1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 * 71 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 72 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 73 */ 74 75 /* 76 * Page fault handling module. 77 */ 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/vnode.h> 84 #include <sys/resourcevar.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vkernel.h> 87 #include <sys/lock.h> 88 #include <sys/sysctl.h> 89 90 #include <cpu/lwbuf.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vnode_pager.h> 102 #include <vm/vm_extern.h> 103 104 #include <sys/thread2.h> 105 #include <vm/vm_page2.h> 106 107 struct faultstate { 108 vm_page_t m; 109 vm_object_t object; 110 vm_pindex_t pindex; 111 vm_prot_t prot; 112 vm_page_t first_m; 113 vm_object_t first_object; 114 vm_prot_t first_prot; 115 vm_map_t map; 116 vm_map_entry_t entry; 117 int lookup_still_valid; 118 int hardfault; 119 int fault_flags; 120 int map_generation; 121 boolean_t wired; 122 struct vnode *vp; 123 }; 124 125 static int debug_cluster = 0; 126 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 127 static int vm_shared_fault = 1; 128 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0, 129 "Allow shared token on vm_object"); 130 static long vm_shared_hit = 0; 131 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0, 132 "Successful shared faults"); 133 static long vm_shared_miss = 0; 134 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0, 135 "Successful shared faults"); 136 137 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t); 138 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int); 139 #if 0 140 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 141 #endif 142 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry); 143 static void vm_prefault(pmap_t pmap, vm_offset_t addra, 144 vm_map_entry_t entry, int prot, int fault_flags); 145 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra, 146 vm_map_entry_t entry, int prot, int fault_flags); 147 148 static __inline void 149 release_page(struct faultstate *fs) 150 { 151 vm_page_deactivate(fs->m); 152 vm_page_wakeup(fs->m); 153 fs->m = NULL; 154 } 155 156 /* 157 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse 158 * requires relocking and then checking the timestamp. 159 * 160 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do 161 * not have to update fs->map_generation here. 162 * 163 * NOTE: This function can fail due to a deadlock against the caller's 164 * holding of a vm_page BUSY. 165 */ 166 static __inline int 167 relock_map(struct faultstate *fs) 168 { 169 int error; 170 171 if (fs->lookup_still_valid == FALSE && fs->map) { 172 error = vm_map_lock_read_to(fs->map); 173 if (error == 0) 174 fs->lookup_still_valid = TRUE; 175 } else { 176 error = 0; 177 } 178 return error; 179 } 180 181 static __inline void 182 unlock_map(struct faultstate *fs) 183 { 184 if (fs->lookup_still_valid && fs->map) { 185 vm_map_lookup_done(fs->map, fs->entry, 0); 186 fs->lookup_still_valid = FALSE; 187 } 188 } 189 190 /* 191 * Clean up after a successful call to vm_fault_object() so another call 192 * to vm_fault_object() can be made. 193 */ 194 static void 195 _cleanup_successful_fault(struct faultstate *fs, int relock) 196 { 197 if (fs->object != fs->first_object) { 198 vm_page_free(fs->first_m); 199 vm_object_pip_wakeup(fs->object); 200 fs->first_m = NULL; 201 } 202 fs->object = fs->first_object; 203 if (relock && fs->lookup_still_valid == FALSE) { 204 if (fs->map) 205 vm_map_lock_read(fs->map); 206 fs->lookup_still_valid = TRUE; 207 } 208 } 209 210 static void 211 _unlock_things(struct faultstate *fs, int dealloc) 212 { 213 _cleanup_successful_fault(fs, 0); 214 if (dealloc) { 215 /*vm_object_deallocate(fs->first_object);*/ 216 /*fs->first_object = NULL; drop used later on */ 217 } 218 unlock_map(fs); 219 if (fs->vp != NULL) { 220 vput(fs->vp); 221 fs->vp = NULL; 222 } 223 } 224 225 #define unlock_things(fs) _unlock_things(fs, 0) 226 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 227 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 228 229 /* 230 * TRYPAGER 231 * 232 * Determine if the pager for the current object *might* contain the page. 233 * 234 * We only need to try the pager if this is not a default object (default 235 * objects are zero-fill and have no real pager), and if we are not taking 236 * a wiring fault or if the FS entry is wired. 237 */ 238 #define TRYPAGER(fs) \ 239 (fs->object->type != OBJT_DEFAULT && \ 240 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 241 242 /* 243 * vm_fault: 244 * 245 * Handle a page fault occuring at the given address, requiring the given 246 * permissions, in the map specified. If successful, the page is inserted 247 * into the associated physical map. 248 * 249 * NOTE: The given address should be truncated to the proper page address. 250 * 251 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 252 * a standard error specifying why the fault is fatal is returned. 253 * 254 * The map in question must be referenced, and remains so. 255 * The caller may hold no locks. 256 * No other requirements. 257 */ 258 int 259 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 260 { 261 int result; 262 vm_pindex_t first_pindex; 263 struct faultstate fs; 264 struct lwp *lp; 265 int growstack; 266 267 vm_page_pcpu_cache(); 268 fs.hardfault = 0; 269 fs.fault_flags = fault_flags; 270 fs.vp = NULL; 271 growstack = 1; 272 273 if ((lp = curthread->td_lwp) != NULL) 274 lp->lwp_flags |= LWP_PAGING; 275 276 lwkt_gettoken(&map->token); 277 278 RetryFault: 279 /* 280 * Find the vm_map_entry representing the backing store and resolve 281 * the top level object and page index. This may have the side 282 * effect of executing a copy-on-write on the map entry and/or 283 * creating a shadow object, but will not COW any actual VM pages. 284 * 285 * On success fs.map is left read-locked and various other fields 286 * are initialized but not otherwise referenced or locked. 287 * 288 * NOTE! vm_map_lookup will try to upgrade the fault_type to 289 * VM_FAULT_WRITE if the map entry is a virtual page table and also 290 * writable, so we can set the 'A'accessed bit in the virtual page 291 * table entry. 292 */ 293 fs.map = map; 294 result = vm_map_lookup(&fs.map, vaddr, fault_type, 295 &fs.entry, &fs.first_object, 296 &first_pindex, &fs.first_prot, &fs.wired); 297 298 /* 299 * If the lookup failed or the map protections are incompatible, 300 * the fault generally fails. However, if the caller is trying 301 * to do a user wiring we have more work to do. 302 */ 303 if (result != KERN_SUCCESS) { 304 if (result != KERN_PROTECTION_FAILURE || 305 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 306 { 307 if (result == KERN_INVALID_ADDRESS && growstack && 308 map != &kernel_map && curproc != NULL) { 309 result = vm_map_growstack(curproc, vaddr); 310 if (result == KERN_SUCCESS) { 311 growstack = 0; 312 goto RetryFault; 313 } 314 result = KERN_FAILURE; 315 } 316 goto done; 317 } 318 319 /* 320 * If we are user-wiring a r/w segment, and it is COW, then 321 * we need to do the COW operation. Note that we don't 322 * currently COW RO sections now, because it is NOT desirable 323 * to COW .text. We simply keep .text from ever being COW'ed 324 * and take the heat that one cannot debug wired .text sections. 325 */ 326 result = vm_map_lookup(&fs.map, vaddr, 327 VM_PROT_READ|VM_PROT_WRITE| 328 VM_PROT_OVERRIDE_WRITE, 329 &fs.entry, &fs.first_object, 330 &first_pindex, &fs.first_prot, 331 &fs.wired); 332 if (result != KERN_SUCCESS) { 333 result = KERN_FAILURE; 334 goto done; 335 } 336 337 /* 338 * If we don't COW now, on a user wire, the user will never 339 * be able to write to the mapping. If we don't make this 340 * restriction, the bookkeeping would be nearly impossible. 341 */ 342 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 343 fs.entry->max_protection &= ~VM_PROT_WRITE; 344 } 345 346 /* 347 * fs.map is read-locked 348 * 349 * Misc checks. Save the map generation number to detect races. 350 */ 351 fs.map_generation = fs.map->timestamp; 352 353 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) { 354 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 355 panic("vm_fault: fault on nofault entry, addr: %p", 356 (void *)vaddr); 357 } 358 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) && 359 vaddr >= fs.entry->start && 360 vaddr < fs.entry->start + PAGE_SIZE) { 361 panic("vm_fault: fault on stack guard, addr: %p", 362 (void *)vaddr); 363 } 364 } 365 366 /* 367 * A system map entry may return a NULL object. No object means 368 * no pager means an unrecoverable kernel fault. 369 */ 370 if (fs.first_object == NULL) { 371 panic("vm_fault: unrecoverable fault at %p in entry %p", 372 (void *)vaddr, fs.entry); 373 } 374 375 /* 376 * Attempt to shortcut the fault if the lookup returns a 377 * terminal object and the page is present. This allows us 378 * to obtain a shared token on the object instead of an exclusive 379 * token, which theoretically should allow concurrent faults. 380 * 381 * We cannot acquire a shared token on kernel_map, at least not 382 * on i386, because the i386 pmap code uses the kernel_object for 383 * its page table page management, resulting in a shared->exclusive 384 * sequence which will deadlock. This will not happen normally 385 * anyway, except on well cached pageable kmem (like pipe buffers), 386 * so it should not impact performance. 387 */ 388 if (vm_shared_fault && 389 fs.first_object->backing_object == NULL && 390 fs.entry->maptype == VM_MAPTYPE_NORMAL && 391 fs.map != &kernel_map) { 392 int error; 393 vm_object_hold_shared(fs.first_object); 394 /*fs.vp = vnode_pager_lock(fs.first_object);*/ 395 fs.m = vm_page_lookup_busy_try(fs.first_object, 396 first_pindex, 397 TRUE, &error); 398 if (error == 0 && fs.m) { 399 /* 400 * Activate the page and figure out if we can 401 * short-cut a quick mapping. 402 * 403 * WARNING! We cannot call swap_pager_unswapped() 404 * with a shared token! Note that we 405 * have to test fs.first_prot here. 406 */ 407 vm_page_activate(fs.m); 408 if (fs.m->valid == VM_PAGE_BITS_ALL && 409 ((fs.m->flags & PG_SWAPPED) == 0 || 410 (fs.first_prot & VM_PROT_WRITE) == 0 || 411 (fs.fault_flags & VM_FAULT_DIRTY) == 0)) { 412 fs.lookup_still_valid = TRUE; 413 fs.first_m = NULL; 414 fs.object = fs.first_object; 415 fs.prot = fs.first_prot; 416 if (fs.wired) 417 fault_type = fs.first_prot; 418 if (fs.prot & VM_PROT_WRITE) { 419 vm_object_set_writeable_dirty( 420 fs.m->object); 421 vm_set_nosync(fs.m, fs.entry); 422 if (fs.fault_flags & VM_FAULT_DIRTY) { 423 vm_page_dirty(fs.m); 424 /*XXX*/ 425 swap_pager_unswapped(fs.m); 426 } 427 } 428 result = KERN_SUCCESS; 429 fault_flags |= VM_FAULT_BURST_QUICK; 430 fault_flags &= ~VM_FAULT_BURST; 431 ++vm_shared_hit; 432 goto quick; 433 } 434 vm_page_wakeup(fs.m); 435 fs.m = NULL; 436 } 437 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/ 438 } 439 ++vm_shared_miss; 440 441 /* 442 * Bump the paging-in-progress count to prevent size changes (e.g. 443 * truncation operations) during I/O. This must be done after 444 * obtaining the vnode lock in order to avoid possible deadlocks. 445 */ 446 vm_object_hold(fs.first_object); 447 if (fs.vp == NULL) 448 fs.vp = vnode_pager_lock(fs.first_object); 449 450 fs.lookup_still_valid = TRUE; 451 fs.first_m = NULL; 452 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 453 454 /* 455 * If the entry is wired we cannot change the page protection. 456 */ 457 if (fs.wired) 458 fault_type = fs.first_prot; 459 460 /* 461 * The page we want is at (first_object, first_pindex), but if the 462 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 463 * page table to figure out the actual pindex. 464 * 465 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 466 * ONLY 467 */ 468 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 469 result = vm_fault_vpagetable(&fs, &first_pindex, 470 fs.entry->aux.master_pde, 471 fault_type); 472 if (result == KERN_TRY_AGAIN) { 473 vm_object_drop(fs.first_object); 474 goto RetryFault; 475 } 476 if (result != KERN_SUCCESS) 477 goto done; 478 } 479 480 /* 481 * Now we have the actual (object, pindex), fault in the page. If 482 * vm_fault_object() fails it will unlock and deallocate the FS 483 * data. If it succeeds everything remains locked and fs->object 484 * will have an additional PIP count if it is not equal to 485 * fs->first_object 486 * 487 * vm_fault_object will set fs->prot for the pmap operation. It is 488 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 489 * page can be safely written. However, it will force a read-only 490 * mapping for a read fault if the memory is managed by a virtual 491 * page table. 492 */ 493 /* BEFORE */ 494 result = vm_fault_object(&fs, first_pindex, fault_type); 495 496 if (result == KERN_TRY_AGAIN) { 497 vm_object_drop(fs.first_object); 498 goto RetryFault; 499 } 500 if (result != KERN_SUCCESS) 501 goto done; 502 503 quick: 504 /* 505 * On success vm_fault_object() does not unlock or deallocate, and fs.m 506 * will contain a busied page. 507 * 508 * Enter the page into the pmap and do pmap-related adjustments. 509 */ 510 vm_page_flag_set(fs.m, PG_REFERENCED); 511 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 512 mycpu->gd_cnt.v_vm_faults++; 513 if (curthread->td_lwp) 514 ++curthread->td_lwp->lwp_ru.ru_minflt; 515 516 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */ 517 KKASSERT(fs.m->flags & PG_BUSY); 518 519 /* 520 * If the page is not wired down, then put it where the pageout daemon 521 * can find it. 522 */ 523 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 524 if (fs.wired) 525 vm_page_wire(fs.m); 526 else 527 vm_page_unwire(fs.m, 1); 528 } else { 529 vm_page_activate(fs.m); 530 } 531 vm_page_wakeup(fs.m); 532 533 /* 534 * Burst in a few more pages if possible. The fs.map should still 535 * be locked. To avoid interlocking against a vnode->getblk 536 * operation we had to be sure to unbusy our primary vm_page above 537 * first. 538 */ 539 if (fault_flags & VM_FAULT_BURST) { 540 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 541 && fs.wired == 0) { 542 vm_prefault(fs.map->pmap, vaddr, 543 fs.entry, fs.prot, fault_flags); 544 } 545 } 546 if (fault_flags & VM_FAULT_BURST_QUICK) { 547 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 548 && fs.wired == 0) { 549 vm_prefault_quick(fs.map->pmap, vaddr, 550 fs.entry, fs.prot, fault_flags); 551 } 552 } 553 554 /* 555 * Unlock everything, and return 556 */ 557 unlock_things(&fs); 558 559 if (curthread->td_lwp) { 560 if (fs.hardfault) { 561 curthread->td_lwp->lwp_ru.ru_majflt++; 562 } else { 563 curthread->td_lwp->lwp_ru.ru_minflt++; 564 } 565 } 566 567 /*vm_object_deallocate(fs.first_object);*/ 568 /*fs.m = NULL; */ 569 /*fs.first_object = NULL; must still drop later */ 570 571 result = KERN_SUCCESS; 572 done: 573 if (fs.first_object) 574 vm_object_drop(fs.first_object); 575 lwkt_reltoken(&map->token); 576 if (lp) 577 lp->lwp_flags &= ~LWP_PAGING; 578 return (result); 579 } 580 581 /* 582 * Fault in the specified virtual address in the current process map, 583 * returning a held VM page or NULL. See vm_fault_page() for more 584 * information. 585 * 586 * No requirements. 587 */ 588 vm_page_t 589 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 590 { 591 struct lwp *lp = curthread->td_lwp; 592 vm_page_t m; 593 594 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 595 fault_type, VM_FAULT_NORMAL, errorp); 596 return(m); 597 } 598 599 /* 600 * Fault in the specified virtual address in the specified map, doing all 601 * necessary manipulation of the object store and all necessary I/O. Return 602 * a held VM page or NULL, and set *errorp. The related pmap is not 603 * updated. 604 * 605 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 606 * and marked PG_REFERENCED as well. 607 * 608 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 609 * error will be returned. 610 * 611 * No requirements. 612 */ 613 vm_page_t 614 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 615 int fault_flags, int *errorp) 616 { 617 vm_pindex_t first_pindex; 618 struct faultstate fs; 619 int result; 620 vm_prot_t orig_fault_type = fault_type; 621 622 fs.hardfault = 0; 623 fs.fault_flags = fault_flags; 624 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 625 626 lwkt_gettoken(&map->token); 627 628 RetryFault: 629 /* 630 * Find the vm_map_entry representing the backing store and resolve 631 * the top level object and page index. This may have the side 632 * effect of executing a copy-on-write on the map entry and/or 633 * creating a shadow object, but will not COW any actual VM pages. 634 * 635 * On success fs.map is left read-locked and various other fields 636 * are initialized but not otherwise referenced or locked. 637 * 638 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 639 * if the map entry is a virtual page table and also writable, 640 * so we can set the 'A'accessed bit in the virtual page table entry. 641 */ 642 fs.map = map; 643 result = vm_map_lookup(&fs.map, vaddr, fault_type, 644 &fs.entry, &fs.first_object, 645 &first_pindex, &fs.first_prot, &fs.wired); 646 647 if (result != KERN_SUCCESS) { 648 *errorp = result; 649 fs.m = NULL; 650 goto done; 651 } 652 653 /* 654 * fs.map is read-locked 655 * 656 * Misc checks. Save the map generation number to detect races. 657 */ 658 fs.map_generation = fs.map->timestamp; 659 660 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 661 panic("vm_fault: fault on nofault entry, addr: %lx", 662 (u_long)vaddr); 663 } 664 665 /* 666 * A system map entry may return a NULL object. No object means 667 * no pager means an unrecoverable kernel fault. 668 */ 669 if (fs.first_object == NULL) { 670 panic("vm_fault: unrecoverable fault at %p in entry %p", 671 (void *)vaddr, fs.entry); 672 } 673 674 /* 675 * Make a reference to this object to prevent its disposal while we 676 * are messing with it. Once we have the reference, the map is free 677 * to be diddled. Since objects reference their shadows (and copies), 678 * they will stay around as well. 679 * 680 * The reference should also prevent an unexpected collapse of the 681 * parent that might move pages from the current object into the 682 * parent unexpectedly, resulting in corruption. 683 * 684 * Bump the paging-in-progress count to prevent size changes (e.g. 685 * truncation operations) during I/O. This must be done after 686 * obtaining the vnode lock in order to avoid possible deadlocks. 687 */ 688 vm_object_hold(fs.first_object); 689 fs.vp = vnode_pager_lock(fs.first_object); 690 691 fs.lookup_still_valid = TRUE; 692 fs.first_m = NULL; 693 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 694 695 /* 696 * If the entry is wired we cannot change the page protection. 697 */ 698 if (fs.wired) 699 fault_type = fs.first_prot; 700 701 /* 702 * The page we want is at (first_object, first_pindex), but if the 703 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 704 * page table to figure out the actual pindex. 705 * 706 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 707 * ONLY 708 */ 709 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 710 result = vm_fault_vpagetable(&fs, &first_pindex, 711 fs.entry->aux.master_pde, 712 fault_type); 713 if (result == KERN_TRY_AGAIN) { 714 vm_object_drop(fs.first_object); 715 goto RetryFault; 716 } 717 if (result != KERN_SUCCESS) { 718 *errorp = result; 719 fs.m = NULL; 720 goto done; 721 } 722 } 723 724 /* 725 * Now we have the actual (object, pindex), fault in the page. If 726 * vm_fault_object() fails it will unlock and deallocate the FS 727 * data. If it succeeds everything remains locked and fs->object 728 * will have an additinal PIP count if it is not equal to 729 * fs->first_object 730 */ 731 fs.m = NULL; 732 result = vm_fault_object(&fs, first_pindex, fault_type); 733 734 if (result == KERN_TRY_AGAIN) { 735 vm_object_drop(fs.first_object); 736 goto RetryFault; 737 } 738 if (result != KERN_SUCCESS) { 739 *errorp = result; 740 fs.m = NULL; 741 goto done; 742 } 743 744 if ((orig_fault_type & VM_PROT_WRITE) && 745 (fs.prot & VM_PROT_WRITE) == 0) { 746 *errorp = KERN_PROTECTION_FAILURE; 747 unlock_and_deallocate(&fs); 748 fs.m = NULL; 749 goto done; 750 } 751 752 /* 753 * DO NOT UPDATE THE PMAP!!! This function may be called for 754 * a pmap unrelated to the current process pmap, in which case 755 * the current cpu core will not be listed in the pmap's pm_active 756 * mask. Thus invalidation interlocks will fail to work properly. 757 * 758 * (for example, 'ps' uses procfs to read program arguments from 759 * each process's stack). 760 * 761 * In addition to the above this function will be called to acquire 762 * a page that might already be faulted in, re-faulting it 763 * continuously is a waste of time. 764 * 765 * XXX could this have been the cause of our random seg-fault 766 * issues? procfs accesses user stacks. 767 */ 768 vm_page_flag_set(fs.m, PG_REFERENCED); 769 #if 0 770 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 771 mycpu->gd_cnt.v_vm_faults++; 772 if (curthread->td_lwp) 773 ++curthread->td_lwp->lwp_ru.ru_minflt; 774 #endif 775 776 /* 777 * On success vm_fault_object() does not unlock or deallocate, and fs.m 778 * will contain a busied page. So we must unlock here after having 779 * messed with the pmap. 780 */ 781 unlock_things(&fs); 782 783 /* 784 * Return a held page. We are not doing any pmap manipulation so do 785 * not set PG_MAPPED. However, adjust the page flags according to 786 * the fault type because the caller may not use a managed pmapping 787 * (so we don't want to lose the fact that the page will be dirtied 788 * if a write fault was specified). 789 */ 790 vm_page_hold(fs.m); 791 vm_page_activate(fs.m); 792 if (fault_type & VM_PROT_WRITE) 793 vm_page_dirty(fs.m); 794 795 if (curthread->td_lwp) { 796 if (fs.hardfault) { 797 curthread->td_lwp->lwp_ru.ru_majflt++; 798 } else { 799 curthread->td_lwp->lwp_ru.ru_minflt++; 800 } 801 } 802 803 /* 804 * Unlock everything, and return the held page. 805 */ 806 vm_page_wakeup(fs.m); 807 /*vm_object_deallocate(fs.first_object);*/ 808 /*fs.first_object = NULL; */ 809 *errorp = 0; 810 811 done: 812 if (fs.first_object) 813 vm_object_drop(fs.first_object); 814 lwkt_reltoken(&map->token); 815 return(fs.m); 816 } 817 818 /* 819 * Fault in the specified (object,offset), dirty the returned page as 820 * needed. If the requested fault_type cannot be done NULL and an 821 * error is returned. 822 * 823 * A held (but not busied) page is returned. 824 * 825 * No requirements. 826 */ 827 vm_page_t 828 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 829 vm_prot_t fault_type, int fault_flags, int *errorp) 830 { 831 int result; 832 vm_pindex_t first_pindex; 833 struct faultstate fs; 834 struct vm_map_entry entry; 835 836 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 837 bzero(&entry, sizeof(entry)); 838 entry.object.vm_object = object; 839 entry.maptype = VM_MAPTYPE_NORMAL; 840 entry.protection = entry.max_protection = fault_type; 841 842 fs.hardfault = 0; 843 fs.fault_flags = fault_flags; 844 fs.map = NULL; 845 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 846 847 RetryFault: 848 849 fs.first_object = object; 850 first_pindex = OFF_TO_IDX(offset); 851 fs.entry = &entry; 852 fs.first_prot = fault_type; 853 fs.wired = 0; 854 /*fs.map_generation = 0; unused */ 855 856 /* 857 * Make a reference to this object to prevent its disposal while we 858 * are messing with it. Once we have the reference, the map is free 859 * to be diddled. Since objects reference their shadows (and copies), 860 * they will stay around as well. 861 * 862 * The reference should also prevent an unexpected collapse of the 863 * parent that might move pages from the current object into the 864 * parent unexpectedly, resulting in corruption. 865 * 866 * Bump the paging-in-progress count to prevent size changes (e.g. 867 * truncation operations) during I/O. This must be done after 868 * obtaining the vnode lock in order to avoid possible deadlocks. 869 */ 870 fs.vp = vnode_pager_lock(fs.first_object); 871 872 fs.lookup_still_valid = TRUE; 873 fs.first_m = NULL; 874 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 875 876 #if 0 877 /* XXX future - ability to operate on VM object using vpagetable */ 878 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 879 result = vm_fault_vpagetable(&fs, &first_pindex, 880 fs.entry->aux.master_pde, 881 fault_type); 882 if (result == KERN_TRY_AGAIN) 883 goto RetryFault; 884 if (result != KERN_SUCCESS) { 885 *errorp = result; 886 return (NULL); 887 } 888 } 889 #endif 890 891 /* 892 * Now we have the actual (object, pindex), fault in the page. If 893 * vm_fault_object() fails it will unlock and deallocate the FS 894 * data. If it succeeds everything remains locked and fs->object 895 * will have an additinal PIP count if it is not equal to 896 * fs->first_object 897 */ 898 result = vm_fault_object(&fs, first_pindex, fault_type); 899 900 if (result == KERN_TRY_AGAIN) 901 goto RetryFault; 902 if (result != KERN_SUCCESS) { 903 *errorp = result; 904 return(NULL); 905 } 906 907 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 908 *errorp = KERN_PROTECTION_FAILURE; 909 unlock_and_deallocate(&fs); 910 return(NULL); 911 } 912 913 /* 914 * On success vm_fault_object() does not unlock or deallocate, so we 915 * do it here. Note that the returned fs.m will be busied. 916 */ 917 unlock_things(&fs); 918 919 /* 920 * Return a held page. We are not doing any pmap manipulation so do 921 * not set PG_MAPPED. However, adjust the page flags according to 922 * the fault type because the caller may not use a managed pmapping 923 * (so we don't want to lose the fact that the page will be dirtied 924 * if a write fault was specified). 925 */ 926 vm_page_hold(fs.m); 927 vm_page_activate(fs.m); 928 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY)) 929 vm_page_dirty(fs.m); 930 if (fault_flags & VM_FAULT_UNSWAP) 931 swap_pager_unswapped(fs.m); 932 933 /* 934 * Indicate that the page was accessed. 935 */ 936 vm_page_flag_set(fs.m, PG_REFERENCED); 937 938 if (curthread->td_lwp) { 939 if (fs.hardfault) { 940 curthread->td_lwp->lwp_ru.ru_majflt++; 941 } else { 942 curthread->td_lwp->lwp_ru.ru_minflt++; 943 } 944 } 945 946 /* 947 * Unlock everything, and return the held page. 948 */ 949 vm_page_wakeup(fs.m); 950 /*vm_object_deallocate(fs.first_object);*/ 951 /*fs.first_object = NULL; */ 952 953 *errorp = 0; 954 return(fs.m); 955 } 956 957 /* 958 * Translate the virtual page number (first_pindex) that is relative 959 * to the address space into a logical page number that is relative to the 960 * backing object. Use the virtual page table pointed to by (vpte). 961 * 962 * This implements an N-level page table. Any level can terminate the 963 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 964 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 965 */ 966 static 967 int 968 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 969 vpte_t vpte, int fault_type) 970 { 971 struct lwbuf *lwb; 972 struct lwbuf lwb_cache; 973 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 974 int result = KERN_SUCCESS; 975 vpte_t *ptep; 976 977 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object)); 978 for (;;) { 979 /* 980 * We cannot proceed if the vpte is not valid, not readable 981 * for a read fault, or not writable for a write fault. 982 */ 983 if ((vpte & VPTE_V) == 0) { 984 unlock_and_deallocate(fs); 985 return (KERN_FAILURE); 986 } 987 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) { 988 unlock_and_deallocate(fs); 989 return (KERN_FAILURE); 990 } 991 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) { 992 unlock_and_deallocate(fs); 993 return (KERN_FAILURE); 994 } 995 if ((vpte & VPTE_PS) || vshift == 0) 996 break; 997 KKASSERT(vshift >= VPTE_PAGE_BITS); 998 999 /* 1000 * Get the page table page. Nominally we only read the page 1001 * table, but since we are actively setting VPTE_M and VPTE_A, 1002 * tell vm_fault_object() that we are writing it. 1003 * 1004 * There is currently no real need to optimize this. 1005 */ 1006 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 1007 VM_PROT_READ|VM_PROT_WRITE); 1008 if (result != KERN_SUCCESS) 1009 return (result); 1010 1011 /* 1012 * Process the returned fs.m and look up the page table 1013 * entry in the page table page. 1014 */ 1015 vshift -= VPTE_PAGE_BITS; 1016 lwb = lwbuf_alloc(fs->m, &lwb_cache); 1017 ptep = ((vpte_t *)lwbuf_kva(lwb) + 1018 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 1019 vpte = *ptep; 1020 1021 /* 1022 * Page table write-back. If the vpte is valid for the 1023 * requested operation, do a write-back to the page table. 1024 * 1025 * XXX VPTE_M is not set properly for page directory pages. 1026 * It doesn't get set in the page directory if the page table 1027 * is modified during a read access. 1028 */ 1029 vm_page_activate(fs->m); 1030 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 1031 (vpte & VPTE_W)) { 1032 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 1033 atomic_set_long(ptep, VPTE_M | VPTE_A); 1034 vm_page_dirty(fs->m); 1035 } 1036 } 1037 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) && 1038 (vpte & VPTE_R)) { 1039 if ((vpte & VPTE_A) == 0) { 1040 atomic_set_long(ptep, VPTE_A); 1041 vm_page_dirty(fs->m); 1042 } 1043 } 1044 lwbuf_free(lwb); 1045 vm_page_flag_set(fs->m, PG_REFERENCED); 1046 vm_page_wakeup(fs->m); 1047 fs->m = NULL; 1048 cleanup_successful_fault(fs); 1049 } 1050 /* 1051 * Combine remaining address bits with the vpte. 1052 */ 1053 /* JG how many bits from each? */ 1054 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 1055 (*pindex & ((1L << vshift) - 1)); 1056 return (KERN_SUCCESS); 1057 } 1058 1059 1060 /* 1061 * This is the core of the vm_fault code. 1062 * 1063 * Do all operations required to fault-in (fs.first_object, pindex). Run 1064 * through the shadow chain as necessary and do required COW or virtual 1065 * copy operations. The caller has already fully resolved the vm_map_entry 1066 * and, if appropriate, has created a copy-on-write layer. All we need to 1067 * do is iterate the object chain. 1068 * 1069 * On failure (fs) is unlocked and deallocated and the caller may return or 1070 * retry depending on the failure code. On success (fs) is NOT unlocked or 1071 * deallocated, fs.m will contained a resolved, busied page, and fs.object 1072 * will have an additional PIP count if it is not equal to fs.first_object. 1073 * 1074 * fs->first_object must be held on call. 1075 */ 1076 static 1077 int 1078 vm_fault_object(struct faultstate *fs, 1079 vm_pindex_t first_pindex, vm_prot_t fault_type) 1080 { 1081 vm_object_t next_object; 1082 vm_pindex_t pindex; 1083 int error; 1084 1085 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object)); 1086 fs->prot = fs->first_prot; 1087 fs->object = fs->first_object; 1088 pindex = first_pindex; 1089 1090 vm_object_chain_acquire(fs->first_object); 1091 vm_object_pip_add(fs->first_object, 1); 1092 1093 /* 1094 * If a read fault occurs we try to make the page writable if 1095 * possible. There are three cases where we cannot make the 1096 * page mapping writable: 1097 * 1098 * (1) The mapping is read-only or the VM object is read-only, 1099 * fs->prot above will simply not have VM_PROT_WRITE set. 1100 * 1101 * (2) If the mapping is a virtual page table we need to be able 1102 * to detect writes so we can set VPTE_M in the virtual page 1103 * table. 1104 * 1105 * (3) If the VM page is read-only or copy-on-write, upgrading would 1106 * just result in an unnecessary COW fault. 1107 * 1108 * VM_PROT_VPAGED is set if faulting via a virtual page table and 1109 * causes adjustments to the 'M'odify bit to also turn off write 1110 * access to force a re-fault. 1111 */ 1112 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 1113 if ((fault_type & VM_PROT_WRITE) == 0) 1114 fs->prot &= ~VM_PROT_WRITE; 1115 } 1116 1117 /* vm_object_hold(fs->object); implied b/c object == first_object */ 1118 1119 for (;;) { 1120 /* 1121 * The entire backing chain from first_object to object 1122 * inclusive is chainlocked. 1123 * 1124 * If the object is dead, we stop here 1125 */ 1126 if (fs->object->flags & OBJ_DEAD) { 1127 vm_object_pip_wakeup(fs->first_object); 1128 vm_object_chain_release_all(fs->first_object, 1129 fs->object); 1130 if (fs->object != fs->first_object) 1131 vm_object_drop(fs->object); 1132 unlock_and_deallocate(fs); 1133 return (KERN_PROTECTION_FAILURE); 1134 } 1135 1136 /* 1137 * See if the page is resident. Wait/Retry if the page is 1138 * busy (lots of stuff may have changed so we can't continue 1139 * in that case). 1140 * 1141 * We can theoretically allow the soft-busy case on a read 1142 * fault if the page is marked valid, but since such 1143 * pages are typically already pmap'd, putting that 1144 * special case in might be more effort then it is 1145 * worth. We cannot under any circumstances mess 1146 * around with a vm_page_t->busy page except, perhaps, 1147 * to pmap it. 1148 */ 1149 fs->m = vm_page_lookup_busy_try(fs->object, pindex, 1150 TRUE, &error); 1151 if (error) { 1152 vm_object_pip_wakeup(fs->first_object); 1153 vm_object_chain_release_all(fs->first_object, 1154 fs->object); 1155 if (fs->object != fs->first_object) 1156 vm_object_drop(fs->object); 1157 unlock_things(fs); 1158 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 1159 mycpu->gd_cnt.v_intrans++; 1160 /*vm_object_deallocate(fs->first_object);*/ 1161 /*fs->first_object = NULL;*/ 1162 fs->m = NULL; 1163 return (KERN_TRY_AGAIN); 1164 } 1165 if (fs->m) { 1166 /* 1167 * The page is busied for us. 1168 * 1169 * If reactivating a page from PQ_CACHE we may have 1170 * to rate-limit. 1171 */ 1172 int queue = fs->m->queue; 1173 vm_page_unqueue_nowakeup(fs->m); 1174 1175 if ((queue - fs->m->pc) == PQ_CACHE && 1176 vm_page_count_severe()) { 1177 vm_page_activate(fs->m); 1178 vm_page_wakeup(fs->m); 1179 fs->m = NULL; 1180 vm_object_pip_wakeup(fs->first_object); 1181 vm_object_chain_release_all(fs->first_object, 1182 fs->object); 1183 if (fs->object != fs->first_object) 1184 vm_object_drop(fs->object); 1185 unlock_and_deallocate(fs); 1186 vm_waitpfault(); 1187 return (KERN_TRY_AGAIN); 1188 } 1189 1190 /* 1191 * If it still isn't completely valid (readable), 1192 * or if a read-ahead-mark is set on the VM page, 1193 * jump to readrest, else we found the page and 1194 * can return. 1195 * 1196 * We can release the spl once we have marked the 1197 * page busy. 1198 */ 1199 if (fs->m->object != &kernel_object) { 1200 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1201 VM_PAGE_BITS_ALL) { 1202 goto readrest; 1203 } 1204 if (fs->m->flags & PG_RAM) { 1205 if (debug_cluster) 1206 kprintf("R"); 1207 vm_page_flag_clear(fs->m, PG_RAM); 1208 goto readrest; 1209 } 1210 } 1211 break; /* break to PAGE HAS BEEN FOUND */ 1212 } 1213 1214 /* 1215 * Page is not resident, If this is the search termination 1216 * or the pager might contain the page, allocate a new page. 1217 */ 1218 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1219 /* 1220 * If the page is beyond the object size we fail 1221 */ 1222 if (pindex >= fs->object->size) { 1223 vm_object_pip_wakeup(fs->first_object); 1224 vm_object_chain_release_all(fs->first_object, 1225 fs->object); 1226 if (fs->object != fs->first_object) 1227 vm_object_drop(fs->object); 1228 unlock_and_deallocate(fs); 1229 return (KERN_PROTECTION_FAILURE); 1230 } 1231 1232 /* 1233 * Allocate a new page for this object/offset pair. 1234 * 1235 * It is possible for the allocation to race, so 1236 * handle the case. 1237 */ 1238 fs->m = NULL; 1239 if (!vm_page_count_severe()) { 1240 fs->m = vm_page_alloc(fs->object, pindex, 1241 ((fs->vp || fs->object->backing_object) ? 1242 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL : 1243 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1244 VM_ALLOC_USE_GD | VM_ALLOC_ZERO)); 1245 } 1246 if (fs->m == NULL) { 1247 vm_object_pip_wakeup(fs->first_object); 1248 vm_object_chain_release_all(fs->first_object, 1249 fs->object); 1250 if (fs->object != fs->first_object) 1251 vm_object_drop(fs->object); 1252 unlock_and_deallocate(fs); 1253 vm_waitpfault(); 1254 return (KERN_TRY_AGAIN); 1255 } 1256 1257 /* 1258 * Fall through to readrest. We have a new page which 1259 * will have to be paged (since m->valid will be 0). 1260 */ 1261 } 1262 1263 readrest: 1264 /* 1265 * We have found an invalid or partially valid page, a 1266 * page with a read-ahead mark which might be partially or 1267 * fully valid (and maybe dirty too), or we have allocated 1268 * a new page. 1269 * 1270 * Attempt to fault-in the page if there is a chance that the 1271 * pager has it, and potentially fault in additional pages 1272 * at the same time. 1273 * 1274 * If TRYPAGER is true then fs.m will be non-NULL and busied 1275 * for us. 1276 */ 1277 if (TRYPAGER(fs)) { 1278 int rv; 1279 int seqaccess; 1280 u_char behavior = vm_map_entry_behavior(fs->entry); 1281 1282 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1283 seqaccess = 0; 1284 else 1285 seqaccess = -1; 1286 1287 #if 0 1288 /* 1289 * If sequential access is detected then attempt 1290 * to deactivate/cache pages behind the scan to 1291 * prevent resource hogging. 1292 * 1293 * Use of PG_RAM to detect sequential access 1294 * also simulates multi-zone sequential access 1295 * detection for free. 1296 * 1297 * NOTE: Partially valid dirty pages cannot be 1298 * deactivated without causing NFS picemeal 1299 * writes to barf. 1300 */ 1301 if ((fs->first_object->type != OBJT_DEVICE) && 1302 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1303 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1304 (fs->m->flags & PG_RAM))) 1305 ) { 1306 vm_pindex_t scan_pindex; 1307 int scan_count = 16; 1308 1309 if (first_pindex < 16) { 1310 scan_pindex = 0; 1311 scan_count = 0; 1312 } else { 1313 scan_pindex = first_pindex - 16; 1314 if (scan_pindex < 16) 1315 scan_count = scan_pindex; 1316 else 1317 scan_count = 16; 1318 } 1319 1320 while (scan_count) { 1321 vm_page_t mt; 1322 1323 mt = vm_page_lookup(fs->first_object, 1324 scan_pindex); 1325 if (mt == NULL) 1326 break; 1327 if (vm_page_busy_try(mt, TRUE)) 1328 goto skip; 1329 1330 if (mt->valid != VM_PAGE_BITS_ALL) { 1331 vm_page_wakeup(mt); 1332 break; 1333 } 1334 if ((mt->flags & 1335 (PG_FICTITIOUS | PG_UNMANAGED)) || 1336 mt->hold_count || 1337 mt->wire_count) { 1338 vm_page_wakeup(mt); 1339 goto skip; 1340 } 1341 if (mt->dirty == 0) 1342 vm_page_test_dirty(mt); 1343 if (mt->dirty) { 1344 vm_page_protect(mt, 1345 VM_PROT_NONE); 1346 vm_page_deactivate(mt); 1347 vm_page_wakeup(mt); 1348 } else { 1349 vm_page_cache(mt); 1350 } 1351 skip: 1352 --scan_count; 1353 --scan_pindex; 1354 } 1355 1356 seqaccess = 1; 1357 } 1358 #endif 1359 1360 /* 1361 * Avoid deadlocking against the map when doing I/O. 1362 * fs.object and the page is PG_BUSY'd. 1363 * 1364 * NOTE: Once unlocked, fs->entry can become stale 1365 * so this will NULL it out. 1366 * 1367 * NOTE: fs->entry is invalid until we relock the 1368 * map and verify that the timestamp has not 1369 * changed. 1370 */ 1371 unlock_map(fs); 1372 1373 /* 1374 * Acquire the page data. We still hold a ref on 1375 * fs.object and the page has been PG_BUSY's. 1376 * 1377 * The pager may replace the page (for example, in 1378 * order to enter a fictitious page into the 1379 * object). If it does so it is responsible for 1380 * cleaning up the passed page and properly setting 1381 * the new page PG_BUSY. 1382 * 1383 * If we got here through a PG_RAM read-ahead 1384 * mark the page may be partially dirty and thus 1385 * not freeable. Don't bother checking to see 1386 * if the pager has the page because we can't free 1387 * it anyway. We have to depend on the get_page 1388 * operation filling in any gaps whether there is 1389 * backing store or not. 1390 */ 1391 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1392 1393 if (rv == VM_PAGER_OK) { 1394 /* 1395 * Relookup in case pager changed page. Pager 1396 * is responsible for disposition of old page 1397 * if moved. 1398 * 1399 * XXX other code segments do relookups too. 1400 * It's a bad abstraction that needs to be 1401 * fixed/removed. 1402 */ 1403 fs->m = vm_page_lookup(fs->object, pindex); 1404 if (fs->m == NULL) { 1405 vm_object_pip_wakeup(fs->first_object); 1406 vm_object_chain_release_all( 1407 fs->first_object, fs->object); 1408 if (fs->object != fs->first_object) 1409 vm_object_drop(fs->object); 1410 unlock_and_deallocate(fs); 1411 return (KERN_TRY_AGAIN); 1412 } 1413 1414 ++fs->hardfault; 1415 break; /* break to PAGE HAS BEEN FOUND */ 1416 } 1417 1418 /* 1419 * Remove the bogus page (which does not exist at this 1420 * object/offset); before doing so, we must get back 1421 * our object lock to preserve our invariant. 1422 * 1423 * Also wake up any other process that may want to bring 1424 * in this page. 1425 * 1426 * If this is the top-level object, we must leave the 1427 * busy page to prevent another process from rushing 1428 * past us, and inserting the page in that object at 1429 * the same time that we are. 1430 */ 1431 if (rv == VM_PAGER_ERROR) { 1432 if (curproc) { 1433 kprintf("vm_fault: pager read error, " 1434 "pid %d (%s)\n", 1435 curproc->p_pid, 1436 curproc->p_comm); 1437 } else { 1438 kprintf("vm_fault: pager read error, " 1439 "thread %p (%s)\n", 1440 curthread, 1441 curproc->p_comm); 1442 } 1443 } 1444 1445 /* 1446 * Data outside the range of the pager or an I/O error 1447 * 1448 * The page may have been wired during the pagein, 1449 * e.g. by the buffer cache, and cannot simply be 1450 * freed. Call vnode_pager_freepage() to deal with it. 1451 */ 1452 /* 1453 * XXX - the check for kernel_map is a kludge to work 1454 * around having the machine panic on a kernel space 1455 * fault w/ I/O error. 1456 */ 1457 if (((fs->map != &kernel_map) && 1458 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1459 vnode_pager_freepage(fs->m); 1460 fs->m = NULL; 1461 vm_object_pip_wakeup(fs->first_object); 1462 vm_object_chain_release_all(fs->first_object, 1463 fs->object); 1464 if (fs->object != fs->first_object) 1465 vm_object_drop(fs->object); 1466 unlock_and_deallocate(fs); 1467 if (rv == VM_PAGER_ERROR) 1468 return (KERN_FAILURE); 1469 else 1470 return (KERN_PROTECTION_FAILURE); 1471 /* NOT REACHED */ 1472 } 1473 if (fs->object != fs->first_object) { 1474 vnode_pager_freepage(fs->m); 1475 fs->m = NULL; 1476 /* 1477 * XXX - we cannot just fall out at this 1478 * point, m has been freed and is invalid! 1479 */ 1480 } 1481 } 1482 1483 /* 1484 * We get here if the object has a default pager (or unwiring) 1485 * or the pager doesn't have the page. 1486 */ 1487 if (fs->object == fs->first_object) 1488 fs->first_m = fs->m; 1489 1490 /* 1491 * Move on to the next object. The chain lock should prevent 1492 * the backing_object from getting ripped out from under us. 1493 */ 1494 if ((next_object = fs->object->backing_object) != NULL) { 1495 vm_object_hold(next_object); 1496 vm_object_chain_acquire(next_object); 1497 KKASSERT(next_object == fs->object->backing_object); 1498 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1499 } 1500 1501 if (next_object == NULL) { 1502 /* 1503 * If there's no object left, fill the page in the top 1504 * object with zeros. 1505 */ 1506 if (fs->object != fs->first_object) { 1507 if (fs->first_object->backing_object != 1508 fs->object) { 1509 vm_object_hold(fs->first_object->backing_object); 1510 } 1511 vm_object_chain_release_all( 1512 fs->first_object->backing_object, 1513 fs->object); 1514 if (fs->first_object->backing_object != 1515 fs->object) { 1516 vm_object_drop(fs->first_object->backing_object); 1517 } 1518 vm_object_pip_wakeup(fs->object); 1519 vm_object_drop(fs->object); 1520 fs->object = fs->first_object; 1521 pindex = first_pindex; 1522 fs->m = fs->first_m; 1523 } 1524 fs->first_m = NULL; 1525 1526 /* 1527 * Zero the page if necessary and mark it valid. 1528 */ 1529 if ((fs->m->flags & PG_ZERO) == 0) { 1530 vm_page_zero_fill(fs->m); 1531 } else { 1532 #ifdef PMAP_DEBUG 1533 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m)); 1534 #endif 1535 vm_page_flag_clear(fs->m, PG_ZERO); 1536 mycpu->gd_cnt.v_ozfod++; 1537 } 1538 mycpu->gd_cnt.v_zfod++; 1539 fs->m->valid = VM_PAGE_BITS_ALL; 1540 break; /* break to PAGE HAS BEEN FOUND */ 1541 } 1542 if (fs->object != fs->first_object) { 1543 vm_object_pip_wakeup(fs->object); 1544 vm_object_lock_swap(); 1545 vm_object_drop(fs->object); 1546 } 1547 KASSERT(fs->object != next_object, 1548 ("object loop %p", next_object)); 1549 fs->object = next_object; 1550 vm_object_pip_add(fs->object, 1); 1551 } 1552 1553 /* 1554 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1555 * is held.] 1556 * 1557 * object still held. 1558 * 1559 * If the page is being written, but isn't already owned by the 1560 * top-level object, we have to copy it into a new page owned by the 1561 * top-level object. 1562 */ 1563 KASSERT((fs->m->flags & PG_BUSY) != 0, 1564 ("vm_fault: not busy after main loop")); 1565 1566 if (fs->object != fs->first_object) { 1567 /* 1568 * We only really need to copy if we want to write it. 1569 */ 1570 if (fault_type & VM_PROT_WRITE) { 1571 /* 1572 * This allows pages to be virtually copied from a 1573 * backing_object into the first_object, where the 1574 * backing object has no other refs to it, and cannot 1575 * gain any more refs. Instead of a bcopy, we just 1576 * move the page from the backing object to the 1577 * first object. Note that we must mark the page 1578 * dirty in the first object so that it will go out 1579 * to swap when needed. 1580 */ 1581 if ( 1582 /* 1583 * Map, if present, has not changed 1584 */ 1585 (fs->map == NULL || 1586 fs->map_generation == fs->map->timestamp) && 1587 /* 1588 * Only one shadow object 1589 */ 1590 (fs->object->shadow_count == 1) && 1591 /* 1592 * No COW refs, except us 1593 */ 1594 (fs->object->ref_count == 1) && 1595 /* 1596 * No one else can look this object up 1597 */ 1598 (fs->object->handle == NULL) && 1599 /* 1600 * No other ways to look the object up 1601 */ 1602 ((fs->object->type == OBJT_DEFAULT) || 1603 (fs->object->type == OBJT_SWAP)) && 1604 /* 1605 * We don't chase down the shadow chain 1606 */ 1607 (fs->object == fs->first_object->backing_object) && 1608 1609 /* 1610 * grab the lock if we need to 1611 */ 1612 (fs->lookup_still_valid || 1613 fs->map == NULL || 1614 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1615 ) { 1616 /* 1617 * (first_m) and (m) are both busied. We have 1618 * move (m) into (first_m)'s object/pindex 1619 * in an atomic fashion, then free (first_m). 1620 * 1621 * first_object is held so second remove 1622 * followed by the rename should wind 1623 * up being atomic. vm_page_free() might 1624 * block so we don't do it until after the 1625 * rename. 1626 */ 1627 fs->lookup_still_valid = 1; 1628 vm_page_protect(fs->first_m, VM_PROT_NONE); 1629 vm_page_remove(fs->first_m); 1630 vm_page_rename(fs->m, fs->first_object, 1631 first_pindex); 1632 vm_page_free(fs->first_m); 1633 fs->first_m = fs->m; 1634 fs->m = NULL; 1635 mycpu->gd_cnt.v_cow_optim++; 1636 } else { 1637 /* 1638 * Oh, well, lets copy it. 1639 * 1640 * Why are we unmapping the original page 1641 * here? Well, in short, not all accessors 1642 * of user memory go through the pmap. The 1643 * procfs code doesn't have access user memory 1644 * via a local pmap, so vm_fault_page*() 1645 * can't call pmap_enter(). And the umtx*() 1646 * code may modify the COW'd page via a DMAP 1647 * or kernel mapping and not via the pmap, 1648 * leaving the original page still mapped 1649 * read-only into the pmap. 1650 * 1651 * So we have to remove the page from at 1652 * least the current pmap if it is in it. 1653 * Just remove it from all pmaps. 1654 */ 1655 vm_page_copy(fs->m, fs->first_m); 1656 vm_page_protect(fs->m, VM_PROT_NONE); 1657 vm_page_event(fs->m, VMEVENT_COW); 1658 } 1659 1660 if (fs->m) { 1661 /* 1662 * We no longer need the old page or object. 1663 */ 1664 release_page(fs); 1665 } 1666 1667 /* 1668 * We intend to revert to first_object, undo the 1669 * chain lock through to that. 1670 */ 1671 if (fs->first_object->backing_object != fs->object) 1672 vm_object_hold(fs->first_object->backing_object); 1673 vm_object_chain_release_all( 1674 fs->first_object->backing_object, 1675 fs->object); 1676 if (fs->first_object->backing_object != fs->object) 1677 vm_object_drop(fs->first_object->backing_object); 1678 1679 /* 1680 * fs->object != fs->first_object due to above 1681 * conditional 1682 */ 1683 vm_object_pip_wakeup(fs->object); 1684 vm_object_drop(fs->object); 1685 1686 /* 1687 * Only use the new page below... 1688 */ 1689 1690 mycpu->gd_cnt.v_cow_faults++; 1691 fs->m = fs->first_m; 1692 fs->object = fs->first_object; 1693 pindex = first_pindex; 1694 } else { 1695 /* 1696 * If it wasn't a write fault avoid having to copy 1697 * the page by mapping it read-only. 1698 */ 1699 fs->prot &= ~VM_PROT_WRITE; 1700 } 1701 } 1702 1703 /* 1704 * Relock the map if necessary, then check the generation count. 1705 * relock_map() will update fs->timestamp to account for the 1706 * relocking if necessary. 1707 * 1708 * If the count has changed after relocking then all sorts of 1709 * crap may have happened and we have to retry. 1710 * 1711 * NOTE: The relock_map() can fail due to a deadlock against 1712 * the vm_page we are holding BUSY. 1713 */ 1714 if (fs->lookup_still_valid == FALSE && fs->map) { 1715 if (relock_map(fs) || 1716 fs->map->timestamp != fs->map_generation) { 1717 release_page(fs); 1718 vm_object_pip_wakeup(fs->first_object); 1719 vm_object_chain_release_all(fs->first_object, 1720 fs->object); 1721 if (fs->object != fs->first_object) 1722 vm_object_drop(fs->object); 1723 unlock_and_deallocate(fs); 1724 return (KERN_TRY_AGAIN); 1725 } 1726 } 1727 1728 /* 1729 * If the fault is a write, we know that this page is being 1730 * written NOW so dirty it explicitly to save on pmap_is_modified() 1731 * calls later. 1732 * 1733 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1734 * if the page is already dirty to prevent data written with 1735 * the expectation of being synced from not being synced. 1736 * Likewise if this entry does not request NOSYNC then make 1737 * sure the page isn't marked NOSYNC. Applications sharing 1738 * data should use the same flags to avoid ping ponging. 1739 * 1740 * Also tell the backing pager, if any, that it should remove 1741 * any swap backing since the page is now dirty. 1742 */ 1743 vm_page_activate(fs->m); 1744 if (fs->prot & VM_PROT_WRITE) { 1745 vm_object_set_writeable_dirty(fs->m->object); 1746 vm_set_nosync(fs->m, fs->entry); 1747 if (fs->fault_flags & VM_FAULT_DIRTY) { 1748 vm_page_dirty(fs->m); 1749 swap_pager_unswapped(fs->m); 1750 } 1751 } 1752 1753 vm_object_pip_wakeup(fs->first_object); 1754 vm_object_chain_release_all(fs->first_object, fs->object); 1755 if (fs->object != fs->first_object) 1756 vm_object_drop(fs->object); 1757 1758 /* 1759 * Page had better still be busy. We are still locked up and 1760 * fs->object will have another PIP reference if it is not equal 1761 * to fs->first_object. 1762 */ 1763 KASSERT(fs->m->flags & PG_BUSY, 1764 ("vm_fault: page %p not busy!", fs->m)); 1765 1766 /* 1767 * Sanity check: page must be completely valid or it is not fit to 1768 * map into user space. vm_pager_get_pages() ensures this. 1769 */ 1770 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1771 vm_page_zero_invalid(fs->m, TRUE); 1772 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1773 } 1774 vm_page_flag_clear(fs->m, PG_ZERO); 1775 1776 return (KERN_SUCCESS); 1777 } 1778 1779 /* 1780 * Wire down a range of virtual addresses in a map. The entry in question 1781 * should be marked in-transition and the map must be locked. We must 1782 * release the map temporarily while faulting-in the page to avoid a 1783 * deadlock. Note that the entry may be clipped while we are blocked but 1784 * will never be freed. 1785 * 1786 * No requirements. 1787 */ 1788 int 1789 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1790 { 1791 boolean_t fictitious; 1792 vm_offset_t start; 1793 vm_offset_t end; 1794 vm_offset_t va; 1795 vm_paddr_t pa; 1796 vm_page_t m; 1797 pmap_t pmap; 1798 int rv; 1799 1800 lwkt_gettoken(&map->token); 1801 1802 pmap = vm_map_pmap(map); 1803 start = entry->start; 1804 end = entry->end; 1805 fictitious = entry->object.vm_object && 1806 (entry->object.vm_object->type == OBJT_DEVICE); 1807 if (entry->eflags & MAP_ENTRY_KSTACK) 1808 start += PAGE_SIZE; 1809 map->timestamp++; 1810 vm_map_unlock(map); 1811 1812 /* 1813 * We simulate a fault to get the page and enter it in the physical 1814 * map. 1815 */ 1816 for (va = start; va < end; va += PAGE_SIZE) { 1817 if (user_wire) { 1818 rv = vm_fault(map, va, VM_PROT_READ, 1819 VM_FAULT_USER_WIRE); 1820 } else { 1821 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1822 VM_FAULT_CHANGE_WIRING); 1823 } 1824 if (rv) { 1825 while (va > start) { 1826 va -= PAGE_SIZE; 1827 if ((pa = pmap_extract(pmap, va)) == 0) 1828 continue; 1829 pmap_change_wiring(pmap, va, FALSE); 1830 if (!fictitious) { 1831 m = PHYS_TO_VM_PAGE(pa); 1832 vm_page_busy_wait(m, FALSE, "vmwrpg"); 1833 vm_page_unwire(m, 1); 1834 vm_page_wakeup(m); 1835 } 1836 } 1837 goto done; 1838 } 1839 } 1840 rv = KERN_SUCCESS; 1841 done: 1842 vm_map_lock(map); 1843 lwkt_reltoken(&map->token); 1844 return (rv); 1845 } 1846 1847 /* 1848 * Unwire a range of virtual addresses in a map. The map should be 1849 * locked. 1850 */ 1851 void 1852 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 1853 { 1854 boolean_t fictitious; 1855 vm_offset_t start; 1856 vm_offset_t end; 1857 vm_offset_t va; 1858 vm_paddr_t pa; 1859 vm_page_t m; 1860 pmap_t pmap; 1861 1862 lwkt_gettoken(&map->token); 1863 1864 pmap = vm_map_pmap(map); 1865 start = entry->start; 1866 end = entry->end; 1867 fictitious = entry->object.vm_object && 1868 (entry->object.vm_object->type == OBJT_DEVICE); 1869 if (entry->eflags & MAP_ENTRY_KSTACK) 1870 start += PAGE_SIZE; 1871 1872 /* 1873 * Since the pages are wired down, we must be able to get their 1874 * mappings from the physical map system. 1875 */ 1876 for (va = start; va < end; va += PAGE_SIZE) { 1877 pa = pmap_extract(pmap, va); 1878 if (pa != 0) { 1879 pmap_change_wiring(pmap, va, FALSE); 1880 if (!fictitious) { 1881 m = PHYS_TO_VM_PAGE(pa); 1882 vm_page_busy_wait(m, FALSE, "vmwupg"); 1883 vm_page_unwire(m, 1); 1884 vm_page_wakeup(m); 1885 } 1886 } 1887 } 1888 lwkt_reltoken(&map->token); 1889 } 1890 1891 /* 1892 * Copy all of the pages from a wired-down map entry to another. 1893 * 1894 * The source and destination maps must be locked for write. 1895 * The source and destination maps token must be held 1896 * The source map entry must be wired down (or be a sharing map 1897 * entry corresponding to a main map entry that is wired down). 1898 * 1899 * No other requirements. 1900 */ 1901 void 1902 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1903 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 1904 { 1905 vm_object_t dst_object; 1906 vm_object_t src_object; 1907 vm_ooffset_t dst_offset; 1908 vm_ooffset_t src_offset; 1909 vm_prot_t prot; 1910 vm_offset_t vaddr; 1911 vm_page_t dst_m; 1912 vm_page_t src_m; 1913 1914 src_object = src_entry->object.vm_object; 1915 src_offset = src_entry->offset; 1916 1917 /* 1918 * Create the top-level object for the destination entry. (Doesn't 1919 * actually shadow anything - we copy the pages directly.) 1920 */ 1921 vm_map_entry_allocate_object(dst_entry); 1922 dst_object = dst_entry->object.vm_object; 1923 1924 prot = dst_entry->max_protection; 1925 1926 /* 1927 * Loop through all of the pages in the entry's range, copying each 1928 * one from the source object (it should be there) to the destination 1929 * object. 1930 */ 1931 for (vaddr = dst_entry->start, dst_offset = 0; 1932 vaddr < dst_entry->end; 1933 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1934 1935 /* 1936 * Allocate a page in the destination object 1937 */ 1938 do { 1939 dst_m = vm_page_alloc(dst_object, 1940 OFF_TO_IDX(dst_offset), 1941 VM_ALLOC_NORMAL); 1942 if (dst_m == NULL) { 1943 vm_wait(0); 1944 } 1945 } while (dst_m == NULL); 1946 1947 /* 1948 * Find the page in the source object, and copy it in. 1949 * (Because the source is wired down, the page will be in 1950 * memory.) 1951 */ 1952 src_m = vm_page_lookup(src_object, 1953 OFF_TO_IDX(dst_offset + src_offset)); 1954 if (src_m == NULL) 1955 panic("vm_fault_copy_wired: page missing"); 1956 1957 vm_page_copy(src_m, dst_m); 1958 vm_page_event(src_m, VMEVENT_COW); 1959 1960 /* 1961 * Enter it in the pmap... 1962 */ 1963 1964 vm_page_flag_clear(dst_m, PG_ZERO); 1965 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1966 1967 /* 1968 * Mark it no longer busy, and put it on the active list. 1969 */ 1970 vm_page_activate(dst_m); 1971 vm_page_wakeup(dst_m); 1972 } 1973 } 1974 1975 #if 0 1976 1977 /* 1978 * This routine checks around the requested page for other pages that 1979 * might be able to be faulted in. This routine brackets the viable 1980 * pages for the pages to be paged in. 1981 * 1982 * Inputs: 1983 * m, rbehind, rahead 1984 * 1985 * Outputs: 1986 * marray (array of vm_page_t), reqpage (index of requested page) 1987 * 1988 * Return value: 1989 * number of pages in marray 1990 */ 1991 static int 1992 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 1993 vm_page_t *marray, int *reqpage) 1994 { 1995 int i,j; 1996 vm_object_t object; 1997 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1998 vm_page_t rtm; 1999 int cbehind, cahead; 2000 2001 object = m->object; 2002 pindex = m->pindex; 2003 2004 /* 2005 * we don't fault-ahead for device pager 2006 */ 2007 if (object->type == OBJT_DEVICE) { 2008 *reqpage = 0; 2009 marray[0] = m; 2010 return 1; 2011 } 2012 2013 /* 2014 * if the requested page is not available, then give up now 2015 */ 2016 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 2017 *reqpage = 0; /* not used by caller, fix compiler warn */ 2018 return 0; 2019 } 2020 2021 if ((cbehind == 0) && (cahead == 0)) { 2022 *reqpage = 0; 2023 marray[0] = m; 2024 return 1; 2025 } 2026 2027 if (rahead > cahead) { 2028 rahead = cahead; 2029 } 2030 2031 if (rbehind > cbehind) { 2032 rbehind = cbehind; 2033 } 2034 2035 /* 2036 * Do not do any readahead if we have insufficient free memory. 2037 * 2038 * XXX code was broken disabled before and has instability 2039 * with this conditonal fixed, so shortcut for now. 2040 */ 2041 if (burst_fault == 0 || vm_page_count_severe()) { 2042 marray[0] = m; 2043 *reqpage = 0; 2044 return 1; 2045 } 2046 2047 /* 2048 * scan backward for the read behind pages -- in memory 2049 * 2050 * Assume that if the page is not found an interrupt will not 2051 * create it. Theoretically interrupts can only remove (busy) 2052 * pages, not create new associations. 2053 */ 2054 if (pindex > 0) { 2055 if (rbehind > pindex) { 2056 rbehind = pindex; 2057 startpindex = 0; 2058 } else { 2059 startpindex = pindex - rbehind; 2060 } 2061 2062 vm_object_hold(object); 2063 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 2064 if (vm_page_lookup(object, tpindex - 1)) 2065 break; 2066 } 2067 2068 i = 0; 2069 while (tpindex < pindex) { 2070 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM | 2071 VM_ALLOC_NULL_OK); 2072 if (rtm == NULL) { 2073 for (j = 0; j < i; j++) { 2074 vm_page_free(marray[j]); 2075 } 2076 vm_object_drop(object); 2077 marray[0] = m; 2078 *reqpage = 0; 2079 return 1; 2080 } 2081 marray[i] = rtm; 2082 ++i; 2083 ++tpindex; 2084 } 2085 vm_object_drop(object); 2086 } else { 2087 i = 0; 2088 } 2089 2090 /* 2091 * Assign requested page 2092 */ 2093 marray[i] = m; 2094 *reqpage = i; 2095 ++i; 2096 2097 /* 2098 * Scan forwards for read-ahead pages 2099 */ 2100 tpindex = pindex + 1; 2101 endpindex = tpindex + rahead; 2102 if (endpindex > object->size) 2103 endpindex = object->size; 2104 2105 vm_object_hold(object); 2106 while (tpindex < endpindex) { 2107 if (vm_page_lookup(object, tpindex)) 2108 break; 2109 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM | 2110 VM_ALLOC_NULL_OK); 2111 if (rtm == NULL) 2112 break; 2113 marray[i] = rtm; 2114 ++i; 2115 ++tpindex; 2116 } 2117 vm_object_drop(object); 2118 2119 return (i); 2120 } 2121 2122 #endif 2123 2124 /* 2125 * vm_prefault() provides a quick way of clustering pagefaults into a 2126 * processes address space. It is a "cousin" of pmap_object_init_pt, 2127 * except it runs at page fault time instead of mmap time. 2128 * 2129 * vm.fast_fault Enables pre-faulting zero-fill pages 2130 * 2131 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to 2132 * prefault. Scan stops in either direction when 2133 * a page is found to already exist. 2134 * 2135 * This code used to be per-platform pmap_prefault(). It is now 2136 * machine-independent and enhanced to also pre-fault zero-fill pages 2137 * (see vm.fast_fault) as well as make them writable, which greatly 2138 * reduces the number of page faults programs incur. 2139 * 2140 * Application performance when pre-faulting zero-fill pages is heavily 2141 * dependent on the application. Very tiny applications like /bin/echo 2142 * lose a little performance while applications of any appreciable size 2143 * gain performance. Prefaulting multiple pages also reduces SMP 2144 * congestion and can improve SMP performance significantly. 2145 * 2146 * NOTE! prot may allow writing but this only applies to the top level 2147 * object. If we wind up mapping a page extracted from a backing 2148 * object we have to make sure it is read-only. 2149 * 2150 * NOTE! The caller has already handled any COW operations on the 2151 * vm_map_entry via the normal fault code. Do NOT call this 2152 * shortcut unless the normal fault code has run on this entry. 2153 * 2154 * The related map must be locked. 2155 * No other requirements. 2156 */ 2157 static int vm_prefault_pages = 8; 2158 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0, 2159 "Maximum number of pages to pre-fault"); 2160 static int vm_fast_fault = 1; 2161 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 2162 "Burst fault zero-fill regions"); 2163 2164 /* 2165 * Set PG_NOSYNC if the map entry indicates so, but only if the page 2166 * is not already dirty by other means. This will prevent passive 2167 * filesystem syncing as well as 'sync' from writing out the page. 2168 */ 2169 static void 2170 vm_set_nosync(vm_page_t m, vm_map_entry_t entry) 2171 { 2172 if (entry->eflags & MAP_ENTRY_NOSYNC) { 2173 if (m->dirty == 0) 2174 vm_page_flag_set(m, PG_NOSYNC); 2175 } else { 2176 vm_page_flag_clear(m, PG_NOSYNC); 2177 } 2178 } 2179 2180 static void 2181 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot, 2182 int fault_flags) 2183 { 2184 struct lwp *lp; 2185 vm_page_t m; 2186 vm_offset_t addr; 2187 vm_pindex_t index; 2188 vm_pindex_t pindex; 2189 vm_object_t object; 2190 int pprot; 2191 int i; 2192 int noneg; 2193 int nopos; 2194 int maxpages; 2195 2196 /* 2197 * Get stable max count value, disabled if set to 0 2198 */ 2199 maxpages = vm_prefault_pages; 2200 cpu_ccfence(); 2201 if (maxpages <= 0) 2202 return; 2203 2204 /* 2205 * We do not currently prefault mappings that use virtual page 2206 * tables. We do not prefault foreign pmaps. 2207 */ 2208 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2209 return; 2210 lp = curthread->td_lwp; 2211 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2212 return; 2213 2214 /* 2215 * Limit pre-fault count to 1024 pages. 2216 */ 2217 if (maxpages > 1024) 2218 maxpages = 1024; 2219 2220 object = entry->object.vm_object; 2221 KKASSERT(object != NULL); 2222 KKASSERT(object == entry->object.vm_object); 2223 vm_object_hold(object); 2224 vm_object_chain_acquire(object); 2225 2226 noneg = 0; 2227 nopos = 0; 2228 for (i = 0; i < maxpages; ++i) { 2229 vm_object_t lobject; 2230 vm_object_t nobject; 2231 int allocated = 0; 2232 int error; 2233 2234 /* 2235 * This can eat a lot of time on a heavily contended 2236 * machine so yield on the tick if needed. 2237 */ 2238 if ((i & 7) == 7) 2239 lwkt_yield(); 2240 2241 /* 2242 * Calculate the page to pre-fault, stopping the scan in 2243 * each direction separately if the limit is reached. 2244 */ 2245 if (i & 1) { 2246 if (noneg) 2247 continue; 2248 addr = addra - ((i + 1) >> 1) * PAGE_SIZE; 2249 } else { 2250 if (nopos) 2251 continue; 2252 addr = addra + ((i + 2) >> 1) * PAGE_SIZE; 2253 } 2254 if (addr < entry->start) { 2255 noneg = 1; 2256 if (noneg && nopos) 2257 break; 2258 continue; 2259 } 2260 if (addr >= entry->end) { 2261 nopos = 1; 2262 if (noneg && nopos) 2263 break; 2264 continue; 2265 } 2266 2267 /* 2268 * Skip pages already mapped, and stop scanning in that 2269 * direction. When the scan terminates in both directions 2270 * we are done. 2271 */ 2272 if (pmap_prefault_ok(pmap, addr) == 0) { 2273 if (i & 1) 2274 noneg = 1; 2275 else 2276 nopos = 1; 2277 if (noneg && nopos) 2278 break; 2279 continue; 2280 } 2281 2282 /* 2283 * Follow the VM object chain to obtain the page to be mapped 2284 * into the pmap. 2285 * 2286 * If we reach the terminal object without finding a page 2287 * and we determine it would be advantageous, then allocate 2288 * a zero-fill page for the base object. The base object 2289 * is guaranteed to be OBJT_DEFAULT for this case. 2290 * 2291 * In order to not have to check the pager via *haspage*() 2292 * we stop if any non-default object is encountered. e.g. 2293 * a vnode or swap object would stop the loop. 2294 */ 2295 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2296 lobject = object; 2297 pindex = index; 2298 pprot = prot; 2299 2300 KKASSERT(lobject == entry->object.vm_object); 2301 /*vm_object_hold(lobject); implied */ 2302 2303 while ((m = vm_page_lookup_busy_try(lobject, pindex, 2304 TRUE, &error)) == NULL) { 2305 if (lobject->type != OBJT_DEFAULT) 2306 break; 2307 if (lobject->backing_object == NULL) { 2308 if (vm_fast_fault == 0) 2309 break; 2310 if ((prot & VM_PROT_WRITE) == 0 || 2311 vm_page_count_min(0)) { 2312 break; 2313 } 2314 2315 /* 2316 * NOTE: Allocated from base object 2317 */ 2318 m = vm_page_alloc(object, index, 2319 VM_ALLOC_NORMAL | 2320 VM_ALLOC_ZERO | 2321 VM_ALLOC_USE_GD | 2322 VM_ALLOC_NULL_OK); 2323 if (m == NULL) 2324 break; 2325 allocated = 1; 2326 pprot = prot; 2327 /* lobject = object .. not needed */ 2328 break; 2329 } 2330 if (lobject->backing_object_offset & PAGE_MASK) 2331 break; 2332 nobject = lobject->backing_object; 2333 vm_object_hold(nobject); 2334 KKASSERT(nobject == lobject->backing_object); 2335 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2336 if (lobject != object) { 2337 vm_object_lock_swap(); 2338 vm_object_drop(lobject); 2339 } 2340 lobject = nobject; 2341 pprot &= ~VM_PROT_WRITE; 2342 vm_object_chain_acquire(lobject); 2343 } 2344 2345 /* 2346 * NOTE: A non-NULL (m) will be associated with lobject if 2347 * it was found there, otherwise it is probably a 2348 * zero-fill page associated with the base object. 2349 * 2350 * Give-up if no page is available. 2351 */ 2352 if (m == NULL) { 2353 if (lobject != object) { 2354 if (object->backing_object != lobject) 2355 vm_object_hold(object->backing_object); 2356 vm_object_chain_release_all( 2357 object->backing_object, lobject); 2358 if (object->backing_object != lobject) 2359 vm_object_drop(object->backing_object); 2360 vm_object_drop(lobject); 2361 } 2362 break; 2363 } 2364 2365 /* 2366 * The object must be marked dirty if we are mapping a 2367 * writable page. m->object is either lobject or object, 2368 * both of which are still held. Do this before we 2369 * potentially drop the object. 2370 */ 2371 if (pprot & VM_PROT_WRITE) 2372 vm_object_set_writeable_dirty(m->object); 2373 2374 /* 2375 * Do not conditionalize on PG_RAM. If pages are present in 2376 * the VM system we assume optimal caching. If caching is 2377 * not optimal the I/O gravy train will be restarted when we 2378 * hit an unavailable page. We do not want to try to restart 2379 * the gravy train now because we really don't know how much 2380 * of the object has been cached. The cost for restarting 2381 * the gravy train should be low (since accesses will likely 2382 * be I/O bound anyway). 2383 */ 2384 if (lobject != object) { 2385 if (object->backing_object != lobject) 2386 vm_object_hold(object->backing_object); 2387 vm_object_chain_release_all(object->backing_object, 2388 lobject); 2389 if (object->backing_object != lobject) 2390 vm_object_drop(object->backing_object); 2391 vm_object_drop(lobject); 2392 } 2393 2394 /* 2395 * Enter the page into the pmap if appropriate. If we had 2396 * allocated the page we have to place it on a queue. If not 2397 * we just have to make sure it isn't on the cache queue 2398 * (pages on the cache queue are not allowed to be mapped). 2399 */ 2400 if (allocated) { 2401 /* 2402 * Page must be zerod. 2403 */ 2404 if ((m->flags & PG_ZERO) == 0) { 2405 vm_page_zero_fill(m); 2406 } else { 2407 #ifdef PMAP_DEBUG 2408 pmap_page_assertzero( 2409 VM_PAGE_TO_PHYS(m)); 2410 #endif 2411 vm_page_flag_clear(m, PG_ZERO); 2412 mycpu->gd_cnt.v_ozfod++; 2413 } 2414 mycpu->gd_cnt.v_zfod++; 2415 m->valid = VM_PAGE_BITS_ALL; 2416 2417 /* 2418 * Handle dirty page case 2419 */ 2420 if (pprot & VM_PROT_WRITE) 2421 vm_set_nosync(m, entry); 2422 pmap_enter(pmap, addr, m, pprot, 0); 2423 mycpu->gd_cnt.v_vm_faults++; 2424 if (curthread->td_lwp) 2425 ++curthread->td_lwp->lwp_ru.ru_minflt; 2426 vm_page_deactivate(m); 2427 if (pprot & VM_PROT_WRITE) { 2428 /*vm_object_set_writeable_dirty(m->object);*/ 2429 vm_set_nosync(m, entry); 2430 if (fault_flags & VM_FAULT_DIRTY) { 2431 vm_page_dirty(m); 2432 /*XXX*/ 2433 swap_pager_unswapped(m); 2434 } 2435 } 2436 vm_page_wakeup(m); 2437 } else if (error) { 2438 /* couldn't busy page, no wakeup */ 2439 } else if ( 2440 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2441 (m->flags & PG_FICTITIOUS) == 0) { 2442 /* 2443 * A fully valid page not undergoing soft I/O can 2444 * be immediately entered into the pmap. 2445 */ 2446 if ((m->queue - m->pc) == PQ_CACHE) 2447 vm_page_deactivate(m); 2448 if (pprot & VM_PROT_WRITE) { 2449 /*vm_object_set_writeable_dirty(m->object);*/ 2450 vm_set_nosync(m, entry); 2451 if (fault_flags & VM_FAULT_DIRTY) { 2452 vm_page_dirty(m); 2453 /*XXX*/ 2454 swap_pager_unswapped(m); 2455 } 2456 } 2457 if (pprot & VM_PROT_WRITE) 2458 vm_set_nosync(m, entry); 2459 pmap_enter(pmap, addr, m, pprot, 0); 2460 mycpu->gd_cnt.v_vm_faults++; 2461 if (curthread->td_lwp) 2462 ++curthread->td_lwp->lwp_ru.ru_minflt; 2463 vm_page_wakeup(m); 2464 } else { 2465 vm_page_wakeup(m); 2466 } 2467 } 2468 vm_object_chain_release(object); 2469 vm_object_drop(object); 2470 } 2471 2472 static void 2473 vm_prefault_quick(pmap_t pmap, vm_offset_t addra, 2474 vm_map_entry_t entry, int prot, int fault_flags) 2475 { 2476 struct lwp *lp; 2477 vm_page_t m; 2478 vm_offset_t addr; 2479 vm_pindex_t pindex; 2480 vm_object_t object; 2481 int i; 2482 int noneg; 2483 int nopos; 2484 int maxpages; 2485 2486 /* 2487 * Get stable max count value, disabled if set to 0 2488 */ 2489 maxpages = vm_prefault_pages; 2490 cpu_ccfence(); 2491 if (maxpages <= 0) 2492 return; 2493 2494 /* 2495 * We do not currently prefault mappings that use virtual page 2496 * tables. We do not prefault foreign pmaps. 2497 */ 2498 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2499 return; 2500 lp = curthread->td_lwp; 2501 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2502 return; 2503 2504 /* 2505 * Limit pre-fault count to 1024 pages. 2506 */ 2507 if (maxpages > 1024) 2508 maxpages = 1024; 2509 2510 object = entry->object.vm_object; 2511 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2512 KKASSERT(object->backing_object == NULL); 2513 2514 noneg = 0; 2515 nopos = 0; 2516 for (i = 0; i < maxpages; ++i) { 2517 int error; 2518 2519 /* 2520 * Calculate the page to pre-fault, stopping the scan in 2521 * each direction separately if the limit is reached. 2522 */ 2523 if (i & 1) { 2524 if (noneg) 2525 continue; 2526 addr = addra - ((i + 1) >> 1) * PAGE_SIZE; 2527 } else { 2528 if (nopos) 2529 continue; 2530 addr = addra + ((i + 2) >> 1) * PAGE_SIZE; 2531 } 2532 if (addr < entry->start) { 2533 noneg = 1; 2534 if (noneg && nopos) 2535 break; 2536 continue; 2537 } 2538 if (addr >= entry->end) { 2539 nopos = 1; 2540 if (noneg && nopos) 2541 break; 2542 continue; 2543 } 2544 2545 /* 2546 * Skip pages already mapped, and stop scanning in that 2547 * direction. When the scan terminates in both directions 2548 * we are done. 2549 */ 2550 if (pmap_prefault_ok(pmap, addr) == 0) { 2551 if (i & 1) 2552 noneg = 1; 2553 else 2554 nopos = 1; 2555 if (noneg && nopos) 2556 break; 2557 continue; 2558 } 2559 2560 /* 2561 * Follow the VM object chain to obtain the page to be mapped 2562 * into the pmap. This version of the prefault code only 2563 * works with terminal objects. 2564 * 2565 * WARNING! We cannot call swap_pager_unswapped() with a 2566 * shared token. 2567 */ 2568 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2569 2570 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2571 if (m == NULL || error) 2572 continue; 2573 2574 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2575 (m->flags & PG_FICTITIOUS) == 0 && 2576 ((m->flags & PG_SWAPPED) == 0 || 2577 (prot & VM_PROT_WRITE) == 0 || 2578 (fault_flags & VM_FAULT_DIRTY) == 0)) { 2579 /* 2580 * A fully valid page not undergoing soft I/O can 2581 * be immediately entered into the pmap. 2582 */ 2583 if ((m->queue - m->pc) == PQ_CACHE) 2584 vm_page_deactivate(m); 2585 if (prot & VM_PROT_WRITE) { 2586 vm_object_set_writeable_dirty(m->object); 2587 vm_set_nosync(m, entry); 2588 if (fault_flags & VM_FAULT_DIRTY) { 2589 vm_page_dirty(m); 2590 /*XXX*/ 2591 swap_pager_unswapped(m); 2592 } 2593 } 2594 pmap_enter(pmap, addr, m, prot, 0); 2595 mycpu->gd_cnt.v_vm_faults++; 2596 if (curthread->td_lwp) 2597 ++curthread->td_lwp->lwp_ru.ru_minflt; 2598 } 2599 vm_page_wakeup(m); 2600 } 2601 } 2602