		 * or the pager doesn't have the page.
1653 		 *
1654 		 * fs->first_m will be used for the COW unless we find a
1655 		 * deeper page to be mapped read-only, in which case the
1656 		 * unlock*(fs) will free first_m.
1657 		 */
1658 		if (fs->object == fs->first_object)
1659 			fs->first_m = fs->m;
1660 
1661 		/*
1662 		 * Move on to the next object.  The chain lock should prevent
1663 		 * the backing_object from getting ripped out from under us.
1664 		 *
1665 		 * The object lock for the next object is governed by
1666 		 * fs->shared.
1667 		 */
1668 		if ((next_object = fs->object->backing_object) != NULL) {
1669 			if (fs->shared)
1670 				vm_object_hold_shared(next_object);
1671 			else
1672 				vm_object_hold(next_object);
1673 			vm_object_chain_acquire(next_object, fs->shared);
1674 			KKASSERT(next_object == fs->object->backing_object);
1675 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1676 		}
1677 
1678 		if (next_object == NULL) {
1679 			/*
1680 			 * If there's no object left, fill the page in the top
1681 			 * object with zeros.
1682 			 */
1683 			if (fs->object != fs->first_object) {
1684 #if 0
1685 				if (fs->first_object->backing_object !=
1686 				    fs->object) {
1687 					vm_object_hold(fs->first_object->backing_object);
1688 				}
1689 #endif
1690 				vm_object_chain_release_all(
1691 					fs->first_object->backing_object,
1692 					fs->object);
1693 #if 0
1694 				if (fs->first_object->backing_object !=
1695 				    fs->object) {
1696 					vm_object_drop(fs->first_object->backing_object);
1697 				}
1698 #endif
1699 				vm_object_pip_wakeup(fs->object);
1700 				vm_object_drop(fs->object);
1701 				fs->object = fs->first_object;
1702 				pindex = first_pindex;
1703 				fs->m = fs->first_m;
1704 			}
1705 			fs->first_m = NULL;
1706 
1707 			/*
1708 			 * Zero the page if necessary and mark it valid.
1709 			 */
1710 			if ((fs->m->flags & PG_ZERO) == 0) {
1711 				vm_page_zero_fill(fs->m);
1712 			} else {
1713 #ifdef PMAP_DEBUG
1714 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1715 #endif
1716 				vm_page_flag_clear(fs->m, PG_ZERO);
1717 				mycpu->gd_cnt.v_ozfod++;
1718 			}
1719 			mycpu->gd_cnt.v_zfod++;
1720 			fs->m->valid = VM_PAGE_BITS_ALL;
1721 			break;	/* break to PAGE HAS BEEN FOUND */
1722 		}
1723 		if (fs->object != fs->first_object) {
1724 			vm_object_pip_wakeup(fs->object);
1725 			vm_object_lock_swap();
1726 			vm_object_drop(fs->object);
1727 		}
1728 		KASSERT(fs->object != next_object,
1729 			("object loop %p", next_object));
1730 		fs->object = next_object;
1731 		vm_object_pip_add(fs->object, 1);
1732 	}
1733 
1734 	/*
1735 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1736 	 * is held.]
1737 	 *
1738 	 * object still held.
1739 	 *
1740 	 * local shared variable may be different from fs->shared.
1741 	 *
1742 	 * If the page is being written, but isn't already owned by the
1743 	 * top-level object, we have to copy it into a new page owned by the
1744 	 * top-level object.
1745 	 */
1746 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1747 		("vm_fault: not busy after main loop"));
1748 
1749 	if (fs->object != fs->first_object) {
1750 		/*
1751 		 * We only really need to copy if we want to write it.
1752 		 */
1753 		if (fault_type & VM_PROT_WRITE) {
1754 			/*
1755 			 * This allows pages to be virtually copied from a
1756 			 * backing_object into the first_object, where the
1757 			 * backing object has no other refs to it, and cannot
1758 			 * gain any more refs.  Instead of a bcopy, we just
1759 			 * move the page from the backing object to the
1760 			 * first object.  Note that we must mark the page
1761 			 * dirty in the first object so that it will go out
1762 			 * to swap when needed.
1763 			 */
1764 			if (
1765 				/*
1766 				 * Must be holding exclusive locks
1767 				 */
1768 				fs->first_shared == 0 &&
1769 				fs->shared == 0 &&
1770 				/*
1771 				 * Map, if present, has not changed
1772 				 */
1773 				(fs->map == NULL ||
1774 				fs->map_generation == fs->map->timestamp) &&
1775 				/*
1776 				 * Only one shadow object
1777 				 */
1778 				(fs->object->shadow_count == 1) &&
1779 				/*
1780 				 * No COW refs, except us
1781 				 */
1782 				(fs->object->ref_count == 1) &&
1783 				/*
1784 				 * No one else can look this object up
1785 				 */
1786 				(fs->object->handle == NULL) &&
1787 				/*
1788 				 * No other ways to look the object up
1789 				 */
1790 				((fs->object->type == OBJT_DEFAULT) ||
1791 				 (fs->object->type == OBJT_SWAP)) &&
1792 				/*
1793 				 * We don't chase down the shadow chain
1794 				 */
1795 				(fs->object == fs->first_object->backing_object) &&
1796 
1797 				/*
1798 				 * grab the lock if we need to
1799 				 */
1800 				(fs->lookup_still_valid ||
1801 				 fs->map == NULL ||
1802 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1803 			    ) {
1804 				/*
1805 				 * (first_m) and (m) are both busied.  We have
1806 				 * move (m) into (first_m)'s object/pindex
1807 				 * in an atomic fashion, then free (first_m).
1808 				 *
1809 				 * first_object is held so second remove
1810 				 * followed by the rename should wind
1811 				 * up being atomic.  vm_page_free() might
1812 				 * block so we don't do it until after the
1813 				 * rename.
1814 				 */
1815 				fs->lookup_still_valid = 1;
1816 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1817 				vm_page_remove(fs->first_m);
1818 				vm_page_rename(fs->m, fs->first_object,
1819 					       first_pindex);
1820 				vm_page_free(fs->first_m);
1821 				fs->first_m = fs->m;
1822 				fs->m = NULL;
1823 				mycpu->gd_cnt.v_cow_optim++;
1824 			} else {
1825 				/*
1826 				 * Oh, well, lets copy it.
1827 				 *
1828 				 * Why are we unmapping the original page
1829 				 * here?  Well, in short, not all accessors
1830 				 * of user memory go through the pmap.  The
1831 				 * procfs code doesn't have access user memory
1832 				 * via a local pmap, so vm_fault_page*()
1833 				 * can't call pmap_enter().  And the umtx*()
1834 				 * code may modify the COW'd page via a DMAP
1835 				 * or kernel mapping and not via the pmap,
1836 				 * leaving the original page still mapped
1837 				 * read-only into the pmap.
1838 				 *
1839 				 * So we have to remove the page from at
1840 				 * least the current pmap if it is in it.
1841 				 * Just remove it from all pmaps.
1842 				 */
1843 				KKASSERT(fs->first_shared == 0);
1844 				vm_page_copy(fs->m, fs->first_m);
1845 				vm_page_protect(fs->m, VM_PROT_NONE);
1846 				vm_page_event(fs->m, VMEVENT_COW);
1847 			}
1848 
1849 			/*
1850 			 * We no longer need the old page or object.
1851 			 */
1852 			if (fs->m)
1853 				release_page(fs);
1854 
1855 			/*
1856 			 * We intend to revert to first_object, undo the
1857 			 * chain lock through to that.
1858 			 */
1859 #if 0
1860 			if (fs->first_object->backing_object != fs->object)
1861 				vm_object_hold(fs->first_object->backing_object);
1862 #endif
1863 			vm_object_chain_release_all(
1864 					fs->first_object->backing_object,
1865 					fs->object);
1866 #if 0
1867 			if (fs->first_object->backing_object != fs->object)
1868 				vm_object_drop(fs->first_object->backing_object);
1869 #endif
1870 
1871 			/*
1872 			 * fs->object != fs->first_object due to above
1873 			 * conditional
1874 			 */
1875 			vm_object_pip_wakeup(fs->object);
1876 			vm_object_drop(fs->object);
1877 
1878 			/*
1879 			 * Only use the new page below...
1880 			 */
1881 			mycpu->gd_cnt.v_cow_faults++;
1882 			fs->m = fs->first_m;
1883 			fs->object = fs->first_object;
1884 			pindex = first_pindex;
1885 		} else {
1886 			/*
1887 			 * If it wasn't a write fault avoid having to copy
1888 			 * the page by mapping it read-only.
1889 			 */
1890 			fs->prot &= ~VM_PROT_WRITE;
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * Relock the map if necessary, then check the generation count.
1896 	 * relock_map() will update fs->timestamp to account for the
1897 	 * relocking if necessary.
1898 	 *
1899 	 * If the count has changed after relocking then all sorts of
1900 	 * crap may have happened and we have to retry.
1901 	 *
1902 	 * NOTE: The relock_map() can fail due to a deadlock against
1903 	 *	 the vm_page we are holding BUSY.
1904 	 */
1905 	if (fs->lookup_still_valid == FALSE && fs->map) {
1906 		if (relock_map(fs) ||
1907 		    fs->map->timestamp != fs->map_generation) {
1908 			release_page(fs);
1909 			vm_object_pip_wakeup(fs->first_object);
1910 			vm_object_chain_release_all(fs->first_object,
1911 						    fs->object);
1912 			if (fs->object != fs->first_object)
1913 				vm_object_drop(fs->object);
1914 			unlock_and_deallocate(fs);
1915 			return (KERN_TRY_AGAIN);
1916 		}
1917 	}
1918 
1919 	/*
1920 	 * If the fault is a write, we know that this page is being
1921 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1922 	 * calls later.
1923 	 *
1924 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1925 	 * if the page is already dirty to prevent data written with
1926 	 * the expectation of being synced from not being synced.
1927 	 * Likewise if this entry does not request NOSYNC then make
1928 	 * sure the page isn't marked NOSYNC.  Applications sharing
1929 	 * data should use the same flags to avoid ping ponging.
1930 	 *
1931 	 * Also tell the backing pager, if any, that it should remove
1932 	 * any swap backing since the page is now dirty.
1933 	 */
1934 	vm_page_activate(fs->m);
1935 	if (fs->prot & VM_PROT_WRITE) {
1936 		vm_object_set_writeable_dirty(fs->m->object);
1937 		vm_set_nosync(fs->m, fs->entry);
1938 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1939 			vm_page_dirty(fs->m);
1940 			swap_pager_unswapped(fs->m);
1941 		}
1942 	}
1943 
1944 	vm_object_pip_wakeup(fs->first_object);
1945 	vm_object_chain_release_all(fs->first_object, fs->object);
1946 	if (fs->object != fs->first_object)
1947 		vm_object_drop(fs->object);
1948 
1949 	/*
1950 	 * Page had better still be busy.  We are still locked up and
1951 	 * fs->object will have another PIP reference if it is not equal
1952 	 * to fs->first_object.
1953 	 */
1954 	KASSERT(fs->m->flags & PG_BUSY,
1955 		("vm_fault: page %p not busy!", fs->m));
1956 
1957 	/*
1958 	 * Sanity check: page must be completely valid or it is not fit to
1959 	 * map into user space.  vm_pager_get_pages() ensures this.
1960 	 */
1961 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1962 		vm_page_zero_invalid(fs->m, TRUE);
1963 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1964 	}
1965 	vm_page_flag_clear(fs->m, PG_ZERO);
1966 
1967 	return (KERN_SUCCESS);
1968 }
1969 
1970 /*
1971  * Hold each of the physical pages that are mapped by the specified range of
1972  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1973  * and allow the specified types of access, "prot".  If all of the implied
1974  * pages are successfully held, then the number of held pages is returned
1975  * together with pointers to those pages in the array "ma".  However, if any
1976  * of the pages cannot be held, -1 is returned.
1977  */
1978 int
1979 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1980     vm_prot_t prot, vm_page_t *ma, int max_count)
1981 {
1982 	vm_offset_t start, end;
1983 	int i, npages, error;
1984 
1985 	start = trunc_page(addr);
1986 	end = round_page(addr + len);
1987 
1988 	npages = howmany(end - start, PAGE_SIZE);
1989 
1990 	if (npages > max_count)
1991 		return -1;
1992 
1993 	for (i = 0; i < npages; i++) {
1994 		// XXX error handling
1995 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
1996 			prot,
1997 			&error);
1998 	}
1999 
2000 	return npages;
2001 }
2002 
2003 /*
2004  * Wire down a range of virtual addresses in a map.  The entry in question
2005  * should be marked in-transition and the map must be locked.  We must
2006  * release the map temporarily while faulting-in the page to avoid a
2007  * deadlock.  Note that the entry may be clipped while we are blocked but
2008  * will never be freed.
2009  *
2010  * No requirements.
2011  */
2012 int
2013 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2014 	      boolean_t user_wire, int kmflags)
2015 {
2016 	boolean_t fictitious;
2017 	vm_offset_t start;
2018 	vm_offset_t end;
2019 	vm_offset_t va;
2020 	vm_paddr_t pa;
2021 	vm_page_t m;
2022 	pmap_t pmap;
2023 	int rv;
2024 	int wire_prot;
2025 	int fault_flags;
2026 
2027 	lwkt_gettoken(&map->token);
2028 
2029 	if (user_wire) {
2030 		wire_prot = VM_PROT_READ;
2031 		fault_flags = VM_FAULT_USER_WIRE;
2032 	} else {
2033 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2034 		fault_flags = VM_FAULT_CHANGE_WIRING;
2035 	}
2036 	if (kmflags & KM_NOTLBSYNC)
2037 		wire_prot |= VM_PROT_NOSYNC;
2038 
2039 	pmap = vm_map_pmap(map);
2040 	start = entry->start;
2041 	end = entry->end;
2042 	switch(entry->maptype) {
2043 	case VM_MAPTYPE_NORMAL:
2044 	case VM_MAPTYPE_VPAGETABLE:
2045 		fictitious = entry->object.vm_object &&
2046 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2047 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2048 		break;
2049 	case VM_MAPTYPE_UKSMAP:
2050 		fictitious = TRUE;
2051 		break;
2052 	default:
2053 		fictitious = FALSE;
2054 		break;
2055 	}
2056 
2057 	if (entry->eflags & MAP_ENTRY_KSTACK)
2058 		start += PAGE_SIZE;
2059 	map->timestamp++;
2060 	vm_map_unlock(map);
2061 
2062 	/*
2063 	 * We simulate a fault to get the page and enter it in the physical
2064 	 * map.
2065 	 */
2066 	for (va = start; va < end; va += PAGE_SIZE) {
2067 		rv = vm_fault(map, va, wire_prot, fault_flags);
2068 		if (rv) {
2069 			while (va > start) {
2070 				va -= PAGE_SIZE;
2071 				if ((pa = pmap_extract(pmap, va)) == 0)
2072 					continue;
2073 				pmap_change_wiring(pmap, va, FALSE, entry);
2074 				if (!fictitious) {
2075 					m = PHYS_TO_VM_PAGE(pa);
2076 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2077 					vm_page_unwire(m, 1);
2078 					vm_page_wakeup(m);
2079 				}
2080 			}
2081 			goto done;
2082 		}
2083 	}
2084 	rv = KERN_SUCCESS;
2085 done:
2086 	vm_map_lock(map);
2087 	lwkt_reltoken(&map->token);
2088 	return (rv);
2089 }
2090 
2091 /*
2092  * Unwire a range of virtual addresses in a map.  The map should be
2093  * locked.
2094  */
2095 void
2096 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2097 {
2098 	boolean_t fictitious;
2099 	vm_offset_t start;
2100 	vm_offset_t end;
2101 	vm_offset_t va;
2102 	vm_paddr_t pa;
2103 	vm_page_t m;
2104 	pmap_t pmap;
2105 
2106 	lwkt_gettoken(&map->token);
2107 
2108 	pmap = vm_map_pmap(map);
2109 	start = entry->start;
2110 	end = entry->end;
2111 	fictitious = entry->object.vm_object &&
2112 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2113 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2114 	if (entry->eflags & MAP_ENTRY_KSTACK)
2115 		start += PAGE_SIZE;
2116 
2117 	/*
2118 	 * Since the pages are wired down, we must be able to get their
2119 	 * mappings from the physical map system.
2120 	 */
2121 	for (va = start; va < end; va += PAGE_SIZE) {
2122 		pa = pmap_extract(pmap, va);
2123 		if (pa != 0) {
2124 			pmap_change_wiring(pmap, va, FALSE, entry);
2125 			if (!fictitious) {
2126 				m = PHYS_TO_VM_PAGE(pa);
2127 				vm_page_busy_wait(m, FALSE, "vmwupg");
2128 				vm_page_unwire(m, 1);
2129 				vm_page_wakeup(m);
2130 			}
2131 		}
2132 	}
2133 	lwkt_reltoken(&map->token);
2134 }
2135 
2136 /*
2137  * Copy all of the pages from a wired-down map entry to another.
2138  *
2139  * The source and destination maps must be locked for write.
2140  * The source and destination maps token must be held
2141  * The source map entry must be wired down (or be a sharing map
2142  * entry corresponding to a main map entry that is wired down).
2143  *
2144  * No other requirements.
2145  *
2146  * XXX do segment optimization
2147  */
2148 void
2149 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2150 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2151 {
2152 	vm_object_t dst_object;
2153 	vm_object_t src_object;
2154 	vm_ooffset_t dst_offset;
2155 	vm_ooffset_t src_offset;
2156 	vm_prot_t prot;
2157 	vm_offset_t vaddr;
2158 	vm_page_t dst_m;
2159 	vm_page_t src_m;
2160 
2161 	src_object = src_entry->object.vm_object;
2162 	src_offset = src_entry->offset;
2163 
2164 	/*
2165 	 * Create the top-level object for the destination entry. (Doesn't
2166 	 * actually shadow anything - we copy the pages directly.)
2167 	 */
2168 	vm_map_entry_allocate_object(dst_entry);
2169 	dst_object = dst_entry->object.vm_object;
2170 
2171 	prot = dst_entry->max_protection;
2172 
2173 	/*
2174 	 * Loop through all of the pages in the entry's range, copying each
2175 	 * one from the source object (it should be there) to the destination
2176 	 * object.
2177 	 */
2178 	vm_object_hold(src_object);
2179 	vm_object_hold(dst_object);
2180 	for (vaddr = dst_entry->start, dst_offset = 0;
2181 	    vaddr < dst_entry->end;
2182 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2183 
2184 		/*
2185 		 * Allocate a page in the destination object
2186 		 */
2187 		do {
2188 			dst_m = vm_page_alloc(dst_object,
2189 					      OFF_TO_IDX(dst_offset),
2190 					      VM_ALLOC_NORMAL);
2191 			if (dst_m == NULL) {
2192 				vm_wait(0);
2193 			}
2194 		} while (dst_m == NULL);
2195 
2196 		/*
2197 		 * Find the page in the source object, and copy it in.
2198 		 * (Because the source is wired down, the page will be in
2199 		 * memory.)
2200 		 */
2201 		src_m = vm_page_lookup(src_object,
2202 				       OFF_TO_IDX(dst_offset + src_offset));
2203 		if (src_m == NULL)
2204 			panic("vm_fault_copy_wired: page missing");
2205 
2206 		vm_page_copy(src_m, dst_m);
2207 		vm_page_event(src_m, VMEVENT_COW);
2208 
2209 		/*
2210 		 * Enter it in the pmap...
2211 		 */
2212 
2213 		vm_page_flag_clear(dst_m, PG_ZERO);
2214 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2215 
2216 		/*
2217 		 * Mark it no longer busy, and put it on the active list.
2218 		 */
2219 		vm_page_activate(dst_m);
2220 		vm_page_wakeup(dst_m);
2221 	}
2222 	vm_object_drop(dst_object);
2223 	vm_object_drop(src_object);
2224 }
2225 
2226 #if 0
2227 
2228 /*
2229  * This routine checks around the requested page for other pages that
2230  * might be able to be faulted in.  This routine brackets the viable
2231  * pages for the pages to be paged in.
2232  *
2233  * Inputs:
2234  *	m, rbehind, rahead
2235  *
2236  * Outputs:
2237  *  marray (array of vm_page_t), reqpage (index of requested page)
2238  *
2239  * Return value:
2240  *  number of pages in marray
2241  */
2242 static int
2243 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2244 			  vm_page_t *marray, int *reqpage)
2245 {
2246 	int i,j;
2247 	vm_object_t object;
2248 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2249 	vm_page_t rtm;
2250 	int cbehind, cahead;
2251 
2252 	object = m->object;
2253 	pindex = m->pindex;
2254 
2255 	/*
2256 	 * we don't fault-ahead for device pager
2257 	 */
2258 	if ((object->type == OBJT_DEVICE) ||
2259 	    (object->type == OBJT_MGTDEVICE)) {
2260 		*reqpage = 0;
2261 		marray[0] = m;
2262 		return 1;
2263 	}
2264 
2265 	/*
2266 	 * if the requested page is not available, then give up now
2267 	 */
2268 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2269 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2270 		return 0;
2271 	}
2272 
2273 	if ((cbehind == 0) && (cahead == 0)) {
2274 		*reqpage = 0;
2275 		marray[0] = m;
2276 		return 1;
2277 	}
2278 
2279 	if (rahead > cahead) {
2280 		rahead = cahead;
2281 	}
2282 
2283 	if (rbehind > cbehind) {
2284 		rbehind = cbehind;
2285 	}
2286 
2287 	/*
2288 	 * Do not do any readahead if we have insufficient free memory.
2289 	 *
2290 	 * XXX code was broken disabled before and has instability
2291 	 * with this conditonal fixed, so shortcut for now.
2292 	 */
2293 	if (burst_fault == 0 || vm_page_count_severe()) {
2294 		marray[0] = m;
2295 		*reqpage = 0;
2296 		return 1;
2297 	}
2298 
2299 	/*
2300 	 * scan backward for the read behind pages -- in memory
2301 	 *
2302 	 * Assume that if the page is not found an interrupt will not
2303 	 * create it.  Theoretically interrupts can only remove (busy)
2304 	 * pages, not create new associations.
2305 	 */
2306 	if (pindex > 0) {
2307 		if (rbehind > pindex) {
2308 			rbehind = pindex;
2309 			startpindex = 0;
2310 		} else {
2311 			startpindex = pindex - rbehind;
2312 		}
2313 
2314 		vm_object_hold(object);
2315 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2316 			if (vm_page_lookup(object, tpindex - 1))
2317 				break;
2318 		}
2319 
2320 		i = 0;
2321 		while (tpindex < pindex) {
2322 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2323 							     VM_ALLOC_NULL_OK);
2324 			if (rtm == NULL) {
2325 				for (j = 0; j < i; j++) {
2326 					vm_page_free(marray[j]);
2327 				}
2328 				vm_object_drop(object);
2329 				marray[0] = m;
2330 				*reqpage = 0;
2331 				return 1;
2332 			}
2333 			marray[i] = rtm;
2334 			++i;
2335 			++tpindex;
2336 		}
2337 		vm_object_drop(object);
2338 	} else {
2339 		i = 0;
2340 	}
2341 
2342 	/*
2343 	 * Assign requested page
2344 	 */
2345 	marray[i] = m;
2346 	*reqpage = i;
2347 	++i;
2348 
2349 	/*
2350 	 * Scan forwards for read-ahead pages
2351 	 */
2352 	tpindex = pindex + 1;
2353 	endpindex = tpindex + rahead;
2354 	if (endpindex > object->size)
2355 		endpindex = object->size;
2356 
2357 	vm_object_hold(object);
2358 	while (tpindex < endpindex) {
2359 		if (vm_page_lookup(object, tpindex))
2360 			break;
2361 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2362 						     VM_ALLOC_NULL_OK);
2363 		if (rtm == NULL)
2364 			break;
2365 		marray[i] = rtm;
2366 		++i;
2367 		++tpindex;
2368 	}
2369 	vm_object_drop(object);
2370 
2371 	return (i);
2372 }
2373 
2374 #endif
2375 
2376 /*
2377  * vm_prefault() provides a quick way of clustering pagefaults into a
2378  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2379  * except it runs at page fault time instead of mmap time.
2380  *
2381  * vm.fast_fault	Enables pre-faulting zero-fill pages
2382  *
2383  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2384  *			prefault.  Scan stops in either direction when
2385  *			a page is found to already exist.
2386  *
2387  * This code used to be per-platform pmap_prefault().  It is now
2388  * machine-independent and enhanced to also pre-fault zero-fill pages
2389  * (see vm.fast_fault) as well as make them writable, which greatly
2390  * reduces the number of page faults programs incur.
2391  *
2392  * Application performance when pre-faulting zero-fill pages is heavily
2393  * dependent on the application.  Very tiny applications like /bin/echo
2394  * lose a little performance while applications of any appreciable size
2395  * gain performance.  Prefaulting multiple pages also reduces SMP
2396  * congestion and can improve SMP performance significantly.
2397  *
2398  * NOTE!  prot may allow writing but this only applies to the top level
2399  *	  object.  If we wind up mapping a page extracted from a backing
2400  *	  object we have to make sure it is read-only.
2401  *
2402  * NOTE!  The caller has already handled any COW operations on the
2403  *	  vm_map_entry via the normal fault code.  Do NOT call this
2404  *	  shortcut unless the normal fault code has run on this entry.
2405  *
2406  * The related map must be locked.
2407  * No other requirements.
2408  */
2409 static int vm_prefault_pages = 8;
2410 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2411 	   "Maximum number of pages to pre-fault");
2412 static int vm_fast_fault = 1;
2413 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2414 	   "Burst fault zero-fill regions");
2415 
2416 /*
2417  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2418  * is not already dirty by other means.  This will prevent passive
2419  * filesystem syncing as well as 'sync' from writing out the page.
2420  */
2421 static void
2422 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2423 {
2424 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2425 		if (m->dirty == 0)
2426 			vm_page_flag_set(m, PG_NOSYNC);
2427 	} else {
2428 		vm_page_flag_clear(m, PG_NOSYNC);
2429 	}
2430 }
2431 
2432 static void
2433 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2434 	    int fault_flags)
2435 {
2436 	struct lwp *lp;
2437 	vm_page_t m;
2438 	vm_offset_t addr;
2439 	vm_pindex_t index;
2440 	vm_pindex_t pindex;
2441 	vm_object_t object;
2442 	int pprot;
2443 	int i;
2444 	int noneg;
2445 	int nopos;
2446 	int maxpages;
2447 
2448 	/*
2449 	 * Get stable max count value, disabled if set to 0
2450 	 */
2451 	maxpages = vm_prefault_pages;
2452 	cpu_ccfence();
2453 	if (maxpages <= 0)
2454 		return;
2455 
2456 	/*
2457 	 * We do not currently prefault mappings that use virtual page
2458 	 * tables.  We do not prefault foreign pmaps.
2459 	 */
2460 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2461 		return;
2462 	lp = curthread->td_lwp;
2463 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2464 		return;
2465 
2466 	/*
2467 	 * Limit pre-fault count to 1024 pages.
2468 	 */
2469 	if (maxpages > 1024)
2470 		maxpages = 1024;
2471 
2472 	object = entry->object.vm_object;
2473 	KKASSERT(object != NULL);
2474 	KKASSERT(object == entry->object.vm_object);
2475 	vm_object_hold(object);
2476 	vm_object_chain_acquire(object, 0);
2477 
2478 	noneg = 0;
2479 	nopos = 0;
2480 	for (i = 0; i < maxpages; ++i) {
2481 		vm_object_t lobject;
2482 		vm_object_t nobject;
2483 		int allocated = 0;
2484 		int error;
2485 
2486 		/*
2487 		 * This can eat a lot of time on a heavily contended
2488 		 * machine so yield on the tick if needed.
2489 		 */
2490 		if ((i & 7) == 7)
2491 			lwkt_yield();
2492 
2493 		/*
2494 		 * Calculate the page to pre-fault, stopping the scan in
2495 		 * each direction separately if the limit is reached.
2496 		 */
2497 		if (i & 1) {
2498 			if (noneg)
2499 				continue;
2500 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2501 		} else {
2502 			if (nopos)
2503 				continue;
2504 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2505 		}
2506 		if (addr < entry->start) {
2507 			noneg = 1;
2508 			if (noneg && nopos)
2509 				break;
2510 			continue;
2511 		}
2512 		if (addr >= entry->end) {
2513 			nopos = 1;
2514 			if (noneg && nopos)
2515 				break;
2516 			continue;
2517 		}
2518 
2519 		/*
2520 		 * Skip pages already mapped, and stop scanning in that
2521 		 * direction.  When the scan terminates in both directions
2522 		 * we are done.
2523 		 */
2524 		if (pmap_prefault_ok(pmap, addr) == 0) {
2525 			if (i & 1)
2526 				noneg = 1;
2527 			else
2528 				nopos = 1;
2529 			if (noneg && nopos)
2530 				break;
2531 			continue;
2532 		}
2533 
2534 		/*
2535 		 * Follow the VM object chain to obtain the page to be mapped
2536 		 * into the pmap.
2537 		 *
2538 		 * If we reach the terminal object without finding a page
2539 		 * and we determine it would be advantageous, then allocate
2540 		 * a zero-fill page for the base object.  The base object
2541 		 * is guaranteed to be OBJT_DEFAULT for this case.
2542 		 *
2543 		 * In order to not have to check the pager via *haspage*()
2544 		 * we stop if any non-default object is encountered.  e.g.
2545 		 * a vnode or swap object would stop the loop.
2546 		 */
2547 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2548 		lobject = object;
2549 		pindex = index;
2550 		pprot = prot;
2551 
2552 		KKASSERT(lobject == entry->object.vm_object);
2553 		/*vm_object_hold(lobject); implied */
2554 
2555 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2556 						    TRUE, &error)) == NULL) {
2557 			if (lobject->type != OBJT_DEFAULT)
2558 				break;
2559 			if (lobject->backing_object == NULL) {
2560 				if (vm_fast_fault == 0)
2561 					break;
2562 				if ((prot & VM_PROT_WRITE) == 0 ||
2563 				    vm_page_count_min(0)) {
2564 					break;
2565 				}
2566 
2567 				/*
2568 				 * NOTE: Allocated from base object
2569 				 */
2570 				m = vm_page_alloc(object, index,
2571 						  VM_ALLOC_NORMAL |
2572 						  VM_ALLOC_ZERO |
2573 						  VM_ALLOC_USE_GD |
2574 						  VM_ALLOC_NULL_OK);
2575 				if (m == NULL)
2576 					break;
2577 				allocated = 1;
2578 				pprot = prot;
2579 				/* lobject = object .. not needed */
2580 				break;
2581 			}
2582 			if (lobject->backing_object_offset & PAGE_MASK)
2583 				break;
2584 			nobject = lobject->backing_object;
2585 			vm_object_hold(nobject);
2586 			KKASSERT(nobject == lobject->backing_object);
2587 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2588 			if (lobject != object) {
2589 				vm_object_lock_swap();
2590 				vm_object_drop(lobject);
2591 			}
2592 			lobject = nobject;
2593 			pprot &= ~VM_PROT_WRITE;
2594 			vm_object_chain_acquire(lobject, 0);
2595 		}
2596 
2597 		/*
2598 		 * NOTE: A non-NULL (m) will be associated with lobject if
2599 		 *	 it was found there, otherwise it is probably a
2600 		 *	 zero-fill page associated with the base object.
2601 		 *
2602 		 * Give-up if no page is available.
2603 		 */
2604 		if (m == NULL) {
2605 			if (lobject != object) {
2606 #if 0
2607 				if (object->backing_object != lobject)
2608 					vm_object_hold(object->backing_object);
2609 #endif
2610 				vm_object_chain_release_all(
2611 					object->backing_object, lobject);
2612 #if 0
2613 				if (object->backing_object != lobject)
2614 					vm_object_drop(object->backing_object);
2615 #endif
2616 				vm_object_drop(lobject);
2617 			}
2618 			break;
2619 		}
2620 
2621 		/*
2622 		 * The object must be marked dirty if we are mapping a
2623 		 * writable page.  m->object is either lobject or object,
2624 		 * both of which are still held.  Do this before we
2625 		 * potentially drop the object.
2626 		 */
2627 		if (pprot & VM_PROT_WRITE)
2628 			vm_object_set_writeable_dirty(m->object);
2629 
2630 		/*
2631 		 * Do not conditionalize on PG_RAM.  If pages are present in
2632 		 * the VM system we assume optimal caching.  If caching is
2633 		 * not optimal the I/O gravy train will be restarted when we
2634 		 * hit an unavailable page.  We do not want to try to restart
2635 		 * the gravy train now because we really don't know how much
2636 		 * of the object has been cached.  The cost for restarting
2637 		 * the gravy train should be low (since accesses will likely
2638 		 * be I/O bound anyway).
2639 		 */
2640 		if (lobject != object) {
2641 #if 0
2642 			if (object->backing_object != lobject)
2643 				vm_object_hold(object->backing_object);
2644 #endif
2645 			vm_object_chain_release_all(object->backing_object,
2646 						    lobject);
2647 #if 0
2648 			if (object->backing_object != lobject)
2649 				vm_object_drop(object->backing_object);
2650 #endif
2651 			vm_object_drop(lobject);
2652 		}
2653 
2654 		/*
2655 		 * Enter the page into the pmap if appropriate.  If we had
2656 		 * allocated the page we have to place it on a queue.  If not
2657 		 * we just have to make sure it isn't on the cache queue
2658 		 * (pages on the cache queue are not allowed to be mapped).
2659 		 */
2660 		if (allocated) {
2661 			/*
2662 			 * Page must be zerod.
2663 			 */
2664 			if ((m->flags & PG_ZERO) == 0) {
2665 				vm_page_zero_fill(m);
2666 			} else {
2667 #ifdef PMAP_DEBUG
2668 				pmap_page_assertzero(
2669 						VM_PAGE_TO_PHYS(m));
2670 #endif
2671 				vm_page_flag_clear(m, PG_ZERO);
2672 				mycpu->gd_cnt.v_ozfod++;
2673 			}
2674 			mycpu->gd_cnt.v_zfod++;
2675 			m->valid = VM_PAGE_BITS_ALL;
2676 
2677 			/*
2678 			 * Handle dirty page case
2679 			 */
2680 			if (pprot & VM_PROT_WRITE)
2681 				vm_set_nosync(m, entry);
2682 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2683 			mycpu->gd_cnt.v_vm_faults++;
2684 			if (curthread->td_lwp)
2685 				++curthread->td_lwp->lwp_ru.ru_minflt;
2686 			vm_page_deactivate(m);
2687 			if (pprot & VM_PROT_WRITE) {
2688 				/*vm_object_set_writeable_dirty(m->object);*/
2689 				vm_set_nosync(m, entry);
2690 				if (fault_flags & VM_FAULT_DIRTY) {
2691 					vm_page_dirty(m);
2692 					/*XXX*/
2693 					swap_pager_unswapped(m);
2694 				}
2695 			}
2696 			vm_page_wakeup(m);
2697 		} else if (error) {
2698 			/* couldn't busy page, no wakeup */
2699 		} else if (
2700 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2701 		    (m->flags & PG_FICTITIOUS) == 0) {
2702 			/*
2703 			 * A fully valid page not undergoing soft I/O can
2704 			 * be immediately entered into the pmap.
2705 			 */
2706 			if ((m->queue - m->pc) == PQ_CACHE)
2707 				vm_page_deactivate(m);
2708 			if (pprot & VM_PROT_WRITE) {
2709 				/*vm_object_set_writeable_dirty(m->object);*/
2710 				vm_set_nosync(m, entry);
2711 				if (fault_flags & VM_FAULT_DIRTY) {
2712 					vm_page_dirty(m);
2713 					/*XXX*/
2714 					swap_pager_unswapped(m);
2715 				}
2716 			}
2717 			if (pprot & VM_PROT_WRITE)
2718 				vm_set_nosync(m, entry);
2719 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2720 			mycpu->gd_cnt.v_vm_faults++;
2721 			if (curthread->td_lwp)
2722 				++curthread->td_lwp->lwp_ru.ru_minflt;
2723 			vm_page_wakeup(m);
2724 		} else {
2725 			vm_page_wakeup(m);
2726 		}
2727 	}
2728 	vm_object_chain_release(object);
2729 	vm_object_drop(object);
2730 }
2731 
2732 /*
2733  * Object can be held shared
2734  */
2735 static void
2736 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2737 		  vm_map_entry_t entry, int prot, int fault_flags)
2738 {
2739 	struct lwp *lp;
2740 	vm_page_t m;
2741 	vm_offset_t addr;
2742 	vm_pindex_t pindex;
2743 	vm_object_t object;
2744 	int i;
2745 	int noneg;
2746 	int nopos;
2747 	int maxpages;
2748 
2749 	/*
2750 	 * Get stable max count value, disabled if set to 0
2751 	 */
2752 	maxpages = vm_prefault_pages;
2753 	cpu_ccfence();
2754 	if (maxpages <= 0)
2755 		return;
2756 
2757 	/*
2758 	 * We do not currently prefault mappings that use virtual page
2759 	 * tables.  We do not prefault foreign pmaps.
2760 	 */
2761 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2762 		return;
2763 	lp = curthread->td_lwp;
2764 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2765 		return;
2766 	object = entry->object.vm_object;
2767 	if (object->backing_object != NULL)
2768 		return;
2769 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2770 
2771 	/*
2772 	 * Limit pre-fault count to 1024 pages.
2773 	 */
2774 	if (maxpages > 1024)
2775 		maxpages = 1024;
2776 
2777 	noneg = 0;
2778 	nopos = 0;
2779 	for (i = 0; i < maxpages; ++i) {
2780 		int error;
2781 
2782 		/*
2783 		 * Calculate the page to pre-fault, stopping the scan in
2784 		 * each direction separately if the limit is reached.
2785 		 */
2786 		if (i & 1) {
2787 			if (noneg)
2788 				continue;
2789 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2790 		} else {
2791 			if (nopos)
2792 				continue;
2793 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2794 		}
2795 		if (addr < entry->start) {
2796 			noneg = 1;
2797 			if (noneg && nopos)
2798 				break;
2799 			continue;
2800 		}
2801 		if (addr >= entry->end) {
2802 			nopos = 1;
2803 			if (noneg && nopos)
2804 				break;
2805 			continue;
2806 		}
2807 
2808 		/*
2809 		 * Skip pages already mapped, and stop scanning in that
2810 		 * direction.  When the scan terminates in both directions
2811 		 * we are done.
2812 		 */
2813 		if (pmap_prefault_ok(pmap, addr) == 0) {
2814 			if (i & 1)
2815 				noneg = 1;
2816 			else
2817 				nopos = 1;
2818 			if (noneg && nopos)
2819 				break;
2820 			continue;
2821 		}
2822 
2823 		/*
2824 		 * Follow the VM object chain to obtain the page to be mapped
2825 		 * into the pmap.  This version of the prefault code only
2826 		 * works with terminal objects.
2827 		 *
2828 		 * WARNING!  We cannot call swap_pager_unswapped() with a
2829 		 *	     shared token.
2830 		 */
2831 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2832 
2833 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2834 		if (m == NULL || error)
2835 			continue;
2836 
2837 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2838 		    (m->flags & PG_FICTITIOUS) == 0 &&
2839 		    ((m->flags & PG_SWAPPED) == 0 ||
2840 		     (prot & VM_PROT_WRITE) == 0 ||
2841 		     (fault_flags & VM_FAULT_DIRTY) == 0)) {
2842 			/*
2843 			 * A fully valid page not undergoing soft I/O can
2844 			 * be immediately entered into the pmap.
2845 			 */
2846 			if ((m->queue - m->pc) == PQ_CACHE)
2847 				vm_page_deactivate(m);
2848 			if (prot & VM_PROT_WRITE) {
2849 				vm_object_set_writeable_dirty(m->object);
2850 				vm_set_nosync(m, entry);
2851 				if (fault_flags & VM_FAULT_DIRTY) {
2852 					vm_page_dirty(m);
2853 					/*XXX*/
2854 					swap_pager_unswapped(m);
2855 				}
2856 			}
2857 			pmap_enter(pmap, addr, m, prot, 0, entry);
2858 			mycpu->gd_cnt.v_vm_faults++;
2859 			if (curthread->td_lwp)
2860 				++curthread->td_lwp->lwp_ru.ru_minflt;
2861 		}
2862 		vm_page_wakeup(m);
2863 	}
2864 }
2865