xref: /dflybsd-src/sys/vm/vm_fault.c (revision b5d16701e255c342d21e69a6c80b8711c028dc65)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 			int prot);
141 
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148 	vm_page_deactivate(fs->m);
149 	vm_page_wakeup(fs->m);
150 	fs->m = NULL;
151 }
152 
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159 	if (fs->lookup_still_valid && fs->map) {
160 		vm_map_lookup_done(fs->map, fs->entry, 0);
161 		fs->lookup_still_valid = FALSE;
162 	}
163 }
164 
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174 	if (fs->object != fs->first_object) {
175 		vm_page_free(fs->first_m);
176 		vm_object_pip_wakeup(fs->object);
177 		fs->first_m = NULL;
178 	}
179 	fs->object = fs->first_object;
180 	if (relock && fs->lookup_still_valid == FALSE) {
181 		if (fs->map)
182 			vm_map_lock_read(fs->map);
183 		fs->lookup_still_valid = TRUE;
184 	}
185 }
186 
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193 	vm_object_pip_wakeup(fs->first_object);
194 	_cleanup_successful_fault(fs, 0);
195 	if (dealloc) {
196 		vm_object_deallocate(fs->first_object);
197 		fs->first_object = NULL;
198 	}
199 	unlock_map(fs);
200 	if (fs->vp != NULL) {
201 		vput(fs->vp);
202 		fs->vp = NULL;
203 	}
204 }
205 
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209 
210 /*
211  * TRYPAGER
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)	\
220 		(fs->object->type != OBJT_DEFAULT && \
221 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222 
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242 	int result;
243 	vm_pindex_t first_pindex;
244 	struct faultstate fs;
245 	int growstack;
246 
247 	mycpu->gd_cnt.v_vm_faults++;
248 
249 	fs.didlimit = 0;
250 	fs.hardfault = 0;
251 	fs.fault_flags = fault_flags;
252 	growstack = 1;
253 
254 RetryFault:
255 	/*
256 	 * Find the vm_map_entry representing the backing store and resolve
257 	 * the top level object and page index.  This may have the side
258 	 * effect of executing a copy-on-write on the map entry and/or
259 	 * creating a shadow object, but will not COW any actual VM pages.
260 	 *
261 	 * On success fs.map is left read-locked and various other fields
262 	 * are initialized but not otherwise referenced or locked.
263 	 *
264 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 	 * writable, so we can set the 'A'accessed bit in the virtual page
267 	 * table entry.
268 	 */
269 	fs.map = map;
270 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 			       &fs.entry, &fs.first_object,
272 			       &first_pindex, &fs.first_prot, &fs.wired);
273 
274 	/*
275 	 * If the lookup failed or the map protections are incompatible,
276 	 * the fault generally fails.  However, if the caller is trying
277 	 * to do a user wiring we have more work to do.
278 	 */
279 	if (result != KERN_SUCCESS) {
280 		if (result != KERN_PROTECTION_FAILURE ||
281 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282 		{
283 			if (result == KERN_INVALID_ADDRESS && growstack &&
284 			    map != &kernel_map && curproc != NULL) {
285 				result = vm_map_growstack(curproc, vaddr);
286 				if (result != KERN_SUCCESS)
287 					return (KERN_FAILURE);
288 				growstack = 0;
289 				goto RetryFault;
290 			}
291 			return (result);
292 		}
293 
294 		/*
295    		 * If we are user-wiring a r/w segment, and it is COW, then
296    		 * we need to do the COW operation.  Note that we don't
297 		 * currently COW RO sections now, because it is NOT desirable
298    		 * to COW .text.  We simply keep .text from ever being COW'ed
299    		 * and take the heat that one cannot debug wired .text sections.
300    		 */
301 		result = vm_map_lookup(&fs.map, vaddr,
302 				       VM_PROT_READ|VM_PROT_WRITE|
303 				        VM_PROT_OVERRIDE_WRITE,
304 				       &fs.entry, &fs.first_object,
305 				       &first_pindex, &fs.first_prot,
306 				       &fs.wired);
307 		if (result != KERN_SUCCESS)
308 			return result;
309 
310 		/*
311 		 * If we don't COW now, on a user wire, the user will never
312 		 * be able to write to the mapping.  If we don't make this
313 		 * restriction, the bookkeeping would be nearly impossible.
314 		 */
315 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 			fs.entry->max_protection &= ~VM_PROT_WRITE;
317 	}
318 
319 	/*
320 	 * fs.map is read-locked
321 	 *
322 	 * Misc checks.  Save the map generation number to detect races.
323 	 */
324 	fs.map_generation = fs.map->timestamp;
325 
326 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328 			panic("vm_fault: fault on nofault entry, addr: %p",
329 			      (void *)vaddr);
330 		}
331 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332 		    vaddr >= fs.entry->start &&
333 		    vaddr < fs.entry->start + PAGE_SIZE) {
334 			panic("vm_fault: fault on stack guard, addr: %p",
335 			      (void *)vaddr);
336 		}
337 	}
338 
339 	/*
340 	 * A system map entry may return a NULL object.  No object means
341 	 * no pager means an unrecoverable kernel fault.
342 	 */
343 	if (fs.first_object == NULL) {
344 		panic("vm_fault: unrecoverable fault at %p in entry %p",
345 			(void *)vaddr, fs.entry);
346 	}
347 
348 	/*
349 	 * Make a reference to this object to prevent its disposal while we
350 	 * are messing with it.  Once we have the reference, the map is free
351 	 * to be diddled.  Since objects reference their shadows (and copies),
352 	 * they will stay around as well.
353 	 *
354 	 * Bump the paging-in-progress count to prevent size changes (e.g.
355 	 * truncation operations) during I/O.  This must be done after
356 	 * obtaining the vnode lock in order to avoid possible deadlocks.
357 	 *
358 	 * The vm_token is needed to manipulate the vm_object
359 	 */
360 	lwkt_gettoken(&vm_token);
361 	vm_object_reference(fs.first_object);
362 	fs.vp = vnode_pager_lock(fs.first_object);
363 	vm_object_pip_add(fs.first_object, 1);
364 	lwkt_reltoken(&vm_token);
365 
366 	fs.lookup_still_valid = TRUE;
367 	fs.first_m = NULL;
368 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
369 
370 	/*
371 	 * If the entry is wired we cannot change the page protection.
372 	 */
373 	if (fs.wired)
374 		fault_type = fs.first_prot;
375 
376 	/*
377 	 * The page we want is at (first_object, first_pindex), but if the
378 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
379 	 * page table to figure out the actual pindex.
380 	 *
381 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
382 	 * ONLY
383 	 */
384 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
385 		result = vm_fault_vpagetable(&fs, &first_pindex,
386 					     fs.entry->aux.master_pde,
387 					     fault_type);
388 		if (result == KERN_TRY_AGAIN)
389 			goto RetryFault;
390 		if (result != KERN_SUCCESS)
391 			return (result);
392 	}
393 
394 	/*
395 	 * Now we have the actual (object, pindex), fault in the page.  If
396 	 * vm_fault_object() fails it will unlock and deallocate the FS
397 	 * data.   If it succeeds everything remains locked and fs->object
398 	 * will have an additional PIP count if it is not equal to
399 	 * fs->first_object
400 	 *
401 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
402 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
403 	 * page can be safely written.  However, it will force a read-only
404 	 * mapping for a read fault if the memory is managed by a virtual
405 	 * page table.
406 	 */
407 	result = vm_fault_object(&fs, first_pindex, fault_type);
408 
409 	if (result == KERN_TRY_AGAIN)
410 		goto RetryFault;
411 	if (result != KERN_SUCCESS)
412 		return (result);
413 
414 	/*
415 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
416 	 * will contain a busied page.
417 	 *
418 	 * Enter the page into the pmap and do pmap-related adjustments.
419 	 */
420 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
421 
422 	/*
423 	 * Burst in a few more pages if possible.  The fs.map should still
424 	 * be locked.
425 	 */
426 	if (fault_flags & VM_FAULT_BURST) {
427 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
428 		    fs.wired == 0) {
429 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
430 		}
431 	}
432 	unlock_things(&fs);
433 
434 	vm_page_flag_clear(fs.m, PG_ZERO);
435 	vm_page_flag_set(fs.m, PG_REFERENCED);
436 
437 	/*
438 	 * If the page is not wired down, then put it where the pageout daemon
439 	 * can find it.
440 	 *
441 	 * We do not really need to get vm_token here but since all the
442 	 * vm_*() calls have to doing it here improves efficiency.
443 	 */
444 	lwkt_gettoken(&vm_token);
445 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
446 		if (fs.wired)
447 			vm_page_wire(fs.m);
448 		else
449 			vm_page_unwire(fs.m, 1);
450 	} else {
451 		vm_page_activate(fs.m);
452 	}
453 
454 	if (curthread->td_lwp) {
455 		if (fs.hardfault) {
456 			curthread->td_lwp->lwp_ru.ru_majflt++;
457 		} else {
458 			curthread->td_lwp->lwp_ru.ru_minflt++;
459 		}
460 	}
461 
462 	/*
463 	 * Unlock everything, and return
464 	 */
465 	vm_page_wakeup(fs.m);
466 	vm_object_deallocate(fs.first_object);
467 	lwkt_reltoken(&vm_token);
468 
469 	return (KERN_SUCCESS);
470 }
471 
472 /*
473  * Fault in the specified virtual address in the current process map,
474  * returning a held VM page or NULL.  See vm_fault_page() for more
475  * information.
476  *
477  * No requirements.
478  */
479 vm_page_t
480 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
481 {
482 	struct lwp *lp = curthread->td_lwp;
483 	vm_page_t m;
484 
485 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
486 			  fault_type, VM_FAULT_NORMAL, errorp);
487 	return(m);
488 }
489 
490 /*
491  * Fault in the specified virtual address in the specified map, doing all
492  * necessary manipulation of the object store and all necessary I/O.  Return
493  * a held VM page or NULL, and set *errorp.  The related pmap is not
494  * updated.
495  *
496  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
497  * and marked PG_REFERENCED as well.
498  *
499  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
500  * error will be returned.
501  *
502  * No requirements.
503  */
504 vm_page_t
505 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
506 	      int fault_flags, int *errorp)
507 {
508 	vm_pindex_t first_pindex;
509 	struct faultstate fs;
510 	int result;
511 	vm_prot_t orig_fault_type = fault_type;
512 
513 	mycpu->gd_cnt.v_vm_faults++;
514 
515 	fs.didlimit = 0;
516 	fs.hardfault = 0;
517 	fs.fault_flags = fault_flags;
518 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
519 
520 RetryFault:
521 	/*
522 	 * Find the vm_map_entry representing the backing store and resolve
523 	 * the top level object and page index.  This may have the side
524 	 * effect of executing a copy-on-write on the map entry and/or
525 	 * creating a shadow object, but will not COW any actual VM pages.
526 	 *
527 	 * On success fs.map is left read-locked and various other fields
528 	 * are initialized but not otherwise referenced or locked.
529 	 *
530 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
531 	 * if the map entry is a virtual page table and also writable,
532 	 * so we can set the 'A'accessed bit in the virtual page table entry.
533 	 */
534 	fs.map = map;
535 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
536 			       &fs.entry, &fs.first_object,
537 			       &first_pindex, &fs.first_prot, &fs.wired);
538 
539 	if (result != KERN_SUCCESS) {
540 		*errorp = result;
541 		return (NULL);
542 	}
543 
544 	/*
545 	 * fs.map is read-locked
546 	 *
547 	 * Misc checks.  Save the map generation number to detect races.
548 	 */
549 	fs.map_generation = fs.map->timestamp;
550 
551 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
552 		panic("vm_fault: fault on nofault entry, addr: %lx",
553 		    (u_long)vaddr);
554 	}
555 
556 	/*
557 	 * A system map entry may return a NULL object.  No object means
558 	 * no pager means an unrecoverable kernel fault.
559 	 */
560 	if (fs.first_object == NULL) {
561 		panic("vm_fault: unrecoverable fault at %p in entry %p",
562 			(void *)vaddr, fs.entry);
563 	}
564 
565 	/*
566 	 * Make a reference to this object to prevent its disposal while we
567 	 * are messing with it.  Once we have the reference, the map is free
568 	 * to be diddled.  Since objects reference their shadows (and copies),
569 	 * they will stay around as well.
570 	 *
571 	 * Bump the paging-in-progress count to prevent size changes (e.g.
572 	 * truncation operations) during I/O.  This must be done after
573 	 * obtaining the vnode lock in order to avoid possible deadlocks.
574 	 *
575 	 * The vm_token is needed to manipulate the vm_object
576 	 */
577 	lwkt_gettoken(&vm_token);
578 	vm_object_reference(fs.first_object);
579 	fs.vp = vnode_pager_lock(fs.first_object);
580 	vm_object_pip_add(fs.first_object, 1);
581 	lwkt_reltoken(&vm_token);
582 
583 	fs.lookup_still_valid = TRUE;
584 	fs.first_m = NULL;
585 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
586 
587 	/*
588 	 * If the entry is wired we cannot change the page protection.
589 	 */
590 	if (fs.wired)
591 		fault_type = fs.first_prot;
592 
593 	/*
594 	 * The page we want is at (first_object, first_pindex), but if the
595 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
596 	 * page table to figure out the actual pindex.
597 	 *
598 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
599 	 * ONLY
600 	 */
601 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
602 		result = vm_fault_vpagetable(&fs, &first_pindex,
603 					     fs.entry->aux.master_pde,
604 					     fault_type);
605 		if (result == KERN_TRY_AGAIN)
606 			goto RetryFault;
607 		if (result != KERN_SUCCESS) {
608 			*errorp = result;
609 			return (NULL);
610 		}
611 	}
612 
613 	/*
614 	 * Now we have the actual (object, pindex), fault in the page.  If
615 	 * vm_fault_object() fails it will unlock and deallocate the FS
616 	 * data.   If it succeeds everything remains locked and fs->object
617 	 * will have an additinal PIP count if it is not equal to
618 	 * fs->first_object
619 	 */
620 	result = vm_fault_object(&fs, first_pindex, fault_type);
621 
622 	if (result == KERN_TRY_AGAIN)
623 		goto RetryFault;
624 	if (result != KERN_SUCCESS) {
625 		*errorp = result;
626 		return(NULL);
627 	}
628 
629 	if ((orig_fault_type & VM_PROT_WRITE) &&
630 	    (fs.prot & VM_PROT_WRITE) == 0) {
631 		*errorp = KERN_PROTECTION_FAILURE;
632 		unlock_and_deallocate(&fs);
633 		return(NULL);
634 	}
635 
636 	/*
637 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
638 	 * will contain a busied page.
639 	 */
640 	unlock_things(&fs);
641 
642 	/*
643 	 * Return a held page.  We are not doing any pmap manipulation so do
644 	 * not set PG_MAPPED.  However, adjust the page flags according to
645 	 * the fault type because the caller may not use a managed pmapping
646 	 * (so we don't want to lose the fact that the page will be dirtied
647 	 * if a write fault was specified).
648 	 */
649 	lwkt_gettoken(&vm_token);
650 	vm_page_hold(fs.m);
651 	vm_page_flag_clear(fs.m, PG_ZERO);
652 	if (fault_type & VM_PROT_WRITE)
653 		vm_page_dirty(fs.m);
654 
655 	/*
656 	 * Update the pmap.  We really only have to do this if a COW
657 	 * occured to replace the read-only page with the new page.  For
658 	 * now just do it unconditionally. XXX
659 	 */
660 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
661 	vm_page_flag_set(fs.m, PG_REFERENCED);
662 
663 	/*
664 	 * Unbusy the page by activating it.  It remains held and will not
665 	 * be reclaimed.
666 	 */
667 	vm_page_activate(fs.m);
668 
669 	if (curthread->td_lwp) {
670 		if (fs.hardfault) {
671 			curthread->td_lwp->lwp_ru.ru_majflt++;
672 		} else {
673 			curthread->td_lwp->lwp_ru.ru_minflt++;
674 		}
675 	}
676 
677 	/*
678 	 * Unlock everything, and return the held page.
679 	 */
680 	vm_page_wakeup(fs.m);
681 	vm_object_deallocate(fs.first_object);
682 	lwkt_reltoken(&vm_token);
683 
684 	*errorp = 0;
685 	return(fs.m);
686 }
687 
688 /*
689  * Fault in the specified (object,offset), dirty the returned page as
690  * needed.  If the requested fault_type cannot be done NULL and an
691  * error is returned.
692  *
693  * A held (but not busied) page is returned.
694  *
695  * No requirements.
696  */
697 vm_page_t
698 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
699 		     vm_prot_t fault_type, int fault_flags, int *errorp)
700 {
701 	int result;
702 	vm_pindex_t first_pindex;
703 	struct faultstate fs;
704 	struct vm_map_entry entry;
705 
706 	bzero(&entry, sizeof(entry));
707 	entry.object.vm_object = object;
708 	entry.maptype = VM_MAPTYPE_NORMAL;
709 	entry.protection = entry.max_protection = fault_type;
710 
711 	fs.didlimit = 0;
712 	fs.hardfault = 0;
713 	fs.fault_flags = fault_flags;
714 	fs.map = NULL;
715 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
716 
717 RetryFault:
718 
719 	fs.first_object = object;
720 	first_pindex = OFF_TO_IDX(offset);
721 	fs.entry = &entry;
722 	fs.first_prot = fault_type;
723 	fs.wired = 0;
724 	/*fs.map_generation = 0; unused */
725 
726 	/*
727 	 * Make a reference to this object to prevent its disposal while we
728 	 * are messing with it.  Once we have the reference, the map is free
729 	 * to be diddled.  Since objects reference their shadows (and copies),
730 	 * they will stay around as well.
731 	 *
732 	 * Bump the paging-in-progress count to prevent size changes (e.g.
733 	 * truncation operations) during I/O.  This must be done after
734 	 * obtaining the vnode lock in order to avoid possible deadlocks.
735 	 */
736 	lwkt_gettoken(&vm_token);
737 	vm_object_reference(fs.first_object);
738 	fs.vp = vnode_pager_lock(fs.first_object);
739 	vm_object_pip_add(fs.first_object, 1);
740 	lwkt_reltoken(&vm_token);
741 
742 	fs.lookup_still_valid = TRUE;
743 	fs.first_m = NULL;
744 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
745 
746 #if 0
747 	/* XXX future - ability to operate on VM object using vpagetable */
748 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
749 		result = vm_fault_vpagetable(&fs, &first_pindex,
750 					     fs.entry->aux.master_pde,
751 					     fault_type);
752 		if (result == KERN_TRY_AGAIN)
753 			goto RetryFault;
754 		if (result != KERN_SUCCESS) {
755 			*errorp = result;
756 			return (NULL);
757 		}
758 	}
759 #endif
760 
761 	/*
762 	 * Now we have the actual (object, pindex), fault in the page.  If
763 	 * vm_fault_object() fails it will unlock and deallocate the FS
764 	 * data.   If it succeeds everything remains locked and fs->object
765 	 * will have an additinal PIP count if it is not equal to
766 	 * fs->first_object
767 	 */
768 	result = vm_fault_object(&fs, first_pindex, fault_type);
769 
770 	if (result == KERN_TRY_AGAIN)
771 		goto RetryFault;
772 	if (result != KERN_SUCCESS) {
773 		*errorp = result;
774 		return(NULL);
775 	}
776 
777 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
778 		*errorp = KERN_PROTECTION_FAILURE;
779 		unlock_and_deallocate(&fs);
780 		return(NULL);
781 	}
782 
783 	/*
784 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
785 	 * will contain a busied page.
786 	 */
787 	unlock_things(&fs);
788 
789 	/*
790 	 * Return a held page.  We are not doing any pmap manipulation so do
791 	 * not set PG_MAPPED.  However, adjust the page flags according to
792 	 * the fault type because the caller may not use a managed pmapping
793 	 * (so we don't want to lose the fact that the page will be dirtied
794 	 * if a write fault was specified).
795 	 */
796 	lwkt_gettoken(&vm_token);
797 	vm_page_hold(fs.m);
798 	vm_page_flag_clear(fs.m, PG_ZERO);
799 	if (fault_type & VM_PROT_WRITE)
800 		vm_page_dirty(fs.m);
801 
802 	if (fault_flags & VM_FAULT_DIRTY)
803 		vm_page_dirty(fs.m);
804 	if (fault_flags & VM_FAULT_UNSWAP)
805 		swap_pager_unswapped(fs.m);
806 
807 	/*
808 	 * Indicate that the page was accessed.
809 	 */
810 	vm_page_flag_set(fs.m, PG_REFERENCED);
811 
812 	/*
813 	 * Unbusy the page by activating it.  It remains held and will not
814 	 * be reclaimed.
815 	 */
816 	vm_page_activate(fs.m);
817 
818 	if (curthread->td_lwp) {
819 		if (fs.hardfault) {
820 			mycpu->gd_cnt.v_vm_faults++;
821 			curthread->td_lwp->lwp_ru.ru_majflt++;
822 		} else {
823 			curthread->td_lwp->lwp_ru.ru_minflt++;
824 		}
825 	}
826 
827 	/*
828 	 * Unlock everything, and return the held page.
829 	 */
830 	vm_page_wakeup(fs.m);
831 	vm_object_deallocate(fs.first_object);
832 	lwkt_reltoken(&vm_token);
833 
834 	*errorp = 0;
835 	return(fs.m);
836 }
837 
838 /*
839  * Translate the virtual page number (first_pindex) that is relative
840  * to the address space into a logical page number that is relative to the
841  * backing object.  Use the virtual page table pointed to by (vpte).
842  *
843  * This implements an N-level page table.  Any level can terminate the
844  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
845  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
846  *
847  * No requirements (vm_token need not be held).
848  */
849 static
850 int
851 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
852 		    vpte_t vpte, int fault_type)
853 {
854 	struct lwbuf *lwb;
855 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
856 	int result = KERN_SUCCESS;
857 	vpte_t *ptep;
858 
859 	for (;;) {
860 		/*
861 		 * We cannot proceed if the vpte is not valid, not readable
862 		 * for a read fault, or not writable for a write fault.
863 		 */
864 		if ((vpte & VPTE_V) == 0) {
865 			unlock_and_deallocate(fs);
866 			return (KERN_FAILURE);
867 		}
868 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
869 			unlock_and_deallocate(fs);
870 			return (KERN_FAILURE);
871 		}
872 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
873 			unlock_and_deallocate(fs);
874 			return (KERN_FAILURE);
875 		}
876 		if ((vpte & VPTE_PS) || vshift == 0)
877 			break;
878 		KKASSERT(vshift >= VPTE_PAGE_BITS);
879 
880 		/*
881 		 * Get the page table page.  Nominally we only read the page
882 		 * table, but since we are actively setting VPTE_M and VPTE_A,
883 		 * tell vm_fault_object() that we are writing it.
884 		 *
885 		 * There is currently no real need to optimize this.
886 		 */
887 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
888 					 VM_PROT_READ|VM_PROT_WRITE);
889 		if (result != KERN_SUCCESS)
890 			return (result);
891 
892 		/*
893 		 * Process the returned fs.m and look up the page table
894 		 * entry in the page table page.
895 		 */
896 		vshift -= VPTE_PAGE_BITS;
897 		lwb = lwbuf_alloc(fs->m);
898 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
899 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
900 		vpte = *ptep;
901 
902 		/*
903 		 * Page table write-back.  If the vpte is valid for the
904 		 * requested operation, do a write-back to the page table.
905 		 *
906 		 * XXX VPTE_M is not set properly for page directory pages.
907 		 * It doesn't get set in the page directory if the page table
908 		 * is modified during a read access.
909 		 */
910 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
911 		    (vpte & VPTE_W)) {
912 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
913 				atomic_set_long(ptep, VPTE_M | VPTE_A);
914 				vm_page_dirty(fs->m);
915 			}
916 		}
917 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
918 		    (vpte & VPTE_R)) {
919 			if ((vpte & VPTE_A) == 0) {
920 				atomic_set_long(ptep, VPTE_A);
921 				vm_page_dirty(fs->m);
922 			}
923 		}
924 		lwbuf_free(lwb);
925 		vm_page_flag_set(fs->m, PG_REFERENCED);
926 		vm_page_activate(fs->m);
927 		vm_page_wakeup(fs->m);
928 		cleanup_successful_fault(fs);
929 	}
930 	/*
931 	 * Combine remaining address bits with the vpte.
932 	 */
933 	/* JG how many bits from each? */
934 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
935 		  (*pindex & ((1L << vshift) - 1));
936 	return (KERN_SUCCESS);
937 }
938 
939 
940 /*
941  * This is the core of the vm_fault code.
942  *
943  * Do all operations required to fault-in (fs.first_object, pindex).  Run
944  * through the shadow chain as necessary and do required COW or virtual
945  * copy operations.  The caller has already fully resolved the vm_map_entry
946  * and, if appropriate, has created a copy-on-write layer.  All we need to
947  * do is iterate the object chain.
948  *
949  * On failure (fs) is unlocked and deallocated and the caller may return or
950  * retry depending on the failure code.  On success (fs) is NOT unlocked or
951  * deallocated, fs.m will contained a resolved, busied page, and fs.object
952  * will have an additional PIP count if it is not equal to fs.first_object.
953  *
954  * No requirements.
955  */
956 static
957 int
958 vm_fault_object(struct faultstate *fs,
959 		vm_pindex_t first_pindex, vm_prot_t fault_type)
960 {
961 	vm_object_t next_object;
962 	vm_pindex_t pindex;
963 
964 	fs->prot = fs->first_prot;
965 	fs->object = fs->first_object;
966 	pindex = first_pindex;
967 
968 	/*
969 	 * If a read fault occurs we try to make the page writable if
970 	 * possible.  There are three cases where we cannot make the
971 	 * page mapping writable:
972 	 *
973 	 * (1) The mapping is read-only or the VM object is read-only,
974 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
975 	 *
976 	 * (2) If the mapping is a virtual page table we need to be able
977 	 *     to detect writes so we can set VPTE_M in the virtual page
978 	 *     table.
979 	 *
980 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
981 	 *     just result in an unnecessary COW fault.
982 	 *
983 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
984 	 * causes adjustments to the 'M'odify bit to also turn off write
985 	 * access to force a re-fault.
986 	 */
987 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
988 		if ((fault_type & VM_PROT_WRITE) == 0)
989 			fs->prot &= ~VM_PROT_WRITE;
990 	}
991 
992 	lwkt_gettoken(&vm_token);
993 
994 	for (;;) {
995 		/*
996 		 * If the object is dead, we stop here
997 		 */
998 		if (fs->object->flags & OBJ_DEAD) {
999 			unlock_and_deallocate(fs);
1000 			lwkt_reltoken(&vm_token);
1001 			return (KERN_PROTECTION_FAILURE);
1002 		}
1003 
1004 		/*
1005 		 * See if the page is resident.
1006 		 */
1007 		fs->m = vm_page_lookup(fs->object, pindex);
1008 		if (fs->m != NULL) {
1009 			int queue;
1010 			/*
1011 			 * Wait/Retry if the page is busy.  We have to do this
1012 			 * if the page is busy via either PG_BUSY or
1013 			 * vm_page_t->busy because the vm_pager may be using
1014 			 * vm_page_t->busy for pageouts ( and even pageins if
1015 			 * it is the vnode pager ), and we could end up trying
1016 			 * to pagein and pageout the same page simultaneously.
1017 			 *
1018 			 * We can theoretically allow the busy case on a read
1019 			 * fault if the page is marked valid, but since such
1020 			 * pages are typically already pmap'd, putting that
1021 			 * special case in might be more effort then it is
1022 			 * worth.  We cannot under any circumstances mess
1023 			 * around with a vm_page_t->busy page except, perhaps,
1024 			 * to pmap it.
1025 			 */
1026 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1027 				unlock_things(fs);
1028 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1029 				mycpu->gd_cnt.v_intrans++;
1030 				vm_object_deallocate(fs->first_object);
1031 				fs->first_object = NULL;
1032 				lwkt_reltoken(&vm_token);
1033 				return (KERN_TRY_AGAIN);
1034 			}
1035 
1036 			/*
1037 			 * If reactivating a page from PQ_CACHE we may have
1038 			 * to rate-limit.
1039 			 */
1040 			queue = fs->m->queue;
1041 			vm_page_unqueue_nowakeup(fs->m);
1042 
1043 			if ((queue - fs->m->pc) == PQ_CACHE &&
1044 			    vm_page_count_severe()) {
1045 				vm_page_activate(fs->m);
1046 				unlock_and_deallocate(fs);
1047 				vm_waitpfault();
1048 				lwkt_reltoken(&vm_token);
1049 				return (KERN_TRY_AGAIN);
1050 			}
1051 
1052 			/*
1053 			 * Mark page busy for other processes, and the
1054 			 * pagedaemon.  If it still isn't completely valid
1055 			 * (readable), or if a read-ahead-mark is set on
1056 			 * the VM page, jump to readrest, else we found the
1057 			 * page and can return.
1058 			 *
1059 			 * We can release the spl once we have marked the
1060 			 * page busy.
1061 			 */
1062 			vm_page_busy(fs->m);
1063 
1064 			if (fs->m->object != &kernel_object) {
1065 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1066 				    VM_PAGE_BITS_ALL) {
1067 					goto readrest;
1068 				}
1069 				if (fs->m->flags & PG_RAM) {
1070 					if (debug_cluster)
1071 						kprintf("R");
1072 					vm_page_flag_clear(fs->m, PG_RAM);
1073 					goto readrest;
1074 				}
1075 			}
1076 			break; /* break to PAGE HAS BEEN FOUND */
1077 		}
1078 
1079 		/*
1080 		 * Page is not resident, If this is the search termination
1081 		 * or the pager might contain the page, allocate a new page.
1082 		 */
1083 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1084 			/*
1085 			 * If the page is beyond the object size we fail
1086 			 */
1087 			if (pindex >= fs->object->size) {
1088 				lwkt_reltoken(&vm_token);
1089 				unlock_and_deallocate(fs);
1090 				return (KERN_PROTECTION_FAILURE);
1091 			}
1092 
1093 			/*
1094 			 * Ratelimit.
1095 			 */
1096 			if (fs->didlimit == 0 && curproc != NULL) {
1097 				int limticks;
1098 
1099 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1100 				if (limticks) {
1101 					lwkt_reltoken(&vm_token);
1102 					unlock_and_deallocate(fs);
1103 					tsleep(curproc, 0, "vmrate", limticks);
1104 					fs->didlimit = 1;
1105 					return (KERN_TRY_AGAIN);
1106 				}
1107 			}
1108 
1109 			/*
1110 			 * Allocate a new page for this object/offset pair.
1111 			 */
1112 			fs->m = NULL;
1113 			if (!vm_page_count_severe()) {
1114 				fs->m = vm_page_alloc(fs->object, pindex,
1115 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1116 			}
1117 			if (fs->m == NULL) {
1118 				lwkt_reltoken(&vm_token);
1119 				unlock_and_deallocate(fs);
1120 				vm_waitpfault();
1121 				return (KERN_TRY_AGAIN);
1122 			}
1123 		}
1124 
1125 readrest:
1126 		/*
1127 		 * We have found an invalid or partially valid page, a
1128 		 * page with a read-ahead mark which might be partially or
1129 		 * fully valid (and maybe dirty too), or we have allocated
1130 		 * a new page.
1131 		 *
1132 		 * Attempt to fault-in the page if there is a chance that the
1133 		 * pager has it, and potentially fault in additional pages
1134 		 * at the same time.
1135 		 *
1136 		 * We are NOT in splvm here and if TRYPAGER is true then
1137 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1138 		 */
1139 		if (TRYPAGER(fs)) {
1140 			int rv;
1141 			int seqaccess;
1142 			u_char behavior = vm_map_entry_behavior(fs->entry);
1143 
1144 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1145 				seqaccess = 0;
1146 			else
1147 				seqaccess = -1;
1148 
1149 			/*
1150 			 * If sequential access is detected then attempt
1151 			 * to deactivate/cache pages behind the scan to
1152 			 * prevent resource hogging.
1153 			 *
1154 			 * Use of PG_RAM to detect sequential access
1155 			 * also simulates multi-zone sequential access
1156 			 * detection for free.
1157 			 *
1158 			 * NOTE: Partially valid dirty pages cannot be
1159 			 *	 deactivated without causing NFS picemeal
1160 			 *	 writes to barf.
1161 			 */
1162 			if ((fs->first_object->type != OBJT_DEVICE) &&
1163 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1164                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1165 				 (fs->m->flags & PG_RAM)))
1166 			) {
1167 				vm_pindex_t scan_pindex;
1168 				int scan_count = 16;
1169 
1170 				if (first_pindex < 16) {
1171 					scan_pindex = 0;
1172 					scan_count = 0;
1173 				} else {
1174 					scan_pindex = first_pindex - 16;
1175 					if (scan_pindex < 16)
1176 						scan_count = scan_pindex;
1177 					else
1178 						scan_count = 16;
1179 				}
1180 
1181 				while (scan_count) {
1182 					vm_page_t mt;
1183 
1184 					mt = vm_page_lookup(fs->first_object,
1185 							    scan_pindex);
1186 					if (mt == NULL ||
1187 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1188 						break;
1189 					}
1190 					if (mt->busy ||
1191 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1192 					    mt->hold_count ||
1193 					    mt->wire_count)  {
1194 						goto skip;
1195 					}
1196 					if (mt->dirty == 0)
1197 						vm_page_test_dirty(mt);
1198 					if (mt->dirty) {
1199 						vm_page_busy(mt);
1200 						vm_page_protect(mt,
1201 								VM_PROT_NONE);
1202 						vm_page_deactivate(mt);
1203 						vm_page_wakeup(mt);
1204 					} else {
1205 						vm_page_cache(mt);
1206 					}
1207 skip:
1208 					--scan_count;
1209 					--scan_pindex;
1210 				}
1211 
1212 				seqaccess = 1;
1213 			}
1214 
1215 			/*
1216 			 * Avoid deadlocking against the map when doing I/O.
1217 			 * fs.object and the page is PG_BUSY'd.
1218 			 */
1219 			unlock_map(fs);
1220 
1221 			/*
1222 			 * Acquire the page data.  We still hold a ref on
1223 			 * fs.object and the page has been PG_BUSY's.
1224 			 *
1225 			 * The pager may replace the page (for example, in
1226 			 * order to enter a fictitious page into the
1227 			 * object).  If it does so it is responsible for
1228 			 * cleaning up the passed page and properly setting
1229 			 * the new page PG_BUSY.
1230 			 *
1231 			 * If we got here through a PG_RAM read-ahead
1232 			 * mark the page may be partially dirty and thus
1233 			 * not freeable.  Don't bother checking to see
1234 			 * if the pager has the page because we can't free
1235 			 * it anyway.  We have to depend on the get_page
1236 			 * operation filling in any gaps whether there is
1237 			 * backing store or not.
1238 			 */
1239 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1240 
1241 			if (rv == VM_PAGER_OK) {
1242 				/*
1243 				 * Relookup in case pager changed page. Pager
1244 				 * is responsible for disposition of old page
1245 				 * if moved.
1246 				 *
1247 				 * XXX other code segments do relookups too.
1248 				 * It's a bad abstraction that needs to be
1249 				 * fixed/removed.
1250 				 */
1251 				fs->m = vm_page_lookup(fs->object, pindex);
1252 				if (fs->m == NULL) {
1253 					lwkt_reltoken(&vm_token);
1254 					unlock_and_deallocate(fs);
1255 					return (KERN_TRY_AGAIN);
1256 				}
1257 
1258 				++fs->hardfault;
1259 				break; /* break to PAGE HAS BEEN FOUND */
1260 			}
1261 
1262 			/*
1263 			 * Remove the bogus page (which does not exist at this
1264 			 * object/offset); before doing so, we must get back
1265 			 * our object lock to preserve our invariant.
1266 			 *
1267 			 * Also wake up any other process that may want to bring
1268 			 * in this page.
1269 			 *
1270 			 * If this is the top-level object, we must leave the
1271 			 * busy page to prevent another process from rushing
1272 			 * past us, and inserting the page in that object at
1273 			 * the same time that we are.
1274 			 */
1275 			if (rv == VM_PAGER_ERROR) {
1276 				if (curproc)
1277 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1278 				else
1279 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1280 			}
1281 
1282 			/*
1283 			 * Data outside the range of the pager or an I/O error
1284 			 *
1285 			 * The page may have been wired during the pagein,
1286 			 * e.g. by the buffer cache, and cannot simply be
1287 			 * freed.  Call vnode_pager_freepage() to deal with it.
1288 			 */
1289 			/*
1290 			 * XXX - the check for kernel_map is a kludge to work
1291 			 * around having the machine panic on a kernel space
1292 			 * fault w/ I/O error.
1293 			 */
1294 			if (((fs->map != &kernel_map) &&
1295 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1296 				vnode_pager_freepage(fs->m);
1297 				lwkt_reltoken(&vm_token);
1298 				fs->m = NULL;
1299 				unlock_and_deallocate(fs);
1300 				if (rv == VM_PAGER_ERROR)
1301 					return (KERN_FAILURE);
1302 				else
1303 					return (KERN_PROTECTION_FAILURE);
1304 				/* NOT REACHED */
1305 			}
1306 			if (fs->object != fs->first_object) {
1307 				vnode_pager_freepage(fs->m);
1308 				fs->m = NULL;
1309 				/*
1310 				 * XXX - we cannot just fall out at this
1311 				 * point, m has been freed and is invalid!
1312 				 */
1313 			}
1314 		}
1315 
1316 		/*
1317 		 * We get here if the object has a default pager (or unwiring)
1318 		 * or the pager doesn't have the page.
1319 		 */
1320 		if (fs->object == fs->first_object)
1321 			fs->first_m = fs->m;
1322 
1323 		/*
1324 		 * Move on to the next object.  Lock the next object before
1325 		 * unlocking the current one.
1326 		 */
1327 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1328 		next_object = fs->object->backing_object;
1329 		if (next_object == NULL) {
1330 			/*
1331 			 * If there's no object left, fill the page in the top
1332 			 * object with zeros.
1333 			 */
1334 			if (fs->object != fs->first_object) {
1335 				vm_object_pip_wakeup(fs->object);
1336 
1337 				fs->object = fs->first_object;
1338 				pindex = first_pindex;
1339 				fs->m = fs->first_m;
1340 			}
1341 			fs->first_m = NULL;
1342 
1343 			/*
1344 			 * Zero the page if necessary and mark it valid.
1345 			 */
1346 			if ((fs->m->flags & PG_ZERO) == 0) {
1347 				vm_page_zero_fill(fs->m);
1348 			} else {
1349 #ifdef PMAP_DEBUG
1350 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1351 #endif
1352 				vm_page_flag_clear(fs->m, PG_ZERO);
1353 				mycpu->gd_cnt.v_ozfod++;
1354 			}
1355 			mycpu->gd_cnt.v_zfod++;
1356 			fs->m->valid = VM_PAGE_BITS_ALL;
1357 			break;	/* break to PAGE HAS BEEN FOUND */
1358 		}
1359 		if (fs->object != fs->first_object) {
1360 			vm_object_pip_wakeup(fs->object);
1361 		}
1362 		KASSERT(fs->object != next_object,
1363 			("object loop %p", next_object));
1364 		fs->object = next_object;
1365 		vm_object_pip_add(fs->object, 1);
1366 	}
1367 
1368 	/*
1369 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1370 	 * is held.]
1371 	 *
1372 	 * vm_token is still held
1373 	 *
1374 	 * If the page is being written, but isn't already owned by the
1375 	 * top-level object, we have to copy it into a new page owned by the
1376 	 * top-level object.
1377 	 */
1378 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1379 		("vm_fault: not busy after main loop"));
1380 
1381 	if (fs->object != fs->first_object) {
1382 		/*
1383 		 * We only really need to copy if we want to write it.
1384 		 */
1385 		if (fault_type & VM_PROT_WRITE) {
1386 			/*
1387 			 * This allows pages to be virtually copied from a
1388 			 * backing_object into the first_object, where the
1389 			 * backing object has no other refs to it, and cannot
1390 			 * gain any more refs.  Instead of a bcopy, we just
1391 			 * move the page from the backing object to the
1392 			 * first object.  Note that we must mark the page
1393 			 * dirty in the first object so that it will go out
1394 			 * to swap when needed.
1395 			 */
1396 			if (
1397 				/*
1398 				 * Map, if present, has not changed
1399 				 */
1400 				(fs->map == NULL ||
1401 				fs->map_generation == fs->map->timestamp) &&
1402 				/*
1403 				 * Only one shadow object
1404 				 */
1405 				(fs->object->shadow_count == 1) &&
1406 				/*
1407 				 * No COW refs, except us
1408 				 */
1409 				(fs->object->ref_count == 1) &&
1410 				/*
1411 				 * No one else can look this object up
1412 				 */
1413 				(fs->object->handle == NULL) &&
1414 				/*
1415 				 * No other ways to look the object up
1416 				 */
1417 				((fs->object->type == OBJT_DEFAULT) ||
1418 				 (fs->object->type == OBJT_SWAP)) &&
1419 				/*
1420 				 * We don't chase down the shadow chain
1421 				 */
1422 				(fs->object == fs->first_object->backing_object) &&
1423 
1424 				/*
1425 				 * grab the lock if we need to
1426 				 */
1427 				(fs->lookup_still_valid ||
1428 				 fs->map == NULL ||
1429 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1430 			    ) {
1431 
1432 				fs->lookup_still_valid = 1;
1433 				/*
1434 				 * get rid of the unnecessary page
1435 				 */
1436 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1437 				vm_page_free(fs->first_m);
1438 				fs->first_m = NULL;
1439 
1440 				/*
1441 				 * grab the page and put it into the
1442 				 * process'es object.  The page is
1443 				 * automatically made dirty.
1444 				 */
1445 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1446 				fs->first_m = fs->m;
1447 				vm_page_busy(fs->first_m);
1448 				fs->m = NULL;
1449 				mycpu->gd_cnt.v_cow_optim++;
1450 			} else {
1451 				/*
1452 				 * Oh, well, lets copy it.
1453 				 */
1454 				vm_page_copy(fs->m, fs->first_m);
1455 				vm_page_event(fs->m, VMEVENT_COW);
1456 			}
1457 
1458 			if (fs->m) {
1459 				/*
1460 				 * We no longer need the old page or object.
1461 				 */
1462 				release_page(fs);
1463 			}
1464 
1465 			/*
1466 			 * fs->object != fs->first_object due to above
1467 			 * conditional
1468 			 */
1469 			vm_object_pip_wakeup(fs->object);
1470 
1471 			/*
1472 			 * Only use the new page below...
1473 			 */
1474 
1475 			mycpu->gd_cnt.v_cow_faults++;
1476 			fs->m = fs->first_m;
1477 			fs->object = fs->first_object;
1478 			pindex = first_pindex;
1479 		} else {
1480 			/*
1481 			 * If it wasn't a write fault avoid having to copy
1482 			 * the page by mapping it read-only.
1483 			 */
1484 			fs->prot &= ~VM_PROT_WRITE;
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * We may have had to unlock a map to do I/O.  If we did then
1490 	 * lookup_still_valid will be FALSE.  If the map generation count
1491 	 * also changed then all sorts of things could have happened while
1492 	 * we were doing the I/O and we need to retry.
1493 	 */
1494 
1495 	if (!fs->lookup_still_valid &&
1496 	    fs->map != NULL &&
1497 	    (fs->map->timestamp != fs->map_generation)) {
1498 		release_page(fs);
1499 		lwkt_reltoken(&vm_token);
1500 		unlock_and_deallocate(fs);
1501 		return (KERN_TRY_AGAIN);
1502 	}
1503 
1504 	/*
1505 	 * If the fault is a write, we know that this page is being
1506 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1507 	 * calls later.
1508 	 *
1509 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1510 	 * if the page is already dirty to prevent data written with
1511 	 * the expectation of being synced from not being synced.
1512 	 * Likewise if this entry does not request NOSYNC then make
1513 	 * sure the page isn't marked NOSYNC.  Applications sharing
1514 	 * data should use the same flags to avoid ping ponging.
1515 	 *
1516 	 * Also tell the backing pager, if any, that it should remove
1517 	 * any swap backing since the page is now dirty.
1518 	 */
1519 	if (fs->prot & VM_PROT_WRITE) {
1520 		vm_object_set_writeable_dirty(fs->m->object);
1521 		vm_set_nosync(fs->m, fs->entry);
1522 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1523 			vm_page_dirty(fs->m);
1524 			swap_pager_unswapped(fs->m);
1525 		}
1526 	}
1527 
1528 	lwkt_reltoken(&vm_token);
1529 
1530 	/*
1531 	 * Page had better still be busy.  We are still locked up and
1532 	 * fs->object will have another PIP reference if it is not equal
1533 	 * to fs->first_object.
1534 	 */
1535 	KASSERT(fs->m->flags & PG_BUSY,
1536 		("vm_fault: page %p not busy!", fs->m));
1537 
1538 	/*
1539 	 * Sanity check: page must be completely valid or it is not fit to
1540 	 * map into user space.  vm_pager_get_pages() ensures this.
1541 	 */
1542 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1543 		vm_page_zero_invalid(fs->m, TRUE);
1544 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1545 	}
1546 
1547 	return (KERN_SUCCESS);
1548 }
1549 
1550 /*
1551  * Wire down a range of virtual addresses in a map.  The entry in question
1552  * should be marked in-transition and the map must be locked.  We must
1553  * release the map temporarily while faulting-in the page to avoid a
1554  * deadlock.  Note that the entry may be clipped while we are blocked but
1555  * will never be freed.
1556  *
1557  * No requirements.
1558  */
1559 int
1560 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1561 {
1562 	boolean_t fictitious;
1563 	vm_offset_t start;
1564 	vm_offset_t end;
1565 	vm_offset_t va;
1566 	vm_paddr_t pa;
1567 	pmap_t pmap;
1568 	int rv;
1569 
1570 	pmap = vm_map_pmap(map);
1571 	start = entry->start;
1572 	end = entry->end;
1573 	fictitious = entry->object.vm_object &&
1574 			(entry->object.vm_object->type == OBJT_DEVICE);
1575 	if (entry->eflags & MAP_ENTRY_KSTACK)
1576 		start += PAGE_SIZE;
1577 	lwkt_gettoken(&vm_token);
1578 	vm_map_unlock(map);
1579 	map->timestamp++;
1580 
1581 	/*
1582 	 * We simulate a fault to get the page and enter it in the physical
1583 	 * map.
1584 	 */
1585 	for (va = start; va < end; va += PAGE_SIZE) {
1586 		if (user_wire) {
1587 			rv = vm_fault(map, va, VM_PROT_READ,
1588 					VM_FAULT_USER_WIRE);
1589 		} else {
1590 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1591 					VM_FAULT_CHANGE_WIRING);
1592 		}
1593 		if (rv) {
1594 			while (va > start) {
1595 				va -= PAGE_SIZE;
1596 				if ((pa = pmap_extract(pmap, va)) == 0)
1597 					continue;
1598 				pmap_change_wiring(pmap, va, FALSE);
1599 				if (!fictitious)
1600 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1601 			}
1602 			vm_map_lock(map);
1603 			lwkt_reltoken(&vm_token);
1604 			return (rv);
1605 		}
1606 	}
1607 	vm_map_lock(map);
1608 	lwkt_reltoken(&vm_token);
1609 	return (KERN_SUCCESS);
1610 }
1611 
1612 /*
1613  * Unwire a range of virtual addresses in a map.  The map should be
1614  * locked.
1615  */
1616 void
1617 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1618 {
1619 	boolean_t fictitious;
1620 	vm_offset_t start;
1621 	vm_offset_t end;
1622 	vm_offset_t va;
1623 	vm_paddr_t pa;
1624 	pmap_t pmap;
1625 
1626 	pmap = vm_map_pmap(map);
1627 	start = entry->start;
1628 	end = entry->end;
1629 	fictitious = entry->object.vm_object &&
1630 			(entry->object.vm_object->type == OBJT_DEVICE);
1631 	if (entry->eflags & MAP_ENTRY_KSTACK)
1632 		start += PAGE_SIZE;
1633 
1634 	/*
1635 	 * Since the pages are wired down, we must be able to get their
1636 	 * mappings from the physical map system.
1637 	 */
1638 	lwkt_gettoken(&vm_token);
1639 	for (va = start; va < end; va += PAGE_SIZE) {
1640 		pa = pmap_extract(pmap, va);
1641 		if (pa != 0) {
1642 			pmap_change_wiring(pmap, va, FALSE);
1643 			if (!fictitious)
1644 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1645 		}
1646 	}
1647 	lwkt_reltoken(&vm_token);
1648 }
1649 
1650 /*
1651  * Reduce the rate at which memory is allocated to a process based
1652  * on the perceived load on the VM system. As the load increases
1653  * the allocation burst rate goes down and the delay increases.
1654  *
1655  * Rate limiting does not apply when faulting active or inactive
1656  * pages.  When faulting 'cache' pages, rate limiting only applies
1657  * if the system currently has a severe page deficit.
1658  *
1659  * XXX vm_pagesupply should be increased when a page is freed.
1660  *
1661  * We sleep up to 1/10 of a second.
1662  */
1663 static int
1664 vm_fault_ratelimit(struct vmspace *vmspace)
1665 {
1666 	if (vm_load_enable == 0)
1667 		return(0);
1668 	if (vmspace->vm_pagesupply > 0) {
1669 		--vmspace->vm_pagesupply;	/* SMP race ok */
1670 		return(0);
1671 	}
1672 #ifdef INVARIANTS
1673 	if (vm_load_debug) {
1674 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1675 			vm_load,
1676 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1677 			curproc->p_pid, curproc->p_comm);
1678 	}
1679 #endif
1680 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1681 	return(vm_load * hz / 10000);
1682 }
1683 
1684 /*
1685  * Copy all of the pages from a wired-down map entry to another.
1686  *
1687  * The source and destination maps must be locked for write.
1688  * The source map entry must be wired down (or be a sharing map
1689  * entry corresponding to a main map entry that is wired down).
1690  *
1691  * No other requirements.
1692  */
1693 void
1694 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1695 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1696 {
1697 	vm_object_t dst_object;
1698 	vm_object_t src_object;
1699 	vm_ooffset_t dst_offset;
1700 	vm_ooffset_t src_offset;
1701 	vm_prot_t prot;
1702 	vm_offset_t vaddr;
1703 	vm_page_t dst_m;
1704 	vm_page_t src_m;
1705 
1706 #ifdef	lint
1707 	src_map++;
1708 #endif	/* lint */
1709 
1710 	src_object = src_entry->object.vm_object;
1711 	src_offset = src_entry->offset;
1712 
1713 	/*
1714 	 * Create the top-level object for the destination entry. (Doesn't
1715 	 * actually shadow anything - we copy the pages directly.)
1716 	 */
1717 	vm_map_entry_allocate_object(dst_entry);
1718 	dst_object = dst_entry->object.vm_object;
1719 
1720 	prot = dst_entry->max_protection;
1721 
1722 	/*
1723 	 * Loop through all of the pages in the entry's range, copying each
1724 	 * one from the source object (it should be there) to the destination
1725 	 * object.
1726 	 */
1727 	for (vaddr = dst_entry->start, dst_offset = 0;
1728 	    vaddr < dst_entry->end;
1729 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1730 
1731 		/*
1732 		 * Allocate a page in the destination object
1733 		 */
1734 		do {
1735 			dst_m = vm_page_alloc(dst_object,
1736 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1737 			if (dst_m == NULL) {
1738 				vm_wait(0);
1739 			}
1740 		} while (dst_m == NULL);
1741 
1742 		/*
1743 		 * Find the page in the source object, and copy it in.
1744 		 * (Because the source is wired down, the page will be in
1745 		 * memory.)
1746 		 */
1747 		src_m = vm_page_lookup(src_object,
1748 				       OFF_TO_IDX(dst_offset + src_offset));
1749 		if (src_m == NULL)
1750 			panic("vm_fault_copy_wired: page missing");
1751 
1752 		vm_page_copy(src_m, dst_m);
1753 		vm_page_event(src_m, VMEVENT_COW);
1754 
1755 		/*
1756 		 * Enter it in the pmap...
1757 		 */
1758 
1759 		vm_page_flag_clear(dst_m, PG_ZERO);
1760 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1761 
1762 		/*
1763 		 * Mark it no longer busy, and put it on the active list.
1764 		 */
1765 		vm_page_activate(dst_m);
1766 		vm_page_wakeup(dst_m);
1767 	}
1768 }
1769 
1770 #if 0
1771 
1772 /*
1773  * This routine checks around the requested page for other pages that
1774  * might be able to be faulted in.  This routine brackets the viable
1775  * pages for the pages to be paged in.
1776  *
1777  * Inputs:
1778  *	m, rbehind, rahead
1779  *
1780  * Outputs:
1781  *  marray (array of vm_page_t), reqpage (index of requested page)
1782  *
1783  * Return value:
1784  *  number of pages in marray
1785  */
1786 static int
1787 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1788 			  vm_page_t *marray, int *reqpage)
1789 {
1790 	int i,j;
1791 	vm_object_t object;
1792 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1793 	vm_page_t rtm;
1794 	int cbehind, cahead;
1795 
1796 	object = m->object;
1797 	pindex = m->pindex;
1798 
1799 	/*
1800 	 * we don't fault-ahead for device pager
1801 	 */
1802 	if (object->type == OBJT_DEVICE) {
1803 		*reqpage = 0;
1804 		marray[0] = m;
1805 		return 1;
1806 	}
1807 
1808 	/*
1809 	 * if the requested page is not available, then give up now
1810 	 */
1811 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1812 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1813 		return 0;
1814 	}
1815 
1816 	if ((cbehind == 0) && (cahead == 0)) {
1817 		*reqpage = 0;
1818 		marray[0] = m;
1819 		return 1;
1820 	}
1821 
1822 	if (rahead > cahead) {
1823 		rahead = cahead;
1824 	}
1825 
1826 	if (rbehind > cbehind) {
1827 		rbehind = cbehind;
1828 	}
1829 
1830 	/*
1831 	 * Do not do any readahead if we have insufficient free memory.
1832 	 *
1833 	 * XXX code was broken disabled before and has instability
1834 	 * with this conditonal fixed, so shortcut for now.
1835 	 */
1836 	if (burst_fault == 0 || vm_page_count_severe()) {
1837 		marray[0] = m;
1838 		*reqpage = 0;
1839 		return 1;
1840 	}
1841 
1842 	/*
1843 	 * scan backward for the read behind pages -- in memory
1844 	 *
1845 	 * Assume that if the page is not found an interrupt will not
1846 	 * create it.  Theoretically interrupts can only remove (busy)
1847 	 * pages, not create new associations.
1848 	 */
1849 	if (pindex > 0) {
1850 		if (rbehind > pindex) {
1851 			rbehind = pindex;
1852 			startpindex = 0;
1853 		} else {
1854 			startpindex = pindex - rbehind;
1855 		}
1856 
1857 		lwkt_gettoken(&vm_token);
1858 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1859 			if (vm_page_lookup(object, tpindex - 1))
1860 				break;
1861 		}
1862 
1863 		i = 0;
1864 		while (tpindex < pindex) {
1865 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1866 			if (rtm == NULL) {
1867 				lwkt_reltoken(&vm_token);
1868 				for (j = 0; j < i; j++) {
1869 					vm_page_free(marray[j]);
1870 				}
1871 				marray[0] = m;
1872 				*reqpage = 0;
1873 				return 1;
1874 			}
1875 			marray[i] = rtm;
1876 			++i;
1877 			++tpindex;
1878 		}
1879 		lwkt_reltoken(&vm_token);
1880 	} else {
1881 		i = 0;
1882 	}
1883 
1884 	/*
1885 	 * Assign requested page
1886 	 */
1887 	marray[i] = m;
1888 	*reqpage = i;
1889 	++i;
1890 
1891 	/*
1892 	 * Scan forwards for read-ahead pages
1893 	 */
1894 	tpindex = pindex + 1;
1895 	endpindex = tpindex + rahead;
1896 	if (endpindex > object->size)
1897 		endpindex = object->size;
1898 
1899 	lwkt_gettoken(&vm_token);
1900 	while (tpindex < endpindex) {
1901 		if (vm_page_lookup(object, tpindex))
1902 			break;
1903 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1904 		if (rtm == NULL)
1905 			break;
1906 		marray[i] = rtm;
1907 		++i;
1908 		++tpindex;
1909 	}
1910 	lwkt_reltoken(&vm_token);
1911 
1912 	return (i);
1913 }
1914 
1915 #endif
1916 
1917 /*
1918  * vm_prefault() provides a quick way of clustering pagefaults into a
1919  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1920  * except it runs at page fault time instead of mmap time.
1921  *
1922  * This code used to be per-platform pmap_prefault().  It is now
1923  * machine-independent and enhanced to also pre-fault zero-fill pages
1924  * (see vm.fast_fault) as well as make them writable, which greatly
1925  * reduces the number of page faults programs incur.
1926  *
1927  * Application performance when pre-faulting zero-fill pages is heavily
1928  * dependent on the application.  Very tiny applications like /bin/echo
1929  * lose a little performance while applications of any appreciable size
1930  * gain performance.  Prefaulting multiple pages also reduces SMP
1931  * congestion and can improve SMP performance significantly.
1932  *
1933  * NOTE!  prot may allow writing but this only applies to the top level
1934  *	  object.  If we wind up mapping a page extracted from a backing
1935  *	  object we have to make sure it is read-only.
1936  *
1937  * NOTE!  The caller has already handled any COW operations on the
1938  *	  vm_map_entry via the normal fault code.  Do NOT call this
1939  *	  shortcut unless the normal fault code has run on this entry.
1940  *
1941  * No other requirements.
1942  */
1943 #define PFBAK 4
1944 #define PFFOR 4
1945 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1946 
1947 static int vm_prefault_pageorder[] = {
1948 	-PAGE_SIZE, PAGE_SIZE,
1949 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1950 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1951 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1952 };
1953 
1954 /*
1955  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1956  * is not already dirty by other means.  This will prevent passive
1957  * filesystem syncing as well as 'sync' from writing out the page.
1958  */
1959 static void
1960 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1961 {
1962 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
1963 		if (m->dirty == 0)
1964 			vm_page_flag_set(m, PG_NOSYNC);
1965 	} else {
1966 		vm_page_flag_clear(m, PG_NOSYNC);
1967 	}
1968 }
1969 
1970 static void
1971 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1972 {
1973 	struct lwp *lp;
1974 	vm_page_t m;
1975 	vm_offset_t starta;
1976 	vm_offset_t addr;
1977 	vm_pindex_t index;
1978 	vm_pindex_t pindex;
1979 	vm_object_t object;
1980 	int pprot;
1981 	int i;
1982 
1983 	/*
1984 	 * We do not currently prefault mappings that use virtual page
1985 	 * tables.  We do not prefault foreign pmaps.
1986 	 */
1987 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1988 		return;
1989 	lp = curthread->td_lwp;
1990 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1991 		return;
1992 
1993 	object = entry->object.vm_object;
1994 
1995 	starta = addra - PFBAK * PAGE_SIZE;
1996 	if (starta < entry->start)
1997 		starta = entry->start;
1998 	else if (starta > addra)
1999 		starta = 0;
2000 
2001 	lwkt_gettoken(&vm_token);
2002 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2003 		vm_object_t lobject;
2004 		int allocated = 0;
2005 
2006 		addr = addra + vm_prefault_pageorder[i];
2007 		if (addr > addra + (PFFOR * PAGE_SIZE))
2008 			addr = 0;
2009 
2010 		if (addr < starta || addr >= entry->end)
2011 			continue;
2012 
2013 		if (pmap_prefault_ok(pmap, addr) == 0)
2014 			continue;
2015 
2016 		/*
2017 		 * Follow the VM object chain to obtain the page to be mapped
2018 		 * into the pmap.
2019 		 *
2020 		 * If we reach the terminal object without finding a page
2021 		 * and we determine it would be advantageous, then allocate
2022 		 * a zero-fill page for the base object.  The base object
2023 		 * is guaranteed to be OBJT_DEFAULT for this case.
2024 		 *
2025 		 * In order to not have to check the pager via *haspage*()
2026 		 * we stop if any non-default object is encountered.  e.g.
2027 		 * a vnode or swap object would stop the loop.
2028 		 */
2029 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2030 		lobject = object;
2031 		pindex = index;
2032 		pprot = prot;
2033 
2034 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2035 			if (lobject->type != OBJT_DEFAULT)
2036 				break;
2037 			if (lobject->backing_object == NULL) {
2038 				if (vm_fast_fault == 0)
2039 					break;
2040 				if (vm_prefault_pageorder[i] < 0 ||
2041 				    (prot & VM_PROT_WRITE) == 0 ||
2042 				    vm_page_count_min(0)) {
2043 					break;
2044 				}
2045 				/* note: allocate from base object */
2046 				m = vm_page_alloc(object, index,
2047 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2048 
2049 				if ((m->flags & PG_ZERO) == 0) {
2050 					vm_page_zero_fill(m);
2051 				} else {
2052 #ifdef PMAP_DEBUG
2053 					pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
2054 #endif
2055 					vm_page_flag_clear(m, PG_ZERO);
2056 					mycpu->gd_cnt.v_ozfod++;
2057 				}
2058 				mycpu->gd_cnt.v_zfod++;
2059 				m->valid = VM_PAGE_BITS_ALL;
2060 				allocated = 1;
2061 				pprot = prot;
2062 				/* lobject = object .. not needed */
2063 				break;
2064 			}
2065 			if (lobject->backing_object_offset & PAGE_MASK)
2066 				break;
2067 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2068 			lobject = lobject->backing_object;
2069 			pprot &= ~VM_PROT_WRITE;
2070 		}
2071 		/*
2072 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2073 		 *	 bother assigning lobject = object).
2074 		 *
2075 		 * Give-up if the page is not available.
2076 		 */
2077 		if (m == NULL)
2078 			break;
2079 
2080 		/*
2081 		 * Do not conditionalize on PG_RAM.  If pages are present in
2082 		 * the VM system we assume optimal caching.  If caching is
2083 		 * not optimal the I/O gravy train will be restarted when we
2084 		 * hit an unavailable page.  We do not want to try to restart
2085 		 * the gravy train now because we really don't know how much
2086 		 * of the object has been cached.  The cost for restarting
2087 		 * the gravy train should be low (since accesses will likely
2088 		 * be I/O bound anyway).
2089 		 *
2090 		 * The object must be marked dirty if we are mapping a
2091 		 * writable page.
2092 		 */
2093 		if (pprot & VM_PROT_WRITE)
2094 			vm_object_set_writeable_dirty(m->object);
2095 
2096 		/*
2097 		 * Enter the page into the pmap if appropriate.  If we had
2098 		 * allocated the page we have to place it on a queue.  If not
2099 		 * we just have to make sure it isn't on the cache queue
2100 		 * (pages on the cache queue are not allowed to be mapped).
2101 		 */
2102 		if (allocated) {
2103 			if (pprot & VM_PROT_WRITE)
2104 				vm_set_nosync(m, entry);
2105 			pmap_enter(pmap, addr, m, pprot, 0);
2106 			vm_page_deactivate(m);
2107 			vm_page_wakeup(m);
2108 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2109 		    (m->busy == 0) &&
2110 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2111 
2112 			if ((m->queue - m->pc) == PQ_CACHE) {
2113 				vm_page_deactivate(m);
2114 			}
2115 			vm_page_busy(m);
2116 			if (pprot & VM_PROT_WRITE)
2117 				vm_set_nosync(m, entry);
2118 			pmap_enter(pmap, addr, m, pprot, 0);
2119 			vm_page_wakeup(m);
2120 		}
2121 	}
2122 	lwkt_reltoken(&vm_token);
2123 }
2124