1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 * 71 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 72 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 73 */ 74 75 /* 76 * Page fault handling module. 77 */ 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/vnode.h> 84 #include <sys/resourcevar.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vkernel.h> 87 #include <sys/lock.h> 88 #include <sys/sysctl.h> 89 90 #include <cpu/lwbuf.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vnode_pager.h> 102 #include <vm/vm_extern.h> 103 104 #include <sys/thread2.h> 105 #include <vm/vm_page2.h> 106 107 struct faultstate { 108 vm_page_t m; 109 vm_object_t object; 110 vm_pindex_t pindex; 111 vm_prot_t prot; 112 vm_page_t first_m; 113 vm_object_t first_object; 114 vm_prot_t first_prot; 115 vm_map_t map; 116 vm_map_entry_t entry; 117 int lookup_still_valid; 118 int didlimit; 119 int hardfault; 120 int fault_flags; 121 int map_generation; 122 boolean_t wired; 123 struct vnode *vp; 124 }; 125 126 static int vm_fast_fault = 1; 127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 128 "Burst fault zero-fill regions"); 129 static int debug_cluster = 0; 130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 131 132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t); 133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int); 134 #if 0 135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 136 #endif 137 static int vm_fault_ratelimit(struct vmspace *); 138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry); 139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, 140 int prot); 141 142 /* 143 * The caller must hold vm_token. 144 */ 145 static __inline void 146 release_page(struct faultstate *fs) 147 { 148 vm_page_deactivate(fs->m); 149 vm_page_wakeup(fs->m); 150 fs->m = NULL; 151 } 152 153 /* 154 * The caller must hold vm_token. 155 */ 156 static __inline void 157 unlock_map(struct faultstate *fs) 158 { 159 if (fs->lookup_still_valid && fs->map) { 160 vm_map_lookup_done(fs->map, fs->entry, 0); 161 fs->lookup_still_valid = FALSE; 162 } 163 } 164 165 /* 166 * Clean up after a successful call to vm_fault_object() so another call 167 * to vm_fault_object() can be made. 168 * 169 * The caller must hold vm_token. 170 */ 171 static void 172 _cleanup_successful_fault(struct faultstate *fs, int relock) 173 { 174 if (fs->object != fs->first_object) { 175 vm_page_free(fs->first_m); 176 vm_object_pip_wakeup(fs->object); 177 fs->first_m = NULL; 178 } 179 fs->object = fs->first_object; 180 if (relock && fs->lookup_still_valid == FALSE) { 181 if (fs->map) 182 vm_map_lock_read(fs->map); 183 fs->lookup_still_valid = TRUE; 184 } 185 } 186 187 /* 188 * The caller must hold vm_token. 189 */ 190 static void 191 _unlock_things(struct faultstate *fs, int dealloc) 192 { 193 vm_object_pip_wakeup(fs->first_object); 194 _cleanup_successful_fault(fs, 0); 195 if (dealloc) { 196 vm_object_deallocate(fs->first_object); 197 fs->first_object = NULL; 198 } 199 unlock_map(fs); 200 if (fs->vp != NULL) { 201 vput(fs->vp); 202 fs->vp = NULL; 203 } 204 } 205 206 #define unlock_things(fs) _unlock_things(fs, 0) 207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 209 210 /* 211 * TRYPAGER 212 * 213 * Determine if the pager for the current object *might* contain the page. 214 * 215 * We only need to try the pager if this is not a default object (default 216 * objects are zero-fill and have no real pager), and if we are not taking 217 * a wiring fault or if the FS entry is wired. 218 */ 219 #define TRYPAGER(fs) \ 220 (fs->object->type != OBJT_DEFAULT && \ 221 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 222 223 /* 224 * vm_fault: 225 * 226 * Handle a page fault occuring at the given address, requiring the given 227 * permissions, in the map specified. If successful, the page is inserted 228 * into the associated physical map. 229 * 230 * NOTE: The given address should be truncated to the proper page address. 231 * 232 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 233 * a standard error specifying why the fault is fatal is returned. 234 * 235 * The map in question must be referenced, and remains so. 236 * The caller may hold no locks. 237 * No other requirements. 238 */ 239 int 240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 241 { 242 int result; 243 vm_pindex_t first_pindex; 244 struct faultstate fs; 245 int growstack; 246 247 mycpu->gd_cnt.v_vm_faults++; 248 249 fs.didlimit = 0; 250 fs.hardfault = 0; 251 fs.fault_flags = fault_flags; 252 growstack = 1; 253 254 RetryFault: 255 /* 256 * Find the vm_map_entry representing the backing store and resolve 257 * the top level object and page index. This may have the side 258 * effect of executing a copy-on-write on the map entry and/or 259 * creating a shadow object, but will not COW any actual VM pages. 260 * 261 * On success fs.map is left read-locked and various other fields 262 * are initialized but not otherwise referenced or locked. 263 * 264 * NOTE! vm_map_lookup will try to upgrade the fault_type to 265 * VM_FAULT_WRITE if the map entry is a virtual page table and also 266 * writable, so we can set the 'A'accessed bit in the virtual page 267 * table entry. 268 */ 269 fs.map = map; 270 result = vm_map_lookup(&fs.map, vaddr, fault_type, 271 &fs.entry, &fs.first_object, 272 &first_pindex, &fs.first_prot, &fs.wired); 273 274 /* 275 * If the lookup failed or the map protections are incompatible, 276 * the fault generally fails. However, if the caller is trying 277 * to do a user wiring we have more work to do. 278 */ 279 if (result != KERN_SUCCESS) { 280 if (result != KERN_PROTECTION_FAILURE || 281 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 282 { 283 if (result == KERN_INVALID_ADDRESS && growstack && 284 map != &kernel_map && curproc != NULL) { 285 result = vm_map_growstack(curproc, vaddr); 286 if (result != KERN_SUCCESS) 287 return (KERN_FAILURE); 288 growstack = 0; 289 goto RetryFault; 290 } 291 return (result); 292 } 293 294 /* 295 * If we are user-wiring a r/w segment, and it is COW, then 296 * we need to do the COW operation. Note that we don't 297 * currently COW RO sections now, because it is NOT desirable 298 * to COW .text. We simply keep .text from ever being COW'ed 299 * and take the heat that one cannot debug wired .text sections. 300 */ 301 result = vm_map_lookup(&fs.map, vaddr, 302 VM_PROT_READ|VM_PROT_WRITE| 303 VM_PROT_OVERRIDE_WRITE, 304 &fs.entry, &fs.first_object, 305 &first_pindex, &fs.first_prot, 306 &fs.wired); 307 if (result != KERN_SUCCESS) 308 return result; 309 310 /* 311 * If we don't COW now, on a user wire, the user will never 312 * be able to write to the mapping. If we don't make this 313 * restriction, the bookkeeping would be nearly impossible. 314 */ 315 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 316 fs.entry->max_protection &= ~VM_PROT_WRITE; 317 } 318 319 /* 320 * fs.map is read-locked 321 * 322 * Misc checks. Save the map generation number to detect races. 323 */ 324 fs.map_generation = fs.map->timestamp; 325 326 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) { 327 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 328 panic("vm_fault: fault on nofault entry, addr: %p", 329 (void *)vaddr); 330 } 331 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) && 332 vaddr >= fs.entry->start && 333 vaddr < fs.entry->start + PAGE_SIZE) { 334 panic("vm_fault: fault on stack guard, addr: %p", 335 (void *)vaddr); 336 } 337 } 338 339 /* 340 * A system map entry may return a NULL object. No object means 341 * no pager means an unrecoverable kernel fault. 342 */ 343 if (fs.first_object == NULL) { 344 panic("vm_fault: unrecoverable fault at %p in entry %p", 345 (void *)vaddr, fs.entry); 346 } 347 348 /* 349 * Make a reference to this object to prevent its disposal while we 350 * are messing with it. Once we have the reference, the map is free 351 * to be diddled. Since objects reference their shadows (and copies), 352 * they will stay around as well. 353 * 354 * Bump the paging-in-progress count to prevent size changes (e.g. 355 * truncation operations) during I/O. This must be done after 356 * obtaining the vnode lock in order to avoid possible deadlocks. 357 * 358 * The vm_token is needed to manipulate the vm_object 359 */ 360 lwkt_gettoken(&vm_token); 361 vm_object_reference(fs.first_object); 362 fs.vp = vnode_pager_lock(fs.first_object); 363 vm_object_pip_add(fs.first_object, 1); 364 lwkt_reltoken(&vm_token); 365 366 fs.lookup_still_valid = TRUE; 367 fs.first_m = NULL; 368 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 369 370 /* 371 * If the entry is wired we cannot change the page protection. 372 */ 373 if (fs.wired) 374 fault_type = fs.first_prot; 375 376 /* 377 * The page we want is at (first_object, first_pindex), but if the 378 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 379 * page table to figure out the actual pindex. 380 * 381 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 382 * ONLY 383 */ 384 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 385 result = vm_fault_vpagetable(&fs, &first_pindex, 386 fs.entry->aux.master_pde, 387 fault_type); 388 if (result == KERN_TRY_AGAIN) 389 goto RetryFault; 390 if (result != KERN_SUCCESS) 391 return (result); 392 } 393 394 /* 395 * Now we have the actual (object, pindex), fault in the page. If 396 * vm_fault_object() fails it will unlock and deallocate the FS 397 * data. If it succeeds everything remains locked and fs->object 398 * will have an additional PIP count if it is not equal to 399 * fs->first_object 400 * 401 * vm_fault_object will set fs->prot for the pmap operation. It is 402 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 403 * page can be safely written. However, it will force a read-only 404 * mapping for a read fault if the memory is managed by a virtual 405 * page table. 406 */ 407 result = vm_fault_object(&fs, first_pindex, fault_type); 408 409 if (result == KERN_TRY_AGAIN) 410 goto RetryFault; 411 if (result != KERN_SUCCESS) 412 return (result); 413 414 /* 415 * On success vm_fault_object() does not unlock or deallocate, and fs.m 416 * will contain a busied page. 417 * 418 * Enter the page into the pmap and do pmap-related adjustments. 419 */ 420 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 421 422 /* 423 * Burst in a few more pages if possible. The fs.map should still 424 * be locked. 425 */ 426 if (fault_flags & VM_FAULT_BURST) { 427 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 && 428 fs.wired == 0) { 429 vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot); 430 } 431 } 432 unlock_things(&fs); 433 434 vm_page_flag_clear(fs.m, PG_ZERO); 435 vm_page_flag_set(fs.m, PG_REFERENCED); 436 437 /* 438 * If the page is not wired down, then put it where the pageout daemon 439 * can find it. 440 * 441 * We do not really need to get vm_token here but since all the 442 * vm_*() calls have to doing it here improves efficiency. 443 */ 444 lwkt_gettoken(&vm_token); 445 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 446 if (fs.wired) 447 vm_page_wire(fs.m); 448 else 449 vm_page_unwire(fs.m, 1); 450 } else { 451 vm_page_activate(fs.m); 452 } 453 454 if (curthread->td_lwp) { 455 if (fs.hardfault) { 456 curthread->td_lwp->lwp_ru.ru_majflt++; 457 } else { 458 curthread->td_lwp->lwp_ru.ru_minflt++; 459 } 460 } 461 462 /* 463 * Unlock everything, and return 464 */ 465 vm_page_wakeup(fs.m); 466 vm_object_deallocate(fs.first_object); 467 lwkt_reltoken(&vm_token); 468 469 return (KERN_SUCCESS); 470 } 471 472 /* 473 * Fault in the specified virtual address in the current process map, 474 * returning a held VM page or NULL. See vm_fault_page() for more 475 * information. 476 * 477 * No requirements. 478 */ 479 vm_page_t 480 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 481 { 482 struct lwp *lp = curthread->td_lwp; 483 vm_page_t m; 484 485 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 486 fault_type, VM_FAULT_NORMAL, errorp); 487 return(m); 488 } 489 490 /* 491 * Fault in the specified virtual address in the specified map, doing all 492 * necessary manipulation of the object store and all necessary I/O. Return 493 * a held VM page or NULL, and set *errorp. The related pmap is not 494 * updated. 495 * 496 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 497 * and marked PG_REFERENCED as well. 498 * 499 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 500 * error will be returned. 501 * 502 * No requirements. 503 */ 504 vm_page_t 505 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 506 int fault_flags, int *errorp) 507 { 508 vm_pindex_t first_pindex; 509 struct faultstate fs; 510 int result; 511 vm_prot_t orig_fault_type = fault_type; 512 513 mycpu->gd_cnt.v_vm_faults++; 514 515 fs.didlimit = 0; 516 fs.hardfault = 0; 517 fs.fault_flags = fault_flags; 518 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 519 520 RetryFault: 521 /* 522 * Find the vm_map_entry representing the backing store and resolve 523 * the top level object and page index. This may have the side 524 * effect of executing a copy-on-write on the map entry and/or 525 * creating a shadow object, but will not COW any actual VM pages. 526 * 527 * On success fs.map is left read-locked and various other fields 528 * are initialized but not otherwise referenced or locked. 529 * 530 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 531 * if the map entry is a virtual page table and also writable, 532 * so we can set the 'A'accessed bit in the virtual page table entry. 533 */ 534 fs.map = map; 535 result = vm_map_lookup(&fs.map, vaddr, fault_type, 536 &fs.entry, &fs.first_object, 537 &first_pindex, &fs.first_prot, &fs.wired); 538 539 if (result != KERN_SUCCESS) { 540 *errorp = result; 541 return (NULL); 542 } 543 544 /* 545 * fs.map is read-locked 546 * 547 * Misc checks. Save the map generation number to detect races. 548 */ 549 fs.map_generation = fs.map->timestamp; 550 551 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 552 panic("vm_fault: fault on nofault entry, addr: %lx", 553 (u_long)vaddr); 554 } 555 556 /* 557 * A system map entry may return a NULL object. No object means 558 * no pager means an unrecoverable kernel fault. 559 */ 560 if (fs.first_object == NULL) { 561 panic("vm_fault: unrecoverable fault at %p in entry %p", 562 (void *)vaddr, fs.entry); 563 } 564 565 /* 566 * Make a reference to this object to prevent its disposal while we 567 * are messing with it. Once we have the reference, the map is free 568 * to be diddled. Since objects reference their shadows (and copies), 569 * they will stay around as well. 570 * 571 * Bump the paging-in-progress count to prevent size changes (e.g. 572 * truncation operations) during I/O. This must be done after 573 * obtaining the vnode lock in order to avoid possible deadlocks. 574 * 575 * The vm_token is needed to manipulate the vm_object 576 */ 577 lwkt_gettoken(&vm_token); 578 vm_object_reference(fs.first_object); 579 fs.vp = vnode_pager_lock(fs.first_object); 580 vm_object_pip_add(fs.first_object, 1); 581 lwkt_reltoken(&vm_token); 582 583 fs.lookup_still_valid = TRUE; 584 fs.first_m = NULL; 585 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 586 587 /* 588 * If the entry is wired we cannot change the page protection. 589 */ 590 if (fs.wired) 591 fault_type = fs.first_prot; 592 593 /* 594 * The page we want is at (first_object, first_pindex), but if the 595 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 596 * page table to figure out the actual pindex. 597 * 598 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 599 * ONLY 600 */ 601 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 602 result = vm_fault_vpagetable(&fs, &first_pindex, 603 fs.entry->aux.master_pde, 604 fault_type); 605 if (result == KERN_TRY_AGAIN) 606 goto RetryFault; 607 if (result != KERN_SUCCESS) { 608 *errorp = result; 609 return (NULL); 610 } 611 } 612 613 /* 614 * Now we have the actual (object, pindex), fault in the page. If 615 * vm_fault_object() fails it will unlock and deallocate the FS 616 * data. If it succeeds everything remains locked and fs->object 617 * will have an additinal PIP count if it is not equal to 618 * fs->first_object 619 */ 620 result = vm_fault_object(&fs, first_pindex, fault_type); 621 622 if (result == KERN_TRY_AGAIN) 623 goto RetryFault; 624 if (result != KERN_SUCCESS) { 625 *errorp = result; 626 return(NULL); 627 } 628 629 if ((orig_fault_type & VM_PROT_WRITE) && 630 (fs.prot & VM_PROT_WRITE) == 0) { 631 *errorp = KERN_PROTECTION_FAILURE; 632 unlock_and_deallocate(&fs); 633 return(NULL); 634 } 635 636 /* 637 * On success vm_fault_object() does not unlock or deallocate, and fs.m 638 * will contain a busied page. 639 */ 640 unlock_things(&fs); 641 642 /* 643 * Return a held page. We are not doing any pmap manipulation so do 644 * not set PG_MAPPED. However, adjust the page flags according to 645 * the fault type because the caller may not use a managed pmapping 646 * (so we don't want to lose the fact that the page will be dirtied 647 * if a write fault was specified). 648 */ 649 lwkt_gettoken(&vm_token); 650 vm_page_hold(fs.m); 651 vm_page_flag_clear(fs.m, PG_ZERO); 652 if (fault_type & VM_PROT_WRITE) 653 vm_page_dirty(fs.m); 654 655 /* 656 * Update the pmap. We really only have to do this if a COW 657 * occured to replace the read-only page with the new page. For 658 * now just do it unconditionally. XXX 659 */ 660 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 661 vm_page_flag_set(fs.m, PG_REFERENCED); 662 663 /* 664 * Unbusy the page by activating it. It remains held and will not 665 * be reclaimed. 666 */ 667 vm_page_activate(fs.m); 668 669 if (curthread->td_lwp) { 670 if (fs.hardfault) { 671 curthread->td_lwp->lwp_ru.ru_majflt++; 672 } else { 673 curthread->td_lwp->lwp_ru.ru_minflt++; 674 } 675 } 676 677 /* 678 * Unlock everything, and return the held page. 679 */ 680 vm_page_wakeup(fs.m); 681 vm_object_deallocate(fs.first_object); 682 lwkt_reltoken(&vm_token); 683 684 *errorp = 0; 685 return(fs.m); 686 } 687 688 /* 689 * Fault in the specified (object,offset), dirty the returned page as 690 * needed. If the requested fault_type cannot be done NULL and an 691 * error is returned. 692 * 693 * A held (but not busied) page is returned. 694 * 695 * No requirements. 696 */ 697 vm_page_t 698 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 699 vm_prot_t fault_type, int fault_flags, int *errorp) 700 { 701 int result; 702 vm_pindex_t first_pindex; 703 struct faultstate fs; 704 struct vm_map_entry entry; 705 706 bzero(&entry, sizeof(entry)); 707 entry.object.vm_object = object; 708 entry.maptype = VM_MAPTYPE_NORMAL; 709 entry.protection = entry.max_protection = fault_type; 710 711 fs.didlimit = 0; 712 fs.hardfault = 0; 713 fs.fault_flags = fault_flags; 714 fs.map = NULL; 715 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 716 717 RetryFault: 718 719 fs.first_object = object; 720 first_pindex = OFF_TO_IDX(offset); 721 fs.entry = &entry; 722 fs.first_prot = fault_type; 723 fs.wired = 0; 724 /*fs.map_generation = 0; unused */ 725 726 /* 727 * Make a reference to this object to prevent its disposal while we 728 * are messing with it. Once we have the reference, the map is free 729 * to be diddled. Since objects reference their shadows (and copies), 730 * they will stay around as well. 731 * 732 * Bump the paging-in-progress count to prevent size changes (e.g. 733 * truncation operations) during I/O. This must be done after 734 * obtaining the vnode lock in order to avoid possible deadlocks. 735 */ 736 lwkt_gettoken(&vm_token); 737 vm_object_reference(fs.first_object); 738 fs.vp = vnode_pager_lock(fs.first_object); 739 vm_object_pip_add(fs.first_object, 1); 740 lwkt_reltoken(&vm_token); 741 742 fs.lookup_still_valid = TRUE; 743 fs.first_m = NULL; 744 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 745 746 #if 0 747 /* XXX future - ability to operate on VM object using vpagetable */ 748 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 749 result = vm_fault_vpagetable(&fs, &first_pindex, 750 fs.entry->aux.master_pde, 751 fault_type); 752 if (result == KERN_TRY_AGAIN) 753 goto RetryFault; 754 if (result != KERN_SUCCESS) { 755 *errorp = result; 756 return (NULL); 757 } 758 } 759 #endif 760 761 /* 762 * Now we have the actual (object, pindex), fault in the page. If 763 * vm_fault_object() fails it will unlock and deallocate the FS 764 * data. If it succeeds everything remains locked and fs->object 765 * will have an additinal PIP count if it is not equal to 766 * fs->first_object 767 */ 768 result = vm_fault_object(&fs, first_pindex, fault_type); 769 770 if (result == KERN_TRY_AGAIN) 771 goto RetryFault; 772 if (result != KERN_SUCCESS) { 773 *errorp = result; 774 return(NULL); 775 } 776 777 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 778 *errorp = KERN_PROTECTION_FAILURE; 779 unlock_and_deallocate(&fs); 780 return(NULL); 781 } 782 783 /* 784 * On success vm_fault_object() does not unlock or deallocate, and fs.m 785 * will contain a busied page. 786 */ 787 unlock_things(&fs); 788 789 /* 790 * Return a held page. We are not doing any pmap manipulation so do 791 * not set PG_MAPPED. However, adjust the page flags according to 792 * the fault type because the caller may not use a managed pmapping 793 * (so we don't want to lose the fact that the page will be dirtied 794 * if a write fault was specified). 795 */ 796 lwkt_gettoken(&vm_token); 797 vm_page_hold(fs.m); 798 vm_page_flag_clear(fs.m, PG_ZERO); 799 if (fault_type & VM_PROT_WRITE) 800 vm_page_dirty(fs.m); 801 802 if (fault_flags & VM_FAULT_DIRTY) 803 vm_page_dirty(fs.m); 804 if (fault_flags & VM_FAULT_UNSWAP) 805 swap_pager_unswapped(fs.m); 806 807 /* 808 * Indicate that the page was accessed. 809 */ 810 vm_page_flag_set(fs.m, PG_REFERENCED); 811 812 /* 813 * Unbusy the page by activating it. It remains held and will not 814 * be reclaimed. 815 */ 816 vm_page_activate(fs.m); 817 818 if (curthread->td_lwp) { 819 if (fs.hardfault) { 820 mycpu->gd_cnt.v_vm_faults++; 821 curthread->td_lwp->lwp_ru.ru_majflt++; 822 } else { 823 curthread->td_lwp->lwp_ru.ru_minflt++; 824 } 825 } 826 827 /* 828 * Unlock everything, and return the held page. 829 */ 830 vm_page_wakeup(fs.m); 831 vm_object_deallocate(fs.first_object); 832 lwkt_reltoken(&vm_token); 833 834 *errorp = 0; 835 return(fs.m); 836 } 837 838 /* 839 * Translate the virtual page number (first_pindex) that is relative 840 * to the address space into a logical page number that is relative to the 841 * backing object. Use the virtual page table pointed to by (vpte). 842 * 843 * This implements an N-level page table. Any level can terminate the 844 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 845 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 846 * 847 * No requirements (vm_token need not be held). 848 */ 849 static 850 int 851 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 852 vpte_t vpte, int fault_type) 853 { 854 struct lwbuf *lwb; 855 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 856 int result = KERN_SUCCESS; 857 vpte_t *ptep; 858 859 for (;;) { 860 /* 861 * We cannot proceed if the vpte is not valid, not readable 862 * for a read fault, or not writable for a write fault. 863 */ 864 if ((vpte & VPTE_V) == 0) { 865 unlock_and_deallocate(fs); 866 return (KERN_FAILURE); 867 } 868 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) { 869 unlock_and_deallocate(fs); 870 return (KERN_FAILURE); 871 } 872 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) { 873 unlock_and_deallocate(fs); 874 return (KERN_FAILURE); 875 } 876 if ((vpte & VPTE_PS) || vshift == 0) 877 break; 878 KKASSERT(vshift >= VPTE_PAGE_BITS); 879 880 /* 881 * Get the page table page. Nominally we only read the page 882 * table, but since we are actively setting VPTE_M and VPTE_A, 883 * tell vm_fault_object() that we are writing it. 884 * 885 * There is currently no real need to optimize this. 886 */ 887 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 888 VM_PROT_READ|VM_PROT_WRITE); 889 if (result != KERN_SUCCESS) 890 return (result); 891 892 /* 893 * Process the returned fs.m and look up the page table 894 * entry in the page table page. 895 */ 896 vshift -= VPTE_PAGE_BITS; 897 lwb = lwbuf_alloc(fs->m); 898 ptep = ((vpte_t *)lwbuf_kva(lwb) + 899 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 900 vpte = *ptep; 901 902 /* 903 * Page table write-back. If the vpte is valid for the 904 * requested operation, do a write-back to the page table. 905 * 906 * XXX VPTE_M is not set properly for page directory pages. 907 * It doesn't get set in the page directory if the page table 908 * is modified during a read access. 909 */ 910 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 911 (vpte & VPTE_W)) { 912 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 913 atomic_set_long(ptep, VPTE_M | VPTE_A); 914 vm_page_dirty(fs->m); 915 } 916 } 917 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) && 918 (vpte & VPTE_R)) { 919 if ((vpte & VPTE_A) == 0) { 920 atomic_set_long(ptep, VPTE_A); 921 vm_page_dirty(fs->m); 922 } 923 } 924 lwbuf_free(lwb); 925 vm_page_flag_set(fs->m, PG_REFERENCED); 926 vm_page_activate(fs->m); 927 vm_page_wakeup(fs->m); 928 cleanup_successful_fault(fs); 929 } 930 /* 931 * Combine remaining address bits with the vpte. 932 */ 933 /* JG how many bits from each? */ 934 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 935 (*pindex & ((1L << vshift) - 1)); 936 return (KERN_SUCCESS); 937 } 938 939 940 /* 941 * This is the core of the vm_fault code. 942 * 943 * Do all operations required to fault-in (fs.first_object, pindex). Run 944 * through the shadow chain as necessary and do required COW or virtual 945 * copy operations. The caller has already fully resolved the vm_map_entry 946 * and, if appropriate, has created a copy-on-write layer. All we need to 947 * do is iterate the object chain. 948 * 949 * On failure (fs) is unlocked and deallocated and the caller may return or 950 * retry depending on the failure code. On success (fs) is NOT unlocked or 951 * deallocated, fs.m will contained a resolved, busied page, and fs.object 952 * will have an additional PIP count if it is not equal to fs.first_object. 953 * 954 * No requirements. 955 */ 956 static 957 int 958 vm_fault_object(struct faultstate *fs, 959 vm_pindex_t first_pindex, vm_prot_t fault_type) 960 { 961 vm_object_t next_object; 962 vm_pindex_t pindex; 963 964 fs->prot = fs->first_prot; 965 fs->object = fs->first_object; 966 pindex = first_pindex; 967 968 /* 969 * If a read fault occurs we try to make the page writable if 970 * possible. There are three cases where we cannot make the 971 * page mapping writable: 972 * 973 * (1) The mapping is read-only or the VM object is read-only, 974 * fs->prot above will simply not have VM_PROT_WRITE set. 975 * 976 * (2) If the mapping is a virtual page table we need to be able 977 * to detect writes so we can set VPTE_M in the virtual page 978 * table. 979 * 980 * (3) If the VM page is read-only or copy-on-write, upgrading would 981 * just result in an unnecessary COW fault. 982 * 983 * VM_PROT_VPAGED is set if faulting via a virtual page table and 984 * causes adjustments to the 'M'odify bit to also turn off write 985 * access to force a re-fault. 986 */ 987 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 988 if ((fault_type & VM_PROT_WRITE) == 0) 989 fs->prot &= ~VM_PROT_WRITE; 990 } 991 992 lwkt_gettoken(&vm_token); 993 994 for (;;) { 995 /* 996 * If the object is dead, we stop here 997 */ 998 if (fs->object->flags & OBJ_DEAD) { 999 unlock_and_deallocate(fs); 1000 lwkt_reltoken(&vm_token); 1001 return (KERN_PROTECTION_FAILURE); 1002 } 1003 1004 /* 1005 * See if the page is resident. 1006 */ 1007 fs->m = vm_page_lookup(fs->object, pindex); 1008 if (fs->m != NULL) { 1009 int queue; 1010 /* 1011 * Wait/Retry if the page is busy. We have to do this 1012 * if the page is busy via either PG_BUSY or 1013 * vm_page_t->busy because the vm_pager may be using 1014 * vm_page_t->busy for pageouts ( and even pageins if 1015 * it is the vnode pager ), and we could end up trying 1016 * to pagein and pageout the same page simultaneously. 1017 * 1018 * We can theoretically allow the busy case on a read 1019 * fault if the page is marked valid, but since such 1020 * pages are typically already pmap'd, putting that 1021 * special case in might be more effort then it is 1022 * worth. We cannot under any circumstances mess 1023 * around with a vm_page_t->busy page except, perhaps, 1024 * to pmap it. 1025 */ 1026 if ((fs->m->flags & PG_BUSY) || fs->m->busy) { 1027 unlock_things(fs); 1028 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 1029 mycpu->gd_cnt.v_intrans++; 1030 vm_object_deallocate(fs->first_object); 1031 fs->first_object = NULL; 1032 lwkt_reltoken(&vm_token); 1033 return (KERN_TRY_AGAIN); 1034 } 1035 1036 /* 1037 * If reactivating a page from PQ_CACHE we may have 1038 * to rate-limit. 1039 */ 1040 queue = fs->m->queue; 1041 vm_page_unqueue_nowakeup(fs->m); 1042 1043 if ((queue - fs->m->pc) == PQ_CACHE && 1044 vm_page_count_severe()) { 1045 vm_page_activate(fs->m); 1046 unlock_and_deallocate(fs); 1047 vm_waitpfault(); 1048 lwkt_reltoken(&vm_token); 1049 return (KERN_TRY_AGAIN); 1050 } 1051 1052 /* 1053 * Mark page busy for other processes, and the 1054 * pagedaemon. If it still isn't completely valid 1055 * (readable), or if a read-ahead-mark is set on 1056 * the VM page, jump to readrest, else we found the 1057 * page and can return. 1058 * 1059 * We can release the spl once we have marked the 1060 * page busy. 1061 */ 1062 vm_page_busy(fs->m); 1063 1064 if (fs->m->object != &kernel_object) { 1065 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1066 VM_PAGE_BITS_ALL) { 1067 goto readrest; 1068 } 1069 if (fs->m->flags & PG_RAM) { 1070 if (debug_cluster) 1071 kprintf("R"); 1072 vm_page_flag_clear(fs->m, PG_RAM); 1073 goto readrest; 1074 } 1075 } 1076 break; /* break to PAGE HAS BEEN FOUND */ 1077 } 1078 1079 /* 1080 * Page is not resident, If this is the search termination 1081 * or the pager might contain the page, allocate a new page. 1082 */ 1083 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1084 /* 1085 * If the page is beyond the object size we fail 1086 */ 1087 if (pindex >= fs->object->size) { 1088 lwkt_reltoken(&vm_token); 1089 unlock_and_deallocate(fs); 1090 return (KERN_PROTECTION_FAILURE); 1091 } 1092 1093 /* 1094 * Ratelimit. 1095 */ 1096 if (fs->didlimit == 0 && curproc != NULL) { 1097 int limticks; 1098 1099 limticks = vm_fault_ratelimit(curproc->p_vmspace); 1100 if (limticks) { 1101 lwkt_reltoken(&vm_token); 1102 unlock_and_deallocate(fs); 1103 tsleep(curproc, 0, "vmrate", limticks); 1104 fs->didlimit = 1; 1105 return (KERN_TRY_AGAIN); 1106 } 1107 } 1108 1109 /* 1110 * Allocate a new page for this object/offset pair. 1111 */ 1112 fs->m = NULL; 1113 if (!vm_page_count_severe()) { 1114 fs->m = vm_page_alloc(fs->object, pindex, 1115 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 1116 } 1117 if (fs->m == NULL) { 1118 lwkt_reltoken(&vm_token); 1119 unlock_and_deallocate(fs); 1120 vm_waitpfault(); 1121 return (KERN_TRY_AGAIN); 1122 } 1123 } 1124 1125 readrest: 1126 /* 1127 * We have found an invalid or partially valid page, a 1128 * page with a read-ahead mark which might be partially or 1129 * fully valid (and maybe dirty too), or we have allocated 1130 * a new page. 1131 * 1132 * Attempt to fault-in the page if there is a chance that the 1133 * pager has it, and potentially fault in additional pages 1134 * at the same time. 1135 * 1136 * We are NOT in splvm here and if TRYPAGER is true then 1137 * fs.m will be non-NULL and will be PG_BUSY for us. 1138 */ 1139 if (TRYPAGER(fs)) { 1140 int rv; 1141 int seqaccess; 1142 u_char behavior = vm_map_entry_behavior(fs->entry); 1143 1144 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1145 seqaccess = 0; 1146 else 1147 seqaccess = -1; 1148 1149 /* 1150 * If sequential access is detected then attempt 1151 * to deactivate/cache pages behind the scan to 1152 * prevent resource hogging. 1153 * 1154 * Use of PG_RAM to detect sequential access 1155 * also simulates multi-zone sequential access 1156 * detection for free. 1157 * 1158 * NOTE: Partially valid dirty pages cannot be 1159 * deactivated without causing NFS picemeal 1160 * writes to barf. 1161 */ 1162 if ((fs->first_object->type != OBJT_DEVICE) && 1163 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1164 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1165 (fs->m->flags & PG_RAM))) 1166 ) { 1167 vm_pindex_t scan_pindex; 1168 int scan_count = 16; 1169 1170 if (first_pindex < 16) { 1171 scan_pindex = 0; 1172 scan_count = 0; 1173 } else { 1174 scan_pindex = first_pindex - 16; 1175 if (scan_pindex < 16) 1176 scan_count = scan_pindex; 1177 else 1178 scan_count = 16; 1179 } 1180 1181 while (scan_count) { 1182 vm_page_t mt; 1183 1184 mt = vm_page_lookup(fs->first_object, 1185 scan_pindex); 1186 if (mt == NULL || 1187 (mt->valid != VM_PAGE_BITS_ALL)) { 1188 break; 1189 } 1190 if (mt->busy || 1191 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) || 1192 mt->hold_count || 1193 mt->wire_count) { 1194 goto skip; 1195 } 1196 if (mt->dirty == 0) 1197 vm_page_test_dirty(mt); 1198 if (mt->dirty) { 1199 vm_page_busy(mt); 1200 vm_page_protect(mt, 1201 VM_PROT_NONE); 1202 vm_page_deactivate(mt); 1203 vm_page_wakeup(mt); 1204 } else { 1205 vm_page_cache(mt); 1206 } 1207 skip: 1208 --scan_count; 1209 --scan_pindex; 1210 } 1211 1212 seqaccess = 1; 1213 } 1214 1215 /* 1216 * Avoid deadlocking against the map when doing I/O. 1217 * fs.object and the page is PG_BUSY'd. 1218 */ 1219 unlock_map(fs); 1220 1221 /* 1222 * Acquire the page data. We still hold a ref on 1223 * fs.object and the page has been PG_BUSY's. 1224 * 1225 * The pager may replace the page (for example, in 1226 * order to enter a fictitious page into the 1227 * object). If it does so it is responsible for 1228 * cleaning up the passed page and properly setting 1229 * the new page PG_BUSY. 1230 * 1231 * If we got here through a PG_RAM read-ahead 1232 * mark the page may be partially dirty and thus 1233 * not freeable. Don't bother checking to see 1234 * if the pager has the page because we can't free 1235 * it anyway. We have to depend on the get_page 1236 * operation filling in any gaps whether there is 1237 * backing store or not. 1238 */ 1239 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1240 1241 if (rv == VM_PAGER_OK) { 1242 /* 1243 * Relookup in case pager changed page. Pager 1244 * is responsible for disposition of old page 1245 * if moved. 1246 * 1247 * XXX other code segments do relookups too. 1248 * It's a bad abstraction that needs to be 1249 * fixed/removed. 1250 */ 1251 fs->m = vm_page_lookup(fs->object, pindex); 1252 if (fs->m == NULL) { 1253 lwkt_reltoken(&vm_token); 1254 unlock_and_deallocate(fs); 1255 return (KERN_TRY_AGAIN); 1256 } 1257 1258 ++fs->hardfault; 1259 break; /* break to PAGE HAS BEEN FOUND */ 1260 } 1261 1262 /* 1263 * Remove the bogus page (which does not exist at this 1264 * object/offset); before doing so, we must get back 1265 * our object lock to preserve our invariant. 1266 * 1267 * Also wake up any other process that may want to bring 1268 * in this page. 1269 * 1270 * If this is the top-level object, we must leave the 1271 * busy page to prevent another process from rushing 1272 * past us, and inserting the page in that object at 1273 * the same time that we are. 1274 */ 1275 if (rv == VM_PAGER_ERROR) { 1276 if (curproc) 1277 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm); 1278 else 1279 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm); 1280 } 1281 1282 /* 1283 * Data outside the range of the pager or an I/O error 1284 * 1285 * The page may have been wired during the pagein, 1286 * e.g. by the buffer cache, and cannot simply be 1287 * freed. Call vnode_pager_freepage() to deal with it. 1288 */ 1289 /* 1290 * XXX - the check for kernel_map is a kludge to work 1291 * around having the machine panic on a kernel space 1292 * fault w/ I/O error. 1293 */ 1294 if (((fs->map != &kernel_map) && 1295 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1296 vnode_pager_freepage(fs->m); 1297 lwkt_reltoken(&vm_token); 1298 fs->m = NULL; 1299 unlock_and_deallocate(fs); 1300 if (rv == VM_PAGER_ERROR) 1301 return (KERN_FAILURE); 1302 else 1303 return (KERN_PROTECTION_FAILURE); 1304 /* NOT REACHED */ 1305 } 1306 if (fs->object != fs->first_object) { 1307 vnode_pager_freepage(fs->m); 1308 fs->m = NULL; 1309 /* 1310 * XXX - we cannot just fall out at this 1311 * point, m has been freed and is invalid! 1312 */ 1313 } 1314 } 1315 1316 /* 1317 * We get here if the object has a default pager (or unwiring) 1318 * or the pager doesn't have the page. 1319 */ 1320 if (fs->object == fs->first_object) 1321 fs->first_m = fs->m; 1322 1323 /* 1324 * Move on to the next object. Lock the next object before 1325 * unlocking the current one. 1326 */ 1327 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1328 next_object = fs->object->backing_object; 1329 if (next_object == NULL) { 1330 /* 1331 * If there's no object left, fill the page in the top 1332 * object with zeros. 1333 */ 1334 if (fs->object != fs->first_object) { 1335 vm_object_pip_wakeup(fs->object); 1336 1337 fs->object = fs->first_object; 1338 pindex = first_pindex; 1339 fs->m = fs->first_m; 1340 } 1341 fs->first_m = NULL; 1342 1343 /* 1344 * Zero the page if necessary and mark it valid. 1345 */ 1346 if ((fs->m->flags & PG_ZERO) == 0) { 1347 vm_page_zero_fill(fs->m); 1348 } else { 1349 #ifdef PMAP_DEBUG 1350 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m)); 1351 #endif 1352 vm_page_flag_clear(fs->m, PG_ZERO); 1353 mycpu->gd_cnt.v_ozfod++; 1354 } 1355 mycpu->gd_cnt.v_zfod++; 1356 fs->m->valid = VM_PAGE_BITS_ALL; 1357 break; /* break to PAGE HAS BEEN FOUND */ 1358 } 1359 if (fs->object != fs->first_object) { 1360 vm_object_pip_wakeup(fs->object); 1361 } 1362 KASSERT(fs->object != next_object, 1363 ("object loop %p", next_object)); 1364 fs->object = next_object; 1365 vm_object_pip_add(fs->object, 1); 1366 } 1367 1368 /* 1369 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1370 * is held.] 1371 * 1372 * vm_token is still held 1373 * 1374 * If the page is being written, but isn't already owned by the 1375 * top-level object, we have to copy it into a new page owned by the 1376 * top-level object. 1377 */ 1378 KASSERT((fs->m->flags & PG_BUSY) != 0, 1379 ("vm_fault: not busy after main loop")); 1380 1381 if (fs->object != fs->first_object) { 1382 /* 1383 * We only really need to copy if we want to write it. 1384 */ 1385 if (fault_type & VM_PROT_WRITE) { 1386 /* 1387 * This allows pages to be virtually copied from a 1388 * backing_object into the first_object, where the 1389 * backing object has no other refs to it, and cannot 1390 * gain any more refs. Instead of a bcopy, we just 1391 * move the page from the backing object to the 1392 * first object. Note that we must mark the page 1393 * dirty in the first object so that it will go out 1394 * to swap when needed. 1395 */ 1396 if ( 1397 /* 1398 * Map, if present, has not changed 1399 */ 1400 (fs->map == NULL || 1401 fs->map_generation == fs->map->timestamp) && 1402 /* 1403 * Only one shadow object 1404 */ 1405 (fs->object->shadow_count == 1) && 1406 /* 1407 * No COW refs, except us 1408 */ 1409 (fs->object->ref_count == 1) && 1410 /* 1411 * No one else can look this object up 1412 */ 1413 (fs->object->handle == NULL) && 1414 /* 1415 * No other ways to look the object up 1416 */ 1417 ((fs->object->type == OBJT_DEFAULT) || 1418 (fs->object->type == OBJT_SWAP)) && 1419 /* 1420 * We don't chase down the shadow chain 1421 */ 1422 (fs->object == fs->first_object->backing_object) && 1423 1424 /* 1425 * grab the lock if we need to 1426 */ 1427 (fs->lookup_still_valid || 1428 fs->map == NULL || 1429 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1430 ) { 1431 1432 fs->lookup_still_valid = 1; 1433 /* 1434 * get rid of the unnecessary page 1435 */ 1436 vm_page_protect(fs->first_m, VM_PROT_NONE); 1437 vm_page_free(fs->first_m); 1438 fs->first_m = NULL; 1439 1440 /* 1441 * grab the page and put it into the 1442 * process'es object. The page is 1443 * automatically made dirty. 1444 */ 1445 vm_page_rename(fs->m, fs->first_object, first_pindex); 1446 fs->first_m = fs->m; 1447 vm_page_busy(fs->first_m); 1448 fs->m = NULL; 1449 mycpu->gd_cnt.v_cow_optim++; 1450 } else { 1451 /* 1452 * Oh, well, lets copy it. 1453 */ 1454 vm_page_copy(fs->m, fs->first_m); 1455 vm_page_event(fs->m, VMEVENT_COW); 1456 } 1457 1458 if (fs->m) { 1459 /* 1460 * We no longer need the old page or object. 1461 */ 1462 release_page(fs); 1463 } 1464 1465 /* 1466 * fs->object != fs->first_object due to above 1467 * conditional 1468 */ 1469 vm_object_pip_wakeup(fs->object); 1470 1471 /* 1472 * Only use the new page below... 1473 */ 1474 1475 mycpu->gd_cnt.v_cow_faults++; 1476 fs->m = fs->first_m; 1477 fs->object = fs->first_object; 1478 pindex = first_pindex; 1479 } else { 1480 /* 1481 * If it wasn't a write fault avoid having to copy 1482 * the page by mapping it read-only. 1483 */ 1484 fs->prot &= ~VM_PROT_WRITE; 1485 } 1486 } 1487 1488 /* 1489 * We may have had to unlock a map to do I/O. If we did then 1490 * lookup_still_valid will be FALSE. If the map generation count 1491 * also changed then all sorts of things could have happened while 1492 * we were doing the I/O and we need to retry. 1493 */ 1494 1495 if (!fs->lookup_still_valid && 1496 fs->map != NULL && 1497 (fs->map->timestamp != fs->map_generation)) { 1498 release_page(fs); 1499 lwkt_reltoken(&vm_token); 1500 unlock_and_deallocate(fs); 1501 return (KERN_TRY_AGAIN); 1502 } 1503 1504 /* 1505 * If the fault is a write, we know that this page is being 1506 * written NOW so dirty it explicitly to save on pmap_is_modified() 1507 * calls later. 1508 * 1509 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1510 * if the page is already dirty to prevent data written with 1511 * the expectation of being synced from not being synced. 1512 * Likewise if this entry does not request NOSYNC then make 1513 * sure the page isn't marked NOSYNC. Applications sharing 1514 * data should use the same flags to avoid ping ponging. 1515 * 1516 * Also tell the backing pager, if any, that it should remove 1517 * any swap backing since the page is now dirty. 1518 */ 1519 if (fs->prot & VM_PROT_WRITE) { 1520 vm_object_set_writeable_dirty(fs->m->object); 1521 vm_set_nosync(fs->m, fs->entry); 1522 if (fs->fault_flags & VM_FAULT_DIRTY) { 1523 vm_page_dirty(fs->m); 1524 swap_pager_unswapped(fs->m); 1525 } 1526 } 1527 1528 lwkt_reltoken(&vm_token); 1529 1530 /* 1531 * Page had better still be busy. We are still locked up and 1532 * fs->object will have another PIP reference if it is not equal 1533 * to fs->first_object. 1534 */ 1535 KASSERT(fs->m->flags & PG_BUSY, 1536 ("vm_fault: page %p not busy!", fs->m)); 1537 1538 /* 1539 * Sanity check: page must be completely valid or it is not fit to 1540 * map into user space. vm_pager_get_pages() ensures this. 1541 */ 1542 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1543 vm_page_zero_invalid(fs->m, TRUE); 1544 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1545 } 1546 1547 return (KERN_SUCCESS); 1548 } 1549 1550 /* 1551 * Wire down a range of virtual addresses in a map. The entry in question 1552 * should be marked in-transition and the map must be locked. We must 1553 * release the map temporarily while faulting-in the page to avoid a 1554 * deadlock. Note that the entry may be clipped while we are blocked but 1555 * will never be freed. 1556 * 1557 * No requirements. 1558 */ 1559 int 1560 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1561 { 1562 boolean_t fictitious; 1563 vm_offset_t start; 1564 vm_offset_t end; 1565 vm_offset_t va; 1566 vm_paddr_t pa; 1567 pmap_t pmap; 1568 int rv; 1569 1570 pmap = vm_map_pmap(map); 1571 start = entry->start; 1572 end = entry->end; 1573 fictitious = entry->object.vm_object && 1574 (entry->object.vm_object->type == OBJT_DEVICE); 1575 if (entry->eflags & MAP_ENTRY_KSTACK) 1576 start += PAGE_SIZE; 1577 lwkt_gettoken(&vm_token); 1578 vm_map_unlock(map); 1579 map->timestamp++; 1580 1581 /* 1582 * We simulate a fault to get the page and enter it in the physical 1583 * map. 1584 */ 1585 for (va = start; va < end; va += PAGE_SIZE) { 1586 if (user_wire) { 1587 rv = vm_fault(map, va, VM_PROT_READ, 1588 VM_FAULT_USER_WIRE); 1589 } else { 1590 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1591 VM_FAULT_CHANGE_WIRING); 1592 } 1593 if (rv) { 1594 while (va > start) { 1595 va -= PAGE_SIZE; 1596 if ((pa = pmap_extract(pmap, va)) == 0) 1597 continue; 1598 pmap_change_wiring(pmap, va, FALSE); 1599 if (!fictitious) 1600 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1601 } 1602 vm_map_lock(map); 1603 lwkt_reltoken(&vm_token); 1604 return (rv); 1605 } 1606 } 1607 vm_map_lock(map); 1608 lwkt_reltoken(&vm_token); 1609 return (KERN_SUCCESS); 1610 } 1611 1612 /* 1613 * Unwire a range of virtual addresses in a map. The map should be 1614 * locked. 1615 */ 1616 void 1617 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 1618 { 1619 boolean_t fictitious; 1620 vm_offset_t start; 1621 vm_offset_t end; 1622 vm_offset_t va; 1623 vm_paddr_t pa; 1624 pmap_t pmap; 1625 1626 pmap = vm_map_pmap(map); 1627 start = entry->start; 1628 end = entry->end; 1629 fictitious = entry->object.vm_object && 1630 (entry->object.vm_object->type == OBJT_DEVICE); 1631 if (entry->eflags & MAP_ENTRY_KSTACK) 1632 start += PAGE_SIZE; 1633 1634 /* 1635 * Since the pages are wired down, we must be able to get their 1636 * mappings from the physical map system. 1637 */ 1638 lwkt_gettoken(&vm_token); 1639 for (va = start; va < end; va += PAGE_SIZE) { 1640 pa = pmap_extract(pmap, va); 1641 if (pa != 0) { 1642 pmap_change_wiring(pmap, va, FALSE); 1643 if (!fictitious) 1644 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1645 } 1646 } 1647 lwkt_reltoken(&vm_token); 1648 } 1649 1650 /* 1651 * Reduce the rate at which memory is allocated to a process based 1652 * on the perceived load on the VM system. As the load increases 1653 * the allocation burst rate goes down and the delay increases. 1654 * 1655 * Rate limiting does not apply when faulting active or inactive 1656 * pages. When faulting 'cache' pages, rate limiting only applies 1657 * if the system currently has a severe page deficit. 1658 * 1659 * XXX vm_pagesupply should be increased when a page is freed. 1660 * 1661 * We sleep up to 1/10 of a second. 1662 */ 1663 static int 1664 vm_fault_ratelimit(struct vmspace *vmspace) 1665 { 1666 if (vm_load_enable == 0) 1667 return(0); 1668 if (vmspace->vm_pagesupply > 0) { 1669 --vmspace->vm_pagesupply; /* SMP race ok */ 1670 return(0); 1671 } 1672 #ifdef INVARIANTS 1673 if (vm_load_debug) { 1674 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n", 1675 vm_load, 1676 (1000 - vm_load ) / 10, vm_load * hz / 10000, 1677 curproc->p_pid, curproc->p_comm); 1678 } 1679 #endif 1680 vmspace->vm_pagesupply = (1000 - vm_load) / 10; 1681 return(vm_load * hz / 10000); 1682 } 1683 1684 /* 1685 * Copy all of the pages from a wired-down map entry to another. 1686 * 1687 * The source and destination maps must be locked for write. 1688 * The source map entry must be wired down (or be a sharing map 1689 * entry corresponding to a main map entry that is wired down). 1690 * 1691 * No other requirements. 1692 */ 1693 void 1694 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1695 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 1696 { 1697 vm_object_t dst_object; 1698 vm_object_t src_object; 1699 vm_ooffset_t dst_offset; 1700 vm_ooffset_t src_offset; 1701 vm_prot_t prot; 1702 vm_offset_t vaddr; 1703 vm_page_t dst_m; 1704 vm_page_t src_m; 1705 1706 #ifdef lint 1707 src_map++; 1708 #endif /* lint */ 1709 1710 src_object = src_entry->object.vm_object; 1711 src_offset = src_entry->offset; 1712 1713 /* 1714 * Create the top-level object for the destination entry. (Doesn't 1715 * actually shadow anything - we copy the pages directly.) 1716 */ 1717 vm_map_entry_allocate_object(dst_entry); 1718 dst_object = dst_entry->object.vm_object; 1719 1720 prot = dst_entry->max_protection; 1721 1722 /* 1723 * Loop through all of the pages in the entry's range, copying each 1724 * one from the source object (it should be there) to the destination 1725 * object. 1726 */ 1727 for (vaddr = dst_entry->start, dst_offset = 0; 1728 vaddr < dst_entry->end; 1729 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1730 1731 /* 1732 * Allocate a page in the destination object 1733 */ 1734 do { 1735 dst_m = vm_page_alloc(dst_object, 1736 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 1737 if (dst_m == NULL) { 1738 vm_wait(0); 1739 } 1740 } while (dst_m == NULL); 1741 1742 /* 1743 * Find the page in the source object, and copy it in. 1744 * (Because the source is wired down, the page will be in 1745 * memory.) 1746 */ 1747 src_m = vm_page_lookup(src_object, 1748 OFF_TO_IDX(dst_offset + src_offset)); 1749 if (src_m == NULL) 1750 panic("vm_fault_copy_wired: page missing"); 1751 1752 vm_page_copy(src_m, dst_m); 1753 vm_page_event(src_m, VMEVENT_COW); 1754 1755 /* 1756 * Enter it in the pmap... 1757 */ 1758 1759 vm_page_flag_clear(dst_m, PG_ZERO); 1760 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1761 1762 /* 1763 * Mark it no longer busy, and put it on the active list. 1764 */ 1765 vm_page_activate(dst_m); 1766 vm_page_wakeup(dst_m); 1767 } 1768 } 1769 1770 #if 0 1771 1772 /* 1773 * This routine checks around the requested page for other pages that 1774 * might be able to be faulted in. This routine brackets the viable 1775 * pages for the pages to be paged in. 1776 * 1777 * Inputs: 1778 * m, rbehind, rahead 1779 * 1780 * Outputs: 1781 * marray (array of vm_page_t), reqpage (index of requested page) 1782 * 1783 * Return value: 1784 * number of pages in marray 1785 */ 1786 static int 1787 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 1788 vm_page_t *marray, int *reqpage) 1789 { 1790 int i,j; 1791 vm_object_t object; 1792 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1793 vm_page_t rtm; 1794 int cbehind, cahead; 1795 1796 object = m->object; 1797 pindex = m->pindex; 1798 1799 /* 1800 * we don't fault-ahead for device pager 1801 */ 1802 if (object->type == OBJT_DEVICE) { 1803 *reqpage = 0; 1804 marray[0] = m; 1805 return 1; 1806 } 1807 1808 /* 1809 * if the requested page is not available, then give up now 1810 */ 1811 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1812 *reqpage = 0; /* not used by caller, fix compiler warn */ 1813 return 0; 1814 } 1815 1816 if ((cbehind == 0) && (cahead == 0)) { 1817 *reqpage = 0; 1818 marray[0] = m; 1819 return 1; 1820 } 1821 1822 if (rahead > cahead) { 1823 rahead = cahead; 1824 } 1825 1826 if (rbehind > cbehind) { 1827 rbehind = cbehind; 1828 } 1829 1830 /* 1831 * Do not do any readahead if we have insufficient free memory. 1832 * 1833 * XXX code was broken disabled before and has instability 1834 * with this conditonal fixed, so shortcut for now. 1835 */ 1836 if (burst_fault == 0 || vm_page_count_severe()) { 1837 marray[0] = m; 1838 *reqpage = 0; 1839 return 1; 1840 } 1841 1842 /* 1843 * scan backward for the read behind pages -- in memory 1844 * 1845 * Assume that if the page is not found an interrupt will not 1846 * create it. Theoretically interrupts can only remove (busy) 1847 * pages, not create new associations. 1848 */ 1849 if (pindex > 0) { 1850 if (rbehind > pindex) { 1851 rbehind = pindex; 1852 startpindex = 0; 1853 } else { 1854 startpindex = pindex - rbehind; 1855 } 1856 1857 lwkt_gettoken(&vm_token); 1858 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 1859 if (vm_page_lookup(object, tpindex - 1)) 1860 break; 1861 } 1862 1863 i = 0; 1864 while (tpindex < pindex) { 1865 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1866 if (rtm == NULL) { 1867 lwkt_reltoken(&vm_token); 1868 for (j = 0; j < i; j++) { 1869 vm_page_free(marray[j]); 1870 } 1871 marray[0] = m; 1872 *reqpage = 0; 1873 return 1; 1874 } 1875 marray[i] = rtm; 1876 ++i; 1877 ++tpindex; 1878 } 1879 lwkt_reltoken(&vm_token); 1880 } else { 1881 i = 0; 1882 } 1883 1884 /* 1885 * Assign requested page 1886 */ 1887 marray[i] = m; 1888 *reqpage = i; 1889 ++i; 1890 1891 /* 1892 * Scan forwards for read-ahead pages 1893 */ 1894 tpindex = pindex + 1; 1895 endpindex = tpindex + rahead; 1896 if (endpindex > object->size) 1897 endpindex = object->size; 1898 1899 lwkt_gettoken(&vm_token); 1900 while (tpindex < endpindex) { 1901 if (vm_page_lookup(object, tpindex)) 1902 break; 1903 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1904 if (rtm == NULL) 1905 break; 1906 marray[i] = rtm; 1907 ++i; 1908 ++tpindex; 1909 } 1910 lwkt_reltoken(&vm_token); 1911 1912 return (i); 1913 } 1914 1915 #endif 1916 1917 /* 1918 * vm_prefault() provides a quick way of clustering pagefaults into a 1919 * processes address space. It is a "cousin" of pmap_object_init_pt, 1920 * except it runs at page fault time instead of mmap time. 1921 * 1922 * This code used to be per-platform pmap_prefault(). It is now 1923 * machine-independent and enhanced to also pre-fault zero-fill pages 1924 * (see vm.fast_fault) as well as make them writable, which greatly 1925 * reduces the number of page faults programs incur. 1926 * 1927 * Application performance when pre-faulting zero-fill pages is heavily 1928 * dependent on the application. Very tiny applications like /bin/echo 1929 * lose a little performance while applications of any appreciable size 1930 * gain performance. Prefaulting multiple pages also reduces SMP 1931 * congestion and can improve SMP performance significantly. 1932 * 1933 * NOTE! prot may allow writing but this only applies to the top level 1934 * object. If we wind up mapping a page extracted from a backing 1935 * object we have to make sure it is read-only. 1936 * 1937 * NOTE! The caller has already handled any COW operations on the 1938 * vm_map_entry via the normal fault code. Do NOT call this 1939 * shortcut unless the normal fault code has run on this entry. 1940 * 1941 * No other requirements. 1942 */ 1943 #define PFBAK 4 1944 #define PFFOR 4 1945 #define PAGEORDER_SIZE (PFBAK+PFFOR) 1946 1947 static int vm_prefault_pageorder[] = { 1948 -PAGE_SIZE, PAGE_SIZE, 1949 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 1950 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 1951 -4 * PAGE_SIZE, 4 * PAGE_SIZE 1952 }; 1953 1954 /* 1955 * Set PG_NOSYNC if the map entry indicates so, but only if the page 1956 * is not already dirty by other means. This will prevent passive 1957 * filesystem syncing as well as 'sync' from writing out the page. 1958 */ 1959 static void 1960 vm_set_nosync(vm_page_t m, vm_map_entry_t entry) 1961 { 1962 if (entry->eflags & MAP_ENTRY_NOSYNC) { 1963 if (m->dirty == 0) 1964 vm_page_flag_set(m, PG_NOSYNC); 1965 } else { 1966 vm_page_flag_clear(m, PG_NOSYNC); 1967 } 1968 } 1969 1970 static void 1971 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot) 1972 { 1973 struct lwp *lp; 1974 vm_page_t m; 1975 vm_offset_t starta; 1976 vm_offset_t addr; 1977 vm_pindex_t index; 1978 vm_pindex_t pindex; 1979 vm_object_t object; 1980 int pprot; 1981 int i; 1982 1983 /* 1984 * We do not currently prefault mappings that use virtual page 1985 * tables. We do not prefault foreign pmaps. 1986 */ 1987 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 1988 return; 1989 lp = curthread->td_lwp; 1990 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 1991 return; 1992 1993 object = entry->object.vm_object; 1994 1995 starta = addra - PFBAK * PAGE_SIZE; 1996 if (starta < entry->start) 1997 starta = entry->start; 1998 else if (starta > addra) 1999 starta = 0; 2000 2001 lwkt_gettoken(&vm_token); 2002 for (i = 0; i < PAGEORDER_SIZE; i++) { 2003 vm_object_t lobject; 2004 int allocated = 0; 2005 2006 addr = addra + vm_prefault_pageorder[i]; 2007 if (addr > addra + (PFFOR * PAGE_SIZE)) 2008 addr = 0; 2009 2010 if (addr < starta || addr >= entry->end) 2011 continue; 2012 2013 if (pmap_prefault_ok(pmap, addr) == 0) 2014 continue; 2015 2016 /* 2017 * Follow the VM object chain to obtain the page to be mapped 2018 * into the pmap. 2019 * 2020 * If we reach the terminal object without finding a page 2021 * and we determine it would be advantageous, then allocate 2022 * a zero-fill page for the base object. The base object 2023 * is guaranteed to be OBJT_DEFAULT for this case. 2024 * 2025 * In order to not have to check the pager via *haspage*() 2026 * we stop if any non-default object is encountered. e.g. 2027 * a vnode or swap object would stop the loop. 2028 */ 2029 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2030 lobject = object; 2031 pindex = index; 2032 pprot = prot; 2033 2034 while ((m = vm_page_lookup(lobject, pindex)) == NULL) { 2035 if (lobject->type != OBJT_DEFAULT) 2036 break; 2037 if (lobject->backing_object == NULL) { 2038 if (vm_fast_fault == 0) 2039 break; 2040 if (vm_prefault_pageorder[i] < 0 || 2041 (prot & VM_PROT_WRITE) == 0 || 2042 vm_page_count_min(0)) { 2043 break; 2044 } 2045 /* note: allocate from base object */ 2046 m = vm_page_alloc(object, index, 2047 VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 2048 2049 if ((m->flags & PG_ZERO) == 0) { 2050 vm_page_zero_fill(m); 2051 } else { 2052 #ifdef PMAP_DEBUG 2053 pmap_page_assertzero(VM_PAGE_TO_PHYS(m)); 2054 #endif 2055 vm_page_flag_clear(m, PG_ZERO); 2056 mycpu->gd_cnt.v_ozfod++; 2057 } 2058 mycpu->gd_cnt.v_zfod++; 2059 m->valid = VM_PAGE_BITS_ALL; 2060 allocated = 1; 2061 pprot = prot; 2062 /* lobject = object .. not needed */ 2063 break; 2064 } 2065 if (lobject->backing_object_offset & PAGE_MASK) 2066 break; 2067 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2068 lobject = lobject->backing_object; 2069 pprot &= ~VM_PROT_WRITE; 2070 } 2071 /* 2072 * NOTE: lobject now invalid (if we did a zero-fill we didn't 2073 * bother assigning lobject = object). 2074 * 2075 * Give-up if the page is not available. 2076 */ 2077 if (m == NULL) 2078 break; 2079 2080 /* 2081 * Do not conditionalize on PG_RAM. If pages are present in 2082 * the VM system we assume optimal caching. If caching is 2083 * not optimal the I/O gravy train will be restarted when we 2084 * hit an unavailable page. We do not want to try to restart 2085 * the gravy train now because we really don't know how much 2086 * of the object has been cached. The cost for restarting 2087 * the gravy train should be low (since accesses will likely 2088 * be I/O bound anyway). 2089 * 2090 * The object must be marked dirty if we are mapping a 2091 * writable page. 2092 */ 2093 if (pprot & VM_PROT_WRITE) 2094 vm_object_set_writeable_dirty(m->object); 2095 2096 /* 2097 * Enter the page into the pmap if appropriate. If we had 2098 * allocated the page we have to place it on a queue. If not 2099 * we just have to make sure it isn't on the cache queue 2100 * (pages on the cache queue are not allowed to be mapped). 2101 */ 2102 if (allocated) { 2103 if (pprot & VM_PROT_WRITE) 2104 vm_set_nosync(m, entry); 2105 pmap_enter(pmap, addr, m, pprot, 0); 2106 vm_page_deactivate(m); 2107 vm_page_wakeup(m); 2108 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2109 (m->busy == 0) && 2110 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) { 2111 2112 if ((m->queue - m->pc) == PQ_CACHE) { 2113 vm_page_deactivate(m); 2114 } 2115 vm_page_busy(m); 2116 if (pprot & VM_PROT_WRITE) 2117 vm_set_nosync(m, entry); 2118 pmap_enter(pmap, addr, m, pprot, 0); 2119 vm_page_wakeup(m); 2120 } 2121 } 2122 lwkt_reltoken(&vm_token); 2123 } 2124