1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 * 71 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 72 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 73 */ 74 75 /* 76 * Page fault handling module. 77 */ 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/vnode.h> 84 #include <sys/resourcevar.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vkernel.h> 87 #include <sys/lock.h> 88 #include <sys/sysctl.h> 89 90 #include <cpu/lwbuf.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vnode_pager.h> 102 #include <vm/vm_extern.h> 103 104 #include <sys/thread2.h> 105 #include <vm/vm_page2.h> 106 107 struct faultstate { 108 vm_page_t m; 109 vm_object_t object; 110 vm_pindex_t pindex; 111 vm_prot_t prot; 112 vm_page_t first_m; 113 vm_object_t first_object; 114 vm_prot_t first_prot; 115 vm_map_t map; 116 vm_map_entry_t entry; 117 int lookup_still_valid; 118 int didlimit; 119 int hardfault; 120 int fault_flags; 121 int map_generation; 122 boolean_t wired; 123 struct vnode *vp; 124 }; 125 126 static int vm_fast_fault = 1; 127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 128 "Burst fault zero-fill regions"); 129 static int debug_cluster = 0; 130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 131 132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t); 133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int); 134 #if 0 135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 136 #endif 137 static int vm_fault_ratelimit(struct vmspace *); 138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry); 139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, 140 int prot); 141 142 /* 143 * The caller must hold vm_token. 144 */ 145 static __inline void 146 release_page(struct faultstate *fs) 147 { 148 vm_page_deactivate(fs->m); 149 vm_page_wakeup(fs->m); 150 fs->m = NULL; 151 } 152 153 /* 154 * The caller must hold vm_token. 155 */ 156 static __inline void 157 unlock_map(struct faultstate *fs) 158 { 159 if (fs->lookup_still_valid && fs->map) { 160 vm_map_lookup_done(fs->map, fs->entry, 0); 161 fs->lookup_still_valid = FALSE; 162 } 163 } 164 165 /* 166 * Clean up after a successful call to vm_fault_object() so another call 167 * to vm_fault_object() can be made. 168 * 169 * The caller must hold vm_token. 170 */ 171 static void 172 _cleanup_successful_fault(struct faultstate *fs, int relock) 173 { 174 if (fs->object != fs->first_object) { 175 vm_page_free(fs->first_m); 176 vm_object_pip_wakeup(fs->object); 177 fs->first_m = NULL; 178 } 179 fs->object = fs->first_object; 180 if (relock && fs->lookup_still_valid == FALSE) { 181 if (fs->map) 182 vm_map_lock_read(fs->map); 183 fs->lookup_still_valid = TRUE; 184 } 185 } 186 187 /* 188 * The caller must hold vm_token. 189 */ 190 static void 191 _unlock_things(struct faultstate *fs, int dealloc) 192 { 193 vm_object_pip_wakeup(fs->first_object); 194 _cleanup_successful_fault(fs, 0); 195 if (dealloc) { 196 vm_object_deallocate(fs->first_object); 197 fs->first_object = NULL; 198 } 199 unlock_map(fs); 200 if (fs->vp != NULL) { 201 vput(fs->vp); 202 fs->vp = NULL; 203 } 204 } 205 206 #define unlock_things(fs) _unlock_things(fs, 0) 207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 209 210 /* 211 * TRYPAGER 212 * 213 * Determine if the pager for the current object *might* contain the page. 214 * 215 * We only need to try the pager if this is not a default object (default 216 * objects are zero-fill and have no real pager), and if we are not taking 217 * a wiring fault or if the FS entry is wired. 218 */ 219 #define TRYPAGER(fs) \ 220 (fs->object->type != OBJT_DEFAULT && \ 221 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 222 223 /* 224 * vm_fault: 225 * 226 * Handle a page fault occuring at the given address, requiring the given 227 * permissions, in the map specified. If successful, the page is inserted 228 * into the associated physical map. 229 * 230 * NOTE: The given address should be truncated to the proper page address. 231 * 232 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 233 * a standard error specifying why the fault is fatal is returned. 234 * 235 * The map in question must be referenced, and remains so. 236 * The caller may hold no locks. 237 * No other requirements. 238 */ 239 int 240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 241 { 242 int result; 243 vm_pindex_t first_pindex; 244 struct faultstate fs; 245 int growstack; 246 247 mycpu->gd_cnt.v_vm_faults++; 248 249 fs.didlimit = 0; 250 fs.hardfault = 0; 251 fs.fault_flags = fault_flags; 252 growstack = 1; 253 254 RetryFault: 255 /* 256 * Find the vm_map_entry representing the backing store and resolve 257 * the top level object and page index. This may have the side 258 * effect of executing a copy-on-write on the map entry and/or 259 * creating a shadow object, but will not COW any actual VM pages. 260 * 261 * On success fs.map is left read-locked and various other fields 262 * are initialized but not otherwise referenced or locked. 263 * 264 * NOTE! vm_map_lookup will try to upgrade the fault_type to 265 * VM_FAULT_WRITE if the map entry is a virtual page table and also 266 * writable, so we can set the 'A'accessed bit in the virtual page 267 * table entry. 268 */ 269 fs.map = map; 270 result = vm_map_lookup(&fs.map, vaddr, fault_type, 271 &fs.entry, &fs.first_object, 272 &first_pindex, &fs.first_prot, &fs.wired); 273 274 /* 275 * If the lookup failed or the map protections are incompatible, 276 * the fault generally fails. However, if the caller is trying 277 * to do a user wiring we have more work to do. 278 */ 279 if (result != KERN_SUCCESS) { 280 if (result != KERN_PROTECTION_FAILURE || 281 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 282 { 283 if (result == KERN_INVALID_ADDRESS && growstack && 284 map != &kernel_map && curproc != NULL) { 285 result = vm_map_growstack(curproc, vaddr); 286 if (result != KERN_SUCCESS) 287 return (KERN_FAILURE); 288 growstack = 0; 289 goto RetryFault; 290 } 291 return (result); 292 } 293 294 /* 295 * If we are user-wiring a r/w segment, and it is COW, then 296 * we need to do the COW operation. Note that we don't 297 * currently COW RO sections now, because it is NOT desirable 298 * to COW .text. We simply keep .text from ever being COW'ed 299 * and take the heat that one cannot debug wired .text sections. 300 */ 301 result = vm_map_lookup(&fs.map, vaddr, 302 VM_PROT_READ|VM_PROT_WRITE| 303 VM_PROT_OVERRIDE_WRITE, 304 &fs.entry, &fs.first_object, 305 &first_pindex, &fs.first_prot, 306 &fs.wired); 307 if (result != KERN_SUCCESS) 308 return result; 309 310 /* 311 * If we don't COW now, on a user wire, the user will never 312 * be able to write to the mapping. If we don't make this 313 * restriction, the bookkeeping would be nearly impossible. 314 */ 315 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 316 fs.entry->max_protection &= ~VM_PROT_WRITE; 317 } 318 319 /* 320 * fs.map is read-locked 321 * 322 * Misc checks. Save the map generation number to detect races. 323 */ 324 fs.map_generation = fs.map->timestamp; 325 326 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) { 327 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 328 panic("vm_fault: fault on nofault entry, addr: %p", 329 (void *)vaddr); 330 } 331 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) && 332 vaddr >= fs.entry->start && 333 vaddr < fs.entry->start + PAGE_SIZE) { 334 panic("vm_fault: fault on stack guard, addr: %p", 335 (void *)vaddr); 336 } 337 } 338 339 /* 340 * A system map entry may return a NULL object. No object means 341 * no pager means an unrecoverable kernel fault. 342 */ 343 if (fs.first_object == NULL) { 344 panic("vm_fault: unrecoverable fault at %p in entry %p", 345 (void *)vaddr, fs.entry); 346 } 347 348 /* 349 * Make a reference to this object to prevent its disposal while we 350 * are messing with it. Once we have the reference, the map is free 351 * to be diddled. Since objects reference their shadows (and copies), 352 * they will stay around as well. 353 * 354 * Bump the paging-in-progress count to prevent size changes (e.g. 355 * truncation operations) during I/O. This must be done after 356 * obtaining the vnode lock in order to avoid possible deadlocks. 357 * 358 * The vm_object must be held before manipulation. 359 */ 360 lwkt_gettoken(&vm_token); 361 vm_object_hold(fs.first_object); 362 vm_object_reference(fs.first_object); 363 fs.vp = vnode_pager_lock(fs.first_object); 364 vm_object_pip_add(fs.first_object, 1); 365 vm_object_drop(fs.first_object); 366 lwkt_reltoken(&vm_token); 367 368 fs.lookup_still_valid = TRUE; 369 fs.first_m = NULL; 370 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 371 372 /* 373 * If the entry is wired we cannot change the page protection. 374 */ 375 if (fs.wired) 376 fault_type = fs.first_prot; 377 378 /* 379 * The page we want is at (first_object, first_pindex), but if the 380 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 381 * page table to figure out the actual pindex. 382 * 383 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 384 * ONLY 385 */ 386 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 387 result = vm_fault_vpagetable(&fs, &first_pindex, 388 fs.entry->aux.master_pde, 389 fault_type); 390 if (result == KERN_TRY_AGAIN) 391 goto RetryFault; 392 if (result != KERN_SUCCESS) 393 return (result); 394 } 395 396 /* 397 * Now we have the actual (object, pindex), fault in the page. If 398 * vm_fault_object() fails it will unlock and deallocate the FS 399 * data. If it succeeds everything remains locked and fs->object 400 * will have an additional PIP count if it is not equal to 401 * fs->first_object 402 * 403 * vm_fault_object will set fs->prot for the pmap operation. It is 404 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 405 * page can be safely written. However, it will force a read-only 406 * mapping for a read fault if the memory is managed by a virtual 407 * page table. 408 */ 409 /* BEFORE */ 410 result = vm_fault_object(&fs, first_pindex, fault_type); 411 412 if (result == KERN_TRY_AGAIN) { 413 /*lwkt_reltoken(&vm_token);*/ 414 goto RetryFault; 415 } 416 if (result != KERN_SUCCESS) { 417 /*lwkt_reltoken(&vm_token);*/ 418 return (result); 419 } 420 421 /* 422 * On success vm_fault_object() does not unlock or deallocate, and fs.m 423 * will contain a busied page. 424 * 425 * Enter the page into the pmap and do pmap-related adjustments. 426 */ 427 vm_page_flag_set(fs.m, PG_REFERENCED); 428 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 429 430 /* 431 * Burst in a few more pages if possible. The fs.map should still 432 * be locked. 433 */ 434 if (fault_flags & VM_FAULT_BURST) { 435 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 && 436 fs.wired == 0) { 437 vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot); 438 } 439 } 440 lwkt_gettoken(&vm_token); 441 unlock_things(&fs); 442 443 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */ 444 KKASSERT(fs.m->flags & PG_BUSY); 445 446 /* 447 * If the page is not wired down, then put it where the pageout daemon 448 * can find it. 449 * 450 * We do not really need to get vm_token here but since all the 451 * vm_*() calls have to doing it here improves efficiency. 452 */ 453 /*lwkt_gettoken(&vm_token);*/ 454 455 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 456 lwkt_reltoken(&vm_token); /* before wire activate does not */ 457 if (fs.wired) 458 vm_page_wire(fs.m); 459 else 460 vm_page_unwire(fs.m, 1); 461 } else { 462 vm_page_activate(fs.m); 463 lwkt_reltoken(&vm_token); /* before wire activate does not */ 464 } 465 /*lwkt_reltoken(&vm_token); after wire/activate works */ 466 467 if (curthread->td_lwp) { 468 if (fs.hardfault) { 469 curthread->td_lwp->lwp_ru.ru_majflt++; 470 } else { 471 curthread->td_lwp->lwp_ru.ru_minflt++; 472 } 473 } 474 475 /* 476 * Unlock everything, and return 477 */ 478 vm_page_wakeup(fs.m); 479 vm_object_deallocate(fs.first_object); 480 /*fs.m = NULL; */ 481 /*fs.first_object = NULL; */ 482 /*lwkt_reltoken(&vm_token);*/ 483 484 return (KERN_SUCCESS); 485 } 486 487 /* 488 * Fault in the specified virtual address in the current process map, 489 * returning a held VM page or NULL. See vm_fault_page() for more 490 * information. 491 * 492 * No requirements. 493 */ 494 vm_page_t 495 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 496 { 497 struct lwp *lp = curthread->td_lwp; 498 vm_page_t m; 499 500 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 501 fault_type, VM_FAULT_NORMAL, errorp); 502 return(m); 503 } 504 505 /* 506 * Fault in the specified virtual address in the specified map, doing all 507 * necessary manipulation of the object store and all necessary I/O. Return 508 * a held VM page or NULL, and set *errorp. The related pmap is not 509 * updated. 510 * 511 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 512 * and marked PG_REFERENCED as well. 513 * 514 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 515 * error will be returned. 516 * 517 * No requirements. 518 */ 519 vm_page_t 520 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 521 int fault_flags, int *errorp) 522 { 523 vm_pindex_t first_pindex; 524 struct faultstate fs; 525 int result; 526 vm_prot_t orig_fault_type = fault_type; 527 528 mycpu->gd_cnt.v_vm_faults++; 529 530 fs.didlimit = 0; 531 fs.hardfault = 0; 532 fs.fault_flags = fault_flags; 533 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 534 535 RetryFault: 536 /* 537 * Find the vm_map_entry representing the backing store and resolve 538 * the top level object and page index. This may have the side 539 * effect of executing a copy-on-write on the map entry and/or 540 * creating a shadow object, but will not COW any actual VM pages. 541 * 542 * On success fs.map is left read-locked and various other fields 543 * are initialized but not otherwise referenced or locked. 544 * 545 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 546 * if the map entry is a virtual page table and also writable, 547 * so we can set the 'A'accessed bit in the virtual page table entry. 548 */ 549 fs.map = map; 550 result = vm_map_lookup(&fs.map, vaddr, fault_type, 551 &fs.entry, &fs.first_object, 552 &first_pindex, &fs.first_prot, &fs.wired); 553 554 if (result != KERN_SUCCESS) { 555 *errorp = result; 556 return (NULL); 557 } 558 559 /* 560 * fs.map is read-locked 561 * 562 * Misc checks. Save the map generation number to detect races. 563 */ 564 fs.map_generation = fs.map->timestamp; 565 566 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 567 panic("vm_fault: fault on nofault entry, addr: %lx", 568 (u_long)vaddr); 569 } 570 571 /* 572 * A system map entry may return a NULL object. No object means 573 * no pager means an unrecoverable kernel fault. 574 */ 575 if (fs.first_object == NULL) { 576 panic("vm_fault: unrecoverable fault at %p in entry %p", 577 (void *)vaddr, fs.entry); 578 } 579 580 /* 581 * Make a reference to this object to prevent its disposal while we 582 * are messing with it. Once we have the reference, the map is free 583 * to be diddled. Since objects reference their shadows (and copies), 584 * they will stay around as well. 585 * 586 * Bump the paging-in-progress count to prevent size changes (e.g. 587 * truncation operations) during I/O. This must be done after 588 * obtaining the vnode lock in order to avoid possible deadlocks. 589 * 590 * The vm_object must be held before manipulation. 591 */ 592 lwkt_gettoken(&vm_token); 593 vm_object_hold(fs.first_object); 594 vm_object_reference(fs.first_object); 595 fs.vp = vnode_pager_lock(fs.first_object); 596 vm_object_pip_add(fs.first_object, 1); 597 vm_object_drop(fs.first_object); 598 lwkt_reltoken(&vm_token); 599 600 fs.lookup_still_valid = TRUE; 601 fs.first_m = NULL; 602 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 603 604 /* 605 * If the entry is wired we cannot change the page protection. 606 */ 607 if (fs.wired) 608 fault_type = fs.first_prot; 609 610 /* 611 * The page we want is at (first_object, first_pindex), but if the 612 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 613 * page table to figure out the actual pindex. 614 * 615 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 616 * ONLY 617 */ 618 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 619 result = vm_fault_vpagetable(&fs, &first_pindex, 620 fs.entry->aux.master_pde, 621 fault_type); 622 if (result == KERN_TRY_AGAIN) 623 goto RetryFault; 624 if (result != KERN_SUCCESS) { 625 *errorp = result; 626 return (NULL); 627 } 628 } 629 630 /* 631 * Now we have the actual (object, pindex), fault in the page. If 632 * vm_fault_object() fails it will unlock and deallocate the FS 633 * data. If it succeeds everything remains locked and fs->object 634 * will have an additinal PIP count if it is not equal to 635 * fs->first_object 636 */ 637 result = vm_fault_object(&fs, first_pindex, fault_type); 638 639 if (result == KERN_TRY_AGAIN) 640 goto RetryFault; 641 if (result != KERN_SUCCESS) { 642 *errorp = result; 643 return(NULL); 644 } 645 646 if ((orig_fault_type & VM_PROT_WRITE) && 647 (fs.prot & VM_PROT_WRITE) == 0) { 648 *errorp = KERN_PROTECTION_FAILURE; 649 unlock_and_deallocate(&fs); 650 return(NULL); 651 } 652 653 /* 654 * On success vm_fault_object() does not unlock or deallocate, and fs.m 655 * will contain a busied page. 656 */ 657 unlock_things(&fs); 658 659 /* 660 * Return a held page. We are not doing any pmap manipulation so do 661 * not set PG_MAPPED. However, adjust the page flags according to 662 * the fault type because the caller may not use a managed pmapping 663 * (so we don't want to lose the fact that the page will be dirtied 664 * if a write fault was specified). 665 */ 666 lwkt_gettoken(&vm_token); 667 vm_page_hold(fs.m); 668 if (fault_type & VM_PROT_WRITE) 669 vm_page_dirty(fs.m); 670 671 /* 672 * Update the pmap. We really only have to do this if a COW 673 * occured to replace the read-only page with the new page. For 674 * now just do it unconditionally. XXX 675 */ 676 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 677 vm_page_flag_set(fs.m, PG_REFERENCED); 678 679 /* 680 * Unbusy the page by activating it. It remains held and will not 681 * be reclaimed. 682 */ 683 vm_page_activate(fs.m); 684 685 if (curthread->td_lwp) { 686 if (fs.hardfault) { 687 curthread->td_lwp->lwp_ru.ru_majflt++; 688 } else { 689 curthread->td_lwp->lwp_ru.ru_minflt++; 690 } 691 } 692 693 /* 694 * Unlock everything, and return the held page. 695 */ 696 vm_page_wakeup(fs.m); 697 vm_object_deallocate(fs.first_object); 698 /*fs.first_object = NULL; */ 699 lwkt_reltoken(&vm_token); 700 701 *errorp = 0; 702 return(fs.m); 703 } 704 705 /* 706 * Fault in the specified (object,offset), dirty the returned page as 707 * needed. If the requested fault_type cannot be done NULL and an 708 * error is returned. 709 * 710 * A held (but not busied) page is returned. 711 * 712 * No requirements. 713 */ 714 vm_page_t 715 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 716 vm_prot_t fault_type, int fault_flags, int *errorp) 717 { 718 int result; 719 vm_pindex_t first_pindex; 720 struct faultstate fs; 721 struct vm_map_entry entry; 722 723 bzero(&entry, sizeof(entry)); 724 entry.object.vm_object = object; 725 entry.maptype = VM_MAPTYPE_NORMAL; 726 entry.protection = entry.max_protection = fault_type; 727 728 fs.didlimit = 0; 729 fs.hardfault = 0; 730 fs.fault_flags = fault_flags; 731 fs.map = NULL; 732 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 733 734 RetryFault: 735 736 fs.first_object = object; 737 first_pindex = OFF_TO_IDX(offset); 738 fs.entry = &entry; 739 fs.first_prot = fault_type; 740 fs.wired = 0; 741 /*fs.map_generation = 0; unused */ 742 743 /* 744 * Make a reference to this object to prevent its disposal while we 745 * are messing with it. Once we have the reference, the map is free 746 * to be diddled. Since objects reference their shadows (and copies), 747 * they will stay around as well. 748 * 749 * Bump the paging-in-progress count to prevent size changes (e.g. 750 * truncation operations) during I/O. This must be done after 751 * obtaining the vnode lock in order to avoid possible deadlocks. 752 */ 753 lwkt_gettoken(&vm_token); 754 vm_object_hold(fs.first_object); 755 vm_object_reference(fs.first_object); 756 fs.vp = vnode_pager_lock(fs.first_object); 757 vm_object_pip_add(fs.first_object, 1); 758 vm_object_drop(fs.first_object); 759 lwkt_reltoken(&vm_token); 760 761 fs.lookup_still_valid = TRUE; 762 fs.first_m = NULL; 763 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 764 765 #if 0 766 /* XXX future - ability to operate on VM object using vpagetable */ 767 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 768 result = vm_fault_vpagetable(&fs, &first_pindex, 769 fs.entry->aux.master_pde, 770 fault_type); 771 if (result == KERN_TRY_AGAIN) 772 goto RetryFault; 773 if (result != KERN_SUCCESS) { 774 *errorp = result; 775 return (NULL); 776 } 777 } 778 #endif 779 780 /* 781 * Now we have the actual (object, pindex), fault in the page. If 782 * vm_fault_object() fails it will unlock and deallocate the FS 783 * data. If it succeeds everything remains locked and fs->object 784 * will have an additinal PIP count if it is not equal to 785 * fs->first_object 786 */ 787 result = vm_fault_object(&fs, first_pindex, fault_type); 788 789 if (result == KERN_TRY_AGAIN) 790 goto RetryFault; 791 if (result != KERN_SUCCESS) { 792 *errorp = result; 793 return(NULL); 794 } 795 796 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 797 *errorp = KERN_PROTECTION_FAILURE; 798 unlock_and_deallocate(&fs); 799 return(NULL); 800 } 801 802 /* 803 * On success vm_fault_object() does not unlock or deallocate, and fs.m 804 * will contain a busied page. 805 */ 806 unlock_things(&fs); 807 808 /* 809 * Return a held page. We are not doing any pmap manipulation so do 810 * not set PG_MAPPED. However, adjust the page flags according to 811 * the fault type because the caller may not use a managed pmapping 812 * (so we don't want to lose the fact that the page will be dirtied 813 * if a write fault was specified). 814 */ 815 lwkt_gettoken(&vm_token); 816 vm_page_hold(fs.m); 817 if (fault_type & VM_PROT_WRITE) 818 vm_page_dirty(fs.m); 819 820 if (fault_flags & VM_FAULT_DIRTY) 821 vm_page_dirty(fs.m); 822 if (fault_flags & VM_FAULT_UNSWAP) 823 swap_pager_unswapped(fs.m); 824 825 /* 826 * Indicate that the page was accessed. 827 */ 828 vm_page_flag_set(fs.m, PG_REFERENCED); 829 830 /* 831 * Unbusy the page by activating it. It remains held and will not 832 * be reclaimed. 833 */ 834 vm_page_activate(fs.m); 835 836 if (curthread->td_lwp) { 837 if (fs.hardfault) { 838 mycpu->gd_cnt.v_vm_faults++; 839 curthread->td_lwp->lwp_ru.ru_majflt++; 840 } else { 841 curthread->td_lwp->lwp_ru.ru_minflt++; 842 } 843 } 844 845 /* 846 * Unlock everything, and return the held page. 847 */ 848 vm_page_wakeup(fs.m); 849 vm_object_deallocate(fs.first_object); 850 /*fs.first_object = NULL; */ 851 lwkt_reltoken(&vm_token); 852 853 *errorp = 0; 854 return(fs.m); 855 } 856 857 /* 858 * Translate the virtual page number (first_pindex) that is relative 859 * to the address space into a logical page number that is relative to the 860 * backing object. Use the virtual page table pointed to by (vpte). 861 * 862 * This implements an N-level page table. Any level can terminate the 863 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 864 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 865 * 866 * No requirements (vm_token need not be held). 867 */ 868 static 869 int 870 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 871 vpte_t vpte, int fault_type) 872 { 873 struct lwbuf *lwb; 874 struct lwbuf lwb_cache; 875 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 876 int result = KERN_SUCCESS; 877 vpte_t *ptep; 878 879 for (;;) { 880 /* 881 * We cannot proceed if the vpte is not valid, not readable 882 * for a read fault, or not writable for a write fault. 883 */ 884 if ((vpte & VPTE_V) == 0) { 885 unlock_and_deallocate(fs); 886 return (KERN_FAILURE); 887 } 888 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) { 889 unlock_and_deallocate(fs); 890 return (KERN_FAILURE); 891 } 892 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) { 893 unlock_and_deallocate(fs); 894 return (KERN_FAILURE); 895 } 896 if ((vpte & VPTE_PS) || vshift == 0) 897 break; 898 KKASSERT(vshift >= VPTE_PAGE_BITS); 899 900 /* 901 * Get the page table page. Nominally we only read the page 902 * table, but since we are actively setting VPTE_M and VPTE_A, 903 * tell vm_fault_object() that we are writing it. 904 * 905 * There is currently no real need to optimize this. 906 */ 907 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 908 VM_PROT_READ|VM_PROT_WRITE); 909 if (result != KERN_SUCCESS) 910 return (result); 911 912 /* 913 * Process the returned fs.m and look up the page table 914 * entry in the page table page. 915 */ 916 vshift -= VPTE_PAGE_BITS; 917 lwb = lwbuf_alloc(fs->m, &lwb_cache); 918 ptep = ((vpte_t *)lwbuf_kva(lwb) + 919 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 920 vpte = *ptep; 921 922 /* 923 * Page table write-back. If the vpte is valid for the 924 * requested operation, do a write-back to the page table. 925 * 926 * XXX VPTE_M is not set properly for page directory pages. 927 * It doesn't get set in the page directory if the page table 928 * is modified during a read access. 929 */ 930 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 931 (vpte & VPTE_W)) { 932 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 933 atomic_set_long(ptep, VPTE_M | VPTE_A); 934 vm_page_dirty(fs->m); 935 } 936 } 937 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) && 938 (vpte & VPTE_R)) { 939 if ((vpte & VPTE_A) == 0) { 940 atomic_set_long(ptep, VPTE_A); 941 vm_page_dirty(fs->m); 942 } 943 } 944 lwbuf_free(lwb); 945 vm_page_flag_set(fs->m, PG_REFERENCED); 946 vm_page_activate(fs->m); 947 vm_page_wakeup(fs->m); 948 fs->m = NULL; 949 cleanup_successful_fault(fs); 950 } 951 /* 952 * Combine remaining address bits with the vpte. 953 */ 954 /* JG how many bits from each? */ 955 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 956 (*pindex & ((1L << vshift) - 1)); 957 return (KERN_SUCCESS); 958 } 959 960 961 /* 962 * This is the core of the vm_fault code. 963 * 964 * Do all operations required to fault-in (fs.first_object, pindex). Run 965 * through the shadow chain as necessary and do required COW or virtual 966 * copy operations. The caller has already fully resolved the vm_map_entry 967 * and, if appropriate, has created a copy-on-write layer. All we need to 968 * do is iterate the object chain. 969 * 970 * On failure (fs) is unlocked and deallocated and the caller may return or 971 * retry depending on the failure code. On success (fs) is NOT unlocked or 972 * deallocated, fs.m will contained a resolved, busied page, and fs.object 973 * will have an additional PIP count if it is not equal to fs.first_object. 974 * 975 * No requirements. 976 */ 977 static 978 int 979 vm_fault_object(struct faultstate *fs, 980 vm_pindex_t first_pindex, vm_prot_t fault_type) 981 { 982 vm_object_t next_object; 983 vm_pindex_t pindex; 984 985 fs->prot = fs->first_prot; 986 fs->object = fs->first_object; 987 pindex = first_pindex; 988 989 /* 990 * If a read fault occurs we try to make the page writable if 991 * possible. There are three cases where we cannot make the 992 * page mapping writable: 993 * 994 * (1) The mapping is read-only or the VM object is read-only, 995 * fs->prot above will simply not have VM_PROT_WRITE set. 996 * 997 * (2) If the mapping is a virtual page table we need to be able 998 * to detect writes so we can set VPTE_M in the virtual page 999 * table. 1000 * 1001 * (3) If the VM page is read-only or copy-on-write, upgrading would 1002 * just result in an unnecessary COW fault. 1003 * 1004 * VM_PROT_VPAGED is set if faulting via a virtual page table and 1005 * causes adjustments to the 'M'odify bit to also turn off write 1006 * access to force a re-fault. 1007 */ 1008 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 1009 if ((fault_type & VM_PROT_WRITE) == 0) 1010 fs->prot &= ~VM_PROT_WRITE; 1011 } 1012 1013 lwkt_gettoken(&vm_token); 1014 1015 for (;;) { 1016 /* 1017 * If the object is dead, we stop here 1018 */ 1019 if (fs->object->flags & OBJ_DEAD) { 1020 unlock_and_deallocate(fs); 1021 lwkt_reltoken(&vm_token); 1022 return (KERN_PROTECTION_FAILURE); 1023 } 1024 1025 /* 1026 * See if the page is resident. 1027 */ 1028 fs->m = vm_page_lookup(fs->object, pindex); 1029 if (fs->m != NULL) { 1030 int queue; 1031 /* 1032 * Wait/Retry if the page is busy. We have to do this 1033 * if the page is busy via either PG_BUSY or 1034 * vm_page_t->busy because the vm_pager may be using 1035 * vm_page_t->busy for pageouts ( and even pageins if 1036 * it is the vnode pager ), and we could end up trying 1037 * to pagein and pageout the same page simultaneously. 1038 * 1039 * We can theoretically allow the busy case on a read 1040 * fault if the page is marked valid, but since such 1041 * pages are typically already pmap'd, putting that 1042 * special case in might be more effort then it is 1043 * worth. We cannot under any circumstances mess 1044 * around with a vm_page_t->busy page except, perhaps, 1045 * to pmap it. 1046 */ 1047 if ((fs->m->flags & PG_BUSY) || fs->m->busy) { 1048 unlock_things(fs); 1049 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 1050 mycpu->gd_cnt.v_intrans++; 1051 vm_object_deallocate(fs->first_object); 1052 fs->first_object = NULL; 1053 lwkt_reltoken(&vm_token); 1054 return (KERN_TRY_AGAIN); 1055 } 1056 1057 /* 1058 * If reactivating a page from PQ_CACHE we may have 1059 * to rate-limit. 1060 */ 1061 queue = fs->m->queue; 1062 vm_page_unqueue_nowakeup(fs->m); 1063 1064 if ((queue - fs->m->pc) == PQ_CACHE && 1065 vm_page_count_severe()) { 1066 vm_page_activate(fs->m); 1067 unlock_and_deallocate(fs); 1068 vm_waitpfault(); 1069 lwkt_reltoken(&vm_token); 1070 return (KERN_TRY_AGAIN); 1071 } 1072 1073 /* 1074 * Mark page busy for other processes, and the 1075 * pagedaemon. If it still isn't completely valid 1076 * (readable), or if a read-ahead-mark is set on 1077 * the VM page, jump to readrest, else we found the 1078 * page and can return. 1079 * 1080 * We can release the spl once we have marked the 1081 * page busy. 1082 */ 1083 vm_page_busy(fs->m); 1084 1085 if (fs->m->object != &kernel_object) { 1086 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1087 VM_PAGE_BITS_ALL) { 1088 goto readrest; 1089 } 1090 if (fs->m->flags & PG_RAM) { 1091 if (debug_cluster) 1092 kprintf("R"); 1093 vm_page_flag_clear(fs->m, PG_RAM); 1094 goto readrest; 1095 } 1096 } 1097 break; /* break to PAGE HAS BEEN FOUND */ 1098 } 1099 1100 /* 1101 * Page is not resident, If this is the search termination 1102 * or the pager might contain the page, allocate a new page. 1103 */ 1104 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1105 /* 1106 * If the page is beyond the object size we fail 1107 */ 1108 if (pindex >= fs->object->size) { 1109 lwkt_reltoken(&vm_token); 1110 unlock_and_deallocate(fs); 1111 return (KERN_PROTECTION_FAILURE); 1112 } 1113 1114 /* 1115 * Ratelimit. 1116 */ 1117 if (fs->didlimit == 0 && curproc != NULL) { 1118 int limticks; 1119 1120 limticks = vm_fault_ratelimit(curproc->p_vmspace); 1121 if (limticks) { 1122 lwkt_reltoken(&vm_token); 1123 unlock_and_deallocate(fs); 1124 tsleep(curproc, 0, "vmrate", limticks); 1125 fs->didlimit = 1; 1126 return (KERN_TRY_AGAIN); 1127 } 1128 } 1129 1130 /* 1131 * Allocate a new page for this object/offset pair. 1132 */ 1133 fs->m = NULL; 1134 if (!vm_page_count_severe()) { 1135 fs->m = vm_page_alloc(fs->object, pindex, 1136 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 1137 } 1138 if (fs->m == NULL) { 1139 lwkt_reltoken(&vm_token); 1140 unlock_and_deallocate(fs); 1141 vm_waitpfault(); 1142 return (KERN_TRY_AGAIN); 1143 } 1144 } 1145 1146 readrest: 1147 /* 1148 * We have found an invalid or partially valid page, a 1149 * page with a read-ahead mark which might be partially or 1150 * fully valid (and maybe dirty too), or we have allocated 1151 * a new page. 1152 * 1153 * Attempt to fault-in the page if there is a chance that the 1154 * pager has it, and potentially fault in additional pages 1155 * at the same time. 1156 * 1157 * We are NOT in splvm here and if TRYPAGER is true then 1158 * fs.m will be non-NULL and will be PG_BUSY for us. 1159 */ 1160 if (TRYPAGER(fs)) { 1161 int rv; 1162 int seqaccess; 1163 u_char behavior = vm_map_entry_behavior(fs->entry); 1164 1165 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1166 seqaccess = 0; 1167 else 1168 seqaccess = -1; 1169 1170 /* 1171 * If sequential access is detected then attempt 1172 * to deactivate/cache pages behind the scan to 1173 * prevent resource hogging. 1174 * 1175 * Use of PG_RAM to detect sequential access 1176 * also simulates multi-zone sequential access 1177 * detection for free. 1178 * 1179 * NOTE: Partially valid dirty pages cannot be 1180 * deactivated without causing NFS picemeal 1181 * writes to barf. 1182 */ 1183 if ((fs->first_object->type != OBJT_DEVICE) && 1184 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1185 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1186 (fs->m->flags & PG_RAM))) 1187 ) { 1188 vm_pindex_t scan_pindex; 1189 int scan_count = 16; 1190 1191 if (first_pindex < 16) { 1192 scan_pindex = 0; 1193 scan_count = 0; 1194 } else { 1195 scan_pindex = first_pindex - 16; 1196 if (scan_pindex < 16) 1197 scan_count = scan_pindex; 1198 else 1199 scan_count = 16; 1200 } 1201 1202 while (scan_count) { 1203 vm_page_t mt; 1204 1205 mt = vm_page_lookup(fs->first_object, 1206 scan_pindex); 1207 if (mt == NULL || 1208 (mt->valid != VM_PAGE_BITS_ALL)) { 1209 break; 1210 } 1211 if (mt->busy || 1212 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) || 1213 mt->hold_count || 1214 mt->wire_count) { 1215 goto skip; 1216 } 1217 vm_page_busy(mt); 1218 if (mt->dirty == 0) 1219 vm_page_test_dirty(mt); 1220 if (mt->dirty) { 1221 vm_page_protect(mt, 1222 VM_PROT_NONE); 1223 vm_page_deactivate(mt); 1224 vm_page_wakeup(mt); 1225 } else { 1226 vm_page_cache(mt); 1227 } 1228 skip: 1229 --scan_count; 1230 --scan_pindex; 1231 } 1232 1233 seqaccess = 1; 1234 } 1235 1236 /* 1237 * Avoid deadlocking against the map when doing I/O. 1238 * fs.object and the page is PG_BUSY'd. 1239 */ 1240 unlock_map(fs); 1241 1242 /* 1243 * Acquire the page data. We still hold a ref on 1244 * fs.object and the page has been PG_BUSY's. 1245 * 1246 * The pager may replace the page (for example, in 1247 * order to enter a fictitious page into the 1248 * object). If it does so it is responsible for 1249 * cleaning up the passed page and properly setting 1250 * the new page PG_BUSY. 1251 * 1252 * If we got here through a PG_RAM read-ahead 1253 * mark the page may be partially dirty and thus 1254 * not freeable. Don't bother checking to see 1255 * if the pager has the page because we can't free 1256 * it anyway. We have to depend on the get_page 1257 * operation filling in any gaps whether there is 1258 * backing store or not. 1259 */ 1260 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1261 1262 if (rv == VM_PAGER_OK) { 1263 /* 1264 * Relookup in case pager changed page. Pager 1265 * is responsible for disposition of old page 1266 * if moved. 1267 * 1268 * XXX other code segments do relookups too. 1269 * It's a bad abstraction that needs to be 1270 * fixed/removed. 1271 */ 1272 fs->m = vm_page_lookup(fs->object, pindex); 1273 if (fs->m == NULL) { 1274 lwkt_reltoken(&vm_token); 1275 unlock_and_deallocate(fs); 1276 return (KERN_TRY_AGAIN); 1277 } 1278 1279 ++fs->hardfault; 1280 break; /* break to PAGE HAS BEEN FOUND */ 1281 } 1282 1283 /* 1284 * Remove the bogus page (which does not exist at this 1285 * object/offset); before doing so, we must get back 1286 * our object lock to preserve our invariant. 1287 * 1288 * Also wake up any other process that may want to bring 1289 * in this page. 1290 * 1291 * If this is the top-level object, we must leave the 1292 * busy page to prevent another process from rushing 1293 * past us, and inserting the page in that object at 1294 * the same time that we are. 1295 */ 1296 if (rv == VM_PAGER_ERROR) { 1297 if (curproc) 1298 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm); 1299 else 1300 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm); 1301 } 1302 1303 /* 1304 * Data outside the range of the pager or an I/O error 1305 * 1306 * The page may have been wired during the pagein, 1307 * e.g. by the buffer cache, and cannot simply be 1308 * freed. Call vnode_pager_freepage() to deal with it. 1309 */ 1310 /* 1311 * XXX - the check for kernel_map is a kludge to work 1312 * around having the machine panic on a kernel space 1313 * fault w/ I/O error. 1314 */ 1315 if (((fs->map != &kernel_map) && 1316 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1317 vnode_pager_freepage(fs->m); 1318 lwkt_reltoken(&vm_token); 1319 fs->m = NULL; 1320 unlock_and_deallocate(fs); 1321 if (rv == VM_PAGER_ERROR) 1322 return (KERN_FAILURE); 1323 else 1324 return (KERN_PROTECTION_FAILURE); 1325 /* NOT REACHED */ 1326 } 1327 if (fs->object != fs->first_object) { 1328 vnode_pager_freepage(fs->m); 1329 fs->m = NULL; 1330 /* 1331 * XXX - we cannot just fall out at this 1332 * point, m has been freed and is invalid! 1333 */ 1334 } 1335 } 1336 1337 /* 1338 * We get here if the object has a default pager (or unwiring) 1339 * or the pager doesn't have the page. 1340 */ 1341 if (fs->object == fs->first_object) 1342 fs->first_m = fs->m; 1343 1344 /* 1345 * Move on to the next object. Lock the next object before 1346 * unlocking the current one. 1347 */ 1348 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1349 next_object = fs->object->backing_object; 1350 if (next_object == NULL) { 1351 /* 1352 * If there's no object left, fill the page in the top 1353 * object with zeros. 1354 */ 1355 if (fs->object != fs->first_object) { 1356 vm_object_pip_wakeup(fs->object); 1357 1358 fs->object = fs->first_object; 1359 pindex = first_pindex; 1360 fs->m = fs->first_m; 1361 } 1362 fs->first_m = NULL; 1363 1364 /* 1365 * Zero the page if necessary and mark it valid. 1366 */ 1367 if ((fs->m->flags & PG_ZERO) == 0) { 1368 vm_page_zero_fill(fs->m); 1369 } else { 1370 #ifdef PMAP_DEBUG 1371 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m)); 1372 #endif 1373 vm_page_flag_clear(fs->m, PG_ZERO); 1374 mycpu->gd_cnt.v_ozfod++; 1375 } 1376 mycpu->gd_cnt.v_zfod++; 1377 fs->m->valid = VM_PAGE_BITS_ALL; 1378 break; /* break to PAGE HAS BEEN FOUND */ 1379 } 1380 if (fs->object != fs->first_object) { 1381 vm_object_pip_wakeup(fs->object); 1382 } 1383 KASSERT(fs->object != next_object, 1384 ("object loop %p", next_object)); 1385 fs->object = next_object; 1386 vm_object_pip_add(fs->object, 1); 1387 } 1388 1389 /* 1390 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1391 * is held.] 1392 * 1393 * vm_token is still held 1394 * 1395 * If the page is being written, but isn't already owned by the 1396 * top-level object, we have to copy it into a new page owned by the 1397 * top-level object. 1398 */ 1399 KASSERT((fs->m->flags & PG_BUSY) != 0, 1400 ("vm_fault: not busy after main loop")); 1401 1402 if (fs->object != fs->first_object) { 1403 /* 1404 * We only really need to copy if we want to write it. 1405 */ 1406 if (fault_type & VM_PROT_WRITE) { 1407 /* 1408 * This allows pages to be virtually copied from a 1409 * backing_object into the first_object, where the 1410 * backing object has no other refs to it, and cannot 1411 * gain any more refs. Instead of a bcopy, we just 1412 * move the page from the backing object to the 1413 * first object. Note that we must mark the page 1414 * dirty in the first object so that it will go out 1415 * to swap when needed. 1416 */ 1417 if ( 1418 /* 1419 * Map, if present, has not changed 1420 */ 1421 (fs->map == NULL || 1422 fs->map_generation == fs->map->timestamp) && 1423 /* 1424 * Only one shadow object 1425 */ 1426 (fs->object->shadow_count == 1) && 1427 /* 1428 * No COW refs, except us 1429 */ 1430 (fs->object->ref_count == 1) && 1431 /* 1432 * No one else can look this object up 1433 */ 1434 (fs->object->handle == NULL) && 1435 /* 1436 * No other ways to look the object up 1437 */ 1438 ((fs->object->type == OBJT_DEFAULT) || 1439 (fs->object->type == OBJT_SWAP)) && 1440 /* 1441 * We don't chase down the shadow chain 1442 */ 1443 (fs->object == fs->first_object->backing_object) && 1444 1445 /* 1446 * grab the lock if we need to 1447 */ 1448 (fs->lookup_still_valid || 1449 fs->map == NULL || 1450 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1451 ) { 1452 1453 fs->lookup_still_valid = 1; 1454 /* 1455 * get rid of the unnecessary page 1456 */ 1457 vm_page_protect(fs->first_m, VM_PROT_NONE); 1458 vm_page_free(fs->first_m); 1459 fs->first_m = NULL; 1460 1461 /* 1462 * grab the page and put it into the 1463 * process'es object. The page is 1464 * automatically made dirty. 1465 */ 1466 vm_page_rename(fs->m, fs->first_object, first_pindex); 1467 fs->first_m = fs->m; 1468 vm_page_busy(fs->first_m); 1469 fs->m = NULL; 1470 mycpu->gd_cnt.v_cow_optim++; 1471 } else { 1472 /* 1473 * Oh, well, lets copy it. 1474 */ 1475 vm_page_copy(fs->m, fs->first_m); 1476 vm_page_event(fs->m, VMEVENT_COW); 1477 } 1478 1479 if (fs->m) { 1480 /* 1481 * We no longer need the old page or object. 1482 */ 1483 release_page(fs); 1484 } 1485 1486 /* 1487 * fs->object != fs->first_object due to above 1488 * conditional 1489 */ 1490 vm_object_pip_wakeup(fs->object); 1491 1492 /* 1493 * Only use the new page below... 1494 */ 1495 1496 mycpu->gd_cnt.v_cow_faults++; 1497 fs->m = fs->first_m; 1498 fs->object = fs->first_object; 1499 pindex = first_pindex; 1500 } else { 1501 /* 1502 * If it wasn't a write fault avoid having to copy 1503 * the page by mapping it read-only. 1504 */ 1505 fs->prot &= ~VM_PROT_WRITE; 1506 } 1507 } 1508 1509 /* 1510 * We may have had to unlock a map to do I/O. If we did then 1511 * lookup_still_valid will be FALSE. If the map generation count 1512 * also changed then all sorts of things could have happened while 1513 * we were doing the I/O and we need to retry. 1514 */ 1515 1516 if (!fs->lookup_still_valid && 1517 fs->map != NULL && 1518 (fs->map->timestamp != fs->map_generation)) { 1519 release_page(fs); 1520 lwkt_reltoken(&vm_token); 1521 unlock_and_deallocate(fs); 1522 return (KERN_TRY_AGAIN); 1523 } 1524 1525 /* 1526 * If the fault is a write, we know that this page is being 1527 * written NOW so dirty it explicitly to save on pmap_is_modified() 1528 * calls later. 1529 * 1530 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1531 * if the page is already dirty to prevent data written with 1532 * the expectation of being synced from not being synced. 1533 * Likewise if this entry does not request NOSYNC then make 1534 * sure the page isn't marked NOSYNC. Applications sharing 1535 * data should use the same flags to avoid ping ponging. 1536 * 1537 * Also tell the backing pager, if any, that it should remove 1538 * any swap backing since the page is now dirty. 1539 */ 1540 if (fs->prot & VM_PROT_WRITE) { 1541 vm_object_set_writeable_dirty(fs->m->object); 1542 vm_set_nosync(fs->m, fs->entry); 1543 if (fs->fault_flags & VM_FAULT_DIRTY) { 1544 vm_page_dirty(fs->m); 1545 swap_pager_unswapped(fs->m); 1546 } 1547 } 1548 1549 lwkt_reltoken(&vm_token); 1550 1551 /* 1552 * Page had better still be busy. We are still locked up and 1553 * fs->object will have another PIP reference if it is not equal 1554 * to fs->first_object. 1555 */ 1556 KASSERT(fs->m->flags & PG_BUSY, 1557 ("vm_fault: page %p not busy!", fs->m)); 1558 1559 /* 1560 * Sanity check: page must be completely valid or it is not fit to 1561 * map into user space. vm_pager_get_pages() ensures this. 1562 */ 1563 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1564 vm_page_zero_invalid(fs->m, TRUE); 1565 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1566 } 1567 vm_page_flag_clear(fs->m, PG_ZERO); 1568 1569 return (KERN_SUCCESS); 1570 } 1571 1572 /* 1573 * Wire down a range of virtual addresses in a map. The entry in question 1574 * should be marked in-transition and the map must be locked. We must 1575 * release the map temporarily while faulting-in the page to avoid a 1576 * deadlock. Note that the entry may be clipped while we are blocked but 1577 * will never be freed. 1578 * 1579 * No requirements. 1580 */ 1581 int 1582 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1583 { 1584 boolean_t fictitious; 1585 vm_offset_t start; 1586 vm_offset_t end; 1587 vm_offset_t va; 1588 vm_paddr_t pa; 1589 pmap_t pmap; 1590 int rv; 1591 1592 pmap = vm_map_pmap(map); 1593 start = entry->start; 1594 end = entry->end; 1595 fictitious = entry->object.vm_object && 1596 (entry->object.vm_object->type == OBJT_DEVICE); 1597 if (entry->eflags & MAP_ENTRY_KSTACK) 1598 start += PAGE_SIZE; 1599 lwkt_gettoken(&vm_token); 1600 vm_map_unlock(map); 1601 map->timestamp++; 1602 1603 /* 1604 * We simulate a fault to get the page and enter it in the physical 1605 * map. 1606 */ 1607 for (va = start; va < end; va += PAGE_SIZE) { 1608 if (user_wire) { 1609 rv = vm_fault(map, va, VM_PROT_READ, 1610 VM_FAULT_USER_WIRE); 1611 } else { 1612 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1613 VM_FAULT_CHANGE_WIRING); 1614 } 1615 if (rv) { 1616 while (va > start) { 1617 va -= PAGE_SIZE; 1618 if ((pa = pmap_extract(pmap, va)) == 0) 1619 continue; 1620 pmap_change_wiring(pmap, va, FALSE); 1621 if (!fictitious) 1622 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1623 } 1624 vm_map_lock(map); 1625 lwkt_reltoken(&vm_token); 1626 return (rv); 1627 } 1628 } 1629 vm_map_lock(map); 1630 lwkt_reltoken(&vm_token); 1631 return (KERN_SUCCESS); 1632 } 1633 1634 /* 1635 * Unwire a range of virtual addresses in a map. The map should be 1636 * locked. 1637 */ 1638 void 1639 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 1640 { 1641 boolean_t fictitious; 1642 vm_offset_t start; 1643 vm_offset_t end; 1644 vm_offset_t va; 1645 vm_paddr_t pa; 1646 pmap_t pmap; 1647 1648 pmap = vm_map_pmap(map); 1649 start = entry->start; 1650 end = entry->end; 1651 fictitious = entry->object.vm_object && 1652 (entry->object.vm_object->type == OBJT_DEVICE); 1653 if (entry->eflags & MAP_ENTRY_KSTACK) 1654 start += PAGE_SIZE; 1655 1656 /* 1657 * Since the pages are wired down, we must be able to get their 1658 * mappings from the physical map system. 1659 */ 1660 lwkt_gettoken(&vm_token); 1661 for (va = start; va < end; va += PAGE_SIZE) { 1662 pa = pmap_extract(pmap, va); 1663 if (pa != 0) { 1664 pmap_change_wiring(pmap, va, FALSE); 1665 if (!fictitious) 1666 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1667 } 1668 } 1669 lwkt_reltoken(&vm_token); 1670 } 1671 1672 /* 1673 * Reduce the rate at which memory is allocated to a process based 1674 * on the perceived load on the VM system. As the load increases 1675 * the allocation burst rate goes down and the delay increases. 1676 * 1677 * Rate limiting does not apply when faulting active or inactive 1678 * pages. When faulting 'cache' pages, rate limiting only applies 1679 * if the system currently has a severe page deficit. 1680 * 1681 * XXX vm_pagesupply should be increased when a page is freed. 1682 * 1683 * We sleep up to 1/10 of a second. 1684 */ 1685 static int 1686 vm_fault_ratelimit(struct vmspace *vmspace) 1687 { 1688 if (vm_load_enable == 0) 1689 return(0); 1690 if (vmspace->vm_pagesupply > 0) { 1691 --vmspace->vm_pagesupply; /* SMP race ok */ 1692 return(0); 1693 } 1694 #ifdef INVARIANTS 1695 if (vm_load_debug) { 1696 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n", 1697 vm_load, 1698 (1000 - vm_load ) / 10, vm_load * hz / 10000, 1699 curproc->p_pid, curproc->p_comm); 1700 } 1701 #endif 1702 vmspace->vm_pagesupply = (1000 - vm_load) / 10; 1703 return(vm_load * hz / 10000); 1704 } 1705 1706 /* 1707 * Copy all of the pages from a wired-down map entry to another. 1708 * 1709 * The source and destination maps must be locked for write. 1710 * The source map entry must be wired down (or be a sharing map 1711 * entry corresponding to a main map entry that is wired down). 1712 * 1713 * No other requirements. 1714 */ 1715 void 1716 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1717 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 1718 { 1719 vm_object_t dst_object; 1720 vm_object_t src_object; 1721 vm_ooffset_t dst_offset; 1722 vm_ooffset_t src_offset; 1723 vm_prot_t prot; 1724 vm_offset_t vaddr; 1725 vm_page_t dst_m; 1726 vm_page_t src_m; 1727 1728 #ifdef lint 1729 src_map++; 1730 #endif /* lint */ 1731 1732 src_object = src_entry->object.vm_object; 1733 src_offset = src_entry->offset; 1734 1735 /* 1736 * Create the top-level object for the destination entry. (Doesn't 1737 * actually shadow anything - we copy the pages directly.) 1738 */ 1739 vm_map_entry_allocate_object(dst_entry); 1740 dst_object = dst_entry->object.vm_object; 1741 1742 prot = dst_entry->max_protection; 1743 1744 /* 1745 * Loop through all of the pages in the entry's range, copying each 1746 * one from the source object (it should be there) to the destination 1747 * object. 1748 */ 1749 for (vaddr = dst_entry->start, dst_offset = 0; 1750 vaddr < dst_entry->end; 1751 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1752 1753 /* 1754 * Allocate a page in the destination object 1755 */ 1756 do { 1757 dst_m = vm_page_alloc(dst_object, 1758 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 1759 if (dst_m == NULL) { 1760 vm_wait(0); 1761 } 1762 } while (dst_m == NULL); 1763 1764 /* 1765 * Find the page in the source object, and copy it in. 1766 * (Because the source is wired down, the page will be in 1767 * memory.) 1768 */ 1769 src_m = vm_page_lookup(src_object, 1770 OFF_TO_IDX(dst_offset + src_offset)); 1771 if (src_m == NULL) 1772 panic("vm_fault_copy_wired: page missing"); 1773 1774 vm_page_copy(src_m, dst_m); 1775 vm_page_event(src_m, VMEVENT_COW); 1776 1777 /* 1778 * Enter it in the pmap... 1779 */ 1780 1781 vm_page_flag_clear(dst_m, PG_ZERO); 1782 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1783 1784 /* 1785 * Mark it no longer busy, and put it on the active list. 1786 */ 1787 vm_page_activate(dst_m); 1788 vm_page_wakeup(dst_m); 1789 } 1790 } 1791 1792 #if 0 1793 1794 /* 1795 * This routine checks around the requested page for other pages that 1796 * might be able to be faulted in. This routine brackets the viable 1797 * pages for the pages to be paged in. 1798 * 1799 * Inputs: 1800 * m, rbehind, rahead 1801 * 1802 * Outputs: 1803 * marray (array of vm_page_t), reqpage (index of requested page) 1804 * 1805 * Return value: 1806 * number of pages in marray 1807 */ 1808 static int 1809 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 1810 vm_page_t *marray, int *reqpage) 1811 { 1812 int i,j; 1813 vm_object_t object; 1814 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1815 vm_page_t rtm; 1816 int cbehind, cahead; 1817 1818 object = m->object; 1819 pindex = m->pindex; 1820 1821 /* 1822 * we don't fault-ahead for device pager 1823 */ 1824 if (object->type == OBJT_DEVICE) { 1825 *reqpage = 0; 1826 marray[0] = m; 1827 return 1; 1828 } 1829 1830 /* 1831 * if the requested page is not available, then give up now 1832 */ 1833 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1834 *reqpage = 0; /* not used by caller, fix compiler warn */ 1835 return 0; 1836 } 1837 1838 if ((cbehind == 0) && (cahead == 0)) { 1839 *reqpage = 0; 1840 marray[0] = m; 1841 return 1; 1842 } 1843 1844 if (rahead > cahead) { 1845 rahead = cahead; 1846 } 1847 1848 if (rbehind > cbehind) { 1849 rbehind = cbehind; 1850 } 1851 1852 /* 1853 * Do not do any readahead if we have insufficient free memory. 1854 * 1855 * XXX code was broken disabled before and has instability 1856 * with this conditonal fixed, so shortcut for now. 1857 */ 1858 if (burst_fault == 0 || vm_page_count_severe()) { 1859 marray[0] = m; 1860 *reqpage = 0; 1861 return 1; 1862 } 1863 1864 /* 1865 * scan backward for the read behind pages -- in memory 1866 * 1867 * Assume that if the page is not found an interrupt will not 1868 * create it. Theoretically interrupts can only remove (busy) 1869 * pages, not create new associations. 1870 */ 1871 if (pindex > 0) { 1872 if (rbehind > pindex) { 1873 rbehind = pindex; 1874 startpindex = 0; 1875 } else { 1876 startpindex = pindex - rbehind; 1877 } 1878 1879 lwkt_gettoken(&vm_token); 1880 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 1881 if (vm_page_lookup(object, tpindex - 1)) 1882 break; 1883 } 1884 1885 i = 0; 1886 while (tpindex < pindex) { 1887 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1888 if (rtm == NULL) { 1889 lwkt_reltoken(&vm_token); 1890 for (j = 0; j < i; j++) { 1891 vm_page_free(marray[j]); 1892 } 1893 marray[0] = m; 1894 *reqpage = 0; 1895 return 1; 1896 } 1897 marray[i] = rtm; 1898 ++i; 1899 ++tpindex; 1900 } 1901 lwkt_reltoken(&vm_token); 1902 } else { 1903 i = 0; 1904 } 1905 1906 /* 1907 * Assign requested page 1908 */ 1909 marray[i] = m; 1910 *reqpage = i; 1911 ++i; 1912 1913 /* 1914 * Scan forwards for read-ahead pages 1915 */ 1916 tpindex = pindex + 1; 1917 endpindex = tpindex + rahead; 1918 if (endpindex > object->size) 1919 endpindex = object->size; 1920 1921 lwkt_gettoken(&vm_token); 1922 while (tpindex < endpindex) { 1923 if (vm_page_lookup(object, tpindex)) 1924 break; 1925 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1926 if (rtm == NULL) 1927 break; 1928 marray[i] = rtm; 1929 ++i; 1930 ++tpindex; 1931 } 1932 lwkt_reltoken(&vm_token); 1933 1934 return (i); 1935 } 1936 1937 #endif 1938 1939 /* 1940 * vm_prefault() provides a quick way of clustering pagefaults into a 1941 * processes address space. It is a "cousin" of pmap_object_init_pt, 1942 * except it runs at page fault time instead of mmap time. 1943 * 1944 * This code used to be per-platform pmap_prefault(). It is now 1945 * machine-independent and enhanced to also pre-fault zero-fill pages 1946 * (see vm.fast_fault) as well as make them writable, which greatly 1947 * reduces the number of page faults programs incur. 1948 * 1949 * Application performance when pre-faulting zero-fill pages is heavily 1950 * dependent on the application. Very tiny applications like /bin/echo 1951 * lose a little performance while applications of any appreciable size 1952 * gain performance. Prefaulting multiple pages also reduces SMP 1953 * congestion and can improve SMP performance significantly. 1954 * 1955 * NOTE! prot may allow writing but this only applies to the top level 1956 * object. If we wind up mapping a page extracted from a backing 1957 * object we have to make sure it is read-only. 1958 * 1959 * NOTE! The caller has already handled any COW operations on the 1960 * vm_map_entry via the normal fault code. Do NOT call this 1961 * shortcut unless the normal fault code has run on this entry. 1962 * 1963 * No other requirements. 1964 */ 1965 #define PFBAK 4 1966 #define PFFOR 4 1967 #define PAGEORDER_SIZE (PFBAK+PFFOR) 1968 1969 static int vm_prefault_pageorder[] = { 1970 -PAGE_SIZE, PAGE_SIZE, 1971 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 1972 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 1973 -4 * PAGE_SIZE, 4 * PAGE_SIZE 1974 }; 1975 1976 /* 1977 * Set PG_NOSYNC if the map entry indicates so, but only if the page 1978 * is not already dirty by other means. This will prevent passive 1979 * filesystem syncing as well as 'sync' from writing out the page. 1980 */ 1981 static void 1982 vm_set_nosync(vm_page_t m, vm_map_entry_t entry) 1983 { 1984 if (entry->eflags & MAP_ENTRY_NOSYNC) { 1985 if (m->dirty == 0) 1986 vm_page_flag_set(m, PG_NOSYNC); 1987 } else { 1988 vm_page_flag_clear(m, PG_NOSYNC); 1989 } 1990 } 1991 1992 static void 1993 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot) 1994 { 1995 struct lwp *lp; 1996 vm_page_t m; 1997 vm_offset_t starta; 1998 vm_offset_t addr; 1999 vm_pindex_t index; 2000 vm_pindex_t pindex; 2001 vm_object_t object; 2002 int pprot; 2003 int i; 2004 2005 /* 2006 * We do not currently prefault mappings that use virtual page 2007 * tables. We do not prefault foreign pmaps. 2008 */ 2009 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2010 return; 2011 lp = curthread->td_lwp; 2012 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2013 return; 2014 2015 object = entry->object.vm_object; 2016 2017 starta = addra - PFBAK * PAGE_SIZE; 2018 if (starta < entry->start) 2019 starta = entry->start; 2020 else if (starta > addra) 2021 starta = 0; 2022 2023 lwkt_gettoken(&vm_token); 2024 for (i = 0; i < PAGEORDER_SIZE; i++) { 2025 vm_object_t lobject; 2026 int allocated = 0; 2027 2028 addr = addra + vm_prefault_pageorder[i]; 2029 if (addr > addra + (PFFOR * PAGE_SIZE)) 2030 addr = 0; 2031 2032 if (addr < starta || addr >= entry->end) 2033 continue; 2034 2035 if (pmap_prefault_ok(pmap, addr) == 0) 2036 continue; 2037 2038 /* 2039 * Follow the VM object chain to obtain the page to be mapped 2040 * into the pmap. 2041 * 2042 * If we reach the terminal object without finding a page 2043 * and we determine it would be advantageous, then allocate 2044 * a zero-fill page for the base object. The base object 2045 * is guaranteed to be OBJT_DEFAULT for this case. 2046 * 2047 * In order to not have to check the pager via *haspage*() 2048 * we stop if any non-default object is encountered. e.g. 2049 * a vnode or swap object would stop the loop. 2050 */ 2051 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2052 lobject = object; 2053 pindex = index; 2054 pprot = prot; 2055 2056 while ((m = vm_page_lookup(lobject, pindex)) == NULL) { 2057 if (lobject->type != OBJT_DEFAULT) 2058 break; 2059 if (lobject->backing_object == NULL) { 2060 if (vm_fast_fault == 0) 2061 break; 2062 if (vm_prefault_pageorder[i] < 0 || 2063 (prot & VM_PROT_WRITE) == 0 || 2064 vm_page_count_min(0)) { 2065 break; 2066 } 2067 /* note: allocate from base object */ 2068 m = vm_page_alloc(object, index, 2069 VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 2070 2071 if ((m->flags & PG_ZERO) == 0) { 2072 vm_page_zero_fill(m); 2073 } else { 2074 #ifdef PMAP_DEBUG 2075 pmap_page_assertzero(VM_PAGE_TO_PHYS(m)); 2076 #endif 2077 vm_page_flag_clear(m, PG_ZERO); 2078 mycpu->gd_cnt.v_ozfod++; 2079 } 2080 mycpu->gd_cnt.v_zfod++; 2081 m->valid = VM_PAGE_BITS_ALL; 2082 allocated = 1; 2083 pprot = prot; 2084 /* lobject = object .. not needed */ 2085 break; 2086 } 2087 if (lobject->backing_object_offset & PAGE_MASK) 2088 break; 2089 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2090 lobject = lobject->backing_object; 2091 pprot &= ~VM_PROT_WRITE; 2092 } 2093 /* 2094 * NOTE: lobject now invalid (if we did a zero-fill we didn't 2095 * bother assigning lobject = object). 2096 * 2097 * Give-up if the page is not available. 2098 */ 2099 if (m == NULL) 2100 break; 2101 2102 /* 2103 * Do not conditionalize on PG_RAM. If pages are present in 2104 * the VM system we assume optimal caching. If caching is 2105 * not optimal the I/O gravy train will be restarted when we 2106 * hit an unavailable page. We do not want to try to restart 2107 * the gravy train now because we really don't know how much 2108 * of the object has been cached. The cost for restarting 2109 * the gravy train should be low (since accesses will likely 2110 * be I/O bound anyway). 2111 * 2112 * The object must be marked dirty if we are mapping a 2113 * writable page. 2114 */ 2115 if (pprot & VM_PROT_WRITE) 2116 vm_object_set_writeable_dirty(m->object); 2117 2118 /* 2119 * Enter the page into the pmap if appropriate. If we had 2120 * allocated the page we have to place it on a queue. If not 2121 * we just have to make sure it isn't on the cache queue 2122 * (pages on the cache queue are not allowed to be mapped). 2123 */ 2124 if (allocated) { 2125 if (pprot & VM_PROT_WRITE) 2126 vm_set_nosync(m, entry); 2127 pmap_enter(pmap, addr, m, pprot, 0); 2128 vm_page_deactivate(m); 2129 vm_page_wakeup(m); 2130 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2131 (m->busy == 0) && 2132 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) { 2133 2134 vm_page_busy(m); 2135 if ((m->queue - m->pc) == PQ_CACHE) { 2136 vm_page_deactivate(m); 2137 } 2138 if (pprot & VM_PROT_WRITE) 2139 vm_set_nosync(m, entry); 2140 pmap_enter(pmap, addr, m, pprot, 0); 2141 vm_page_wakeup(m); 2142 } 2143 } 2144 lwkt_reltoken(&vm_token); 2145 } 2146