xref: /dflybsd-src/sys/vm/vm_fault.c (revision aa2b9d0592ca18547c1a0158a8df009ad3074562)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 			int prot);
141 
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148 	vm_page_deactivate(fs->m);
149 	vm_page_wakeup(fs->m);
150 	fs->m = NULL;
151 }
152 
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159 	if (fs->lookup_still_valid && fs->map) {
160 		vm_map_lookup_done(fs->map, fs->entry, 0);
161 		fs->lookup_still_valid = FALSE;
162 	}
163 }
164 
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174 	if (fs->object != fs->first_object) {
175 		vm_page_free(fs->first_m);
176 		vm_object_pip_wakeup(fs->object);
177 		fs->first_m = NULL;
178 	}
179 	fs->object = fs->first_object;
180 	if (relock && fs->lookup_still_valid == FALSE) {
181 		if (fs->map)
182 			vm_map_lock_read(fs->map);
183 		fs->lookup_still_valid = TRUE;
184 	}
185 }
186 
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193 	vm_object_pip_wakeup(fs->first_object);
194 	_cleanup_successful_fault(fs, 0);
195 	if (dealloc) {
196 		vm_object_deallocate(fs->first_object);
197 		fs->first_object = NULL;
198 	}
199 	unlock_map(fs);
200 	if (fs->vp != NULL) {
201 		vput(fs->vp);
202 		fs->vp = NULL;
203 	}
204 }
205 
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209 
210 /*
211  * TRYPAGER
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)	\
220 		(fs->object->type != OBJT_DEFAULT && \
221 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222 
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242 	int result;
243 	vm_pindex_t first_pindex;
244 	struct faultstate fs;
245 	int growstack;
246 
247 	mycpu->gd_cnt.v_vm_faults++;
248 
249 	fs.didlimit = 0;
250 	fs.hardfault = 0;
251 	fs.fault_flags = fault_flags;
252 	growstack = 1;
253 
254 RetryFault:
255 	/*
256 	 * Find the vm_map_entry representing the backing store and resolve
257 	 * the top level object and page index.  This may have the side
258 	 * effect of executing a copy-on-write on the map entry and/or
259 	 * creating a shadow object, but will not COW any actual VM pages.
260 	 *
261 	 * On success fs.map is left read-locked and various other fields
262 	 * are initialized but not otherwise referenced or locked.
263 	 *
264 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 	 * writable, so we can set the 'A'accessed bit in the virtual page
267 	 * table entry.
268 	 */
269 	fs.map = map;
270 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 			       &fs.entry, &fs.first_object,
272 			       &first_pindex, &fs.first_prot, &fs.wired);
273 
274 	/*
275 	 * If the lookup failed or the map protections are incompatible,
276 	 * the fault generally fails.  However, if the caller is trying
277 	 * to do a user wiring we have more work to do.
278 	 */
279 	if (result != KERN_SUCCESS) {
280 		if (result != KERN_PROTECTION_FAILURE ||
281 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282 		{
283 			if (result == KERN_INVALID_ADDRESS && growstack &&
284 			    map != &kernel_map && curproc != NULL) {
285 				result = vm_map_growstack(curproc, vaddr);
286 				if (result != KERN_SUCCESS)
287 					return (KERN_FAILURE);
288 				growstack = 0;
289 				goto RetryFault;
290 			}
291 			return (result);
292 		}
293 
294 		/*
295    		 * If we are user-wiring a r/w segment, and it is COW, then
296    		 * we need to do the COW operation.  Note that we don't
297 		 * currently COW RO sections now, because it is NOT desirable
298    		 * to COW .text.  We simply keep .text from ever being COW'ed
299    		 * and take the heat that one cannot debug wired .text sections.
300    		 */
301 		result = vm_map_lookup(&fs.map, vaddr,
302 				       VM_PROT_READ|VM_PROT_WRITE|
303 				        VM_PROT_OVERRIDE_WRITE,
304 				       &fs.entry, &fs.first_object,
305 				       &first_pindex, &fs.first_prot,
306 				       &fs.wired);
307 		if (result != KERN_SUCCESS)
308 			return result;
309 
310 		/*
311 		 * If we don't COW now, on a user wire, the user will never
312 		 * be able to write to the mapping.  If we don't make this
313 		 * restriction, the bookkeeping would be nearly impossible.
314 		 */
315 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 			fs.entry->max_protection &= ~VM_PROT_WRITE;
317 	}
318 
319 	/*
320 	 * fs.map is read-locked
321 	 *
322 	 * Misc checks.  Save the map generation number to detect races.
323 	 */
324 	fs.map_generation = fs.map->timestamp;
325 
326 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328 			panic("vm_fault: fault on nofault entry, addr: %p",
329 			      (void *)vaddr);
330 		}
331 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332 		    vaddr >= fs.entry->start &&
333 		    vaddr < fs.entry->start + PAGE_SIZE) {
334 			panic("vm_fault: fault on stack guard, addr: %p",
335 			      (void *)vaddr);
336 		}
337 	}
338 
339 	/*
340 	 * A system map entry may return a NULL object.  No object means
341 	 * no pager means an unrecoverable kernel fault.
342 	 */
343 	if (fs.first_object == NULL) {
344 		panic("vm_fault: unrecoverable fault at %p in entry %p",
345 			(void *)vaddr, fs.entry);
346 	}
347 
348 	/*
349 	 * Make a reference to this object to prevent its disposal while we
350 	 * are messing with it.  Once we have the reference, the map is free
351 	 * to be diddled.  Since objects reference their shadows (and copies),
352 	 * they will stay around as well.
353 	 *
354 	 * Bump the paging-in-progress count to prevent size changes (e.g.
355 	 * truncation operations) during I/O.  This must be done after
356 	 * obtaining the vnode lock in order to avoid possible deadlocks.
357 	 *
358 	 * The vm_object must be held before manipulation.
359 	 */
360 	lwkt_gettoken(&vm_token);
361 	vm_object_hold(fs.first_object);
362 	vm_object_reference(fs.first_object);
363 	fs.vp = vnode_pager_lock(fs.first_object);
364 	vm_object_pip_add(fs.first_object, 1);
365 	vm_object_drop(fs.first_object);
366 	lwkt_reltoken(&vm_token);
367 
368 	fs.lookup_still_valid = TRUE;
369 	fs.first_m = NULL;
370 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
371 
372 	/*
373 	 * If the entry is wired we cannot change the page protection.
374 	 */
375 	if (fs.wired)
376 		fault_type = fs.first_prot;
377 
378 	/*
379 	 * The page we want is at (first_object, first_pindex), but if the
380 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
381 	 * page table to figure out the actual pindex.
382 	 *
383 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
384 	 * ONLY
385 	 */
386 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
387 		result = vm_fault_vpagetable(&fs, &first_pindex,
388 					     fs.entry->aux.master_pde,
389 					     fault_type);
390 		if (result == KERN_TRY_AGAIN)
391 			goto RetryFault;
392 		if (result != KERN_SUCCESS)
393 			return (result);
394 	}
395 
396 	/*
397 	 * Now we have the actual (object, pindex), fault in the page.  If
398 	 * vm_fault_object() fails it will unlock and deallocate the FS
399 	 * data.   If it succeeds everything remains locked and fs->object
400 	 * will have an additional PIP count if it is not equal to
401 	 * fs->first_object
402 	 *
403 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
404 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
405 	 * page can be safely written.  However, it will force a read-only
406 	 * mapping for a read fault if the memory is managed by a virtual
407 	 * page table.
408 	 */
409 	/* BEFORE */
410 	result = vm_fault_object(&fs, first_pindex, fault_type);
411 
412 	if (result == KERN_TRY_AGAIN) {
413 		/*lwkt_reltoken(&vm_token);*/
414 		goto RetryFault;
415 	}
416 	if (result != KERN_SUCCESS) {
417 		/*lwkt_reltoken(&vm_token);*/
418 		return (result);
419 	}
420 
421 	/*
422 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
423 	 * will contain a busied page.
424 	 *
425 	 * Enter the page into the pmap and do pmap-related adjustments.
426 	 */
427 	vm_page_flag_set(fs.m, PG_REFERENCED);
428 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
429 
430 	/*
431 	 * Burst in a few more pages if possible.  The fs.map should still
432 	 * be locked.
433 	 */
434 	if (fault_flags & VM_FAULT_BURST) {
435 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
436 		    fs.wired == 0) {
437 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
438 		}
439 	}
440 	lwkt_gettoken(&vm_token);
441 	unlock_things(&fs);
442 
443 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
444 	KKASSERT(fs.m->flags & PG_BUSY);
445 
446 	/*
447 	 * If the page is not wired down, then put it where the pageout daemon
448 	 * can find it.
449 	 *
450 	 * We do not really need to get vm_token here but since all the
451 	 * vm_*() calls have to doing it here improves efficiency.
452 	 */
453 	/*lwkt_gettoken(&vm_token);*/
454 
455 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
456 		lwkt_reltoken(&vm_token); /* before wire activate does not */
457 		if (fs.wired)
458 			vm_page_wire(fs.m);
459 		else
460 			vm_page_unwire(fs.m, 1);
461 	} else {
462 		vm_page_activate(fs.m);
463 		lwkt_reltoken(&vm_token); /* before wire activate does not */
464 	}
465 	/*lwkt_reltoken(&vm_token); after wire/activate works */
466 
467 	if (curthread->td_lwp) {
468 		if (fs.hardfault) {
469 			curthread->td_lwp->lwp_ru.ru_majflt++;
470 		} else {
471 			curthread->td_lwp->lwp_ru.ru_minflt++;
472 		}
473 	}
474 
475 	/*
476 	 * Unlock everything, and return
477 	 */
478 	vm_page_wakeup(fs.m);
479 	vm_object_deallocate(fs.first_object);
480 	/*fs.m = NULL; */
481 	/*fs.first_object = NULL; */
482 	/*lwkt_reltoken(&vm_token);*/
483 
484 	return (KERN_SUCCESS);
485 }
486 
487 /*
488  * Fault in the specified virtual address in the current process map,
489  * returning a held VM page or NULL.  See vm_fault_page() for more
490  * information.
491  *
492  * No requirements.
493  */
494 vm_page_t
495 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
496 {
497 	struct lwp *lp = curthread->td_lwp;
498 	vm_page_t m;
499 
500 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
501 			  fault_type, VM_FAULT_NORMAL, errorp);
502 	return(m);
503 }
504 
505 /*
506  * Fault in the specified virtual address in the specified map, doing all
507  * necessary manipulation of the object store and all necessary I/O.  Return
508  * a held VM page or NULL, and set *errorp.  The related pmap is not
509  * updated.
510  *
511  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
512  * and marked PG_REFERENCED as well.
513  *
514  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
515  * error will be returned.
516  *
517  * No requirements.
518  */
519 vm_page_t
520 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
521 	      int fault_flags, int *errorp)
522 {
523 	vm_pindex_t first_pindex;
524 	struct faultstate fs;
525 	int result;
526 	vm_prot_t orig_fault_type = fault_type;
527 
528 	mycpu->gd_cnt.v_vm_faults++;
529 
530 	fs.didlimit = 0;
531 	fs.hardfault = 0;
532 	fs.fault_flags = fault_flags;
533 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
534 
535 RetryFault:
536 	/*
537 	 * Find the vm_map_entry representing the backing store and resolve
538 	 * the top level object and page index.  This may have the side
539 	 * effect of executing a copy-on-write on the map entry and/or
540 	 * creating a shadow object, but will not COW any actual VM pages.
541 	 *
542 	 * On success fs.map is left read-locked and various other fields
543 	 * are initialized but not otherwise referenced or locked.
544 	 *
545 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
546 	 * if the map entry is a virtual page table and also writable,
547 	 * so we can set the 'A'accessed bit in the virtual page table entry.
548 	 */
549 	fs.map = map;
550 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
551 			       &fs.entry, &fs.first_object,
552 			       &first_pindex, &fs.first_prot, &fs.wired);
553 
554 	if (result != KERN_SUCCESS) {
555 		*errorp = result;
556 		return (NULL);
557 	}
558 
559 	/*
560 	 * fs.map is read-locked
561 	 *
562 	 * Misc checks.  Save the map generation number to detect races.
563 	 */
564 	fs.map_generation = fs.map->timestamp;
565 
566 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
567 		panic("vm_fault: fault on nofault entry, addr: %lx",
568 		    (u_long)vaddr);
569 	}
570 
571 	/*
572 	 * A system map entry may return a NULL object.  No object means
573 	 * no pager means an unrecoverable kernel fault.
574 	 */
575 	if (fs.first_object == NULL) {
576 		panic("vm_fault: unrecoverable fault at %p in entry %p",
577 			(void *)vaddr, fs.entry);
578 	}
579 
580 	/*
581 	 * Make a reference to this object to prevent its disposal while we
582 	 * are messing with it.  Once we have the reference, the map is free
583 	 * to be diddled.  Since objects reference their shadows (and copies),
584 	 * they will stay around as well.
585 	 *
586 	 * Bump the paging-in-progress count to prevent size changes (e.g.
587 	 * truncation operations) during I/O.  This must be done after
588 	 * obtaining the vnode lock in order to avoid possible deadlocks.
589 	 *
590 	 * The vm_object must be held before manipulation.
591 	 */
592 	lwkt_gettoken(&vm_token);
593 	vm_object_hold(fs.first_object);
594 	vm_object_reference(fs.first_object);
595 	fs.vp = vnode_pager_lock(fs.first_object);
596 	vm_object_pip_add(fs.first_object, 1);
597 	vm_object_drop(fs.first_object);
598 	lwkt_reltoken(&vm_token);
599 
600 	fs.lookup_still_valid = TRUE;
601 	fs.first_m = NULL;
602 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
603 
604 	/*
605 	 * If the entry is wired we cannot change the page protection.
606 	 */
607 	if (fs.wired)
608 		fault_type = fs.first_prot;
609 
610 	/*
611 	 * The page we want is at (first_object, first_pindex), but if the
612 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
613 	 * page table to figure out the actual pindex.
614 	 *
615 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
616 	 * ONLY
617 	 */
618 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
619 		result = vm_fault_vpagetable(&fs, &first_pindex,
620 					     fs.entry->aux.master_pde,
621 					     fault_type);
622 		if (result == KERN_TRY_AGAIN)
623 			goto RetryFault;
624 		if (result != KERN_SUCCESS) {
625 			*errorp = result;
626 			return (NULL);
627 		}
628 	}
629 
630 	/*
631 	 * Now we have the actual (object, pindex), fault in the page.  If
632 	 * vm_fault_object() fails it will unlock and deallocate the FS
633 	 * data.   If it succeeds everything remains locked and fs->object
634 	 * will have an additinal PIP count if it is not equal to
635 	 * fs->first_object
636 	 */
637 	result = vm_fault_object(&fs, first_pindex, fault_type);
638 
639 	if (result == KERN_TRY_AGAIN)
640 		goto RetryFault;
641 	if (result != KERN_SUCCESS) {
642 		*errorp = result;
643 		return(NULL);
644 	}
645 
646 	if ((orig_fault_type & VM_PROT_WRITE) &&
647 	    (fs.prot & VM_PROT_WRITE) == 0) {
648 		*errorp = KERN_PROTECTION_FAILURE;
649 		unlock_and_deallocate(&fs);
650 		return(NULL);
651 	}
652 
653 	/*
654 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
655 	 * will contain a busied page.
656 	 */
657 	unlock_things(&fs);
658 
659 	/*
660 	 * Return a held page.  We are not doing any pmap manipulation so do
661 	 * not set PG_MAPPED.  However, adjust the page flags according to
662 	 * the fault type because the caller may not use a managed pmapping
663 	 * (so we don't want to lose the fact that the page will be dirtied
664 	 * if a write fault was specified).
665 	 */
666 	lwkt_gettoken(&vm_token);
667 	vm_page_hold(fs.m);
668 	if (fault_type & VM_PROT_WRITE)
669 		vm_page_dirty(fs.m);
670 
671 	/*
672 	 * Update the pmap.  We really only have to do this if a COW
673 	 * occured to replace the read-only page with the new page.  For
674 	 * now just do it unconditionally. XXX
675 	 */
676 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
677 	vm_page_flag_set(fs.m, PG_REFERENCED);
678 
679 	/*
680 	 * Unbusy the page by activating it.  It remains held and will not
681 	 * be reclaimed.
682 	 */
683 	vm_page_activate(fs.m);
684 
685 	if (curthread->td_lwp) {
686 		if (fs.hardfault) {
687 			curthread->td_lwp->lwp_ru.ru_majflt++;
688 		} else {
689 			curthread->td_lwp->lwp_ru.ru_minflt++;
690 		}
691 	}
692 
693 	/*
694 	 * Unlock everything, and return the held page.
695 	 */
696 	vm_page_wakeup(fs.m);
697 	vm_object_deallocate(fs.first_object);
698 	/*fs.first_object = NULL; */
699 	lwkt_reltoken(&vm_token);
700 
701 	*errorp = 0;
702 	return(fs.m);
703 }
704 
705 /*
706  * Fault in the specified (object,offset), dirty the returned page as
707  * needed.  If the requested fault_type cannot be done NULL and an
708  * error is returned.
709  *
710  * A held (but not busied) page is returned.
711  *
712  * No requirements.
713  */
714 vm_page_t
715 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
716 		     vm_prot_t fault_type, int fault_flags, int *errorp)
717 {
718 	int result;
719 	vm_pindex_t first_pindex;
720 	struct faultstate fs;
721 	struct vm_map_entry entry;
722 
723 	bzero(&entry, sizeof(entry));
724 	entry.object.vm_object = object;
725 	entry.maptype = VM_MAPTYPE_NORMAL;
726 	entry.protection = entry.max_protection = fault_type;
727 
728 	fs.didlimit = 0;
729 	fs.hardfault = 0;
730 	fs.fault_flags = fault_flags;
731 	fs.map = NULL;
732 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
733 
734 RetryFault:
735 
736 	fs.first_object = object;
737 	first_pindex = OFF_TO_IDX(offset);
738 	fs.entry = &entry;
739 	fs.first_prot = fault_type;
740 	fs.wired = 0;
741 	/*fs.map_generation = 0; unused */
742 
743 	/*
744 	 * Make a reference to this object to prevent its disposal while we
745 	 * are messing with it.  Once we have the reference, the map is free
746 	 * to be diddled.  Since objects reference their shadows (and copies),
747 	 * they will stay around as well.
748 	 *
749 	 * Bump the paging-in-progress count to prevent size changes (e.g.
750 	 * truncation operations) during I/O.  This must be done after
751 	 * obtaining the vnode lock in order to avoid possible deadlocks.
752 	 */
753 	lwkt_gettoken(&vm_token);
754 	vm_object_hold(fs.first_object);
755 	vm_object_reference(fs.first_object);
756 	fs.vp = vnode_pager_lock(fs.first_object);
757 	vm_object_pip_add(fs.first_object, 1);
758 	vm_object_drop(fs.first_object);
759 	lwkt_reltoken(&vm_token);
760 
761 	fs.lookup_still_valid = TRUE;
762 	fs.first_m = NULL;
763 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
764 
765 #if 0
766 	/* XXX future - ability to operate on VM object using vpagetable */
767 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
768 		result = vm_fault_vpagetable(&fs, &first_pindex,
769 					     fs.entry->aux.master_pde,
770 					     fault_type);
771 		if (result == KERN_TRY_AGAIN)
772 			goto RetryFault;
773 		if (result != KERN_SUCCESS) {
774 			*errorp = result;
775 			return (NULL);
776 		}
777 	}
778 #endif
779 
780 	/*
781 	 * Now we have the actual (object, pindex), fault in the page.  If
782 	 * vm_fault_object() fails it will unlock and deallocate the FS
783 	 * data.   If it succeeds everything remains locked and fs->object
784 	 * will have an additinal PIP count if it is not equal to
785 	 * fs->first_object
786 	 */
787 	result = vm_fault_object(&fs, first_pindex, fault_type);
788 
789 	if (result == KERN_TRY_AGAIN)
790 		goto RetryFault;
791 	if (result != KERN_SUCCESS) {
792 		*errorp = result;
793 		return(NULL);
794 	}
795 
796 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
797 		*errorp = KERN_PROTECTION_FAILURE;
798 		unlock_and_deallocate(&fs);
799 		return(NULL);
800 	}
801 
802 	/*
803 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
804 	 * will contain a busied page.
805 	 */
806 	unlock_things(&fs);
807 
808 	/*
809 	 * Return a held page.  We are not doing any pmap manipulation so do
810 	 * not set PG_MAPPED.  However, adjust the page flags according to
811 	 * the fault type because the caller may not use a managed pmapping
812 	 * (so we don't want to lose the fact that the page will be dirtied
813 	 * if a write fault was specified).
814 	 */
815 	lwkt_gettoken(&vm_token);
816 	vm_page_hold(fs.m);
817 	if (fault_type & VM_PROT_WRITE)
818 		vm_page_dirty(fs.m);
819 
820 	if (fault_flags & VM_FAULT_DIRTY)
821 		vm_page_dirty(fs.m);
822 	if (fault_flags & VM_FAULT_UNSWAP)
823 		swap_pager_unswapped(fs.m);
824 
825 	/*
826 	 * Indicate that the page was accessed.
827 	 */
828 	vm_page_flag_set(fs.m, PG_REFERENCED);
829 
830 	/*
831 	 * Unbusy the page by activating it.  It remains held and will not
832 	 * be reclaimed.
833 	 */
834 	vm_page_activate(fs.m);
835 
836 	if (curthread->td_lwp) {
837 		if (fs.hardfault) {
838 			mycpu->gd_cnt.v_vm_faults++;
839 			curthread->td_lwp->lwp_ru.ru_majflt++;
840 		} else {
841 			curthread->td_lwp->lwp_ru.ru_minflt++;
842 		}
843 	}
844 
845 	/*
846 	 * Unlock everything, and return the held page.
847 	 */
848 	vm_page_wakeup(fs.m);
849 	vm_object_deallocate(fs.first_object);
850 	/*fs.first_object = NULL; */
851 	lwkt_reltoken(&vm_token);
852 
853 	*errorp = 0;
854 	return(fs.m);
855 }
856 
857 /*
858  * Translate the virtual page number (first_pindex) that is relative
859  * to the address space into a logical page number that is relative to the
860  * backing object.  Use the virtual page table pointed to by (vpte).
861  *
862  * This implements an N-level page table.  Any level can terminate the
863  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
864  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
865  *
866  * No requirements (vm_token need not be held).
867  */
868 static
869 int
870 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
871 		    vpte_t vpte, int fault_type)
872 {
873 	struct lwbuf *lwb;
874 	struct lwbuf lwb_cache;
875 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
876 	int result = KERN_SUCCESS;
877 	vpte_t *ptep;
878 
879 	for (;;) {
880 		/*
881 		 * We cannot proceed if the vpte is not valid, not readable
882 		 * for a read fault, or not writable for a write fault.
883 		 */
884 		if ((vpte & VPTE_V) == 0) {
885 			unlock_and_deallocate(fs);
886 			return (KERN_FAILURE);
887 		}
888 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
889 			unlock_and_deallocate(fs);
890 			return (KERN_FAILURE);
891 		}
892 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
893 			unlock_and_deallocate(fs);
894 			return (KERN_FAILURE);
895 		}
896 		if ((vpte & VPTE_PS) || vshift == 0)
897 			break;
898 		KKASSERT(vshift >= VPTE_PAGE_BITS);
899 
900 		/*
901 		 * Get the page table page.  Nominally we only read the page
902 		 * table, but since we are actively setting VPTE_M and VPTE_A,
903 		 * tell vm_fault_object() that we are writing it.
904 		 *
905 		 * There is currently no real need to optimize this.
906 		 */
907 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
908 					 VM_PROT_READ|VM_PROT_WRITE);
909 		if (result != KERN_SUCCESS)
910 			return (result);
911 
912 		/*
913 		 * Process the returned fs.m and look up the page table
914 		 * entry in the page table page.
915 		 */
916 		vshift -= VPTE_PAGE_BITS;
917 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
918 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
919 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
920 		vpte = *ptep;
921 
922 		/*
923 		 * Page table write-back.  If the vpte is valid for the
924 		 * requested operation, do a write-back to the page table.
925 		 *
926 		 * XXX VPTE_M is not set properly for page directory pages.
927 		 * It doesn't get set in the page directory if the page table
928 		 * is modified during a read access.
929 		 */
930 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
931 		    (vpte & VPTE_W)) {
932 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
933 				atomic_set_long(ptep, VPTE_M | VPTE_A);
934 				vm_page_dirty(fs->m);
935 			}
936 		}
937 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
938 		    (vpte & VPTE_R)) {
939 			if ((vpte & VPTE_A) == 0) {
940 				atomic_set_long(ptep, VPTE_A);
941 				vm_page_dirty(fs->m);
942 			}
943 		}
944 		lwbuf_free(lwb);
945 		vm_page_flag_set(fs->m, PG_REFERENCED);
946 		vm_page_activate(fs->m);
947 		vm_page_wakeup(fs->m);
948 		fs->m = NULL;
949 		cleanup_successful_fault(fs);
950 	}
951 	/*
952 	 * Combine remaining address bits with the vpte.
953 	 */
954 	/* JG how many bits from each? */
955 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
956 		  (*pindex & ((1L << vshift) - 1));
957 	return (KERN_SUCCESS);
958 }
959 
960 
961 /*
962  * This is the core of the vm_fault code.
963  *
964  * Do all operations required to fault-in (fs.first_object, pindex).  Run
965  * through the shadow chain as necessary and do required COW or virtual
966  * copy operations.  The caller has already fully resolved the vm_map_entry
967  * and, if appropriate, has created a copy-on-write layer.  All we need to
968  * do is iterate the object chain.
969  *
970  * On failure (fs) is unlocked and deallocated and the caller may return or
971  * retry depending on the failure code.  On success (fs) is NOT unlocked or
972  * deallocated, fs.m will contained a resolved, busied page, and fs.object
973  * will have an additional PIP count if it is not equal to fs.first_object.
974  *
975  * No requirements.
976  */
977 static
978 int
979 vm_fault_object(struct faultstate *fs,
980 		vm_pindex_t first_pindex, vm_prot_t fault_type)
981 {
982 	vm_object_t next_object;
983 	vm_pindex_t pindex;
984 
985 	fs->prot = fs->first_prot;
986 	fs->object = fs->first_object;
987 	pindex = first_pindex;
988 
989 	/*
990 	 * If a read fault occurs we try to make the page writable if
991 	 * possible.  There are three cases where we cannot make the
992 	 * page mapping writable:
993 	 *
994 	 * (1) The mapping is read-only or the VM object is read-only,
995 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
996 	 *
997 	 * (2) If the mapping is a virtual page table we need to be able
998 	 *     to detect writes so we can set VPTE_M in the virtual page
999 	 *     table.
1000 	 *
1001 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1002 	 *     just result in an unnecessary COW fault.
1003 	 *
1004 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1005 	 * causes adjustments to the 'M'odify bit to also turn off write
1006 	 * access to force a re-fault.
1007 	 */
1008 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1009 		if ((fault_type & VM_PROT_WRITE) == 0)
1010 			fs->prot &= ~VM_PROT_WRITE;
1011 	}
1012 
1013 	lwkt_gettoken(&vm_token);
1014 
1015 	for (;;) {
1016 		/*
1017 		 * If the object is dead, we stop here
1018 		 */
1019 		if (fs->object->flags & OBJ_DEAD) {
1020 			unlock_and_deallocate(fs);
1021 			lwkt_reltoken(&vm_token);
1022 			return (KERN_PROTECTION_FAILURE);
1023 		}
1024 
1025 		/*
1026 		 * See if the page is resident.
1027 		 */
1028 		fs->m = vm_page_lookup(fs->object, pindex);
1029 		if (fs->m != NULL) {
1030 			int queue;
1031 			/*
1032 			 * Wait/Retry if the page is busy.  We have to do this
1033 			 * if the page is busy via either PG_BUSY or
1034 			 * vm_page_t->busy because the vm_pager may be using
1035 			 * vm_page_t->busy for pageouts ( and even pageins if
1036 			 * it is the vnode pager ), and we could end up trying
1037 			 * to pagein and pageout the same page simultaneously.
1038 			 *
1039 			 * We can theoretically allow the busy case on a read
1040 			 * fault if the page is marked valid, but since such
1041 			 * pages are typically already pmap'd, putting that
1042 			 * special case in might be more effort then it is
1043 			 * worth.  We cannot under any circumstances mess
1044 			 * around with a vm_page_t->busy page except, perhaps,
1045 			 * to pmap it.
1046 			 */
1047 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1048 				unlock_things(fs);
1049 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1050 				mycpu->gd_cnt.v_intrans++;
1051 				vm_object_deallocate(fs->first_object);
1052 				fs->first_object = NULL;
1053 				lwkt_reltoken(&vm_token);
1054 				return (KERN_TRY_AGAIN);
1055 			}
1056 
1057 			/*
1058 			 * If reactivating a page from PQ_CACHE we may have
1059 			 * to rate-limit.
1060 			 */
1061 			queue = fs->m->queue;
1062 			vm_page_unqueue_nowakeup(fs->m);
1063 
1064 			if ((queue - fs->m->pc) == PQ_CACHE &&
1065 			    vm_page_count_severe()) {
1066 				vm_page_activate(fs->m);
1067 				unlock_and_deallocate(fs);
1068 				vm_waitpfault();
1069 				lwkt_reltoken(&vm_token);
1070 				return (KERN_TRY_AGAIN);
1071 			}
1072 
1073 			/*
1074 			 * Mark page busy for other processes, and the
1075 			 * pagedaemon.  If it still isn't completely valid
1076 			 * (readable), or if a read-ahead-mark is set on
1077 			 * the VM page, jump to readrest, else we found the
1078 			 * page and can return.
1079 			 *
1080 			 * We can release the spl once we have marked the
1081 			 * page busy.
1082 			 */
1083 			vm_page_busy(fs->m);
1084 
1085 			if (fs->m->object != &kernel_object) {
1086 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1087 				    VM_PAGE_BITS_ALL) {
1088 					goto readrest;
1089 				}
1090 				if (fs->m->flags & PG_RAM) {
1091 					if (debug_cluster)
1092 						kprintf("R");
1093 					vm_page_flag_clear(fs->m, PG_RAM);
1094 					goto readrest;
1095 				}
1096 			}
1097 			break; /* break to PAGE HAS BEEN FOUND */
1098 		}
1099 
1100 		/*
1101 		 * Page is not resident, If this is the search termination
1102 		 * or the pager might contain the page, allocate a new page.
1103 		 */
1104 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1105 			/*
1106 			 * If the page is beyond the object size we fail
1107 			 */
1108 			if (pindex >= fs->object->size) {
1109 				lwkt_reltoken(&vm_token);
1110 				unlock_and_deallocate(fs);
1111 				return (KERN_PROTECTION_FAILURE);
1112 			}
1113 
1114 			/*
1115 			 * Ratelimit.
1116 			 */
1117 			if (fs->didlimit == 0 && curproc != NULL) {
1118 				int limticks;
1119 
1120 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1121 				if (limticks) {
1122 					lwkt_reltoken(&vm_token);
1123 					unlock_and_deallocate(fs);
1124 					tsleep(curproc, 0, "vmrate", limticks);
1125 					fs->didlimit = 1;
1126 					return (KERN_TRY_AGAIN);
1127 				}
1128 			}
1129 
1130 			/*
1131 			 * Allocate a new page for this object/offset pair.
1132 			 */
1133 			fs->m = NULL;
1134 			if (!vm_page_count_severe()) {
1135 				fs->m = vm_page_alloc(fs->object, pindex,
1136 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1137 			}
1138 			if (fs->m == NULL) {
1139 				lwkt_reltoken(&vm_token);
1140 				unlock_and_deallocate(fs);
1141 				vm_waitpfault();
1142 				return (KERN_TRY_AGAIN);
1143 			}
1144 		}
1145 
1146 readrest:
1147 		/*
1148 		 * We have found an invalid or partially valid page, a
1149 		 * page with a read-ahead mark which might be partially or
1150 		 * fully valid (and maybe dirty too), or we have allocated
1151 		 * a new page.
1152 		 *
1153 		 * Attempt to fault-in the page if there is a chance that the
1154 		 * pager has it, and potentially fault in additional pages
1155 		 * at the same time.
1156 		 *
1157 		 * We are NOT in splvm here and if TRYPAGER is true then
1158 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1159 		 */
1160 		if (TRYPAGER(fs)) {
1161 			int rv;
1162 			int seqaccess;
1163 			u_char behavior = vm_map_entry_behavior(fs->entry);
1164 
1165 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1166 				seqaccess = 0;
1167 			else
1168 				seqaccess = -1;
1169 
1170 			/*
1171 			 * If sequential access is detected then attempt
1172 			 * to deactivate/cache pages behind the scan to
1173 			 * prevent resource hogging.
1174 			 *
1175 			 * Use of PG_RAM to detect sequential access
1176 			 * also simulates multi-zone sequential access
1177 			 * detection for free.
1178 			 *
1179 			 * NOTE: Partially valid dirty pages cannot be
1180 			 *	 deactivated without causing NFS picemeal
1181 			 *	 writes to barf.
1182 			 */
1183 			if ((fs->first_object->type != OBJT_DEVICE) &&
1184 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1185                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1186 				 (fs->m->flags & PG_RAM)))
1187 			) {
1188 				vm_pindex_t scan_pindex;
1189 				int scan_count = 16;
1190 
1191 				if (first_pindex < 16) {
1192 					scan_pindex = 0;
1193 					scan_count = 0;
1194 				} else {
1195 					scan_pindex = first_pindex - 16;
1196 					if (scan_pindex < 16)
1197 						scan_count = scan_pindex;
1198 					else
1199 						scan_count = 16;
1200 				}
1201 
1202 				while (scan_count) {
1203 					vm_page_t mt;
1204 
1205 					mt = vm_page_lookup(fs->first_object,
1206 							    scan_pindex);
1207 					if (mt == NULL ||
1208 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1209 						break;
1210 					}
1211 					if (mt->busy ||
1212 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1213 					    mt->hold_count ||
1214 					    mt->wire_count)  {
1215 						goto skip;
1216 					}
1217 					vm_page_busy(mt);
1218 					if (mt->dirty == 0)
1219 						vm_page_test_dirty(mt);
1220 					if (mt->dirty) {
1221 						vm_page_protect(mt,
1222 								VM_PROT_NONE);
1223 						vm_page_deactivate(mt);
1224 						vm_page_wakeup(mt);
1225 					} else {
1226 						vm_page_cache(mt);
1227 					}
1228 skip:
1229 					--scan_count;
1230 					--scan_pindex;
1231 				}
1232 
1233 				seqaccess = 1;
1234 			}
1235 
1236 			/*
1237 			 * Avoid deadlocking against the map when doing I/O.
1238 			 * fs.object and the page is PG_BUSY'd.
1239 			 */
1240 			unlock_map(fs);
1241 
1242 			/*
1243 			 * Acquire the page data.  We still hold a ref on
1244 			 * fs.object and the page has been PG_BUSY's.
1245 			 *
1246 			 * The pager may replace the page (for example, in
1247 			 * order to enter a fictitious page into the
1248 			 * object).  If it does so it is responsible for
1249 			 * cleaning up the passed page and properly setting
1250 			 * the new page PG_BUSY.
1251 			 *
1252 			 * If we got here through a PG_RAM read-ahead
1253 			 * mark the page may be partially dirty and thus
1254 			 * not freeable.  Don't bother checking to see
1255 			 * if the pager has the page because we can't free
1256 			 * it anyway.  We have to depend on the get_page
1257 			 * operation filling in any gaps whether there is
1258 			 * backing store or not.
1259 			 */
1260 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1261 
1262 			if (rv == VM_PAGER_OK) {
1263 				/*
1264 				 * Relookup in case pager changed page. Pager
1265 				 * is responsible for disposition of old page
1266 				 * if moved.
1267 				 *
1268 				 * XXX other code segments do relookups too.
1269 				 * It's a bad abstraction that needs to be
1270 				 * fixed/removed.
1271 				 */
1272 				fs->m = vm_page_lookup(fs->object, pindex);
1273 				if (fs->m == NULL) {
1274 					lwkt_reltoken(&vm_token);
1275 					unlock_and_deallocate(fs);
1276 					return (KERN_TRY_AGAIN);
1277 				}
1278 
1279 				++fs->hardfault;
1280 				break; /* break to PAGE HAS BEEN FOUND */
1281 			}
1282 
1283 			/*
1284 			 * Remove the bogus page (which does not exist at this
1285 			 * object/offset); before doing so, we must get back
1286 			 * our object lock to preserve our invariant.
1287 			 *
1288 			 * Also wake up any other process that may want to bring
1289 			 * in this page.
1290 			 *
1291 			 * If this is the top-level object, we must leave the
1292 			 * busy page to prevent another process from rushing
1293 			 * past us, and inserting the page in that object at
1294 			 * the same time that we are.
1295 			 */
1296 			if (rv == VM_PAGER_ERROR) {
1297 				if (curproc)
1298 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1299 				else
1300 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1301 			}
1302 
1303 			/*
1304 			 * Data outside the range of the pager or an I/O error
1305 			 *
1306 			 * The page may have been wired during the pagein,
1307 			 * e.g. by the buffer cache, and cannot simply be
1308 			 * freed.  Call vnode_pager_freepage() to deal with it.
1309 			 */
1310 			/*
1311 			 * XXX - the check for kernel_map is a kludge to work
1312 			 * around having the machine panic on a kernel space
1313 			 * fault w/ I/O error.
1314 			 */
1315 			if (((fs->map != &kernel_map) &&
1316 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1317 				vnode_pager_freepage(fs->m);
1318 				lwkt_reltoken(&vm_token);
1319 				fs->m = NULL;
1320 				unlock_and_deallocate(fs);
1321 				if (rv == VM_PAGER_ERROR)
1322 					return (KERN_FAILURE);
1323 				else
1324 					return (KERN_PROTECTION_FAILURE);
1325 				/* NOT REACHED */
1326 			}
1327 			if (fs->object != fs->first_object) {
1328 				vnode_pager_freepage(fs->m);
1329 				fs->m = NULL;
1330 				/*
1331 				 * XXX - we cannot just fall out at this
1332 				 * point, m has been freed and is invalid!
1333 				 */
1334 			}
1335 		}
1336 
1337 		/*
1338 		 * We get here if the object has a default pager (or unwiring)
1339 		 * or the pager doesn't have the page.
1340 		 */
1341 		if (fs->object == fs->first_object)
1342 			fs->first_m = fs->m;
1343 
1344 		/*
1345 		 * Move on to the next object.  Lock the next object before
1346 		 * unlocking the current one.
1347 		 */
1348 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1349 		next_object = fs->object->backing_object;
1350 		if (next_object == NULL) {
1351 			/*
1352 			 * If there's no object left, fill the page in the top
1353 			 * object with zeros.
1354 			 */
1355 			if (fs->object != fs->first_object) {
1356 				vm_object_pip_wakeup(fs->object);
1357 
1358 				fs->object = fs->first_object;
1359 				pindex = first_pindex;
1360 				fs->m = fs->first_m;
1361 			}
1362 			fs->first_m = NULL;
1363 
1364 			/*
1365 			 * Zero the page if necessary and mark it valid.
1366 			 */
1367 			if ((fs->m->flags & PG_ZERO) == 0) {
1368 				vm_page_zero_fill(fs->m);
1369 			} else {
1370 #ifdef PMAP_DEBUG
1371 				pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1372 #endif
1373 				vm_page_flag_clear(fs->m, PG_ZERO);
1374 				mycpu->gd_cnt.v_ozfod++;
1375 			}
1376 			mycpu->gd_cnt.v_zfod++;
1377 			fs->m->valid = VM_PAGE_BITS_ALL;
1378 			break;	/* break to PAGE HAS BEEN FOUND */
1379 		}
1380 		if (fs->object != fs->first_object) {
1381 			vm_object_pip_wakeup(fs->object);
1382 		}
1383 		KASSERT(fs->object != next_object,
1384 			("object loop %p", next_object));
1385 		fs->object = next_object;
1386 		vm_object_pip_add(fs->object, 1);
1387 	}
1388 
1389 	/*
1390 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1391 	 * is held.]
1392 	 *
1393 	 * vm_token is still held
1394 	 *
1395 	 * If the page is being written, but isn't already owned by the
1396 	 * top-level object, we have to copy it into a new page owned by the
1397 	 * top-level object.
1398 	 */
1399 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1400 		("vm_fault: not busy after main loop"));
1401 
1402 	if (fs->object != fs->first_object) {
1403 		/*
1404 		 * We only really need to copy if we want to write it.
1405 		 */
1406 		if (fault_type & VM_PROT_WRITE) {
1407 			/*
1408 			 * This allows pages to be virtually copied from a
1409 			 * backing_object into the first_object, where the
1410 			 * backing object has no other refs to it, and cannot
1411 			 * gain any more refs.  Instead of a bcopy, we just
1412 			 * move the page from the backing object to the
1413 			 * first object.  Note that we must mark the page
1414 			 * dirty in the first object so that it will go out
1415 			 * to swap when needed.
1416 			 */
1417 			if (
1418 				/*
1419 				 * Map, if present, has not changed
1420 				 */
1421 				(fs->map == NULL ||
1422 				fs->map_generation == fs->map->timestamp) &&
1423 				/*
1424 				 * Only one shadow object
1425 				 */
1426 				(fs->object->shadow_count == 1) &&
1427 				/*
1428 				 * No COW refs, except us
1429 				 */
1430 				(fs->object->ref_count == 1) &&
1431 				/*
1432 				 * No one else can look this object up
1433 				 */
1434 				(fs->object->handle == NULL) &&
1435 				/*
1436 				 * No other ways to look the object up
1437 				 */
1438 				((fs->object->type == OBJT_DEFAULT) ||
1439 				 (fs->object->type == OBJT_SWAP)) &&
1440 				/*
1441 				 * We don't chase down the shadow chain
1442 				 */
1443 				(fs->object == fs->first_object->backing_object) &&
1444 
1445 				/*
1446 				 * grab the lock if we need to
1447 				 */
1448 				(fs->lookup_still_valid ||
1449 				 fs->map == NULL ||
1450 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1451 			    ) {
1452 
1453 				fs->lookup_still_valid = 1;
1454 				/*
1455 				 * get rid of the unnecessary page
1456 				 */
1457 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1458 				vm_page_free(fs->first_m);
1459 				fs->first_m = NULL;
1460 
1461 				/*
1462 				 * grab the page and put it into the
1463 				 * process'es object.  The page is
1464 				 * automatically made dirty.
1465 				 */
1466 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1467 				fs->first_m = fs->m;
1468 				vm_page_busy(fs->first_m);
1469 				fs->m = NULL;
1470 				mycpu->gd_cnt.v_cow_optim++;
1471 			} else {
1472 				/*
1473 				 * Oh, well, lets copy it.
1474 				 */
1475 				vm_page_copy(fs->m, fs->first_m);
1476 				vm_page_event(fs->m, VMEVENT_COW);
1477 			}
1478 
1479 			if (fs->m) {
1480 				/*
1481 				 * We no longer need the old page or object.
1482 				 */
1483 				release_page(fs);
1484 			}
1485 
1486 			/*
1487 			 * fs->object != fs->first_object due to above
1488 			 * conditional
1489 			 */
1490 			vm_object_pip_wakeup(fs->object);
1491 
1492 			/*
1493 			 * Only use the new page below...
1494 			 */
1495 
1496 			mycpu->gd_cnt.v_cow_faults++;
1497 			fs->m = fs->first_m;
1498 			fs->object = fs->first_object;
1499 			pindex = first_pindex;
1500 		} else {
1501 			/*
1502 			 * If it wasn't a write fault avoid having to copy
1503 			 * the page by mapping it read-only.
1504 			 */
1505 			fs->prot &= ~VM_PROT_WRITE;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * We may have had to unlock a map to do I/O.  If we did then
1511 	 * lookup_still_valid will be FALSE.  If the map generation count
1512 	 * also changed then all sorts of things could have happened while
1513 	 * we were doing the I/O and we need to retry.
1514 	 */
1515 
1516 	if (!fs->lookup_still_valid &&
1517 	    fs->map != NULL &&
1518 	    (fs->map->timestamp != fs->map_generation)) {
1519 		release_page(fs);
1520 		lwkt_reltoken(&vm_token);
1521 		unlock_and_deallocate(fs);
1522 		return (KERN_TRY_AGAIN);
1523 	}
1524 
1525 	/*
1526 	 * If the fault is a write, we know that this page is being
1527 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1528 	 * calls later.
1529 	 *
1530 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1531 	 * if the page is already dirty to prevent data written with
1532 	 * the expectation of being synced from not being synced.
1533 	 * Likewise if this entry does not request NOSYNC then make
1534 	 * sure the page isn't marked NOSYNC.  Applications sharing
1535 	 * data should use the same flags to avoid ping ponging.
1536 	 *
1537 	 * Also tell the backing pager, if any, that it should remove
1538 	 * any swap backing since the page is now dirty.
1539 	 */
1540 	if (fs->prot & VM_PROT_WRITE) {
1541 		vm_object_set_writeable_dirty(fs->m->object);
1542 		vm_set_nosync(fs->m, fs->entry);
1543 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1544 			vm_page_dirty(fs->m);
1545 			swap_pager_unswapped(fs->m);
1546 		}
1547 	}
1548 
1549 	lwkt_reltoken(&vm_token);
1550 
1551 	/*
1552 	 * Page had better still be busy.  We are still locked up and
1553 	 * fs->object will have another PIP reference if it is not equal
1554 	 * to fs->first_object.
1555 	 */
1556 	KASSERT(fs->m->flags & PG_BUSY,
1557 		("vm_fault: page %p not busy!", fs->m));
1558 
1559 	/*
1560 	 * Sanity check: page must be completely valid or it is not fit to
1561 	 * map into user space.  vm_pager_get_pages() ensures this.
1562 	 */
1563 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1564 		vm_page_zero_invalid(fs->m, TRUE);
1565 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1566 	}
1567 	vm_page_flag_clear(fs->m, PG_ZERO);
1568 
1569 	return (KERN_SUCCESS);
1570 }
1571 
1572 /*
1573  * Wire down a range of virtual addresses in a map.  The entry in question
1574  * should be marked in-transition and the map must be locked.  We must
1575  * release the map temporarily while faulting-in the page to avoid a
1576  * deadlock.  Note that the entry may be clipped while we are blocked but
1577  * will never be freed.
1578  *
1579  * No requirements.
1580  */
1581 int
1582 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1583 {
1584 	boolean_t fictitious;
1585 	vm_offset_t start;
1586 	vm_offset_t end;
1587 	vm_offset_t va;
1588 	vm_paddr_t pa;
1589 	pmap_t pmap;
1590 	int rv;
1591 
1592 	pmap = vm_map_pmap(map);
1593 	start = entry->start;
1594 	end = entry->end;
1595 	fictitious = entry->object.vm_object &&
1596 			(entry->object.vm_object->type == OBJT_DEVICE);
1597 	if (entry->eflags & MAP_ENTRY_KSTACK)
1598 		start += PAGE_SIZE;
1599 	lwkt_gettoken(&vm_token);
1600 	vm_map_unlock(map);
1601 	map->timestamp++;
1602 
1603 	/*
1604 	 * We simulate a fault to get the page and enter it in the physical
1605 	 * map.
1606 	 */
1607 	for (va = start; va < end; va += PAGE_SIZE) {
1608 		if (user_wire) {
1609 			rv = vm_fault(map, va, VM_PROT_READ,
1610 					VM_FAULT_USER_WIRE);
1611 		} else {
1612 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1613 					VM_FAULT_CHANGE_WIRING);
1614 		}
1615 		if (rv) {
1616 			while (va > start) {
1617 				va -= PAGE_SIZE;
1618 				if ((pa = pmap_extract(pmap, va)) == 0)
1619 					continue;
1620 				pmap_change_wiring(pmap, va, FALSE);
1621 				if (!fictitious)
1622 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1623 			}
1624 			vm_map_lock(map);
1625 			lwkt_reltoken(&vm_token);
1626 			return (rv);
1627 		}
1628 	}
1629 	vm_map_lock(map);
1630 	lwkt_reltoken(&vm_token);
1631 	return (KERN_SUCCESS);
1632 }
1633 
1634 /*
1635  * Unwire a range of virtual addresses in a map.  The map should be
1636  * locked.
1637  */
1638 void
1639 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1640 {
1641 	boolean_t fictitious;
1642 	vm_offset_t start;
1643 	vm_offset_t end;
1644 	vm_offset_t va;
1645 	vm_paddr_t pa;
1646 	pmap_t pmap;
1647 
1648 	pmap = vm_map_pmap(map);
1649 	start = entry->start;
1650 	end = entry->end;
1651 	fictitious = entry->object.vm_object &&
1652 			(entry->object.vm_object->type == OBJT_DEVICE);
1653 	if (entry->eflags & MAP_ENTRY_KSTACK)
1654 		start += PAGE_SIZE;
1655 
1656 	/*
1657 	 * Since the pages are wired down, we must be able to get their
1658 	 * mappings from the physical map system.
1659 	 */
1660 	lwkt_gettoken(&vm_token);
1661 	for (va = start; va < end; va += PAGE_SIZE) {
1662 		pa = pmap_extract(pmap, va);
1663 		if (pa != 0) {
1664 			pmap_change_wiring(pmap, va, FALSE);
1665 			if (!fictitious)
1666 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1667 		}
1668 	}
1669 	lwkt_reltoken(&vm_token);
1670 }
1671 
1672 /*
1673  * Reduce the rate at which memory is allocated to a process based
1674  * on the perceived load on the VM system. As the load increases
1675  * the allocation burst rate goes down and the delay increases.
1676  *
1677  * Rate limiting does not apply when faulting active or inactive
1678  * pages.  When faulting 'cache' pages, rate limiting only applies
1679  * if the system currently has a severe page deficit.
1680  *
1681  * XXX vm_pagesupply should be increased when a page is freed.
1682  *
1683  * We sleep up to 1/10 of a second.
1684  */
1685 static int
1686 vm_fault_ratelimit(struct vmspace *vmspace)
1687 {
1688 	if (vm_load_enable == 0)
1689 		return(0);
1690 	if (vmspace->vm_pagesupply > 0) {
1691 		--vmspace->vm_pagesupply;	/* SMP race ok */
1692 		return(0);
1693 	}
1694 #ifdef INVARIANTS
1695 	if (vm_load_debug) {
1696 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1697 			vm_load,
1698 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1699 			curproc->p_pid, curproc->p_comm);
1700 	}
1701 #endif
1702 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1703 	return(vm_load * hz / 10000);
1704 }
1705 
1706 /*
1707  * Copy all of the pages from a wired-down map entry to another.
1708  *
1709  * The source and destination maps must be locked for write.
1710  * The source map entry must be wired down (or be a sharing map
1711  * entry corresponding to a main map entry that is wired down).
1712  *
1713  * No other requirements.
1714  */
1715 void
1716 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1717 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1718 {
1719 	vm_object_t dst_object;
1720 	vm_object_t src_object;
1721 	vm_ooffset_t dst_offset;
1722 	vm_ooffset_t src_offset;
1723 	vm_prot_t prot;
1724 	vm_offset_t vaddr;
1725 	vm_page_t dst_m;
1726 	vm_page_t src_m;
1727 
1728 #ifdef	lint
1729 	src_map++;
1730 #endif	/* lint */
1731 
1732 	src_object = src_entry->object.vm_object;
1733 	src_offset = src_entry->offset;
1734 
1735 	/*
1736 	 * Create the top-level object for the destination entry. (Doesn't
1737 	 * actually shadow anything - we copy the pages directly.)
1738 	 */
1739 	vm_map_entry_allocate_object(dst_entry);
1740 	dst_object = dst_entry->object.vm_object;
1741 
1742 	prot = dst_entry->max_protection;
1743 
1744 	/*
1745 	 * Loop through all of the pages in the entry's range, copying each
1746 	 * one from the source object (it should be there) to the destination
1747 	 * object.
1748 	 */
1749 	for (vaddr = dst_entry->start, dst_offset = 0;
1750 	    vaddr < dst_entry->end;
1751 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1752 
1753 		/*
1754 		 * Allocate a page in the destination object
1755 		 */
1756 		do {
1757 			dst_m = vm_page_alloc(dst_object,
1758 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1759 			if (dst_m == NULL) {
1760 				vm_wait(0);
1761 			}
1762 		} while (dst_m == NULL);
1763 
1764 		/*
1765 		 * Find the page in the source object, and copy it in.
1766 		 * (Because the source is wired down, the page will be in
1767 		 * memory.)
1768 		 */
1769 		src_m = vm_page_lookup(src_object,
1770 				       OFF_TO_IDX(dst_offset + src_offset));
1771 		if (src_m == NULL)
1772 			panic("vm_fault_copy_wired: page missing");
1773 
1774 		vm_page_copy(src_m, dst_m);
1775 		vm_page_event(src_m, VMEVENT_COW);
1776 
1777 		/*
1778 		 * Enter it in the pmap...
1779 		 */
1780 
1781 		vm_page_flag_clear(dst_m, PG_ZERO);
1782 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1783 
1784 		/*
1785 		 * Mark it no longer busy, and put it on the active list.
1786 		 */
1787 		vm_page_activate(dst_m);
1788 		vm_page_wakeup(dst_m);
1789 	}
1790 }
1791 
1792 #if 0
1793 
1794 /*
1795  * This routine checks around the requested page for other pages that
1796  * might be able to be faulted in.  This routine brackets the viable
1797  * pages for the pages to be paged in.
1798  *
1799  * Inputs:
1800  *	m, rbehind, rahead
1801  *
1802  * Outputs:
1803  *  marray (array of vm_page_t), reqpage (index of requested page)
1804  *
1805  * Return value:
1806  *  number of pages in marray
1807  */
1808 static int
1809 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1810 			  vm_page_t *marray, int *reqpage)
1811 {
1812 	int i,j;
1813 	vm_object_t object;
1814 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1815 	vm_page_t rtm;
1816 	int cbehind, cahead;
1817 
1818 	object = m->object;
1819 	pindex = m->pindex;
1820 
1821 	/*
1822 	 * we don't fault-ahead for device pager
1823 	 */
1824 	if (object->type == OBJT_DEVICE) {
1825 		*reqpage = 0;
1826 		marray[0] = m;
1827 		return 1;
1828 	}
1829 
1830 	/*
1831 	 * if the requested page is not available, then give up now
1832 	 */
1833 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1834 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1835 		return 0;
1836 	}
1837 
1838 	if ((cbehind == 0) && (cahead == 0)) {
1839 		*reqpage = 0;
1840 		marray[0] = m;
1841 		return 1;
1842 	}
1843 
1844 	if (rahead > cahead) {
1845 		rahead = cahead;
1846 	}
1847 
1848 	if (rbehind > cbehind) {
1849 		rbehind = cbehind;
1850 	}
1851 
1852 	/*
1853 	 * Do not do any readahead if we have insufficient free memory.
1854 	 *
1855 	 * XXX code was broken disabled before and has instability
1856 	 * with this conditonal fixed, so shortcut for now.
1857 	 */
1858 	if (burst_fault == 0 || vm_page_count_severe()) {
1859 		marray[0] = m;
1860 		*reqpage = 0;
1861 		return 1;
1862 	}
1863 
1864 	/*
1865 	 * scan backward for the read behind pages -- in memory
1866 	 *
1867 	 * Assume that if the page is not found an interrupt will not
1868 	 * create it.  Theoretically interrupts can only remove (busy)
1869 	 * pages, not create new associations.
1870 	 */
1871 	if (pindex > 0) {
1872 		if (rbehind > pindex) {
1873 			rbehind = pindex;
1874 			startpindex = 0;
1875 		} else {
1876 			startpindex = pindex - rbehind;
1877 		}
1878 
1879 		lwkt_gettoken(&vm_token);
1880 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1881 			if (vm_page_lookup(object, tpindex - 1))
1882 				break;
1883 		}
1884 
1885 		i = 0;
1886 		while (tpindex < pindex) {
1887 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1888 			if (rtm == NULL) {
1889 				lwkt_reltoken(&vm_token);
1890 				for (j = 0; j < i; j++) {
1891 					vm_page_free(marray[j]);
1892 				}
1893 				marray[0] = m;
1894 				*reqpage = 0;
1895 				return 1;
1896 			}
1897 			marray[i] = rtm;
1898 			++i;
1899 			++tpindex;
1900 		}
1901 		lwkt_reltoken(&vm_token);
1902 	} else {
1903 		i = 0;
1904 	}
1905 
1906 	/*
1907 	 * Assign requested page
1908 	 */
1909 	marray[i] = m;
1910 	*reqpage = i;
1911 	++i;
1912 
1913 	/*
1914 	 * Scan forwards for read-ahead pages
1915 	 */
1916 	tpindex = pindex + 1;
1917 	endpindex = tpindex + rahead;
1918 	if (endpindex > object->size)
1919 		endpindex = object->size;
1920 
1921 	lwkt_gettoken(&vm_token);
1922 	while (tpindex < endpindex) {
1923 		if (vm_page_lookup(object, tpindex))
1924 			break;
1925 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1926 		if (rtm == NULL)
1927 			break;
1928 		marray[i] = rtm;
1929 		++i;
1930 		++tpindex;
1931 	}
1932 	lwkt_reltoken(&vm_token);
1933 
1934 	return (i);
1935 }
1936 
1937 #endif
1938 
1939 /*
1940  * vm_prefault() provides a quick way of clustering pagefaults into a
1941  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1942  * except it runs at page fault time instead of mmap time.
1943  *
1944  * This code used to be per-platform pmap_prefault().  It is now
1945  * machine-independent and enhanced to also pre-fault zero-fill pages
1946  * (see vm.fast_fault) as well as make them writable, which greatly
1947  * reduces the number of page faults programs incur.
1948  *
1949  * Application performance when pre-faulting zero-fill pages is heavily
1950  * dependent on the application.  Very tiny applications like /bin/echo
1951  * lose a little performance while applications of any appreciable size
1952  * gain performance.  Prefaulting multiple pages also reduces SMP
1953  * congestion and can improve SMP performance significantly.
1954  *
1955  * NOTE!  prot may allow writing but this only applies to the top level
1956  *	  object.  If we wind up mapping a page extracted from a backing
1957  *	  object we have to make sure it is read-only.
1958  *
1959  * NOTE!  The caller has already handled any COW operations on the
1960  *	  vm_map_entry via the normal fault code.  Do NOT call this
1961  *	  shortcut unless the normal fault code has run on this entry.
1962  *
1963  * No other requirements.
1964  */
1965 #define PFBAK 4
1966 #define PFFOR 4
1967 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1968 
1969 static int vm_prefault_pageorder[] = {
1970 	-PAGE_SIZE, PAGE_SIZE,
1971 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1972 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1973 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1974 };
1975 
1976 /*
1977  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1978  * is not already dirty by other means.  This will prevent passive
1979  * filesystem syncing as well as 'sync' from writing out the page.
1980  */
1981 static void
1982 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1983 {
1984 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
1985 		if (m->dirty == 0)
1986 			vm_page_flag_set(m, PG_NOSYNC);
1987 	} else {
1988 		vm_page_flag_clear(m, PG_NOSYNC);
1989 	}
1990 }
1991 
1992 static void
1993 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1994 {
1995 	struct lwp *lp;
1996 	vm_page_t m;
1997 	vm_offset_t starta;
1998 	vm_offset_t addr;
1999 	vm_pindex_t index;
2000 	vm_pindex_t pindex;
2001 	vm_object_t object;
2002 	int pprot;
2003 	int i;
2004 
2005 	/*
2006 	 * We do not currently prefault mappings that use virtual page
2007 	 * tables.  We do not prefault foreign pmaps.
2008 	 */
2009 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2010 		return;
2011 	lp = curthread->td_lwp;
2012 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2013 		return;
2014 
2015 	object = entry->object.vm_object;
2016 
2017 	starta = addra - PFBAK * PAGE_SIZE;
2018 	if (starta < entry->start)
2019 		starta = entry->start;
2020 	else if (starta > addra)
2021 		starta = 0;
2022 
2023 	lwkt_gettoken(&vm_token);
2024 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2025 		vm_object_t lobject;
2026 		int allocated = 0;
2027 
2028 		addr = addra + vm_prefault_pageorder[i];
2029 		if (addr > addra + (PFFOR * PAGE_SIZE))
2030 			addr = 0;
2031 
2032 		if (addr < starta || addr >= entry->end)
2033 			continue;
2034 
2035 		if (pmap_prefault_ok(pmap, addr) == 0)
2036 			continue;
2037 
2038 		/*
2039 		 * Follow the VM object chain to obtain the page to be mapped
2040 		 * into the pmap.
2041 		 *
2042 		 * If we reach the terminal object without finding a page
2043 		 * and we determine it would be advantageous, then allocate
2044 		 * a zero-fill page for the base object.  The base object
2045 		 * is guaranteed to be OBJT_DEFAULT for this case.
2046 		 *
2047 		 * In order to not have to check the pager via *haspage*()
2048 		 * we stop if any non-default object is encountered.  e.g.
2049 		 * a vnode or swap object would stop the loop.
2050 		 */
2051 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2052 		lobject = object;
2053 		pindex = index;
2054 		pprot = prot;
2055 
2056 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2057 			if (lobject->type != OBJT_DEFAULT)
2058 				break;
2059 			if (lobject->backing_object == NULL) {
2060 				if (vm_fast_fault == 0)
2061 					break;
2062 				if (vm_prefault_pageorder[i] < 0 ||
2063 				    (prot & VM_PROT_WRITE) == 0 ||
2064 				    vm_page_count_min(0)) {
2065 					break;
2066 				}
2067 				/* note: allocate from base object */
2068 				m = vm_page_alloc(object, index,
2069 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2070 
2071 				if ((m->flags & PG_ZERO) == 0) {
2072 					vm_page_zero_fill(m);
2073 				} else {
2074 #ifdef PMAP_DEBUG
2075 					pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
2076 #endif
2077 					vm_page_flag_clear(m, PG_ZERO);
2078 					mycpu->gd_cnt.v_ozfod++;
2079 				}
2080 				mycpu->gd_cnt.v_zfod++;
2081 				m->valid = VM_PAGE_BITS_ALL;
2082 				allocated = 1;
2083 				pprot = prot;
2084 				/* lobject = object .. not needed */
2085 				break;
2086 			}
2087 			if (lobject->backing_object_offset & PAGE_MASK)
2088 				break;
2089 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2090 			lobject = lobject->backing_object;
2091 			pprot &= ~VM_PROT_WRITE;
2092 		}
2093 		/*
2094 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2095 		 *	 bother assigning lobject = object).
2096 		 *
2097 		 * Give-up if the page is not available.
2098 		 */
2099 		if (m == NULL)
2100 			break;
2101 
2102 		/*
2103 		 * Do not conditionalize on PG_RAM.  If pages are present in
2104 		 * the VM system we assume optimal caching.  If caching is
2105 		 * not optimal the I/O gravy train will be restarted when we
2106 		 * hit an unavailable page.  We do not want to try to restart
2107 		 * the gravy train now because we really don't know how much
2108 		 * of the object has been cached.  The cost for restarting
2109 		 * the gravy train should be low (since accesses will likely
2110 		 * be I/O bound anyway).
2111 		 *
2112 		 * The object must be marked dirty if we are mapping a
2113 		 * writable page.
2114 		 */
2115 		if (pprot & VM_PROT_WRITE)
2116 			vm_object_set_writeable_dirty(m->object);
2117 
2118 		/*
2119 		 * Enter the page into the pmap if appropriate.  If we had
2120 		 * allocated the page we have to place it on a queue.  If not
2121 		 * we just have to make sure it isn't on the cache queue
2122 		 * (pages on the cache queue are not allowed to be mapped).
2123 		 */
2124 		if (allocated) {
2125 			if (pprot & VM_PROT_WRITE)
2126 				vm_set_nosync(m, entry);
2127 			pmap_enter(pmap, addr, m, pprot, 0);
2128 			vm_page_deactivate(m);
2129 			vm_page_wakeup(m);
2130 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2131 		    (m->busy == 0) &&
2132 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2133 
2134 			vm_page_busy(m);
2135 			if ((m->queue - m->pc) == PQ_CACHE) {
2136 				vm_page_deactivate(m);
2137 			}
2138 			if (pprot & VM_PROT_WRITE)
2139 				vm_set_nosync(m, entry);
2140 			pmap_enter(pmap, addr, m, pprot, 0);
2141 			vm_page_wakeup(m);
2142 		}
2143 	}
2144 	lwkt_reltoken(&vm_token);
2145 }
2146